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Introduction

The strangeness quantum number, 5, which is conserved by the strong and electro-

magnetic interactions but not by the weak one, allows one to label the particles belong-

ing to the octet baryon family in such a way that S = 0 for nucléons and — 2 < S < — 1

for particles with strangeness (A, S, E). The mass of the lightest strange baryon, the

A-particle, is 1115.684 ±0.006 MeV and its mean life is TA = (2.632 ± 0.020) x 10~10 s.

The A can be considered a stable particle once one compares the value of its lifetime

with the time scale of strong interactions (10~20 — 10~24 s.). The weak decay of the A

can proceed via two different modes. In the mesonic mode (A —> NTT) a meson and a

nucleón are detected in the final state. This decay is 103 times larger than the leptonic

one (A —>p + e~ + t/e), due to the three body final state. The free A decays almost

totally into a pion and a nucleón following the approximate ratio of 64% for A —>n?r~

and 36% for A ->p7r°.

A hypernucleus is a bound system of conventional non-strange baryons (neutrons

and protons) plus one or more strange baryons. Traditionally, the A and the S par-

ticles were referred to as "hyperons". Nowadays, and in the context of hypernuclear

physics, this notation has been extended to any baryon with non-zero strangeness. Hy-

pernuclear physics has received a lot of attention since the early emulsion and bubble

chamber experiments [Ju73,Ca74,Pn85] aimed at establishing how the presence of the

new flavor (strangeness) broadens the knowledge achieved by the conventional field

of nuclear physics and helps in understanding the breaking of SU(3) symmetry. One

of the goals of hypernuclear research is to relate the hypernuclear observables to the
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Introduction

bare hyperon-nucleon interaction. Experimental data for the lightest A-hypernuclear

systems show that the AN interaction has quite a different behavior than the NN in-

teraction. For instance, there exists an indication of a more attractive behavior for a

singlet spin state compared to a triplet one by about 1 MeV for the AN system, just

the opposite than in the NN case. We can use hypernuclei to explore such problems

as the origin of the nuclear spin-orbit force, short-range correlations, relativistic as-

pects of many-body nuclear dynamics and their extension to hypernuclei, the role of
flavor symmetry and the chiral limit, extended models of the strong interaction, weak

interactions in the nuclear medium, or possible modifications of baryon properties in

the nuclear environment. Many of the phenomena involving strangeness can only be

studied using bound hypernuclear systems, as the short lifetime of hyperons and low

intensity fluxes make it difficult to have free hyperon targets or hyperon beams.

Although major achievements in hypernuclear physics have taken place at a slow

pace due to limited statistics, the in-flight (K~,7r~) counter experiments carried out at

CERN [Be79,Br75] and Brookhaven [Ch79] revealed a considerable amount of hyper-

nuclear features, such as small spin-orbit strength, increased validity of single-particle

motion of the A, narrow widths of S-hypernuclei (though recent experiments could not

verify those), etc., injecting a renewed interest in the field. Since then, the experimen-

tal facilities have been upgraded and experiments using the (TT+,K+) and (K¡¡opped,7r0)

reactions are being conducted at the Brookhaven AGS and KEK accelerators with
higher beam intensities and improved energy resolution. Moreover, the photo- and

electro-production of strangeness will be studied at TJNL [Sc95] and the low energy
K~ beam from <j> decay will be exploited at DA$NE for studies of both high resolution
hypernuclear spectroscopy and weak decay of hypernuclei [FI95]. It is expected that

new improved experimental data will bring the field of hypernuclear physics to a stage
in which major advances can be made.

Hypernuclei are typically produced in some excited state through hadronic reactions

such as (K~,7T~) or (TT+,K+), but can reach their ground state through electromagnetic
gamma and/or nucleón emission. Hypernuclei that are stable against strong decay

modes (such as particle emission) can decay via weak interaction mechanisms which

are nonleptonic in nature, involving the emission of pions and nucléons. This is the case

of the ground state of A-hypernuclei ^A), which are the only bound nuclear systems

(stable in the time scale of strong interaction) with strangeness S = — 1. Note that,

unlike the A hyperon, the E in the nucleus decays via the strong interaction due to the
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EN —» AN conversion.

When the A is embedded in the nuclear medium the mesonic decay mode (A —> NTT)

becomes Pauli blocked due to the value of the final nucleón momentum (approximately

100 MeV/c), which lies below the Fermi momentum. The rate of this decay mode is

suppressed with respect to the free value by several orders of magnitude and a new

mechanism shows up, the nonmesonic weak decay (AN —» NN), in which no mesons

are detected in the final state. This mode is dominant for heavier hypernuclei (A

greater than 5). Experimentally, the lifetimes of hypernuclei are found to be more

or less independent of A [BM90]. This is due to a compensating effect between the

decrease of the mesonic channel as A increases, because of the stronger Pauli blocking,

and an increase of the nonmesonic channel due to the larger number of nucléons.

When A is large the decay proceeds mainly through the nonmesonic mode, which

shows a saturation behavior due to the short-range character of the AN interaction.

There is another possible nonmesonic decay channel, the two-nucleon induced process

ANN —* NNN, where the virtual pion emitted at the weak vertex can be viewed as

being absorbed by a pair of nucléons which are correlated through the strong force.

This mechanism was first investigated in Ref. [AP91] where it was suggested that its

magnitude could be comparable to the AN —> NN one. However, a reanalysis with

more realistic assumptions [R094,R095] reduced its contribution to 10 - 15% of the
total nonmesonic decay rate.

The nonmesonic weak interaction does not conserve parity, isospin and strangeness.
One of the most interesting points in the study of the nonmesonic weak decay channel is

to gain insight into the fundamental aspects of the four-fermion, strangeness changing

weak interaction. In this two-body weak process one can obtain information from

both the parity-conserving (PC) and the parity-violating (PV) amplitudes, by taking
advantage of the strangeness change (AS" = 1) as a signature. This is in contrast to

the NN weak interaction where it is actually impossible to see the parity-conserving

component, as it is masked by the strong NN interaction.

Many theoretical efforts have been made in the understanding of the underlying

weak dynamics which governs the nonmesonic weak decay of hypernuclei. A number of

theoretical approaches to the nonmesonic AN —» NN decay mode have been developed

over the last thirty years, which are extensively reviewed in Ref. [Co90]. The inter-
pretation of the available data has been done with the use of different models, namely,

the usual meson-exchange model, the description in terms of quarks or a combination
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of a meson-exchange description for the long range of the interaction and the quark

description for the short-range one.

The early phenomenological analyses by Dalitz et al. [DR62] provided the general

nonrelativistic structure of the AN —> NN amplitude which was then related to de-

cay rates of s-shell hypernuclei using certain simplifying assumptions. The AS1 = 0

weak nucléon-nucléon interaction at low and intermediate energies has generally been

described in a meson-exchange model involving one strong interaction vertex and one

weak one; the same basic assumption has been used by some authors for a micro-

scopic description of the A51 = 1 AN —» NN mechanism. The virtual pion emitted at

the weak AN?r vertex is interpreted as being absorbed by one nucleón bound in the

hypernucleus. Early calculations based on the one-pion exchange (OPE) mechanism

were due to Adams [Ad67]. Modifications of the OPE due to strong interactions in

the nuclear medium were suggested in Ref. [OS85] to account for many-body nuclear

structure effects. At the very least, the OPE mechanism can be expected to adequately

describe the long-range part of the AN —> NN interaction. Due to the A - N mass dif-

ference, the AN —» NN process involves large momentum transfers and, therefore, it is

expected to be quite insensitive to nuclear structure details. Furthermore, this large

momentum leads to a mechanism where short distance effects are very important and

thus raises the possibility of receiving contributions from more massive mesons, apart

from the pion, in the nonmesonic hyperon decay process. The production threshold of

these mesons is too high for the free space A decay, but they can contribute through

virtual exchange in a two-baryon decay channel. The first attempts to include heavier

mesons, at first the p meson —again in complete analogy to the AS" = 0 NN interac-

tion —, were presented in Refs. [MG84,NaS8,TT85]. There were several conference

papers by Dubach et al. [Du86] showing results of preliminary calculations with a full

meson-exchange potential; a more detailed account of their calculations has recently

become available [DF96]. Finally, there have been recent attempts to construct the

weak transition potential incorporating the exchange of the p and a mesons, in addi-

tion to the OPE mechanism, from the point of view of a correlated 2;r-exchange. Refs.

[IU95,Sh94] obtained the weak vertex through the coupling of the two pions to the p

and a mesons and intermediate N and £ baryon states.

Apart from the meson-exchange models, there exist other works based on the use

of quark degrees of freedom in the description of the AN —» NN transition potential. In

Refs. [CH83,HK86] the process was separated into a long-range region, to be described
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by OPE, and a short-range region, modelled by a six-quark interaction with suitable
adjusted parameters. This idea was revived in Ref. [IT96], where the weak transition
amplitude is considered at quark level and the baryon transition potential is evaluated
in lowest-order perturbation theory. Although promising, these lines of study are still
at an early stage, since the connection between the effective quark hamiltonian and
the empirical A —> NTT vertex remains to be established.

In recent years, a series of counter experiments carried out at BNL (USA) and
KEK (Japan) improved the quality of data on the nonmesonic decay modes, using
pion and kaon beams. Total and partial hypernuclear decay rates for ^He, \*B and
\2C have been measured at Brookhaven [Sz91]. More recently, new data from the weak
decay of \2C and j^B were obtained at KEK [No95]. Also at KEK, the asymmetry of
the angular distribution of protons coming from the decay of polarized \2C and j^B,
produced via the (TT+,K+) reaction, was obtained [AJ92], determining for the first time
the difference in the number of protons emitted along the axis of polarization compared
to the number ejected in the opposite direction.

This introduction of polarization observables into the field of hypernuclear decay
calls for a new consideration of the theoretical efforts, the reason being that the asym-
metry is related to an interference of PV and PC amplitudes and thus might pose
further constraints than those provided by total and partial rates, which are domi-
nated by the PC piece of the weak transition.

While all the theoretical approaches mentioned above describe reasonably well the
lifetimes of the hypernuclear states, they fail to reproduce the ratio of neutron- to
proton-stimulated A decay, Fn/rp.

The present work is an attempt to describe the nonmesonic weak decay mechanism
within the one-boson-exchange model, including as few approximations as possible in
order to reproduce the available experimental data and to propose new experiments
for the near future. The motivation of this work is two-fold. First, in contrast to
most previous investigations performed in nuclear matter, where only the AN L=0
relative motion is retained, this study analyses the AN —» NN decay in hypernuclei
using a shell-model framework. The A particle can interact with nucléons in s-shell,
p-shell or higher orbits thus giving rise to a substantial amount of AN pairs having
a L^O relative motion. Secondly, this calculation includes not only the long-ranged
pion but also contributions from the other pseudoscalar mesons, the i] and the K,
as well as the vector mesons p, cu and K*. Due to the large momentum carried by



Introduction

the emitted nucléons, nuclear structure uncertainties are minimal and one can use the

present framework to draw conclusions regarding the sensitivity to the underlying weak

baryon-baryon-meson couplings. In this way, one may extract, via the comparison with

the experiment, the theoretical ingredients that are not yet well known.

The nonmesonic weak decay taking place in several hypernuclei (A
2C, j^B, AHe and

AH) will be studied. For the description of the initial hypernucleus, a shell-model

approach will be used, except for the case of the hypertriton for which the Faddeev

equations using realistic AN and NN interactions have been solved. In order to take into

account short-range effects, which have been demonstrated to be of great importance,

appropriate short-range correlations for the initial AN system as well as for the final

NN system will be considered. SU(6) symmetry and soft-meson theorems have been

used for the evaluation of the parity-violating vertices of the weak baryon-baryon-

meson interaction, as well as the pole model to obtain the parity-conserving ones. The

different models one can use by now for obtaining the weak coupling constants will

be explored, with the goal of extracting a good set of constants from the study of the

weak mechanism.

In Chapter 1, the nonmesonic decay rate of a hypernucleus, Fnm, is expressed in

terms of two-body amplitudes corresponding to the AN —> NN transition. Also derived

is an expression for the asymmetry in the distribution of protons coming from the weak

decay of polarized hypernuclei.

In Chapter 2, the formalism used for obtaining the two-body decay is presented

and developed with all the realistic ingredients necessary for this study.

Chapter 3 is devoted to the discussion of the results obtained for the different shell-

model hypernuclei studied throughout this work. These results include the nonmesonic

decay rate in units of the free A decay rate, Fnm/FA, the intrinsic lambda asymmetry

parameter, «A) and the neutron-to-proton induced decay ratio, Fn/Fp. A comparison

with other calculations and experimental data is also given within this chapter.

In Chapter 4, a brief study of the decay of the hypertriton, AH, is made. Here, all

the nuclear structure ingredients are derived from the same baryon-baryon interaction.

To conclude this work, Chapter 5 gives an overview and an outlook of this topic

and presenting, from our point of view, the experimental and theoretical requirements

that are needed for future improvements in this field.



Chapter 1

Decay Rate and Asymmetry

raniIn the first section of this chapter the nonmesonic decay rate of a hypernucleus,
is expressed in terms of two-body amplitudes corresponding to the AN— »NN transition.
Following a weak coupling scheme for the A-particle to the (A — l)-particle core and
employing the technique of coefficients of fractional parentage, the A and a nucleón
belonging to the hypernucleus are separated from the residual (A — 2)-particle system
in order to express the hypernuclear transition amplitude in terms of the two-body

ÍAN-.NN amplitude.
In § 1.2, an expression for the asymmetry in the distribution of protons coming

from the weak decay of polarized hypernuclei is also given.

1.1 Decay Rate

Assuming the initial hypernucleus to be at rest, the nonmesonic decay rate is given by:

r- = S

where the quantities A///, ER, EI and EI are the mass of the hypernucleus, the energy
of the residual (A — 2)-particle system, and the total asymptotic energies of the emitted
nucléons, respectively. The integration variables ki and Ar2 stand for the momenta of the
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two nucléons in the final state. Note that the momentum conserving delta function has

been used to integrate over the momentum of the residual nucleus. The sum, together

with the factor I/(2J + 1), indicates an average over the initial hypernucleus spin

projections, M¿, and a sum over all quantum numbers of the residual (A — 2)-particle

system, {A}, as well as the spin and isospin projections of the exiting nucléons, {1}

and {2}.

The nuclear transition amplitude M./Í =< F \ M. \ I > can be expressed in terms

of the elementary two-body amplitudes. In order to do that, the A-particle final state,

| F >, needs to be decomposed in products of antisymmetric two-particle and residual

(A — 2)-particle wave functions

I F >= A \ty k t k t ' tyA~2} (1-2)

where R stands for the quantum numbers of the residual (A — 2) nuclear state, {R} —

{EpiJRMRTRT3R}. The operator A antisymmetrizes the nucléons belonging to different

wave functions. When a transformation to the total momentum, P = ki + &2, and

relative momentum, k = (k\ — &2)/2, of the two outgoing nucléons is performed, the
expression for Fnm becomes:

-L nm —

with M/i = ^>R]Pk S Ms TMT M |AA) = ^R\Pk S Ms rM r0AN-*NN |AA) the
amplitude for the transition from an initial hypernuclear state to a final state which

is divided into a two-nucleon state and a residual (A — 2)-particle state ^R. The two-
nucleon state is characterized by the total momentum P, the relative momentum fc,

the spin and spin projection SMs and the isospin and isospin projection TMr- In

Eq. (1.3) the sum £ stands for the averaged sum explained above, and OAN-*NN is a
two-body operator acting on all possible AN pairs.

For the decomposition of the initial state we follow Ref. [RM92] and assume a

weak coupling scheme where the isoscalar A in an orbit aA = {rcA¿ASA.?AmA} couples

only to the ground state wave function of the nuclear (A — l)-core with total angular
momentum Jc and projection MC

= E (J\™*JcMc \ JiMj] | (nA /AsA)jAmA) | JcMcTfö,) (1.4)
mA MC
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Table 1.1. Possible quantum numbers for the initial hypernucleus and the residual system

for ^He, \1E and

A

5

11

12

Ji

1/2

5/2

1

Ti

0

0

1/2

Î3/

0

0

1/2

Jc

0

3

3/2

Tmin
fi

1/2

1/2

0

Tmax
H

1/2

1/2

1

Jmin
R

1/2

3/2

0

Jmax
fi

1/2

9/2

3

Note that the A-particle has isospin equal to zero, so the values of the (A— l)-core

isospin and its projection are the same as those of the initial hypernucleus.

The nonmesonic decay of hypernuclei, proceeding through a two-body mechanism,

requires the decomposition of the | A — 1 > core wave function into a set of states

where a nucleón in a certain orbit ON = {^N'N-SNJN^N} is coupled to the residual

(A — 2)-particle state via the technique of coefficients of fractional parentage (c.f.p.)

[BG77]. The c.f.p. are defined by [CK67]:

<SJ¿T°a(l....N) = £ (JcTca{\ JßAao,¿N>
JRQ TRQ cío JN

x [<Pas*oT*°0o(l....Ar-l) x <fi»(N)]JcTc , (1.5)

which relates the wave function for N active nucléons to the wave functions for (N-l)

nucléons. The quantum numbers refer to angular momentum J, isospin T and the
energy eigenvalue a. The subscript "0" always refers to the residual states of (N-l)

nucléons and the subscript "as" recalls that the (N-l)-particle as well as the N-particle

states are antisymmetrized. The bracket around the wave functions on the right implies

vector coupling to form a state with total angular momentum Jc and isospin TC- The
expression for the hypernuclear decay rate will be given in terms of spectroscopic factors
defined by:

= N • (JcTca{\ (1.6)

where the factor N comes in since the decoupled nucleón can be any of the N particles
in the antisymmetric initial state. Following this technique one is able to separate one

nucleón from the (A — l)-particle core, and write the wave function in terms of the
antisymmetric wave function of the (A — 2) residual nucleus.
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The core wave function is then finally written as:

JcMc TiT3l) = E (Jc TI{\ JR TR, JN ÍN)[ | JR, TR) x | (nN/NsN);N,
JRTRJH

x E E {<^AJNmN | JcMc}(TRT3RtNt3l | T/T3/>
afi is,

) | rHT3R} | (nN/NsN)jNmN) | ÍNÍ3,} , (1.7)

where ÍN = 1/2. In Table 1.1 the values of the total angular momentum (J/) and the

isospin and isospin projection (T/,Ts/) are shown for the different hypernuclei studied

throughout this work (^He, \XB and \2C). Also listed is the corresponding value of the

core total angular momentum, Jc, as well as the minimum and maximum quantum

numbers of the residual system, JR and TR, which are obtained when an s- or p-shell

nucleón is decoupled from the core wave function.

The present work is restricted to p-shell nuclei, so only the s-^/^ Ps/2 and Pi/2

orbits will be treated. For s-shell pick-up the c.f.p. can be evaluated following Ref.

[BG77]. Using Cohen and Kurath's spectroscopic factors for p-shell pick-up [CK67]

removes the limitation to only the extreme shell-model p3/2 configuration. In Ref.

[CK67] the factors for lpa/2 and lpi/2 nucléons are given separately. In this work,

the energy dependence (a0) of the spectroscopic factors will be disregarded and those

corresponding to states of the residual nucleus with the same quantum numbers will

be summed up. These sums include contributions from all the higher excited states,

however, very little strength lies in these states. The summed spectroscopic factors,

S = (A — l) (JcTj{\ JnTfaJNtw) , appropriate for the decay of \2C, are shown in Table

1.2.

The results of pick-up reactions are usually interpreted in the independent-particle

model which does not satisfy translational invariance. It is important to correct for the

lack of this invariance by projecting out the spurious components of the many-body

wave function. Thus, following Ref. [DF74], for p-shell pick-up one multiplies the

spectroscopic factors by A/(A — 1) while the s-shell pick-up corrections are 1/2 [2 —

(N - 2)/(A - 1)] for neutrons and 1/2 [2 - (Z - 2)/(A - 1)] for protons, corrections

which effectively shift some strength from the s-shell to the p-shell contribution. When

working in p-shell nuclei, one can check these correction factors by imposing:

N = N0S% + (N - #o)Si (1.8)
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Z = (Z — (1.9)

where ./V (Z] is the total number of neutrons (protons), NO (Zo) the number of neutrons

(protons) in the s-shell and 5" the corrected spectroscopic factor for the zí/l-shell being

a =n (p) for neutrons (protons). The corrected spectroscopic factors for ^2C are shown

in Table 1.2.

Table 1.2. Spectroscopic factors for s-shell and p-shell pick-up from ]^C. Sn and Sp stand

for the corrected spectroscopic factors for neutrons and protons, respectively.

s-shell

p3/2-shell

pi/2-shell

JR

1

1

2

2

0

0

1

1

2

2

3

3

1

1

2

2

TR

0

1

0

1
0

1
0

1
0

1
0

1
0

1
0

1

s
0.375

1.125

0.625

1.875

0.000

0.653

0.606

0.129

0.097

3.038

1.239

0.125

0.312

0.104

0.246

0.451

Sn

0.319

0.956

0.531

1.594

0.000

0.718

0.667

0.142

0.107

3.341

1.363

0.137

0.343

0.115

0.271

0.496

SP

0.300

0.900

0.500

1.500

0.000

0.718

0.667

0.142

0.107

3.341

1.363

0.137

0.343

0.115

0.271

0.496

The previous considerations take the full details of hypernuclear structure into

account, within a shell-model picture, and allow us to write the hypernuclear decay
rate in terms of the two-body AN—>NN amplitudes.

In general, hypernuclei with A's in excited orbitals will rapidly decay into the ground

state through electromagnetic or strong deexcitation processes which are orders of
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magnitude faster than the weak interaction. We will therefore assume the A to decay

from the /A = 0 state. Working in a coupled two-body spin and isospin basis, the

nonmesonic decay rate in Eq. (1.3) can be written as:

rnm = rn + r p , (i.io)

where Fn and Fp stand for the neutron- (An —> nn) and proton-induced (Ap —» np)

decay rate, respectively, given by:

1^ _ f djf r djk

' = J (2rJ3 J (2lrJ3

í I T T \ I2

¡TÎ3, I Il-l3¡) I

SMs J RM R TRTíR

x

X

x

M,

TT3

l l

2 ¿ 1 2 ¿ (jAmA JCMC

JN

l

N 2 '

x t AN

m A MC

I JcMc)

!_
'2m 'A '

T0T3o

, Ms, T, Mr, So, M5o , T0, T3o , /A, /N, P, k) (1.11)

with ¿3, = 1/2, Í! = -1/2, ¿2 = 1/2 for the p-induced rate and Í3| = -1/2, tj. = -1/2,

ii = —1/2 for the n-induced rate. Equation (1.11) is written in terms of the elementary

amplitude ¿AN-»NN5 which accounts for the transition from an initial AN state with spin

(isospin) 5o (ÎD) to a final antisymmetric NN state with spin (isospin) S (T). The

details on how this two-body amplitude is calculated are given in the next chapter.

