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Dear friend,
I pray that you may enjoy good health
And that all may go well with you,
Even as your soul is getting along well.
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Abstract

Quantum cryptography is one of the most important quantum information
applications. The present thesis covers several topics on quantum cryptog-
raphy, such as the security analysis of quantum channels for key distribution
protocols and the study of quantum cloning.

First, we introduce a general formalism to characterize the cryptographic
properties of quantum channels in the realistic scenario where the two hon-
est parties employ prepare and measure protocols and the known two-way
communication reconciliation techniques. We derive a necessary and suffi-
cient condition to distill a secret key using this type of schemes for arbitrary
bipartite quantum systems of finite dimension. The obtained results suggest
that there may exist weakly entangling channels useless for key distribution
using prepare and measure schemes.

Next, we consider Gaussian states and Gaussian operations for crypto-
graphic tasks and derive a new security condition. As it happens for quan-
tum systems of finite dimension, our results suggest that there may also
exist weakly entangled Gaussian states useless for key distribution, using
Gaussian operations.

Finally, we study the connection between cloning and state estimation.
It was a long-standing problem to show whether state estimation becomes
equivalent to quantum cloning in the asymptotic limit of an infinite number
of clones. The equivalence is proven here using two known results in quan-
tum information theory, the monogamy of quantum states and the properties
of entanglement-breaking channels.
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Resumen

La teoŕıa cuántica describe la f́ısica de sistemas microscópicos. Describiendo
la f́ısica de la pequeña escala, explota un formalismo diferente al utilizado
por la f́ısica clásica, ya que las cantidades observables en teoŕıa cuántica no
conmutan. Esto conduce a que la realidad f́ısica es no determinista, y deriva
en resultados antiintuitivos. Una de las caracteŕısticas peculiares de la teoŕıa
cuántica es la correlación presente en sistemas cuánticos, el entanglement.

Desde hace una década, la teoŕıa de la información cuántica ha empezado
a reconocer la importancia de considerar el punto de vista informático-
teórico en la teoŕıa cuántica. El mejor ejemplo que ilustra la teoŕıa de
la información cuántica puede ser la teleportación cuántica, un protocolo
para transmitir un estado cuántico a una distancia arbitraria, y el algoritmo
de factorización cuántico, que soluciona el problema de la factorización 1

en tiempo polinómico. De hecho, resulta que el entanglement permite a la
teoŕıa de la información cuántica superar al correspondiente clásico. Muchas
investigaciones importantes en teoŕıa de la información cuántica se realizan
teórica y experimentalmente, y afectan hoy en d́ıa otras áreas de investi-
gación en f́ısica.

Uno de los principales usos, asi como logros, de la teoŕıa de la infor-
mación cuántica es la criptograf́ıa cuántica, i.e. la distribución cuántica de
claves, que distribuye una clave secreta mediante estados cuánticos y proce-
sado clásico, ambas tecnoloǵıas actualmente factibles. Recientemente, ésta
tecnoloǵıa ha abierto un nuevo mercado en la criptograf́ıa. La actual tesis
sigue la ĺınea del desarrollo reciente en teoŕıa de la información cuántica,
estudiando el papel del entanglement en escenarios criptográficos cuánticos:
nuevo análisis de seguridad de los canales cuánticos para los escenarios crip-
tográficos, posibilidad de aplicar estados gausianos en los escenarios de dis-
tribucion de claves, y la prueba de equivalencia entre la clonación asintótica
cuántica y la estimación del estado.

1Clásicamente el problema se considera muy duro, en el sentido que puede no ser
generalmente soluble en tiempo polinómico.
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0.1 Introducción

Esta tesis cubre diversos aspectos de la criptograf́ıa cuántica, principalmente
nuevas condiciones de seguridad y el estudio de la clonacion cuántica. La
tesis demuestra condiciones de seguridad que indican si una clave secreta
se puede destilar de un canal cuántico dado, que puede ser un canal de un
qubit, un canal de un qudit, o un canal gausiano. Esta condición prueba
la seguridad de protocolos ya conocidos tales como el protocolo BB84 [8].
La estimación y la clonación de estados cuánticos aparece naturalmente en
el contexto de un escenario criptográfico con presencia de un esṕıa, y se
ha conjeturado la equivalencia entre la clonación asintótica cuántica y la
estimación. La tesis prueba esta conjetura realizada hace muchos años,
demostrando que son de hecho equivalentes.

0.2 Motivación

0.2.1 Key distillation de canales cuánticos

Los métodos criptográficos existentes que utilizan recursos clásicos basan
su seguridad en asunciones técnicas relativas al espia, llamado a menudo
Eve, capacidades tales como potencia de cálculo finita o memoria limitada
[70]. Contrariamente a todos estos esquemas, las pruebas de la seguridad
de protocolos de distribucion cuántica (QKD2), e.g. el protocolo BB84 [8],
no se apoyan en ninguna asunción sobre las capacidades de Eve: se basan
simplemente en el hecho de que Eve, asi como los dispositivos de los par-
ticipantes, son governados por las leyes cuánticas [43]. Las caracteŕısticas
cuánticas, tales como la monogamia de las correlaciones cuánticas (entan-
glement) o la imposibilidad de la clonación perfecta del estado [91], hacen
QKD seguro. Controlando el canal, Eve introduciŕıa errores y modificaŕıa
las correlaciones cuánticas previstas entre los participantes, Alice y Bob. La
cantidad de estos errores se puede estimar usando la discusión pública, aśı
que los participantes honestos pueden juzgar si su canal cuántico se puede
utilizar para QKD seguro, o abortan una transmisión probada insegura.

El problema estándar en pruebas de seguridad es determinar el critical
quantum bit error rate (QBER) en el canal tal que la destilación de claves
es posible con técnicas uni o bidireccionales de destilación usando el pro-
tocolo BB84. Sin embargo, parece significativo identificar y cuantificar las
caracteŕısticas criptográficas de un canal cuántico por śı mismo, indepen-
dientemente de cualquier protocolo QKD predeterminado. De hecho, esto
está más cercano a lo que sucede en realidad, donde está fijado el canal que
conecta a Alice y Bob. Por lo tanto, después de estimar caracteŕısticas de

2La terminologiá QKD viene de su expresión inglesa, Quantum Key Distribution,
que significa distribución de una clave secreta usando los protocolos que aplican estados
cuánticos.
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un canal cuántico dado, los dos participantes deben diseñar el protocolo que
se adapta mejor a los parámetros estimados del canal. En este sentido, es
bien sabido que ningn QKD seguro puede ser establecido usando canales
entanglement-breaking [42, 28], mientras que la detección del entanglement
garantiza ya la presencia de una cierta forma de correlación [3]. Más allá
de estos dos resultados, poco se sabe sobre que caracteŕısticas del canal són
necesarias y/o suficientes para QKD seguro.

0.2.2 Key distillation en un escenario gausiano

Desde que la teleportación cuántica fue implementada en experimentos con
dos estados squeezed, se ha dedicado una cantidad significativa de trabajo
a desarrollar la teoŕıa de la información cuántica para variables continuas.
Recientemente, muchos conceptos introducidos en sistemas de variables disc-
retas se traducen a los sistemas de variables continuas. En estos sistemas,
los estados gausianos y las operaciones gausianas desempeñan el papel dom-
inante. Aparecen naturalmente en experimentos y pueden ser manipulados
con la tecnoloǵıa actual de óptica cuántica.

Un resultado negativo importante en el contexto de las variables contin-
uas es que los estados gausianos no se pueden destilar mediante operaciones
gausianas [38, 33]. Aunque se sabe que todos los estados gausianos con
transposición parcial no positiva son destilables [37], cualquier protocolo de
destilación debe incluir una operación no gausiana que resulta ser muy com-
pleja desde el punto de vista experimental. Esto puede ser reformulado como
todos los estados mezcla entangled están bound-entangled en un escenario
gausiano. Sin embargo, estos estados pueden todav́ıa ser útiles en el régimen
gausiano, puesto que los bits secretos pueden ser extráıdos de ellos usando
operaciones locales gausianas y comunicación clásica.

0.2.3 Estimación y clonación asintótica de estados

Es sabido que la clonación cuántica perfecta y la estimación perfecta de un
estado cuántico son operaciones imposibles. Son también los ingredientes
que hacen QKD seguro. La imposibilidad de la estimación perfecta de un
estado cuántico es una consecuencia importante de la no ortogonalidad de los
estados cuánticos: el estado del un solo sistema cuántico no se puede medir
perfectamente. Aśı, cualquier medida en el nivel de una única copia pro-
porciona solamente información parcial. El teorema de la no clonación, una
de las piedras angulares de la teoŕıa de la información cuántica, representa
otra de las consecuencias de la no ortogonalidad de los estados cuánticos.
Prueba que dado un sistema cuántico en un estado desconocido, es imposible
diseñar un dispositivo produciendo dos copias idénticas.

De hecho, estos dos conceptos estan muy relacionados. Por un lado, si
la valoración perfecta del estado fuera posible, uno podŕıa utilizarla para
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preparar cualquier número de copias de un estado dado, únicamente real-
izando la medida y la preparación. Por otra parte, si la clonación perfecta
fuera posible, uno podŕıa estimar perfectamente el estado desconocido de
un sistema cuántico preparándose infinitas copias de él y midiéndolas. Más
allá de estas discusiones cualitativas, la conexión entre la estimación del
estado y la clonación fueron consolidadas por su equivalencia en el ĺımite
asintótico, es decir el proceso óptimo de clonación cuando N →∞ [39, 15]:
la clonación asintótica es equivalente a la estimación del estado. Realmente,
esto se prueba para dos casos, clonación universal 3 [15] y clonación phase-
covariant 4 [17]. La validez de la equivalencia de la clonación asintótica
y la estimación del estado ha sido identificada como uno de los problemas
abiertos de la teoŕıa de la información cuántica 5.

0.3 Protocolos realistas de Key Distillation

Existen gran cantidad de protocolos QKD en la literatura. Aqúı, restringi-
mos nuestras consideraciones a lo que llamamos los protocolos realistas,
conocidos como protocolos de preparacion y medida, donde Alice prepara y
env́ıa estados de una base elegida a Bob, que mide en otra (posiblemente
diferente) base. Esto establece algunas correlaciones clásicas entre los dos
participantes. Por supuesto este proceso por si solo es claramente inseguro,
ya que Eve podŕıa aplicar una estrategia de intercepción y reenvio en la
misma base que la preparación del estado de Alice, adquiriendo completa
información sin ser detectado. Por lo tanto, cada cierto tiempo, Alice y Bob
deben cambiar su preparación y medidas del estado para supervisar el canal
y poder excluir esta posibilidad. Alice y Bob anuncian estos śımbolos para
extraer la información sobre su canal, aśı que estos casos no contribuyen a
la tasa de transmisión final. Estos śımbolos son de hecho consumidos en el
proceso tomográfico mencionado previamente. Sin embargo, en el ĺımite de
secuencias grandes, la fracción de los casos donde Alice y Bob supervisan
el canal se puede hacer insignificante en comparación con la longitud de
la clave, pero aún aśı suficiente para tener una descripción fiel de algunos
parámetros del canal, tales como el QBER. Los estados enviados por Alice
serán transformados en un estado mezcla debido a la interacción de Eve.
Esta decoherencia producirá errores en los valores de la medida obtenidos
por Bob. El análisis de seguridad tiene como objetivo determinar si la de-
coherencia observada en el canal es bastante pequeña para permitir a Alice
y a Bob que destilen una clave secreta. Llamamos a estos protocolos realis-
tas en el sentido que no implican operaciones cuánticas experimentalmente
dif́ıciles, tales como medidas coherentes, memorias cuánticas o la generación

3El estado inicial consiste en estados puros aleatoriamente elegidos.
4El estado inicial yace en el ecuador de la esfera de Bloch.
5Ver el problema 22 de la lista del problemas abiertos en [57].
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Figure 1: Una llave secreta se puede destilar bien por la destilación del
entanglement más una medida (un proceso costoso), o por la medida más el
procesado clásico, que es actualmente factible.

de part́ıculas entangled. El establecimiento de correlaciones es realizado
generando estados de un qubit y midiéndolos en dos o más bases. Además,
uno podŕıa pensar en incluir una medida de filtración de una sola copia en
el lado de Bob. Esta operación es más dificil que una medida proyectiva
estándar, pero aún factible con la tecnologia actual [58].

Esquema basado en el entanglement

El panorama antes descrito se puede explicar en un escenario equivalente
basado en el entanglement [9], que resulta ser mucho más conveniente para el
análisis teórico. En el esquema basado en el entanglement, la codificación de
la información de Alice es substituida generando y midiendo la mitad de un
estado máximamente entangled. Es decir, Alice primero genera localmente
un estado máximamente entangled de dos qubits y env́ıa la mitad de éste
a Bob a travs del canal. Un estado mezcla ρab es entonces compartido por
los dos participantes, debido a la interacción con el ambiente controlado por
Eve. Ahora, Alice y Bob miden en dos bases para mapear sus correlaciones
cuánticas en correlaciones clásicas. Por ejemplo, si Alice y Bob miden en las
bases computacionales, el QBER resulta simplemente

εAB = 〈01|ρAB|01〉+ 〈10|ρAB|10〉.

Puede ser impuesto que el estado local de Alice no pueda ser modificado
por Eve, puesto que la part́ıcula correspondiente nunca sale del laboratorio
de Alice, que se asume seguro. Denotamos aqúı estas single-copy measure-
ment plus classical processing como SIMCAP [2]. Debe quedar claro que
las técnicas de [9] implican la equivalencia entre los protocolos de SIMCAP
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Figure 2: Un estado puro tripartito es preparado por Eve, que env́ıa dos
de las part́ıculas a Alice y Bob y conserva una. Del punto de vista de
Alice y de Bob la situación se asemeja a un canal estándar con ruido. Los
participantes realizan medidas al nivel de una sola copia, posiblemente con
un cierto proceso de filtración preliminar. Eve guarda sus estados cuánticos
y puede retrasar arbitrariamente su medida colectiva.

en estados entangled y esquemas de preparacion-medida de QKD: la dis-
tribución de las correlaciones es, desde el punto de vista de la seguridad,
idéntico. Se pierde esta equivalencia, por ejemplo, si uno considera los pro-
tocolos de destilación del entanglement para QKD, donde las part́ıculas son
medidas por los participantes después de aplicar operaciones cuánticas co-
herentes.

0.3.1 Key Distillation clásica

Después de la distribución de las correlaciones, bien usando protocolos de
preparacion-medida o protocolos SIMCAP, Alice y Bob comparten correla-
ciones parcialmente secretas que se destilarán en la clave perfecta. El prob-
lema de destilar correlaciones con ruido y parcialmente secretas en una
clave secreta no se ha resuelto totalmente. Recientemente, ĺımites inferi-
ores generales a la secret-key rate que usa comunicación unidireccional se han
obtenido en [31]. En el caso de que las correlaciones sean demasiado ruidosas
para el uso directo de las técnicas unidireccionales de destilación, Alice y Bob
pueden aplicar antes un protocolo usando comunicación bidireccional. Las
correlaciones obtenidas después de este proceso bidireccional pueden con-
vertirse en destilables utilizando protocolos unidireccionales. Mucho menos
se sabe sobre la destilación de claves usando comunicación bidireccional.
Aqúı aplicamos principalmente el protocolo de comunicación bidireccional
estándar introducido por Maurer en [69], también conocido como classical
advantage distillation (CAD). De hecho, analizamos los siguientes dos pro-
tocolos CAD ligeramente distintos:
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• CAD1. Alice y Bob comparten una lista de bits correlacionados. Al-
ice selecciona N de sus bits que tengan el mismo valor y anuncia
públicamente la posición de estos śımbolos. Bob comprueba si sus
śımbolos correspondientes son también iguales. Si éste es el caso, Bob
anuncia a Alice que él acepta, aśı que utilizan los valores de la medida
(son todos iguales) de un bit para la nueva lista. Si no, rechazan los
N valores y comienzan otra vez el proceso con otro bloque.

• CAD2. Alice localmente genera un bit aleatorio s. Toma un bloque
de N de sus bits, A, y computa el vector

X = (X1, · · · , XN ) (1)

tal que Ai + Xi = s. Introduce entonces el nuevo bloque X a través
del canal público y clásicamente autentificado. Después de recibir X,
Bob lo aade a su correspondiente bloque, B + X, y acepta cualquier
valor que resulte ser igual. Si no, los śımbolos son descartados y el
proceso se inicia de nuevo, como antes.

Estos protocolos son equivalentes en criptograf́ıa clásica y en el escenario
general totalmente cuántico.

0.3.2 Estrategias de Espionaje

Una vez descritas las operaciones que efectúan Alice y Bob, consideraremos
los ataques de Eve. Supondremos que Eve tiene la capacidad de controlar
todo el entorno, esto es, que toda la información que se pierde a lo largo
del canal que une a Alice y a Bob va a parar a Eve. Dicho de otro modo,
toda la decoherencia que observan Alice y Bob procede de la interacción de
Eve con el canal cuántico. De acuerdo con [4], las estrategias de espionaje
se pueden clasificar en tres tipos: (i) individual, (ii) collectiva y (iii) coher-
ente. De nuevo, a pesar de que la mayor parte de la discusión que sigue se
presenta en el enfoque basado en el entanglement, las conclusiones también
son aplicables al enfoque basado en preparar y medir.

Ataques individuales

En un ataque individual, se asume que Eve aplica la misma interacción a
cada estado, sin introducir correlaciones entre las copias, y mide su estado
justo después de esta interacción. En este tipo de ataques, las tres partes mi-
den inmediatamente sus estados, ya que se supone que ninguno de ellos tiene
la habidad de almacenar estados cuánticos. Por ello, acaban compartiendo
correlaciones del tipo clásico-clásico-clásico6, descritos por una distribución

6A lo largo del caṕıtulo, denotaremos las variables clásicas y cuánticas por C y Q,
respectivamente. Al escribir las correlaciones entre las tres partes, el order es Alice-Bob-
Eve. Por ejmeplo, CCQ significa que Alice y Bob tienen valores clásicos correlacionados
(tras unas medidas), mientras que Eve tiene un estado cuántico.
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de probabilidad P (A,B, E). En este caso, los resultados estándar de Teoŕıa
de la INformación Clásica no se pueden aplicar directamente. Por ejemplo,
es sabido que la tasa de generación de claves secretas usando comunicación
unidireccional, K→, está acotada por la llamada cota de Csiszár-Körner [27],

K→ ≥ I(A : B)− I(A : E). (2)

Aqúı I(A : B) es la información mutua entre los resultados de las medidas
de A y B. En este tipo de ataques, la interacción de Eve se puede ver como
un tipo de clonación asimétrica [20] que produce dos copias aproximadas
diferentes, una para Bob y otra para ella. Esta transformación tiene la
forma UBE : |Φ+〉AB|E〉 → |Ψ〉ABE , donde ρAB = trE |Ψ〉〈Ψ|ABE . Se ha
demostrado que, en el caso de dos qubits, dos partes honestas son capaces
de destilar una clave secreta segura frente a todo tipo de ataque individual
siempre que el estado cuántico ρAB esté entangled [2].

Está claro que una prueba de seguridad frente ataques individuales no
es satisfactoria desde el punto de vista teórico. Sin embargo, creemos que
dicha prueba es relevante cuando consideramos esṕıas realistas. Supongamos
que la memoria cuántica de Eve presenta una tasa de decoherencia distinta
de core y que las dos partes honestas son capaces de estimarla. Entonces
podŕıan introducir un retraso entre la distribución de estados y el proceso
de destilación suficientemente largo como para evitar que Eve conservara
sin errores sus estados almacenados. Eve se veŕıa, pues, forzada a medir sus
estados antes de la reconciliación, al igual que en los ataques individuales.

Ataques colectivos

Los ataques colectivos representan, en principio, un paso intermedio entre
los individuales y el ataque más general. De nuevo, asumimos que Eve aplica
la misma interacción a cada estado cuántico, pero esta vez tiene memoria
cuántica. En otras palabras, puede esperar hasta el final del proceso de
reconciliación y adaptar su medida de acuerdo con la información pública
intercambiada por Alice y Bob. Después de un ataque colectivo, las dos
partes honestas comparten N copias independientes del mismo estado, ρ⊗N

AB ,
y no hay correlación entre copia y copia. Si pérdida de generalidad, el estado
completo de las tres partes se puede tomar como |ψ〉⊗N

ABE , donde

|ψ〉ABE = (IA ⊗ UBE)|Φ+〉AB|E〉. (3)

Tras un ataque colectivo y las medidas de Alice y Bob, las tres partes com-
parten correlaciones de tipo clásico-clásico-cuántico, descritas por un estado

∑

a,b

|a〉〈a| ⊗ |b〉〈b| ⊗ |eab〉〈ab|, (4)
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donde a y b denotan los resultados de las medidas de Alice y Bob asoci-
ados a los proyectores |a〉〈a| y |b〉〈b|. Nótese que |eab〉 no está normalizado,
pues |eab〉 = 〈ab|ψ〉ABE y p (a, b) = tr[|eab〉〈eab|].

El siguiente resultado, obtenido en [31, 63], es ampliamente usado en es-
cenaros realistas de distribución de claves. Tras un ataque colectivo descrito
por un estado (4), la tasa de destilación de clave secreta alcanzable a través
de protoclos de comunicación unidireccionales satisface

K→ ≥ I(A : B)− I(A : E). (5)

Aqúı, las correlaciones entre las variables clásicas de Alice y Bob se hallan de
nuevo cuantificadas por la información mutua I(A : B). Las correlacioens
entre las variabels clásicas de Alice y las cuánticas de Eve, A y E, están
cuantificadas por la cota de Holevo,

I(A : E) = S(E)− S(E|A), (6)

donde S denota la entroṕıa de von Neumann, por lo que S(E) = S(ρE)
y S(E|A) =

∑
a p (a)S(ρE |A = a). De hecho, la “misma” ecuación (5) se

aplica cuando Bib es también capaz de almacenar estados cuánticos y las tres
partes comparten correlacioens de tipo clasico-cuántico-cuántico (CQQ). En
este caso, las dos medidas de la información que comparten la variable clásica
de Alice A y cada uno de los estados cuánticos de Bob e Eve, que se denotan
B y E, debeŕıan ser cuantificadas a través de las correspondientes cotas de
Holevo [31]. Obsérvense las similaridades entre (2) y (5). De hecho, las
cotas que se obtienen son una generalización natural del la cota de C-K en
los escenarios CCQ y CQQ.

Ataques generales y el teorema de de Finetti

Aqúı Uno debe considerar el ataque más general cuando Eve lleva a cabo
cualquier tipo de interacción. En este caso, Alice y bob no pueden asumir
que comparten N copias del mismo estado cuántico. Al contrario que en los
ataques previos, hasta hace bien poco no exist́ıan buenas cotas para la tasa
de generación de clave secreta que fueran válidas ante ataques genéricos. Sin
embargo, recientemente se obtuvo una dramática simplificación del análisis
de seguridad de los protocolos de QKD bajo ataques generales gracias al
llamado teorema de de Finetti [78]. De hecho, Renner ha demostrado que
los ataques generales no pueden ser más poderosos que los ataques colec-
tivos en ningún protocolo que sea simétrico en el el uso del canal cuántico.
Esto permite simplificar enormemente las pruebas de seguridad, puesto que
gracias a argumentos de tipo de Finetti (ver [78] para más detalles), Alice
y Bob pueden asumir con seguridad que comparten N copias de un estado
cuántico consistente con su proceso tomográfico, y después aplicar las cotas
existentes para este escenario. Nótese que el teorema de de Finetti podŕıa
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ser empleado también si uno quiere aplicar destilación cuántica de entan-
glement como técnica para obtener una clave secreta. En lo que sigue, por
tanto, podemos restringir nuestro análisis al caso de ataques colectivos sin
subestimar las habilidades de Eve.

