
SIMULACIÓ MONTE CARLO DE SISTEMES

AMB ACOBLAMENT DE GRAUS DE LLIBERTAT.
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FIG. l

a) Four possible directions of the molecules on the surface, b)

Ground state configuration.
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FIG. 2

Dots represent the different points (K^^Kz*) that have been

studied by Monte Carlo simulation in the region where the ground

state is that of Fig.l. Discontinuous lines are the sections

along which the phase diagram is represented in Fig. 3. The dot

shadowed area is the region where the Liquid Crystal-like

behaviour has been found and the non shadowed area is the region

where the Plastic Crystal-like behaviour has been found.
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Sections of the phase diagram along the lines shown in Fig. 2

a) K!* = K2* and b) K2* =-0.1 Lines are guides to the eye.
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FIG. 4

Detailed order parameter evolution versus temperature. Case a)

corresponds to K/ = -0.9 and K2* = -0.9, while case b)

corresponds with Kt* = -0.5 and K2* = -0.9. b), exhibits some

hystheresis that is not present in a).
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FIG. 5

Specific heat (<C„>) evolution with temperature when (a) Kt* = -

0.9, K2* = -0.9 and (b) Kt* = -0.5, K2* = -0.9. Tp and T0 indicate

the positions of the positional and orientational transition. The

line is a guide to the eye.
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FIG. 6

Dependence of VL with T* for the different subblock sizes. (L =

40, X 20, • 10, •*• 8, Q 4). Case (a) corresponds to K̂ -0.9,

K2*=-0.9 and case (b) to K̂ -0.5, K2*=-0.9.
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FIG. 7

ß exponents calculated adjusting a power-law to the Monte Carlo

data along the lines KI* = K2* (a) and K2* = -0.9 (b). Error bars

are associated to the deviations on the adjusted exponents due

to the indétermination of Tp/ as explained in the text.
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FIG. 8

Values of the ß exponents versus the île Millan parameter defined

in the text. Different symbols show different experimental values

collected from literature: X nS512, • CBOOA11-17, -f 40.8-40.7U,

A 8CB11, • 9CB-10CB12, O 80CB11'17.
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MONTE CARLO SIMULATION STUDY OF A SMECTIC-NEMATIC-LIKE TRANSITION

IN A TWO-DIMENSIONAL LATTICE GAS MODEL OF CYLINDRICAL PARTICLES.

ABSTRACT

Monte Carlo simulation of a two-dimensional lattice gas model of

orientable particles is used to study the coupling between the

Smectic-Nematic phase transition and the orientational order

parameter in Liquid Crystals. The phase diagram of the model is

obtained, and the critical behaviour of the Smectic-Nematic-like

transition studied. Results can be qualitatively compared with

experimental data and suggest a microscopical explanation of the

continuous variation of the effective critical exponents in some

Liquid Crystal mixtures. The existence of a Tricritical Point is

also reproduced. Finally, results are analyzed in terms of a

general Landau free energy functional [Anisimov et al. Phys. Rev.

A41, 6749 (1990)] that suggests that the Tricritical Point is only

apparent.
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l. Introduction

The main feature of Liquid Crystals [1] that makes them different

from other classical many particles systems is that, apart from the

usual positional degrees of freedom, one has to consider the

orientational degrees of freedom of the molecules. Due to the

existence of these two ordering modes, one can distinguish a Liquid

or Isotropie phase-(LP) with no long range order, a Nematic phase

(NP) with only long range orientational order, and solid phases

(SP) with long range positional and orientational order. Among the

solid phases one has to consider several Smectic phases, depending

on the positional degree of order. For instance the Smectic A phase

has a long range positional order only along one axis, that favors

a layered structure.

A lot of effort has been done during the last 40 years to

understand the nature of the Smectic-Nematic phase transition.

Experimental studies [2,3,4] of this phase transition using

different Liquid Crystals and Liquid Crystals mixtures show that

non-usual phenomena appear, related to the distance (in

temperature) to the Nematic-Isotropic transition. Variation of

effective critical exponents, and the existence of a Tricritical

Point (TCP) have been reported by several authors [2,5,6,7].

Figure 1 shows a compilation from the literature of the measurement

of critical exponents of the Smectic-Nematic phase transition, a

corresponds to the exponents of the specific heat divergence and ß

to the decay of the order parameter, ß results are normalized to

the value corresponding to the 3d XY model (the transition under

consideration is though to belong to this universality class). The

different data correspond to different liquid crystals or different

mixtures and they are plotted versus the Me Millan parameter [8]

that measures the ratio between the Smectic-Nematic (TNS) and the

Nematic-Isotropic (TNI) temperatures. It can be seen that when the

two phase transitions are close one to the other, the measured

effective exponents show an important continuous variation. Several

authors propose the existence of a TCP near M = 0.994 [5], before

the point where the two phase transitions overlap (M=1.0). These
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evidences suggest that there is a strong coupling between the

orientational and positional order parameters in the system: a

small value of the orientational order parameter produces strong

effects on the Smectic-Nematic phase transition.