Note that the A has been assumed to act as a | 1/2 — 1/2} isospin state which is

coupled to the nucleón to total isospin TO. As it will be explained in the next chapter,

this is the way to incorporate the change in isospin, AT = 1/2, induced by the weak

transition operator.

Let us briefly discuss what is meant by the AT1 =1/2 rule. In the mesonic decay

of the free A (¿A — 0) into a pión (íff = 1) and a nucleón (¿N = 1/2), both values of the

total isospin, T = 1/2 and T = 3/2, are possible in the final state. Denoting by IV the
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mesonic A — > n7T° decay and by Tw- the mesonic A — > p?r~ decay, experimentally one

observes a ratio of T^-fT^o close to 2. Using isospin coupling algebra and neglecting

the difference in mass of the final states, it is simple to show that assuming a change

in isospin of 1/2 the value of the ratio T^- /F^o is 2. Note that T„-/Tvo will involve a

ratio of two Clebsch-Gordan coefficients, ( 1/2 ¿3,- 1 ¿3^ | T — 1/2 ), such that:

F - I / 1 1 ! - ! ! 2 - 1 ) ! 2
*- 7T ^ I \ 2 2 I 2 2 / 1
r „ | / ! _ I i n |
1 7T° I \ 2 2 Í U I

I /T 12 . (U2)

for T = 3/2 in the final state, and

F - l i 1 1
1 T _ , I \ 2 2

2 12
3 I

I 12
= 2 (1.13)

for T = 1/2. Only in the second case seems the experimental prediction to be recovered.

Note, however, that the experimental decay fractions for A —» p?r~ and A —> n7r° yield

a ratio 1.8 [PRD96], which allows for some contributions of AT = 3/2 amplitudes.

1.2 Asymmetry

When working with polarized hypernuclei one can obtain interesting information about

the decay mechanism or, for example, the magnetic moments of hypernuclei. For in-

stance, one can work with these hypernuclei in combination with coincidence measure-

ments of the decay particles and study the angular distribution of particles coming
from the nonmesonic weak decay.

The experiments carried out at Brookhaven (USA) [Sz91] and KEK (Japan) [Aj92]

have obtained experimental information on total and partial rates as well as asym-

metries of the exiting protons. The hypernuclear systems produced with either the

(K~,7T~) or the (TT+ ,K+) reaction were two s-shell, ^He and ^He, and two p-shell, \2C

and ^B, hypernuclei.

At the kinematic conditions of the (TT+, K+) reaction performed at KEK the hyper-

nucleus is created with a substantial amount of polarization in the ground state. Due
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to the interference between the parity-conserving and parity-violating amplitudes, the

distribution of the emitted protons in the weak decay displays an angular asymmetry

with respect to the polarization axis. The (TT+ ,K+) reaction produced hypernuclear

states with large spin polarization aligned preferentially along the axis normal to the

reaction plane. In particular, the KEK experiment measured the angular asymmetry

in the distribution of protons from the nonmesonic weak decay of polarized A
2C and

In Fig. 1.1 a simplified picture of the (TT+, K+) reaction is shown, where a polarized

AZ hypernucleus is produced. This picture has been represented in the SM frame,

where the Madison convention [BH71] has been chosen. According to this convention,

the state of spin orientation of an assembly of particles, referred to as polarization,

should be referred to a right handed coordinate system in which the positive z-axis is

directed along the direction of momentum of the incoming beam, and the positive y-

axis along k-m x kout for the nuclear reaction from which the polarized particles emerge.

For the (TT+ ,K+) case, in the SM frame, the positive ZM-&XÍS is aligned along kw (beam
—t —*

of incident pions) and the j/M-axis is along the k* x &K direction, perpendicular to the
(7T+,K+)-plane.

A brief outline on how to calculate the angular asymmetry of the protons is pre-

sented in this section, but a more detailed calculation can be found in the Appendix

B of Ref. [RM92]. The starting point for the evaluation of the asymmetry parameter
is the intensity of the outgoing nucléons, given by:

/(/Y) = Tr(MptM
+)

= YL <F\M\MtxMt\pt\M' >< M' | M+ \ F > (1.14)
FM, M,'

where \ is the angle between the direction of the proton and the polarization axis, Î/M.

M. represents the transition operator characteristic of the weak decay, F the final state,

M, the initial hypernucleus spin projection and p, the density matrix for the polarized

spin-J hypernucleus. Relating this expression with our problem, the transition matrix

element < F \ M \ M, > will be a function of fcimi, k^m^, A'^JflM/?, JM,, where

k,mt (i = 1,2) represent each of the outgoing nucléons, the subindex R stands for the
residual nucleus and {JMt} for the initial hypernucleus.

For pure vector polarization perpendicular to the plane of the (?r+,K+) reaction,
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Figure 1.1. Schematic illustration of the (TT+ ,K+) reaction producing a polarized

hypernucleus.

the density matrix is given by the expression:

„ . f n__J_ (1 + _L_PS\
Pl(J)~2J + l V + J + l y y) '

(1.15)

with S"y being the J-spin operator along the î/M-axis and Py the hypernuclear polar-

ization created in the production reaction. Introducing Eq. (1.15) in the expression of

I(x) one obtains:

J + l y Tr(MM+) J
= I Q ( l + A),

where 70 is the isotropic intensity for the unpolarized hypernucleus,

. Tr(MM+]
2J

and A the asymmetry, defined as:

o 3 Tr(MSyM + )
y J+l Tr(MM+) '

(1.16)

(1.17)

(1.18)
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In Ref. [RM92] it is shown that, for pure vector polarization, the asymmetry A

follows a simple cos x dependence. First, the trace in the numerator of Eq. (1.18) needs

to be evaluated in the proton helicity frame (S) in which the transition amplitudes have

been calculated. For each direction (0, <?i>) the matrix elements of the Sy operator need

to be transformed using the rotation matrices that bring the Madison frame SM to

the helicity frame S. Then, using the Wigner-Eckart theorem and the rotation matrix

properties, the trace Tr(A4SyM
 + ) can be expressed as a function of the intensity

of protons exiting along the quantization axis z (¿i) for a spin projection M, of the

hypernucleus, cr(M¿), and the cosine of the angle x

Tr(MSyM
+) = £ a(Mi)Mi cosX . (1.19)

M,

With these ingredients, the asymmetry finally writes as:

„ 3 EM <r(Mi)MiA = py T i i ^'—nrv cos*J + l L·M, o'(Mi)
= PyApcosX, (1.20)

where the hypernuclear asymmetry parameter, characteristic of the hypernuclear weak
decay process, has been defined as:

_ 3 EM. . t
Ap- J + i E • (L21)

At x = 0° the asymmetry in the distribution of protons is thus determined by
the product PyAp. In the weak coupling scheme, simple angular momentum algebra

relations relate the hypernuclear polarization to the A polarization

—T-^Py if J = Jc-f
J + l y 2 , (1.22)

Py if J = Jc + |

where Jc is the spin of the nuclear core. It is convenient to introduce an intrinsic A
asymmetry parameter

Ap if J =

such that PyAp = PA<ÏA, which is then characteristic of the elementary A decay process,
AN— »NN, taking place in the nuclear medium.
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The asymmetry parameter can be thought in terms of an interference between the

isospin /NN = 1 parity-violating amplitude of the transition and the /NN = 0 parity-
conserving one [BM90]. In order to understand how this interference pattern comes

about from Eq. (1.21), it is convenient to rewrite the intensity of protons cr(M;) for a

spin projection M¿ as:

F}(F | M | M¿>
F

= (Mi | MM \ Mi) . (1.24)

Now it must be recalled that the transition operator M. is composed by spin non-flip

parity-conserving terms and spin-flip parity-violating terms. Since the complete spin

structure of A4 is complicated, let us work out the expression of the asymmetry for a

simplified model in which AÍ has the following schematic form:

M = f + g f f - r , (1.25)

acting on spin 1/2-particles and where / and g are the spin non-flip and spin-flip

amplitudes, respectively. From (1.25) it follows:

M* = r +g*¿-r (1.26)

and, using standard properties of the Pauli matrices, the product M^M. can be ex-

pressed as the sum of four terms:

= \ / I2 + | g |2 +(fg* + fg) a • f . (1.27)

The sum

£ <r(m;)mi = £ (m,- | M*M \ m,-> m¡ (1.28)

can be written as cr(-f) — cr(— ), where -f(— ) stands for the m¿ = +l/2(— 1/2) values
of the spin-1/2 projection. The two first terms in Eq. (1.27) cancel out once the sum

is performed, and the two remaining terms contain the interference between the spin
non-flip amplitudes and the spin-flip ones

m,-} m¿
m,

-i) = 2 c/y + r s). (1.29)
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This schematic and simplified result allows us to understand why the asymmetry

is related to the interference between the parity-violating amplitudes (which contain

spin-flip terms) and the parity-conserving ones (which do not flip spin).



Chapter 2

Model for the AN-+NN Transition

The aim of this chapter is to present the formalism for evaluating the two-body weak

decay AN—»NN transition amplitudes in A hypernuclei. The transition potential for

the decay is a strangeness-changing potential, A51 = 1, based on one-boson-exchange.

In § 2.1, this transition potential is constructed considering the exchange of up to six

mesons, the pseudoscalar TT, 77 and K mesons and the vector p,u>, and K* mesons. A

general expression for the regularized potential, containing the effect of form factors,

is also given. In order to obtain the parity-violating weak coupling constants for the

exchange of pseudoscalar mesons, § 2.2 makes use of SU(3) symmetry and soft-meson

theorems, while SU(6)tlI symmetry allows the extraction of the corresponding couplings

for vector mesons. The parity-conserving couplings are obtained with the help of a pole

model. Based in a shell-model framework for the hypernuclear wave function, § 2.3

presents the two-body transition amplitude, ¿AN->NN> taking into account that the A-

particle can interact with nucléons in arbitrary shells. The transition matrix elements

include different ingredients, such as realistic AN short-range correlations and NN final

state interactions based on the Nijmegen baryon-baryon potential. These ingredients

are discussed in § 2.4 and § 2.5, respectively.

19
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2.1 The Meson-Exchange Potential

The transition AN—>NN is assumed to proceed via the exchange of virtual mesons

belonging to the ground-state pseudoscalar and vector meson octets. As displayed in

Figs. 2.1(a) and 2.1(b), the transition amplitude involves a strong and a weak vertex,

the later being denoted by a hatched circle. For non-strange mesons the weak vertex

(where the strangeness changing takes place) is placed on the left side of the diagram

(Fig. 2.1(a)) while for the exchange of strange mesons it is placed on the right side

(Fig. 2.1(b)).

N

7C,Tl,p,CÛ

A

N N

N A

K,K*

N

N

(a) (b)

Figure 2.1. Non-strange (a) and strange (b) meson-exchange contribution to the AN-+NN

weak transition potential. The weak vertex is indicated by the circle.

In order to obtain the meson-exchange potential mediating the AN—»-NN transition,

one should start from the free Feynman amplitude corresponding to the diagram shown

in Fig. 2.2, using pion-exchange as an example. The expression for the Feynman

diagram depicted in Fig. 2.2 is:

MM = J d'x d*y y - y)

where

(2.1)

(2.2)
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is the free baryon field of positive energy, F, the Dirac operator characteristic of the

baryon-baryon-meson vertex and AM(Z — y) the meson propagator, which for one pion-

exchange reads:
4 ^i(x-y) (2-3)

with n being the pion mass. Using Eqs. (2.2) and (2.3), performing a change to

center-of-mass (c.m.) and relative variables and integrating over the c.m., time and

energy variables, one obtains (ignoring the momentum and energy conservation delta

functions):

x / (27T)3 «(PI) S(p4) (2.4)

with ç0 = p? — p§ = p\ — p° and q = pi — p3 = p4 — P2 being the components of

the four-momentum carried by the exchanged meson. The vertex u(p')Tu(p) comes

from the matrix element between fields $(x) T ty(x) when only the parts of the field

corresponding to the positive energy states are considered.

71

Figure 2.2. Illustration of the Feynman diagram for the two-body transition amplitude

•01-02

Going to the nonrelativistic limit of the vertices (and assuming 9° = 0) gives the

nonrelativistic reduction of Eq. (2.4), M(q] = V(q), which is the Fourier transform
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of the transition potential in coordinate space, V(r). In the next two subsections, the

expressions for the weak and the strong hamiltonians for each meson, pseudoscalar

and vector mesons separately, are given as well as the form of their corresponding

nonrelativistic potential in momentum space and in coordinate space.

One has to note that the nonrelativistic approach of the present work differs from

other previous studies [RB91,RM92] based on a relativistic formalism. It was found

that the suppression of the matrix elements due to short-range correlations was larger

by about a factor of two to what was obtained in standard nonrelativistic calculations

[OS85,MG84,Du86,DF96]. In Ref. [PR94] it was shown that, if one uses the same

nonrelativistic correlation function, the relativistic and nonrelativistic schemes were

not giving the same correlated potential obtained through the standard nonrelativis-

tic reduction. In the relativistic approach, the correlation function was applied to the

Feynman amplitude before the nonrelativistic reduction was carried out, whereas in the

nonrelativistic procedure the correlation function was applied after the reduction of the

free Feynman amplitude was obtained. The difference between the two methods was

studied in Ref. [PR95], where it was shown explicitly that the relativistic framework

together with a standard nonrelativistic correlation function lead to additional contri-

butions in the correlated transition potential, which produced the larger suppression

of the decay rates reported in Refs. [RB91,RM92]. The basic ideas of the study of Ref.

[PR95] are elaborated in § 2.4, which is devoted to the initial AN correlations. Due to

the lack of a better understanding for treating short-range correlations in a relativistic

framework, the present work uses the standard nonrelativistic formalism.

2.1.1 Pseudoscalar Mesons

While there exist many strong NN meson-exchange potentials which, through fits to

NN scattering data, provide information on the different strong NN-meson vertices,

only the AN?r vertex is known experimentally in the weak sector. In this section the

AN—»NN transition potential mediated by the exchange of the TT, rj and K mesons is

presented. The starting point is the expression for their corresponding strong and weak

hamiltonians. For the 7r-meson the weak hamiltonian is parametrized in the form:

, (2.5)

where Gpml = 2.21 x 10~7 is the weak coupling constant. The empirical constants

A* = 1.05 and Bv = —7.15, adjusted to the observables of the free A decay, determine
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the strength of the parity-violating and parity-conserving amplitudes, respectively. The

nucleón, lambda and pion fields are given by V'N) V'A and <^7r, respectively, while the

isospin spurion (°) is included to enforce the empirical AT = 1/2 rule observed in the

decay of a free A. The Bjorken and Drell convention for the definition of 75 [BD64] has

been taken.

For the strong vertex, one takes the usual pseudoscalar coupling

^NN^^NN^NTST^N, (2.6)

which is equivalent to the pseudovector coupling when free spinors are used in the

evaluation of the transition amplitude. As it has been already commented, the non-

relativistic reduction of the free space Feynman amplitude is then associated with the

transition potential. In momentum space, one obtains:

(2.7)

where q is the momentum carried by the pion directed towards the strong vertex,

9 = #NN7r the strong coupling constant for the NN?r vertex, /i the pion mass, M the

nucleón mass and M the average between the nucleón and A masses. The operators A

and £?, which contain the isospin dependence of the potential, read:

A = A ^ f j f z (2.8)

B = Bw n f2 . (2.9)

The other mesons of the pseudoscalar octet are the isosinglet eta (7?) and the isodou-

blet kaon (K). The strong and weak vertices for these mesons are

(2.10)

l2'11)
(2.12)

, (2.13)

where the weak coupling constants cannot be taken directly from experiment. In the

present work one adopts the approach of Refs. [DF96,To82], presented in § 2.2. The

values of the coupling constants corresponding to the strong and weak sectors are listed
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K

DPCYJK l 5

K

^pcv
'K ¡5

K

Figure 2.3. K-meson weak vertices for ppK° (a), pnK+ (b), and nnK° (c).

in Table 2.2 of § 2.2. The particular structure of the K weak couplings corresponds to

the vertices shown in Fig. 2.3.

The corresponding nonrelativistic potentials for the exchange of these mesons in the

AN—>NN transition are analogous to Eq. (2.7) but making the following replacements:

9

l·L

A

B

mr,

in the case of //-exchange, and

Ê'ANK

mK

A

B
/^PCK

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

in the case of K-exchange, where the factor M/M corrects for the fact that the non-

relativistic reduction of the strong ANK vertex gives a factor 1/M instead of 1/M (in
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contrast to the TT and r¡ cases where the strong vertex involves two nucléons). Perform-

ing a Fourier transform of the general expression given in Eq. (2.7) and introducing

the tensor operator ¿^(r) = 3a\ f<j2 r — a\ <72, it is easy to obtain the corresponding

transition potential in coordinate space, which can be divided into central, tensor and

parity-violating pieces. The explicit expressions are given in the next section.

2.1.2 Vector Mesons

In recent years, a number of theoretical studies have investigated the contribution of

the /9-meson to the AN->NN process [MG84,Na88,TT85]. The weak AN/9 and strong

NN/5 vertices are given by [MG84]:

_/IL/ ~ \
(2.22)

(2.23)

respectively, where the four-momentum transfer q is directed towards the strong vertex.

The values of the strong and weak coupling constants are given in Table 2.2 of § 2.2.

The nonrelativistic reduction of the Feynman amplitude gives the following /9-meson

transition potential:

with n — mp, FI — f /NNp , F-2 — fl'NNp anc^ ^ne operators a, ß and I, defined by:

a = ap n f2 (2.25)

/3 = ft, 7^2 (2.26)

ê = ep n T2 , (2.27)

contain the isospin structure. Using the relation (a\ x <f)(<72 x ç) = (<Ti¿r2) 9 2 —

(CT! <f )(<72 <f ) and performing a Fourier transform of Vp(q, ), one obtains the correspond-

ing transition potential in coordinate space, which, as in the 7r-exchange case, can

be divided into central, tensor and parity-violating pieces. Furthermore, the /9-meson

central potential can be further decomposed into a spin-independent (due to the
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term) and a spin-dependent part [PR96]. Due to the different models employed for

the weak AN/?-vertex [MG84,Na88,TT85], different calculations have yielded widely

varying results. However, all studies until now have only included the tensor piece of

the parity-conserving /9-exchange term motivated, in part, by the observation that this

is the most important contribution to the 7r-exchange potential. In Ref. [PR96] it has

been demonstrated that the central piece of the /9-exchange is in fact larger than its

tensor interaction, an observation that can be traced to the fact that the ^-exchange

diagram has a much shorter range than the 7r-exchange potential. In view of a number

of theoretical efforts that increase the complexity of the AN—>NN reaction mechanism

by calculating correlated 27r-exchange, through the coupling to a and p mesons [IU95]

or via strange AN—» UN mixing [Sh94], it is important to explicitly keep all pieces of

the potential for the vector mesons first.

The other vector mesons considered in this work are the isoscalar u and the isodou-

blet K*, for which the weak and strong vertices can be written as:

(2.28)

(2.29)

WANK- = 0 N * K - 7 M + i ^ 9 , O A (2-30)

(?) (Of H) Q^ + ^^NÍ-O^MO' (?)]
• (2.31)

Note that the K* weak vertex has the same structure as the K one, the only difference

being the parity-conserving contribution which has two terms, related to the vector

and tensor couplings. The nonrelativistic potential can be obtained from the general

expression given in Eq. (2.24) making the following replacements:

H -» mw (2.32)

*i -» í&u, (2-33)

FÎ - gLu, (2-34)

a -> a„ (2.35)

ß -» ßu (2.36)
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ê -» ew (2.37)

in the case of w-exchange, and

\i -> mK. (2.38)

(2-39)

(2.40)
,OPC,V

K* ~ -f /T2 (K

xiPC.T
K* -f -fA K* . nPC.

p -» — -- h Ac*

for the exchange of a K*-meson.

2.1.3 General Form of the Potential

The Fourier transform of the general Eqs. (2.7) and (2.24) leads to a potential in

configuration space which can be cast into the form:

t Oí t Q

= E [Vg\r)i$ + V^ff, a, /W + K{t)(r)5i2
i

+ (n''¿?2 • r + (1 - n4') [a, x 52 ] • f) V$(r)/$] , (2.44)

where the index i runs over the different mesons exchanged (i =• 1,...,6 represents

7r,/9,K,K*,7/,w) and a over the different spin operators denoted by C (central spin-

independent), SS (central spin-dependent), T (tensor) and PV (parity-violating). In

the above expression, particle 1 refers to the A and n' = 1(0) for pseudoscalar (vector)

mesons. In the case of isovector mesons (TT, p) the isospin factor, /£), is r\ f2 and for

isoscalar mesons (»7,0») this factor is just 1 for all spin structure pieces of the potential.

In the case of isodoublet mesons (K,K*) there are contributions proportional to 1 and

to fi TI that depend on the coupling constants and, therefore, on the spin structure

piece of the potential denoted by a. For K-exchange one has:

43) = 0 (2.45)
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Table 2.1. Constants appearing in the weak transition potential for the different mesons.

DK

2M 2M 2M 2M

SWr; -ÖTJ ÍNNr; .
/I,

K O

2M IM IM 2M " 2M

l 5ANK l

2M 2M 2M 2M 2M

i ¿J V _i_ T i u nV i T V i „T
v o *"^P ' PP jNNp i i /NNp op i Pp Í/NN/J ' SNNP SNNP "T"

P ^NNO^P ^ —£
2M 2M p 2M

i / o v i „T n 4- /? nv 4- n^ nv 4-
V „, Q ^ '' PW JNNU) ~l~ "NNO; "u; T Pu; ^NNu) ' ffNNa» i/NNu; "r

""̂  .VKMí.i^·'^Ct' ** ——— —-—— , - , « . - C-i

K* oYwlf. 2

2M 2M w 2M

«V i T 1 V i «T V i
"ANK* ' -Í/ANK* SANK* ' ^ANK* ^ANK* '

2M 2M 2M

7(3) _ r(3) _ CK , nPC , °K - -; ,9 afix7SS - -/T - -— + L>K + ~17~ri T2 (2.4bj
¿à ¿l

r(3) K_ i nPV i K ^ — Ie) /C7\-ÍPV = —7; r J-JK H ^~~ri T2 5 (2.4< J

and for K*-exchange:

(~lfC,V ,oPC,V/(6) = H|_ + Dpç,v + ç^_- fa (2>48)

f(6) f(6) V ^ K * i ^K* J i / npc.v i npc.T\ i v K* "r ^K* )-• -•"ss — JT — h (.L>K. + i^j,. j H n r

r(6) __ CK. pv CK. .. ^
Jpv - -y-+ K* + ~2~" '

The different pieces Vj'>, with cv=C,SS,T,PV, are given by:

= /4° Vc(r,/z,) (2.51)
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(2.52)

(2-53)
V /i,r (n,r)'J

+ — J = /4'¿Vpv(r, /í,) , (2.54)

where //, denotes the mass of the different mesons. The expressions for K^\ which

contain factors and coupling constants, are given in Table 2.1 (omitting the Gpm2

factor). A monopole form factor F t(<f2) = (A2 — /x2)/(A2 + q 2) is used at each vertex,

where the value of the cut-off, A,, depends on the meson. The values of the Jiilich

YN interaction [HH89], displayed in Table 2.2 of the next section, have been chosen

for the cut-off's since the Nijmegen model distinguishes form factors only in terms of

the transition channel. The use of form factors leads to the following regularization for

each meson:

Vb(r; ftt) - Vb(r; A,) - A.A' ''****" (l - -£-} (2.55)
¿t 4t7T \ L\\T /

Vss(r- / f>) - Vss(r; A.) - A. l - (2.56)

; A.) - A. ̂  ~ ̂  e l + - (2.57)

Vpv(r;/i.) -+ V p v i r ^ O - K p v ^ A , ) - , (2.58)
¿J 47T

where V^(r; A,) has the same structure as Va(r;/z,), defined in Eqs. (2.51)-(2.54), but
replacing the meson mass, /¿,, by the corresponding cut-off mass, A,.