0.4 Condiciones para la destilación cuántica en canales
cuánticos de variables discretas

Analizamos las propiedades criptográficas de los canales cuánticos cuando
Alice y Bob emplean estrategias de QKD donde (i) la distribución de correla-
ciones se lleva a cabo usando estrategias de preparación y medida (ii) el pro-
ceso de destilación de claves usa los protocolos clásicos estándar de comuini-
cación unidireccinal y bidireccional. De hecho, éstas son las técnicas actual-
mente empleadas en cualquier implementación realista de QKD. También
supondremos que previamente las dos partes honestas llevarán a cabo op-
eraciones de filtrado, que transformarán el estado que comparten en un
estado diagonal en la base de Bell,

ρAB = λ1|Φ1〉〈Φ1|+ λ2|Φ2〉〈Φ2|+ λ3|Φ3〉〈Φ3|+ λ4|Φ4〉〈Φ4|, (7)

donde
∑

j λj = 1, λj > 0, y

|Φ1〉 =
1√
2
(|00〉+ |11〉)

|Φ2〉 =
1√
2
(|00〉 − |11〉)

|Φ3〉 =
1√
2
(|01〉+ |10〉)

|Φ4〉 =
1√
2
(|01〉 − |10〉) (8)

Primeramente derivamos la condición de seguridad para estos canales de
qubits, mejorando el análisis de seguridad estándar. Dado que los ataques
colectivos son tan poderosos como los ataques generales [78], consideramos
ataques colectivos y obtenemos la siguiente condición de seguridad general

|〈e0,0|e1,1〉|2 >
εAB

1− εAB
. (9)

O lo que es más preciso: si esta consición se satisface, Alice y Bob siempre
pueden generar una clave secreta de una longitud N larga, pero finita. La
eq. (9) se puede reescribir como

(λ1 + λ2)(λ3 + λ4) < (λ1 − λ2)2. (10)
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Esta condición es, de hecho, necesaria y suficiente para garantizar pri-
vacidad. Por lo que sabemos, ésta es la primera condición estricta para la
seguridad del protocolo. Aplicamos esta condición a los protocolos estándar
BB84 y six-state protocol, y determinamos los valores cŕıticos de QBER
20% y 27.6%, respectivamente.

A continuación, exploramos varias posibilidades para mejorar las cotas
de seguridad obtenidas, i) preprocesamiento de la información por una de
las partes, ii) preprocesamiento de la información por las dos aprtes, iii)
operaciones cuánticas coherentes por una de las partes. Curiosamente, todas
estas alternativas fracasan lo cual sugiere la existencia de estados entangled
que no permiten destilar una clave secreta en protocolos generales realistas.

A continuación consideramos escenarios de destilación de claves realistas
en sistemas cuánticos de mayor dimensión, llamados qudits, y extendemos
los resultados a canales de qudits diagonalizables en la base de estados de
Bell generalizados. En este escenario multidimensional, Alice prepara el
estado de Bell generalizado

|Φ〉 =
1√
d

d−1∑

k=0

|k〉|k〉, (11)

y la generalización de los operadores de error viene dada por los operadores
unitarios Um,n =

∑d−1
k=0 exp(2πi

d kn)|k+m〉〈k|. Por tanto, un sistema cuántico
en un estado ρ propagándose a través de un canal de Pauli generalizado se
ve afectado por la acción de Um,n con probabilidad pm,n. Esto implica que
el estado resultante es diagonal en la base de los estados de Bell,

(11⊗D)(Φ) =
d−1∑

m=0

d−1∑

n=0

pm,n|Bm,n〉〈Bm,n|, (12)

donde los estados |Bm,n〉 definen la base de Bell generalizada |Bm,n〉 = (11⊗
Um,n)|Φ〉. En este escenario, tenemos que

F =
d−1∑

k=0

〈kk|ρAB|kk〉 =
∑

n

p0,n.

De manera similar al caso de los qubits, introducimos una medida de dis-
torsión para los d− 1 errores posibles. Denotemos el resultado de la medida
de Alice por α. Entonces, Bob obtiene α + j, con probabilidad

Dj =
d−1∑

α=0

P (A = α,B = α + j) =
d−1∑

n=0

pj,n.

La distorsión total se define como D =
∑

j 6=0 Dj . Por supuesto, D0 =
F . Obsérvese que todos los Dj se pueden tomar más pequeños que F , sin
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pérdida de generalidad. De hecho, si éste no fuera el caso, las dos partes
honestas podŕıan aplicar operacioens locales Um,n para hacer la fidelidad
F mayor que cualquier otro Dj . Nótese también que los errores presentan
diferentes probabilidades Dj .

Seguidamente obtenemos la condición de seguridad total para QKD en
canales de qudits

max
k 6=k′

|〈ek,k|ek′ ,k′ 〉|2 > max
j

Dj

F
, (13)

donde

|eα,α〉 =
1√
F

d−1∑

n=0

c0,ne
2πi
d

αn|0, n〉

|eα,β〉 =
1√

Dβ−α

d−1∑

n=0

cβ−α,ne
2πi
d

αn|β − α, n〉

(14)

donde el álgebra es módulo d y β 6= α. La condición de seguridad obtenida
resulta ser óptima para los llamados protocolos de d + 1 bases y dos bases
que aparecen en la referencia [21].

0.5 Destilación de claves a partir de estados gau-
sianos mediante operaciones gausianas

A continuación consideramos el escenario criptográfico anteriormente definido
cuando los estados cuánticos son estados gausianos y restringimos a Alice
y a Bob a aplicar operaciones gausianas y analizamos las propiedades de
privacidad del canal cuántico. Dado que todos los estados gausianos de
tipo NPPT pueden ser transformados en estados simétricos entangled de
dos modos mediante operacioens locales gausianas y comunicación clásica
(GLOCC), restringimos nuestro análisis a este tipo de estados. Equivalen-
temente, uno puede pensar que el primer paso en el protocolo de destilación
es la transformación de tipo GLOCC de [37] que transforma cualquier es-
tado NPPT en un estado gausiano NPPT de dos modos [37], cuya matriz
de covarianza tiene la forma

γA = γB =
(

λ 0
0 λ

)
C =

(
cx 0
0 −cp

)
(15)

donde λ ≥ 0 y cx ≥ cp ≥ 0. La condición para que este estado sea f́ısico,
i.e., ρ ≥ 0 es que λ2 − cxcp − 1 ≥ λ(cx − cp), mientras que la condición de
entanglement (que en este caso es equivalente a la condición NPPT) es
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λ2 + cxcp − 1 < λ(cx + cp). (16)

Seguidamente, ambas partes miden la cuadratura X, donde XA y XB

denotan los operadores medidos; y xA y xB, los resultados de cada medida.
Alice y Bob somunican públicamente los valores |xA|, |xA|, y sólo dan por
válidos aquellos casos en que |xA| = |xB| = x0. Cada parte asocia el valor
lógico 0 (1) a un resultado positivo (negativo). Este proceso transforma el
estado cuántico en una lista de parejas de bits clásicos correlacionados (i, j).
La probabilidad de error de Alice y Bob, esto es, la probabilidad de que sus
śımbolos no coincidan, viene dada por

εAB =

∑
i6=j p (i, j)∑
i,j p (i, j)

=
1

1 + exp
(

4cxx2
0

λ2−c2x

) . (17)

Entonces Alice y Bob ejecutan CAD para establecer una clave secreta.
Seguimos los mismos pasos que antes. Primero estudiamos la seguri-

dad de nuestro protocolo cuando Eve aplica un ataque individual, lo cual
muestra que todos los estados gausianos que pierden su positividad tras la
transposición parcial (NPPT) son seguros. Tal como se muestra en [2], el
error de Eve en la estimación de bit final b está acotado por abajo por un
término proporcional a |〈e++|e−−〉|N , que, en este escenario gausiano viene
dado por

|〈e++|e−−〉|2 = exp
(
−4(λ2 + λ(cx − cp)− cxcp − 1)x2

0

λ + cx

)
. (18)

De este modo, Alice y Bob establecerán una clave secreta si
εAB

1− εAB
< |〈e++|e−−〉|. (19)

Más exactamente, si esta condición se cumple, existe un N finito tal que
se puede destilar una clave secreta a partir de la nueva lista de śımbolos
usando protocolos de comunicación unidireccionales [27]. Esto se indica en
la figura (3).

Ahora consideramos ataques generales y calculamos (9), como se ve en la
figura (3). Los resultados muestran que nuestra prueba de seguridad deja de
funcionar para algunos estados NPPT. Esto sugiere la existencia de estados
gaussianos poco entangled de los cuales no se puede extraer un clave secreta
mediande operaciones gausianas.

0.6 Equivalencia entre clonación asintótica y esti-
mación de estados

Mostramos la equivalencia entre la clonación asintótica y la estimación de
estados para cualquier distribución inicial de estados puros, demostrando
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Figure 3: Análisis de seguridad de estados gausianos simétricos de 1 × 1
modos cuando cx = cp = c. Todos los estados f́ısicos están sobre la ĺınea
de abajo. La ĺınea de más arriba define el ĺımite del entanglement, que
coincide con la cota de seguridad frente a ataques individuales. Los estados
por debajo de la ĺınea del medio son seguros frente a cualquier ataque. Esta
condición de seguridad general es más fuerte que el ĺımite del entanglement,
lo cual puede implicar la existencia de estados gausianos levemente entangled
inútiles para la destilación de claves.

que la clonación asintótica realmente se corresponde con la estimación de
estados. Clonar M estados entrantes a N salientes se denota como M → N .
Cuando N →∞, lo llamamos clonación asintótica.

La prueba se basa en dos resultados conocidos de la teoŕıa de la infor-
mación cuántica: la monogamia de las correlaciones cuánticas y las propiedades
de los canales destructores de entanglement. El entanglement es, de hecho,
un recurso de naturaleza monógama, en el sentido en que no puede ser
arbitrariamente compartido. Uno de los resultados más fuertes en esta di-
rección fue obtenido por Werner en 1989 [89]. Éste mostró que los únicos
estados que pueden ser arbitrariamente compartidos son los estados separa-
bles. Recuérdese que un estado cuántico bipartito ρAC en Cd ⊗ Cd se dice
N -compartible cuando es posible entontrar un estado cuántico ρAC1...CN

en
Cd ⊗ (Cd)⊗N tal que ρACk

= trk̄ρAC1...CN
= ρAC , ∀k. Se dice, pues que

el estado ρAC1...CN
es una N -extensión de ρAC . Las correlaciones iniciales

entre los subsistemas A y C son ahora compartidas entre A y cada uno de
los N subistemas Ci, ver figura 4.. Es inmediato ver que

ρAC1...CN
=

∑

i

qi|αi〉〈αi| ⊗ |γi〉〈γi|⊗N (20)

proporciona una N -extensión válida de un estado separable ρs
AC =

∑
i qi|αi〉〈αi|⊗

|γi〉〈γi| para todo N . Tal como Werner demostró, si un estado ρAC es en-
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Figure 4: The state ρAC is said to be N -shareable when there exists a global
state ρAC1...CN

such that the local state shared between A and Ci is equal
to ρAC , for all i.

tangled, entonces existe un número finito N(ρAC) tal que la correspondiente
N -extensión del estado no puede ser hallada.

El segundo ingrediente que necesitamos son las propiedades de los canales
destructores de entanglement (EBC). Un canal Υ se dice destructor de en-
tanglement cuando no puede ser usado para distribuir entanglement. La
referencia [55] contiene la prueba de que las siguientes tres afirmaciones son
equivalentes: (1) Υ es destructor de entanglement, (2) Υ se puede escribir
en la forma

Υ(ρ) =
∑

j

tr(Mjρ)ρj , (21)

donde ρj son estados cuánticos y {Mj} define una medida y (3) (11⊗Υ)|Φ〉
es un estado separable, donde |Φ〉 aparece en (11). La equivalencia entre (1)
y (2) simplemente significa que cualquier EBC se puede entender como una
medida del estado inicial, ρ, seguida por la preparación de un nuevo estado
ρj dependiendo del resultado de la medida. La equivalencia entre (1) y (3)
refleja que la estrategia intuitiva para la distribución de entanglement en la
que la mitad de un estado máximamente entangled es enviado a través del
canal basta para detectar si Υ es un EBC.

Basándonos en estos dos hechos, demostramos que en el ĺımite asintótico,
la clonación de estados locales converge hacia un EBC debido a la monogamia
del entanglement. Desde un punto de vista cuantitativo, nuestro resultado
se puede expresar a través del siguiente teorema (ver el caṕıtulo 6 para más
detalles):

Theorem 1 La clonación asintótica se corresponde con la estimación de
estados. Por tanto, FM = FC para cualquier distribución de estados.

Esto resuelve la vieja conjetura sobre la equivalencia de la clonación
asintótica y la estimación de estados.
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Chapter 1

Introduction

Quantum theory describes the physics of microscopic systems. Its mathe-
matical structure is based on linear algebra and is briefly described in Ap-
pendix A. The formalism and spirit of quantum theory is radically different
from classical physics, often leading to counter-intuitive results. Perhaps,
one of the most peculiar features in quantum theory is the correlation present
in composite quantum systems, named as entanglement, that does not have
any counter-part in a classical theory.

About two decades ago, several researchers realized that the quantum
formalism could be a useful tool for designing new information applications,
putting the ground basis for quantum information theory. New and remark-
able information results appeared using the quantum formalism, such as
quantum teleportation [10], a protocol to transmit a quantum state to ar-
bitrarily long distance, and the quantum factorization algorithm [81], that
solves the factorization problem1 using polynomial resources. Indeed, it
turns out that entanglement enables quantum information theory to out-
perform its classical counter-part. Nowadays a strong theoretical and ex-
perimental effort is devoted to quantum information theory, and concepts
from this discipline are also used in other research areas of Science.

One of the most remarkable applications of quantum information theory
is quantum cryptography [43], and, more precisely, quantum key distribution
(denoted by QKD in what follows), where a secret key is distributed by
means of quantum states and measurements. One of the reasons of the
impact of QKD is that it is feasible using current technology. The present
thesis studies the role played by entanglement, or quantum correlations,
in quantum cryptographic scenarios: we present a new security analysis
of quantum channels for cryptographic scenarios, study the use of Gaussian
states in key distillation scenarios, and give the proof of equivalence between
asymptotic quantum cloning and state estimation.

1Classically the problem is considered to be very hard, in the sense that it may not be
generally solvable using polynomial resources.
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1.1 Motivation

The main topic of the thesis is the relation between entanglement and the
security of QKD. The thesis gives several security conditions that detect if a
secret key can be distilled from a given quantum channel, which can be finite-
dimensional or Gaussian. The obtained condition can be applied to prove the
security of standard protocols, such as the BB84 protocol [8]. The thesis
also studies the relation between quantum cloning and state estimation,
fundamental concepts that naturally appear in the context of QKD. It is
well known that perfect cloning and state estimation are impossible due to
the non-orthogonality of quantum states. Actually, it has been conjectured
that quantum cloning becomes equivalent to state estimation in the limit of
a large number of clones. The present thesis proves this long-standing open
problem.

Key distillation from quantum channels

The existing cryptographic methods using classical resources base their secu-
rity on technical assumptions on the eavesdropper, often called Eve, capabil-
ities, such as finite computational power or bounded memory [70]. Contrary
to all these schemes, the security proofs of QKD protocols, e.g. the BB84
protocol [8], do not rely on any assumption on Eve’s power: they are simply
based on the fact that Eve’s, as well as the honest parties’ devices are gov-
erned by quantum theory [43]. Well-established quantum features, such as
the monogamy of entanglement or the impossibility of perfect cloning [91],
make QKD secure. Controlling the legitimate channel, Eve would introduce
errors and modify the expected quantum correlations between the honest
parties, Alice and Bob. The amount of these errors can be estimated using
public discussion, so the honest parties can judge whether their quantum
channel can be used for secure QKD, or abort the insecure transmission
otherwise.

Then a natural problem in QKD is to determine whether a given channel
is useful for QKD. A standard question in this context is to find the critical
quantum bit error rate (QBER) in the channel such that key distillation is
possible using the BB84 protocol. However, it appears meaningful to identify
and quantify the cryptographic properties of a quantum channel by itself,
independently of any pre-determined QKD protocol. Indeed, this is closer
to what happens in reality, where the channel connecting Alice and Bob is
fixed. Therefore, after estimating properties of a given quantum channel, the
two honest parties should design the protocol which is better tailored to the
estimated channel parameters. In this sense, it is well known that no secure
QKD can be established using entanglement-breaking channel [42, 28], while
the detection of entanglement already guarantees the presence of some form
of secrecy [3]. Beyond these two results, little is known about which channel



1.1. Motivation 37

properties are necessary and/or sufficient for secure QKD.

Key distillation in the Gaussian scenario

Since quantum teleportation was experimentally implemented using a two-
mode squeeze state, a significant amount of work has been devoted to de-
velop quantum information theory using continuous variables systems (i.e.
systems of infinite dimension). Many concepts introduced in discrete vari-
ables systems are being translated to continuous variable systems. In these
systems, Gaussian states and Gaussian operations play a key role. They
naturally appear in experiments and can be handled with current quantum
optics technology.

An important negative result in the context of continuous variable quan-
tum information theory is that it is impossible to distill pure-state entan-
glement from Gaussian states using Gaussian operations [38, 33]. Although
it is known that all Gaussian states with non-positive partial transposition
are distillable [37], any distillation protocol must include non-Gaussian op-
erations, which are quite challenging from an experimental point of view.
This can be rephrased saying that all entangled mixed states are bound en-
tangled in a Gaussian scenario. However, these states may still be useful for
cryptographic applications, since secret bits may be extracted from them
using Gaussian Local Operations and Classical Communication.

State estimation and asymptotic cloning

Perfect quantum cloning and perfect state estimation are well-known im-
possible quantum operations. They are also ingredients that make QKD
secure. The impossibility of perfect state estimation is a major consequence
of the nonorthogonality of quantum states: the state of a single quantum
system cannot be perfectly measured. Thus, any measurement at the single-
copy level only provides partial information. The no-cloning theorem, one
of the cornerstones of quantum information theory, represents another con-
sequences of the nonorthogonality of quantum states. It proves that given
a quantum system in an unknown state, it is impossible to design a device
producing two identical copies.

In fact, these two results are closely related. On the one hand, if per-
fect state estimation was possible, one could use it to prepare any number
of clones of a given state, just by measurement and preparation. On the
other hand, if perfect cloning was possible, one could perfectly estimate the
unknown state of a quantum system by preparing infinite clones of it and
then measuring them. Beyond these qualitative arguments, the connection
between state estimation and cloning was strengthened in [39, 15], where
it was conjectured that quantum cloning is equivalent to state estimation
in the asymptotic limit of an infinite number of clones. Actually, this con-
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jecture was later proven for two cases, namely universal cloning2 [15] and
phase-covariant cloning3 [17]. However the complete equivalence of state
estimation and asymptotic cloning remained open and had been identified
as one of the open problems in quantum information theory4.

1.2 Contributions

We analyze the cryptographic properties of quantum channels when Alice
and Bob employ QKD schemes where (i) the correlation distribution is done
using prepare and measure techniques and (ii) the key distillation process
uses the standard one-way and two-way classical protocols. Throughout
the thesis, we call these protocols ’realistic’, since these are the techniques
presently used in any realistic QKD implementation. We first derive a se-
curity condition for qubit channels in the case of the so-called collective
attacks. Since collective attacks have been proven to be as powerful as gen-
eral attacks [78], our condition actually applies to any attack. We apply this
condition to the standard BB84 and six-state protocols. Next, we explore
several possibilities to improve the obtained security bounds. Remarkably,
all these alternatives fail, which suggests the existence of non-distillable en-
tangled states under general realistic protocols. We then generalize this
security condition to higher dimensional systems, called qudits, and extend
the results to generalized Bell diagonal qudit channels. The obtained secu-
rity condition turns out to be tight for the so-called (d + 1)- and 2-bases
protocol of Ref. [21].

We employ Gaussian states and operations to the same cryptographic
scenario, and analyze the secrecy properties of Gaussian channels. First, we
study the security of our protocol when Eve applies an individual attack,
and show that all Gaussian states that remain Non-Positive under Partial
Transposition (NPPT) turn out to be secure. Then, we consider general
attacks and show that our security proof ceases to work for some NPPT
states. The result suggests that there may exist weakly entangling chan-
nels of Gaussian states that are useless for key distribution using Gaussian
operations.

Finally, we show the equivalence between optimal asymptotic cloning
and state estimation for any initial ensemble of pure states. Actually, we
prove that asymptotic cloning does effectively correspond to state estimation.
The proof is based on two known results of quantum information theory:
the monogamy of quantum correlations and the properties of entanglement-
breaking channels.

2The initial ensemble consists of a randomly chosen pure states.
3The initial ensemble corresponds to a state lying on equators of the Bloch sphere.
4See problem 22 in the open problem list [57].
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1.3 Thesis Overview

The thesis is structured as follows. After this introductory chapter, Chapter
2 presents several basic notions of quantum information theory, mainly about
entanglement and quantum cryptography, that are used in what follows.
Entanglement in discrete and continuous variable systems is summarized.
Then, quantum cryptography is introduced, with a general discussion on
protocols, security and cloning. Readers with some expertise in quantum
information theory may skip this part.

In Chapter 3 we define the ingredients used in the so-called realistic
protocol that are feasible using present technology. The security of these
realistic protocols is then considered in the following chapters. The following
three chapters contain the original results of this Thesis.

In Chapter 4 we study the secrecy properties of quantum channels under
realistic protocols. For qubit or qudit channels, a simple security condition
is obtained. Furthermore, the specific attacks that break the protocol when-
ever a channel does not satisfy the obtained security condition is presented,
proving that this condition is tight. For any finite dimension, we show the
existence of a gap between the entanglement condition and our security con-
dition. Several possibilities to improve this condition and fill the gap are
explored, such as pre-processing and the use of coherent quantum operations
by one of the honest parties. Interestingly, the gap remains unchanged.

In Chapter 5 we adapt the realistic protocols to the Gaussian regime,
Gaussian states and Gaussian operations. We show that a secret key can be
distilled from sufficiently entangled Gaussian states by Gaussian operations,
and provide security bounds against individual and general attacks. The
security bounds also have a gap with the entanglement condition.

In Chapter 6 we prove the equivalence between asymptotic quantum
cloning and state estimation. In fact, it is shown that quantum cloning
asymptotically corresponds to state estimation. The proof follows from the
combination of two known results in quantum information theory, the prop-
erties of entanglement-breaking channels and the monogamy of entangled
states.

Finally, Chapter 7 contains a summary of the results and discusses some
related problems.

Several appendices are included for the sake of completeness. In Ap-
pendix A, we provide a short introduction to the mathematical formalism of
quantum theory. Appendices B, C, D, and E contain technical calculations
that are needed in the derivation of the results of Chapter 4.





Chapter 2

Entanglement, QKD, ...

This Chapter collects some known results on quantum information theory
that are later important in the derivation of our results. We first review
several concepts and results related to the characterization of entangled
states. Then, we move to QKD protocols and the problem of cloning in
quantum theory.

2.1 Entanglement

Quantum states in composite systems are ubiquitous in quantum informa-
tion theory. A standard scenario consists of several distant parties sharing a
quantum state. The goal is to exploit the quantum correlations that can be
obtained after measuring this state to accomplish a given information task.
A state is potentially useful in this general scenario whenever it is entangled,
i.e. it contains quantum correlations. In what follows, we present some of
the main results on the characterization of entangled states.

2.1.1 Entangled State

Two parties, traditionally called as Alice and Bob, share a bipartite state
belonging to a composite space, HA ⊗ HB. If it is pure, the state can be
written as

|ψ〉AB =
∑

i,j

ci,j |ai〉|bj〉

where i and j run over dim(HA) and dim(HB). A state is product whenever
it can be written as

|ψ〉AB = (
∑

i

αi|ai〉)(
∑

j

βj |bj〉).
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These states contain no correlations between the two parties. A state is
called entangled if it is not product. Entangled states, then, contain quan-
tum correlations. A well-known example of entangled state is given by

|φd〉 =
1√
d

d−1∑

i=0

|ii〉. (2.1)

Actually, these states are the maximally entangled state of a composite
(d× d)-dimensional Hilbert space. Entangled states do not have a classical
counter-part and have been recognized as the resource behind the new appli-
cations of quantum information theory, such as computational speedup and
quantum teleportation. Therefore, given a quantum state, it is important
to detect whether it is entangled. In the case of pure states, the detection
of entanglement turns out to be rather simple.

Proposition 1 A pure bipartite state |ψ〉AB is entangled if and only if ρA =
trB|ψ〉〈ψ|AB, or equivalently ρB = trA|ψ〉〈ψ|AB, is a mixed state.

The definition of entangled mixed states was first given in Ref. [88]. A
mixed state is said to be separable when it can be written as a mixture of
product states,

ρAB =
∑

i

piρ
i
A ⊗ ρi

B, (2.2)

Alice and Bob can prepare any of these states by Local Operations and
Classical Communication (LOCC). These states do not contain any quantum
correlations, since its preparation is possible using only classical correlations.
A mixed state is entangled when it cannot be written as in (2.2). That is, its
preparation using only product states and classical correlations is impossible.

