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Aquesta tesi ha estat possible gràcies a la beca FI (beca predoctoral per a la formació
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(CUR) del Departament d’Innovació, Universitats i Empresa (DIUE) la Generalitat de
Catalunya i del Fons Social Europeu. I també a la beca BE (beca per estades de recerca
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Resum / Abstract

En aquesta tesi s’estudien els efectes de la interacció dipol-dipol en la f́ısica dels gasos
quàntics ultrafreds, tant de caràcter bosònic com fermiònic, i dins del marc teòric del règim
de camp mig. Aquest tipus d’interacció es dóna en gasos atòmics ultrafreds (per exemple
de 52Cr o 164Dy) a través del moment dipolar magnètic atòmic, i en gasos moleculars
ultrafreds a través del moment dipolar elèctric o magnètic. La interacció dipol-dipol entre
dues part́ıcules, ja siguin àtoms o molècules, és anisòtropa i de llarg abast. La primera
propietat fa que el comportament del sistema depengui molt fortament de la geometria
que es considera, mentre que la propietat de llarg abast fa que una part́ıcula pugui influir
en la dinàmica d’una altra part́ıcula que s’en troba allunyada.

En el cas de gasos quàntics d’àtoms bosònics, o condensats de Bose-Einstein, la in-
teracció dipol-dipol es pot estudiar en aproximació de camp mig a través de l’equació de
Gross-Pitaevskii, que ara conté un nou terme no-lineal degut a la interacció dipolar (a
més a més del terme d’interacció de contacte o d’ona-s). Aquest terme addicional con-
verteix l’equació en no-local. Per tal de resoldre-la, calculem el potencial dipolar de camp
mig en l’espai de Fourier i fem evolucionar l’equació en temps imaginari (per tal de trobar
l’estat fonamental o l’estat de vòrtex) o bé en temps real utilitzant el mètode de Hamming
inicialitzat amb un mètode de Runge-Kutta de quart ordre (per tal d’obtenir l’evolució
dinàmica del sistema).

Utilitzant aquests mètodes numèrics, en aquesta tesi investiguem, d’una banda, con-
densats dipolars confinats en trampes harmòniques, i de l’altra condensats dipolars confi-
nats en trampes toroidals. En el primer cas ens focalitzem en l’estudi de l’estat fonamental
i de l’estat de vòrtex quantitzat. L’anàlisi de l’estat fonamental ens serveix per entendre
l’efecte de l’anisotropia i el llarg abast de la interacció. Les simulacions prediuen una
deformació anisòtropa de la densitat atòmica, aix́ı com l’existència de densitats amb el
màxim fora del centre (anomenades densitats bicòncaves o tipus glòbul vermell, en anglès
dites biconcave o bé red-blood-cell, degut a la seva similitud amb les cèl·lules sangúınies).
Minimitzant l’energia del condensat dipolar respecte transformacions d’escala dedüım el
teorema del virial per a aquest sistema, que ens serveix per a comprovar la precisió dels
resultats numèrics. Estudiant la dinàmica de les excitacions col·lectives (en concret, del
mode quadrupolar radial o de superf́ıcie) veiem que la interacció dipolar en modifica la
freqüència. Hem comparat els resultats numèrics obtinguts de la simulació de l’equació
de Gross-Pitaevskii depenent del temps als resultats que provenen de l’aproximació de
Thomas-Fermi per a condensats dipolars, trobant molt bon acord quan la correcció a la
freqüència deguda a l’energia cinètica es té en compte en l’aproximació de Thomas-Fermi.
Per altra banda, l’estudi dels estats de vòrtex ens permet estudiar la geometria del nucli
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del vòrtex (vortex core) i fer una predicció de la freqüència cŕıtica necessària per formar-ne
un, aix́ı com de la barrera energètica que cal superar perquè el vòrtex es desplaci des de
la superf́ıcie fins al centre del gas. Acabem l’estudi dels condensats dipolars en trampes
harmòniques simulant dinàmicament la precessió d’un vòrtex descentrat en un conden-
sat no rotant. En aquest cas veiem que l’efecte de la interacció dipolar és disminuir la
freqüència de precessió, comparant amb el cas on només hi són presents les interaccions
de contacte.

El segon gran tema que tractem dins dels condensats dipolars és el cas en què aquests
estan confinats en trampes toroidals. En aquesta geometria els efectes dipolars es veuen
fortament magnificats quan l’eix de polarització dels dipols és perpendicular a l’eix de
simetria de la trampa. En el marc de la tesi hem vist que l’estat fonamental presenta una
distribució anisòtropa de densitat al llarg de l’angle azimutal (és a dir, al llarg de l’anell
definit per un potencial efectiu generat per la trampa toroidal i el potencial dipolar de
camp mig), que es tradueix en un camp de velocitats també anisòtrop quan es consideren
corrents persistents (vòrtexs metaestables). En reduir la magnitud de la interacció de
contacte es produeix un trencament espontani de simetria en el sistema, on tots els àtoms
es situen només en un els pics de densitat. L’estructura anisòtropa de la densitat es pot
entendre com l’adaptació del sistema al potencial efectiu en forma de doble pou al llarg
de l’anell. Hem estudiat la dinàmica d’aquest sistema quan el nombre inicial d’àtoms als
pous de potencial de la dreta i de l’esquerra està desequilibrat, predient oscil·lacions de
Josephson i d’autoatrapament (self-trapping) depenent de la condició inicial. Això ens
ha portat a anomenar aquest nou sistema Junció de Josephson Autoindüıda (Self-induced
Josephson Junction). Hem comprovat que aquesta dinàmica es pot estudiar dins del marc
d’un model de dos modes, ja que les prediccions del model donen resultats qualitativament
correctes (per exemple, l’amplitud de les oscil·lacions està en bon acord amb els resultats
de la simulació numèrica de l’equació de Gross-Pitaevskii, tot i que la freqüència doni
un valor més alt en el model). En una tercera fase del projecte de condensats dipolars
en trampes toroidals hem estudiat en detall el règim d’autoatrapament i hem vist que la
inversió del flux de part́ıcules està fortament lligada al creuament de vòrtexs quantitzats
a través de les unions de Josephson. Aquest resultat obre les portes a establir una relació
més directa entre el règim dinàmic de salts de fase (phase-slips), àmpliament estudiat en
heli superfluid, i el règim d’autoatrapament propi dels condensats.

En el cas de gasos quàntics de part́ıcules dipolars fermiòniques, hem estudiat com les
excitacions col·lectives, en concret el mode quadrupolar radial, permeten distingir entre
els règims hidrodinàmic (que pot ser tant degut a la rapidesa de les interaccions com
a la superfluidesa) i no-col·lisional (que té lloc quan les interaccions són a tan baixa
freqüència que efectivament es poden negligir). Hem calculat la freqüència d’aquest mode
anaĺıticament en aproximació de camp mig i generalitzant els resultats de l’aproximació
de Thomas-Fermi per a gasos de Fermi ideals confinats. D’una banda, observem que
la freqüència en règim hidrodinàmic és menor que en gasos de fermions no-dipolars (on
les col·lisions vénen donades per la interacció de contacte), mentre que en el règim no-
col·lisional la freqüència és major o menor que la corresponent al sistema no interactuant
depenent de la geometria de la trampa harmònica. Per altra banda, prediem que reduint
la deformació de la trampa (aspect ratio) tindria lloc un salt observable en les mesures
experimentals de la freqüència del mode quadrupolar radial, que marcaria la transició
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entre el règim no-col·lisional i l’hidrodinàmic, per exemple quan tingués lloc la transició
a l’estat superfluid.