2.2 The Weak Coupling Constants

The starting point for describing the weak decay of strange particles has been the

fundamental Cabbibo Hamiltonian based on the Current ® Current assumption

+ h.c. , (2.59)
V'<£ J

with

hs(a;)sinoc) , (2.60)
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where 9c is the Cabbibo angle and GF the weak coupling constant. As it is well

known, terms proportional to cos Oc describe, for instance, the neutron /?-decay while

the contributions proportional to sin Oc lead to the semileptonic decay of hyperons

and kaons. The A5" = 1 nonleptonic decays are governed by terms proportional to

sin^c cosoc which consist of products of a current between u and d quarks (AT = 1)

and a current betwen u and s quarks (AT = 1/2). Thus, since terms in sinöccosöc

describe transitions with AT = 1/2 and 3/2 with equal probability, the empirical AT =

1/2 rule indicates the presence of some dynamical effect related to QCD corrections

that enhances the AT = 1/2 components of the Hamiltonian.

In order to obtain hadronic weak matrix elements of the kind (MB'|/iw|B), where M

can stand for pseudoscalar or vector mesons and B for baryons, it has been convenient

to express the effective weak Hamiltonian in terms of the SU(6)u, symmetry that unites

them.

The AS1 = 1 weak nonleptonic Hamiltonian can be written in SU(3) tensor notation:

Hw = cosocsinMJi, Ja11} +h.c. (2.61)

where «7^- = (Vß — Aß)'j is the weak hadronic current with SU(3) indices i and j. As

shown in Ref. [DF96,To82,Ba67] the weak vector and axial currents can be expressed

in terms of SU(6)U, currents. Since the Hamiltonian is the product of two currents,

each belonging to the 35 representation, one can expand

35 ® 35 = 1, © 35S © 189S © 405S © 35a © 280a © 280a , (2.62)

which allows extraction of the parity-violating (PV) and parity-conserving (PC) pieces
of the Hamiltonian:

#rc : U © 35S © 189S © 405, (2.63)

#PV : 35a © 280a © 280a . (2.64)

Each of the possible ways of coupling baryons to mesons within the SU(6)u, symmetry

introduces a reduced matrix element that can either be fitted to experimental data or

calculated microscopically from quark models. Below, the PV and PC amplitudes are
discussed separately.
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2.2.1 The Parity-Violat ing Amplitudes

The traditional approximation employed to obtain the PV amplitudes for the nonlep-

tonic decays B —> B' + M has been the use of the soft-meson reduction theorem:

lim{B'M,(9)|ffpv|B) = -J_(B'|[Ft
5,/fpv][B) = ~(B'\[F„Hpc]\B) , (2.65)

í-*0 -TTT fv

where q is the momentum of the meson and Ft is an SU(3) generator whose action on

a baryon B^ gives:
rp I o \ • f IT) \ /O Cf:\
r^Dji = îji]k\Okl • {¿.\)\j)

Since the weak Hamiltonian Hw is assumed to transform like the sixth component of

an octet, a term like (Bytl/i^lBj) can be expressed as:

(Bk\H^\B3) = iFf6jk + Dd63k , (2.67)

where /;_,& and dtik are the SU(3) coefficients and F and D the reduced matrix elements.

With the use of these soft-meson techniques and the SU(3) symmetry one can

now relate the physical amplitudes of the nonleptonic hyperon decays into a pion plus

a nucleón or a hyperon, B — » B' + TT, with the unphysical amplitudes of the other

pseudoscalar members of the meson octet, the kaon and the eta. One obtains relations

such as [To82]:

(nK°|/Un) = A°-

(PK°|#pv|p} = -V/2E+ (2.69)

(nK+|#pv|P) = Ao_ + - s o
+ (2.70)

{m,|#pv|A) = I / ÏA», (2.71)
¥ "

where Sj stands for (p7r°|#pv|E
+), the PV amplitude of the decay £+ -> PTT°, which

is experimentally accessible. In all these expressions the standard notation has been

used, according to which the hyperon and meson charges appear as superscript and

subscript, respectively. As an example of how to use these techniques, the Appendix

B shows the explicit calculation of the parity-violating (nK+|//pv|p) amplitude. Using

the isospin structure of the potential defined in the previous section, the (NK|/fpv|N)
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matrix elements are connected to the coupling constants C£v and DP
K

V of Eq. (2.13)

via the following identities:

(nK°|/ipv|n} = C? + D*K
V (2.72)

(pK°|//pv|p) = D? (2.73)

(nK+|#pv|P) = Cr- (2-74)

As shown above, the symmetry of SU(3) allows connecting the amplitudes of the physi-

cal pionic decays with those of the unphysical decays involving etas and kaons. SU(6)u,,

on the other hand, furthermore permits relating the amplitudes involving pseudoscalar

mesons with those of the vector mesons. Refs. [DF96,To82] give more details of the

calculation, here just the final relations in terms of the coupling constants given in the

previous section, rather than matrix elements, are shown,

(2.75)

(2.76)

$ = -V3A°_ + IE+ +

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

The numerical values of the constants are given in Table 2.2. Note, that an additional

parameter, aT, is present in the coupling constants for the vector mesons. This cou-

pling, which is very small in the case of pion emission due to PCAC, can be calculated

m the factorization approximation, where the vector meson is coupled to the vacuum

by one of the weak currents. The numerical value is aT = -0.953 x IÓ"7 taken from
Ref. [To82].
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2.2.2 The Parity-Conserving Amplitudes

A description of the physical nonleptonic decay amplitudes B —> B' + TT can also

be performed by using a lowest-order chiral analysis. Employing a chiral lagrangian

truncated at lowest order in the energy expansion for the PV (or s-wave) amplitudes,

yields results identical to those discussed above for pseudoscalar mesons. However if

one defines the lowest-order chiral lagrangian for PC (or p-wave) amplitudes, one finds

that such an operator has to vanish since it has the wrong transformation properties

under CP. Thus, the only allowed chiral lagrangian at lowest order can generate PV

but not PC terms.

The standard method to compute the PC amplitudes is the so-called pole model.
As shown in Ref. [Do86], this approach can be motivated by considering the transition

amplitude for the nonleptonic emission of a meson

(B'Mi(q)\Hw\B} =Jd*xei<lx0(x0)(B'\[dAi(x),Hw(0)]\B) . (2.83)

Inserting a complete set of intermediate states, {|n)}, one can show that

where

M _ ,o^3 v-L* * ^<B'|Af(0)|n)(n|/MO)|B)M!ivil — v^„, ¿_^ ,v,vrn ^D. ^, „ 0 0
n l PB — Pn

(2.85)

While the first term in Eq. (2.84) becomes the commutator introduced in Eq.

(2.65), the second term contains contributions from the | ground state baryons which

are singular in the SU(3) soft-meson limit. These pole terms become the leading
contribution to the PC amplitudes. Note in passing that in principle, such baryon-pole
terms can also contribute to the PV amplitudes, however, more detailed studies [Do86]

showed that their magnitude is only several per cent of the leading current algebra
contribution.

The first step is to compute the p-wave amplitude of the A —>N?r decay since here

one can compare with experiment. The contribution to the PC weak vertex coming

from the baryon-pole diagrams shown in Figs. 2.4(a) and (b) are given by:

D 1 . 1
D-K = Í/NNTT /INA + ÍAETT ^NE > (2.86)
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Table 2.2. Nijmegen [NR77] (Jülich [HH89]) strong coupling constants, weak coupling

constants [DF96] and cut-off parameters for the different mesons. The weak couplings are

in units of Gpra^ = 2.21 X 10~7. For the kaon and the /9-meson we also quote the weak

couplings obtained by Ref. [SS96] and Ref. [Na88], respectively.

Meson

7T

ri

K

P

(jj

K*

Strong c.c.

#NN7T = 13.3

</AE7r = 12.0(9.8)

gmn = 6.40(0.)

5AA„ = -6.56(0.)

<7ANK = -14.1(-13.5)

£NEK = 4.28(3.55)

<7NN/9 = 3.16(3.25)

g^p = 13.3(19.8)

9lzp = °(°)

gl^p = 11.2(16.0)

g^u = 10.5(15.9)

¿/NNW — 3.22(0)

gl^ = 7.11(10.6)

9l*u = -4.04(-9.91)

Í^ANK' = -5.47(-5.63)

Weak c.c.

PC PV

£„=-7.15 ^=1.05

£„=-14.3 A„=1.80

CPC i Q n /^pv n 7ß
K — — lo. y (_>K — U . i O

=-14.0 [SS96] =0.40 [SS96]

£>£c=6.63 £^v=2.09

=3.20 [SS96] =1.50 [SS96]

ap=-3.50 ep=1.09

= -3.39 [Na88] =3.84 [Na88]

/3P=-6.11

=-7.11 [Na88]

aw=-3.69 ew= -1.33

&,=-8.04

C^'v = -3.61 C^=-4.48

A¿

(GeV)

1.30

1.30

1.20

1.40

1.50

2.20

= -3.16(-3.25)

. = 6.00(7.87)

where ANA and ANE are weak baryon — > baryon transition amplitudes that can be
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related to the process A — ->• NTT and £ — » NTT. These quantities can be determined via

current algebra/PCAC as before

lim(7r°n|#pv|A) = (n|[^5o, //pv]|A) = - (n|//pc|A) (2.87)-

(2.88)

Then assuming no momentum dependence for the baryon s-wave decay amplitude and

absorbing the i factor in the definitions of ANA and ANS, one gets:

= i(n|//pc|A) = 2^(7T°n|Jfirpv|A) = -v^F^TT-pl^pvIA) (2.89)

= -4.32 x 10~5 MeV

= -4.35 x 10~5 MeV. (2.90)

With these values, obtained from the physical A —> p TT~ and £+ —»p ir° parity-

violating amplitudes, and using the Nijmegen strong coupling constants <7NNrr and <7AE7r

listed in Table 2.2, we derive B« = -11.98 x 10~7, which is within 24% of the exper-

imental value (Bfp = -7.15 x GFm\ = -15.80 x 10~7). If one chooses the Jülich

B strong couplings rather than the Nijmegen ones, also listed in Table 2.2, the new

value for B^ is —15.74 x 10~7, closer to the experimental one. In the calculations, the

experimental value has been used.

In view of this result, it seems reasonable to take the Jülich B strong coupling

constants to work out the weak PC couplings for the other mesons contributing to

the decay mechanism. However, no arguments of the same kind as for the pion can

be made for the five mesons left. There are no experimental values of the couplings

to compare the predicted constants obtained within this model. Furthermore, taking

into account the breaking of the SU(3) symmetry leads already to an uncertainty in

the value of the strong constants of at least 30%. As a consequence, our results will

implicitly carry the effect of such uncertainty. In § 3 results using the Nijmegen set of

constants as well as the Jülich one in the strong sector will be given.

For the 77 contribution the PC AN?? term, shown in Figs. 2.4(c) and (d), can be
written as:

BT, = «/KMT? ANA + #AAT) ANA , (2.91)
m A — ~ "~
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Figure 2.4. Baryon-pole diagrams contributing to the PC weak vertices in the AN—»NN

transition amplitude.

while for the kaon (Figs. 2.4(e) and (f)) , the expressions are:

1 1
(nK+|//pc|p) = C*C =

mn - mA mn —
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(pK°|//pc|P) = Dlc =
mp —

where the relations Anx° = — ANE and Ap%+ = V^^NE have been used.

The expressions for the vector mesons are similar:

v
~~ 5Wp

1
--¿NA + gl-

1
AEp -ANS

1

/OfU.V V
UK* — Í/ANK' -mA

-ANÀ —

mN -mA

1
-ANE

1

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

nPc.v _ « v
UK* — ZÍ/NEK*

and the tensor coupling constants ßp, ßw, (7£?'T and D^'T are obtained from the pre-

vious relations by replacing the strong vector couplings with the tensor ones. The

numerical values of all these coupling constants can be found in Table 2.2.

N

A

K TI

N

N

Figure 2.5. Meson-pole diagram contributing to the AN—>NN transition amplitude.
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Some studies have included meson-pole diagrams of the form shown in Fig. 2.5

whose contribution would be given by:

AK* , (2.98)

where the meson — > meson weak transition amplitude AKlr can also be related via PCAC

to the experimental amplitude for K— > TTTT decay, yielding AK„ = —2.5 x 10~3 MeV2

[Do86]. There is considerable uncertainty regarding the phase between the meson

and the baryon poles which lead some studies to adjust it to better reproduce the

data. It has been argued [Do86] that the presence of these meson-pole diagrams is

important to fulfil the requirements of the so-called Feinberg-Kabir- Weinberg theorem

in the nonleptonic decays. On the other hand, counting powers of energy in a chiral

analysis, one finds that while the baryon-pole terms are of order q~l the meson poles

enter at next order, along with higher-order chiral lagrangians. In general, it has been

found that these contributions are very small and have therefore been neglected in the

following. In principle, SU(6)„, can be used as well to relate the weak meson — » meson

pseudoscalar transition amplitudes with those of the vector mesons. The results, given

here for completeness, are:

AKr, = -- J=AKTT (2.99)

AK.P = AKV (2.100)

K„. (2.101)

2.3 Two-Body Amplitudes

In this section the elementary two-body transition amplitude ÍAN-.NN which describes

the one-nucleon induced decay of the A-particle in hypernuclei, will be derived. This

amplitude contains the dynamics of the weak decay process, as it is shown in Eq. (1.11).

In the first place, it is necessary to rewrite the product of two single-particle wave func-

tions, (f'l | QA) and (f-z | ON), in terms of relative, f, and center-of-mass coordinates,

R. Via the Moshinsky brackets [Mo59] one may connect the wave functions for two par-

ticles in a common harmonic oscillator potential with the wave functions given in terms

of the relative and center-of-mass coordinates of the two particles. In the present work,

the single-particle A and N orbits are taken to be solutions of harmonic oscillator mean
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field potentials with parameters ÒA and ON, respectively, that have been adjusted to ex-

perimental separation energies and charge form factor of the hypernucleus under study.

Assuming an average size parameter b = (b\ -f b^)/2 and working in the LS representa-

tion, the product of the two harmonic oscillator single-particle states, 3>^;TO(?*i /b) and

<5>^Tm/(f2 /6), can be transformed to a linear combination of products of relative and

center-of-mass wave functions, $/v'¿rMLr(r /\/26) and $™LRML (•^/(&/V /2)), respec-
tively. Since the A is in a /A = 0 shell, one obtains:

when the nucleón is in the s-shell and

' "*" (2'103)

when the nucleón is in the p-shell. With this decomposition, the amplitude ÍAN-*NN of

Eq. (1.11) can be written in terms of amplitudes which depend on C.M. and relative
orbital angular momentum quantum numbers

ÍAN-NN = E X(NTLTNRLR, /A/N) %&$$ LR , (2.104)
NTLrNRLR

where X(NTLTNfíLRj/il^) are the Moshinsky brackets which for /A=/N=U are just

X(l 0 1 0, 0 0) = 1, and for /N = 1 are X(l 0 1 1 , 0 1 ) = l/\/2 and X(l 1 1 0, 0 1) =

As for the final NN state, the antisymmetric state of two independently moving

nucléons with total momentum P and relative momentum k reads:

(Rr PkSMs TMT) = -±=¿™ (¿*f - (-l)*+re-
ifc>) X

S
MsX

TMT • (2.105)

In order to incorporate the effects of the NN interaction the plane wave describing the

relative NN motion needs to be substituted by a distorted wave

e*? -* %(f) . (2.106)

In § 2.5 it is shown how the distorted wave is obtained via the solution of an R-matrix
scattering problem.
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The matrix elements t w * R (Ecl- 2-104) are eiven

,NTLTNRLR _ / ,3r> /"j3 p-i^A^* CrW t 5 v tT Wf ï *CM

IAN-NN -

So T0

Ms° T3°

(2.107)
-• - \ v/ /

with

Xrl , (2.108)

where, for simplicity, only the direct amplitude corresponding to the first term of Eq.

(2.105) is shown. The exchange term of the AN— >NN diagram can be evaluated easily

once one performs an expansion of the exponentials appearing in Eq. (2.105)

) (2.109)
LML

LML

TÍL jL(kr) Y£ML(k) YLML(f) . (2.110)
LML

This exchange contribution can be then easily incorporated via the correct insertion of

the factor ( — l)L+5+T in Eq. (2.105) once the expansions have been made.

The function ^ P~= 'ls tne Fourier transform of the AN center-of-mass wave

function and ¿rei is the expectation value of the transition potential V(f ) between AN

and NN relative wave functions. The potential V(r) has the form shown in § 2.1 where

it has been decomposed as:

( tV)oa/£>, (2.111)

where the index i runs over the different mesons exchanged and a over the different spin

operators, Oa 6 (1, v\ 0^ , S\i(r} = 3 a\ f CT2 r — ¿TI <72, cr-i r, [a\ x c?2] f), which occur in

the potential V(r). The isospin operator, I^\ depends on the meson and can be either

1 for isoscalar mesons (77, w), T\ f2 for isovector mesons (TT, p) or a linear combination

of 1 and T\ TI, with the coefficients depending on the particular spin structure piece
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of the potential, for isodoublet mesons (K, K*). The radial parts VJ''(r), have been

discussed in § 2.1.3, are given by Eqs. (2.55) - (2.58).
By performing a partial-wave expansion of the final two-nucleon wave function and

working in the (LS')J-coupling scheme, the relative AN— »NN amplitude, frei, can be

further decomposed

> (LMLSMs\JMj)YLML(kr)
V ¿ i a LL'J

(LrMLrS0MSo\JMj} ((L'S)JMj \ Ôa \ (LrS0)JMj)

(TT3 | /« | r0r3o) r'drVïí^r) V®(r)*tfrLr(- , (2.112)

where $5v!.Lr(
r/(^/^')) stands for the radial piece of the H.O. wave function. The

explicit expressions for ((L'S}JMj \ Oa \ (LrSo}JMj), the expectation values of the

spin-space pieces, can be found in Appendix A.

The function ^^L,(kr^ r) is the scattering solution of two nucléons moving under the

influence of the strong interaction, for which the updated version of the Reid soft-core

potential [Re68], given in Ref. [SK94], and the Nijmegen [SK94] NN potential have

been taken. Such a wave function is obtained by solving an R-matrix equation (see §

2.5) in momentum space and using partial-wave decomposition, following the method

described in Ref. [HT70]. The tensor component of the NN interaction couples relative
orbital states (L and L') having the same parity and total angular momentum as, for

instance, the 3S'1 and 3Di channels. Therefore, starting from an initial Lr orbital

momentum, the weak transition potential produces a transition to a L' value, which

mixes, through the subsequent action of the strong interaction, with another value of
orbital angular momentum, L. In Table 2.3 one can find all the possible final states

starting from initial AN states having either LT = 0 or 1 and for the central (AS1 = 0,

A£ = 0), tensor (AS = 2, AL = 2) and parity-violating (AS = 1, A£ = 1) pieces

in which the transition potential can be decomposed. In the absence of final state

interactions (FSI), the NN wave function in Eq. (2.112) would reduce to a spherical
Bessel function

^LL'(kr,r) = 6L,L'JL(krr) . (2.113)

Note that the procedure followed here to include FSI between the two emitted nucléons

differs from the simplified choice taken in our previous works [PR96,BP95], where

the non-interacting NN pair, represented by a Bessel function in the final state, was
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multiplied by an average NN correlation function

/FSi(r) = l-jo(ccr), (2.114)

with qc = 3.93 fm"1, which provides a good description of nucleón pairs in 4He [We77]

as calculated with the Reid soft-core interaction [Re68].

2.4 Initial State Correlations

When evaluating the matrix elements of the AN—>NN transition in nuclei one must

take into account that, simultaneously with the weak exchange of the meson, there

exists the strong interaction between nucléons or between the A and the N. The short-

range nuclear forces generate short-range correlations (SRC) which must be taken into

account. As it has been already mentioned, the momentum carried by the exchanged

meson in the nonmesonic weak decay of a A in a hypernucleus is of the order of

400 MeV/c. This leads to a short-range process, thus the influence of short-range

correlations between the interacting AN pair in the decay is of great relevance.

To account for the AN correlations which are absent in the independent-particle

model, we replace the harmonic oscillator AN wave function, $5vl£ (r/(\/2£>))5 by a
correlated AN wave function that contains the effect of the strong AN interaction. Such

wave functions were obtained from a microscopic finite-nucleus G-matrix calculation

[Ha93] using the soft-core and hard-core Nijmegen models [NR77]. As it will be shown

below, multiplying the uncorrelated harmonic oscillator AN wave function with the

spin-independent correlation function

/(r) = (l _ e-'2/"2)" + orV'2/'2 , (2.115)

with a = 0.5, b = 0.25, c = 1.28, n = 2, yields decay rates slightly larger than those

obtained with the numerical Nijmegen soft-core correlations but slightly smaller than

those computed with the Nijmegen hard-core potential. Since the deviations are at

most 10% the above parametrization can be used as a good approximation to the full
correlation function.

One of the open problems in the study of the weak decay of hypernuclei in the

early 90's was to reconcile the differences for the effect of correlations found by the

nonrelativistic and relativistic approaches. The nonrelativistic calculations performed
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Table 2.3. Possible 2S+1Lj channels present in the weak decay of p-shell hypernuclei.

Lr Weak decay channel V Strong FSI L

(AN) (NN) (NN)

Central
10 . le , i o

OQ —' JQ —' '-'O

3Po3A
3 P .-T2 — >

3Po - 3Po
3Pi -> 3P:

3P2 -> 3P2,
 3F2

Tensor

3Po
3Pi
3P2

3Po -» 3Po
3Pi -» 3P1

3P2,
 3F2 -» 3P2,

 3F2

P.V.