For mixed states, it turns out that distinguishing entangled from sepa-
rable states is one of the most challenging problems in quantum informa-
tion theory [49]. However, a remarkable development was carried out by
Peres, based on the intuition that time-reversal is a non-physical operation
[77]. Mathematically this is expressed by the transposition operation T ,
T (|i〉〈j|) = |j〉〈i|. Transposition is the simplest example of a positive but
not completely positive map. A map Λ is positive but not completely posi-
tive when Λ(ρ) is positive for all positive ρ but 11⊗Υ is non-positive. Then
the partial transposition with respect to B, 11 ⊗ TB, transforms a bipartite
state ρAB =

∑
ij,kl λij,kl|i〉A〈j| ⊗ |k〉B〈l| into

(11A ⊗ TB)ρAB =
∑

ij,kl

λij,kl|i〉A〈j| ⊗ |l〉B〈k|.

Note that all entangled pure states are non-positive under partial trans-
position, i.e. for all entangled state |ψ〉, (11 ⊗ TB)(|ψ〉〈ψ|) � 0, while
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(11 ⊗ TB)(|ψ〉〈ψ|) is positive for all product states [77]. Since transposi-
tion is linear, whenever the partial transposition of a mixed state state is
non-positive, the state cannot be written as (2.2), so it is entangled. The
partial transposition criterion, then, is a necessary condition for separability.

Theorem 2 (Peres-Horodecki) A state ρ over HA⊗HB where dim(HA) =
2 and dim(HB) = 2, or 3, remains positive after partial transposition, i.e.
(11A ⊗ TB)ρAB ≥ 0, if and only if it is separable.

It was then thought that for arbitrary dA × dB systems the partial
transposition criterion could also be sufficient for separability. However,
Horodecki et al. provided counter-examples to this conjecture in [53]. They
showed entangled states that remain positive after partial transposition, and
such states are called positive-partial-transpose (PPT) entangled states.

The Horodecki also realized that a more complete approach to the sep-
arability problem follows from general positive but not completely positive
maps Λ. It is clear that a separable state remains positive after application
of any positive map. Interestingly, it is also known that for any entangled
state |ψ〉 there is a positive map such that (11 ⊗ Λ)(|ψ〉〈ψ|) is non-positive.
This property can also be rephrased in terms of operators, by means of the
so-called entanglement witnesses.

Definition 1 (Entanglement Witness) A Hermitian operator W is called
an entangled witness if it satisfies tr[ρentW ] < 0 for some entangled states
ρent and tr[ρsepW ] ≥ 0 for all separable states ρsep.

For any entangled state, there exists an entanglement witness operator
that detects it. This follows from two facts, i) separable states form a
convex set and ii) quantum states reside in a Hilbert space where they
can be topologically distinguished by a Hermitian operator, which is the
entanglement witness W that distinguishes entangled states from separable
states. Indeed one can relate positive maps and entanglement witnesses
through the isomorphism

W = (11⊗ Λ)(|φd〉〈φd|). (2.3)

If one was able to construct all possible entanglement witness operators,
or equivalently all positive maps, one would solve the separability problem.
However very little is known on the characterization of positive maps. From
an experimental point of view, entanglement witnesses are also useful. Since
any operator can be decomposed in terms of local operators, entanglement
witnesses can be estimated by means of local measurement and classical
communication [47].
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2.1.2 Entanglement Measure

Entanglement has been recognized as a useful resource that enables quantum
information processing to outperform classical processing. It is then natural
to wonder how entanglement should be quantified, i.e. given a state, how
much entanglement it contains?

For pure states, the amount of entanglement is uniquely determined
by the entropy of entanglement. This is the von Neumann entropy of the
reduced state [11].

Definition 2 (Entropy of entanglement) For a bipartite pure state |ψ〉AB,
the entropy of entanglement is the von Neumann entropy of the reduced state,

E(ρA) = −tr[ρA log ρA].

As expected, this quantity attains its maximal value, log d, for the state |φd〉
in (2.1), while it is zero for all product states.

The direct generalization of the entropy of entanglement to mixed states
is not possible, since it does not distinguish classical from intrinsically quan-
tum correlations. Moreover, in the case of mixed states one is faced to the
problem that mixed states do not have a unique decomposition in terms of
pure states. In order to illustrate this problem we can consider the mixture
of two maximally entangled states, |φ±〉 = (|00〉 ± |11〉)/√2,

ρAB =
1
2
|φ+〉〈φ+|+ 1

2
|φ−〉〈φ−| = 1

2
|00〉〈00|+ 1

2
|11〉〈11|.

Note that ρA = 11A/2 so E(ρA) = 1, while this state is in fact separable.
Actually, the separability of the state is clear only after the second decom-
position is considered. Therefore, most of the entanglement measures for
mixed states are defined as an optimization over all possible decompositions
of the state, which is in fact a highly nontrivial task. Following this intuition,
the Entanglement of formation generalizes the entropy of entanglement to
mixed states [11].

Definition 3 (Entanglement of formation) For a bipartite state ρAB,
the entanglement of formation is the least expected entanglement over all
ensemble decomposition of ρAB,

Ef (ρAB) = min
{pi,ψi}

∑

i

piE(ψi),

where the minimization is done over all ensembles {pi, ψi} such that ρAB =∑
i pi|ψi〉〈ψi|.

This minimization is very hard in general. However, in the case of two
qubits, Wootters was able to derive the exact expression for the entangle-
ment of formation [93].
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Theorem 3 (Entanglement of formation for two qubits) Entanglement
of formation for a two-qubit state ρ is

Ef (ρ) = h[
1
2
(1 +

√
1− C(ρ)2)]

where h is the binary entropy, h(x) = −x ln x − (1 − x) ln(1 − x) and C(ρ)
is the so-called concurrence

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4),

where λi, i = 1, 2, 3, 4, are the eigenvalues of (ρ1/2ρ̃ρ1/2)1/2 and ρ̃ = (σy ⊗
σy)ρ∗(σy ⊗ σy).

Finally, let us state another result for two-qubit states that will be used
in chapter 4. Given a state ρAB, we would like to determine the local
operations such that the resulting state ρ′AB,

ρAB −→ ρ′AB =
(A⊗B)ρAB(A⊗B)†

tr[(A⊗B)ρAB(A⊗B)†]

that happens with some non-zero probability tr[(A⊗ B)ρAB(A⊗ B)†], has
maximal entanglement.

Theorem 4 For a given two-qubit state ρAB, the entanglement of forma-
tion, or equivalently the concurrence, is maximized, after local operations
and classical communication at the single-copy level, by a Bell-diagonal state,

ρ′AB = λ1|φ+〉〈φ+|+ λ2|φ−〉〈φ−|+ λ3|ψ+〉〈ψ+|+ λ4|ψ−〉〈ψ−|.

If the state is Bell diagonal, it remains unchanged. This result was proven in
Ref. [87], where more details on the measurements and the resulting states
can be found.

Before concluding this brief review on entanglement, we introduce two
other entanglement measures [11], based on the fact that the maximally
entangled state |φ2〉 represents the unit of pure-state entanglement, also
called ebit.

Definition 4 (Entanglement of distillation) Given a state ρ, the en-
tanglement of distillation, ED, quantifies the number N of copies of the
state |φ2〉 that can be distilled out of ρ⊗M by LOCC in the limit of a large
number of copies, i.e. ED = limM→∞N/M .

Definition 5 (Entanglement cost) Given a state ρ, the entanglement
cost, EC , quantifies the number N of copies of the state |φ2〉 needed to
prepare M copies of ρ in the limit of a large number of copies, i.e. EC =
limM→∞N/M .
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For pure states, the entanglement cost asymptotically coincides with
the distillable entanglement. For mixed states, the entanglement cost is in
general larger than the entanglement of distillation, Ec(ρ) ≥ Ed(ρ). A state
ρ with distillable entanglement strictly larger than zero is called distillable.
An entangled state ρ is called bound entangled if no pure-state entanglement
can be distilled out of it, Ed(ρ) = 0 but Ec(ρ) > 0. Entangled states with
positive partial transposition are not distillable. This follows from the facts
that i) the final state |φd〉 of the distillation processing is an entangled pure
state, so it is NPPT and ii) a PPT state cannot turn into NPPT by LOCC.

2.1.3 Gaussian Regime

All the previous results were originally considered for finite dimensional
systems. Recently, many of these concepts have been translated to the
infinite dimensional case [13]. In these systems, the set of Gaussian states
and Gaussian operations plays a key role, since they naturally appear in
experiments. They can be prepared by means of simple optical elements,
such as beam splitter and squeezers, while non-Gaussian operations turn
out to be very challenging from an experimental point of view. Moreover,
the theoretical analysis of Gaussian states and operations can be simplified
due to the fact that all their properties can be expressed in terms of finite-
dimensional matrices and vectors.

Gaussian states

Continuous variable systems are often termed as modes. We consider quan-
tum systems of n modes, H = ÃL2(<n). The commutation relations for
the canonical coordinates R = (X1, P1, . . . , Xn, Pn) = (R1 . . . , R2n) read
[Ra, Rb] = i(Jn)ab, where a, b = 1, . . . , 2n and

Jn = ⊕n
i=1J J ≡

(
0 1
−1 0

)
, (2.4)

where J is known as the symplectic matrix. Quantum states are normalized
positive operators, tr[ρ] = 1. For a given state, it is often convenient to
consider its characteristic function, defined as χρ(x) = tr(ρW (x)), where
W (x) are the so-called Weyl opertors,

W (x) = exp(−ixT R),

where x ∈ <2n. Weyl operators satisfy the Weyl commutation relations,

W (x)W (y) = exp(−iσ(x, y))W (y)W (x),

where σ(x, y) = xT Jny. On the other hand, any state of n modes can be
written as

ρ =
1

(2π)n

∫

<2n

χρ(x)W (−x)d2nx.
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Gaussian states are those states such that χρ is a Gaussian function,

χρ(x) = exp(ixT d− 1
4
xT γx). (2.5)

where d is a 2n real vector, called displacement vector (DV), and γ is a
2n× 2n symmetric real matrix, known as covariance matrix (CM).

Theorem 5 A gaussian characteristic function described by its covariance
matrix γ corresponds to a physical state if γ has the Symplectic diagonal
form,

γ = S(D ⊕D)ST ,

where D ≥ 11 is diagonal and S is a symplectic map satisfying SJST = J .
This condition is also equivalent to γ + iJ ≥ 0, or JγJT ≥ γ−1.

All the information about d and γ is contained in the first and second
moments of the state, tr(ρRi) and tr(ρRiRj). The displacement vector can
always be modified by local operations, while the covariance matrix includes
the correlations between modes.

Entanglement of Gaussian states

We now consider two parties, Alice(A) and Bob(B), that share a state ρ in
a composite systems of n + m modes. The global CM is

γAB =
(

γA C
CT γB

)
≥ iJn+m, (2.6)

where γA (γB) is the CM for the n-mode (m-mode) Gaussian state of system
A (B). As said, the entanglement properties of ρ are completely specified
by its CM.

The effect of partial transposition at the level of CMs can be understood
from the fact that this map is equivalent to time-reversal. After partial
transposition on, say, A, the sign of Alice’s momenta is changed while the
rest of canonical coordinates is kept unchanged. Denote by θ the matrix
equal to the identity for the position coordinates and minus the identity for
the momenta. Partial transposition means that γAB → γ′AB = θAγABθA.
Therefore, the state ρ is PPT when γ′AB defines a positive operator, that
is γ′AB ≥ iJn+m. The PPT criterion provides a necessary and sufficient
condition for separability for 1 × 1 [32] and 1 × N Gaussian states [90],
while it is only a necessary condition for the rest of systems [90]. The non-
positivity of the partial transposition is a necessary and sufficient condition
for distillability [37].

Given an n-mode mixed Gaussian state ρ1 with CM γ1, it can always
be purified by constructing a 2n mode pure Gaussian state |Ψ12〉 such that
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tr2(|Ψ12〉〈Ψ12|) = ρ1 [52]. The global CM γ12, see Eq. (2.6), has γA = γ1

and

γB = θγ1θ

C = JnS

(
⊕n

i=1

√
λ2

k − 1112

)
S−1θ, (2.7)

where {λk} defines the symplectic spectrum of γ1 and S is the symplectic
matrix such that ST γ1S is diagonal.

As we have previously discussed(2.1.2), given a noisy entangled state, it
is relevant to know when pure-state entanglement can be distilled out of it.
An important negative result in this direction was obtained in Refs. [38],
(see also [33]):

Theorem 6 Gaussian states cannot be distilled by Gaussian operation. How-
ever, distillation of NPPT Gaussian state is always possible if non-Gaussian
operations are applied.

This can be rephrased saying that all entangled mixed states are bound
entangled in the Gaussian scenario.

2.2 Quantum Key Distribution

Cryptography looks for methods for information exchange between distant
parties in a completely secure way. Here being completely secure means
no party, but the legitimate ones, obtains any information about the sent
message. In the simpler cryptographic scenario, there are two honest parties,
Alice and Bob, and the eavesdropper called Eve. Alice and Bob’s goal is to
transmit a message M in a completely secure way.

Currently known cryptosystems are classified into asymmetric and sym-
metric, depending on whether they use a public or a private key. Asymmetric
cryptosystems are based on the existence of one-way functions, which are
functions that can be easily computed in one direction but not in the other.
A good example of these functions is factorization: while it is easy to com-
pute the product of two large prime numbers, to find the prime factors of
the result is much harder. Actually RSA, one of the most known encryp-
tion methods, is based on the computational difficulty of the factorization
problem. Then, these methods base their security on the difficulty of some
computational problems, so they are said to provide computational security.
The advent of quantum computation sheds some doubts on the long-term
applicability of these methods, since an adversary equipped with a quantum
computer could run Shor’s factorization algorithm, which is efficient, and
read the encrypted message.

The symmetric cryptosystem is based on a pre-shared a secret key K
that only the two honest parties know. Using the key, the two honest parties
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encrypt a message M , for instance by means of one-time pad1. Since the
eavesrdropper does not know the key, it can be proven that she cannot
obtain any information from the encrypted message. The method is then
completely secure. However, it appears the almost identical problem of how
to distribute the key K in a secure way.

2.2.1 Quantum Protocols

Quantum cryptography provides a way of distributing a key between two
honest parties in provable secure way. The security relies on the fundamental
assumption that Alice, Bob and Eve’s devices cannot contradict quantum
theory [43]. From a very qualitative point of view, the security of QKD
comes from the fact that

One cannot make a measurement of the state of a quantum sys-
tem without perturbing it.

This is just a consequence of the non-orthogonality of quantum states. In-
deed, it is impossible to perfectly discriminate two non-orthogonal quantum
states. This is the central idea behind any protocol of QKD: by encoding the
information in non-orthogonal states, any intervention by the eavesdropper
perturbs the transmission and is detected by the two honest parties, who
stop the insecure transmission.

The BB84 and the six-state protocols

The first QKD protocol was proposed by Charles Bennett and Gilles Bras-
sard in 1984, so named BB84 [8]. This protocol employs four states, |0〉, |1〉,
|+〉 and |−〉, where |±〉 = (|0〉± |1〉)/√2. Alice encodes classical values, 0 in
the quantum states |0〉 or |+〉 randomly and 1 into |1〉 or |−〉 randomly, and
sends the quantum state to Bob. Bob measures the received state in the
z−basis {|0〉〈0|, |1〉〈1|} or the the x−basis {|+〉〈+|, |−〉〈−|}. After public
communication, the honest parties keep the symbols where they used the
same basis for encoding and measurement. This is called the sifting process.
In the ideal noise-free situation, the obtained classical symbols are perfectly
correlated and can be used as secret key.

If Alice and Bob include a third basis in the y−direction, | ± i〉 = (|0〉 ±
i|1〉)/√2, the protocol is called the six-state protocol, where | + i〉 is for
encoding 0 and | − i〉 for encoding 1 [16].

Quantum Bit Error Rate

After the sifting processing, the two honest parties share correlated values.
In any realistic situation, these values are noisy, so Alice and Bob have to

1The key and the message to be sent are summed modulo 2
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apply classical protocols to distill them into a perfect secret key. If the errors
in the channel are moderate, a secret key can be extracted from the noisy
data. In the qubit case, the errors are often quantified by the quantum-bit-
error rate (QBER) defined by

Q = pAB(0, 1) + pAB(1, 0).

A standard question in the study of qubit protocols is to determine the
maximum QBER such that key distillation is possible.

Indeed, the value of QBER quantifies not only the mutual information
between the honest parties but also the information gained by the eaves-
dropper. This is because, as said, any intervention by the eavesdropper
introduces errors in the channel: the larger the observed errors, the more
the information Eve is gaining.

2.2.2 Information Theory

In this subsection, we introduce information-theoretic notions needed for
security issues in key distribution, and will be used in the security proofs
in chapters 4 and 5. Probability distribution of Alice, Bob, and Eve will be
denoted by P (A,B, E), throughout the thesis.

The first quantity is entropy proposed by Shannon, that quantifies a
given probability distribution in terms of randomness.

Definition 6 The Shannon entropy H(A) of a variable A whose probability
distribution is given by P (A) is defined

H(A) = −
∑

a∈A

P (a) log P (a). (2.8)

The Shannon entropy satisfies 1 ≤ H(A) ≤ log(|A|), where |A| is the cardi-
nality of the set X. As more random a probability distribution is, entropy
provides strictly a larger value. It was derived by considering noiseless cod-
ing, in which the motivated problem is the following: when n-bit strings
are given with a given probability distribution, how many bits are required
to optimally encode them? The answer he found is approximately |A|nH(A)

bits. This is resulted from the law of large numbers2 [80].
Based on the Shannon entropy, other quantities can be derived more.

Condition entropy H(B|A) which quantifies knowledge of B when A is given,
is

H(B|A) = H(AB)−H(A).

2The average of a large number of independent measurements of a random quantity
tends toward the theoretical average of that quantity.
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And the mutual information I(A : B) which quantifies knowledge common
to A and B, is

I(A : B) = H(A) + H(B)−H(AB).

The Shannon entropy, based on probability distributions, can be trans-
lated to the von Neumann entropy that is with quantum states.

Definition 7 (von Neumann Entropy) The von Neumann entropy of
quantum states ρ is:

S(ρ) = −trρ log(ρ).

When a bipartite quantum state is in a product form ρA ⊗ ρB, the entropy
is additive, S(ρA ⊗ ρB) = S(ρA) + S(ρB).

Quantum conditional and mutual entropies are also as follow,

H(A|B) = S(AB)− S(B)
I(A : B) = S(A) + B(B)− S(AB).

Since quantum states are not orthogonal each other, if two classical ran-
dom values 0 and 1 are encoded into non-orthogonal states ρ0 and ρ1, this
imposes the uncertainty in discrimination. The question cast is then: how
much classical information can be used from quantum states? Holevo dis-
covered the connection between quantum states and classical information
quantity.

Theorem 7 (Holevo bound) Suppose Alice prepares ρa with probability
pa and sends it to Bob. Then, the Bob’s state is

ρB =
∑

a

paρa.

Bob then applies a POVM {Eb} to know about ρB, and gets probability
distribution pb = tr[EbρB]. The maximum classical information that Bob can
get from his quantum states is the mutual information between the quantum
state ρB and the probability distribution pb and is bounded by

I(X : Y ) ≤ S(ρB)−
∑

a

paS(ρa).

2.2.3 Quantum Cloning

Cloning a quantum state is a well-known impossible quantum processing,
and termed as the no-cloning theorem. This is one of well-known no-go
theorems in quantum theory, and closely concerned with other quantum
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information processing such as state estimation and quantum cloning. There
have been extensive studies from various viewpoints, and a good review can
be found in Ref. [79].

The no-cloning theorem was first shown by Wootters and Zurek in [92].
It was a simple proof compared to its physical importance, and nowadays
can be found in many books of quantum information theory. In the proof,
unitarity was employed to show the impossibility of copying quantum states.
Yuen showed that linearity, a more relaxed constraint, also implies the no-
cloning theorem [94]. Recently it was shown that, as one particular con-
sequence of no-signalling constraint, the no-cloning phenomena exist in all
no-signalling theories [67] [40].

The problem of approximating quantum cloning was addressed in [19].
The first quantum cloning machine transforms arbitrary single qubit into
two approximate clones that are identical. A reasonable figure of merit
in qualifying cloning operations can be the fidelity of one clone with the
original. In detail about the first cloning machine, assumed that |ψ〉 ∈ H2

is to be cloned, the cloning operation is a unitary operation U over H2⊗H2

performing U |ψ〉|0〉 such that ρ1 = ρ2, where

ρi = tr̄iU |ψ〉|0〉〈0|〈ψ|U †

with the constraint that the fidelity F (|ψ〉, ρi) is maximized. Here k̄ denotes
the complement of k, so trk̄ is the trace with respect to all the systems but
k. Then, the optimal cloning machine carries out the fidelity F = 5/6 and
the output state of the following form

ρi = F |ψ〉〈ψ|+ (1− F )|ψ⊥〉〈ψ⊥|

Cloning Machines

Since the first quantum cloning machine was provided, there have been
extensive studies on quantum cloning [79]. Then, quantum cloning machines
are in general classified by two standards, the inputs and the outputs. When
a priori information about input states is given so that input quantum states
can be particularly characterized, we call state-dependent quantum cloning.
Otherwise, that is, when no constraint to the input state is provided, we
call universal. For instance, universal cloning machine for qubits considers
cloning of the whole Bloch sphere. By outputs, there are symmetric and
asymmetric cloning machines. In symmetric cloning of M copies of initial
states to N clones, all outputs are identical one another and it is denoted
by M → N cloning. If some clones provide different from one another, i.e.
their fidelities are larger or smaller than the others, it is said asymmetric
cloning. Among N clones, if Nj clones provide fidelity Fj , it is denoted
by M → N1 + N2 + · · · cloning, where

∑
j Nj = N . Symmetric cloning

is related more with estimation of quantum states in the sense of making
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use of symmetric subspace, and asymmetric cloning has direct application
to eavesdropping strategies in QKD.

Connection to state estimation

One may easily realize that the no-cloning theorem and the impossibility of
perfect state estimation are closely related. On the one hand, if perfect state
estimation was possible, one could use it to prepare any number of clones of
a given state, just by measurement and preparation. On the other hand, if
perfect cloning was possible, one could perfectly estimate the unknown state
of a quantum system by preparing infinite clones of it and then measuring
them.

Beyond these qualitative arguments, state estimation can be one possible
and trivial cloning, i.e. to estimate given quantum states and to prepare
guessed states according to the estimation result. This can be thought of as
a classical processing in that quantum operation is not applied. As shown
in [26], optimal state estimation of ρ⊗M is done in the symmetric subspace
H(M)

+ ∈ H⊗M . Remarkably, universal quantum cloning when N → ∞ is
proven equivalent to optimal state estimation, in the sense that, for any
ensemble of states, the fidelity FC obtained by cloning and the fidelity FM

by state estimation are equal3:

FC = FC(N →∞) = FM . (2.9)

This equality was proven in [15], under the assumption that the output of
the cloning machine is supported on the symmetric subspace. Later, it was
shown in [62] that this assumption does not imply any loss of optimality, so
the equality of the two fidelitites for universal cloning and state estimation
followed. This equivalence has also been proven for phase-covariant qubit
cloning [17], where the initial ensemble corresponds to a state in C2 lying
on one of the equators of the Bloch sphere. Since then, the validity of
this equality for any ensemble has been conjectured and, indeed, has been
identified as one of the open problems in quantum information theory4.

Connection to QKD scenarios

Quantum cloning is very relevant to QKD scenarios as applications. It
describes interaction of an eavesdropper, Eve, with a quantum channel con-

3The universal cloning M → N is obtained in [39]and the fidelity is

FM→N =
NM + N + M

N(M + 2)
.

The asymptotic cloning operation shows, by taking N → ∞, that the fidelity converges
to (M + 1)/(M + 2) which is the fidelity of optimal state estimation processing.

4See problem 22 in the open problem list [57].
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necting two honest parties. There, 1 → 1 + 1 cloning is the main consider-
ation. Suppose Alice encodes a value a to a quantum state |a〉 and sends a
prepared quantum state. Eve then interacts with the state

UBE |a〉|E〉 = |ϕ〉BE ,

in such a way that her state ρE = trB[|ϕ〉〈ϕ|BE ] allows her to make best
guess to the encoded value a. In the entanglement-based picture of QKD,
Alice prepares

|Φ1〉 =
1√
2
(|00〉+ |11〉)

and measure the first qubit and send the other. The qubit sent by Alice
then experiences interaction with Eve, and the interaction can be detected
to Bob, as bit-flip or phase errors5. Then, the shared state after interaction
with environment is a Bell-diagonal state.