§ § §

In this thesis we study the effects of the dipole-dipole interaction on the physics of
ultracold quantum gases, both bosonic and fermionic, within the theoretical framework
provided by the mean-field regime. This kind of interaction takes place in ultracold
atomic gases (for instance 52Cr or 164Dy) due to their atomic magnetic dipole moment,
and in ultracold molecular gases due to the magnetic or electric dipole moment. The
dipole-dipole interaction between two particles, either atoms or molecules, is anisotropic
and long-range. The first property causes the behavior of the system to depend rather
strongly on its geometry, while the property of long-range causes a particle to influence
the dynamics of a distant particle.

In the case of quantum gases of bosonic atoms, or Bose-Einstein condensates, the
dipole-dipole interaction can be studied within mean-field approximation using the Gross-
Pitaevskii equation, which now contains a new non-linear term due to the dipole-dipole
interaction (in addition to the the s-wave contact term). This additional term turns the
equation into a non-local equation. In order to solve it, we compute the mean-field dipolar
potential in Fourier space and evolve the equation in imaginary time (to find the ground
state or a vortex state) or in real time using the Hamming’s method initialized with a
fourth-order Runge-Kutta method (to obtain the dynamical evolution of the system).

Using these numerical methods, in this thesis we investigate, on the one hand dipolar
condensates confined in harmonic traps, and on the other dipolar condensates confined
in toroidal traps. In the first case, our focus is on the study of the ground state and the
quantized vortex state. The analysis of the ground state helps us understand the effect
of the anisotropic and long-range character of the interaction. The simulations predict an
anisotropic deformation of the atomic density, as well as the existence of densities with the
maximum away from the center (known as biconcave or red-blood-cell density structures,
due to their similarity to the shape of red-blood cells). Minimizing the energy of the dipolar
condensate with respect to scaling transformations we derive the virial theorem for this
system, which we use to check the accuracy of the numerical results. By studying the
dynamics of collective excitations (in particular, the radial quadrupole mode) we see that
the dipolar interaction modifies the oscillation frequency. We have compared the numerical
results obtained from the simulation of the time-dependent Gross-Pitaevskii equation with
the results coming from the Thomas-Fermi approximation for dipolar condensates, finding
a very good agreement when the correction to the frequency due to the kinetic energy is
taken into account in the Thomas-Fermi approximation. On the other hand, the study of
vortex states allows us to study the geometry of the vortex core and give a prediction of
the critical frequency necessary to nucleate a vortex, as well as the energy barrier that has
to be overcome to bring the vortex from the surface to the center of the gas. We finish the
study of dipolar condensates in harmonic traps by dynamically simulating the precession
frequency of an off-center vortex in a non-rotating condensate. In this case, we see that
the effect of the dipolar interaction is to reduce the precession frequency, compared to the
case where the only interactions present are contact interactions.
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The second subject we address within dipolar condensates is the case where these are
confined in toroidal traps. In this geometry the dipolar effects are strongly magnified when
the polarization axis of the dipoles is perpendicular to the trap symmetry axis. Within
this thesis we have seen that the ground state shows an anisotropic density distribution
along the azimuthal angle (that is, along the ring defined by an effective potential gener-
ated by the toroidal trap plus the mean-field dipolar potential), which is translated into
an anisotropic velocity field when persistent currents are considered (metastable vortices).
When the strength of the contact interaction is reduced, the system overcomes a spon-
taneous symmetry breaking, characterized by all the atoms located in only one of the
density peaks. The anisotropic structure of the density can be understood as the adapta-
tion of the system to the double-well effective potential along the ring. We have studied
the dynamics of this system when the initial number of atoms in the left and right wells is
imbalanced, predicting Josephson and self-trapping oscillations depending on the initial
condition. This has led us to name this new system as Self-induced Josephson Junction.
We have checked that this dynamics can be studied within a two-mode model, since the
predictions of the model give qualitatively correct results (for instance, the amplitude of
the oscillations is in good agreement with the results of the numerical simulation of the
Gross-Pitaevskii equation, although the frequency gives a higher value in the model). In a
third step of the project on dipolar condensates in toroidal traps, we have studied in detail
the self-trapping regime and we have seen that the particle flux inversion is closely related
to the crossing of vortices across the Josephson junctions. This result opens the door to
establishing a more direct connection between the phase-slip regime, widely addressed in
superfluid helium, and the self-trapping regime of condensates.

In the case of quantum gases of fermionic dipolar particles, we have studied how the
collective oscillations, in particular the radial quadrupole mode, allow one to distinguish
between hydrodynamics (due either to fast interactions or to superfluidity) and the col-
lisionless regime (where interactions take place at such a low frequency that they can
be effectively neglected). We have analytically calculated the frequency of this mode in
the mean-field approximation, generalizing the results from the Thomas-Fermi approxi-
mation for trapped ideal Fermi gases. On the one hand, we observe that the frequency
in the hydrodynamic regime is smaller than in non-dipolar Fermi gases (where collisions
come from contact interactions), while in the collisionless regime the frequency is larger or
smaller than that corresponding to the non-interacting system depending on the geometry
of the harmonic trap. On the other hand, we predict that reducing the trap deformation
(aspect ratio) an observable jump in the frequency of the radial quadrupole mode would
take place, which would correspond to the transition between the collisionless and hydro-
dynamic regimes, for instance when the gas undergoes the transition to the superfluid
state.



Chapter 1

Introduction

But if you were worried about the price,
then why were you in the shop?

Terry Pratchett, Equal Rites

Bose-Einstein condensation is a many-body quantum phenomenon that takes place
in dilute gases of bosonic particles when their temperature is reduced below a critical
temperature, which is typically of the order of tens to hundreds of nanoKelvin. Below
this temperature the de Broglie wavelengths of individual atoms become comparable to
the size of the cloud and their wave functions start to overlap, giving rise to quantum
coherence phenomena in the gas. The resulting many-particle state, the Bose-Einstein
condensate (BEC), is characterized by the macroscopic occupation of a single-particle
state.

Bose-Einstein condensation was first predicted by S. Bose [Bose24] and A. Einstein
[Ein24, Ein25] between 1924 and 1925 by developing a statistical theory for an ideal gas
of indistinguishable integer-spin particles (bosons). They predicted that for temperatures
tending to zero the occupation number of the ground state would diverge. This strange
behavior was then thought to be just a theoretical limit, until some connexion to super-
fluidity in He-4 was suspected in the late 30s [Lon38]. Superfluid helium, however, is not
a pure Bose-Einstein condensate, since the strong interactions, large density and correla-
tions in the liquid prevent the atoms from being all in a single-particle state. The fraction
of condensed atoms in helium amounts only to about the 10 %. In contrast, atomic gases
well below the critical temperature constitute pure condensed systems (for large numbers
of atoms, when thermal and quantum depletion effects can be neglected).

Real systems are interacting and even at temperatures of nanoKelvins above the abso-
lute zero, interactions between atoms are not negligible, and in fact they are very impor-
tant for the physics of BECs. These interactions are usually well approximated by s-wave
contact collisions, which are characterized by a single parameter: the s-wave scattering
length, a. The condensate state of a gas is not the stable configuration at T = 0, which
would be a solid, but is instead metastable. It can only be reached if the gas is weakly
interacting and the density is sufficiently low (a typical order of magnitude is n ∼ 1014

atoms/cm3), which means that the gas is dilute. The diluteness condition is satisfied if

1
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na3 � 1, that is when the mean interparticle distance is much larger than the scattering
length. From the theoretical point of view, even if weak, interactions make the problem
more difficult to solve. In 1961, Gross [Gro61] and Pitaevskii [Pit61] independently derived
an equation for the condensate wave function at the mean-field level. It has the shape
of a non-linear Schrödinger equation, and is known as Gross-Pitaevskii equation. This
equation is widely used to address the physics of condensates (see, for instance, [Dal99]),
and in particular the results in this thesis are based on the Gross-Pitaevskii framework
(except for those in Chapter 8, where we deal with fermions instead of bosons).