%
3Si

1P1
3Po
3Pi

3Po -> 3Po
1Pl -> 1Pl

3o 3rj ^ 3c 3 n

^o ^ ^0

3p2 Ü 3^2

in nuclear matter in the past [MG84,OS85, Du86] showed a reduction of the non-

mesonic rate by a factor of up to 2 once these correlations were taken into account. In

finite nuclei calculations using the Local Density Approximation [OS85], where there

are regions with smaller density than the normal nuclear matter density, the reduction
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is smaller, of the order of 30% for a nucleus like \2C. On the other hand, a relativistic

calculation performed in ¿2C [RB91,RM92] found twice as much reduction when in-

cluding a similar correlation function. One may expect the discrepancy between both

calculations to come from the new ingredients considered in Refs. [RB91,RM92], as the

relativistic formalism based on Dirac phenomenology or the consideration of a finite

system rather than nuclear matter.

In Ref. [PR94] there is a first attempt to explain the origin of the discrepancy,

including a detailed analysis of the influence of SRC in the nonmesonic decay of

A-hypernuclei, considering different correlation functions for the initial AN system

and comparing their effect in both models, the relativistic and the nonrelativistic

one. The study focused on s-shell nucléons of j^C. The correlated wave functions

were obtained in r-space by solving the AE coupled channel Bethe-Goldstone equation

[Ha93]. There, solutions of the hard-core model D and the soft-core Nijmegen inter-

actions [NR77] were used. In Fig. 2.6, the correlation function, defined as the ratio

/L5j(r) = ^LSJ^/^LSJ^) between the correlated and the uncorrelated wave func-

tion, is plotted for the hard-core and soft-core potentials respectively. In this figure

the spin-independent parametrization given in Eq. (2.115) is also plotted and it is the

same function used in Ref. [RM92]. Looking at these plots one can see the "hole"

present in the wave function produced by the strong repulsion of the hyperon-nucleon

force at short distances, preventing the A and the N from being close.

The results obtained in Ref. [PR94] are summarized in Tables 2.4 and 2.5. Table 2.4

shows the contribution to the nonmesonic rate, divided between the parity-conserving
(PC), parity-violating (PV) and total rates (Total), of the s-shell nucléons in \2C for

the different correlations quoted above. The harmonic oscillator size parameters taken

for the nucleón and the A-particle are ON = 1.64 fm and ÒA = 1.87 fm, respectively.

The first column in the table gives the uncorrelated rate (FREE), the second column
represents the rate obtained when the hard-core interaction is used to obtain the cor-

related AN wave function (HARD), the third one represents the same calculation but

using the soft-core interaction (SOFT) and the last one stands for the correlated rate
when the correlation function of Eq. (2.115) is used (/(r)). In this s-shell study, the

reduction factor on the rate due to the inclusion of short-range correlations, varies
from 1.3 to 1.5. The results are consistent with the other nonrelativistic approaches

[MG84,OS85,Du86] (which give a reduction factor close to 2), where the slightly larger

reduction is due to the use of a NN correlation function which has a somewhat larger
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Figure 2.6. Correlation function for the AN channel 15o (full line) and 35i (dashed line)

in the case of the hard-core D (a) and the soft-core (b) Nijmegen potential. The dotted line

stands for the spin-independent parametrization f(r) used in this work.

core than that of the AN system and/or the larger nuclear matter density, /?o5 com-

pared to an average density for \2C. It is interesting to compare the results of Table

2.4 with what is obtained in the relativistic model of Ref. [RM92], shown in Table 2.5.

The reduction factor introduced by SRC is about 3, even when the same correlation

function (2.115) is used.

Table 2.4. s-shell nonmesonic rate for

PC

PV

Total

FREE

0.479

0.208

0.687

HARD

0.307

0.146

0.453

SOFT

0.343

0.192

0.535

f(r)

0.324

0.162

0.486

The study of Ref. [PR94] was further elaborated in Ref. [PR95], where one finds

a revised version of these calculations and a definite answer to the problem, showing

that the explanation can be traced to the way the correlations are implemented.

To start explaining where the difference between both approaches comes from, one
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Table 2.5. s-shell nonmesonic rate F^/FA for A
2C from the relativistic model of Ref.

[RM92].

PC

PV

Total

FREE

0.456

0.177

0.633

f(r)

0.130

0.058

0.188

must explore the expression of the correlated Feynman amplitude. More details of the

calculation can be found in Ref. [PR95]. The starting point will be the uncorrelated

Feynman diagram for the AN-+NN transition mediated by the exchange of a pion

x * p 3 ^ ) r % l ( x ) A f f ( a ; - y)ypí(y)rs<Üp2(y) , (2.116)

where #pi(x) is the free baryon field of positive energy and A«(x - y) the pion propa-

gator. For the weak vertex the parametrization Tw = GFml(A + B7s) is taken, with

A=1.05 and B=-7.15 being empirical constants adjusted to the free A decay (see §

2.1.1). For the strong vertex, on the other hand, a pseudoscalar coupling Ts = #NN„75

is chosen.

The nonrelativistic procedure starts from the nonrelativistic reduction of the free

Feynman amplitude of Eq. (2.116) to determine the transition potential V(r ), and
defines the correlated potential by multiplying the obtained V(r) with a correlation
function /(r),

V(r) = V(f) ' / ( r ) . (2.H7)

In contrast, the relativistic approach given in Ref. [RM92] incorporates SRC by re-
placing in Eq. (2.116) the free pion propagator with:

, a r - y _> AT(x - y} . /(|f - jfl) (2J18)

and computing the decay rate starting from this correlated Feynman amplitude. Al-

hough both procedures are apparently similar, it was already noted in Ref. [PR941

l^Eq ¡2nil7¡!atÍVÍStÍC 1ÍmÍt °f Eq- (2'118) WaS n0t gÍVÍng the Same C0rrelated P°tential

studv t°± th, r0aCeS ear' t s —nient to

ng o re'±nm ? rmentUm SPaCe' and g° baCk t0 the mÍCrOSCOpÍC «^ °f *^-range correlat.ns. In the meson-exchange model, these correlations arise because of the
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Figure 2.7. Schematic model to include correlations in the OPE potential. Bare OPE

diagram (a) and OPE with simultaneous exchange of a heavy meson responsible for the

short-range repulsion (b).

simultaneous exchange of heavy mesons together with one-pion exchange. A simplified

picture including only one extra heavy meson is shown in Fig. 2.7. In the problem

studied here, the pion-exchange (dashed line) would correspond to the weak AN— >NN
transition, while the wavy line would correspond to a strong exchange of a heavy meson,

such as the omega meson. Taking into account this simultaneous exchange requires
the evaluation of the loop integral:

- q (2.119)

where the parity-conserving part of the pion-exchange amplitude has been chosen for

the discussion. The dots symbolize additional elements of the amplitude which are

not relevant for the present discussion, such as the intermediate nucleón propagators,
the propagator of the heavy meson and the vertices connecting the incoming spinors

with the intermediate ones. In this expression one can see that the matrix elements

of the 75 operators are evaluated between an external spinor and an intermediate

one which depends on the loop variable q. This is precisely what is obtained from

the nonrelativistic procedure based in Eq. (2.117), which first builds up the transition



48 Mode] for the A.N-+NN Transition

potential V(r) and then multiplies by /(r). The parity-conserving part of the correlated

potential is then:

/^7_™2 D „ , J3„ n—\q?

(2.120)

where the a¡q (i = 1,2) factors, related to the nonrelativistic reduction of the 75 matrix

elements, depend on the momentum carried by the pion and are inside the ^"-integration.

However, the procedure of Ref. [RM92], based on the replacement of Eq. (2.118),

leads to matrix elements of 75 that are evaluated between spinors of the external

particles and factorized out the q integral,

, J3„

(2.121)

where D(q) stands for the Fourier transform of the modified pion propagator (Eq.

(2.118)). This shows that this procedure leads to matrix elements of the 75 operators

independent on q rather than (/"-dependent. However, the diagram of Fig. 2.7, which

gives a microscopic interpretation for the origin of correlations, shows that the bare

interaction connects the final states with intermediate spinors which are <f-dependent.

The important point is that in the construction of the correlated amplitude the ver-

tices of the bare OPE (one-pion exchange) potential must enter the q integration as a

function of q instead of factorizing out as functions of the external variables.

From the microscopic model one concludes that the form of the correlated potential

given by the nonrelativistic calculations is the correct one, and that the origin of the

differences between the nonrelativistic and relativistic approaches is a too simplified

treatment of the correlations in Ref. [RM92] and not relativistic effects.

For completeness, and in order to illustrate more explicitly the differences between

both approaches, the expression of the nonrelativistic correlated potential in r-space

is given, as well as the potential corresponding to a nonrelativistic reduction of Ref.

[RM92]. As it has already been pointed out, the standard nonrelativistic approach gives

rise to a correlated potential of the form V(r ) = Vr(f)·/(r), where V(f) stands for the

uncorrelated potential given by Eqs. (2.51) to (2.54), and /(r) is the specific correlation

function used in the calculation. Within this approach, the different expressions for

each radial potential channel, in the OPE case, read:

- / 1 \ i r f>~tí"r i
V£\r) = KÍl} - /4 S(r) /(r) (2.122)OO \ / 33 <J r 7T ,(„„ \ / I J \ / \ /
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vW(r) A'w X «a e"""r f i 1 3 1 3 ï f MV T (r) AT 3^ ^r ^ 1 | ^r | Mi)f(r)

f/(7r)^\ Ji'W .. e " í 1 ! I ¿Y„\

(2.123)

/O 10/1\

After performing a nonrelativistic reduction and a Fourier transform of the correlated

Feynman amplitude for the relativistic approach (Eq. (2.116) with the substitution

(2.118)), the radial parts of the correlated potential in r-space equivalent to Ref. [RM92]

are given by the following expressions:

(2.126)

/(r) - — j-j . (2.127)

In deriving these expressions, some properties involving derivatives of the delta function

[PR95] have been used. By comparing Eqs. (2.124) and (2.127) one realizes that in the

approach based on Eq. (2.118) one obtains new terms in the potential, involving first

and second derivatives of the correlation function. This explains the different effect of

SRC on the AN—>NN decay rate discussed in this chapter.

In the same Ref. [PR95] there is a comparative study of the nonmesonic decay

width for the AHe hypernucleus. In this hypernucleus the A particle, in a Si/2 state, is

coupled to the ground state of the 4He (0+). The 4He core is described as four s-shell

nucléons in a harmonic oscillator potential with size parameter ON = 1.4 fm (which

reproduces reasonably well the 4He charge form factor). For the A-particle one takes

6 A = 1.85 fm, which reproduces the A separation energy in AHe, B\ = —3.12 MeV.

For this study, three different correlation functions are used: the gaussian correlation

/(r) = 1 - e-2/62 , (2.128)

with b — 0.75 fm, also used in nuclear matter calculations [MG84], the Bessel correlation

f ( r ) = 1 - jo(qcr) , (2.129)
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with a = 3 93 fm-1 [OS85], and the parametrization given by Eq. (2.115). These

functions are depicted in Fig. 2.8 and in Table 2.6 a comparison of the decay rate
of à He between both correlated potentials, the standard nonrelativistic prescription

(2 117) and the nonrelativistic reduction of the relativistic approach given by (2.118),
is made (without including form factors and final state interactions). This comparison

1.5

1.0

0.5

0.0
0.0 1.0 2.0 3.0

r(fm)

Figure 2.8. The AN correlation function as a function of the relative distance r. The
dashed, dotted and full line correspond to the Gaussian-type of Eq. (2.128), the Bessel-type
of Eq. (2.129) and the parameterization of Eq. (2.115), respectively.

is shown for the different correlation functions mentioned above. Examining the results
listed in Table 2.6 one can see that in the standard nonrelativistic calculations (Eq.
(2.124) in the table) the channel more drastically affected by correlations is the central
SS transition, due to the fact that our correlation function is such that /(r = 0) = 0.
f 1 "

evaluating the correlated potential as V(r ) -/(r) completely suppresses the delta piece
o the central SS part of the potential, which provides most of its contribution when
-RC are turned off. Although this suppression also takes place in the prescription
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given by Eq. (2.127), a larger central SS strength is obtained due to the additional

derivative pieces of the correlated potential. In order to help in the understanding of

these results, two figures will be shown. In Fig. 2.9, the radial integrand of the central

SS transition amplitude for both correlated potentials is plotted, while in Fig. 2.10

the radial integrand corresponds to the tensor transition amplitude. These integrands

have the form:

V^(r)]L(k0r) ,<D100(r; (2.130)

where L=0,2 and a=SS,T for the central and the tensor channels, respectively. A

relative momentum for the outgoing NN system of 1.97 fm"1 (corresponding to a back-

to-back kinematics) has been chosen. Because of the change of sign in the derivative

1.0

2
TO
0)

S

I

0.0

-1.0

-2.0
0.0 1.0

r(fm)
2.0 3.0

Figure 2.9. Integrand of the central transition amplitude, in arbitrary units, as a function

of the relative distance r. The solid and dotted lines correspond to the correlated potentials
(2.124) and (2.127) respectively, using the correlation function of Eq. (2.115).

of /(r) around 0.5 fm, one can see in Fig 2.9 that the correlated transition amplitude
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based on Eq. (2.127) (dotted line) shows large positive and negative contributions,

which do not cancel each other completely and end up giving an integrated central SS

rate much larger than that obtained from the integral of the nonrelativistic prescription

(2.124) (solid line). On the other hand, it is precisely this oscillatory behavior of the

correlated potential (2.127) which is the reason for the reduced tensor and parity-

violating rates, as shown in the last column of Table 2.6. Let us make some comments

on the tensor integrand that can be extrapolated to the parity-violating one, which is

not shown here. The positive and negative parts induced by the derivative terms in Eq.

(2.127) (dotted line in Fig. 2.10), tend to cancel each other giving rise to an integrated

rate which is considerably smaller than the one obtained with Eq. (2.124). Depending

somewhat on the correlation function used, the rates based on the correlated potential

(2.127) are a factor 2-3 smaller than those obtained with (2.124).

0.2
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o>
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oin

0.0
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Figure 2.10. The same as Fig. 2.9 for the tensor transitori amplitude.

The numbers given in the last column for the parametrization (2.115) are very

similar to the results quoted in the relativistic calculations of Ref. [RM92], where
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Table 2.6. AN-*NN decay rate of ^He for different correlation functions (in units of the

free A width).

FREE

SS

T

PV

TOTAL

0

0

0

0

.174

.495

.308

.977

Eq.

9.2

0

0

0

FREE

SS

T

PV

TOTAL

0

0

0

0

.174

.495

.308

.977

FREE

SS

T

PV

TOTAL

0

0

0

0

.174

.495

.308

.977

Eq.

2.2

0

0

0

/(r)

Eq.

1.7

0

0

0

/(r)

(2.124)

x 10~4

.309

.155

.465

/(r)

(2.124)

x 10~3

.434

.249

.685

-0-
(2.124)

x IQ-3

.448

.244

.694

= l-e-'

Eq.

0

0

0

0

•2/62

(2.127)

.028

.077

.059

.164

= 1 - jo(qcr}
Eq.

0

0

0

0

e-r'/a')n

Eq.

0

0

0

0

(2.127)

.082

.233

.156

.471

+ 6r2e-2/'2

(2.127)

.057

.159

.117

.333

the same correlation function is used. This fact corroborates that the origin of the

discrepancies between both approaches has nothing to do with relativistic effects and

is due to the prescription used to include the correlation function in the transition

amplitude.

2.5 Final State Interactions

Any realistic calculation on the weak decay of A hypernuclei has to take into account

that the two final nucléons emerging from the decay feel the influence of the medium
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in which they are moving. In our case, apart from the mutual influence between both

nucléons there also exists the residual interaction with the (A — 2)-particle system.
However, the most important kinematical contribution to the weak decay rate corre-

sponds to the situation in which the nucléons emerge back-to-back with the largest

possible relative momentum, which should be high enough for not being very sensitive

to the possible distortions produced by the residual nucleus. This is the reason why here

the effect of FSI will only take into account the mutual influence between the outgoing

nucléons, through a distorted wave function for the relative two-body motion. For this

purpose it is necessary to solve the reaction matrix equation in momentum space, from

which the wave function corresponding to the problem of two nucléons moving under

the influence of the strong interaction can be obtained. As strong interaction models,

the updated version of the Reid soft-core potential [Re68] and the Nijmegen NN one,

both of them given in Ref. [SK94], are used.

In § 2.3 comments on the mixing of the channels in the final relative state having

the same parity and same value of the total angular momentum, due to the tensor

component of the strong interaction (see Table 2.3), have already been made. We focus

our attention in how to obtain the correlated wave function describing the relative

motion between the two emerging nucléons. In order to obtain the correlated wave

function for the final NN relative state, the procedure described in Ref. [HT70] is
followed. The authors make use of a numerical matrix inversion method in order to

solve the coupled channel Schrödinger equation in momentum space. The method can

be applied to any nonsingular potential either local or nonlocal, central or noncentral.

The starting point is the relative two-body Schrödinger equation formulated in a time-
independent scattering process. Assuming the hamiltonian to be expressed as H =

HQ + V, where HQ is the kinetic energy operator and V the two-body interaction, the
Schrödinger equation will be given by:

(2.131)

or explicitly by:

r')*n(r') = £n*„(r ) ? (

where M stands for the nucleón mass, f = TI — r? for the relative distance between the

two nucléons and En for the total relative energy. If $ is a plane wave solution of the
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free Schrödinger equation with enery E, HQ$ = £<&, possible solutions for $ are:

I *(±)) =1 *) + F Ir . -V | *(±)) , (2.133)
EJ — tlQ ± 16

which in the limit V — > 0 must behave as | $) — »| $). One can easily check Eq. (2.133)

evaluating (E — H0) \ ̂ ^} and taking the limit e — * 0.

This is the known Lippmann-Schwinger equation, where the positive (negative)

solution corresponds to a plane wave plus an outgoing (incoming) spherical wave at

sufficiently large distances. If one takes the positive solution | (I/(+)), the infmitessimal

quantity -Me ensures the proper boundary conditions for obtaining a purely outgoing

scattered wave function from an incident plane wave. In higher-order Born approxi-

mation for scattering processes, one uses a transition operator T defined such that

V | ¥+)) = T | $> . (2.134)

Multiplying the Lippmann-Schwinger equation, for the positive solution, on the left by

V and using Eq. (2.134) one obtains:

(2.135)
h, — HO + if-

r |$) = V\*) + V A . T | $) , (2.136)
Li — HO + le

from where one gets an equation for the T operator

T = V + V - - - T . (2.137)
E-Ho + it ^ '

The standing solutions of Eq. (2.132) fulfill the equation:

\V)=\<Ï>) + P— i— V I * ) , (2.138)
& — HO

where the symbol P stands for the principal value. Similar to Eqs. (2.134) to (2.137),

one obtains:

I * ) = | $ ) + P-^-n-R 1 $ ) , (2.139)
& — HQ

where the reaction matrix R fulfills:

R = V + P-^—-R. (2.140)
Hi — tlQ
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The above equation can be solved in momentum space

, (2.141)

where E(k) = k2 ¡M is the kinetic energy of a pair of particles moving with relative

momentum k in their center-of-mass frame. The equation giving the correlated wave

function, $, for standing waves reads:

f
J

R(kSM's | k0SMs

E(k)-E(k0)

where $(fc; r*) = elhF is the uncorrelated wave function, x^s the spin function and R

the reaction matrix, appropriate for the description of the scattering of two-particles

leading to standing solutions for the relative wave functions. In the expressions above,

the conservation of spin (S) of the strong interaction has been taken into account. In

Eqs. (2.141) and (2.142), k0 stands for the relative momentum between the emerging

nucléons just after the weak transition occurs. Isospin is easy to incorporate at the

final step of our calculation multiplying the obtained correlated wave function by the

isospinor XTT • For the calculation it is convenient to write an expression similar to

(2.142) but using a partial- wave decomposition, working in the coupled scheme in which

L and S couple to J. Using this decomposition we can write [Jo87]:

*A;r)x?5 = E E E i¿'4^í¿,(t0,r)^Mi(¿o)
J, A/7 L,ML L'

x (LMLSMs\JMj} J í f ^ j ( f ) (2.143)

for the correlated wave function, and

= E '£iL'4*JL(k0r)6L,L,Y£ML(k0)YI,MÍ(f)xss

L, A//, L', M',
tJ

= E E EiL'**JL(kor)6LlvYZML(k)
J,Mj L,ML L'

x (LMLSMs\JMj) JvsAr] (2.144)

for the uncorrelated one. In the expressions above, jJsj(^} stands for the generalized

spherical harmonic which reads:

JvsÁr) = E (JMj I L'M'LSMS) KL,M-(r) XMS , (2.145)
A/i.A/5
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and JL(kor) represents the bessel function describing the free relative motion of two

nucléons with angular momentum L and relative momentum ko.

Inside the integral of Eq. (2.142) we have two functions with an angular dependence

that can be also expanded as before,

s

= E E iL47r jL(kr) Y¿ML(k]
J,Mj L,ML

x (LMLSM's\JMj}jl¡Jj(f) (2.146)

and,

R(kSM's \ k0SMs) = E E YL,M.L(k)(k-,L'Ml
LSM's\T\k0;L

HM'¿SMs)
L'M'L L"M'¿

X \f * ^ £•*« 1J. T ti Jlf II \ lv(j IL· mL v

= E E E YVMÍ(k)(L'M'LSM's\J'M'j)
J'M'j L'M'L L"M'¿

x (k-(L'S)J'M'j\T\k0;(L"S)J'M'j}

x (L"M'¿SMs\J'M'j) Y¿,,M,,(k0) . (2.147)

Combining all these terms inside the integral and carrying out the angular inte-

gration, we can easily find an expression for the partial-wave decomposed two-body

correlated wave function:

= jL(k0r] 8L,L,

^^,). (2.148,

These correlated wave functions $J
LL,(k0,r} will be used in Eq. (2.112) for each

channel coming from the weak transition and for each k0 value. As an example, the

correlated wave functions for several channels are displayed in Figs. 2.11 and 2.12.

The relative momentum used to compute the plots is fc0 = 1-87 fm"1. In Fig. 2.11

the 35'i — >3 DI coupled channel NN wave functions are shown, where the solid line

stands for the correlated wave function obtained when the Nijmegen93 NN interaction

is used, and the dashed line represents the resulting wave function for the Reid93
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NN interaction. There is also plotted the phenomenological correlated wave function

(dotted line), which corresponds to the use of a correlation function of the type (2.114).

Fig. 2.12 represents the same as Fig. 2.11 but for the uncoupled 15'o, 3Po-, lPi and 3P\

channels. How the different choice (Nijm93, Reid93 and phenomenological correlation)

affects the decay rate and other observables will be discussed in the next chapter.
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Figure 2.11. 35i —3 D\ coupled channel NN wave functions for a relative momentum of

ko = 1-97 fm""1, obtained with the Nijmegen93 (solid line) and the Reid93 (dashed line) inter-

actions. The dotted line represents the phenomenological correlated wave function discussed

in the text.
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3.0 0.0

r (fin)

Figure 2.12. Same as Fig.2.11 for the uncoupled %, 3-Po, ̂ i and 3Pt channels.