Most progress in the understanding of this problem has been done by

means of a Landau theory. The positional order in the Smectic phase

can be characterized by the amplitude of the density modulation

along the z axis, ;|r, while the orientational order is characterized

by the fluctuations of a vector (director) that indicates the

preferred direction of the molecules Sn. When symmetry arguments

are used to study, in the Landau frame, the Smectic-Nematic phase

transition only even powers of i|r appear in the free energy. An

expansion up to i|i6 allows the transition to be second order or

first order and predicts the existence of a tricritical point in

the phase diagram of a Liquid Crystal binary mixture at a given

composition. This TCP appears when the coefficient of the fourth

order term in the free energy expansion ( i|T ) vanishes. This result

is in agreement with the early studies of Me Millan [8].

Nevertheless, Halperin, Lubensky and Ma [9] proposed a free energy

expansion in terms of ty and the orientational fluctuations 6n. An

effective treatment of the director fluctuations term results in a

3rd order term i|i3, that suggest that the Smectic-Nematic phase

transition is always first order. A very recent paper by Anisimov

et al. [10] revises some experimental data and explains the reason

why TCP's have been observed experimentally. Only very careful

experiments, based on a new dynamical method [11], have been able

to show that the Smectic-Nematic transition is always first order.

But, there is still a lack of explanation of these phenomena from

a more microscopical point of view, starting from a set of

variables describing the position of the molecules and 'performing

standard Statistical Mechanics treatment. Such a microscopic model,

and its exact solution will be very useful in order to compare

Landau expansions predictions with experiments. In this paper we

study, by means of Monte Carlo simulation, a simplified microscopic

model for the study of the Smectic-Nematic phase transition on the

basis of a Lattice-Gas model of molecules with orientational
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degrees of freedom presented recently [12]. We study its relation

with the results predicted by Halperin, Lubensky and Ma theory [9]

and the experimental data. In section 2. we introduce the details

of the model. In section 3. we present the main results concerning

the phase diagram and the effective critical exponents. Finally in

section 4. we discuss our results and conclude.

2. Model

The model is defined on a 2d square lattice with N = L2 sites. On

each site we define two variables: S± taking values 1 or 0

depending on the presence or absence of a molecule in site i, like

in a lattice-gas model, and tj. which is a two dimensional unitary

vector representing the orientation of a molecule in site i, and

that takes values among a discrete set of orientations. The

hamiltonian of the system is defined as:

H = £ S^+Ki'j? SZS, P(tit tj)+K; £ SiSj P(tit t j )
i.j i.J i.j

where the first and second summations extend over all the nearest-

neighbours (n.n.) pairs, and the third one extends to the next-

nearest-neighbours (n.n.n.) pairs. Kt* and K2* are constants and P

is a function of the two orientations tt and tj.

The first summation is a positional interaction term, and the other

two summations are orientational interaction terms to n.n. and

n.n.n, governed by the parameters Kr* and K2*

The model has been solved in a very general case using Mean Field

techniques [12]. In this work we restrict to the case of having

four possible inplane orientations distributed at 0°, 45°, 90° and

135°, and P being the non-polar interaction:

P(Ci, tj = 2 cos
2(0,,) -1

™ -< *J

where QLj is the angle between the two particles. This interaction

has been used several times and is though to describe the main

features of liquid crystals orientational interactions.
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The density of the system is kept constant and equal to 50% so

that:

Standard Monte Carlo [13] simulations have been performed using a

Kawasaki dynamics, exchanging n.n. particles and a Glauber dynamics

rotating the molecules. For a large range of values of the

hamiltonian parameters, two successive phase transitions have been

found. At low temperature an orientationally ordered phase with all

molecules parallel and placed in an antiferromagnetic structure

(chess-board) is the most stable one. Increasing the temperature

the positional antiferromagnetic order is lost and a Nematic phase

with the molecules still being parallel but completely placed at

random on the lattice appears. Finally at higher temperatures the

orientational order also disappears, and a liquid phase is reached.

The Solid-Nematic phase transition has been studied measuring the

positional order parameter defined as:

N/2 » N/2 -

l-l

where the + and - sign refer to summations over the two different

sublattices of the chess-board structure.

A subblock method proposed by Binder [14], has been used in order

to correct the finite-size effects of the Monte Carlo simulation

and extrapolate the results to the thermodynamic limit. The

evolution of <m>L, <l ml >L and <m
2>L versus the temperature has been

studied in a 40x40 system for different subblock sizes (20x20,

10x10, 8x8, 4x4) and for several values of the parameters Kj* and

K2*. We have also studied averages of the energy and energy

fluctuations values. Monte Carlo runs have been carried up to 12000

Monte Carlo steps per particle and averages over several

realizations of the random number sequence have been taken in order

to improve statistics.
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3. Results

Results concerning the evolution of the Energy, Order parameters

and Specific heat have been published recently [15,16].