Bose-Einstein condensation was first achieved in 1995 using 87Rb [And95] and 23Na
[Dav95] atoms in the University of Colorado and in the Massachusetts Institute of Tech-
nology, respectively1. The first BECs were obtained with alkali atoms, since their atomic
structure makes them the perfect candidates for optical cooling. The whole cooling proce-
dure (laser cooling, trapping and evaporative cooling) was achieved in a time of the order
of seconds and temperatures were reduced from about 300 K to about 100 nK (9 orders
of magnitude). Figure 1.1 shows the momentum distribution at three different tempera-
tures (higher than, of the order of and lower than the critical temperature, respectively
from left to right), measured in the experiment reported in Ref. [Cor96]. The left picture
shows a broad thermal distribution, while the narrow peak in the picture on the right
is due to the condensate. Since the early experiments, Bose-Einstein condensation has
been achieved in a number of atomic species: 87Rb [And95], 23Na [Dav95], 7Li [Bra95], H
[Fri98], 39K [Mod01], He* [Rob01], Cs [Web03], 174Yb [Tak03], 52Cr [Gri05], 40Ca [Kra09],
84Sr [Ste09, Mar09], 164Dy [Lu11]. The case of 7Li is special because s-wave interactions
are attractive, so that the condensate is in general unstable. Metastable helium, He*, is
also a special case: since the ground state of helium at low temperatures leads to a liquid
phase, it has to be condensed not on the atomic ground state but in an excited state.
Chromium (and also dysprosium) is also particular, since it has a large dipole moment
that affects some aspects of the physics of condensates. Apart from the atomic conden-
sates listed above, homonuclear molecules (such as Li2 [Joc03, Zwi03] and K2 [Reg04])
have been cooled down to condensation. Spinor condensates (where different hyperfine
components are condensed) and mixtures (condensates involving more than one species)
are also accessible in experiments. Condensation of bosonic particles has also motivated
the achievement of an atomic degenerate Fermi gas (for instance, with 6Li, 40K, etc.), fo-
cusing especially on reaching the superfluid phase. Nowadays strong experimental effort is
devoted to cool down to degeneracy a gas of heteronuclear molecules [Ni08, Mir11]. Such
a system possesses an electric dipole moment (instead of magnetic) which can be tuned
by changing the applied electric field. In this way, strong dipolar effects can be achieved.

The experimental realization of a Bose-Einstein condensate of chromium atoms [Gri05,
Bea08] has encouraged research on the new field of dipolar gases at very low temper-
ature. While the contact interaction is isotropic, the dipolar potential is anisotropic
and long range. The atom-atom interaction is then determined by the balance of both

1This led to the Nobel Prize in Physics 2001 to Eric A. Cornell, Wolfgang Ketterle and Carl E.
Wieman “for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early
fundamental studies of the properties of the condensates”.
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Figure 1.1: Experimental realization of a Bose-Einstein condensate. From left to right, the
momentum distribution in the gas is shown for three different decreasing temperatures. In the
left, above the critical temperature, the gas shows a broad momentum distribution, indicating a
thermal cloud. In the right, below the critical temperature, the gas forms a condensate and the
momentum distribution becomes very narrow. For intermediate temperatures, the thermal and
condensed atoms coexist, showing a bimodal distribution. From Ref. [Cor96].

potentials, giving rise to interesting phenomena in a dipolar Bose-Einstein condensate
(dBEC) (see [Lah09] for a review). One of the most astounding and clear effects of
the presence of dipolar interactions in a condensate is their anisotropic character, which
shows up in the density distribution and becomes even clearer in expansion experiments,
where it can lead to inhibition of the condensate inversion [Lah07]. The anisotropy of
the dipole-dipole interaction affects the stability of the condensate, which in contrast
to s-wave condensates crucially depends on the trap geometry, the scattering length,
the magnetic (or electric) moment of the atoms and the number of trapped dipoles
[Gor00, San00, Dell04, Ebe05, Ron07, Dut07, Koch08]. For certain values of the strength
of the dipolar interaction and the trap anisotropy, the appearance of new structured bicon-
cave ground states has been predicted [Ron07, Dut07] close to the instability threshold.
The problem of collapse has been a main subject of intensive experimental [Lah08, Metz09]
and theoretical investigations [Tic08, Par09, Wil09b]. In contrast to s-wave condensates,
collapse in dipolar condensates can be either global or local. The first is due to the at-
tractive interactions, as in s-wave condensates (see, for instance, [Lah09]), but in dipolar
condensates the anisotropic and long range nature of the interactions leads to d-wave col-
lapse, as shown in Fig. 1.2. The second, however, is closely related to the roton-maxon
spectrum that dipolar condensates present [San03, Maz09], in contrast to s-wave con-
densates. When the roton mode touches zero the dipolar condensate becomes unstable
[Ron07]. In dipolar Fermi gases this leads to density-wave structures [Sun10], while the
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absence of a stabilizing Fermi energy in dBECs leads to structured collapse [Lah08, Par09].

Figure 1.2: Experimental (top row) and numerical (bottom row) collapse structures in dipolar
condensates. From Ref. [Lah08].

Analogously to s-wave condensates, the behavior of collective excitations in a dipolar
gas constitutes a subject of strong interest. The reason lies in the fact that collective
modes give information about the equation of state of the system or its collisional regime.
This is of special importance in dipolar Fermi gases, as we will see later. In dBECs
collective excitations have received much attention [Gor02, Yi02, Dell04, Ron06a, Bis10,
Bij10]. Dipolar interactions affect the frequency of different modes, compared to s-wave
interactions. In this thesis we will mainly focus on the radial quadrupole mode.

Quantized vortex states are a clear signature of the superfluid state of matter. In superfluid
He they have received much attention [Don91], but their observation is very difficult since
the vortex core is very small. In contrast, the tunability of BECs and the experimentalists’
ability to control their properties in a very precise way offer a new mechanism to observe
and study vortices. The first vortex experiments in BECs were reported in Refs. [Mat99,
Mad00, Abo01], where by expanding the condensate cloud a single vortex was seen as a
high depletion region in the density. In analogy to helium, vortex states in BECs can be
generated by rotating the confining potential. As shown in Fig. 1.3, for small rotation
frequencies the condensate shows no vorticity, while above a critical rotation frequency
the superfluid responds to rotation by nucleating a quantized vortex line. If the trap
is rotated faster, several vortices can be nucleated and they organize themselves in a
triangular Abrikosov lattice [Abo01].