Chapter 3

Results

In this chapter, the results obtained for the nonmesonic decay of several hypernuclei

are presented and discussed, with special emphasis on the A
2C hypernucleus. These

results include the total nonmesonic decay rate in units of the free A decay FA, T/FA, as

well as other observables, such as the intrinsic lambda asymmetry parameter, OA, and

the neutron-to-proton ratio, rn/Fp, which are discussed separately. The contribution

of the different mesons included in the decay mechanism are given, with mesons having

the same isospin character being studied in pairs ((?r,p),(K,K*) and (T?,W)). The total

contribution, corresponding to the addition of all the mesons considered, is also shown.

Two different sets of strong coupling constants, corresponding to the JulichB group

and the Nijmegen one, have been used.

When analyzing the OPE contribution to the hypernuclear decay, two different

potentials are used in order to obtain the correlated wave function for the final two-body

NN state, the Reid93 and the Nijm93 NN interactions, as well as a phenomenological

way to include these final state interactions via an effective correlation function. For

the rest of the mesons and for the total calculation, only the results obtained with

the Nijm93 NN interaction are shown. All the values have been computed taking into

account correlations in the initial AN system (SRC), monopole form factors at each

of the vertices of the meson-exchange diagram (FF) and final state interactions (FSI)

in the final NN system. The rates corresponding to the different parity-conserving

61
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(PC) and parity-violating (PV) transition channels are also shown, as well as the total

nonmesonic rate F/FA, the asymmetry a A and the ratio Fn/rp for hypernuclei different

from the hypercarbon, A
JB and AHe, where the same techniques have been used.

3.1 TT-Exchange

The first meson discussed in this chapter is the pion. Results using only the OPE part

of the weak AN—»NN interaction are presented. On the one hand, one would expect

this meson to adequately describe the long-range part of the transition potential, while

on the other hand its contribution has minimal uncertainties since the weak AN?r vertex

is experimentally known. It is therefore a good starting point to assess the significance

of form factors as well as initial and final state correlations before including the other

mesons in the potential. The results of our calculations with OPE only are shown

in Table 3.1 where the nonmesonic decay rate of A
2C is given in units of the free A

decay rate (FA = 3.8 x 109). For the harmonic oscillator size parameters of the A

and the nucleón in the A
2C hypernucleus, the values 6 A = 1-87 fm and &N = 1-64

fm have been taken, respectively. The uncorrelated results (FREE) are compared

with computations which include initial AN short-range correlations, form factors,

and final state interactions separately for the (spin-dependent) central (SS), tensor

(T) (adding to a total parity-conserving contribution) and parity-violating potentials.
The free central term is reduced dramatically by the initial SRC, however, most of

the uncorrelated central potential contribution is in fact due to the ¿-function in the

transition potential which is completely eliminated by SRC. Without the ^-function,

the central part is reduced by about a factor of two. Including SRC, FF, and FSI gives

a negligible central decay rate. In contrast, the contribution of the tensor interaction

is reduced only 10% by SRC and by 20-35% once FF and FSI are included as well.

Therefore, the contribution of the central term amounts to less than 0.5% of the total
TT-exchange rate. This behavior has been found and discussed by other authors as

well [MG84,Du86,TT85]. Furthermore, our PV potential yields about 40% of the ir-

exchange rate, at variance with older nuclear matter results that reported either a

15% [Du86] or a negligible PV contribution to the rate [MG84] . The total one-pion-

exchange contribution to the nonmesonic decay rate of A
2C is 0.9 - 1.1 FA, depending

on the choice for FSI, which is a factor 1.5-2 smaller than the FREE value.

As discussed in previous sections, Refs. [PR94,PR95] demonstrate the sensitivity
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Table 3.1. 7r-exchange contribution to the AN—»-NN decay rate of ^2C

FREE SRC SRC+FF SRC+FF+FSI

phenom. Nijm93 Reid93

Eq. (2.114)

C

T

PC

PV

r/rA

rn/rp

PV/PC

ÖA

0.282

0.858

1.140

0.542

1.682

0.182

0.476

-0.594

3.4 x 10~3

0.781

0.785

0.447

1.232

0.113

0.570

-0.420

1.3 x 10~2

0.637

0.650

0.389

1.038

0.120

0.598

-0.506

4.2 x 10~3

0.685

0.689

0.421

1.110

0.118

0.610

-0.484

3.3 x 10~3

0.566

0.531

0.353

0.885

0.104

0.665

-0.238

4.0 x 10~3

0.579

0.547

0.345

0.892

0.100

0.631

-0.242

of the calculated decay rates to the form of the initial SRC. In particular, it was found

that older calculations using a phenomenological NN correlation function [MG84,HK86]

to simulate AN SRC in the initial state, rather than SRC based on a realistic YN

meson-exchange potential as it is done here, tend to overpredict the amount of initial

correlations. As shown in Table 3.1, the PV and PC rates are reduced by about 10% and

18%, respectively, when FSI are included via a correlation function based on a realistic

NN potential (last two columns), rather than the 8% and 6% increase obtained with the

phenomenological NN correlation function of Eq. (2.114). It is comforting to see that

the variation between different realistic NN interactions, such as the soft-core Nijmegen

and a modern version of the Reid potential, plays essentially no role. This behavior can

also be understood from Figs. 2.11 and 2.12, shown in the previous chapter, where a

comparison between the different correlated wave functions for several channels and at

a relative momentum of ko = 1.97 fm"1 has been done. The figures demonstrate that

the phenomenological correlated wave function overestimates the realistic NN wave

functions at intermediate distances (0.5 — 1.5 fm) while it underestimates them at

short distances. As a result, the phenomenological approach overestimates the decay

rate by about 20%. Including realistic final state correlations leads to an interference

between central and tensor transitions. For phenomenological FSI the central and
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tensor contributions to the total rate add incoherently, as can be seen in Table 3.1.

Once a realistic NN potential is used this incoherence is replaced by a destructive

interference, due to the mixing of the channels by the strong force. While this is

only a small effect for the pion due to the small size of the central potential term,

this interference is more significant for the vector mesons, where the central transition

amplitude is comparable in size and even larger than the tensor term.

The second quantity of interest displayed in Table 3.1, which is sensitive to the

isospin structure of the transition amplitude, is the neutron- to proton-induced ratio

Fn/Fp. Noticeable is the smallness of the ratio, which is due to the Pauli Principle

that suppresses the final T = l, L = 2, 5 = 1 state with its antisymmetrization

factor (1 — ( — l)L+s+T). That excludes the tensor transition in the neutron-induced

rate, which gives rise to nn (T = 1) pairs, and it is precisely this tensor piece which

constitutes the largest part of the OPE diagram. This argument holds only for relative

AN S-states. For nucléons in the p-shell there exits a relative AN P-state which con-

tributes a small but non-zero amount of the tensor potential to the neutron-induced

decay. However, only about a 10% of the total decay rate comes from this relative P-

state. Note that including initial SRC, FF and realistic FSI reduces the rn/Fp further

by about 40%. This is due to the elimination of the central rate for which we obtain a

value for Fn/rp of about 1/3 (not shown in the table). In principle, one would expect

Fn/Fp =1/2 for the central term due to the statistical factor of 1/2 that accounts for

two identical particles in the final state. For \2C this number becomes 1/2.4 since we

have 5 neutrons and 6 protons. The remaining difference comes from different 15'o

(T = 1) and 3.?i (T = 0) final state wave functions which enter the various spin-isospin

channels and, therefore, lead to slightly different An—»nn and Ap—>np central transition

amplitudes.

The suppression of the central potential term due to SRC, FF and FSI also ex-

plains the difference between the uncorrelated and the fully correlated ratio of PV to

PC amplitudes, PV/PC, shown in Table 3.1 as well. More relevant than this unob-

servable quantity, however, is the asymmetry parameter, ÖA, defined in Eq. (1.23).

This quantity, which measures the interference between the PC and the PV part of

the amplitude (see § 1.2), can be accessed experimentally in contrast to the PV/PC

ratio which is merely of theoretical interest. We find that this asymmetry parameter is

only mildly sensitive to initial SRC and FF but changes by more than a factor of two

when realistic FSI are included. This observable thus clearly demonstrates that for its
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accurate prediction the use of a realistic NN potential to describe the interactions in

the final state is imperative. Below we use realistic FSI generated with the Nijmegen

potential for all results that include final state correlations.

Comparing the results given in the present work with older nuclear matter com-

putations [OS85, MG84,Du86,DF96] one can point out that the fully correlated total

rate in nuclear matter is predicted to be in the range of 1.85—2.3, thus overpredict-

ing our shell-model calculations by more than a factor of two. When a Local Density

Approximation (LDA) is performed [R094,OS85] the rate reduces to F^ = 1.45 FA

for A
2C. Although this value is further reduced when the same A wave function as in

the present work is used, the LDA result is still larger by about 30%. However, the

sensitivity to the Landau-Migdal parameter, which measures the initial state correla-

tions, is greater than expected. The LDA calculations [R094,OS85] used #A = 0.52,
but a more appropriate choice of this parameter (around g'A = 0.2) corresponding to a

correlation function of the type 1 — jo(<?c7") with cc=780 MeV (used in several nuclear

matter calculations), shifts the nonmesonic rate value from 1.45 FA, to 1.05 FA, very

close to the finite nucleus result given in the present work. In view of this argument

one can not assert that the differences between the LDA approach and the finite nuclei

results are due to the breakdown of the LDA description for s- and p-shell nuclei, but

are closely related to the appropriate choice of the Landau-Migdal parameter.

We conclude the discussion of the OPE by assessing the role of the relative AN P-
state contributions. In shell-model calculations such terms naturally arise for nucléons

in p-shell and higher orbitals when one transforms from shell-model coordinates to
the relative AN two-body system. For s-shell nucléons, where one has an s-wave in

both the relative and center-of-mass (CMS) motions, the transition amplitude gives

a maximum contribution at the back-to-back kinematics, ki = —k2, yielding a total

CMS momentum K = 0. For p-shell nucléons one would expect the contribution from

the initial relative AN S-state to be suppressed compared to that of the relative P-state

since the CMS harmonic oscillator wave function is then a P-state and thus zero at

K = 0. Surprisingly, one finds that after integrating over all kinematics with k\ ^ — £2,

this relative L = 0 term contributes about 90 % to the p-shell rate [BR92]. Thus, once

the whole phase space is included, most of the total decay rate of p-shell nucléons

still comes from the relative AN S-state. Furthermore, neglecting the relative P-state

contribution leaves the ratio rn/rp unaltered while the asymmetry parameter OA is
reduced by 10%.
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3.2 7T- and p-Exchange

In this section, one starts examining the role of additional mesons and their contribution
to the different observables in the weak \2C decay. The p meson is the isospin partner
of the pion, so it seems to be a good choice, in summing up the contribution of mesons
different than the pion, to analyze first the p and the x + p contributions to these

observables.

As is well known, in terms of hadronic degrees of freedom, the AN->NN process
initially had been described with a one-pion-exchange potential since the weak AN?r
vertex is well constrained from the free A — > NTT decay. The fact that the final nucléons
emerge with a momentum of around 400 MeV/c suggests that short-range effects may
be important. As discussed above, one is faced with the immediate difficulty that none
of the weak couplings involving heavier mesons can be accessed experimentally. Thus,
one is required to resort to models which in this case involve considerable uncertainty.
Many theoretical studies [MG84,TT85,Na88] have investigated the contribution of a
more massive meson, the p, in the exchange mechanism yielding very different results
due to the different models employed for the weak AN/3 vertex. However, all works
until now have only included the tensor part of the parity-conserving ¿»-exchange term,
in part motivated by the fact that the central potential of the 7r-exchange term gives
a negligible contribution compared to the tensor one. In Ref. [PR96] it is shown that
this is not the case. For this meson, the central term is not only negligible but larger
than the tensor one. This can be traced to the fact that the /»-exchange diagram has
a much shorter range than the ;r-exchange potential.

Table 3.2 shows the present results for the /j-meson exchange alone as well as for
the w- and />-exchanges combined. Since both the AN?r- and the AN/j-couplings are
obtained within the same model there is no sign ambiguity. As noted before (§ 2.1.2),
the central potential can now be divided into a spin-independent (C) and a spin-
dependent (SS) piece, which are shown separately in the table. In the SS piece it is
found that, in contrast to the pion case, the factor m2

p in front of the Yukawa function
of Eq. (2.52) enhances this term which then becomes comparable in magnitude to the
piece containing the delta function. The two terms interfere destructively and yield a SS
central part that is about half the size of the tensor contribution. We briefly point out
here some of the features of the central and tensor potentials given in Ref. [PR96]. To
understand the origin for the different ratio of central to tensor transiton strengths in
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Table 3.2. TT- and ^-exchange contribution to the AN—>-NN decay rate of A
2C. The values

between parentheses have been calculated using the weak coupling constants by Nardulli

[Na88].

C ( C )

C (SS)

C (Total)

T

PC

PV

r/rA

rn/rp

aA

7T

0.003

0.003

0.566

0.531

0.353

0.885

0.104

-0.238

P

0.020 (0.019)

0.014 (0.016)

0.045 (0.047)

0.027 (0.032)

0.021 (0.023)

0.008 (0.096)

0.029 (0.120)

0.076 (0.097)

0.036 (0.046)

7T + p

0.020 (0.019)

0.006 (0.007)

0.028 (0.030)

0.373 (0.358)

0.445 (0.428)

0.414 (0.635)

0.859 (1.063)

0.095 (0.063)

-0.100 (-0.008)

the 7T- and />-exchange mechanisms, the integrands of the SS central (without the delta

function) and tensor amplitudes are shown in Fig 3.1. A fixed outgoing momentum of

k0 = 1.97 fm"1 has been chosen for the relative final wave function. These integrands
have the form of Eq. (2.130) given in § 2.4, but for the case in which SRC, FF and

FSI are not included. Starting from an initial AN relative S-state, the tensor potential

amplitude is governed by the Bessel function J2(k0r) (S -» D transitions), describing

the NN motion in the final state. Since j2 vanishes at the origin it eliminates strength

from the tensor potential at short distances. Due to its shorter range, the tensor

contribution of the p is reduced by J2 more than in the case of the pion. On the other

hand, the central piece is governed by J0(k0r) which is not suppressed at short distances

of the potential. However, due to the smaller value of mw, the function J0(k0r) oscillates

orce in the effective range of the pion central potential, leading to a reduction of its
central contribution relative to the tensor one.

The effect of including SRC is to reduce both the C- and the SS-central parts of

the ^-meson contribution without ¿-function by almost a factor of 10, compared to a

actor of 2 in the TT case, reflecting the much shorter range of the p-exchange diagram.

Similarly, the tensor interaction of the p is reduced by a factor of 2.5, compared to a

0% reduction in the TT case, as soon as SRC are included. In order to illustrate these



68 Results

-0.01

Figure 3.1. Integrand of the free transition amplitude, in arbitrary units, at fixed outgoing

relative momentum (k0 = 1.97 fm"1) for the spin-dependent central potential (SS) without the

é function (solid line) and for the tensor potential (dashed line). Upper part: pion-exchange.

Lower part: rho exchange.

results Fig. 3.2 shows the integrands of the tensor amplitudes for the TT and p mesons

separately. The fixed relative outgoing momentum is the same as in Fig. 3.1. The solid

line corresponds to the free case, in which SRC, FF and FSI are ignored. Clearly, the

integrand of the /9-exchange peaks sooner (« 0.5 fm) and drops off faster, reaching zero

at around 2 fm, compared to the integrand for the 7r-exchange which peaks around 1

fm and drops to zero around 3 fm. It therefore comes as no surprise that including

SRC leads to a much stronger reduction for the p than for the TT contribution. The



¡3.2 7T- and p-Exchange 69

dotted line in Fig. 3.2 stands for the tensor integrand when all the ingredients (SRC,

FF and phenomenological FSI) have been taken into account. This dotted line further

confirms that including SRC, FF and FSI have different effects depending on the meson

considered.

0)

<

0.4

0.2

0.0

-0.2

£ 0.004
CO

*•* 0.002

0.000

-0.002
0.0 1.0 2.0

r(fm)
3.0 4.0

Figure 3.2. Illustration of the effects of SRC, FF and FSI in the tensor transition amplitude.

The solid line shows the free tensor integrand and the dotted line includes the effects of SRC,

FF and FSI. Upper part: pion-exchange. Lower part: rho-exchange.

One may think that, due to the much shorter range of the p potential, it would be

very sensitive to the details of the short-range correlation function. This is indeed the

case, so different values for the total p rate [PR96] are obtained when using a realistic

correlation function obtained from a G-matrix calculation with the Nijmegen soft-core



7Q Results

or hard-core interaction. However, as soon as form factors and final state interac-

tions (which provide further suppression at short distances) are included, the rates get

closer and similar to the value obtained with our spin-independent parametrization

(Eq. (2.115)).

The inclusion of FF and FSI further reduces both the central and tensor rates by

substantial amounts. As it is evident from Table 3.2, the final result of the central p

contribution exceeds the p tensor term by almost a factor of two. Due to the strong

destructive interference induced by the FSI between the tensor and the central part,

the total PC rate turns out to be smaller than either term alone.

In terms of the combined TT and p contribution one sees a destructive interference

between the two mesons for the PC rate but constructive interference for the PV decay

mode. While the TT-only PC rate is reduced by 16% when the p is added, the 7r-only PV

rate is enhanced by about 17% even though the /»-only PV rate is very small. These

interferences lead to a combined TT + p total decay rate that is very similar to that of

the 7T alone. The neutron- to proton-induced ratio rn/Fp, on the other hand, is slightly

decreased. This may at first be surprising since the tensor rate of the /9-exchange is not

as dominant as it is in the TT case. As noted in Ref. [PR96], this is due to an interference

pattern of the central C and SS amplitudes which is destructive for the n-induced and

constructive for the p-induced mechanisms. This yields a central rate which is basically

p-induced. The strongest change can be seen in the asymmetry parameter <ZA which

is reduced by more than a factor of 2. This reduction can be traced to the above

mentioned interference pattern between the PV and PC rates which are measured by
this observable.

The p-meson was the first of the heavier mesons which was included in several earlier

calculations. Our results for the rates calculated with this meson are quite different

from previous studies [MG84,TT85,Na88]. This is not only due to the omission of the

central potential in the ^-exchange diagram, but even more so to the different models

used for the weak AN/3 coupling constants. The first attempt was due to McKellar

and Gibson [MG84] who performed a calculation in a nuclear matter framework. They

evaluated the weak AN/9 couplings using SU(6) and, alternatively, a factorization model.

In their approach, which neglected the PV couplings, the phase between the v and p

amplitudes was not determined and their final results varied dramatically with their

different models for the weak coupling constants. In a more recent calculation [Na88],

Nardulli obtains the PC couplings in a pole model approach similar to the one used
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in the present work. Besides the ground state baryon pole the Nardulli work includes

the |* baryon resonance pole terms as well as K*-pole contributions that appear in

Refs. [DF96,To82] but have been omitted here. The weak baryon-baryon transition

amplitudes for the resonance poles are taken from a pole model analysis of hyperon PC

pion decays which uses an F/D ratio of —1 for the weak baryon transition amplitudes

and adjusts the overall coupling to the experimentally measured p-wave ir decay rates.

As pointed out in Ref. [MS95] the most serious problem with this fit is that it employs

a K—> 7T weak transition amplitude in its K-pole graphs that is about an order of

magnitude larger than the strength extracted from the weak kaon decay mode K—>

7T7T [Do86]. The K'-pole contributions are calculated using a simplified factorization

approach in which a number of terms are neglected [MS95]. The PV couplings of Ref.

[Na88] are computed in a pole model approach that includes baryon resonance poles

with negative parity, belonging to the (70,1~) multiplet of SU(6). In order to obtain

the weak baryon transition amplitudes the experimental hyperon s-wave TT decays are

used as input. Therefore, his approach for the PV weak AN/9 vertex is considerably

different from the analysis used in this study. For the sake of comparison, Table 3.2 also

lists the p term calculated with Nardulli's weak coupling constants. The PC transition

potentials turn out to be very similar in magnitude while the PV rate is larger by

more than a factor of 10 for the p alone. This increase enhances the IT + p total decay

rate by about 25%, while the rn/Fp and OA are reduced by roughly the same amount.

One should point out that the close agreement in the PC terms is fortuitous since the

baryon resonance pole terms which are not present in our approach contribute about

30% to the weak ANp tensor coupling of Ref. [Na88], From this comparison it becomes

obvious that there is considerable uncertainty in the determination of the weak vector
meson vertices.

3.3 Other Mesons

In this section, the contribution of the isovector K and K* mesons, as well as the

isoscalar r; and uj mesons, to the different observables in the weak decay of A
2C are

explored within the same OBE model.

Most of the calculations performed until now have not included these extra mesons

and have restricted the study of the hypernuclear decay to the consideration of the TT

and p exchanges in the weak transition. However, some relativistic calculations [RB94]
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worked out a different study of the decay mechanism exchanging the same set of mesons

in \2C. Furthermore, other treatments of the nonrelativistic approach in nuclear matter

calculations have also considered additional meson exchanges [DF96].

3.3.1 K- and K*-Exchange

The kaon is the lightest meson after the pion with a strong coupling constant gANi< °f

comparable magnitude to <7NNîr but of opposite sign. Its contribution to the total decay

rate is the largest one among all the heavier mesons, about 15% of the TT term. The K

(and the K*) can contribute to both the T = 0 and T = 1 weak AN—»-NN transition

potential and therefore has two independent couplings, CK and DK (see § 2.1.1). Due

to the special isospin structure of this meson, it was suggested [GÍ89] that including

its exchange will strongly influence the Fn/Fp ratio. Using a simple schematic model

that ignores the spin structure it was shown that the ratio Fn/rp could be estimated

with the expression
•p A , A 2

(3.1)rP
where AO and AI are the isoscalar and isovector coupling constants, respectively, which

in our case are given by:

A0 = Y + £)K (3-2)

* = Y " (3'3)

With the PV values of Table 2.2 (§ 2.2), one obtains from Eq. (3.1) the value

Fn/Fp = 4.6, confirming the result quoted in Ref. [Gi89]. However, the value Fn/rp =

0.23 is obtained when the PC coupling constants of Table 2.2 are used. The complete

result, which considers the spin structure and includes both PC and PV amplitudes,

turns out to be Fn/Fp = 0.26 as shown in Table 3.3. This much smaller result suggests

that one cannot draw conclusions about the ability of the strange mesons to drastically

increase the neutron-to-proton ratio. Moreover, when this ratio is calculated using PV

and PC amplitudes only, but retaining the spin dependence, the values 1.69 and 0.03

are obtained, respectively, far away from the estimates made above using Eq. (3.1).

Note that, as shown by Dalitz [DR62], the AT = 1/2 rule requires the ratio Fn/Fp to

be smaller than 2 for any meson exchange.

