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4.- APPLICATION TO A DISPLACIVE PHASE TRANSITION IN A BINARY ALLOY

Let us consider a binary alloy that undergoes, at T0, a

structural first-order phase transition (SPT) and an order-disorder

transition (ODT) at Tc > T0. This system is exemplified by a bcc

AjB̂ j binary alloy which shows at low (or relatively low)

temperatures a martensitic transition (MT) and well above an ODT.

Specific examples are the ß-CuZn and the ß-CuAl alloys [9].

Let Xi (i = 1,..,N) be the positional coordinates of the

particles in the lattice. The structural first-order phase

transition will be, conversely to the Potts model described in

section 3, associated to continuous degrees of freedom. We also

need a set of variables a = {alf a2, CJH} in order to describe

the atom distribution over the different lattice sites. aL takes

the value 1 (-1) when the lattice site i is occupied by an atom A

(B).

We assume that the value of a can be changed by quenching from

TÍ to a low enough temperature T£ as explained before. The state

obtained in this way will be a long-lived metastable state which

does not change , at least at the usual experimental time-scales.

4.1.- Calculation of 6AE

The Hamiltonian for this system can be written as:

Hm E [CM(XÍ¿ ô («i-D 5 (oj-l) +eABUij)(« (0i+l) 6 (c.,-1) +
(20)
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where the summation extends over all the i j pairs (separated by

distances x^) . ^(x) (a,ß = A,B) are the pair-interaction

potentials assumed to be central.

Most of the bcc alloys undergoing a MT have a D03 or a L2X ordered

structure [9]. In order to compare our results with experimental

data we consider a bcc binary alloy which undergoes two order-

disorder transitions. A D03(or L2j) - B2 transition at To2 and a B2

- A2 (disordered alloy) transition at Tcl » Tc2 (» T0). For the

sake of simplicity we assume that the structure of the L-phase is

fee which can be obtained from the bcc H-phase through a Bain

distortion mechanism [14] (Fig. 4).

We divide the bcc lattice into four sublattices (see Fig. 1).

If the fraction of A atoms x > 0.50 then the L2j is defined by

PA - PA ̂  PA ̂  PA/ where P0 (a= A,B and 1=1,2,3,4) are the occupation

probabilities (directly related to the a¿ variables). The D03
J( 1 \ L

ordered structure is defined by PA = PA = PA f> PA. Due to the

diffusionless character of the MT, the distribution of atoms

(occupation probabilities) will be the same in the H-phase and in

the L-phase.

Note that in the (bcc) H-phase a given atom has Zj = 8 n.n.

and z2 = 6 next nearest neighbours (n.n.n.). The zl n.n. are also

n.n. in the fee phase, four of the z2 n.n.n. in the bcc phase

transform in n.n. in the fee phase and the other two n.n.n. become

n.n.n. in the L-phase.

We extend the summation in (20) to the minimum range to assure

mechanical stability for both structures.

In the H-phase we consider pair-wise interactions up to n.n.n.
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The energy of the system in the H-phase EH is :

v r v M(íl r"1 -i v MW P tt)i í 9-MEH • [ E N^ tob + E Naß fc^ß J ( Z l )
W/S rf/t

while in the fee phase we consider only interactions up to n.n:

T? • T M'° P"° OCMEL - Z N^ toja (•")
<A

where N^ (ííĵ ) is the number of ith-neighbour aß pairs in the H (L)

'phase. E^ (6̂  is the interaction energy corresponding to the value

of EO^ÍX) at the equilibrium distance between the ith-neighbour

pairs in the H (L) phase. In principle we should consider that the

£„0 energies depend on a. Nevertheless we will consider that the

Bain distortion associated to the transformation from the H to the

L phase does not depend on the frozen internal state of the system.

We will return to this point later.

Given that a remains unchanged by the MT, the energy shift 6AE

associated to a change from a to a' is:

6AE = [EL(a') - EH(O')] - [EL(a) - EH(a)]

= [EL(a') - EL(a)] - [EH(CT') - EH(a)] = SEL - SEH (23)

Taking into consideration that:

$,? - Hi" +* itf1 (24)

a straightforward calculation gives:

SAE = (V(1> - V(1>) SNÏ + ( % V(1) - V(2)) SN̂  (25)

where v<» = 6« - % (6̂  f 6ÍB') and v<» = * - % ( + ) are the

ordering energies in the H and L-phase respectively.