Dipolar interactions introduce a new degree of freedom in the physics of vortices in
BECs, and dipolar condensates constitute a unique testing ground of the interplay be-
tween different interatomic interactions in the superfluid properties. Although vortices
have not been experimentally observed in dBECs yet, much insight has been gained from
the theoretical side. The anisotropy of the interaction has been seen to affect both the
structure of the core [Yi06], which becomes anisotropic, as well as the patterns that vortex
lattices form, which can part from the Abrikosov structure and display other lattice kinds
[Coo05, Zha05, Yi06, Kom07]. Again, the density deformation introduced by the vortex
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Figure 1.3: Experimental pictures showing
the vortex nucleation process in a Bose-
Einstein condensate. In (c) the initial
vortex-free state is shown. In (d)–(g) states
with one, two, three and four vortices are
shown, respectively. From Ref. [Mad00].

has been related to the existence of a roton mode [Wil08]. The critical frequency for vor-
tex nucleation has been calculated and has been shown to depend on the trap anisotropy
and the scattering length [Dell07, Abad09, Yuce10]. On the other hand, the presence of
vortices affects the stability of a dipolar condensate [Wil08, Yi06]. In Ref. [Wil09a], the
authors have studied the stability and excitations of singly and doubly quantized vortices
in dipolar BECs, while in Ref. [Kla09] a phase transition has been predicted between
straight and twisted vortex lines. Also, the transverse instability of vortex lines has been
studied in Ref. [Kla08]. The onset of instability to vortex formation in rotating dBECs
has been addressed [Bij07, Bij09], as well as the critical frequencies for the appearance of
one and several vortices in a quasi-2D geometry [Tic10, Mal11a].

Since the s-wave scattering length can be experimentally controlled, it is appealing
to study vortex states in different regimes, going from a purely dipolar (i.e. a = 0) to
a purely contact interaction condensate, passing through BECs with both s-wave and
dipolar interactions. As a tends to zero, the dipolar interaction becomes comparatively
stronger and its effect on the physics of vortices is enhanced. In the framework of this thesis
we consider vortex states in three-dimensional rotating dipolar condensates. Concerning
this subject, our aim is to investigate the effect of the dipolar interaction on the vortex
properties when the contact interaction is low enough to consider that the dipole-dipole
interaction is dominant.

The availability of dBECs in harmonic traps [Gri05, Bea08] opens the possibility of study-
ing their properties in more complex confining potentials. Optical lattices have been ad-
dressed in the literature (see the review [Tre11] and references therein), as well as double-
well potentials [Xio09, Asad09]. More recently, toroidal traps [Abad10a, Zol11, Mal11b]
have also been considered, and ring-shaped optical lattices [Maik11]. Experimentally,
toroidal traps can be realized, for instance, by shining the condensate with a blue-detuned
laser beam [Ryu07]. Due to the anisotropic character of the dipole-dipole interaction, the
properties of a dipolar condensate are critically determined by the toroidal geometry of
the confining potential, especially in those situations where the trap symmetry axis and
the magnetization direction are not parallel. In the context of this thesis we concentrate in
the particular situation in which the magnetization direction is perpendicular to the trap
symmetry axis. Under this circumstance, the density does not conserve the azimuthal
symmetry of the confining potential, but presents two well defined peaks in the direction
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perpendicular to the magnetization. When the scattering length is reduced the height of
these peaks increases. This effect has also been predicted in dipolar Fermi gases confined
in very narrow rings [Dut06, Zol11], and in ring-shaped optical lattices [Maik11]. For a
small enough value of the scattering length, just above collapse, one of the density peaks
disappears, giving rise to a symmetry breaking phenomenon. Spontaneous symmetry
breaking in quantum gases has recently attracted a lot of interest, especially in double-well
confining potentials. Within the framework of dipolar condensates, symmetry breaking
phenomena have been predicted to appear in external double wells [Xio09, Asad09]. In
Ref. [Xio09], the authors have observed that depending on the magnetization direction
the system undergoes a symmetry breaking, while in Ref. [Asad09] it is the strength of
the dipolar interaction that drives the same kind of phenomenon.

Regarding vortex states, it has been recently shown that purely s-wave condensates
in toroidal traps are capable of sustaining (metastable) vortex states, which produce
observable persistent flows [Ryu07]. This fact has attracted renewed interest in the physics
arising in multiply connected geometries. In particular, in the past years, the formation
[Wei08], stability [Cap09], dynamics [Mas09, Cat09], and dissipation [Pia09] of vortices in
toroidal traps have been investigated. The particular characteristics of dipolar interactions
in BECs raise numerous questions regarding the physics of vortices in such systems. In
this work we study stationary vortex states whose vorticity is along the symmetry axis of
the toroidal trap. Since the dipolar interaction introduces an angular density structure,
the velocity field of the vortices is accordingly modified. To gain insight into this effect,
we study the velocity fields created by phase-imprinted vortex states as a function of
the scattering length, i.e. of the angular anisotropy of the condensate density. Similar
results have been obtained in Ref. [Mal11b], where an exhaustive study of the persistent
currents in a 2D dipolar condensate confined in a toroidal trap is reported. In this case
the tunability of the dipolar interaction comes from the polarization angle with respect
to the trap axis, instead of the tuning of the s-wave scattering length.

The density distribution that dBECs show in toroidal traps can be understood in terms of
an effective ring-shaped potential with two Josephson junctions. The potential landscape
of this system shows two wells where the density is maximum and two barriers separating
them. There exists therefore a clear analogy between this configuration and a two-well
system, but now, due to the annular geometry, with two weak links instead of one. This
opens the possibility of studying self-induced Josephson junctions [Abad11a].

Josephson effects are a signature of quantum coherence in macroscopic many-body sys-
tems. Firstly predicted and observed when two superconductors were connected through a
weak link (see [Tin96]), Josephson effects have also been experimentally observed in a va-
riety of systems: in superfluid helium flowing through a sub-micrometer aperture [Ave95]
and through an array of nano-apertures [Per97, Hos05]; in contact-interacting BECs con-
fined in a double-well trap [Alb05, Levy07] and in an optical lattice [Cat01]; and recently
in exciton-polariton systems in semiconductors [Lag10]. All these systems are realiza-
tions of a Josephson junction. Internal Josephson dynamics has been also experimentally
observed between different hyperfine states of a spinor Bose-Einstein condensate [Zib10].
In Bose-Einstein condensates, due to the nonlinearity introduced by the s-wave contact
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interaction, there appears a new phenomenon called macroscopic quantum self-trapping
[Sme97, Rag99, Alb05], characterized by the locking of most of the atoms in one of the two
wells. Figure 1.4 shows the experimental measurement of the oscillations in a double-well
potential [Alb05].

Figure 1.4: Absorption images during Josephson (left) and
self-trapping (right) oscillations of a condensate confined
in a double-well potential. In the Josephson regime the
atoms tunnel back and forth between the two wells, while
in the self-trapping regime the atoms remain mostly in the
left well. From [Alb05].

Josephson dynamics in dipolar condensates [Xio09, Asad09] and in spinor dipolar con-
densates [Yas10] has been addressed in the literature for external double well potentials,
but in this thesis we investigate the behavior of a junction created by the dipolar in-
teraction itself. We show that this self-induced Josephson junction (SIJJ) is capable of
sustaining Josephson oscillations, as well as macroscopic quantum self-trapping, in com-
plete analogy with previous works with purely s-wave [Sme97, Alb05] or purely dipolar
[Xio09, Asad09] condensates in external double-well potentials.

Looking in detail into the self-trapping regime of the SIJJ we show that it is closely
related to phase-slip dynamics [Abad11b]. Phase-slippage is a dynamical process generally
related to AC Josephson junctions (see, for instance, Refs. [Tin96] and [Don91]). In this
regime the phase difference increases linearly in time and proportionally to the external
voltage applied or chemical potential difference between two superfluid baths. This linear
growth can be interpreted as a periodic change of the phase difference by an amount of
2π, or as the system periodically undergoing a phase-slip. The current understanding is
that phase slips are related to the dynamical creation of vortices, which cross the flow
path and leave a 2π phase behind [And66]. This process has been widely addressed in
superfluid helium (see, for instance, [Don91]) and is receiving increasing attention in BECs
[Pia09, Pia11, Ram11].