In the BB84 protocol, phase-covariant cloning naturally appears, in
which Eve considers cloning only the following states

|φ〉 =
1√
2
(|0〉+ eiϕ|1〉).

These states are lying on the equator of the Bloch sphere. The cloning
operation was analyzed in [17], and remarkably, just by considering the
1 → 2 cloning, the critical QBER of the protocol is derived. Eve in the
six-state protocol considers universal cloning, see also Appendix B.

5Of course, one can consider a more general interaction. However, by the filtering
operations and symmetrization processing, two honest parties can reduce to the two errors.
See the chapter 4 for the detail.



Chapter 3

Key Distillation

There can be plenty of QKD protocols in the literature. However, whatever
they form, the relevance of a proposed QKD protocol depends highly on its
connection to technological feasibility. Then, the significant step in designing
a QKD protocol follows from how realistic it is.

In this Chapter, we define the realistic scenario that is later considered in
the following chapters, 4 and 5. We introduce the analyzed QKD protocols,
discuss several key-distillation techniques and review the known security
bounds for the BB84 and six-state protocol.

3.1 Realistic Protocol

Now our consideration is restricted to what we call realistic protocols, that
apply measurements at the single-copy level of quantum states and classical
key-distillation techniques. In what follows, we denote these single-copy
measurement plus classical processing as SIMCAP [2]. As shown in Ref [9],
for the secret distribution entanglement is actually not necessary at all. First
the so-called prepare and measure type protocols are introduced, which are
then translated to the equivalent, so-called SIMCAP protocols in general,
in the entanglement-based picture.

Prepare & Measure protocols

In prepare and measure type protocols, Alice prepares and sends states from
a chosen basis to Bob, who then measures in another (possibly different)
basis. This establishes some classical correlations between the two honest
parties. Of course this process alone is clearly insecure, since Eve could
apply an intercept resend strategy in the same basis as Alice’s state prepa-
ration, acquiring the whole information without being detected. Therefore,
from time to time, Alice and Bob should change their state preparation and
measurements to monitor the channel and exclude this possibility. Alice and

55
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Bob announce these symbols to extract information about their channel, so
these instances do not contribute to the final key rate. Indeed these symbols
are waisted in the tomographic process previously mentioned. However, in
the limit of large sequences, the fraction of cases where Alice and Bob mon-
itor the channel can be made negligible in comparison with the key length,
but still sufficient to have a faithful description of some channel parame-
ters, such as the QBER1. The states sent by Alice will be transformed into
a mixed state because of Eve’s interaction. This decoherence will produce
errors in the measurement values obtained by Bob. The security analysis
aims at answering whether the observed decoherence in the channel is small
enough to allow Alice and Bob distilling a secret key. We call these proto-
cols realistic in the sense that they do not involve experimentally difficult
quantum operations, such as coherent measurements, quantum memories or
the generation of entangled particles. The establishment of correlations is
done by just generating one-qubit states and measuring them in two or more
bases. Additionally, one could think of including a filtering single-copy mea-
surement on Bob’s side. This operation is harder than a standard projective
measurement, but still feasible with present-day technology [58].

Entanglement-based scheme

Actually, it is well known that the honest parties do not have to use entan-
glement at all for the correlation distribution [9]. Only for the convenience
for the theoretical analysis, the scenario above can be explained in the com-
pletely equivalent entanglement-based scenario.

In the entanglement-based scheme, the information encoding by Alice is
replaced by generating and measuring half of a maximally entangled state.
That is, Alice first locally generates a maximally entangled two-qubit state
and sends half of it to Bob through the channel. A mixed state ρAB is then
shared by the two honest parties, due to the interaction with the environ-
ment controlled by Eve. Now, Alice and Bob measure in two bases to map
their quantum correlations into classical correlations. For instance, if Alice
and Bob measure in the computational bases, the QBER simply reads

εAB = 〈01|ρAB|01〉+ 〈10|ρAB|10〉.

It can be imposed that Alice’s local state cannot be modified by Eve, since
the corresponding particle never leaves Alice’s lab, which is assumed to be

1For instance, it is sometimes said that in the BB84 protocol half of the symbols in
the raw key are rejected after the sifting process. Although this is correct if one considers
the original proposal, it is clear that Alice and Bob can employ just one of the basis
for information encoding, and use it almost all the time, and occasionally change to the
second basis to monitor the channel. Then, the sifted key length can, asymptotically, be
as close as desired to the raw key, without compromising the security. See H.-K. Lo, H.
F. Chau and M. Ardehali, quant-ph/0011056.
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Figure 3.1: A tripartite pure state is prepared by Eve, who send two of the
particles to Alice and Bob and keeps one. From Alice and Bob viewpoint
the situation resembles a standard noisy channel. The honest parties per-
form measurements at the single copy level, possibly with some preliminary
filtering step. Eve keeps her quantum states and can arbitrarily delay her
collective measurement.

secure. It has to be clear that the techniques of [9] imply the equivalence
between SIMCAP protocols on entangled states and prepare and measure
QKD schemes: the correlation distribution is, from the secrecy point of view,
identical. This equivalence, for instance, is lost if one considers entanglement
distillation protocols for QKD, where the particles are measured by the
honest parties after applying coherent quantum operations.

3.1.1 Classical Key Distillation

After the correlation distribution, either using prepare and measure or SIM-
CAP protocols, Alice and Bob share partially secret correlations to be dis-
tilled into the perfect key. The problem of distilling noisy and partially se-
cret correlations into a secret key has not been completely solved. Recently,
general lower bounds to the distillable secret-key rate by means of error cor-
rection and privacy amplification using one-way communication have been
obtained in [31]. In case the correlations are too noisy for the direct use of
one-way distillation techniques, Alice and Bob can before apply a protocol
using two-way communication. The obtained correlations after this two-way
process may become distillable using one-way protocols. Much less is known
about key distillation using two-way communication. Here we mostly apply
the standard two-way communication protocol introduced by Maurer in [69],
also known as classical advantage distillation (CAD). Actually, we analyze
the following two slightly different CAD protocols:

• CAD1. Alice and Bob share a list of correlated bits. Alice selects N of
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Figure 3.2: A secret key can be distilled either, by entanglement distillation
plus measurement, which is a challenging technique, or by measurement plus
classical processing, which is currently feasible.

her bits that have the same value and publicly announces the position
of these symbols. Bob checks whether his corresponding symbols are
also equal. If this is the case, Bob announces to Alice that he accepts,
so they use the measurement values (they are all the same) as a bit
for the new list. Otherwise, they reject the N values and start again
the process with another block.

• CAD2. Alice locally generates a random bit s. She takes a block of N
of her bits, A, and computes the vector

X = (X1, · · · , XN ) (3.1)

such that Ai + Xi = s. She then announces the new block X through
the public and authenticated classical channel. After receiving X, Bob
adds it to his corresponding block, B + X, and accepts whenever all
the resulting values are the same. If not, the symbols are discarded
and the process is started again, as above.

These protocols are equivalent in classical cryptography and in the com-
pletely general quantum scenario. Nevertheless, it is shown in section 4.1.3
that they are different in the less general, but still relevant, scenario of in-
dividual attacks. In what follows, we restrict the analysis to key distillation
protocols consisting of CAD followed by standard one-way error correction
and privacy amplification. Thus, it is important to keep in mind that any
security claim is referred to this type of key-distillation protocols. Although
these are the protocols commonly used when considering two-way reconcil-
iation techniques, their optimality, at least in terms of robustness, has not
been proven.
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3.2 Eavesdropping Strategies

After describing Alice and Bob’s operations, it is now time to consider Eve’s
attacks. With full generality, we suppose that Eve has the power to control
all the environment. That is, all the information that leaks out through
the channel connecting Alice and Bob goes to Eve, so all the decoherence
seen by Alice and Bob is introduced by her interaction. Following Ref. [4],
eavesdropping strategies can be classified into three types: (i) individual,
(ii) collective and (iii) coherent. Once more, although most of the following
discussion is presented in the entanglement picture, the same conclusions
apply to the corresponding prepare and measure scheme.

3.2.1 Individual Attacks

In an individual attack Eve is assumed to apply the same interaction to
each state, without introducing correlations among copies, and measure her
state right after this interaction. In this type of attacks, all three parties
immediately measure their states, since no one is supposed to have the
ability to store quantum states. Therefore, they end up sharing classical-
classical-classical (CCC) correlated measurement outcomes2, described by
a probability distribution P (A,B, E). In this case, standard results from
Classical Information Theory can be directly applied. For instance, it is
well known that the secret-key rate using one-way communication, K→, is
bounded by so-called Csiszár-Körner bound [27],

K→ ≥ I(A : B)− I(A : E). (3.2)

Here I(A : B) is the mutual information between the measurement outcomes
A and B. In this type of attacks, Eve’s interaction can be seen as a sort of
asymmetric cloning [20] producing two different approximate copies, one for
Bob and one for her. This cloning transformation reads UBE : |Φ+〉AB|E〉 →
|Ψ〉ABE where ρAB = trE |Ψ〉〈Ψ|ABE . It has been shown that in the case
of two qubits, two honest parties can distill a secret key secure against any
individual attacks whenever their quantum state ρAB is entangled [2].

It is clear that to prove security against individual attacks is not satis-
factory from a purely theoretical point of view. However, we believe it is
a relevant issue when dealing with realistic eavesdroppers. Assume Eve’s
quantum memory decoherence rate is nonzero and the honest parties are
able to estimate it. Then, they can introduce a delay between the state
distribution and the distillation process long enough to prevent Eve keeping

2Throughout the chapter, we denote classical and quantum variables by C and Q,
respectively. When writing correlations among the three parties, the order is Alice-Bob-
Eve. For instance, CCQ means that Alice and Bob have correlated classical values (for
instance, after some measurements), while Eve has a quantum state.
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her states without errors. Eve is then forced to measure her states before
the reconciliation, as for an individual attack.

3.2.2 Collective Attacks

Collective attacks represent, in principle, an intermediate step between in-
dividual and the most general attack. Eve is again assumed to apply the
same interaction to each quantum state, but she has a quantum memory. In
other words, she is not forced to measure her state after the interaction and
can arbitrarily delay her measurement. In particular, she can wait until the
end of the reconciliation process and adapt her measurement to the public
information exchanged by Alice and Bob. After a collective attack, the two
honest parties share N independent copies of the same state, ρ⊗N

AB , where
no correlation exists from copy to copy. Without losing generality, the full
state of the three parties can be taken equal to |ψ〉⊗N

ABE , where

|ψ〉ABE = (IA ⊗ UBE)|Φ+〉AB|E〉. (3.3)

After a collective attack, and the measurements by Alice and Bob, the three
parties share classical-classical-quantum (CCQ) correlations, described by a
state ∑

a,b

|a〉〈a| ⊗ |b〉〈b| ⊗ |eab〉〈ab|, (3.4)

where a and b denote Alice and Bob’s measurement outcomes associated to
the measurement projectors |a〉〈a| and |b〉〈b|. Note that |eab〉 is not normal-
ized, since |eab〉 = 〈ab|ψ〉ABE and p (a, b) = tr[|eab〉〈eab|].

The following result, obtained in [31, 63], is largely used in the next
chapters 4 and 5. After a collective attack described by a state like (3.4),
Alice and Bob’s one-way distillable key rate satisfies

K→ ≥ I(A : B)− I(A : E). (3.5)

Here, the correlations between Alice and Bob’s classical variables are again
quantified by the standard mutual information, I(A : B). The correlations
between Alice’s classical and Eve’s quantum variables, A and E, are quan-
tified by the Holevo quantity,

I(A : E) = S(E)− S(E|A), (3.6)

where S denotes the Shannon entropy, so S(E) = S(ρE) and S(E|A) =∑
a p (a)S(ρE |A = a). Actually the “same” equation (3.5) applies when

Bob is also able to store quantum states and the three parties share classical-
quantum-quantum (CQQ) correlations. In this case, both mutual informa-
tion quantities between Alice’s classical variable, A, and Bob’s and Eve’s
quantum states, denoted by B and E, should be understood as Holevo
quantities [31]. Notice the similarities between (3.2) and (3.5). Indeed, the
obtained bounds represent a natural generalization of the CK-bound to the
CCQ and CQQ correlations scenarios.
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3.2.3 General Attacks and the de Finetti Theorem

One has to consider the most general attack where Eve can perform any
kind of interaction. In this case, Alice and Bob cannot assume to share N
copies of the same quantum state. Compared to the previous attacks, there
did not exist nice bounds for the extractable key-rate under general attacks.
However, very recently a dramatic simplification on the security analysis of
QKD protocols under general attacks has been achieved by means of the
so-called de Finetti theorem [78]. Indeed, Renner has proven that general
attacks cannot be more powerful than collective attacks in any protocol
that is symmetric in the use of the quantum channel. This provides a huge
simplification in security proofs, since by means of the de Finetti arguments
(see [78] for more details), Alice and Bob can safely assume to share N copies
of a quantum state consistent with their tomographic process, and then
apply the existing bounds for this scenario. Note that the de Finetti theorem
should also be employed if one wants to use entanglement distillation as a
key distillation technique. In what follows, then, we can restrict our analysis
to collective attacks, without underestimating Eve’s capabilities.

3.3 Review of the existing Security Bounds

Finally, we would like to summarize the existing security bounds for the two
most known QKD protocols, BB84 and six-state. These bounds are usually
stated in terms of the critical QBER such that key distillation is possible.
Of course, these bounds depend on the type of key distillation techniques
employed by the honest parties. Since the first general security proof of
BB84 by Mayers [71], security bounds have been constantly improved. Us-
ing a quantum error-correction (of bit-flip and phase-inversion) description
of classical one-way error-correction and privacy amplification, Shor and
Preskill showed the general security of BB84 whenever QBER< 11% [82].
Later, Lo adapted their proof to 6-state protocol obtaining a critical QBER
of 12.7% [66]. More recently, Kraus, Renner, and Gisin have improved these
values by introducing some classical pre-processing by the two honest par-
ties, obtaining critical QBER’s of 12.4% for the BB84 and 14.1% for the
six-state protocol [63]. More recently, the bound for BB84 has been im-
proved up to 12.9% in Ref. [83]. On the other hand, the known upper
bounds on the critical QBER are slightly higher than these lower bounds,
so the exact value for the critical QBER remains as an open question.

The honest parties however can apply CAD to their outcomes before
using one-way key distillation techniques and improve these bounds. The
whole process can now be mapped into a two-way entanglement distillation
protocol. Based on this analogy, Gottesman and Lo have obtained that
secure QKD is possible whenever the QBER is smaller than 18.9% and 26.4%
for the BB84 and six-state protocol, respectively [45]. Chau has improved
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Figure 3.3: Security bounds for QKD protocols using key distillation tech-
niques with one-way communication: based on the analogy between these
techniques and quantum error correction, the security bounds for the BB84
and the six-state protocols are 11% and 12.7% respectively. These bounds
have later been improved by information-theoretic considerations up to
12.4% and 14.1%. The improvement is achieved using some classical pre-
processing by one of the parties.

these bounds up to 20.0% and 27.6% respectively [22]. The generalization of
the formalism [63] to two-way communication has also been done by Kraus,
Branciard and Renner [64].
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Figure 3.4: Security bounds for QKD protocols using two-way followed by
one-way communication techniques: based on the analogy between the two-
way plus one-way communication and two-way entanglement distillation
protocol, general security bounds of the BB84 and the six-state protocols
are given by 18.9% and 26.4% respectively [45]. Later, Chau improved the
error correction method and the bounds are moved to 20.0% and 27.6%
[22]. In Chapter 4, we show that those bounds are tight. Note that the key
distillability condition is stronger than the entanglement condition, which is
25.0% and 33.3% for the BB84 and the six-state protocols.





Chapter 4

Key Distillation in
Finite-Dimensional Systems

In this Chapter1, we analyze the cryptographic properties of quantum chan-
nels when Alice and Bob employ the QKD schemes described in the previous
chapter. Recall that in these schemes, (i) the correlation distribution is done
using prepare and measure techniques and (ii) the key distillation process
uses the standard one-way and two-way classical protocols. As said, none of
these protocols requires the use of entangled particles. However, for the sake
of simplicity, we perform our analysis in the completely equivalent entan-
glement picture. The problem then consists of identifying those quantum
states that can be distilled into secret bits by SIMCAP protocols restricted
to the known distillation techniques.

We first study qubit channels and provide a simple security condition,
that turns out to be tight, under the considered distillation techniques. Since
this condition is stronger than the entanglement condition, we explore sev-
eral possibilities to improve the bound. We extend our analysis to higher
dimensional systems. Finally, we apply the obtained conditions to specific
QKD protocols, such as BB84, six-state and their generalizations to higher
dimension.

4.1 Secrecy Properties of Qubit Channels

We here consider the situation where Alice and Bob are connected by a qubit
channel. Alice locally prepares a maximally entangled state of two qubits
and sends half of it through the channel. Then, both parties measure the
state. By repetition of this process, they can obtain a complete, or partial,
characterization of their channel, up to some precision. Indeed, there exists

1The results of this Chapter are based on two publications [4, 6].
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a correspondence between a channel, Υ, and the state

(11⊗Υ)|Φ+〉 = ρAB. (4.1)

Now, the parties agree on a pair of bases, that will later be used for the raw
key distribution. They repeat the same process but now measure almost
always in these bases. However, with small probability, they have to change
their measurement to the previous tomographic process in order to check
the channel. After public communication, they discard the asymptotically
negligible fraction of symbols where any of them did not use the right basis
and proceed with the key distillation. In what follows, we provide a security
analysis of this type of schemes. Two important points should be mentioned
again: (i) as said, these schemes can be easily transformed into a prepare and
measure protocol, without entanglement and (ii) using de Finetti theorem,
Alice and Bob can restrict Eve to collective attacks. In other words, they
can assume to share N independent copies of the same state, ρ⊗N

AB , that is,
the channel does not introduce correlation between the states. The goal,
then, consists of finding the optimal SIMCAP protocol for the state ρAB, or
equivalently, the best prepare and measure scheme for the channel Υ.

Generically, ρAB can be any two-qubit state. However, no key distillation
is possible from separable states, so Alice and Bob abort their protocol
if their measured data are consistent with a separable state [3]. We can
assume, if the state preparation is done by Alice, that her local state, ρA,
cannot be modified by Eve. In our type of schemes, this state is equal to
the identity. Although our techniques can be used in the general situation,
we mostly restrict our analysis to the case where Bob’s state is also equal
to the identity. This is likely to be the case in any realistic situation, where
the channel affects with some symmetry the flying qubits. This symmetry
is reflected by the local state on reception, i.e. ρB = 11. In the qubit case,
the fact that the two local states are completely random simply means that
the global state ρAB is Bell diagonal,

ρAB = λ1|Φ1〉〈Φ1|+ λ2|Φ2〉〈Φ2|+ λ3|Φ3〉〈Φ3|+ λ4|Φ4〉〈Φ4|, (4.2)

where
∑

j λj = 1, λj > 0, and

|Φ1〉 =
1√
2
(|00〉+ |11〉)

|Φ2〉 =
1√
2
(|00〉 − |11〉)

|Φ3〉 =
1√
2
(|01〉+ |10〉)

|Φ4〉 =
1√
2
(|01〉 − |10〉) (4.3)
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define the so-called Bell basis. Or in other words, Υ is a Pauli channel. Pauli
channels are very useful, as it will become clearer below, in the analysis of
the BB84 and six-state protocols.

It is also worth mentioning here that Alice and Bob can always transform
their generic state ρAB into a Bell diagonal state by single-copy filtering
operations. Actually, this operation is optimal in terms of entanglement
concentration. Indeed, it maximizes the entanglement of formation of any
state ρ′AB ∝ (FA ⊗ FB)ρ(F †

A ⊗ F †
B) obtained after LOCC operations of a

single copy of ρAB [87]. This filtering operation succeeds with probability
tr(FA⊗FB)ρ(F †

A⊗F †
B). If ρAB is already in a Bell-diagonal form, it remains

invariant under the filtering operation. Alternatively, Alice and Bob can also
map their state into a Bell diagonal state by a depolarization protocol, where
they apply randomly correlated change of basis, but some entanglement may
be lost in this process. In view of all these facts, in what follows we mainly
consider Bell diagonal states.

It is possible to identify a canonical form for these states. This follows
from the fact that Alice and Bob can apply local unitary transformation
such that

λ1 = max
i

λi, λ2 = min
i

λi . (4.4)

Indeed, they can permute the Bell basis elements by performing the following
operations

T (|Φ1〉 ↔ |Φ2〉) = 2−1i(11− iσz)⊗ (11− iσz),
T (|Φ2〉 ↔ |Φ3〉) = 2−1(σx + σz)⊗ (σx + σz),
T (|Φ3〉 ↔ |Φ4〉) = 2−1(11 + iσz)⊗ (11− iσz). (4.5)

Once the state has been casted in this canonical form, Alice and Bob measure
it in the computational basis. The choice of the computational bases by
Alice and Bob will be justified by our analysis. Indeed, once a Bell-diagonal
state has been written in the previous canonical form, the choice of the
computational bases seems to maximize the secret correlations between Alice
and Bob, although, in general, they may not maximize the total correlations.

Before Alice and Bob’ measurements, the global state including Eve is a
pure state that purifies Alice and Bob’s Bell diagonal state, that is,

|Ψ〉ABE =
4∑

j=1

√
λj |Φj〉|j〉E (4.6)

where |j〉E define an orthonormal basis on Eve’s space. All the purifications
of Alice-Bob state are equivalent from Eve’s point of view, since they only
differ from a unitary operation in her space. After the measurements, Al-
ice, Bob and Eve share CCQ correlations. In the next sections we study
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when these correlations can be distilled into a secure key using the standard
CAD followed by one-way distillation protocols. We first obtain a sufficient
condition for securtiy, using the lower bounds on the secret-key rate given
above, c.f. (3.5). Then, we compute a necessary condition that follows from
a specific eavesdropping attack. It is then shown that the two conditions
coincide, so the resulting security condition is necessary and sufficient, under
the mentioned distillation techniques. Next, we apply this condition to two
known examples, the BB84 and the six-state protocols. We finally discuss
several ways of improving the derived condition, by changing the distillation
techniques, including classical pre-processing by the parties or one-party’s
coherent quantum operations.

4.1.1 Sufficient Condition

In this section we will derive the announced sufficient condition for security
using the lower bound on the secret-key rate of Eq. (3.5). Just before the
measurements, the honest parties share a Bell diagonal state (4.2). This
state is entangled if and only if

∑4
j=2 λj < λ1, which follows from the fact

that the positivity of the partial transposition is a necessary and sufficient
condition for separability in 2×2 systems [77]. When Alice and Bob measure
in their computational bases, they are left with classical data |i〉A〈i|⊗|j〉B〈j|
(i, j ∈ {0, 1}) whereas Eve still holds a quantum correlated system |ei,j〉E .
The CCQ correlations they share are described by the state (up to normal-
ization)

ρABE ∝
∑

i,j

|i〉A〈i| ⊗ |j〉B〈j| ⊗ |ẽi,j〉〈ẽi,j |, (4.7)

where Eve’s states are

|ẽ0,0〉 =
√

λ1|1〉+
√

λ2|2〉
|ẽ0,1〉 =

√
λ3|3〉+

√
λ4|4〉

|ẽ1,0〉 =
√

λ3|3〉 −
√

λ4|4〉
|ẽ1,1〉 =

√
λ1|1〉 −

√
λ2|2〉, (4.8)

and the corresponding states without tilde denote the normalized vectors.
So, after the measurements, Alice and Bob map ρ⊗N

AB , into a list of measure-
ment outcomes, whose correlations are given by PAB(i, j), where

PAB(i, j) = 〈ij|ρAB|ij〉. (4.9)

This probability distribution reads as follows:

A \ B 0 1
0 (1− εAB)/2 εAB/2
1 εAB/2 (1− εAB)/2
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Here, εAB denotes the QBER, that is,

εAB = 〈01|ρAB|01〉+ 〈10|ρAB|10〉 = λ3 + λ4. (4.10)

Alice and Bob now apply CAD to a block of N symbols. Eve listens to the
public communication that the two honest parties exchange. In particular,
she has the position of the N symbols used by Alice in (3.1), in case the
honest parties use CAD1 or the N -bit string X for CAD2. In the second
case, Eve applies to each of her symbols the unitary transformation

Ui = |1〉〈1|+ (−1)Xi |2〉〈2|+ |3〉〈3|+ (−1)Xi |4〉〈4|. (4.11)

This unitary operation transforms |ei,j〉E into |es,j〉E where s is the secret
bit generated by Alice. If Alice and Bob apply CAD1, Eve does nothing. In
both cases, the resulting state is

ρN
ABE =

(1− εN )
2

∑

s=0,1

|ss〉AB〈ss| ⊗ |es,s〉〈es,s|⊗N

+
εN

2

∑

s=0,1

|ss̄〉AB〈ss̄| ⊗ |es,s̄〉〈es,s̄|⊗N , (4.12)

where s̄ = s + 1 and εN is Alice-Bob error probability after CAD,

εN =
εN
AB

εN
AB + (1− εAB)N

≤
(

εAB

1− εAB

)N

, (4.13)

and the last inequality tends to an equality when N →∞. That is, whatever
the advantage distillation protocol is, i.e. either CAD1 or CAD2, all the
correlations among the three parties before the one-way key extraction step
are described by the state (4.12).