As we can see in Table 3.3, the Fn/Fp ratio for the kaon only is larger than the

corresponding value for the pion by a factor of 2.5, while the asymmetry parameter is
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very small. In § 2.2 it was pointed out that our framework for the weak baryon-baryon-

meson coupling constants assumes the validity of SU(3) (and SU(6) in the case of the

vector mesons). No attention has been paid to the effects of SU(3) symmetry breaking

which is known to be of the order of 30%. These effects have been addressed in a

recent work by Savage and Springer [SS96] in the framework of next-to-leading order

chiral pertubation theory (xPT). They point out that understanding the weak NNK

vertex could elucidate a problem regarding the nonleptonic TT decay of free hyperons.
While the PV (s-wave) amplitudes of these AS1 = 1 decays are adequately reproduced

at tree level, the corresponding PC (p-wave) amplitudes cannot be well described using

coupling constants from the s-waves as input. A one-loop calculation of the leading

SU(3) corrections [Je92], performed in xPT, found that these loop corrections can

change the tree level prediction of the p-wave amplitudes by a disturbing 100%, thus

raising questions about the validity of xPT in this sector. As an alternative it was

suggested [Je92] that large cancellations may occur between tree-level p-wave TT decay

amplitudes which would magnify the SU(3) breaking effects. The one-loop corrections

to the weak NNK vertex found in Ref. [SS96], on the other hand, modify the tree-level

p-wave amplitudes by only up to 30%. If an experimental signature for these SU(3)
corrections could be found in the nonmesonic decay it would provide insight into the

applicability of x?T to these reactions. Table 3.3 shows the results of our calculations

performed with the Savage-Springer weak NNK couplings. As expected, the kaon rates
are roughly a factor of two smaller since the improved constants are reduced by about

30%. The values of the Fn/rp ratio and the asymmetry, on the other hand, are barely

affected because all pieces of the transition amplitude are reduced by about the same
amount and the reduction cancels out in the ratio.

Among the vector mesons, the K* meson is the heaviest one exchanged in our

weak decay mechanism, with a large value of the weak NNK* and strong ANK* tensor

couplings, which makes its contribution more important than the rest of the vector

mesons, either the p or the u. The central and tensor potential contributions are very

similar in size, however, due again to the interference generated by the realistic FSI
that mixes S and D states, the total PC rate turns out to be of the same magnitude.

The PV rate is significantly greater than the corresponding rates for the p- and the
w-exchange contribution. This is due to the large value of the PV coupling constant.
The total K*-only decay rate (0.06) is seen to be about half of the K-only rate but

twice as large as the p- and w-only rates. In view of this result, the consideration of
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Table 3.3. K- and K*-exchange contribution to the AN-^NN decay rate of \2C. The

values between parentheses have been calculated using the the NNK weak coupling constants

obtained from next-to-leading order in x^T [SS96].

C ( C )

C(SS)

C (Total)

T

PC

PV

r/rA

rn/rp

ÖA

K

—

0.004 (0.002)

0.004 (0.002)

0.083 (0.038)

0.093 (0.044)

0.040 (0.018)

0.133 (0.062)

0.263 (0.272)

-0.080 (-0.090)

K*

0.019

0.092

0.038

0.038

0.037

0.023

0.060

0.500

-0.192

K + K*

0.019 (0.019)

0.130 (0.122)

0.063 (0.058)

0.015 (0.005)

0.082 (0.050)

0.091 (0.061)

0.173 (0.111)

0.647 (0.760)

-0.426 (-0.532)

other mesons different than the pion and the rho is clearly of great relevance.

For the Fn/rp ratio we get a value of 0.5, as we can see in Table 3.3, about five times
larger than that for the pion-exchange ratio. This is due to the relative magnitude of

the central term in the PC rate. Both central and tensor channels give now similar

contributions, despite the fact that for s-shell hypernuclei there is no n-induced channel
contributing to the tensor transition. This fact illustrates in a dramatic way how the

different isospin structure of the various mesons can affect the ratio Fn/rp. With

respect to the asymmetry parameter, for K*-meson exchange one finds a value which
is more than twice the one corresponding to the kaon.

Next, we look at the sum of both, K and K*, contributions. As we have seen in Table
3.3, even though the K* rate is around half the K contribution, the K + K* rate is only
slightly larger than the corresponding K rate. This is due to the strong interference

between both mesons. We can see the effects of this interference by looking at the
separated channels. For instance, the PV rate is more than twice the K-only result

and, as a consequence, the asymmetry parameter is enhanced dramatically. The Fn/Fp
ratio which turns to be quite large, seems to go in the favorable direction, although

it remains to be seen how the interference between all the mesons actually affects the
final results for the observables.
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Table 3.4. 77- and w-exchange contribution to the AN—*NN decay rate of A
2C.

C(C)
C(SS)

C (Total)

T

PC

PV

r/rA

iyrp

aA

n
—

0.001

0.001

0.005

0.006

0.003

0.009

0.383

-0.114

a;

0.045

0.009

0.036

0.004

0.024

0.002

0.026

0.235

-0.086

Ï] + U>

0.045

0.016

0.036

1.5 x 10~4

0.035

0.005

0.041

0.183

-0.134

3.3.2 77- and a;-Exchange

The rç-meson exchange contribution, which is the smallest of the different mesons in-

cluded, has an NN»/ coupling constant not well determined but much smaller than

both £fNN7r and <7ANK. In this work, we use the value of the Nijmegen potential which is

#NNi) = 6.4 even though the NN phase shifts are very insensitive to this coupling. In

Table 3.4 our results for the exchange of this meson are shown. The general behavior of

the r?-meson is characterized by a negligible central term, a dominant tensor potential

and a PV rate about half of the size of the tensor term. That resembles the OPE

contribution, at least, at the level of the rates. The Fn/rp ratio on the other hand, is

almost a factor of four larger than the ratio corresponding to the pion. This can be

understood by the fact that the ^-exchange potential does not have a charge exchange

term for the proton induced decay due to its isospin structure.

In general, one can see that the contribution of the 77 meson to the different chan-

nels of the transition is insignificant, due in part to the smaller value of the coupling

constants in comparison to the other mesons and also to the absent exchange contri-

bution for Pp. In any case, the results obtained for the neutron-to-proton ratio and

the asymmetry parameter, justify a priori the inclusion of the 77 meson in the present

calculation.

With respect to the w-meson exchange we point out that the size of tensor and
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vector couplings for the strong NNw vertex are opposite in comparison with the NN/>

one. Here it is the tensor coupling which is relatively small and the vector one which is

large. This produces a much larger central spin-independent contribution with respect

to the other PC channels. Even though we obtain a different magnitude of the central

and tensor channels compared to the values obtained for the p meson, at the end one

gets a value for the PC rate which is very similar to the /^-exchange case. A final

remark about the small PV rate should be made. The same is true for the p-exchange

contribution. The small size of the weak ANu; coupling constant is the reason for that.

No other models are available for weak vertices involving this meson.

3.4 The Full Weak One-Meson-Exchange Poten-

tial

To conclude this section, the effect of including all the mesons discussed before in the

weak decay observables is explored. For this purpose and in order to begin the discus-

sion, in Figs. 3.3 and 3.4 the contribution of the different mesons to the integrand of

Eq. (2.112) for relevant transition channels are shown. Fig. 3.3 displays the tensor

transition 3S\ —> 3D\ (T = 0) of the PC amplitudes since it yields the most important

contribution for pseudoscalar mesons and gives rise to important interference effects

when the contributions of the mesons are added in pairs of identical isospin. As is evi-

dent from the figure, the pion-exchange contribution dominates, not only in magnitude

but also in range, as it should be, a consequence of the pion being the lightest meson.

As expected, the kaon provides the second-largest contribution with a range somewhat

less than that of the pion, followed by the heavier mesons with an even shorter range.

Note that the contribution of each isospin-like pair [(TT,/)) , (K,K*), (»?,<*;)] interferes de-

structively, thus the large tensor contribution of each pseudoscalar meson is partially

cancelled by that of its vector meson partner, an effect that can also be explicitly seen

in Tables 3.2, 3.3 and 3.4, discussed before. The integrands of the central transitions

are not shown, since they are very small for the pseudoscalar mesons.

Significant interferences are also observed for the integrands of the PV transitions
35"i -> *Pi (T = 0) and 3Sl -» 3Pj (T = 1), shown in Fig. 3.4. Again, the pion is found

to be dominant among the mesons in the T = 0 transition, while the contribution of

the other mesons play a more important role, relative to the pion, in the T — 1 channel.

The different observables characteristic of the weak decay, including a comparison
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C
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Figure 3.3. Contribution of the different mesons to the integrand of the 35i —3 D\ (T=0)

correlated weak transition amplitude.

between the results obtained with the Nijmegen coupling constants with those obtained

using the Jülich couplings at the strong vertices, are given in Tables 3.5 and 3.6.

Although in principle the strong couplings also affect the PC weak vertices through

the pole model, the goal here is to assess, for one particular model of weak couplings,

the effect of using strong coupling constants from two different YN potentials which fit

the hyperon-nucleon scattering data equally well.

The results in Table 3.5 again demonstrate the significance of the short-range corre-

lations and form factors in the nonmesonic decay. Adding the heavier mesons without

form factors, SRC and FSI (column FREE) leads to a total rate that fluctuates signifi-

cantly, with the additional mesons giving an appreciable contribution to the TT-exchange
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T=0 T=l

Jl

K
K*

ço
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r (fin)
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Figure 3.4. Same as Fig. 3.3 for the ?V 3Si -l PI (T=0) and 35i -3 PI (T=l) transition

amplitudes.

rate, specially in the case of the Jiilich couplings. This behavior is considerably sup-

pressed by short-range effects, as shown in the second column. The rate is especially

sensitive to the inclusion of the strange mesons. While including the p-rneson has al-

most no effect, the addition of kaon-exchange reduces the total rate by almost 50%

when the Nijmegen strong couplings are used, and a little less when using the Jülich

couplings. The reduction is mostly compensated by the addition of the K*, yielding,

in the Nijmegen case, a rate 15% below the pion-only decay rate. The situation is

similar for the rj and u mesons and their combined effect on the rate is negligible.

Thus, with Nijmegen couplings adding the heavier mesons gives a reduction of only

15%. The situation is slightly different when the Jülich strong coupling constants are

employed; their omission of the rj and their larger K* and u; couplings lead to a total

rate 15% larger than the pion-only rate. This indicates that the results are sensitive to

the model used for the strong vertices, although both results are consistent with the

present experimental values. This sensitivity to the strong coupling constants is un-

fortunate since it will certainly complicate the task of extracting weak couplings from

this reaction. Improved YN potentials which narrow the range of the strong coupling
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Table 3.5. Free and fully correlated nonmesonic decay rate of \2C in units of the free A

decay rate (F^). The values between parentheses have been calculated using the JülichB

coupling constants at the strong vertex.

FREE SRC+FF+FSI

7T

+P

+K

+K*

-H

1.682 (1.682)

2.055 (2.325)

1.336 (1.699)

2.836 (3.821)

2.467 (3.821)

0.885 (0.885)

0.859 (0.831)

0.497 (0.506)

0.760 (0.902)

0.683 (0.902)

2.301 (4.338) 0.753 (1.023)

weak

NNK-couplings 0.844 (1.104)

from x'PT [SS96]

constants are required to reduce this uncertainty. Table 3.5 also shows the results ob-

tained when the NNK weak coupling constants derived in next-to-leading order x?T

[SS96] are used. Due to the smaller value of the coupling constants, the effect of the K

meson is reduced, enhancing the accumulated rate and thus increasing the total rate
by about 10%.

In Table 3.6 the values for other observables in the weak decay of j^C are presented.

They include the accumulated neutron-to-proton ratio, rn/Fp, and the asymmetry

parameter, ÖA- The ratio between the PV and the PC partial rates is also given which,

even though it is not an observable, may help one to understand the behavior of other

quantities, such as the asymmetry, or it can be useful in the comparison with other
works.

The results for the ratio of the neutron- to proton-induced partial rates rn/Fp,

shown in Table 3.6, are, as expected, quite sensitive to the isospin structure of the

exchanged mesons. It has been known for a long time that pion-exchange alone pro-

duces only a small ratio [MG84]. While the role of the p is limited, it is again the

inclusion of the two strange mesons that dramatically modifies this partial ratio. In-
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Table 3.6. Weak decay observables for \2C. The values between parentheses have been

calculated using the JülichB coupling constants at the strong vertex. _

rn/rp PV/PC aA

w 0.104 (0.104) 0.665 (0.665) -0.238 (-0.238)

+p 0.095 (0.096) 0.930 (1.137) -0.100 (-0.052)

+K 0.030(0.029) 2.413(3.206) -0.138 (-0.074)

+K- 0.049 (0.070) 1.797 (1.968) -0.182 (-0.202)

+7? 0.058 (0.070) 2.249 (1.968) -0.200 (-0.202)

0.068 (0.109) 2.077 (1.675) -0.316 (-0.368)

weak
NNK-couplings 0.080 (0.108) 1.678 (1.436) -0.302 (-0.350)

from xPT [SS96]

eluding the K-exchange, which interferes destructively with the pion amplitude in the

neutron-induced channel (see, for example, the T = l PV transition amplitudes of Fig.
3.4), leads to a reduction of the ratio by more than a factor of three. The K*, on the
other hand, adds contructively. Again, an indication of this behavior can be seen in
Figs. 3.3 and 3.4. In the T = 1 PV channel, relevant for the n-induced rate, the K and
K* amplitudes have the same sign, whereas in both T = 0 channels the interference
between the two strange mesons is destructive and, as a consequence, the p-induced
rate is lowered with respect to the n-induced rate. However, this constructive addition
is not enough to restore the Fn/rp ratio to the TT + p value. Using the Nijmegen strong
coupling constants leads to a final ratio that is 34% smaller than the pion-only ratio,
while using the Jülich couplings leaves this ratio unchanged, due again mostly to their
larger K* and u> couplings. Employing the weak NNK couplings calculated with xPT
has the effect of increasing the rn/Fp ratio by 17% with Nijmegen couplings while the
ratio remains unchanged for the Jülich model.

As it has been noted before, one expects the addition of the strange mesons to
considerably change the value of the Fn/Fp ratio. This is indeed true and although the
desired change should increase the ratio, at the end, the inclusion of both mesons, the
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K and the K", leads to a much smaller ratio than expected.

Table 3.6 also presents the unobservable ratio of PV to PC rates to aid in the

comparison with other theoretical calculations. Again, adding the strange mesons

produces the largest effect, specially when using the Jiilich strong couplings. The final

PV/PC ratio is larger by more than a factor of two compared to the pion-only ratio.

The nuclear matter results quoted in Ref. [DF96] are of the order of 1 and, therefore,

closer to the results obtained in this work with the Jülich model.

The intrinsic asymmetry parameter, OA, shown in the same Table, is also found

to be very sensitive to the different mesons included in the model. This is the only

observable which is changed dramatically by the inclusion of the /9, reducing the pion-

only value by more than a factor of two (and a factor of four when strong Jülich

couplings are used). Adding the other mesons increases (ÏA, leading to a result about

30% larger than for 7r-exchange alone in the case of the Nijmegen couplings and 50%

larger for the Jülich model. The effect of using the weak NNK couplings from x?T is

very small for this observable.

3.5 Other Hypernuclei and Comparison with Ex-

periment

Our final results for various shell-model hypernuclei are presented in Table 3.7. The

total nonmesonic decay rate, F/FA, the neutron-to-proton ratio Fn/Tp, the fraction

of the proton induced decay rate to the total decay rate, FP/F, the intrinsic lambda

asymmetry parameter, <ZA, and the asymmetry parameter A(Q°) (Eq. (1.20)), are

shown separately for AHe, A
XB and A

2C.

An overall agreement has been found between our results for the nonmesonic rate

and the experimental values, specially when the x?T weak couplings for the K meson

are used, which yield somewhat larger rates. It is convenient to remind here that, the

nonmesonic decay rate presented for the AHe hypernucleus would be slightly reduced

once one considered dynamical effects tied to the short-range AN repulsion, which

pushes the A wave function to the surface of the nucleus [SN93].

It has been the hope for many years that the inclusion of additional mesons would

dramatically increase the ratio of neutron- to proton-induced rates. However, the op-

posite is found to be true. The final ratio greatly underestimates the newer central

experimental values, although the large experimental error bars do not permit any défi-
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Table 3.7. Weak decay observables for various hypernuclei. The values between parentheses

have been calculated using the NNK weak coupling constants obtained from next-to-leading

order in *PT [SS96].

2c
r/rA 0.414 (0.467) 0.611 (0.686) 0.753 (0.844)

EXP: 0.41 ± 0.14 [Sz91] 0.95 ± 0.13 ± 0.04 [No95] 1.14 ± 0.2 [Sz91]

0.89 ±0.15 ±0.03 [No95]

rn/rp 0.073 (0.089) 0.084 (0.099) 0.068 (0.080)

EXP: 0.93 ± 0.55 [Sz91] 1.04Í831 [Sz91] 1-33L'¿2
81 [Sz91]

2.16 ± 0.58Í83Í [No95] 1.87 ± 0.59Í?;gg [No95]

0.70 ± 0.3 [Mo74] 0.70 ± 0.3 [Mo74]

0.52 ± 0.16 [Mo74] 0.52 ± 0.16 [Mo74]

rP/rA

EXP:

OA

-4(0°)

EXP:

0.386 (0.428)

0.21 ±0.07 [Sz91]

-0.273 (-0.264)

0.563 (0.624)

0.30ÍS:}? [No95]

-0.391 (-0.378)

-0.120 (-0.116)

-0.20 ±0.10 [AJ92]

0.705 (0.782)

0.31Í§:Ï? [No95]

-0.316 (-0.302)

-0.030 (-0.029)

-0.01 ±0.10 [AJ92]

nite conclusion at this time. Other mechanisms that have been explored to remedy this

puzzle include quark-model calculations which yield a large violation of the AT = 1/2

rule [IT96,MS94], and the consideration of the 3N emission channel (ANN-»NNN) as a

result of the pion being absorbed on correlated 2N pairs [AP91,R094]. A recent reanal-

ysis [RV97], which includes FSI of the three nucléons on their way out of the nucleus

via a Monte Carlo simulation, shows that the 2N-induced channel further increases the

experimental error bars and leads to an experimental value compatible with the predic-

tions of the OPE model. However, the same reference shows that a comparison of the

calculated proton spectrum with the experimental one favors values of Fn/rp = 2-3. It

is therefore imperative, before speculating further about the deficiencies of the present

models in reproducing this ratio, to carry out more precise experiments such as the

measurement of the number of protons emitted per A decay, suggested in Ref. [RV97].

On the other hand, the proton-induced rate which has errors of the same magnitude
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as the total rate is overpredicted by our calculations by up to a factor of two. It is

the neutron-induced rate which has been very difficult to measure accurately. It is

somewhat surprising that while both individual rates appear in disagreement with the

data their sum conspires to a total rate which reproduces the measurements.

Regarding the asymmetry parameter, comparison with experiment can only be

made at the level of the measured proton asymmetry. As discussed in § 1.2, this quan-

tity is determined as a product of the asymmetry parameter, Ap, characteristic of the

weak decay, and the polarization of the hypernucleus, Py, which must be determined

theoretically. The energy resolution of the experiment measuring the decay of polar-

ized A
2C produced in a (?r+ ,K+) reaction [AJ92] was 5 - 7 MeV which did not allow

distinguishing between the first three 1~ states. Before the weak decay occurs, the two

excited states decay electromagnetically to the ground state. Therefore, in order to

determine the polarization at this stage, one requires: i) the polarization of the ground

and excited states, together with the corresponding formation cross sections, and ii)

an attenuation coefficient to account for the loss of polarization in the transition of the

excited states to the ground state. In Ref. [IM94], hypernuclear production cross sec-

tions and polarizations have been estimated for the (TT+ ,K+) reaction in the distorted

wave impulse approximation with configuration-mixed wave functions. One should

point out that the sum of the cross sections for the two excited 1~ states amounts to

40% relative to the ground state peak, which is consistent with the (31 ±8)% obtained

in a fit to the Brookhaven 12C(7r+, K+)A
2C spectrum [MÍ91]. Using the values of Ref.

[IM94] for the polarization and cross sections of the 1~ states in A
2C together with the

spin depolarization formalism of Ref. [ET89], a value of Py equal to —0.19 is obtained.

This value, together with Ap = 0.151 (Nijmegen) or 0.175 (Jiilich), determined from OA

using Eq. (1.23), leads to an asymmetry A = —0.029 (Nijmegen) or —0.033 (Jülich),

which lies within the uncertainties of the experimental result.

The hypernucleus A*B is created by particle emission from excited states of A
2C

in which a A in a pi/2 or p3/2 orbit is coupled to a UC core in its ground state.

The window of excitation energy that spans 1.55 MeV between the (p +A
aB) and the

(A+UC) particle decay threshold contains three positive-parity states: two 2"1" states

separated by ~ 800 keV and a narrow 0+ state just below the (A+nC) threshold. Using

the same model of Ref. [IM94], which predicts equal formation cross sections for the 2f

and 1\ states, and neglecting the 0+ state because of its relatively small cross section,

we obtain a polarization of Py — —0.29. However, hypernuclear structure calculations
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by Auerbach et al [AB83] predicted strong configuration mixing which reduced the

cross section of the lower 2+ state by a factor of three relative to the higher one. This

prediction was verified by a reanalysis of older emulsion data [DD86]. Taking these

relative weights into account, we obtain the value Py = —0.43, which is the one used

in Table 3.7 and leads to better agreement with the experimental asymmetry. Just

as in the case of the proton- to neutron-induced ratio, the present level of uncertainty

in the experiment does not yet permit using the asymmetry as an observable that

differentiates between different models for the weak decay.

In order to avoid the need for theoretical input and access Ap directly, a new ex-

periment at KEK [Ki95] is measuring the decay of polarized ^He, extracting both the

pion asymmetry from the mesonic channel, Av-, and the proton asymmetry from the

nonmesonic decay, A. The asymmetry parameter aff- of the pionic channel has been

estimated to be very similar to that of the free A decay [Mo94], and, therefore, the

hypernuclear polarization can now be obtained from the relation Py = A^-ja^-. This

in turn can then be used as input, together with the measured value of A, to determine

the asymmetry parameter for the nonmesonic decay from the equality Ap = A/Py. This

experiment will not only allow a clean extraction of the nonmesonic asymmetry param-

eter but will also check theoretical model predictions for the amount of hypernuclear

polarization.

Finally, with the purpose of clarifying the present situation concerning the different

available results for the nonmesonic decay rate of hypernuclei, Table 3.8 shows the

calculated decay rates quoted by several publications, as well as the results exposed

throughout this work to facilitate the comparison. The numbers given in this Table

have been obtained using different models and prescriptions. Three models are shown:

the one-boson-exchange model (OBE) in which the present work is based, the quark

model (QM) and a hybrid version based in a one-pion-exchange (OPE) description for

long distances and in a QM for shorter ones.