Chromium atoms are not the only system where dipolar effects are present. Very recently,
dysprosium, 164Dy, has been condensed [Lu11], with a magnetic dipole moment larger
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than 52Cr atoms. On the other hand, the availability of heteronuclear molecules close to
degeneracy [Ni08], for which the electric dipole moment would be externally controllable,
offers a new and unique framework. Up until now the molecules in the experiments have
been of fermionic character, which has encouraged strong research in dipolar Fermi gases.
Fermi gases, in contrast to Bose gases, do not condense at low temperatures, since the
Pauli exclusion principle does not allow two fermions to occupy the same state; instead,
fermions become degenerate at ultracold temperatures. This means that all the states
are occupied up to the Fermi energy. In the presence of interactions, there exists a phase
transition between the normal (degenerate) gas and the superfluid state [Gio08], which can
either appear due to Cooper-pairing of fermions, condensation of molecular dimers, or in
the unitarity regime. In a polarized Fermi gas, where s-wave interactions are suppressed,
dipolar interactions can lead to superfluidity via p-wave pairing [Bar04].

As well as in condensates, collective excitations in dipolar Fermi gases can provide
indirect information about the equation of state [Sogo09, Lima10a, Lima10b], long-range
effects [Hua10, Mat11], collisional regimes, etc. In particular, a good candidate to exper-
imentally determine in which phase the gas is is the frequency of the radial quadrupole
mode, which has a different value for hydrodynamic systems and a collisionless gas. Notice
however that hydrodynamics in a Fermi gas can be reached either when the gas is in the
collisional regime (where hydrodynamics is guaranteed by collisions that are much faster
than a characteristic oscillation period of the process under study) or in the superfluid
regime (where hydrodynamics comes from quantum coherence).

In this thesis we calculate the frequency of the radial quadrupole mode for a dipolar
Fermi gas [Abad11c], both in the collisionless as well as in the hydrodynamic regimes. This
mode is much independent on the equation of state, but only depends on the collisional
regime of the gas. In this way, the frequency in the hydrodynamic regime differs from that
in the collisionless regime, but it is the same for collisional fermions or superfluid systems.
In the hydrodynamic regime, the frequency of the radial (or surface) quadrupole mode does
not part greatly from the s-wave value [Lima10b],

√
2ω⊥ [Vic99]. This situation changes

in the collisionless regime, where dipolar interactions can introduce large deviations from
the non-interacting value, 2ω⊥. We show that this difference in frequency can be used to
determine whether the system lies in the hydrodynamic or collisionless regimes.

Outline of this thesis

This thesis is structured in five differentiated parts. The first part (Chapters 2 and 3)
gives a theoretical introduction to dBECs and vortex states in a condensate. The second
part (Chapters 4–7) is devoted to the results obtained concerning dipolar Bose-Einstein
condensates and quantized vortices in such systems. The third part (Chapter 8) introduces
ultracold dipolar Fermi gases, and establishes a possible method to distinguish between
the normal and superfluid phases of the gas, or between the collisionless and collisional
hydrodynamic regimes, through the frequency of the quadrupole mode. The fourth part
(Chapter 9) draws the conclusions of the work, and gives some possible issues for the
future. Finally a few appendices are presented to complement the information given in
the main text. The information is organized as follows.

In Chapter 2 the main aspects of the mean-field theory of dipolar condensates relevant
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for the results presented are derived. In Sec. 2.1 we describe the two kinds of interactions
that are present in dBECs: s-wave interactions and dipolar interactions. Using the expres-
sion of these two-body interactions, we derive in Sec. 2.2 the Gross-Pitaevskii equation
for a dipolar condensate. This is the equation that we solve numerically throughout the
work. The chapter ends with the Thomas-Fermi approximation of both a purely s-wave
condensate and a dipolar condensate, Sec. 2.3.

Chapter 3 is devoted to the physics of vortices in condensates. We first write the
hydrodynamic equations for a dBEC and describe the velocity field of a vortex in Sec. 3.1,
giving its main properties. In Sec. 3.2 we address the topic of the vortex core, deriving the
density profile for a vortex state in a trapped non-interacting condensate, and discussing
structure of a vortex in the interacting gas in terms of the healing length, both in the
uniform case and the trapped gas in the Thomas-Fermi regime. The phenomenology re-
garding vortex states in BECs is briefly reviewed in Sec. 3.3, commenting the experiments
most related to this thesis. In Sec. 3.4 the Gross-Pitaevskii equation is written in the ro-
tating frame, which allows to find a way of calculating the critical rotation frequency for
vortex nucleation. In Sec. 3.5 some considerations to the numerical generation of vortex
states are discussed.

Harmonically confined dipolar condensates are discussed in Chapter 4. We start in
Sec. 4.1 by describing the ground state of a dipolar condensate, focusing especially on the
effect of the anisotropic character of the interaction on the condensate density. We see
that for a certain combination of dipolar strength and trap geometry, biconcave density
structures can exist. In Sec. 4.2 we derive the virial theorem for a dBEC by minimizing the
energy with respect to a scaling transformation of the density. Section 4.3 is devoted to the
frequency of the radial quadrupole mode, which is analyzed both numerically by solving
the Gross-Pitaevskii equation and analytically within the Thomas-Fermi approximation.

Chapter 5 addresses quantized vortices in harmonically confined dipolar condensates.
In Sec. 5.1 we study the structure and formation of centered vortex lines. We describe the
structure of the vortex core and how it changes due to the presence of dipolar interactions.
The critical frequency for vortex formation is calculated as a function of the scattering
length, and the energy barrier the system needs to overcome to nucleate a vortex in the
center is presented, together with an estimation obtained from Thomas-Fermi results.
Finally, in Sec. 5.2 the effect of dipolar interactions on the precession frequency of an
off-centered vortex is studied.

In Chapter 6 we consider a dipolar condensate confined in a toroidal trap, with the
dipoles aligned perpendicularly to the trap axis. We first describe the ground state con-
figuration in Sec. 6.1, which shows an anisotropic density structure along the ring. This
affects the vortex velocity field, which is analyzed in Sec. 6.2 for one and two vortex states.

In Chapter 7 the anisotropic density structures predicted in Chapter 6 are shown to
work as a Josephson junction when an initial population imbalance is introduced between
the two wells. In Sec. 7.1 we characterize such a junction, showing that it sustains both
Josephson oscillations and a self-trapping regime. In Sec. 7.2 we develop a two-mode model
to describe the junction and compare the results with those obtained numerically. The
self-trapping regime of the self-induced Josephson junction is studied in detail in Sec. 7.3
and it is shown to be related to a phase-slip dynamics characterized by the crossing of
vortices through the junctions.
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In Chapter 8 we move to dipolar Fermi gases, and in particular we concentrate on how
dipolar interactions affect the frequency of the quadrupole mode, which is insensitive to
the equation of state of the system and allows us thus to distinguish between different
collisional regimes.

Finally, some appendices are given at the end to complement the information of the
main block of the thesis. In Appendix A we describe the imaginary-time step method,
which has been used to numerically find stationary solutions of the Gross-Pitaevskii equa-
tion. Appendix B addresses the Hamming’s method (predictor–corrector–modifier) used
to solve the time dependent Gross-Pitaevskii equation. Appendix C introduces the 4th-
order Runge-Kutta method, used both to initialize the Hamming’s algorithm and to solve
the equations of the two-mode model for a Josephson junction. We also derive, in Ap-
pendix D, the Gross-Pitaevskii equation by applying a variational procedure to the action
integral and the energy functional. In Appendix E we develop in detail the quantum
harmonic oscillator, from which the ground state of a trapped non-interacting quantum
gas can be built. In Appendix F we derive the two-mode equations for a self-induced
Josephson junction. Lastly, we devote Appendix G to derive the 3D and radial virial
expressions for dipolar gases using the method of commutators, instead of the variations
of the energy functional addressed in Chapters 4 and 8.