In this paper we focus on the phase diagram of the model. The main

results obtained by our simulations are presented in figure 2. The

upper figures show sections of the phase diagrams following

different lines in the space of parameters (K!*,K2*). The different

phases SP, NP and LP are clearly identified. Case (a) corresponds

to a line with constant K2'=-0.9 and varying Kj* between -0.9 and -

0.4. Case (b) corresponds to the case Kf = K2*.

The bottom figures (a') and (b') show the corresponding measured

values of the effective ß exponent normalized to the value

corresponding to the 2d Ising model which is a limiting case of our

model when there is no orientational interaction. They have been

calculated fitting a curve of the form:

m = A-(TQ-T)V

T0 has been fitted according to the maximum of the specific heat

curve (calculated from the energy fluctuations), and ß using a

logarithmic least squares method. No higher order corrections have

been included because it is not the aim of this paper to obtain

very accurate results of the real critical exponents but to show

the existence of an effective variation. Due to the error bars in

the determination of T0, the ß values show a variation over a range

that is plotted as an error bar.

First of all, we note that our model gives rise to a variation of

the effective ß critical exponent when the two transitions

(positional and orientational) are very close, that is similar to

the one showed by experiments (see Fig. l(b)). This indicates that

strong coupling effects with the orientational order are also

present in our model. It is also interesting to note that in the

case K!* = K2* the coupling does not appear until the two transitions

overlap. A possible explanation to this phenomenon will be

presented in the next section. In the case (a) we have indicated a

change from second order to first order transition (continuous and
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discontinuous lines) in the Smectic-Nematic phase transition. This

has been done because long metastable states have been observed in

the region where the two transitions are very close in figure (1).

4. Discussion and Conclusions

Our results can be discussed in terms of the Landau expansion

proposed by Halperin, Lubensky and Ma [9] and discussed recently by

Anisimov et al [10]. We assume that the system can be described by

a free energy expansion including the following terms:

f (,|r) = -l¿ii|r2- — Bij;3 + — Ct|r4 + — Dty6

2 3 4 6

The even terms come from the fact that the free energy is invariant

under a change in the sign of i|f, and the cubic term is proposed to

arise from an effective treatment of the orientational order

parameter dependence in a similar way as in [9, 10].

Let us first analyze the case B = 0. A TCP appears as a consequence

of the change of sign of C. For C>0 the transition is second order

while for C<0 the transition is first order. The TCP is then placed

at the point C=0.

The Halperin Lubensky & Ma theory [9] suggests that due to the

orientational fluctuations, B is always different from zero, so the

transition becomes a fluctuation induced first-order phase

transition. Nevertheless, as analyzed by Anisimov et al. [10], the

first order character of this phase transition is experimentally

quite unaccessible when the orientational fluctuations are very

small during the Smectic-Nematic Transition. Only when the Nematic-

Isotropic phase transition is close enough, the first order

character appears clearly. This justifies the existence of an

apparent TCP at a temperature slightly under the true Landau TCP

(C=0), which explains the results obtained experimentally

[2,5,6,7].

Contrasting such a theory with our results obtained by Monte Carlo

simulations, we propose that B depends on (K̂ -Kz*) and C on (1-M).
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Hence, in the case of K:"*K:~ we observe an apparent TCP and when

K!*=KZ* we observe a real TCP at the point M=l (C=0).

Note that (K1*-K2*) measures the difference between the orientational

interaction at n.n. and n.n.n. It is easy to understand that when

the orientational interaction is unsensitive to the change between

n.n. and n.n.n, coupling effects between the two order parameters

disappear (Remember that such a change is the mechanism of the

Smectic-Nematic phase transition in our model). In the general case

of a true liquid crystal one can propose that the dependence of the

orientational interactions with the distance produces the coupling

expressed by the term B of the Landau free energy expansion.

The dependence of C with M comes from the fact that when K!*=K2* the

real TCP seems to be placed just at M=l. Then in the case of K1*"K2"

the apparent TCP appears slightly before M=l. Such a dependence

also justifies the experimental fact that the effective critical

exponents fall on the same universal curve as seen in Fig. 1. when

they are plotted as a function of M. Another dependence with the

density (as proposed by Anisimov et al [10]) or the molecular

length will not explain such a universal behaviour.

The fact that C depends on M suggest even stronger coupling

effects, because not only do the constants A and B depend on the

orientational order parameters, but also C seems to depend on the

amplitude of the Nematic phase region above the Smectic-Nematic

phase transition line.
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