Almost all the works are completely based in a OBE mechanism (without consid-

ering the body of this thesis). The first attempt to include heavier mesons was the

work of McKellar and Gibson [MG84], where the rho meson was included in addition

to the pion for the nonmesonic A decay in nuclear matter. Guided by the smallness

of the central pion rates, Ref. [MG84] took only into account the tensor transition

for the /7-meson exchange, giving the (TT,/O) rates in terms of the s —» d contribution.

In this calculation, AN correlations were treated with a stronger empirical correlation
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function than the one derived from a realistic YN interaction and the final states were

treated with the Reid soft-core potential. This model was later used in Ref. [TT85] to

predict nonmesonic decay rates of light hypernuclei as A He. Both references, [TT85]

and [MG84], present the ambiguity given by the relative sign between both mesons.

The nuclear matter calculation of Oset et al. [OS85] considers the exchange of a pion

in the transition mechanism. The pion is properly modified by its strong interaction

with the nuclear medium and no final state interactions are considered. Their Local

Density Approximation (LDA) results are also listed in Table 3.8 for two hypernuclei,

\2C and A He. As already discussed in § 2.4, their results depend somewhat on the choice

of the Landau-Migdal parameter, gr^, which controls the short-range AN correlations.

Dubach et al [DF96] go further and consider the exchange of the same set of mesons

than in the present work. They include an initial state correlation of the form used in

Ref. [MG84], a Reid soft-core potential to generate the final states but omit form factors

at the vertices. Their finite nuclei results were obtained using a simple shell-model to

describe the hypernuclear structure, where an extreme single-particle model with no

configuration mixing and only phenomenological forms for the correlation functions are

employed. However, no details of their method are presently available and the values

quoted in Table 3.8 must be considered preliminary.

Shinmura [Sh97] performs a relativistic study of the nonmesonic weak decay of

light s-shell hypernuclei, where, in addition to the OPE result, the effect of a typical

three body mechanism (ANN —» NNN), which yields about 30% of the calculated total

nonmesonic decay rate, is also studied. No final state interactions have been considered

in this work.

The Table also quotes a recent work by Itonaga et al. [IU95] where, in addition to

the OPE potential, two new potentials are built such that two pions couple to p and/or

er mesons and intermediate N and S baryons.

The generation of a weak transition potential from a quark model point of view is

the approach followed by Refs. [HK86,IT96]. Ref. [HK86] evaluates, in the framework

of the hybrid-hadron model, the nonmesonic decay rate for nuclear matter as well as

for the j^2C hypernucleus using a shell-model wave function to describe the nuclear

structure. An effective correlation function is used to address the problem of two-body

correlations. An effective quark weak interation hamiltonian explicitly constructed to

incorporate the AT = 1/2 rule (guided by renormalization group results including the

penguin diagrams) is taken. The authors in Ref. [IT96] consider a direct quark pro-
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cess (DQ) via an effective contact four-quark hamiltonian (which contains the QCD

corrections on the pure weak vertex) as well as the OPE for the AN —>• NN transi-

tion. The direct quark matrix elements are non-zero only at the short distances where

the quarkwave functions overlap each other, while the meson exchanges contribute at

longer distances. However, the relation between the phenomenological pionic transition

hamiltonian and the effective quark hamiltonian needs to be studied further before the

correct superposition of DQ and OPE processes is made. Moreover, their results carry

the uncertainty of the phase between the OPE contribution and the QM one in the

hybrid calculation shown in the last column of the Table.

From the results in Table 3.8 it is clear that all the nuclear matter calculations

are consistent with each other. The results of Ref. [MG84] are almost a factor of

two smaller due to the use of a much stronger AN correlation function. We note that

the TT-exchange result of Ref. [HK86] must be combined with the quark contribution,

yielding a somewhat larger final value, although it is not clear how the matching point

of their hybrid calculation should be chosen and why the amplitudes are combined

constructively.

The finite nuclei calculations show a wider variety of results. The values found

in the present work for the OPE mechanism seem too low when compared with the

LDA approach of Ref. [OS85], but if an appropriate g'^ parameter, suitable for the AN

correlation used in the present work, is chosen then the LDA value is reduced to 1.1,

which is quite similar to the result quoted in Table 3.1 in the absence of final state

interactions. The OPE value of 0.46 for \3C found in Ref. [IU95] is much lower but

no details are given to understand the origin of this discrepancy. The same is true

for their ^He result when compared with the present work value. However, combining

their OPE result with V(2^)/p and V^)/? the rates increase and lie very close to the

experimental values. The OPE ^He results of Refs. [TT85,IU95] are slightly smaller

than what is found in other references.

The inclusion of the />-meson has been done with the use of different models to

generate the weak AN/9 coupling and, therefore, a variety of quite different results have

been obtained. Only the work of Dubach et al. [DF96] uses the same model as the

present work and this is the reason why, in the following, their results are discussed

in more detail. Their preliminary results appear to be very different in comparison

with those obtained in the present work. Their uncorrelated OPE-only rate for \2C

is listed as 3.4 which is about a factor of 2 larger than the one quoted in this work
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while adding initial SRC, FF, and FSI reduce this rate to 0.5. This amounts to a

reduction factor of almost 7, in contrast to the suppression of roughly a factor of

two found here. Furthermore, their correlated rate for ^He is listed as 0.9, almost a

factor of two larger than their ^2C result. Unfortunately, no details are given in Ref.

[DF96] that address these problems. Note, however, that there are some unexplained

inconsistencies between their recent results of Ref. [DF96] and what was reported ten

years before in Ref. [Du86], where the correlated 7r-exchange decay rate for \2C is 2.0

while the addition of the other mesons lowers this value to 1.2. In fact, these values

are more consistent with their |He results, as well as with the effect of short-range

correlations found in almost all studies of the nonmesonic weak decay either in nuclear

matter or finite nuclei. Finally, and even though they are not shown in the Table, a

brief comparison between the values of the neutron-to-proton ratio and the asymmetry

parameter reported in Ref. [DF96] and the ones given in this work, will be made. The

present results for rn/Fp again differ from what it is reported in Ref. [DF96], where

a value Fn/Tp = 0.2 is obtained for 7r-exchange alone but 0.83 when all the mesons

are included. However, their results in finite nuclei are, surprisingly, quite different

from their nuclear matter results, namely Fn/rp = 0.06 for 7r-exchange alone and 0.345

when all mesons are included. With regard to the asymmetry parameter, the nuclear

matter results of Ref. [DF96] are qualitatively similar to the results of this work for

the Nijmegen couplings. They obtain a value a A = —0.192 for yr-exchange alone and

—0.443 when all the mesons are considered.
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Table 3.8. Different published results, compared to

cerning the A nonmesonic weak decay rate in nuclear

the ones presented in this work, con-

matter, A
2C and AHe.

Ref. Remarks F1"11/ F A.

OBE

7T 7T,/>

[This work] A
2C 0.885 0.859

AHe 0.486 0.474

QM QM

+ OPE

all mesons

0.753

0.414

McKellar nuc. matter 1.06 2.91 (IT + p)

[MG84] 0.11 (TT-P)

Takeuchi AHe 0.14 0.45 (TT + p)

[TT85] 0.03 (TT - p)

Oset nuc. matter 2.1

[OS85] LDA A
2C 1.45

LDA AHe 1.15

Dubach nuc. matter 1.85

[DF96] A
2C 0.5

AHe 0.9

1.38

0.2

0.5

Shinmura AHe 0.42

[Sh97]

Itonaga AHe 0.20 0.13t

[IU95] A
3C 0.46

Heddle nuc. matter 0.77

[HK86] A
2C 0.41

Inoue AHe 0.333

[IT96]

1.05ft

0.73 3.0

0.24 1.28

0.381 0.574 (QM+OPE)

0.855 (QM-OPE)

t 7T + 2lT/p

^ 7T + 27T//7 + 27T/(7



Chapter 4

A Special Case: The Nonmesonie

Weak Decay of the Hypertriton

The hypertriton (^H), consisting of a pnA bound state, is the bound nuclear system

of lowest mass with one hyperon with which one can test YN forces, including the A-S

conversion. All experimental information obtained for the hypertriton comes from early

bubble chamber measurements and emulsion works more than 20 years ago and contains

large uncertainties. However, different proposals exist (COSY, BNL and TJNL) de-

voted to measuring the lifetime of ^H. In the TJNL experiment [TJNL] the production

of ^H would proceed via the kaon photoproduction reaction 3He (7,K+) ^H, although

it has to be kept in mind that the cross sections for this process are predicted to be

very small [MT96] (« 1 nb). On the other hand, in the COSY experiment [COSY] the

hypertriton would be produced via a two step reaction leading to p-fd —* K+ + ^H,

using an incident beam momentum of 1848 MeV/c, where an enhanced fusion proba-

bility of the deuteron and the A is expected. A more likely candidate is the experiment

proposed at Brookhaven [BNL] where the 4He (K~, TT°) ^H reaction will be studied and

where there exist plans to obtain the hypertriton.

The hypertriton lifetime is dominated by the non-suppressed mesonic decay mode,

since there is not phase space restrictions and the momentum of the final nucleón (100

MeV/c) is sufficient to lift the nucleón above the Fermi sea. Theoretical estimates
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[DR62] predict that this mesonic mode is about 5-10 % less than that of the free A.

Even though the nonmesonic decay channel is not as important in ^H as for heavier

hypernuclei, it is interesting to test this decay mechanism in the hypertriton, due to

the fact that the wave function in the initial state can be calculated exactly using the

Faddeev formalism.

When one uses a formalism which includes both A and £ degrees of freedom, one

handles a coupled channel problem between the ANN and SNN systems. This coupled

channel incorporates a three-body force and leads to a modification of the YN force due

to the presence of a second nucleón. This effect is the so-called dispersive effect. As we

can see in Refs. [MG93,MK95], one can solve the Faddeev equations for the coupled

ANN and ENN systems precisely using meson-theoretical NN and YN interactions.

With the use of the Jiilich hyperon-nucleon interaction in a one-boson-exchange poten-

tial parametrization combined with various realistic NN interactions, the hypertriton

turns out to be unbound [MG93]. This is just the opposite to what happens when using

the Nijmegen interaction with full inclusion of the A-S conversion: independently of

the specific choice of the various realistic NN forces, the hypertriton turns out to be

bound at the experimental binding energy (—2.35 ± 0.05 MeV). One reason for the

unbound feature appearing when the Jülich interaction is used might be the weaker

attraction of this potential at very low energies of up to a few MeV, which corresponds

to the typical kinetic energy of the A particle in the hypertriton. Another explanation

can be traced to the different A-S conversion potential obtained in the Jülich case.

As we have seen in previous chapters, the study of the nonmesonic decay of p-

shell hypernuclei found that proper short-range correlations in the initial and final

states are of major importance in predicting decay rates and asymmetry observables.

The present work has been performed in a shell-model framework, including bound

state wave functions, spectroscopic factors, short-range correlations and final state

interactions in the weak decay mechanism. These ingredients do not all originate from

the same underlying dynamics and, therefore, introduce approximations that may be

difficult to quantify. The decay of few-body hypernuclei offers a window to extract

information on hadronic weak vertices from the AN—>NN process, since all nuclear

structure ingredients are derived from the same baryon-baryon interaction.

Previous calculations of the nonmesonic decay of the hypertriton [BRA92] used

a simplified uncorrelated A-deuteron wave function, where the ^H is taken to be a

deuteron and a A particle moving in an effective A-d potential and where the influence
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of the lambda on the two nucléons was neglected. However, since the mesons emitted by

the weak hyperon-nucleon transition are reabsorbed by the nucléons, one expects that

correlations should play an important role. The resulting meson-exchange operator

acts like a two-body force and consequently probes the hypertriton wave function in its

dependence on the pair distance between a hyperon and a nucleón. Another ingredient

neglected in Ref. [BRA92] is the strong interaction between the three final nucléons,

fully incorporated here.

Troughout this chapter, the nonmesonic decay of the ^H hypernucleus will be stud-

ied using a hypertriton wave function and 3N scattering states which are rigorous so-

lutions of 3-body Faddeev equations. The weak transition potential has been already

described in § 2.1.3.

4.1 Formalism of the Weak Decay of Hypertriton

As for the other hypernuclei studied in this work, the exchange of the pion together with

heavier mesons in the two-body AN—»NN transition are considered. The form of the

transition potential corresponding to these exchanges is not going to be repeated here,

and only the expression for the nonrelativistic decay probabilities will be presented.

When analyzing the weak decay of the hypertriton, two different nonmesonic chan-

nels come into consideration. These channels differ in the final state, leading to n-f d

and n+n+p final systems. For each of these decays the nonrelativistic partial proba-

bilities are given by [Go97]:

2
m

x dkv dkd 27T 6(ktt + kd)6\ MiH - MN - Md - ^- - ^r ] (4.1)

and

9 ¿—1 ' *i te ¿3 TOI
TU TTl\ TT12 7713

Ci dk-2 dk$ 2?r fi(ki -f- k^ -f- ¿3)
/ 7 * 2 7 * 9 T 2 \/ Z-.J il·-'! ^ ¿ \

- 5Ä ' (4'2)
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where \p(~) stands for the appropriate final nuclear scattering state, O for the transition

operator and ^3 H for the hypertriton wave function.

More details of the calculation and an extensive discussion on the results can be

found in Ref. [Go97]. Here, only the basic ideas discussed in this reference will be

presented.

After introducing the Jacobi momenta for the final 3N states:

P = \(ki-h) (4.3)

ï = \( fc -\ A + &)) (4-4)o \ ¿ /

the decay probability for the nd breakup (k3 = &N and k¿ — ki + k^ ) reads:

0dq, (4.5)o
m

with
qo = (MA - MN + c - Cd) (4-6)

and where e and c¿ stand for the hypernucleus and for the deuteron binding energies,

respectively. When averaging over spin projections the squared matrix element of
¿pn+d becomes independent on q. The final formula for obtaining the total decay rate

for the nd break up is given by:

E K «kl«»- 1 à I *3Hm >l2 - (4.7)

Similarly, for the n+n+p decay one gets

¿i ™ ™ ™ ™ O771 77T.J T712 ni3

with
4 MM / n 2 \

(4.9)

For the aFn+Il+p case, only a dependence on the angle d between p and q remains,

and the differential decay rate reads:

E \<^iLm2mí\0\^nm>\2- (4.10)
Tíí Tïl\
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This form is convenient for the integration to determine the total (nnp) decay rate. If

one wants to display the angular and energy distribution of the three nucléons in the

n+n+p channel, it is more convenient to use the following form:

rri2 ms
m mi 7712

x 2?T dki dk-î dS
kl kl

, (4.11)

with k\ and ¿2 denoting the directions of two detected nucléons and S the arclength

along the kinematically allowed locus in the E\ — EI energy plane for these nucléons

(see Fig. 4.1).

120i

0 20 40 60 80 100 120

E, [MeV]

Figure 4.1. Locus for kinematically allowed events in the E\ — E-2 plane and #i2 = 180°.

From the S=0 point on, S is evaluated for each point on the locus in the counterclockwise
sense.

For the sake of simplifying the notation, Eq. (4.11) does not include the identifi-

cation of the detected particles 1 and 2 as a proton-neutron pair or as two neutrons.

One must keep in mind that the final scattering states should carry additional isotopic
spin quantum numbers.
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As we have seen in § 2, the O operator is of two-body character, acting between the

A and one of the nucléons in the hypernucleus. Choosing the lambda to be particle 1,

one gets:

Ô = £ Ô(l, i) (4.12)
i=2,3

where ¿ = 2,3 represents each of the nucléons. Once one antisymmetrizes the initial

and final states, the following expression for the hypernuclear matrix element holds:

Ò \ *3H> = 2 (*<-> | (1,2) | *3H) - (4.13)

4.2 The Initial and Final States

In this section, a brief discussion on the initial and final wave functions used in this

work will be given. For more details one is referred again to Ref. [Go97].

4.2.1 The Hypertriton Wave Function

In the following, a hypertriton wave function based on the Nijmegen93 NN potential

[SK94] and the Nijmegen YN interaction [NR77] which includes the A — S transitions,

will be used. In order to keep both states for the hyperons, A and S, explicitly, the wave

function of the hypertriton has to be built up of two orthogonal parts [MG93,MK95]:

I* >= INNA > #NNA + INNS > $NNE . (4.u)
The energy eigenvalue problem reads:

(£-Ao)£ = Z*, (4.15)

where the underline stands for a compact matrix notation for HQ, V and Í*, which

can be found explicitly written in Ref. [MG93]. For instance, the function 3? has

two components, $NNA and ^NND, as written explicitly in Eq. (4.14). Denoting the

nucléons by 1 and 2 and the A or S by 3, the integral form of this energy eigenvalue

problem provides the Faddeev decomposition:

1 = _J_ V £ =
LJ — H n _

with
0(u) s

 l vtjy . (4.17)
Hi — n n
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Inserting the decomposition of Eq. (4.16) in Eq. (4.17) and summing up V_i3 within
the pair ij to infinite order yields the matrix Faddeev equations

(4.18)

Assuming 2. to be antisymmetrized in the two nucléons (1,2) it follows that:

(4.19)

where Pi2 is the permutation operator acting between the two nucléons labelled by 1
and 2. Therefore it suffices to regard only two coupled (matrix) Faddeev equations:

(4-20)
— Ci — n_o ~

and

~~ EJ — n n ~~

where the two-body T matrices obey the (matrix) Lippmann-Schwinger equations:

ij ^ — — ^
Ü, — n n

(4.22)

with ¿j, kl — 12,13,23. Note that each of the two Faddeev amplitudes has two compo-
nents:

(4.23)

In the case of the two-nucleon T operator, the 2 x 2 T12 matrix is diagonal and only
the free propagator distinguishes the presence of a A or a S. For the hyperon-nucleon
operator this is not the case, and one faces coupled Lippmann-Schwinger equations.
This T-matrix incorporates the AN<—> AN, SN<—> EN and the AN<—> EN transi-
tions. After solving the coupled equations (4.20) and (4.21) for ̂ l^ and ̂ 13\ the two
parts of the total wave function in Eq. (4.14) are given by:

n2)tf3) (4.24)

P12)4
13) . (4.25)

The antisymmetry in the two nucléons of the total wave function is guaranteed by
choosing 02,A to be antisymmetric in 1 and 2.
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Even though the A - S conversion is crucial for the binding of the hypertriton, the

SNN admixture in the hypertriton wave function is extremely small (with a 0.5 % of

probability) and the contribution of the S decay can be neglected keeping only the

ANN part.
For the evaluation of the transition operator matrix elements and for the solution

of the Faddeev equation, a partial wave representation is used [MK95]. The number

of channels used in the solution of the corresponding Faddeev equation is 102, which

leads to a fully converged state which has the proper antisymmetrization among the

nucléons built in.
For the hypertriton state it is convenient to take the form in which one of the

nucléons acts as an spectator:

*« 0»?) ' (4-26)

where p and q are the magnitudes of the Jacobi momenta

Muh - MA£2 , ,
P = MN + MA

 (4'27)

(AfN + MA)fe3-MN(fc1 + fe2)
q = 2MN + MA - ' (4'28)

and a denotes the set of discrete quantum numbers a = (ls)j (A|)/ ( j l ) J (í|)T. The

(ls)j term describes the coupling of the orbital angular momentum / and the intrinsic

spin s to the total two-body angular momentum.; of the AN subsystem. The (X-)I

term refers to the same quantities for the other nucleón in the hypertriton. Both

subsystems (AN and N) couple to a total angular momentum J and to a total isospin

T = 0 (coming from the coupling of the iAN = 1/2 and the <N = 1/2 isospin values of
each subsystem).

4.2.2 The Final 3N State

Two different final states can be obtained in the nonmesonic weak decay of AH, the

n-fd state and the n+n+p three nucleón state. The deuteron and the final state

interaction among the three nucléons is generated using the Nijmegen93 NN force,

including the NN force components up to total two-body angular momentum j = 2.

This is sufficient to get a converged result for the nuclear matrix element. Since the

total 3-body angular momentum is conserved, the corresponding Faddeev equation
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for the final state interaction (FSI) only has to be solved for total three-body angular

momentum J= 1/2, but for both parities due to the parity- violating transition potential.

It is briefly shown here, as an example, how to include the final state interactions

among the three final nucléons for the nnp breakup process. The scattering state
\jr(-) = •$(-) ¿g Faddeev decomposed [G183] as:

$(-> = (l + P)0<-> , (4.29)

where P is the sum of a cyclical and anticyclical permutation of 3 objects and i/>(~) is

one Faddeev component. This component obeys the Faddeev equation:

V/-> = ¿H + GÍT} t(-} P i/>(-> , (4.30)

with

^ = (l + G(^t^)ft (4.31)

and

1 - P12) | A,) = -L (1 - P12) | p ) | q ) . (4.32)

In the last expressions, GQ stands for the free three-nucleon propagator, t^ for the

NN (off-shell) t-matrix and l/\/6 takes care of the identity of the three nucléons. The

permutation operator P12 acts in the two-body susbsystem described by the relative
momentum p.

Inserting Eqs. (4.29), (4.30) and (4.31) into Eq. (4.13) and iterating (4.30), the

hypernuclear matrix element can be put into the form:

(* | (1, 2) | tP i H) = ( f t \ (1 + P ) ( 1 , 2 )

+ (ft | (1 + P) | W ) , (4.33)

where | U] obeys the Faddeev equation:

\U) = iGo( l + P)0(l,2) | *3H) + tG0P \U} . (4.34)

Keeping just the first term on the right hand side of Eq. (4.33) is equivalent to

select the pure plane wave impulse approximation to solve the problem. Similar steps

yield the corresponding expression for the nd breakup process, given by:

(^ | 0(1,2) | *3A„) = (0 | (1 + P)0(1,2) | < P A H ) + (<i> | P | W ) , (4.35)

where now | ^) contains the deuteron state | (f¿}'-

l ¿ ) = I V d ) l í o ) . (4.36)
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4.3 Results

The total nonmesonic decay rate (in units of the free A decay rate, FA = 3.8 x 109 s"1)

obtained for the hypertriton within this model is F/FA = 5.58 x 10~3, which is about

one order of magnitude smaller than what has been found in Ref. [BRA92]. In Table

4.1 the individual contributions of the six mesons to the nonmesonic decay rate Fnm,

and the way each of them contributes to the final result, are shown. As for the p-shell

hypernuclei studied previously, the pion is found to provide the largest contribution.

One can see that the K, the K* and the w mesons also give large individual rates.

When adding all the mesons in an arbitrary order, a varying sequence in the rates is

observed. However, the final result, obtained with the exchange of the six mesons, is

only 12% smaller than the corresponding rate for the 7r-only exchange.