Chapter 2

Dipolar Bose-Einstein condensates

Bose-Einstein condensation is a quantum many-body effect that appears in a gas of bosons
at very low temperature. Such a system is described by the Hamiltonian

H =

N∑
i=1

− �
2

2m
∇2

i +

N∑
i=1

Vext(ri) +
∑
i<j

vint(ri, rj) , (2.1)

where N is the number of particles (atoms or molecules), � is the reduced Planck constant
(� = h/2π, with h the Planck constant), m is the mass of a particle, Vext is a one-body
external potential and vint is a two-body interaction potential. In many experimental situ-
ations Vext can be approximated by a harmonic potential, which in absence of interactions
leads to the quantum harmonic oscillator Hamiltonian (see Appendix E). In general, how-
ever, interactions are not negligible and they introduce important effects in the physics of
the condensate. They also make the exact problem very difficult to solve, and approxima-
tions have to be made. One of the most adopted approximations is to consider interactions
within a mean-field framework, analogously to the Hartree-Fock theory for fermions. This
is equivalent to developing a semiclassical theory for condensates, which captures the main
features of the system, but fails to describe for instance correlations between particles.
In the situations we will explore within this thesis, the mean-field framework is the most
suitable.

The main aim of this chapter is to review the mean-field formalism leading to the
Gross-Pitaevskii equation. First, in Sec. 2.1 we describe the two-body interactions that
are present in a dipolar Bose-Einstein condensate, namely s-wave contact interactions
(Sec. 2.1.1) and dipole-dipole interactions (Sec. 2.1.2). At this point, in Sec. 2.2, we
introduce the mean-field formalism, in which the large number of atoms in the lowest
energy state allows one to treat the field operators as complex numbers, yielding the time-
dependent (Sec. 2.2.1) and stationary (Sec. 2.2.2) Gross-Pitaevskii equations for a dipolar
condensate. When the confining potential is harmonic, it provides characteristic length
and energy scales that can be used to find a dimensionless form of the Gross-Pitaevskii
equation, from which it is easy to identify the relevant parameters that will play a role
in the physics of dipolar condensates (Sec. 2.2.3). The applicability conditions of the
mean-field theory for condensates and its limitations are discussed (Sec. 2.2.4). Finally,
in Sec. 2.3, we address an important limit of the Gross-Pitaevskii equation, known as the

11
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Thomas-Fermi regime, where the quantum pressure term can be neglected. For a purely
s-wave condensate (Sec. 2.3.1), the Thomas-Fermi approximation provides with analytical
solutions to most problems, and some of them have become “pocket” formulae to find the
order of magnitude of some important quantities. For dipolar condensates (Sec. 2.3.2),
the Thomas-Fermi approximation becomes more complicated, but still provides a set of
equations that are easier to solve than the Gross-Pitaevskii equation.

2.1 Two-body interactions

2.1.1 Two-body contact interaction: the s-wave scattering length

When temperature is very low in a gas, the number of open scattering channels is dras-
tically reduced. If, moreover, the gas is dilute (meaning that the interparticle distance is
much larger than a characteristic scattering length) the only open channel for identical
bosonic particles is the s-wave channel. This means that the only relevant two-body col-
lisions taking place are those where the relative angular momentum between the atoms
is zero. Also, many-body collisions are suppressed for both the diluteness and the low
temperature conditions. In a Bose-Einstein condensate, therefore, atoms collide mainly
via two-body s-wave interactions. For fermionic atoms notice that the situation is quite
different, since the Pauli exclusion principle precludes two identical fermions from being
in the same state, that is from colliding via the s-wave channel. Therefore, in a polarized
fermionic gas interactions are suppressed and the system acts as an ideal gas (there are
residual p-wave and higher order interactions but their strength is so small that in most
cases they can be effectively neglected). In contrast, in unpolarized or several-species
Fermi gases, s-wave interactions remain as the most important contribution to the scat-
tering process.

If one looks at the two-body interaction potential, two main regions can be distin-
guished. In terms of the relative coordinate r = r1 − r2 one can define the range of the
potential r0. For r > r0 the potential is dominated by a r−6 tail (van der Waals inter-
actions), which is very small in atomic collisions and can in general be neglected1. For
r < r0 the potential has some structure: for instance, it might show a minimum and then
a repulsive barrier for r → 0. There might or might not be a (weakly) bound state in this
minimum.

From the point of view of scattering theory, it is important to know the behavior
of the scattered wave function at large r. Since we are dealing with ultracold systems,
the relevant scattering process occurs at an energy E → 0, that is, at a wave vector
k → 0. The behavior of the scattered wave function can be learned by expanding it in
partial waves (that is, in the basis characterized by the quantum number of total angular
momentum �); in the low energy limit, the term that contributes most to the process is
the � = 0 term (s-wave term). It introduces a phase-shift δ0 = −ka, giving rise to a total

1This is not so when helium superfluids or molecular condensates are considered, since there van der
Waals interactions can be large. Also, one has to be cautious in dipolar condensates, especially when
the dipole moment is very large. In these situations the atoms might notice each other even at long
separations.
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cross section σ = 8πa for identical bosons. This scattering theory is discussed in detail in
Refs. [Pet02, Pit03].

It turns out that for condensates the microscopic details of the scattering potential
are in general unimportant and can be included in one parameter: the s-wave scattering
length a. The two-body potential is then usually assumed to take the simplest form: a
contact potential characterized by a Delta function,

vsw(r− r′) = gδ(r− r′) , (2.2)

where the coupling constant g is related to the s-wave scattering length through

g =
4π�

2a

m
. (2.3)

The interaction potential (2.2) is often called pseudo-potential. The scattering length can
either have positive or negative values. In the first case, which is the case of the majority
of condensed atomic species, two-body interactions are repulsive and the ground state is
always stable. When the scattering length is negative, contact interactions are attractive
and the condensate becomes unstable if a critical number of particles, Ncr, is exceeded2

(see Ref. [Dal99]). This is the case, for instance, of 7Li [Bra95]. Attractive interactions,
therefore, bring about instability and collapse to the system.

Although the scattering properties come fixed by the atomic species taking part in the
collision, they can be manipulated externally, making use of Feshbach resonances (see, for
instance, reviews [Koh06] and [Chin10]). In particular, by changing the external magnetic
field present in the condensate region, the scattering length can be tuned to arbitrarily
large or small, positive or negative values. In fact, at certain values of magnetic field B the
scattering length diverges, and this is what is properly called a Feshbach resonance. At
each side of the resonance the divergent branches of the scattering length go to +∞ and
−∞, respectively. This fact has been of the utmost importance in superfluid Fermi gases,
since the Feshbach resonance technique has allowed experimentalists to go from the a > 0
side of the resonance (where fermions with opposite spin feel repulsion and couple to form
molecules, giving rise to a molecular BEC) to the a < 0 side (where the attraction leads
the atoms to Cooper pairing and to a BCS superfluid). In the crossover between these
two superfluids the scattering length crosses the resonance and reaches infinity, entering
the regime of unitarity (sometimes also called universal regime). The unitarity regime of
a Fermi gas is receiving a lot of attention in the field, since there is only one length scale
in the system and therefore the gas presents universal properties (see, for instance, review
[Gio08]).