We can now apply Eq. (3.5) to this CQQ state. The probability distri-
bution between Alice and Bob has changed to

A \ B 0 1
0 (1− εN )/2 εN/2
1 εN/2 (1− εN )/2

where it can be seen that Alice and Bob have improved their correlation. The
CAD protocol has changed the initial probability distribution P (A,B), with
error rate εAB, into P

′
(A, B), with error rate εN . The mutual information

between Alice and Bob I(A : B) is easily computed from the above table.
I(A : E) can be derived from (4.12), so, after some algebra, the following
equality is obtained

I(A : B)− I(A : E) = 1− h(εN )

−(1− εN ) h

(
1− ΛM

eq

2

)
− εN h

(
1− ΛM

dif

2

)
, (4.14)
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where

Λeq =
λ1 − λ2

λ1 + λ2
= |〈e0,0|e1,1〉|

Λdif =
|λ3 − λ4|
λ3 + λ4

= |〈e1,0|e0,1〉|, (4.15)

h(x) = −x log2 x−(1−x) log2(1−x) is the binary entropy, and the subscript
‘eq’ (‘dif’) refers to the resulting value of Alice being equal to (different from)
that of Bob.

Let’s compute this quantity in the limit of a large number of copies,
N À 1, where εN ,Λeq, Λdif ¿ 1. It can be seen that in this limit

I(A : B) ≈ 1 + εN log εN

I(A : E) ≈ 1− 1
ln 4

Λ2N
eq . (4.16)

The security condition follows from having positive value of the Eq. (4.14),
which holds if

|〈e0,0|e1,1〉|2 >
εAB

1− εAB
. (4.17)

More precisely, if this condition is satisfied, Alice and Bob can always estab-
lish a large but finite N such that Eq. (4.14) becomes positive. Eq. (4.17)
can be rewritten as

(λ1 + λ2)(λ3 + λ4) < (λ1 − λ2)2. (4.18)

Therefore, whenever the state of Alice and Bob satisfies the security condi-
tion (4.17) above, they can extract from ρAB a secret key with our SIMCAP
protocol. This gives the searched sufficient condition for security for two
two-qubit Bell diagonal states or, equivalently, Pauli channels. Later, it is
proven that whenever condition (4.17) does not hold, there exists an attack
by Eve such that no standard key-distillation protocol works.

Condition (4.17) has a clear physical meaning. The r.h.s of (4.17) quanti-
fies how fast Alice and Bob’s error probability goes to zero when N increases.
In the same limit, and since there are almost no errors in the symbols filtered
by the CAD process, Eve has to distinguish between N copies of |e0,0〉 and
|e1,1〉. The trace distance between these two states provides a measure of
this distinguishability. It is easy to see that for large N

tr||e0,0〉〈e0,0|⊗N − |e1,1〉〈e1,1|⊗N |
= 2

√
1− |〈e0,0|e1,1〉|2N ≈ 2− |〈e0,0|e1,1〉|2N .

Thus, the l.h.s. of (4.17) quantifies how the distinguishability of the two
quantum states on Eve’s side after CAD increases with N . This intuitive
idea is indeed behind the attack described in the next section.
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Figure 4.1: Graphical depiction of the security condition (4.18): the security
region is defined by the intersection of the entanglement condition λ1 > 1/2,
the normalization condition λ1 + λ2 < 1, and the security condition (4.18).

Once this sufficient condition has been obtained, we can justify the choice
of the computational bases for the measurements by Alice and Bob when
sharing a state (4.2). Note that the same reasoning as above can be applied
to any choice of bases. The derived security condition simply quantifies how
Alice-Bob error probability goes to zero with N compared to Eve’s distin-
guishability of the N copies of the states |e0,0〉 and |e1,1〉, corresponding to
the cases a = b = 0 and a = b = 1. The obtained conditions are not as
simple as for measurements in the computational bases, but they can be
easily computed using numerical means. One can, then, perform a numer-
ical optimization over all choice of bases by Alice and Bob. An exhaustive
search shows that computational bases are optimal for this type of security
condition. It is interesting to mention that the bases that maximize the clas-
sical correlations, or minimize the error probability, between Alice and Bob
do not correspond to the computational bases for all Bell diagonal states
(4.2). Thus, these bases optimize the secret correlations between the two
honest parties, according to our security condition, although they may be
not optimal for classical correlations.

4.1.2 Necessary Condition

After presenting the security condition (4.17), we now give an eavesdropping
attack that breaks our SIMCAP protocol whenever this condition does not
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hold. This attack is very similar to that in Ref. [61].
Without loss of generality, we assume that all the communication in the

one-way reconciliation part of the protocol goes from Alice to Bob. In this
attack, Eve delays her measurement until Alice and Bob complete the CAD
part of the distillation protocol. Then, she applies on each of her systems
the two-outcome measurement defined by the projectors

Feq = |1〉E〈1|+ |2〉E〈2|, Fdif = |3〉E〈3|+ |4〉E〈4|. (4.19)

According to (4.12), all N measurements give the same outcome. If Eve
obtains the outcome corresponding to Feq, the tripartite state is (up to
normalization)

|00〉AB〈00| ⊗ |e0,0〉E〈e0,0|⊗N

+ |11〉AB〈11| ⊗ |e1,1〉E〈e1,1|⊗N . (4.20)

In order to learn sA, Alice’s bit, she has to discriminate between the two
pure states |e0,0〉⊗N and |e1,1〉⊗N . The minimum error probability in such
discrimination is [51]

εeq =
1
2
− 1

2

√
1− |〈e0,0|e1,1〉|2N , (4.21)

Her guess for Alice’s symbol is denoted by sE . On the other hand, if Eve
obtains the outcome corresponding to Fdif , the state of the three parties is

|01〉AB〈01| ⊗ |e0,1〉E〈e0,1|⊗N

+ |10〉AB〈10| ⊗ |e1,0〉E〈e1,0|⊗N . (4.22)

The corresponding error probability εdif is the same as in Eq. (4.21), with the
replacement |〈e0,0|e1,1〉| → |〈e0,1|e1,0〉|. Note that |〈e0,0|e1,1〉| ≥ |〈e0,1|e1,0〉|.
Eve’s information now consists of sE , as well as the outcome of the mea-
surement (4.19), rE = {eq, dif}. It is shown in what follows that the cor-
responding probability distribution P (sA, sB, (sE , rE)) cannot be distilled
using one-way communication. In order to do that, we show that Eve can
always map P into a new probability distribution, Q, which is not one-way
distillable. Therefore, the non-distillability of P is implied.

Eve’s mapping from P to Q works as follows: she increases her error
until εdif = εeq. She achieves this by changing with some probability the
value of sE when rE = dif. After this, Eve forgets rE . The resulting tripar-
tite probability distribution Q satisfies Q(sB, sE |sA) = Q(sB|sA) Q(sE |sA).
Additionally, we know that Q(sB|sA) and Q(sE |sA) are binary symmetric
channels with error probability εB(= εN in (4.13)) and εeq in (4.21), re-
spectively. It is proven in [69] that in such situation the one-way key rate
is

K→ = h(εeq)− h(εB), (4.23)
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which is non-positive if
εeq ≤ εB . (4.24)

Let us finally show that this inequality is satisfied for all values of N when-
ever the condition (4.17) does not hold. Writing z = λ1 + λ2, we have
1/2 ≤ z ≤ 1, since the state of Alice and Bob is assumed entangled. Using
the following inequality

1
2
− 1

2

√
1−

(
1− z

z

)N

≤ (1− z)N

zN + (1− z)N
, (4.25)

which holds for any positive N , the right-hand side of (4.25) is equal to εB,
whereas the left-hand side is an upper bound for εeq. This bound follows
from the inequality (λ1 − λ2)2/z2 ≤ (1 − z)/z, which is the negation of
(4.17). That is, if condition (4.17) is violated, no secret key can be distilled
with our SIMCAP protocol. More precisely, there exists no N such that
CAD followed by one-way distillation allows to establish a secret key. Since
(4.17) is sufficient for security, the attack we have considered is in some sense
optimal and the security bound (4.17) is tight for our SIMCAP protocol.

It is worth analyzing the resources that this optimal eavesdropping at-
tack requires. First of all, note that Eve does not need to perform any
coherent quantum operation, but she only requires single-copy level (indi-
vidual) measurements. This is because when discriminating N copies of
two states, there exists an adaptative sequence of individual measurements
which achieves the optimal error probability (4.21) [14]. However, what Eve
really needs is the ability to store her quantum states after listening to the
(public) communication exchanged by Alice and Bob during the CAD part
of the protocol.

4.1.3 Inequivalence of CAD1 and CAD2 for Individual At-
tacks

As we have seen, the two CAD protocols lead to the same security condition.
This follows from the fact that Eve is not assumed to measure her state be-
fore the CAD takes place. Then, she can effectively map one CAD protocol
into the other by means of the reversible operation UE . This is no longer
true in the case of individual attacks. Interestingly, in this scenario, the two
two-way distillation methods do not give the same security condition. As
mentioned, although the study of individual attacks gives a weaker security,
it is relevant in the case of realistic eavesdroppers. Moreover, we believe
the present example has some interest as a kind of toy model illustrating
the importance of the reconciliation part for security. Recall that in the
case of individual attacks, where Eve can neither perform coherent opera-
tions nor have a quantum memory, the security condition using CAD2 is
the entanglement condition λ1 > 1/2 [2]. However, when the honest parties
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apply CAD1 plus one-way communication, the security condition is (4.17).
This holds true for two-qubit protocols, and remains open for the two-qudit
protocols studied in the next sections2.

Let us suppose that Alice and Bob apply CAD1 and consider the fol-
lowing individual attack. Eve knows that for all the instances passing the
CAD protocol, Alice and Bob’s symbols are equal with very high proba-
bility. Moreover, she knows that in all the position announced by Alice,
Alice’s symbol is the same. Therefore, from her point of view, the problem
reduces to the discrimination of N copies of the two states |ei,i〉. Thus, she
has to apply the measurement that optimally discriminates between these
two states. As mentioned, the optimal two-state discrimination [14] can be
achieved by an adaptive individual measurement strategy. Therefore, Eve
can apply this adaptive strategy to her states right after her individual in-
teraction. Her error probability is again given by (4.21). That is, although
the attack is individual, the corresponding security condition is the same as
for collective attacks.

This N -copy situation on Eve’s space does not happen when Alice and
Bob apply CAD2. Indeed, Eve maps CAD2 into CAD1 by applying the
correcting unitary operation Ui after knowing the vector X used in CAD2.
This is the key point that allowed her to map one situation into the other
above. This is however not possible in the case of individual attacks, where
Eve is assumed to measure before the reconciliation part takes place. Under
individual attacks, the security condition for CAD2 is equivalent to the en-
tanglement condition for Bell diagonal states, as shown in [2]. Therefore, the
two CAD protocols, which have proven to be equivalent in terms of robust-
ness against general quantum attacks, become inequivalent in the restricted
case of individual attacks.

4.1.4 Examples: BB84 and Six-state Protocols

The goal of the previous study has been to provide a general formalism for
determining the security of qubit channels under a class of realistic QKD
protocols. Relevant prepare and measure schemes, such as the BB84 and
six-state protocol, constitute a particular case of our analysis. Indeed, the
process of correlation distribution and channel tomography in these pro-
tocols is done by Alice preparing states from and Bob measuring in two
(BB84) or three (six-state) bases. In this section, we apply the derived se-
curity condition to these protocols and compare the obtained results with
previous security bounds. As explained in 3.3, a standard figure of merit
in the security analysis of a given QKD protocol is given by the maximum
error rate such that key distillation is still possible. For instance, in the
case of one-way communication, the values of the critical error rates keep

2This is closely related to the 31st problem in http://www.imaph.tu-
bs.de/qi/problems/.
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improving (see [83] for the latest result in this sense) since the first general
security proof by Mayers [71]. In the case of reconciliation using two-way
communication, the best known results were obtained by Chau in [22]. It is
then important to know whether these bound can be further improved. In
what follows, it is shown that our necessary condition for security implies
that Chau’s bounds cannot be improved. In order to do that, then, one
has to employ other reconciliation techniques, different from advantage dis-
tillation plus one-way standard techniques. Some of these possibilities are
discussed in the next sections.

BB84 protocol

One can easily see that in the entanglement-based scheme, a family of attacks
by Eve producing a QBER Q is given by the Bell-diagonal states (see also
[78])

ρAB = (1− 2Q + x)|Φ1〉〈Φ1|+ (Q− x)|Φ2〉〈Φ2|
+(Q− x)|Φ3〉〈Φ3|+ x|Φ4〉〈Φ4|, (4.26)

since the QBER is

Q = 〈01|ρAB|01〉+ 〈10|ρAB|10〉
= 〈+− |ρAB|+−〉+ 〈−+ |ρAB| −+〉 (4.27)

and 0 ≤ x ≤ Q. When Alice and Bob apply one-way communication distilla-
tion, the attack that minimizes (3.5) is x = Q2, and leads to the well-known
value of QBER = 11%, first obtained by Shor and Preskill in [82]. The
corresponding unitary interaction by Eve is equal to the phase-covariant
cloning machine, that optimally clones qubits in an equator (in this case, in
the xz plane).

When one considers the two-way distillation techniques studied in this
protocol, condition (4.17), or (4.18), applies. Then, one can see that the
optimal attack, for fixed QBER, consists of taking x = 0. Therefore, Eve’s
attack is, not surprisingly, strongly dependent on the type of reconciliation
employed. In the case of two-way communication, Eve’s optimal interaction
can also be seen as a generalized phase-covariant cloning transformation,
which is shown in the Appendix I. Using this attack, the derived necessary
condition for security is violated when QBER = 20%. This is precisely
the same value obtained by Chau in his general security proof of BB84
[22]. So, the considered collective attack turns out to be tight, in terms of
robustness. Recall that the security bound against individual attacks is at
the entanglement limit, in this case giving QBER = 25.0% [2, 77]. The full
comparison is depicted in the Fig. (3.4).

Note also that the state (4.26) with x = 0, associated to the optimal
attack, does not fit into our canonical form for Bell diagonal states, since λ2
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is not the minimal Bell coefficient. This simply means that key distillation
from this state using a SIMCAP protocol is still possible. Alice and Bob
only have to measure in a different basis, namely in the y basis. That is,
if Alice and Bob knew to share this state, or channel, and could prepare
and measure states in the y basis, not used in the considered version of
BB84, they would be able to establish a secure key. This channel is still
useful for QKD using a prepare and measure scheme, although not using
the considered version of BB84. In our opinion, this illustrates why the
present approach, that aims at identifying secrecy properties of channels
without referring to a given protocol, is more general.

Six-state protocol

It is easy to see that, in the entanglement-based scheme, an attack by Eve
producing a QBER equal to Q is given by the Bell diagonal state

ρAB = (1− 3
2
Q)|Φ1〉〈Φ1|+ Q

2
|Φ2〉〈Φ2|

+
Q

2
|Φ3〉〈Φ3|+ Q

2
|Φ4〉〈Φ4|. (4.28)

This attack actually corresponds to Eve applying the universal cloning trans-
formation. Contrary to what happened for BB84, this attack is optimal for
both types of reconciliation protocols, using one- or two-way communication.

Applying the security condition (4.17), the security bound gives a critical
QBER of Q = 27.6%. This value again coincides with the one obtained by
Chau in his general security proof of [22] for the six-state protocol. The
present attack, then, is again tight. In the case of indidual attacks, the
security bound [2] is the entanglement limit Q = 33.3%.

4.2 Can These Bounds Be Improved?

The previous section has applied the obtained security condition to two well-
known QKD protocols. In the corresponding attack, Eve is forced to interact
individually and in the same way with the sent qubits. As discussed, the
de Finetti results by Renner imply that this does not pose any restriction
on Eve’s attack. However, Eve is also assumed to measure her states right
after CAD, while she could have delayed her measurement, for instance until
the end of the entire reconciliation. In spite of this apparent limitation, the
condition is shown to be tight, under the considered distillation techniques,
for the two protocols. As it has been mentioned, the obtained bounds do
not coincide with the entanglement limit. This raises the question whether
prepare and measure schemes, in general, do attain this limit. Or in other
words, it suggests the existence of channels that, although can be used to
distribute distillable entanglement, are useless for QKD using prepare and
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Figure 4.2: Security bounds of the BB84 and the six-state protocols against
individual and collective attacks: When Eve is supposed to apply individual
attacks, all entangled states are distillable to a secret key. Assuming general
attacks, security bounds are 20.0% and 27.6%, respectively, for the BB84 and
the six-state protocols. This means that non-distillable secret correlations
may exist.

measure techniques. Recall that a channel that allows to establish distillable
entanglement is secure: this just follows from combining the de Finetti argu-
ment with standard entanglement distillation. So, in this sense the channel
indeed contains distillable secrecy. However, our results suggest that this
secrecy is non-distillable, or bound, using single-copy measurements. That
is, this secrecy is distillable only if both parties are able to perform coherent
quantum operations. Perhaps, the simplest example of this channel is given
by (4.28) with Q > 27.6%, i.e. by a weakly entangling depolarizing channel.

The aim of this section is to explore two possibilities to improve the
previous security bounds. We first consider the classical pre-processing in-
troduced in Ref. [63], in which previous security bounds using one-way
communication protocols for BB84 and six-state protocols have been im-
proved by allowing one of the honest parties to introduce some local noise.
This noise worsens the correlations between Alice and Bob, but it deterio-
rates in a stronger way the correlations between Alice and Eve. Here, we
study whether a similar effect can be obtained in the case of the consid-
ered two-way communication protocols. In a similar way as in Ref. [63],
we allow one of the two parties to introduce some noise, given by a binary
symmetric channel (BSC). In our case, however, this form of pre-processing
does not give any improvement on the security bounds. Later, we study
whether the use of coherent quantum operations by one of the parties helps.
We analyze a protocol that can be understood as a hybrid between classical
and entanglement distillation protocol. Remarkably, this protocol does not
provide any improvement either. In our opinion, these results strengthen
the conjectured bound secrecy of these weakly entangled states when using
SIMCAP protocols3.

3It is worth mentioning here that some of the techniques studied in this section may
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4.2.1 Pre-processing by One Party

Recently, it has been observed that local classical pre-processing by the hon-
est parties of their measurement outcomes can improve the security bounds
of some QKD protocols [63]. For instance, Alice can map her measurement
values X into another random variable U , and this transforms the mutual in-
formation from I(X : B) into I(U : B). At the same time, I(X : E) changes
to I(U : E). In general, this mapping makes the mutual information of
Alice and Bob decrease, but bounds on the secret key rate may improve,
e.g. I(U : B) − I(U : E) > I(X : B) − I(X : E). Actually, by applying a
simple BSC of probability q, where the input value is kept unchanged with
probability 1− q or flipped with probability q, Alice may be able to improve
the one-way secret-key rate [63]. Using this technique, the security bounds
have been moved from 11% to 12.4% for the BB84 protocol and from 12.7%
to 14.1% in the six-state protocol [63]. Here, we analyze whether a similar
effect happens in the case of protocols consisting of two-way communication.
Note that pre-processing is useless if applied after CAD. Indeed, recall that
the situation after CAD for the attack of Section 4.1.2 is simply given by
two independent BSC channels between Alice and Bob and Alice and Eve,
where pre-processing is known to be useless. The only possibility left is that
Alice and/or Bob apply this pre-processing before the whole reconciliation
protocol takes place.

As mentioned, Alice’s pre-processing consists of a BSC channel, where
her measurement value j is mapped into j and j +1 with probabilities 1− q
and q, respectively. After this classical pre-processing, the state of the three
parties is

σABE ∝
∑

i,j

|i, j〉AB〈i, j| ⊗ ρ̃i,j

where

ρ̃0,0 = (1− q)(1− εAB)|e0,0〉〈e0,0|+ qεAB|e1,0〉〈e1,0|
ρ̃0,1 = (1− q)εAB|e0,1〉〈e0,1|+ q(1− εAB)|e1,1〉〈e1,1|
ρ̃1,0 = q(1− εAB)|e0,0〉〈e0,0|+ (1− q)εAB|e1,0〉〈e1,0|
ρ̃1,1 = qεAB|e0,1〉〈e0,1|+ (1− q)(1− εAB)|e1,1〉〈e1,1|

(4.29)

and εAB denotes the QBER of the original measurement data, i.e. the
error rate before applying pre-processing. The states with tilde are not

improve the key rate for some values of the error rate. However, we prove here that they
do not improve the critical tolerable error rate.
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Figure 4.3: Considered classical pre-processing: Alice introduces some extra
noise by permuting her classical variable with probability q.

normalized, so

ρ̃i,i =
(

(1− q)(
1− εAB

2
) + q

εAB

2

)
ρi,i

ρ̃i,i+1 =
(

(1− q)
εAB

2
+ q(

1− εAB

2
)
)

ρi,i+1.

Next, Alice and Bob apply two-way CAD to σ⊗N
ABE . A new error rate is

obtained after CAD. The rest of the distillation part, then, follows the same
steps as in section V-A.

We now compute the mutual information between the honest parties
after CAD. The new error rate of Alice and Bob is introduced by the BSC
above, and is expressed as ω = trABE [σABE(|01〉AB〈01| + |10〉AB〈10|)] =
(1− q)εAB + q(1− εAB). For large N , the mutual information of Alice and
Bob tends to, c.f. (4.16),

IP (A : B) ≈ 1 + (
ω

1− ω
)N log(

ω

1− ω
)N .

In the same limit, Eve’s state can be very well approximated by

σE ≈ 1
2
(ρ⊗N

00 + ρ⊗N
11 ),

since ||ρ̃i,i|| > ||ρ̃i,j ||. After some patient algebra, one can see that the
Holevo information of Alice and Eve channel is (see also Appendix II):

IP (A : E) ≈ 1− 1
ln 4

(u|〈e0,0|e1,1〉|2 + v|〈e0,1|e1,0〉|2)N

where

u =
(1− q)(1− εAB)

qεAB + (1− q)(1− εAB)
,

and u + v = 1. The case of q = 0 (or equivalently, u = 1) recovers the
initial mutual information I(A : E). Therefore, the security condition of
this protocol is
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u|〈e0,0|e1,1〉|2 + v|〈e0,1|e1,0〉|2 >
ω

1− ω
. (4.30)

More precisely, whenever this condition is satisfied, there exists a finite N
such that IP (A : B)− IP (A : E) > 0.

The derived bound looks again intuitive. The r.h.s quantifies how Alice
and Bob’s error probability for the accepted symbols converges to zero when
N is large. If one computes the trace distance between ρ0,0 and ρ1,1, as
defined in Eq. (4.29), one can see that

tr|ρ0,0 − ρ1,1|
≈ 2− (u|〈e0,0|e1,1〉|2 + v|〈e0,1|e1,0〉|2)N , (4.31)

which gives the l.h.s. of (4.30). This result suggests that the derived con-
dition may again be tight. That is, it is likely there exists an attack by
Eve breaking the security of the protocol whenever (4.30) is not satisfied.
This attack would basically be the same as above, where Eve simply has to
measure after the CAD part of the protocol.

Our goal is to see whether there exist situations where pre-processing is
useful. Assume this is the case, that is, there exists a state for which (4.30)
holds, for some value of q, while (4.17) does not. Then,

εAB

1− εAB
≥ |〈e00|e11〉|2 >

1
u

(
ω

1− ω
− v|〈e01|e10〉|2). (4.32)

After some simple algebra, one gets the inequality:

1
εAB

< 1 + |〈e01|e10〉|2.

The r.h.s. of this equation is smaller than 2, and this implies that εAB > 1/2.
Since this contradicts to that 0 ≤ εAB < 1/2, we conclude that one-party
pre-processing does not improve the obtained security bound.