Table 4.1. Decay rates in units of FA for individual meson exchanges and for partially

summed up exchanges.

pmeson

7T

1

K

P

ü)

K*

6

0

1

0

1

1

.35

.13

.43

.20

.15

.47

xlO-3

xlO-3

xl0-3

xlO-3

xlO-3

xlO~3

p partially summed

7T 6.35

7T + 77 6.05

7T + ;/ + K 2.44

7T + 77 + K + p 1.97

J_ _i_ T^ _L _L A £\1

T T - L _L T^ -A- -i- -LÏ^* ^ ^Ä

xlO

xlO

xlO

xlO

xlO

xlO

-3

-3

-3

-3

-3

-3

In § 4.2, the total decay rate was expressed as the sum of the partial rates for
the nd and nnp decays. The four first rows in Table 4.2 show these partial rates

when only the 7r-exchange contribution (first column) is considered, and the results

obtained exchanging the whole set of mesons (second column). The nnp decay is

clearly dominant in both cases. The symmetrized plane wave impulse approximation
(PWIAS) is also shown, and the comparison of the PWIAS results to the full one

underlines the relevance of the final state interaction, which produces a considerable
reduction in the rate.
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Table 4.2. Selected decay rates in units of FA for 7r-exchange only and for exchange of all

mesons.

TÍ -exchange only Exchange of all mesons

pn+d
1 PWIAS

pn+d

pn+n+p
1 PWIAS

pn+n+p

pn+d
1PC

pn+d
i pv

p n+n+p
1 PC

pn+n+p
I pv

1.553 xlO-3

0.395 xlO~3

12.105 xlO~3

6.053 xlO-3

0.232 xlO-3

0.155 xlO-3

3.421 xlO-3

2.421 xlO-3

1.237 xlO~3

0.579 xlO-3

9.474 xlO~3

5.000 xlO~3

0.579 xlO~3

0.006 xlO~3

3.158 xlO~3

1.921 xlO-3

In the last four rows, the parity-conserving (PC) and parity-violating (PV) parts
of the transition are listed separately for completeness. The PC rate is dominant,

specially in the nd decay.

It is well known that theoretically one can choose the A-particle to interact with a

neutron or a proton in the hypernucleus, in order to separate the neutron and proton

induced decay mechanisms, Fn and Fp, respectively. In Table 4.3 these Fn and Fp partial

rates are shown for each nd and nnp channel, as well as for the total reaction including

both channels. It is obvious that the n- and p-induced transitions add coherently in

the evaluation of the total decay rate, and this is clearly evidenced in the same table,
specially for the nd decay. However, in the 3N decay channel the total decay rate is very
close to the sum of the individual rates for the n- and p-induced processes. Nevertheless

these individual decay rates cannot be measured separately. In Fig. 4.2 the values for

S and the angle between the two nucleón detectors, 0i2, under which the n- and p-

induced decay events can be found, are shown. Those events are selected such that
their sum corresponds to 60% and 90% of their respective total decay rates. Thereby

the differential decay rates are summed up starting with the largest values downwards.

The pictures refer to the detection of a neutron-proton pair. If one is satisfied to
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Table 4.3. Proton- and neutron- induced decay rates in units of FA for TT-exchange only

and for the exchange of all mesons in comparison to the total nd and nnp rates.

TT-exchange only

pn+d
Mn)

pn+d
MP)

pn+d

p n+n+p
Mn)

p n+n+p

p n+n+p

0.053 xlO-3

0.205 xlO~3

0.395 xlO-3

1.553 xlO-3

4.737 xlO-3

6.053 xlO-3

Exchange of all mesons

0.168 xlO-3

0.184 xlO~3

0.579 xlO-3

1.500 xlO-3

3.421 xlO~3

5.000 xlO-3

collect 60% of the n- and p-induced decay, the events occur in kinematically separated

regions. For the 90% case however the two detectors receive events from both processes.

Therefore, one has to conclude that despite the fact that rn+n+p is rather close to the

sum of r?tn+p and r|Sn+p, the latter values cannot be determined experimentally, only

fractions, the smaller, the cleaner.
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Figure 4.2. The separate regions in the 0i2 - S plane contributing to (a) 60% and (b) 90%

of the rates of n- and p-induced decays. Note the strong overlap of the different processes in

phase space in case (b).





Chapter 5

Conclusions

The present work has analyzed the weak nonmesonic decay mode, AN —» NN, in

A-hypernuclei, using a shell-model approach for the description of the hypernucleus.

Many different ingredients have been considered for evaluating the hypernuclear weak

decay, in order to treat the nuclear structure details with as few approximations and

ambiguities as possible. One of these ingredients is the use of spectroscopic factors to

describe the structure of the initial hypernuclear system, as well as the final nuclear

system. Troughout this study, s-shell and p-shell hypernuclei have been explored, and

all the possibilities for the initial and final relative angular momenta have been included

in the calculation. The importance of short-range effects has been emphasized through

the consideration of short-range correlations for the initial AN system as well as for

the final NN system. This has been done via the inclusion of realistic AN and NN

interactions based on the Nijmegen baryon-baryon potential.

The present calculations have been performed in a one-boson-exchange model that

includes not only the long-ranged pion but also contributions from the other pseu-

doscalar mesons, the r¡ and K, as well as the vector mesons p,u> and K*. The weak

baryon-baryon-meson PV vertices have been obtained using SU(3) symmetry for pseu-

doscalar mesons, SU(6) symmetry for vector mesons and soft-meson theorems. For

the evaluation of the weak PC vertices, the pole model has been used. The primary

goal of this work was to reduce nuclear structure uncertainties as much as possible so
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that our framework can be used to extract these weak baryon-baryon-meson couplings.

However, the task of extracting these constants becomes difficult due to the sensitivity

shown by our results to the different models used in the strong sector.

The conclusions of this work can be summarized as follows:

Total decay rate

• The OPE mechanism dominates the total nonmesonic decay rate in magnitude

and in range.

• The rate is specially sensitive to the inclusion of strange mesons. Their influence

is considerable not only in the rate but also in the neutron-to-proton ratio, due

to their special isospin structure.

The second-largest contribution to the rate comes from the K-meson, which

amounts to 15% of the individual OPE rate but with a shorter range. The

importance of kaon exchange makes it possible to see the effects of modifying

the weak NNK couplings by loop contributions from next-to-leading order xPT.

Including these loop graphs leads to a reduction of the NNK couplings from their

tree-level value up to 30%, which in turns modifies the K-rate by a factor of 2.

Future experiments should be able to verify this effect.

The K meson contribution is followed by that of the K* which tends to partially

cancel the effects of the kaon. It is imperative that future studies include both

strange mesons simultaneously.

• The role of the p meson is found to be less relevant than expected. Our results for

its contribution to the total decay rate differ substantially from the ones quoted

by previous calculations, where the central potential in the /o-exchange diagram

was omitted and different models for the AN/9 coupling constants were used.

• The combined effect of the isoscalar 77 and u> mesons in the rate is almost negli-

gible.

• There is large interference between the different mesons contributing to the total

decay rate, and the evaluation of the contribution of each isospin-like pair [(TT,/?),

(K,K*) and (r?,u;)] leads to destructive interference between both components of

each pair.
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• Due to the different ranges of the various mesons considered in the exchange, their

contribution is modified differently when SRC and FF are included. Adding the

heavier mesons to the pion-exchange mechanism leads to fluctuating accumulated

rates, and end up reducing the ?r-exchange rate by only 15%.

• The decay process is very sensitive to short-range effects. It is therefore impera-

tive to use appropriate short-range correlations for the initial and final two-body

states.

In this work the discrepancies between relativistic and nonrelativistic approaches

on the effect of SRC have been understood. It has been shown that the ap-

propriate method to include correlations is that followed by the nonrelativistic

treatment.

• Due to the sensitivity of our results to the different models used for the vertices,

a more accurate set of coupling constants is needed.

Using the Nijmegen constants in the strong sector leads to a total rate (including

all the mesons) which is 15% smaller than the OPE rate, while the use of Jiilich

constants leads to a total rate 15% larger than in the pion case. However, both

results are consistent with the experimental value for the rate. Improved YN

potentials which narrow the range of the strong coupling constants are required

to reduce the uncertainty in their values.

Once the breaking of SU(3) symmetry is taken into account via the use of NNK

weak coupling constants derived in next-to-leading order xPT, the effect of the K

meson is reduced, increasing the total rate by about 10% and bringing the result

closer to the experimental value.

• When computing the nonmesonic weak decay rates for different hypernuclei, an

overall agreement with the corresponding experimental values is obtained.

In the case of the ^2C and ^B hypernuclei, for which a mean field description of

the wave function is a rather realistic picture, one can see a good agreement with

the experimental data. For ^He, one should further consider dynamical effects

tied to the short-range AN repulsion, which pushes the A wave function to the

surface of the nucleus. This would reduce slightly the decay rate obtained in this
work.
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Calculations performed in nuclear matter and using the LDA can reproduce accu-

rately the finite nucleus results presented throughout this work. The choice of an

appropriate value of the Landau-Migdal parameter, which controls the amount

of SRC in the LDA approach, is crucial to bring the results closer.

The neutron-to-proton induced decay ratio

• The rn/rp ratio is quite sensitive to the isospin structure of the exchanged

mesons. The inclusion of the strange K and K* mesons modify strongly this

ratio, as it has been suggested for many years. The K meson reduces this value

by about a factor of three, while the K* meson adds constructively leading a

value which is half the one corresponding to the pion, when the Nijmegen strong

coupling constants are used.

Even though the strange mesons considerably change the value of the Fn/Fp

ratio, adding all the mesons reduces the value bringing it further away from all

the experimental results obtained until now.

• Furthermore, this ratio turns out to be sensitive to the choice of strong coupling

constants as well. Using the Nijmegen strong couplings reduces the ratio by 30%

from its pion-only value while the use of the Jülich strong couplings leads to a

change of only a few percent.

• The present model predicts Fn/Fp values that are much smaller than the central

experimental ones. However, due to the large experimental error bars, one can

not draw definite conclusions about the evaluation of this ratio. More precise

experiments are needed in order to correct possible deficiencies present in the

theoretical results obtained until now.

• It is worth noticing that while the individual Fn and Fp disagree with the data

their sum conspires to a total rate which reproduces the measurements quite well.

The intrinsic lambda asymmetry parameter

• The intrinsic lambda asymmetry parameter, <IA, is also quite sensitive to the

inclusion of additional mesons in the weak mechanism.

In contrast to the previous observables we found the proton asymmetry to be

very sensitive to the /9-exchange while the influence of the kaon is more moder-

ate. The strongest modification in the value of this parameter is caused by the
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addition of the p and w mesons. The final value obtained when the whole set

of mesons is included is 30% or 50% larger than the value corresponding to the

OPE mechanism, depending of the strong coupling constants used.

The asymmetry is therefore an important addition to the set of observables since

its sensitivity to the various ingredients is different from the total and partial

rates.

• There is a considerable level of uncertainty in the experiments concerning the

measure of the asymmetry parameter. It is again this uncertainty which prevents

one from using the asymmetry as an observable that can select between the

different models for the weak decay at this stage.

5.1 Future Perspectives

This study clearly indicates that further theoretical effort must be invested to under-

stand the dynamics of the nonmesonic weak hypernuclear decay. At present, it appears

to be impossible to reconcile the discrepancies observed in the partial rates when using

the different available models for the coupling constants within a one-boson-exchange

potential. In order to approach the present experimental values, the weak couplings

of the heavier mesons would have to be unreasonably large which would yield very

large total rates incompatible with the data. The sensitivity shown by the rn/Fp ratio

and the asymmetry to the values of the weak coupling constants is an indication that

these observables could be used to discriminate between different theoretical models,

as soon as new data with reduced statistical errors are available. Within the one-meson

exchange picture it would be desirable to use weak coupling constants developed with

more sophisticated approaches. A beginning has been made by Savage and Springer

[SS96] in their evaluation of the weak NNK couplings in next-to-leading order %PT

and the effect has been found to be important. However, an understanding of the

weak AN?r and SN?r couplings within the framework of chiral lagrangians is still miss-

ing. Furthermore, due to the importance of the K*-meson it would be desirable to

recalculate its weak NNK* couplings in improved models as well.

Several recent studies [IT96] have gone beyond the conventional picture of meson

exchange and have developed mechanisms based purely on quark degrees of freedom.

These works [IT96,CH83,HK86], although promising, are still at an early stage. The
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obtained results depend upon the relative sign between the pion contribution and the

one from quarks, which are assumed to be independent. One should keep in mind,

however, that such models have not always been able to reproduce the experimentally

measured free hyperon decays. Efforts continue in this direction trying to establish the

connection between the effective quark hamiltonian and the empirical A —>NTT vertex.

Another avenue that is currently being pursued is the validity of the AT =1/2

rule in the AN —»NN process. While this empirical rule is well established for the free

hyperon and kaon decays there is some indication that it could be violated for the AN

—> NN process. Within the framework of SU(3) and soft-meson theorems the weak

NNK and ANr/ vertices are related to the observable AN?r decay and, therefore, one

would expect small AT = 3/2 contributions for these mesons. On the other hand, the

vector meson vertices can receive substantial contributions from factorization terms

which have been shown not to fulfil the AT1 =1/2 rule [MS94]. The attractive feature

of these additional terms is their strong influence on the ratio Fn/Fp.

On the level of implanting the basic AN —> NN amplitude into the nucleus, un-

certainties have been minimized in this study by treating each ingredient as well as

possible. Nevertheless, within the framework of the impulse approximation and the

use of a shell-model description for the nuclear systems, the short-range correlations,

the spectroscopic factors and the single particle wavefunctions still come from separate

sources. This dilemma can be avoided in rigorous few-body calculations with realistic

wave functions. The nonmesonic decay of the hypertriton has been calculated using

correlated three-body hypernuclear wave functions for the initial hypertriton state and

continuum Faddeev solutions for the three-nucleon scattering state [Go97]. Thus, all

nuclear structure input is generated from the same underlying YN- and NN-potentials,

eliminating the ambiguities of the shell-model approach. It is therefore of utmost im-

portance to pursue experimental measurements of the nonmesonic decay of this light

hypernucleus.

Other works [IU95,Sh94] incorporate, in addition to the pion, the exchanges of the

a and the p mesons. In these new potentials (V^/a and V^/p), two pions are coupled

to each of these mesons and the intermediate baryon is allowed to be a S or a nucleón,

the weak process taking place at the A —> NTT or S —> NTT vertex. However, it was

found that this inclusion increases the value of the Fn/rp ratio to values around 0.2,

which, although going in the right direction, are still far from the empirical values.

On the experimental side, it is critical to obtain new high accuracy data soon.
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Improved partial rates for thé proton- and neutron-induced decay modes are specially

important. Of help would be to not only measure rates but also exclusive spectra of

the decay products. Such distributions would be significant to disentangle the effects

of the ANN —» NNN process from the two-body process discussed here. Recent works

[R094,RV97] studied this 2N induced A decay channel and analyzed the possible reper-

cussions of this mechanism in extracting the neutron-to-proton induced ratio from the

measured data. After the calculation of the spectra of neutrons and protons following

the decay of the A in several hypernuclei, through the one- and two-nucleon induced

mechanisms, it was found that the two-nucleon channel was relevant specially in the

determination of the Fn/Fp ratio. The fraction of this decay channel was found to be

only 30% of the free A width, or 20% of the total A width in the nucleus, but the er-

ror band in Fn/Fp was actually enlarged with respect to a determination omitting this

channel in the analysis. It was also pointed out that the ratio Fn/Fp can be determined

reliably provided one can measure the number of emitted protons and neutrons with

sufficient precision.

Beyond improving the present data base for the weak decay of A-hypernuclei, there

are two more avenues which would aid our understanding of the weak A51 = 1 hadronic

interaction.

First, with the advent of new, high precision proton accelerators such as COSY in

Jiilich, it may become possible to perform a direct study of the time-reversed process

pn —> Ap [Ha95]. While the very low cross sections will make this direct investi-

gation of the A5 = 1 baryon-baryon interaction difficult to measure, high efficiency

detection schemes should allow determining a branching ratio of 10~13. Thus, the

strangeness changing hadronic weak interaction could be studied similarly to the weak

parity-violating NN interaction. The asymmetry of this reaction has been measured

at several kinematics which are sensitive to different parts of the meson-exchange po-

tential. Furthermore, measuring the p n —-*• A p process directly would give access to a

number of polarization observables since the A is self-analyzing.

Secondly, the hypernuclear weak decay studies should be extended to double-A

hypernuclei. Very few events involving these exotic objects — whose very existence

would place stringent constraints on the existence of the elusive H-dibaryon — have

been reported. Studying the weak decay of these objects would open the door to a

number of new exotic A-induced decays: AA —> AN and AA —> EN. Both of these

decays would involve hyperons in the final state and should be distinguishable from
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the ordinary AN —» NN mode. Specially the AA —> AN channel would be intruiging

since the dominant pion exchange is forbidden, thus this reaction would have to occur

mostly through kaon exchange. One would therefore gain access to the AAK vertex.

The promising efforts at KEK with an improved measurement of the |He decay,

the continuing program at BNL, and the advent of the hypernuclear physics program

(FINUDA) at DA$NE represent excellent opportunities to obtain new valuable infor-

mation that will shed light onto the still unresolved problems of the weak decay of

hypernuclei.



Appendix A

Coefficients ((L'S}jMj\Ôa\(LrSQ)JMj}

In this Appendix the explicit expressions for the {(L'S)JMj\Oa\(LrSo)JMj) co-

efficients appearing in the evaluation of the relative AN —» NN amplitude (¿rei in §

2.3), will be given. The quantum numbers Lr,So,J and Mj stand for the initial AN

state, while the numbers L', S, J and Mj correspond to the final NN system. Note that

due to the scalar nature of the spin-space Oa operator, the values of the total angular

momentum and its projection, J and Mj respectively, are conserved by the transition.

A.I Central Transition

((L'S)JMj\Ôa\(LrS0)JMj) = ¿LrL, 8SoS (A.I)

A. 2 Spin-Spin Transition

OQ = <71(72

((L'S)JMj\Oa\(LrS0)JMj) = (2S(S + 1) - 3) SLrL, 8SoS (A.2)
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A.3 Tensor Transition

Oa = Si2(f) = 3

((L'S)JMj\Ôa\(LrS0)JMj) = SJ
LrL, SSoS ¿si ,

where the coefficients SJ
LrL, are given in Table A.l.

A.4 Parity-Violating Transition

A.4.1 Pseudoscalar Mesons

Oa = <72r

((L'S)JMj\Ôa\(LrS0)JMj)

x (10LrO|//0)
1 l o
2 2 ö°

S l 2

A.4.2 Vector Mesons

Q = [ffi X cr2] r

((L'S)JMj\Ôa\(LTS0)JMj)

x (10IrÛ|I'0)
L' Lr 1

50 S J

1V/25TT

L' Lr 1

5o S J

l i ç
2 2 °

1 1 Q
\ 2 2 -50

(A.3)

(A.4)

(A.5)
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Table A.I. Matrix elements of the tensor operator evaluated between generalized spherical

harmonic states of definite J,L and S

L' = J+l L' = J L' = J - 1

2J+1 2J+1

Lr = J

2J+1 2J+1





Appendix B

PV amplitudes. An example

Ref. [D82] gives the necessary steps for obtaining the unphysical PV amplitudes

via the use of soft-meson techniques and SU(3) symmetry. The point is to relate these

quantities to the physical PV amplitudes for the nonleptonic hyperon decays B — > B'

+ 7T. As an example, the (nK+ | Hpv \ p) amplitude will be derived in this section. To

obtain this quantity the following tools will be necessary:

• The definition of the K+-meson as a member of the pseudoscalar-meson octet

(7^,71-°, K*, K°, K ,77) and the definition of the proton and the neutron as

members of the spin 1/2 octet (S±, S°, p, E~, n, E°, A).

K+ = - = ( M 4 + iM5) (B.I)

p = _ ( B 4 + iB5) (B.2)

n = - ( B 6 + iB7) (B.3)

• The soft-meson reduction theorem given in Eq. (2.65).

• The action of the SU(3) generator F¡ on a baryon Bj given by Eq. (2.66).

• The coupling defined in Eq. (2.67).
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• The values of the fijk (completely antisymmetric) and dijk (completely symmet-

ric) SU(3) coefficients shown in Table B.I.

Let us write the desired PV amplitude explicitely as:

(nK+ | #pv | p) = -^= ((B6 - iBr) (M4 - iM5) | Hpv \ (B4 + iB5)) . (B.4)

Applying the soft-meson reduction theorem to the last equation one gets the following

expression for the loww energy limit,

lim (nK+ | Hpv | p) = ~ -L {{B6 | F4H
6 - H6F4 \ B4)

1-*° r^ 2v2 L

-i (B6 | F,H6 - H6F5 | B4) - i (B7 | F4H
6 - H6F4 \ B4)

- (B7 | F5H
6 - H6F5 | B4) + i (B6 | F4H

6 - H6F4 \ B5)

+ (B6 | F,H6 - H6F5 \ B5) + (B7 | F4H
6 - H6F4 \ B5)

-i(B7\F5H
6-H6F5\B5)} . (B.5)

Taking into account that:

F4 | B4) = O (B.6)

F 4 |B 5 ) = |B3) + |B8) (B.7)

F 4 |B 6 ) = i | B 2 ) (B.8)

F 4 |B 7 ) = i |B!> ' (B.9)

F 5 |B 5 ) = 0 (B.ll)

F 5 |B 6 ) = -I | BO (B.12)

^5 | B7) = i | B2) , (B.13)

the limit of the amplitude takes the form:

lim (nK+ | Hpv | p) = -~ -±= {(B6 | H6 \ B3> + \/3 (B6 | H
& \ B8>

-i (B7 | H
6 | B3) - \/3i (B7 | H

6 | B8)} , (
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with

(B 6 | / f 6 |B 3 ) = i

(B6 |#6 |B8) = i

(B 7 | f f 6 |B 3 } = iA/637 + Ed«* = iA (B.17)

(B7 |#6 |B8) = i

Finally one can express the limit of the PV amplitude in terms of the reduced
matrix elements A and B in the following way:

lim(nK+ H p v \ p ) = _-L J_ (_A - B) . (B.19)

Let us now relate this quantity to the physical amplitudes for the A^ (A — > 7r~+p) and
EO (S —> 7T°+p) decays. Once again Ref. [D82] is used to get:

(B'20)

•

From these relations one can solve A and B in terms of AÜ and Sj:

--¿-A = -V3A°+£+ (B.22)
r*

— 1-B = - \^A°-3S+ (B.23)
rv

and substitute their corresponding expressions in Eq. (B.19) getting the final result:

lim (nK+ | Hpv \ p> = A°_ + - EJ . (B.24)
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Table B.I. Non-zero elements of

ijk

123

147

156

246

257

345

367

458

678

ft]k

1
i
2
1
2
1
2
1
2
1
2

I
2

lv/3

|\/3

the SU(3) coefficients /tjt and dl}\,

ijk

118

146

157

228

247

256

338

344

355

366

377

448

558

668

778

888

dtjk

N/Ï
i
2
1
2

v/ï
i
2
1
2

A
1
2
1
2
1
2
1
2

1

1

2^3
1

- -iA
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