In this thesis we are mainly interested in dipolar condensates, and 52Cr condensates
constitute their paradigmatic example. Figure 2.1 shows the Feshbach resonances of a
52Cr gas, obtained experimentally by the group at Stuttgart [Wer05]. We can see that not
all resonances look the same, but that there are broader and narrower ones. Since there
is a limit to the precision at which the magnetic field can be experimentally controlled,

2For N < Ncr the condensate is in a metastable state, provided by a local minimum of energy. For
N = Ncr this local minimum disappears and the system is brought to the global minimum, where it
collapses.
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in practice it might be difficult to reach all desired values of a. In this respect, wider
resonances allow a better control of the zero crossing of the scattering length. This is very
important in dipolar condensates, were contact interactions are always accompanied by
dipolar interactions. If the scattering length can be tuned to zero, then dipolar interactions
become much relevant and their effects can be addressed and measured. In chromium
condensates, using the resonance at 58.9 mT, the scattering length can be controlled to
a precision of ±1 aB [Lah07], where aB is the Bohr radius. Even in alkali gases, which
have a dipole moment much smaller than chromium atoms, the usage of wide Feshbach
resonances with a soft zero crossing has led to the observation of dipolar effects in 39K
[Fat08] and 7Li [Pol09]. There is however a limit to the tunability of the scattering length
via Feshbach resonances: losses. When the scattering properties change, the probability
of inelastic collisions (usually three-body recombination) is higher, and this means that
atoms are lost from the condensate because they form molecules.

Figure 2.1: Feshbach resonance spectrum for 52Cr. Taken from Ref. [Wer05].

2.1.2 Long-range interaction: the dipole-dipole interaction

Apart from the contact collisions in the paragraph above, atoms and molecules might
interact through other mechanisms. For instance, charged particles feel a Coulomb po-
tential, particles with dipole moment interact via a dipole-dipole potential, or there could
also be spin-orbit coupling between different parts of the system. In this thesis we want to
explore some aspects of the physics that the dipole-dipole interaction introduces in con-
densates (and ultracold Fermi gases in Chapter 8). This interaction occurs when particles
are dipoles, that is when they possess a dipole moment, and in general in systems without
a net electric charge.

There are two kinds of dipole moments that particles can exhibit: electric dipole
moment (μe) and magnetic dipole moment (μm). The electric dipole moment comes from
charge separation in space, for instance when an electric field is applied to a polar molecule.
The electrons separate from the positively charged part of the molecule according to this
field and the whole molecule becomes a dipole. The electric dipole moment is therefore
tunable, since it is controlled by an external electric field. There have recently been
important advances towards the achievement of ultracold quantum gases of molecules with
large electric dipole moments, especially in fermionic systems [Ni08]. In these systems,
extremely large dipolar effects can be achieved, since the electric dipole moment can be
thousands of times larger than the magnetic dipole moment.
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The second kind of dipole moment is the magnetic dipole moment. It is present
in both atomic and molecular systems and it comes from the total angular momentum
of atoms (that is, the combination of electronic spin, nuclear spin and orbital angular
momentum). It is therefore fixed by the species we are considering. All atoms possess
a magnetic dipole moment, but it is in general very small for the majority of systems
that have been condensed (for example, μm ∼ 1 μB in alkali gases, where μB is the Bohr
magneton). However, in 2005 the group at Stuttgart achieved the first Bose-Einstein
condensate of 52Cr atoms [Gri05], and some years later it was also achieved by the group at
Paris (Villetaneuse) [Bea08]. The particularity of chromium atoms is that their magnetic
moment (μm = 6 μB) is six times larger than in alkali atoms so that dipolar effects
can be seen and tested in the real system. Recently, dysprosium (164Dy) atoms have
been condensed [Lu11], which possess a magnetic dipole moment larger than chromium
(μm = 10 μB). Dipolar effects can also be seen in alkali gases, despite their small magnetic
dipole moment, provided the scattering length is tuned to vanishingly small values, as was
proven in Refs. [Fat08] and [Pol09] for 39K and 7Li, respectively. The 52Cr condensate is
the system that we have in mind throughout most part of the thesis, although the physics
exposed can be applied to other dipolar species (see Sec. 2.2.3).

The interaction between two (classical) magnetic dipoles μ1 and μ2 located at positions
r1 and r2 (see Fig. 2.2) is given by

vdip = −μ0

4π

(μ1 · μ2)r
2
12 − 3(μ1 · r12)(μ2 · r12)

r5
12

, (2.4)

with μ0 the magnetic permeability of vacuum and r12 = r1 − r2. Considering that the
dipoles are identical and aligned along, say, the z direction, we have μ1 = μ2 = μêz, and
the dipole-dipole potential becomes

vdip(r1 − r2) = d21− 3 cos2 θ

|r1 − r2|3 = d2 1

|r1 − r2|3
(

1− 3
(z1 − z2)

2

|r1 − r2|2
)

. (2.5)

The angle θ is the angle that the vector r1 − r2 forms with the magnetization axis, z, see
Fig. 2.2. This expression turns out to be the same for electric and magnetic dipoles, with
the only difference entering in the definition of the coupling constant d2. It is given by
d2 = μ0μ

2
m/4π for magnetic dipoles and by d2 = μ2

e/4πε0 for electric dipoles (with ε0 the
electric permittivity of vacuum). We want to note here that we call the prefactor of vdip

as d2. This notation is not generalized in the literature, but it is convenient in this thesis
since it is easy to use both in magnetic and electric dipoles. Moreover, it is independent of
the unit system in which electromagnetic quantities are expressed, and this avoids some
confusion.

From Eq. (2.5) we can readily see that dipolar interactions, in contrast to contact
interactions, are characterized by two main properties. The first one is that dipole-dipole
interactions are long-range, due to the 1/r3 dependence. This means that particles that
are far away will feel each other. We should be cautious with that, especially if d2 is
very large (as in the case of dipolar molecules), since it might turn out that in the long-
range limit dipole-dipole interactions are of the same order as van der Waals interactions.
One should then reconsider the whole scattering approximations (see, for instance, the
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Figure 2.2: Scheme of the quantities entering
the dipole-dipole interaction, see Eqs. (2.4) and
(2.5).

discussion in the review [Lah09]). The second property, and the one we will exploit most,
is that dipole-dipole interactions are anisotropic, which is related to the term cos2 θ in
Eq. (2.5). In the two limiting cases of θ = 0 and θ = π/2 the dipole-dipole interaction
is negative or positive, respectively. This means that when two dipoles are head to tail,
they attract each other, while if they are sitting side by side they feel repulsion. There is
a special value of θ, called the magic angle, where vdip(r1 − r2) = 0 [Gio02]. In a three-
dimensional dipolar condensate, repulsion and attraction will always coexist. While the
former tends to stabilize the gas, the latter brings about collapse.

Finally, let us comment on the relation between contact and dipole-dipole interactions
(see review [Lah09]). The first point is that the separation of the scattering process into
contact and long-range parts is not straightforward, and has led to some discussion. The
conclusion seems to be that considering the two interactions separately is correct away
from shape resonances3, and at the level of mean-field theory. The second point is that the
dipole moment and the scattering length are not independent, since they form part of the
same scattering process. This subject has been addressed in Ref. [Ron06b], showing that
the scattering length depends rather strongly on the dipole moment. This is not much
relevant in this thesis, however, since we consider that the magnetic dipole moment is
fixed, or that the scattering length is zero for fermions due to the Pauli exclusion principle
(Chapter 8).