Notice that since the reconciliation part uses communication in both
directions, it seems natural to consider pre-processing by the two honest
parties, where Alice and Bob introduce some noise, described by the prob-
abilities qA and qB. In this case, however, the analytical derivation is much
more involved, even in the case of symmetric pre-processing. Our prelimi-
nary numerical calculations suggest that two-parties pre-processing may be
useless as well. However, these calculations should be interpreted in a very
careful way. Indeed, they become too demanding already for a moderate N ,
since one has to compute the von Neumann entropies for states in a large
Hilbert space, namely ρ⊗N

0,0 and ρ⊗N
1,1 . Therefore, the detailed analysis of

pre-processing by the two honest parties remains to be done.
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Before concluding, we would like to mention that pre-processing, be-
fore or after CAD, may help in improving the distillable secret-key rate if
the initial rate without pre-processing is already positive (see for instance
[78]). However, this improvement vanishes for large blocks and the obtained
security bounds do not change.

4.2.2 Bob’s Coherent Operations Do Not Improve the Secu-
rity Bound

In order to improve the security bound, we also consider the scenario where
Bob performs some coherent quantum operations before his measurement.
Thus, he is assumed to be able to store quantum states and manipulate
them in a coherent way, see Fig. 8. This is very unrealistic, but it gives
the ultimate limit for positive key-rate using the corresponding prepare and
measure protocol. We do not solve the problem in full generality. Here
we consider the rather natural protocol where Bob applies the recurrence
protocol used in entanglement distillation. That is, he applies CNOT oper-
ations to N of his qubits and measures all but one. He accepts only when
the results of these N − 1 measurements are zero and keeps the remain-
ing qubit. Later Bob applies a collective measurement on all the accepted
qubits. Alice’s part of the protocol remains unchanged.

After Alice has measured her states and announced the position of N
symbols having the same value, Alice-Bob-Eve state reads

ρABE =
∑

k=0,1

|k〉A〈k| ⊗ |b̃ek〉BE〈b̃ek|
⊗N

, (4.33)

where |b̃ek〉 = 〈k|ψ〉ABE . Note that Alice, Bob and Eve now share CQQ
correlations. Bob applies his part of the protocol and accepts. The resulting
state turns out to be equal to, up to normalization,

ρN
ABE ∝ |0〉A〈0| ⊗ |µN

0 〉BE〈µN
0 |+

|1〉B〈1| ⊗ |µN
1 〉BE〈µN

1 |, (4.34)

where

|µN
0 〉BE = |0〉|ẽ0,0〉⊗N + |1〉|ẽ0,1〉⊗N ,

|µN
1 〉BE = |0〉|ẽ1,0〉⊗N + |1〉|ẽ1,1〉⊗N . (4.35)

Since Bob is allowed to apply any coherent operation, the extractable
key rate satisfies (3.5), where now both information quantities, I(A : B) and
I(A : E), are equal to the corresponding Holevo bound. Of course I(A : E)
has not changed. It is straightforward to see that one obtains the same
bound for the key rate as for the state (4.7). This follows from the fact that
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Figure 4.4: Quantum advantage distillation protocol: Alice performs single-
copy measurement and processes the obtained classical outcomes. Bob keeps
his quantum states on a quantum memory and performs coherent quantum
operations.

〈ei,i|ei,j〉 = 0, where i 6= j. Then, this hybrid protocol does not provide any
advantage with respect to SIMCAP protocols.

Recall that if the two parties apply coherent quantum operations, they
can run entanglement distillation and distill from any entangled two-qubit
state. Actually a slightly different protocol where (i) both parties perform
the coherent recurrence protocol previously applied only by Bob, (ii) mea-
sure in the computational bases and (iii) apply standard one-way reconcili-
ation techniques is secure for any entangled state. As shown, if one of the
parties applies the “incoherent” version of this distillation protocol, con-
sisting of first measurement and later CAD, followed by classical one-way
distillation, the critical QBER decreases.

4.3 Generalization to Arbitrary Dimension

In the previous sections we have provided a general formalism for the study
of key distribution through quantum channels using prepare and measure
schemes and two-way key distillation. In the important case of Pauli chan-
nels, we have derived a simple necessary and sufficient condition for security,
for the considered protocols. In the next sections, we move to higher dimen-
sion, where the two honest parties employ d−dimensional quantum systems,
or qudits. The generalization of the previous qubit scenario to arbitrary
dimension is straightforward. Alice locally generates a d−dimensional max-
imally entangled state,

|Φ〉 =
1√
d

d−1∑

k=0

|k〉|k〉 (4.36)
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measures the first particle of the pair, and sends the other one to Bob. Since
the channel between Alice and Bob is noisy, the shared state will change into
a mixed state ρAB. As usual, all the noise in the channel is due to Eve’s
interaction.

In what follows, we consider generalized Pauli channels. For these chan-
nels, Eve introduces flip and phase errors, generalizing the standard bit-flip
σx and phase-flip σz operators of qubits. This generalization is given by the
unitary operators

Um,n =
d−1∑

k=0

exp(
2πi

d
kn)|k + m〉〈k|.

Thus, a quantum system in state ρ propagating through a generalized Pauli
channel is affected by a Um,n flip with probability pm,n, that is

D(ρ) =
∑
m,n

pm,nUm,nρU †
m,n.

When applied to half of a maximally entangled state |Φ〉, the resulting state
is Bell-diagonal,

(11⊗D)(Φ) =
d−1∑

m=0

d−1∑

n=0

pm,n|Bm,n〉〈Bm,n|, (4.37)

where the states |Bm,n〉 define the generalized Bell basis

|Bm,n〉 = (11⊗ Um,n)|Φ〉 =
1√
d

d−1∑

k=0

e
2πi
d

kn|k〉|k + m〉. (4.38)

The global state including Eve reads

|ψABE〉 =
d−1∑

m=0

d−1∑

n=0

cm,n|Bm,n〉AB|m,n〉E , (4.39)

where c2
m,n = pm,n and {|m,n〉} defines a basis.

In the next lines, we derive a security conditions for these channels when
the two honest parties measure in the computational bases. We restrict
to the computational bases for the sake of simplicity, although the main
ideas of the formalism can be applied to any bases, and then numerically
optimized. We then generalize the previous eavesdropping attack. Contrary
to what happened in the qubit case, we are unable to prove the tightness of
our condition in full generality using this attack.

We then apply the derived security condition to the known protocols in
d-dimensional systems, such as the 2- and (d + 1)-bases protocols. These
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protocols can be seen as the natural generalization of the BB84 and the
six-state protocols to higher dimension [21]. Exploiting the symmetries of
these schemes, we can prove the tightness of our security condition for these
protocols. In the case of the (d + 1)-bases protocol, some security bounds
using two-way communication have been obtained by Chau in [23]. Here,
we obtain the same values, therefore proving that they cannot be improved
unless another reconciliation protocol is employed. Moreover, in the case of
2-bases protocol, we derive the same security bound as in [74]. Thus, again,
another reconciliation protocol is necessary if the bound is to be improved.

4.3.1 Sufficient Condition

After sending half of a maximally entangled state through the Pauli channel,
Alice and Bob share the state

ρAB =
∑
m,n

pm,n|Bm,n〉〈Bm,n|,

where the probabilities pm,n characterize the generalized Pauli channel. Af-
ter measuring in the computational bases, the two honest parties obtain
correlated results. We denote by F , fidelity, the probability that Alice and
Bob get the same measurement outcome. It reads

F =
d−1∑

k=0

〈kk|ρAB|kk〉 =
∑

n

p0,n.

In a similar way as for the qubit case, we introduce a measure of disturbance
for the d−1 possible errors. Denote Alice’s measurement result by α. Then,
Bob obtains α + j, with probability

Dj =
d−1∑

α=0

P (A = α, B = α + j) =
d−1∑

n=0

pj,n.

The total disturbance is defined as

D =
∑

j 6=0

Dj . (4.40)

Of course, D0 = F . Notice that all the Dj can be taken smaller than F ,
without loss of generality. Indeed, if this was not the case, the two honest
parties could apply local operations Um,n to make the fidelity F larger than
any other Dj . Note also that the errors have different probabilities Dj .

We now include Eve in the picture, the resulting global state being (4.39).
As for the qubit case, Eve’s interaction by means of the Pauli operators can
be formulated as an asymmetric 1 → 1 + 1 cloning transformation [20]. In



4.3. Generalization to Arbitrary Dimension 85

what follows, and again invoking the de Finetti argument, it is assumed
that Alice, Bob and Eve share many copies of the state (4.39). After the
measurements by Alice and Bob, the quantum state describing the CCQ
correlations between the three parties is

ρABE ∝
d−1∑

α=0

d−1∑

β=0

|α〉A〈α| ⊗ |β〉B〈β| ⊗ |ẽα,β〉E〈ẽα,β|. (4.41)

Eve’s states are

|eα,α〉 =
1√
F

d−1∑

n=0

c0,ne
2πi
d

αn|0, n〉

|eα,β〉 =
1√

Dβ−α

d−1∑

n=0

cβ−α,ne
2πi
d

αn|β − α, n〉

(4.42)

where the algebra is modulo d and β 6= α. As above, the states with tilde
are not normalized,

|ẽα,α〉 =
√

F |eα,α〉
|ẽα,β〉 =

√
Dβ−α|eα,β〉.

Note that 〈eα,β|ex,y〉 = 0 whenever β − α 6= y − x, so Eve can know in a
deterministic way which error (if any) occurred between Alice and Bob.

After the measurements, Alice and Bob have a list of correlated measure-
ment outcomes. They now apply CAD. First, Alice locally generates a ran-
dom variable, sA, that can take any value between 0 and d−1 with uniform
probability. She then takes N of her symbols (α1, · · · , αN ) and announces
the vector ~X = (X1, · · · , XN ) such that Xj = s−αj . Bob sums this vectors
to his corresponding symbols (β1, · · · , βN ). If the N results are equal, and
we denote by sB the corresponding result, he accepts sB. It is simple to see
that Bob accepts a symbol with probability pok = FN +

∑d−1
j=1 DN

j . After lis-
tening to the public communication used in CAD, Eve knows (X1, · · · , XN ).
As in the previous qubit case, she applies the unitary operation:

UE =
d−1∑

m=0

d−1∑

l=0

e
2πi
d

Xjm|l〉〈l| ⊗ | −m〉〈−m| (4.43)

This unitary operation transforms Eve’s states as follows,

U⊗N
E :

N⊗

j=0

|eαj ,βj 〉 −→
N⊗

j=0

|es,s−(αj−βj)〉.
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As above, this operation makes Alice, Bob and Eve’s state independent of
the specific vector used for CAD. The resulting state reads

d−1∑

sA,sB=0

|sA〉A〈sA| ⊗ |sB〉B〈sB| ⊗ |esA,sB〉E〈esA,sB |⊗N , (4.44)

up to normalization. As above, the goal is to see when it is possible to find
a finite N such that the CCQ correlations of state (4.44) provide a positive
key-rate, according to the bound of Eq. (3.5).

The new disturbances D′
j , j = 1, . . . , d − 1, after the CAD protocol are

equal to

D′
j =

DN
j∑d−1

k=0 DN
k

≤
(

Dj

F

)N

, (4.45)

where, again, the last inequality tends to an equality sign for large N . The
mutual information between Alice and Bob is

I(A : B) = log d +
FN

pok
log

FN

pok
+

d−1∑

j=1

D′
j log D′

j . (4.46)

For large N , this quantity tends to

I(A : B) = log d−N

(
Dm

F

)N

log
F

Dm
+ O((

Dm

F
)N )

where Dm = maxj Dj for j ∈ {1, · · · , d− 1}.
Let us now compute Eve’s information. Again, since Alice and Eve share

a CQ channel, Eve’s information is measured by the Holevo bound. For very
large N , as in the case of qubits, we can restrict the computation of χ(A : E)
to the cases where there are no errors between Alice and Bob after CAD.
So, Eve has to distinguish between N copies of states |ek,k〉. Thus, in this
limit, χ(A : E) ≈ S(ρE), where

ρE =
1
d

∑

k

|ek,k〉〈ek,k|⊗N . (4.47)

Denote by Aη, with η = 0, . . . , d − 1, the eigenvalues of ρE . As shown in
Appendix III, one has

Aη =
1
d2

d−1∑

k=0

d−1∑

k
′
=0

e
2πi
d

η(k−k
′
)〈ek|ek′ 〉N .

Decomposing the eigenvalue Aη into the term with k = k
′
and with k 6= k

′
,

we can write Aη = (1 + X
(N)
η /d)/d, where

X(N)
η =

∑

k 6=k
′
e

2πi
d

η(k−k
′
)〈ek,k|ek

′
,k
′ 〉N . (4.48)
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Note that X
(N)
η is real since X

(N)
η = d2Aη−d and Aη is real, and

∑d−1
η=0 X

(N)
η =

0 because of normalization. Moreover, X
(N)
η goes to zero when N increases.

Using the approximation log(1 + x) ≈ x/ ln 2 valid when x ¿ 1, we have

χ(A : E) ≈ −
∑

η

Aη log Aη

≈ log d− 1
d3 ln 2

d−1∑

η=0

X(N)
η X(N)

η

= log d− d− 1
d ln 2

∑

k 6=k
′
|〈ek,k|ek′ ,k′ 〉|2N .

As above, the security condition follows from the comparison of the
exponential terms in the asymptotic expressions I(A : B) and χ(A : E),
having

max
k 6=k

′
|〈ek,k|ek′ ,k′ 〉|2 > max

j

Dj

F
. (4.49)

This formula constitutes the searched security condition for generalized Bell
diagonal states. Whenever (4.49) is satisfied, there exists a finite N such
that the secret-key rate is positive. In the next section, we analyze the
generalization of the previous attack for qubits to arbitrary dimension.

4.3.2 Eavesdropping Attack

We consider here the generalization of the previous qubit attack to arbitrary
dimension. Unfortunately, we are unable to use this attack to prove the
tightness of the previously derived condition, namely Eq. (4.49), in full
generality. However, the techniques developed in this section can be applied
to standard protocols, such as the 2- and d+1-bases protocol. There, thanks
to the symmetries of the problem, we can prove the tightness of the security
condition.

The idea of the attack is the same as for the case of qubits. As above,
Eve measures after the CAD part of the protocol. She first performs the
d-outcome measurement defined by the projectors

Meq =
∑

n

|0〉〈0| ⊗ |n〉〈n|,

Mj =
∑

n

|j〉〈j| ⊗ |n〉〈n|, (4.50)

where j 6= 0. The outcomes of these measurement are denoted by rE .
Using this measurement Eve can know in a deterministic way the difference
between Alice and Bob’s measurement outcomes, sA and sB. If Eve obtains
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the outcome corresponding to Meq, she knows the tripartite state is (up to
normalization)

d−1∑

x=0

|x〉A〈x| ⊗ |x〉B〈x| ⊗ |exx〉E〈exx|⊗N . (4.51)

Now, in order to learn sA, she must discriminate between the d pure states
|exx〉⊗N . Due to the symmetry of these states, the so-called square-root
measurement(SRM) [50, 35] is optimal, in the sense that it minimizes the
error probability (see Appendix IV for more details). She then guesses the
right value of sA with probability

P success
eq =

1
d2

∣∣∣∣∣∣
∑

η

√∑
m

e2πi(ηm/d)〈em,m|e0,0〉N
∣∣∣∣∣∣

2

=
1
d2

∣∣∣∣∣∣

d−1∑

η=0

√
1 + Y

(N)
η

∣∣∣∣∣∣

2

, (4.52)

where

Y (N)
η =

d−1∑

m=1

e
2πi
d

ηm〈em,m|e0,0〉N , (4.53)

Y
(N)
η being real. Note that Y

(N)
η tends to zero for large N . The error

probability reads εeq = 1− P success
eq .

If Eve obtains the outcome corresponding to Mj after the first measure-
ment, she knows that the three parties are in the state (up to normalization)

d−1∑

x=0

|x〉A〈x| ⊗ |x + j〉B〈x + j| ⊗ |ex,x+j〉E〈ex,x+j |⊗N . (4.54)

Eve again applies the SRM strategy, obtaining

P success
j =

1
d2

∣∣∣∣∣∣

d−1∑

η=0

√
1 + Y

(j,N)
η

∣∣∣∣∣∣

2

, (4.55)

where

Y (j,N)
η =

d−1∑

m=1

e
2πi
d

ηm〈em,m+j |e0,j〉N , (4.56)

the associated error probability being εj = 1− P success
j .

As a result of this measurement, Alice, Bob and Eve share the tripartite
probability distribution P (sA, sB, (sE , rE)), where (sE , rE) represents Eve’s
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random variables, rE (sE) being the result of the first (second) measure-
ment. For each value of rE , Eve knows the difference between Alice and
Bob’s symbol and the error in her guess for Alice’s symbol. It would be
nice to relate the distillation properties of this tripartite probability distri-
bution to the derived security condition (4.49), as we did in the qubit case.
Unfortunately, we are at present unable to establish this connection in full
generality. Actually, we cannot exclude that there exists a gap for some
Bell diagonal states. However, as shown in the next section, the considered
attack turns out to be tight when applied to standard protocols, such as the
2- and d + 1-bases protocols.

Let us conclude with a remark on the resources Eve needs for this at-
tack. After applying the same unitary operation on each qudit, Eve stores
her quantum states in a quantum memory. After CAD, she measures her
corresponding block of N quantum states. Recall that in the qubit case,
Eve does not need any collective measurement, since an adaptative indi-
vidual measurement strategy achieves the fidelity of the optimal collective
measurement [14]. In the case of arbitrary dimension, it is unknown whether
there exists an adaptative measurement strategy achieving the optimal er-
ror probability, at least asymptotically, when N copies of d symmetrically
distributed states are given 4.

4.4 Examples : 2- and (d + 1)-bases Protocols in
Higher Dimensions

We now apply the previous security condition to specific protocols with
qudits, namely the so-called 2- and (d+1)-bases protocols [21], which are the
generalization of the BB84 and the six-state protocols to higher dimension.
In the first case, Alice and Bob measure in two mutually unbiased bases,
say computational and Fourier transform, while in the second, the honest
parties measure in the d + 1 mutually unbiased bases5.

The optimal cloning attack for these protocols gives a Bell diagonal state
(4.37). However, due to the symmetries of the protocols, the coefficients
cm,n, or pm,n, are such that

c =




v x . . . x
x y . . . y
...

...
. . .

...
x y . . . y


 (4.57)

4This is closely related to the 31st problem in the open problem list [57]
5The existence of the d + 1 mutually unbiased bases in nay dimension is a well-known

open problem. This existence has only been proven in the case where the dimension is a
power of a prime number. Recall that two bases, {|ui〉} and {|vi〉} with i = 1, . . . , d, are
said mutually unbiased whenever |〈ui|vj〉|2 = 1/d.
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where the normalization condition implies v2 + 2(d− 1)x2 + (d− 1)2y2 = 1.
For the d + 1-bases protocol, which is more symmetric, one also has x = y.

The fidelity, that is, the probability that Alice and Bob obtain the same
outcome, is

F =
d−1∑

k=0

〈kk|ρAB|kk〉 = v2 + (d− 1)x2,

for all the bases used in the protocol. The errors distribute in a symmetric
way, Dj = (1 − F )/(d − 1) for all j 6= 0. For the d + 1-bases protocol, and
since we have the extra constraint x = y, the coefficients cm,n read

c0,0 =

√
(d + 1)F − 1

d

cm,n =

√
1− F

d(d− 1)
for m, n 6= 0. (4.58)

In the 2-bases protocol, y is a free parameter that can be optimized for each
value of the error rate, D, and depending on the reconciliation protocol. For
instance, if Eve’s goal is to optimize her classical mutual information, the
optimal interaction (1 → 1 + 1 cloning machine) gives (see [21] for more
details)

c0,0 = F

cm,0 = c0,n =

√
F (1− F )

d− 1
for m(n) 6= 0

cm,n =
1− F

d− 1
for m,n 6= 0. (4.59)

In a similar way as in the qubit case, this choice of coefficients is not optimal
when considering two-way reconciliation protocols, as shown in the next
lines.

4.4.1 Security Bounds

Having introduced the details of the protocols for arbitrary d, we only have
to substitute the expression of the coefficients into the derived security con-
dition. Because of the symmetries of the problem, all disturbances Dj and
overlaps 〈em,m|e0,0〉 are equal, which means that the security condition sim-
ply reads

|〈em,m|e0,0〉|2 >
D

(d− 1)F
. (4.60)

After patient algebra, one obtains the following security bounds:
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Distillable entanglement

Security against individual attacks

?

Figure 4.5: Comparison of the security bounds and the entanglement condi-
tion. The security condition against collective attacks requires stronger cor-
relation than the entanglement limit. Again, there may exist some entangled
states that are useless for key distillation with the considered techniques.

1. For (d + 1)-bases protocol, positive key rate is possible if

D <
(d− 1)(2d + 1−√5)

2(d2 + d− 1)
(4.61)

The critical QBER for the 6-state protocol, 27.6%, is easily recovered
by taking d = 2. Recently, Chau has derived a general security proof
for the same protocols in Ref. [23]. Our critical values are the same
as in his work.

2. For the 2-bases protocol, the critical disturbances D are

D <
(d− 1)(4d− 1−√4d + 1)

2d(4d− 3)
(4.62)

The optimal attack, in the sense of minimizing the critical error rate,
is always obtained for y = 0, see (4.57). The critical QBER for the
BB84 protocol is recovered when d = 2. These values coincide with
those obtained in [74] for 2-bases protocols.

Once again, there exists a gap between this security condition and the
entanglement limit. For instance, in the case of d + 1-bases protocols, the
entanglement limit coincides with the security condition against individual
attacks [1]

|〈ek,k|el,l〉| > D

(d− 1)F
,

which looks very similar to (4.60). Thus, there exists again weakly entan-
gling channel where we are unable to establish a secure key using a prepare
and measure scheme.

4.4.2 Proof of Tightness

Finally, for these protocols, and because of the symmetries, we are able to
prove the tightness of the derived security condition, under the considered
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reconciliation techniques. The goal is to show that the probability distri-
bution P (sA, sB, (sA, sE)), resulting from the attack described in section
4.3.2, cannot be distilled using one-way communication from Alice to Bob
(the same can be proven if the communication goes from Bob to Alice by
reversing the role of these parties).

In order to do that, we proceed as in the case of qubits. Alice-Bob’s
probability distribution is very simple: with probability F their symbols
agree, with probability Dj = D/(d − 1) they differ by j. After CAD on
blocks of N symbols, the new fidelity between Alice and Bob is

FN =
FN

FN + (d− 1)
(

D
d−1

)N
. (4.63)

One can see that, again, Eve’s error probability in guessing Alice’s symbol
is larger when there are no errors between the honest parties. As in the
qubit case, Eve worsens her guesses by adding randomness in all these cases
and forgets rE . After this process, she guesses correctly Alice’s symbol with
probability, see Eq. (4.52),

P success
eq (N) =

1
d2




√
1 + (d− 1)

(
v − x

F

)N

+ (d− 1)

√
1 +

(
v − x

F

)N



2

, (4.64)

independently of Bob’s symbols. Here we used the fact that 〈em,m|e0,0〉 =
(v − x)/F when m 6= 0 for the analyzed protocols.

After Eve’s transformation, the one-way distillability properties of the
final tripartite probability distribution are simply governed by the errors, as
in the qubit case. Thus, we want to prove that at the point where the security
condition is no longer satisfied, i.e. when ((v− x)/F )2 = D/((d− 1)F ), one
has

P success
eq (N) > FN , (4.65)

for any block size N . Define t2 = D/((d − 1)F ), where 0 ≤ t ≤ 1 because
F > 1/D. What we want to prove can also be written as, see Eqs. (4.63)
and (4.64),

(√
1 + (d− 1)tN + (d− 1)

√
1 + tN

d

)2

>
1

1 + (d− 1)t2N
, (4.66)

for all N and all d, where 0 ≤ t ≤ 1. Actually, using that 0 ≤ t ≤ 1, it
suffices to prove the case N = 1, since all the remaining cases will follow by
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replacing tN → t and using the condition for N = 1. After patient algebra,
one can show that (4.66) is satisfied for N = 1, which finishes the proof.
Therefore, for the considered protocols, the attack introduced above breaks
the security whenever our security condition does not hold. Therefore, this
condition is tight for the considered reconciliation techniques.