When Tcl > Tc2/ for quenches from temperatures higher (or

slightly higher) than Tc2/ the number of n.n. AB pairs remain nearly

constant [15]. One can then write:

SAE = ( % V(1) - V(2)) SNju"' (26)
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4.2.- Calculation of 6AS

Let us assume that the entropy change for the transition from

the H-phase to the L-phase is given by [16]:

AS = 3NkB In (WH/WL) (27)

where WH and WL are low temperature Einstein frequencies

corresponding to the H and L phases respectively. Equation (27) is

appropriate for temperatures T > TE = hw/kB.

The change in the Einstein frequency from the H to the L-phase

is due to both changes in the geometry and changes in the strength

of bonds (interaction energies) between atoms. (̂  and C2 represent,

respectively, the strength of n.n. and n.n.n. bonds between atoms.

For G! » C2 then [16]:

WH = (zA + z2C2)
m (28)

In the hypothesis of central forces the elastic constants C44 and

C'= 1/2(CU - C12), depend only on Cj and C2 respectively in such a

way that:

(Cn - C12)/C«4 = 2 C2/d = (2A)-
1 (29)

where A is the elastic anisotropy. For the alloys transforming

martensitically A is large (it varies from 10 to 15 in Cu-based

alloys) which justifies the assumption that C1 » C2. We now assume

that the change in Ĉ  can be neglected. Considering, as before,

only n.n. interactions in the L-phase, we obtain:

AS = 3/2 NkB ln{(Z! + z2/2A)/ej} (30)

where z\ = 12 is the number of n.n. in the fee phase. Now:

SAS - AS(a') - AS(a) =

3/2 NkB ln{(l + aA-̂ cr'))/(! + aA'̂ a))} (31)

where a = z2/Zj. Taking into account that oA"
1 is small, equation
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(31) can be rewritten as:

<32>
where SC' = C'(o') - C'(a) and SCAA = Cu(a

f) - Ĉ (a).

In the central-potential approximation, CA4 depends only on n.n. AB

pairs [15]. Since this kind of pairs is not affected by the quench

then:

SAS ~ 3/2 NkBa(6C'/C«) (33)

where SC' can be written in terms of SN̂  [15], resulting that SAS

is proportional to SN̂ .

It is interesting to notice that for the kind of alloys

considered here, SC'/Ĉ  < 1. For example, for the Cu-Zn-Al alloy

(studied in section 4.3), this ratio can be evaluated using elastic

constant values taken from reference [17]. One then obtains that

SAS/AS < 0.01. Hence, from equations (4) and (26) we obtain:

6T0 = SAE/AS - (l/AS)/( 2/3 V
(1) - V(2)) SN̂  (34)

where now AS can be taken as constant.

Using standard mean-field theory one can calculate SN̂ . We define,

in terms of the occupation probabilities, the following long-range

order parameter (LROP) E:

E - (PA - PB*) - (4x-3) (35)

The ordered structure is supposed to be of the L2j type for

0.5 < x < 0.75, and of the D03 type for x = 0.75 [15]. It is easy

to see that:
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6NÜ? - % N(Z2 - (4x-2)2) (36)

Introducing (36) in (34) one gets:

ST0 = (1/AS)(2/3V
(1) - V(2))(Z2 - (4x-2)2) (37)

The dependence of 6T0 on £
2 has already been predicted in the frame

of the Landau theory [11]. Here we obtain (37) from a more

microscopic justification.

4.3.- Comparison with experimental results

Given that, to our knowledge, no experimental results are

available for binary alloys, we compare our theoretical predictions

with data corresponding to the Cu-(Zn-Al) ternary system.

Nevertheless it can be regarded as a binary-like system. This is

because the ordering energy for Cu-Al pairs is only around 1.5

times greater than the ordering energy for Cu-Zn pairs but 20 times

greater than the corresponding to Zn-Al pairs [9]. We then assume:

V(1) = (x^V«1' + Xuy{l))/(l-x) (38a)

V(2) = (x̂ V'2' + XjaV
(2>)/(l-x) (38b)

where x^ and x̂  are the atomic fractions of Zn and Al respectively,

and V(k)„.ß (V
<k)

a_e) are the ordering energies between k-th a-ß pairs

in the H (L) phase.

Within the composition of interest x 0.65 the Cu^Zn-Al)l_x

shows, at low temperatures, a L2j structure and a B2 structure at

higher temperatures. In this case, the ordering energies in the H

and L-phases have been evaluated for the different atom pairs [9].