4.5 Conclusion

In this Chapter, we provide a general formalism for the security analysis of
prepare and measure schemes, using standard advantage distillation followed
by one-way communication techniques. The main tools used in this formal-
ism are the de Finetti argument introduced by Renner and known bounds
on the key rate. We derive a simple sufficient condition for general security
in the important case of qubit Pauli channels. By providing a specific at-
tack, we prove that the derived condition is tight. When applied to standard
protocols, such as BB84 and six-state, our condition gives the critical error
rates previously obtained by Chau. Since our condition is tight, these crit-
ical error rates cannot be improved unless another reconciliation technique
is employed. Here, most of our analysis focus on conditions for security.
However, the same techniques can be used to compute key rates. Actually,
our results imply that the critical error rates of 20% ad 27.6% for the BB84
and six-state protocols can be reached without any pre-processing by Alice,
contrary to previous derivations by Chau [22] or Renner [78]. The rates we
obtain, then, are significantly larger. We then extend the analysis to ar-
bitrary dimension and generalized Bell diagonal states. The corresponding
security condition can be applied to obtain critical error rates for the 2- and
d + 1-bases protocols. For these protocols, we can also prove the tightness
of the condition.

We explore several possibilities to improve the obtained security bounds.
As shown here, pre-processing by Alice or a coherent version of distillation
by Bob do not provide any improvement. This is of course far from being an
exhaustive analysis of all possibilities, but it suggests that it may be hard,
if not impossible, to get the entanglement limit by a prepare and measure
scheme. In our opinion, this is the main open question that naturally follows
from our analysis. The easiest way of illustrating this problem is by consid-
ering the simple qubit depolarizing channel of depolarizing probability 1−p.
This is a channel where the input state is unchanged with probability p and
map into completely depolarized noise with probability 1 − p. The corre-
sponding state is a two-qubit Werner state. When p = 1/3, the channel is
entanglement breaking, that is, it does not allow to distribute entanglement,
so it is useless for any form of QKD. As shown here, the same channel can
be used to QKD using a prepare and measure scheme when p > 1/

√
5. Triv-

ially, the entanglement limit can be reached if one allows coherent protocols
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by the two parties, such as entanglement distillation. However, is there a
prepare and measure scheme with positive key rate for 1/3 ≤ p < 1/

√
5?



Chapter 5

Key Distillation with
Continuous Variable States

Since quantum teleportation was experimentally implemented using a twom-
ode squeezed state, a significant amount of work has been devoted to develop
a quantum information theory of continuous variable systems [36]. Quan-
tum cryptography has also been successfully translated into the Gaussian
regime. Gottesman and Preskill proposed to use squeezed states and ho-
modyne measurements in a prepare & measure scheme [44]. Actually, no
squeezing is required, since coherent states are already sufficient for a se-
cure key distribution with Gaussian operations [46, 59]. The experimental
implementation of a coherent-state protocol has been recently realized in
[48]. In these systems, Gaussian states and Gaussian operations play the
key role, since they naturally appear in experiments. Moreover, their the-
oretical analysis can be simplified due to the fact that only two quantities,
displacement vectors and covariance matrices, can express all properties of
Gaussian states.

We denote here these Gaussian Local Operations and Classical Commu-
nication as GLOCC. A negative result in GLOCC scenarios is, differently
from finite dimensional quantum systems, that Gaussian states cannot be
distilled by Gaussian operations. This can be a significant drawback in
GLOCC scenarios, contrast to its remarkable experimental feasibility. How-
ever, these states may still be useful for cryptographic applications, as a
secret key being extracted.

In this Chapter1, we analyze the secrecy properties of Gaussian states
under Gaussian operations2. We adapt the SIMCAP protocol to the realistic
Gaussian scenario, in which Alice and Bob measure their shared entangled
Gaussian state by Gaussian operations at the single-copy level and process

1The result of this Chapter is based on the publication [72]
2A similar scenario has been considered by J. Eisert and M. Plenio (unpublished).
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the obtained classical results3. This type of protocols can easily be translated
to prepare & measure schemes. As is done in cases of discrete variables, we
here obtain security bounds for key distillation from Gaussian states by
Gaussian operations. First, we study the security of our protocol against
individual attacks, in which all NPPT Gaussian states are shown to be useful
in key distillation. Then, we consider the the general security condition,
which implies that, as is the case of discrete variables, the protocol ceases
to work for some NPPT states.

5.1 Adaptation to the Realistic Protocol

Here we describe how Alice and Bob can distill a secret key from an n×m
Gaussian state by Gaussian operations, adapting the SIMCAP protocols
in Chapter 4 to the Gaussian scenario. Any NPPT Gaussian state of n +
m modes can be mapped by GLOCC into an NPPT 1 × 1 Gaussian and
symmetric state [37], whose CM, see Eq. (2.6), is

γA = γB =
(

λ 0
0 λ

)
C =

(
cx 0
0 −cp

)
(5.1)

where λ ≥ 0 and cx ≥ cp ≥ 0. The condition that this is physical, i.e. ρ > 0,
reads λ2 − cxcp − 1 ≥ λ(cx − cp) while the entanglement (NPPT) condition
gives

λ2 + cxcp − 1 < λ(cx + cp). (5.2)

Since all the NPPT Gaussian states can be mapped into symmetric and
entangled states of two modes by GLOCC, we restrict our analysis to this
type of states. In equivalent terms, one can think that the first step in the key
distillation protocol is the GLOCC transformation of [37] that transforms
any NPPT state into an entangled state of this family. Then, both parties
measure the X quadrature, where XA and XB denote the measured operator
and xA and xB the obtained outcome. After communication, they only
accept those cases where |xA| = |xB| = x0. Each party associates the
logical bit 0 (1) to a positive (negative) result with the probability p (i, j),
with i, j = 0, 1. This process transforms the quantum state into a list of
correlated classical bits between Alice and Bob. Their error probability, that
is the probability that their symbols do not coincide, is given by

εAB =

∑
i6=j p (i, j)∑
i,j p (i, j)

=
1

1 + exp
(

4cxx2
0

λ2−c2x

) . (5.3)

Then Alice and Bob proceed the CAD to establish a secret key.
3As for the entanglement distillability scenario, we assume that Alice and Bob share a

known Gaussian state.
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Figure 5.1: Security analysis of symmetric 1 × 1 Gaussian states when
cx = cp = c. All physical states are above the lowest line. The highest
line defines the entanglement limit, that coincides with the security bound
against individual attacks. States below the line in the middle are secure
against any attack. This general security condition is stronger than entan-
glement limit, which may imply the existence of entangled Gaussian states
from which no secret key can be distilled.

5.2 Security Bounds

The information that Eve can obtain during the protocol is computed from
her purifying the state shared by Alice and Bob. In the Gaussian regime,
as we is done in the previous chapter, all the environment, all the degrees
of freedom outside Alice and Bob’s systems are assumed to be accessible
to Eve. Then the global state including Eve is pure |ΨABE〉 such that
trE(|ΨABE〉〈ΨABE |) = ρAB. Note that the global state is specified by the
local state ρAB, up to a unitary operation on Eves system. Thus, from Eves
point of view, all the purifications are equivalent. Denote by |e±±〉 Eve’s
states when Alice and Bob have projected onto | ± x0〉.

Individial attacks

As discussed in Chapter 3, individual attacks are most relevant with realistic
eavesdroppers. For the case of individual attacks, it was shown in [2] that
Eve’s error in the estimation of the final bit b is bounded from below by a
term proportional to |〈e++|e−−〉|N . Therefore, Alice and Bob can establish
a key if

εAB

1− εAB
< |〈e++|e−−〉|. (5.4)
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More precisely, if this condition is fulfilled, there is always a finite N such
that the new list of symbols can be distilled into a secret key using one-way
protocols [27].

From Eq. (2.7), one can compute the global pure state including Eve.
Note that taking the Gaussian purification does not imply any loss of gener-
ality on Eve’s individual attack, since all the purifications are equivalent up
to a unitary operation on Eve’s space. After projecting on | ± x0〉, Eve has
a Gaussian state of two modes, with the CM and DV for the states |e±±〉
given by

d++ = −
√

λ2 + λ(cx − cp)− cxcp − 1
λ + cx

(0, 0, x0, x0)

γ++ =
(

γx 0
0 γ−1

x

)
γx =

(
λ cx

cx λ

)
, (5.5)

while γ−− = γ++ and d−− = −d++. Now, the overlap between these two
states is given by

|〈e++|e−−〉|2 = exp
(
−4(λ2 + λ(cx − cp)− cxcp − 1)x2

0

λ + cx

)
. (5.6)

Substituting Eqs. (5.3) and (5.6) in (5.4) one can check, after some algebra,
that this condition is equivalent to the entanglement condition of (5.2). That
is, all the distillable (NPPT) Gaussian states allow a secure key distribution
under individual attacks using Gaussian operations. Moreover, the limits
for NPPT entanglement and key distillation also coincide if Eve measures in
a coherent way a finite number NE ¿ N of states before the reconciliation
process4. Interestingly, these limits hold for any x0, and measurements of
arbitrary resolution 5.

General security

A more powerful Eve is no longer restricted to individual attacks. Indeed,
the most powerful Eve could wait until the end of the advantage distilla-
tion protocol and measure in a coherent way all her N symbols. One can
see that the corresponding security condition is similar to Eq. (5.4), but
replacing Eve’s states overlap by its square, as is shown in (4.17) of Chapter
4. This new inequality is violated by some NPPT states (see figure 5.1).
Note that this only implies that the analyzed protocol is not good for these
states in this more general scenario. That is, these states may be useful for
cryptographic purposes using another protocol.

4Similarly as in Ref. [2], one can prove that Eq. (5.4) again defines the security
condition for finite size attacks.

5Although this only happens with zero probability, one can include finite widths dxA =
dxB = dx for Alice and Bobs outcomes. For small widths, all our conclusions hold by
continuity and the modified protocol has finite key rate.



5.3. Discussion 99

5.3 Discussion

One can envisage different ways of improving the previous security analysis,
e.g. finding better measurements for Alice and Bob or new ways of process-
ing their measurement outcomes. A more interesting possibility consists of
allowing the honest parties to manipulate in a coherent way several copies
of their local states. Actually, the full general study of distilling a secret
key from Gaussian states by Gaussian operations should deal with joint (al-
though local and Gaussian) operations by Alice and Bob. This defines a
new type of Gaussian quantum privacy amplification protocols [30] differ-
ent from entanglement distillability where Alice and Bob’s goal is simply to
factor Eve out [38].

A related open question that deserves further investigation is whether
secret bits can be extracted from PPT Gaussian states, i.e. strict bound
entangled states (cf. [56]). Our scheme does not work for all PPT Gaussian
states, which was shown in Ref [73].

5.4 Conclusion

Quantum and classical distillation protocols are two techniques that allow
to extract secret bits from entangled states. A schematic comparison be-
tween them is shown in figure 3.2. In finite systems, there are examples of
non-distillable quantum states for which the classical distillation is possible
[56]. Moving to continuous variables systems and the Gaussian scenario, dis-
tillation techniques with Gaussian operations are useless for key-agreement
[38, 33]. Our analysis proves that distilling a secret key is still useful for
(i) all NPPT states under individual attacks and (ii) sufficiently entangled
NPPT states under general attacks.





Chapter 6

Equivalence Between
Asymptotic Quantum
Cloning and State
Estimation

In this Chapter1, we prove the conjectured equivalence between asymptotic
quantum cloning and state estimation. We show that the fidelities of optimal
asymptotic cloning and of state estimation are equal for any initial ensem-
ble of pure states [5]. Actually, we prove the stronger result that asymptotic
cloning does effectively correspond to state estimation, from which the equal-
ity of the two fidelities automatically follows. The proof of this equivalence is
based on two known results of quantum information theory: the monogamy
of quantum correlations and the properties of the so-called entanglement
breaking channels (EBC).

6.1 State Estimation and Quantum Cloning

The fact that state estimation is in general imperfect leads in a natural way
to the problem of building optimal measurements. Being a perfect recon-
struction impossible, it is relevant to find the measurement strategy that
maximizes the gain of information about the unknown state. A standard
approach to this problem in quantum information theory is to quantify the
quality of a measurement by means of the so-called fidelity [68]. This quan-
tity is defined as follows. Consider the situation in which a quantum state
|ψ〉 is chosen from the ensemble {pi, |ψi〉}, i.e. |ψ〉 can be equal to |ψi〉 with
probability pi. A measurement, defined by NM positive operators, Mj ≥ 0,
summing up to the identity,

∑
j Mj = 11, is applied on this unknown state.

1The result of this Chapter is based on the publication [5]

101



102
CHAPTER 6. EQUIVALENCE BETWEEN ASYMPTOTIC

QUANTUM CLONING AND STATE ESTIMATION

For each obtained outcome j, a guess |φj〉 for the input state is made. The
overlap between the guessed state and the input state, |〈ψi|φj〉|2, quantifies
the quality of the estimation process. The averaged fidelity of the measure-
ment then reads

F̄M =
∑

i,j

pi tr(Mj |ψi〉〈ψi|) |〈ψi|φj〉|2. (6.1)

A measurement is optimal according to the fidelity criterion when it provides
the largest possible value of F̄M , denoted in what follows by FM .

The No-cloning theorem [92], one of the cornerstones of quantum infor-
mation theory [79], represents another known consequence of the nonorthog-
onality of quantum states. It proves that given a quantum system in an un-
known state |ψ〉, it is impossible to design a device producing two identical
copies, |ψ〉|ψ〉. Indeed, two nonorthogonal quantum states suffice to prove
the no-cloning theorem.

As it happens for state estimation, the impossibility of perfect cloning
leads to the characterization of optimal cloning machines [19]. In this case,
one looks for the quantum map ÃL that, given a state |ψ〉 chosen from an
ensemble {pi, |ψi〉} in Cd, produces a state ÃL(ψ) = ρC1...CN

in (Cd)⊗N , such
that each individual clone ρCk

= trk̄(ρC1...CN
) resembles as much as possible

the input state. Here k̄ denotes the complement of k, so trk̄ is the trace with
respect to all the systems Ci but Ck. The average fidelity of the cloning
process is then

F̄C(N) =
∑

i,k

pi
1
N
〈ψi|trk̄ ÃL(ψi)|ψi〉. (6.2)

The goal of the optimal machine is to maximize this quantity, this optimal
value being denoted by FC(N).

As we have discussed in Chapter 2, the no-cloning theorem and the
impossibility of perfect state estimation are closely related. The connection
between state estimation and cloning was strengthened from the results in
Ref. [39, 15] that asymptotic cloning, i.e. the optimal cloning process when
N →∞, is equivalent to state estimation, in the sense that, for any ensemble
of states,

FC = FC(N →∞) = FM . (6.3)

Actually, this equality was proven for the case of universal cloning [15],
and for phase covariant qubit cloning [17]. Since then, the validity of this
equality for any ensemble has been identified as one of the open problems
in quantum information theory [57].

6.2 The importance of Correlations

In the conjecture, the trivial part is that FM ≤ FC . Indeed, given the
initial state |ψ〉, a possible asymptotic cloning map, not necessarily opti-
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mal, consists of first applying state estimation and then preparing infinite
copies of the guessed state. It is sometimes said that the opposite has to
be true since “asymptotic cloning cannot represent a way of circumventing
optimal state estimation”. As already mentioned in [57], this reasoning is
too naive, since it neglects the role correlations play in state estimation. For
instance, take the simplest case of universal cloning of a qubit, i.e. a state
in C2 isotropically distributed over the Bloch sphere. The optimal cloning
machines produces N approximate clones pointing in the same direction in
the Bloch sphere as the input state, but with a shrunk Bloch vector [62].
If the output of the asymptotic cloning machine was in a product form, it
would be possible to perfectly estimate the direction of the local Bloch vec-
tor, whatever the shrinking was. Then, a perfect estimation of the initial
state would be possible. And of course, after the perfect estimation one
could prepare an infinite number of perfect clones. This simple reasoning
shows that the correlations between the clones play an important role in
the discussion. Actually, it has recently been shown that the correlations
present in the output of the universal cloning machine are the worst for the
estimation of the reduced density matrix [29].

6.3 Monogamy of Entanglement and Entanglement-
breaking Channels

As announced, the proof of the conjecture is based on two known results
of quantum information theory: the monogamy of entanglement and the
properties of EBC. For the sake of completeness, we state here these results,
without proof.

Quantum correlations, or entanglement, represent a monogamous re-
source, in the sense that they cannot be arbitrarily shared. One of the
strongest results in this direction was obtained by Werner in 1989 [89].
There, it was shown that the only states that can be arbitrarily shared are
the separable ones. Recall that a bipartite quantum state ρAC in Cd⊗Cd is
said to be N -shareable when it is possible to find a quantum state ρAC1...CN

in Cd ⊗ (Cd)⊗N such that ρACk
= trk̄ρAC1...CN

= ρAC , ∀k. The state
ρAC1...CN

is then said to be an N -extension of ρAC . The initial correla-
tions between subsystems A and C are now shared between A and each of
the N subsystems Ci, see Fig. 6.1. It is straightforward to see that

ρAC1...CN
=

∑

i

qi|αi〉〈αi| ⊗ |γi〉〈γi|⊗N (6.4)

gives a valid N -extension of a separable state ρs
AC =

∑
i qi|αi〉〈αi| ⊗ |γi〉〈γi|

for all N . As proven by Werner, if a state ρAC is entangled, there exists a
finite number N(ρAC) such that no valid extension can be found.
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Figure 6.1: The state ρAC is said to be N -shareable when there exists a
global state ρAC1...CN

such that the local state shared between A and Ci is
equal to ρAC , for all i.

The second ingredient needed in what follows are the properties of EBC.
A channel Υ is said to be entanglement breaking when it cannot be used
to distribute entanglement. In Ref. [55] it was proven that the following
three statements are equivalent: (1) Υ is entanglement breaking, (2) Υ can
be written in the form

Υ(ρ) =
∑

j

tr(Mjρ)ρj , (6.5)

where ρj are quantum states and {Mj} defines a measurement and (3)
(11 ⊗ Υ)|Φ+〉 is a separable state, where |Φ+〉 =

∑
i |ii〉/

√
d is a maximally

entangled state in Cd ⊗ Cd. The equivalence of (1) and (2) simply means
that any EBC can be understood as the measurement of the input state,
ρ, followed by the preparation of a new state ρj depending on the obtained
outcome. The equivalence of (1) and (3) reflects that the intuitive strategy
for entanglement distribution where half of a maximally entangled state is
sent through the channel is enough to detect if Υ is entanglement breaking.

6.4 Asymptotic Cloning Is State Estimation

After collecting all these results, we are now ready to prove the following
Theorem: Asymptotic cloning corresponds to state estimation. Thus,

FM = FC for any ensemble of states.
Proof: First of all, note that, for any number of clones, we can restrict

our considerations to symmetric cloning machines, ÃLs
N , where the N clones

are all in the same state. Indeed, given a machine where this is not the
case, one can construct a symmetric machine achieving the same fidelity
FC(N), just by making a convex combination of all the permutations of the
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N clones2. Now, denote by ÃLc
N the effective cloning map consisting of, first,

the application of a symmetric machine ÃLs
N and then tracing all but one of

the clones, say the first one. The N -cloning problem can be rephrased as,
see Eq. (6.2),

max
ÃLc

N

∑

i

pi〈ψi|ÃLc
N (ψi)|ψi〉. (6.6)

Note that this maximization runs over all channels that can be written as
ÃLc

N = tr1̄ ÃL
s
N . For instance, the identity map, where ψ → ψ, ∀ψ, does not

satisfy this constraint. Denote by LN the set of these channels. These are
convex sets such that LN ⊇ LN+1 ⊇ . . . ⊇ L∞. The key point of the proof is
to show that all the channels in L∞, and therefore all the channels associated
to asymptotic cloning machines, are EBC. To prove this result we proceed
by contradiction.

First, note that any EBC belongs to L∞. Assume now there is a channel
ÃLc
∞ ∈ L∞ which is not EBC, i.e. such that the state

ρAC = (11⊗ ÃLc
∞)|Φ+〉 (6.7)

is entangled. Since LN ⊇ L∞ for all N , ÃLc
∞ is an element of all these sets.

Thus, for any finite N , there exists a symmetric channel ÃLs
N such that

ρAC1...CN
= (11⊗ ÃLs

N )|Φ+〉. (6.8)

is a valid N -extension of the entangled state ρAC of Eq. (6.7). But this is
in contradiction with the non-shareability of entangled states. Thus, all the
channels in L∞ have to be EBC. Since any EBC can be seen as measurement
followed by state preparation, asymptotic quantum cloning, i.e. Eq. (6.6)
in the limit N →∞, can be written as3

max
{Mj ,φj}

∑

i,j

pi tr(Mj |ψi〉〈ψi|) |〈ψi|φj〉|2, (6.9)

which defines the optimal state estimation problem. Therefore, FM = FC

for any ensemble of states. ¤
The same argument applies to the case in which K copies of the initial

state |ψ〉 are given. The measurement and cloning fidelities now read, see
Eqs. (6.1) and (6.2),

F̄M (L) =
∑

i,j

pi tr(Mj |ψi〉〈ψi|⊗K) |〈ψi|φj〉|2

F̄C(N, K) =
∑

i,k

pi
1
N
〈ψi|trk̄ ÃL(ψ⊗K

i )|ψi〉. (6.10)

2Notice that this does not mean that the output of the cloning machine lives in the
symmetric subspace.

3We can already restrict the guessed states to be pure, without any loss of optimality.



106
CHAPTER 6. EQUIVALENCE BETWEEN ASYMPTOTIC

QUANTUM CLONING AND STATE ESTIMATION

Using the same ideas as in the previous Theorem, it is straightforward to
prove that

FM (K) = FC(N →∞,K), (6.11)

where FM (K) and FC(N, K) denote the optimal values of F̄M (K) and
F̄C(N, K), as above.

6.5 Asymmetric Scenario

One can also extend this result to asymmetric scenarios. An asymmetric
cloning machine [75] produces NA clones of fidelity FC(NA) and NB clones
of fidelity FC(NB) of a state chosen from an ensemble {pi, |ψi〉}, the total
number of clones being N = NA+NB. The machine is optimal when it gives
the largest FC(NA) for fixed FC(NB). Extending the previous formalism,
this optimal fidelity is then

FC(NA) = max
ÃLNA,NB

∑

i

pi〈ψi|tr1̄ ÃLNA,NB
(ψi)|ψi〉, (6.12)

where the maximization now runs over all maps Cd → (Cd)⊗N , symmetric
under permutation among the first NA clones or among the NB clones, and
such that ∑

i

pi〈ψi|trN̄ ÃLNA,NB
(ψi)|ψi〉 = FC(NB). (6.13)

In the case of measurement, we are thinking of measurement strategies
where the goal is to obtain information on an unknown state introducing the
minimal disturbance. As above, we consider that a guess |φj〉 for the input
state is done depending on the measurement outcome j. The information
vs disturbance trade-off can be expressed in terms of fidelities [7]: the infor-
mation gain is given by the overlap, G, between the initial and the guessed
state, while the disturbance is quantified by the overlap, F , between the
state after the measurement and the initial state. The whole process can be
seen as a global map M transforming the initial state into two approximate
copies of it: the state left after the measurement and the guessed state.
A measurement is optimal when for fixed gain, G, it provides the minimal
disturbance, i.e. the largest overlap F . So, the goal is to solve

max
M

∑

i

pi 〈ψi|tr2M(ψi)|ψi〉, (6.14)

where the maximization is over all channels M such that tr1M defines an
EBC (6.5) with ρj = |φj〉〈φj |4 and

∑
i pi 〈ψi|tr1M(ψi)|ψi〉 = G. The optimal

trade-off between F and G is only known for the case in which the input
ensemble consists of any pure state in Cd with uniform probability [7].

4We can already restrict the guessed states to be pure, without any loss of optimality.
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As it happens for the symmetric case, a connection between this state
estimation problem and asymmetric cloning machines can be expected when
NA = 1 and NB →∞. Note that the previous measurement strategy gives
a possible realization of an asymmetric cloning machine, not necessarily op-
timal, when NB identical copies of the guessed state are prepared. In other
words, if G = FC(NB), then F ≤ FC(NA). Actually, this connection is
indeed true for the particular case in which the input state is any pure state
in C2, isotropically distributed on the Bloch sphere: the optimal measure-
ment strategy of [7] turns out to saturate the optimal cloning 1 → NA +NB

fidelities of [60], when NA = 1 and NB →∞. Now, the equality between the
measurement and asymptotic cloning fidelities in the asymmetric scenario
can be proven in full generality exploiting the same arguments as above. Us-
ing the monogamy of entangled states, one can see that the channels (6.13),
defining the NB → ∞ clones, must be EBC. This means that the set of
maps ÃL1,NB

and M corresponding to asymmetric 1 → 1 + NB cloning ma-
chines and asymmetric measurement strategies, see Eqs. (6.12) and (6.14),
coincide when NB →∞. Therefore, the two corresponding fidelities have to
be equal.