For the particular alloy: Cu; 28.09at%Zn; 9.95at%Al, we obtain (in

units of R) V(1) - 863 K and V(2) - 610 K. Taking AS = -1.30 J/Kmol

[18], equation (37) leads to a maximum shift of the transition
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temperature of ST̂ ^ = -38 K while the maximum value obtained

experimentally is (ST0)«p = -62 K [19]. For the Cu3Al alloy, V
(1) -

1250 K and V<2) = 825 K, and the maximum shift predicted is STô  =

49 K of opposed sign to the previous case. This result is

consistent with experiments carried out on Cu-(Al-Be) with x = 0.74

and only a 2 at% of Be for which a positive shift of T0 after

quench has been recently obtained [20].

In f ig. 5 we present for the Cu; 16 at%Zn; 16 at% Al alloy/ the

measured ST0 as a function of the relative change Al/I in X-ray

intensity of 111 superlattice reflections [21]. The 111

superlattice reflections arise from the L2i ordering. Measurements

correspond to different Tq-temperatures . In spite of experimental

uncertainties, results show a quite good correlation between

ordering and transition temperature shift. However more accuracy is

needed to justify the explicit dependence predicted in equation

(36). Furthermore, in agreement with our assumption of neglecting

contributions coming from SN^, the intensity of the 200

superlattice reflections arising from the B2 ordering, present a

very small dependence on Tq [21].
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DISCUSSION

In this paper we address our attention to two different

examples of systems undergoing a diffusionless first-order phase

transition which thermodynamic properties depend on the internal

state at which the transition takes place. Associated to the

degrees of freedom describing this internal state, the system

exhibits a secondary phase-transition at a higher temperature,

distant from the diffusionless first-order, or primary phase

transition. The internal state can then be changed by means of a

fast quench and one can study the coupling effects between the

ordering modes associated to both phase transitions.

In the first example, we consider a three-state Potts model in

a system with two kind of particles arranged on a regular lattice.

The specification of the particle distribution on the different

lattice sites, determines the internal state of the system. We find

that changes on such internal state produce a shift in the primary

transition temperature, which is associated to shifts in both

energy and entropy changes. The shift in the entropy change between

both, high and low temperature phases, is related to different

values of the discontinuity of the Potts order-parameter at the

first-order transition point. The shift in the energy change is

associated with the different distribution of particles which

provokes variations in the effective interactions.

In the second example, we analyze a metallic binary alloy

which undergoes a displacive transition of the martensitic type

from a b.c.c. structure to a more compact phase (for instance a

f.c.c). These systems are characterized by a large elastic
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anisotropy. This property is intimately related to the directional

character of the MT mechanism which is mainly described by a shear

deformation associated to the C' elastic constant. This favours

that the entropy change between both phases depends only very

weakly on the ordering state of the system. When only the D03

ordering (associated to n.n.n. pairs) is changed, the shift in the

entropy change is proportional to the ratio 6C'/SC«4 (33), which in

turn is vanishingly small. In a more general situation, when

changes in both n.n. and n.n.n. pairs are induced, from equation

(32), we expect that the assertion concerning to the weak

dependence of the entropy change on the ordering state be right as

well. Consequently, the final low-temperature structure is, in this

case, independent of the internal state of the system and the

corresponding interaction pair energies are now independent on the

ordering state. The transition temperature shift is then only

associated to a shift in the energy change which, in turn, will

depend only on changes of the n.n.n. AB pairs (34).

In terms of a Landau description, a <p-6 free-energy expansion

in the primary order parameter (related to the deformation) has

been proposed to describe MT [23]. The simplest suitable coupling-

term is then biquadratic in both order parameters. This coupling

gives rise to formally the same results explained above. This

Landau model has been previously discussed in the context of the MT

[11]. Here we proceed further and show that the displacive

character of the structural transition is not a definitive

condition to assure that the shift of the entropy change is zero

for different ordering states. Also the large elastic anisotropy
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together with symmetry characteristics of the transition mechanism

are relevant for this condition to be satisfied.

In the case of the three-state Potts model, the description of

the first-order transition needs a cubic term in the Landau free-

energy expansion [13]. The coupling with the frozen internal

degrees of freedom can be introduced, at least, by means of a

cubic-quadratic term in the primary and secondary order parameters

respectively. This minimal model is qualitatively consistent with

the mean-field results discussed above.
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Fig. 1 Discontinuity of the order parameters at the transition point

versus trip in the case J=0.2 and J=0.5. Continuous lines correspond

to Anij mil<1 dashed lines to Amo- The continuous line at Am = 0.5

corresponds to the case J = 0 (Amj = Aitio = Am).
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Fig.2 Phase diagram showing the transition temperature lines for

J=0, 0.2, 0.5, 0.8 and 1 as a function of the configurational order

parameter m,,. Note the splitting off in two phase transition when

J = 0, as explained in the text.
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Fig 3. AS values for J=0.2, 0.5 and l as a function of m,,.
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