6.6 Discussion

To conclude, we have proved the long-standing conjecture on the equivalence
between asymptotic cloning and state estimation. Our result represents the
strongest link between these two fundamental no-go theorems of quantum
theory, namely the impossibilities of perfect cloning and state estimation.

From a fundamental point of view, it would be interesting to extend
these findings to more general theories. There exist several works relating
the impossibility of perfect cloning to the no-signaling principle, e.g. [40].
Recently, a form of no-cloning theorem has been derived just from the no-
signaling principle, without invoking any additional quantum feature [67].
In view of the strong connection between cloning and state estimation, one
could wonder whether a similar link could also be established between the no-
signaling principle and the impossibility of perfect state estimation, without
exploiting any intrinsically quantum property such as nonorthogonality.





Chapter 7

Outlook

The present thesis studies different problems on the role of entanglement in
QKD scenarios, from a new security analysis of quantum channels for QKD
to the proof of equivalence between asymptotic cloning and state estima-
tion. We would like to conclude by mentioning several open problems that
naturally follow from the derived results.

First, the results of chapters 4 and 5 suggest the existence of entangled
states from which no secret key can be distilled using realistic protocols.
These bipartite states would have a sort of bound secrecy under SIMCAP
protocols. Note however that some of these states are entanglement distil-
lable. This also means that a secret key can be extracted out of it, simply
using entanglement distillation followed by measurements. The secrecy of
these states would then be distillable only if Alice and Bob are allowed to
use coherent operations, but becomes bound when they are restricted to
SIMCAP protocols. The existence of the gap seems plausible due to the
fact that Alice and Bob are less powerful than Eve. Interestingly, some of
these states become again key-distillable when Eve, as well as Alice and
Bob, is assumed to apply single-copy measurements. This is, for instance,
the case for individual attacks.

More in general, this type of problems is connected to the broader ques-
tion of identifying those entangled states from which secret bits can be dis-
tilled. Recently, Horodecki et al. have proven in Ref. [56] the existence of
bound entangled states from which Alice and Bob can extract a secret key.
This implies that key distillability is weaker than entanglement distillability.
Then, are all entangled states key distillable? If yes, do they remain key
distillable when Alice and Bob are restricted to incoherent operations?

Second, the thesis has proven that asymptotic cloning is equivalent to
state estimation. The proof is simple and based on two known results in
quantum information theory, the monogamy of entangled states and the
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Separable states

NPT-entangled states

Secret Key

Impossible !

Possible ?

Possible ?

PPT-entangled states

Figure 7.1: The characterization of those quantum states from which a secret
key can be distilled represents a challenging open problem in Quantum In-
formation Theory. The same question is also interesting assuming a realistic
scenarios, where Alice and Bob apply SIMCAP protocols.

properties of entanglement-breaking channels. Our results imply that the
fidelities FC of quantum cloning converges to FM , the fidelity of state esti-
mation, in the limit of an infinite number of clones, N →∞. It is interesting
to study this convergence with the number of copies, that is, how fast quan-
tum cloning becomes equivalent to state estimation. First results in this
direction have recently been obtained in Ref. [24].



Appendix A

Quantum Theory in a
nutshell for quantum
information theory

Quantum theory describes the physics of microscopic systems. Quantum
theory formalism is grounded on algebras of hermitian operators, that de-
fine non-commuting observables. In what follows we introduce the basic
mathematical structure employed in the quantum formalism.

A.1 Quantum States

Quantum states can usually be of two kinds, pure or mixed. A pure quantum
state is represented as a ray in a Hilbert space. Given a Hilbert space H, a
quantum state is a vector in the space satisfying the following equivalence
relation: |ψ〉 ∼ |φ〉 if and only if there exists a phase eiθ, θ ∈ [0, 2π), such that
|ψ〉 = eiθ|φ〉. A quantum state |ψ〉 can also be thought of as a superposition
of some other states {|ψi〉} as follows

|ψ〉 =
∑

i

√
pi|ψi〉,

where pi is the probability that the system is found in the state |ψi〉. Ex-
plicitly the probability reads pi = |〈ψ|ψi〉|2. Since probabilities have to sum
up to one, the state is normalized under the inner product of the Hilbert
space:

‖|ψ〉‖ =
√
〈ψ|ψ〉 = 1.

When considering a realistic situation, pure quantum states are hard
(impossible) to prepare, since a quantum system is very susceptible to envi-
ronment. In order to prepare a quantum system in a pure state, the system

111



112
APPENDIX A. QUANTUM THEORY IN A NUTSHELL FOR

QUANTUM INFORMATION THEORY

must be decoupled from any interaction with environment. Instead, any
quantum state that raises in experiments results from interaction with en-
vironment. It is transformed into a mixed state, a probabilistic mixture of
pure states.

There are two equivalent ways of interpreting mixed states. One is based
on a decoherence point of view, taking into account an interaction with
the environment. Suppose that a system is initially decoupled from the
environment, and is in a pure state |ψ〉S |0〉E . After interacting with the
environment, the system evolves into a state |ΨS+E〉, that is a pure state
over system plus environment. The system alone is in a mixed state

ρS = trE |ΨS+E〉〈ΨS+E |.

Here the partial trace operation is applied to sum over the degrees of freedom
of the environment and look at the system state.

Definition 8 (Partial trace) The partial trace, denoted by trE [ρS+E ] of
a state ρS+E of a system plus an environment, is an operation to discard
the environment part. If |ek〉 is a basis for the environment and ρS+E =
|Ψ〉SE〈Ψ| where |Ψ〉SE =

∑
i

√
pi|ψi〉S |ei〉E, the partial trace fulfills

trE [ρS+E ] =
∑

k

〈ek|Ψ〉SE〈Ψ|ek〉 =
∑

i

pi|ψi〉〈ψi|. (A.1)

If a system has experienced an interaction with environment, then the re-
sulting state becomes a classical mixture of other quantum states as shown
in (A.1).

This gives the second interpretation of a mixed state, as an imperfect
preparation: if a system is prepared in a state |ψi〉 with probabilities pi, the
resulting state is again the classical mixture of quantum states, explicitly

ρ =
∑

i

pi|ψi〉〈ψi|. (A.2)

Both descriptions of mixed states are of course equivalent.
Given a mixed state, one can always find a pure state over an extended

Hilbert space in such a way that the mixed state is recovered after tracing
the environment. The global pure state is called purification.

Definition 9 (Purification) When the system is in a mixed state ρS, there
exists a pure state |Ψ〉SE such that

ρS = trE |Ψ〉SE〈Ψ|.

The purified quantum state |Ψ〉SE is unique up to local unitary operators on
the environment.
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Figure A.1: A single qubit can be represented the a Bloch sphere. A pure
state corresponds to a point on the surface of the sphere, and a mixed state
resides inside the sphere. A mixed state ρ can be expressed as a mixture of
|ψ1〉 and |ψ2〉 or equivalently |φ1〉 and |φ2〉.

For instance, a purification of a mixed state ρ in (A.2) can be

|ψ〉 =
∑

i

√
pi|ψi〉|i〉

with orthonormal basis |i〉 ∈ K so that ρ = trK|ψ〉〈ψ|. A mixed state does
not have a unique decomposition. If a mixed state is written as a convex
combination of |vj〉 with probabilities pj , there can be another states |wj〉
with different probabilities qj , i.e.

ρ =
n∑

j=1

pj |vj〉〈vj | =
m∑

j=1

qj |wj〉〈wj |.

In this case, there exists a transformation M from |vj〉 to |wj〉, that satisfies

√
qj |wj〉 =

n∑

k=1

Mkj
√

pk|vj〉.

Because of unit trace, it also satisfies that MM † = 11.
Qubit . A qubit is the abbreviated word of quantum bit, which is the

unit of quantum information. Any two-level quantum system can encode a
qubit,

|ψ〉 = a|0〉+ b|1〉,
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Here a and b are complex numbers in C2, while |0〉 and |1〉 defines a basis.
The state must be normalized, i.e. |a|2 + |b|2 = 1 and satisfy the equivalence
relation, i.e. |ψ〉 and eiθ|ψ〉 are equivalent. These conditions reduce the
degrees of freedom, and finally two parameters θ and ϕ completely describe
a qubit state as follows,

a = cos
θ

2
, b = eiϕ sin

θ

2
.

One can depict the state on a sphere of unit radius, called Bloch sphere,
where the basis |0〉 and |1〉 elements correspond to the north and south
poles of the sphere. Any point on the surface represents a pure state, and
a point inside the ball represents a mixed state. As said, the decomposition
of a mixed state is not unique, see the figure (A.1).

A.2 Quantum Operation

Quantum states evolve in time, and often this is called as the Schrodinger
picture. The ideal dynamics of quantum states is governed by unitary oper-
ators U generated by Hamiltonian H,

Ut = T exp[
∫ t

dt′H(t′)],

where T is time ordering. Unitary operators transforms a pure state into
another pure state, |ψ(t)〉 = Ut|ψ(0)〉, and they form a group with the
product, Us+t = UsUt, so that |ψ(s + t)〉 = Us|ψ(t)〉. If a mixed state is
prepared, it will be evolved by U as follows,

S : ρ(0) −→ ρ(t) = Utρ(0)U †
t .

S is called a superoperator.
The general quantum dynamics also includes non-unitary dynamics, by

which a pure state can result in a mixed state. Note that this is due to
interaction with an environment during evolution. However the global state
over the system plus environment remains pure at any time of the evolution.
This is because the whole state is governed by the unitary evolution USE .
Then, the general quantum operation reads as follows: the evolution of
the state of the system plus environment is governed by the global unitary
operation USE . The system state is recovered after the environment is traced
out. This can be expressed as follows,

S : |ψS〉〈ψS | −→ trE [USE(|ψS〉〈ψS | ⊗ |0E〉〈0E |)U †
SE ], (A.3)

where |0E〉〈0E | can be the arbitrary initial state of the environment and USE

is for both the system and environment.
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Quantum operations can be in general described with the Kraus rep-
resentation that takes into account the environment interaction. This can
be derived easily from (A.3) as follows. Let us denote the basis vectors of
environment by {|ΞK(j)〉}. The explicit expansion of (A.3) is then straight-
forward:

(A.3) =
∑

j

〈ΞK(j)|U(ρ⊗ |0K〉〈0K|)U †|ΞK(j)〉

=
∑

j

〈ΞK(j)|U |0K〉ρ(〈ΞK(j)|U |0K〉)†.

Here let us denote each operator by Vj = 〈ΞK(j)|U |0K〉 satisfying
∑

j V †
j Vj =

11, which are called the Kraus operators [65].

Collorary 1 (Kraus Representation) There exists a set of operators Vj

that describes a quantum operation Λ as follows

Λ(ρ) =
∑

j

VjρV †
j , (A.4)

satisfying
∑

j V †
j Vj = 11.

The Kraus representation gives an interpretation to quantum operation
as follows. Suppose ρ evolves to ρi which is proportional to ViρV †

i . Actually,
tr[ViρV †

i ] is the probability that the initial state ρ transforms to ρi, so is
denoted by pi. When

∑
i pi = 1, the quantum operation is called trace-

preserving. Kraus representation describes that ρ evolves to

ρi =
ViρV †

i

pi

with probability pi, and after evolution the state remains in the ensemble of
ρi, Λ(ρ) =

∑
i piρi.

Measurement

Measurement is a particular quantum operation, and in general is formal-
ized through the so-called Positive-Valued-Operator-Measure (POVM). Any
measurement apparatus can be described by POVMs, {Mα} satisfying

∑
α∈AMα =

11. Here it is identified Mα = V †
αVα. Suppose that the system is in the state

ρβ, then measurement by the POVM provides measurement outcomes α
with probability

p(α|β) = tr[Mαρβ]
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In the sense that quantum measurement provides probabilities, these general
measurements are also called as Probability-Operator-Measure(POM).

The most basic measurement strategy is the computational basis mea-
surement. Quantum states |0〉 and |1〉 are called computational basis, and
when POVM is constructed by those states, it is computational basis mea-
surement, Mα = |α〉〈α|, α = 0, 1. In high dimensions, this is naturally
extended with Mα with α = 0, · · · , d − 1. The general form of the com-
putational basis measurement is the projective measurement, where each
measurement operators are projectors

MαMβ = δα,βMα

satisfying
∑

α Mα = 11.
Measuring quantum system uncovers only a part of the full information

of the system, and also causes the state of a system to evolve to some other
state by the interaction.

Axiomatic approach

Finally, quantum state evolution in general can be understood in terms of a
mapping from quantum states to quantum states. Those mappings includes
interaction with environment and fulfills that unitarity is recovered after
extending the system into system plus environment. These mappings are
quantum operations, which mathematically can be identified exactly by the
completely positive maps [76].

Definition 10 (Completely Positive Maps) Consider a quantum state
ρ and a linear map Λ.

1. Λ is said to be positive if Λ(ρ) > 0 for all ρ.

2. Λ is said to be k-positive if (Λ⊗ idk), where idk is the identity operator
over k-dimensional Hilbert space, is positive. The map is said to be
completely positive if (Λ⊗ idk) is positive for all k.

3. Λ is said to be trace-preserving if trΛ(ρ) = 1.

4. Λ is said to be unital if Λ(11) = 11.

Each completely positive map corresponds to a quantum operation, and
vice versa. This can be seen clear by the following Stinespring dilation the-
orem [84].
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Theorem 8 (Stinespring dilation theorem) For every completely pos-
itive map Λ, there exist a finite dimensional Hilbert space K and a suitable
unitary operation U such that

Λ(ρ) = trK[U(ρ⊗ |0K〉〈0K|)U †] (A.5)

for any quantum state ρ.

The theorem gives a tool to study quantum operation: adding an an-
cillary space K and knowing the whole unitary evolution U , a quantum
evolution can be completely described.

Alternative to the Schrodinger picture, quantum dynamics can also be
seen in the view of observables, which is often called as Heisenberg picture.
It is the dual mapping of quantum operation from bounded operators over
H2 to bounded operators over H1, i.e. Λ∗ : B(H2) −→ B(H1), while keep-
ing quantum states constant. Two pictures are constrained by the duality
relation, for any observable O ∈ B(H2)

tr[Λ(ρ)O] = tr[ρΛ∗(O)],

so that both Schrodinger and Heisenberg pictures equivalently describe quan-
tum dynamics. The relationship between Λ and Λ∗ is summarized as:

1. Λ is linear ⇐⇒ Λ∗ is linear

2. Λ is completely positive ⇐⇒ Λ∗ is completely positive

3. Λ is trace-preserving ⇐⇒ Λ∗ is unital





Appendix B

Cloning Based Attacks

Asymmetric cloning machines have been proven to be a useful tool in the
study of optimal eavesdropping attacks. In a cryptographic scenario, the
input state to the cloning machine is the one sent by Alice, while one of the
outputs is forwarded by Eve to Bob, keeping the rest of the output state. For
instance, in the BB84 case, where Alice uses states from the x and z bases,
the optimal eavesdropping attack is done by a 1 → 1 + 1 phase-covariant
cloning machine [17] that clones the xz equator. The output states for Bob
and Eve are

ρB =
1
2
(I + ηB

xz(n
B
x σx + nB

z σz) + ηB
y nB

y σy)

ρE =
1
2
(I + ηE

xz(n
E
x σx + nE

z σz) + ηE
y nE

y σy),

where ηi are usually called the shrinking factors.
In the entanglement picture, this attack corresponds to the Bell diagonal

state

ρAB = λ1|Φ1〉〈Φ1|+ λ|Φ2〉〈Φ2|
+ λ|Φ3〉〈Φ3|+ λ4|Φ4〉〈Φ4|.

Here λ2 = λ3 = λ, which implies that the error rate is the same in both bases.
The normalization condition is λ1 + 2λ + λ4 = 1. When compared to the
cloning machine, the shrinking factor are ηB

xz = λ1−λ4 and ηE
xz = 2

√
λ(
√

λ1+√
λ4). Note that ηB

y = 1− 4λ + 4λ4 and ηE
y = 2(λ +

√
λ4(1− 2λ− λ4)).

In the case of using one-way communication distillation protocols, Eve’s
goal is to maximize, for a given QBER, her Holevo information with Alice
(see Eq. (3.5)). The optimal coefficients, or cloning attack, are λ1 = (1−Q)2,
λ = Q−Q2, and λ4 = Q4, where Q is the QBER. When considering two-way
communication protocols, as shown in Chapter 4, the security condition is
given in Sec. 4.1.1. According to this condition, the optimal coefficients are
λ1 = 1− 2Q, λ = Q, and λ4 = 0.
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Appendix C

Eve’s information in the case
of pre-processing

In this appendix, we show how to compute Eve’s information in the case
Alice applies pre-processing before the CAD protocol, for large blocks. In
this limit, Eve is faced with two possibilities, ρ⊗N

0,0 and ρ⊗N
1,1 , that read

ρ0,0 = u|e0,0〉〈e0,0|+ v|e0,1〉〈e0,1|
ρ1,1 = u|e1,1〉〈e1,1|+ v|e1,0〉〈e1,0| (C.1)

Indeed, if N À 1, there are almost no errors in the symbols accepted by
Alice and Bob. Eve’s Holevo bound then reads

χ(A : E) ≈ S(σE)−Nh(u), (C.2)

where we used the fact that S(ρ⊗N
0,0 ) = S(ρ⊗N

1,1 ) = Nh(u).
The main problem, then, consists of the diagonalization of σE . Note

however that the states ρ0,0 and ρ1,1 have rank two and their eigenvectors
belong to different two-dimensional subspaces. This implies that σE decom-
poses into two-dimensional subspaces that can be easily diagonalized. The
corresponding eigenvalues are

λr = urvN−r 1± |〈e0,0|e1,1〉|r|〈e0,1|e1,0〉|N−r

2
(C.3)

for r = 0, . . . , N , with degeneracy N !/(r!(N − r)!). Replacing these eigen-
values into the von Neumann entropy, one gets

S(σE) = Nh(u) +
N∑

r=0

(
N
r

)
urvN−r

h

(
1 + |〈e0,0|e1,1〉|r|〈e0,1|e1,0〉|N−r

2

)
. (C.4)
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PRE-PROCESSING

For large N and nonzero u, the only relevant terms in the previous sum
are such that |〈e0,0|e1,1〉|r|〈e0,1|e1,0〉|N−r ¿ 1. One can then approximate
h((1 + x)/2) ≈ 1− x2/ ln 4, having

S(σE) ≈ Nh(u) + 1− (u|〈e0,0|e1,1〉|2 + v|〈e0,1|e1,0〉|2)N

ln 4
,

where we used the binomial expansion. Collecting all the terms, Eve’s in-
formation reads

χ(A : E) ≈ 1− (u|〈e0,0|e1,1〉|2 + v|〈e0,1|e1,0〉|2)N

ln 4
. (C.5)



Appendix D

Properties of geometrically
uniform states

A set of d quantum states {|ψ0〉, ..., |ψd−1〉} is said to be geometrically uni-
form if there is a unitary operator U that transforms |ψj〉 into |ψj+1〉 for all
j, where the indices read modulo d. All sets of geometrically uniform states,
if the cardinality is the same, are isomorphic. Therefore, we do not lose any
generality when assuming that those states are of the form:

|ψα〉 =
d−1∑

n=0

cne
2πi
d

nα|xn〉

where α runs from 0 to d−1 and |xn〉 are orthonormal basis. Each state |ψα〉
translates to |ψα+β〉 by applying β times the unitary U =

∑d−1
m=0 e

2πi
d

m|xm〉〈xm|.
These states satisfy the following properties, that are used in our computa-
tions:

• Given a set of geometrically uniform states {|ψ0〉, ..., |ψd−1〉}, an or-
thonormal basis spanning the support of those states can explicitly
obtained as follows:

|xn〉 =
1

dcn

∑
α

e−
2πi
d

nα|ψα〉. (D.1)

• The uniform mixture of geometrically uniform states gives the orthog-
onal decomposition in the basis defined above {|xn〉}:

ρ =
1
d

∑
α

|ψα〉〈ψα| =
∑

n

c2
n|xn〉〈xn|.

Therefore, the eigenvalues of the equal mixture of geometrically uniform
state are c2

n. Using (D.1), these eigenvalues can be written as:

c2
n =

1
d2

∑

α,β

e
2πi
d

n(β−α)〈ψβ|ψα〉. (D.2)

123



124
APPENDIX D. PROPERTIES OF GEOMETRICALLY

UNIFORM STATES

In our case, we are interested in the eigenvalues of the state

ρ =
1
d

∑
α

|eα〉〈eα|⊗N ,

which approximates Eve’s state after CAD in the limit of large N . The
states |eα〉⊗N are geometrically uniform, so the searched eigenvalues are:

λµ =
1
d2

∑

α,β

e
2πi
d

µ(β−α)〈eβ|eα〉N .



Appendix E

Square-Root
Measurement(SRM)

We describe the so-called square-root measurement along the lines given in
Ref. [35]. Suppose that Alice encodes a classical random variable i that
can take l different values into a quantum state |φi〉 ∈ Cd, with l ≤ d, and
sends the state to Bob. Suppose the l states are non-orthogonal and span
an m dimensional subspace of Cd. Denote by Πm the projection into this
subspace, i.e. Πm|φi〉 = |φi〉 for all i. Bob has to read out the encoded
value from the quantum state in an “optimal” way. There exist several
“optimal” measurements depending on the figure of merit to be optimized.
Here, following [35], we consider that Bob applies a measurement consisting
of l rank-one operators |mi〉〈mi|, satisfying

∑
i |mi〉〈mi| = Πm. The figure of

merit to be optimized is the squared error E =
∑l−1

i=0〈Ei|Ei〉, where |Ei〉 =
|φi〉−|mi〉 are the error vectors. As shown in [35], the measurement strategy
minimizing E is the so-called SRM, also known as pretty-good measurement.
The construction of this optimal measurement works as follows.

Denoted by Φ the matrix whose columns are |φi〉. The SRM is con-
structed from the structure of the matrix Φ. Applying singular value de-
composition to Φ = UDV †, the optimal measurement matrix is [35]

M =
∑

i

|ui〉〈vi|

where |ui〉 and |vi〉 are the column vectors of the two unitary matrices U
and V , respectively. Here the column vectors of M define the optimal choice
of measurement projectors |mi〉.

Moving to our cryptography problem, the states Eve has to discriminate
are the geometrically uniform states

|eγ〉 =
d−1∑

n=0

βne2πi(γn/d)|xn〉
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where |xn〉 is an orthonormal basis in a d-dimensional Hilbert space, and
γ runs from 0 to d − 1. Each |eγ〉 is normalized. In our problem, Eve
aims at minimizing her error probability. Interestingly, in the case of geo-
metrically uniform state, the previous measurement strategy turns out to
minimize the error probability as well [35]. So, we only have to derive
the optimal measurement matrix from Φ =

∑
γ |eγ〉〈xγ |. Using relations

Φ†Φ = V DV †, the unitary V is the d-dimensional Fourier transform F|xu〉 =
1√
d

∑
w exp(−2πi

d wu)|xw〉, and the diagonal matrix is D = diag(
√

d|βn|).
Therefore, the optimal measurement matrix is

M =
∑

i

|mi〉〈xi|

where

|mj〉 =
1√
d

d−1∑

k=0

e
2πi
d

jk|xk〉

Using this measurement, the probability of guessing correctly a given
state |ej〉 is |〈mj |ej〉|2. Then, the average success probability is

P success =
d−1∑

j=0

p(j) |〈mj |ej〉|2 =
1
d

∣∣ ∑
n

βn

∣∣2 (E.1)

The last equality is obtained taking into account that all |ej〉 are equally
probable, p(j) = 1/d. In particular, for the d + 1- or 2-bases protocols, the
success probability reads, in terms of v and z, P success = (v+(d−1)z)2/dF .

When N copies of the states are given, |ej〉⊗N , we can apply a collective
measurement strategy. The SRM is constructed in the same way as above,
and the success probability, assuming that all states are equi-probable, is

P success
N =

1
d2

∣∣∣∣∣∣
∑

η

√∑
m

e2πi(ηm/d)〈em|e0〉N
∣∣∣∣∣∣

2

. (E.2)
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[73] M. Navascués and A. Aćın, Phys. Rev. A 72, 012303 (2005).

[74] G. M. Nikolopoulos, K. S. Ranade, G. Alber, Phys. Rev. A. 73 032325
(2006).



BIBLIOGRAPHY 131

[75] C.-S. Niu and R. B. Griffiths, Phys. Rev. A 58, 4377 (1998); N. J. Cerf,
Acta Phys. Slov. 48, 115 (1998); V. Bužek, M. Hillery and M. Bendik,
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