2.2 Mean-field regime: the Gross-Pitaevskii equation

To derive the mean-field equations for a Bose-Einstein condensate, or Gross-Pitaevskii
equations, a possible approach is to address the many-body problem in second quantization
formalism (an alternative approach, concerning variations of the action integral and the
energy functional, is given in Appendix D). In terms the field operators Ψ̂(r) and Ψ̂†(r),

3Shape resonances appear when two scattering channels are very close. The energy of the system and
the scattering cross section become very large. In contrast, Feshbach resonances appear when a bound
state is very close in energy to the collision threshold.
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which have the meaning of destroying and creating a particle at position r, respectively,
the Hamiltonian takes the form

Ĥ =

∫
dr Ψ̂†(r)

[
− �

2

2m
∇2 + Vext(r)

]
Ψ̂(r) +

1

2

∫
dr dr′ Ψ̂†(r)Ψ̂†(r′)vint(r− r′)Ψ̂(r′)Ψ̂(r) .

(2.6)
Since the field operator is indeed an operator, its time evolution is given by the Heisenberg
equation,

i�
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
, (2.7)

which leads to the time evolution equation for the field operator

i�
∂

∂t
Ψ̂(r, t) =

[
− �

2

2m
∇2 + Vext(r) +

∫
dr′ Ψ̂†(r′, t)vint(r− r′)Ψ̂(r′, t)

]
Ψ̂(r, t) . (2.8)

Bose-Einstein condensation occurs when the number of particles occupying the same
single-particle state becomes very large, of the order of the total number of particles, N0 ∼
N . Under this condition, operators can be treated as complex numbers. In particular, it
is useful to decompose the field operator as

Ψ̂(r, t) = Ψ(r, t) + Ψ̂′(r, t) , (2.9)

where Ψ(r, t) = 〈Ψ̂(r, t)〉 is its mean value, or condensate wave function, and Ψ̂′ takes
care of the non-condensed fraction. Expression (2.9) is usually referred to as Bogoliubov
prescription. At zeroth order (that is, substituting the operator Ψ̂(r, t) for the scalar wave
function Ψ(r, t) in Eq. (2.8)) one obtains the time evolution equation

i�
∂

∂t
Ψ(r, t) =

[
− �

2

2m
∇2 + Vext(r) +

∫
dr′Ψ∗(r′, t)vint(r− r′)Ψ(r′, t)

]
Ψ(r, t) . (2.10)

This approximation constitutes a mean-field approximation. Notice that interactions
render the problem non-linear, and that in general Ψ(r, t) will have to be found self-
consistently, often using numerical methods. The condensate wave function, Ψ, can be
identified with the order parameter of the transition between normal and condensed phases
of the Bose gas. It is zero for T > Tc and starts increasing below Tc until it reaches the
value of N for T = 0 (it reaches 1 if the wave function is normalized to unity). For
further information and more details, see for instance the books by E. Lipparini [Lip03],
L. Pitaevskii and S. Stringari [Pit03] and C. J. Pethick an H. Smith [Pet02], or also the
review by the Trento group on condensates [Dal99].

2.2.1 Time-dependent Gross-Pitaevskii equation (TDGP)

At the mean-field level and away from shape resonances, the two-body interaction poten-
tial can be written as

vint(r− r′) = vsw(r− r′) + vdip(r− r′) = gδ(r− r′) + d2 1− 3 cos2 θ

|r− r′|3 . (2.11)
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The equation governing the time evolution of the condensate wave function, Eq. (2.10),
becomes

i�
∂

∂t
Ψ(r, t) =

[
− �

2

2m
∇2 + Vext(r) + g |Ψ(r, t)|2 + d2

∫
dr′ |Ψ(r′, t)|2 1− 3 cos2 θ

|r− r′|3
]

Ψ(r, t) .

(2.12)
This equation is called the time-dependent Gross-Pitaevskii equation (TDGP) and gives
the evolution in time of the condensate wave function, Ψ, for a dipolar condensate. It
was independently derived by Gross (1961) and Pitaevskii (1961) for purely s-wave con-
densates (that is, with d = 0). Equation (2.12) allows us to address dynamical phenom-
ena in the condensate: collective oscillations, vortex precession, interference, etc. Note
that Eq. (2.12) gives an energy- and parity-conserving dynamics, and cannot be used to
study vortex formation or deexcitation processes, among other phenomena. The numerical
method we have used throughout the thesis to solve Eq. (2.12) is based on a Hamming’s
algorithm initialized by a fourth-order Runge-Kutta method (see Appendices B and C,
respectively, for a detailed description of the methods). An alternative procedure to derive
the TDGP Eq. (2.12) based on a variational procedure applied to the quantum action will
be detailed in Appendix D.

2.2.2 Stationary Gross-Pitaevskii equation (GP)

In order to find stationary solutions of the TDGP Eq. (2.12), or the equation that leads
to them, we recall the definition of Ψ in terms of the field operator Ψ̂, Ψ(r, t) = 〈Ψ̂(r, t)〉
(see [Pit03]). The average has to be taken over stationary states, that is, with a phase
that evolves in time as e−iEt/�. Now for the average to be different from zero according to
the laws of quantum mechanics, the states in the left and in the right must differ of one
particle. Using occupation number representation for the stationary states, this means

Ψ(r, t) = 〈N |eiEN t/� Ψ̂ e−iEN+1t/�|N + 1〉 = e−i(EN+1−EN )t/� 〈N |Ψ̂|N + 1〉 . (2.13)

The phase factor can be recognized (at first order) as the chemical potential, since

μ =
∂E

∂N
≈ EN+1 −EN . (2.14)

We find therefore that if the condensate is in a stationary state, the order parameter
evolves in time with a phase proportional to the chemical potential,

Ψ(r, t) = ψ(r)e−iμt/� . (2.15)

Notice that Ψ(r, t) and ψ(r) are normalized to the number of particles. The fact that
there appears the chemical potential instead of the energy can be traced back to the
fact that the phenomenon of condensation is naturally defined in the grand-canonical
ensemble. It means that the condensate acts as a reservoir of particles, which is related
to the assumption that the creation and annihilation operators are treated as complex
numbers. Also, it can be regarded as a requirement to the theory that the number of
particles is conserved (or that the mean number of particles is kept constant, that is, that
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the system is in equilibrium), which imposes the appearance of μ as a Lagrange multiplier
when the equations are derived from the energy functional (see Appendix D).

Introducing Eq. (2.15) into Eq. (2.12), one finds the time-independent (or stationary)
Gross-Pitaevskii equation (GP),[

− �
2

2m
∇2 + Vext(r) + g |ψ(r)|2 + d2

∫
dr′ |ψ(r′)|2 1− 3 cos2 θ

|r− r′|3
]

ψ(r) = μψ(r) . (2.16)

It is a non-linear Schrödinger equation and has to be solved numerically. It is also a
non-local equation, due to dipolar interactions. There are two important limits to this
equation: if interactions are neglected (g = 0 and d = 0) one recovers the results for
the non-interacting condensate (Appendix E); if interactions are so large that the kinetic
energy (quantum pressure) term can be neglected, the Thomas-Fermi regime is reached
and analytical (for d = 0) or pseudo-analytical (for d �= 0) solutions can be found (Sec. 2.3).
Away from these two limits, there are mainly two numerical methods that have been used
to find its solution: imaginary-time propagation and conjugate gradient. The method
used throughout this thesis has been imaginary-time propagation, and an explanation of
it is given in Appendix A.

It is sometimes convinient to define the mean-field dipolar potential,

Vdip(r) =

∫
dr′|ψ(r′)|2vdip(r− r′) =

∫
dr′|ψ(r′)|21− 3 cos2 θ

|r− r′|3 , (2.17)

which is the term that appears in the GP equation. We will see in the following chapters
that the shape of this potential determines to a great extent the density distribution of
atoms. In this way, the mean-field dipolar potential Vdip can be sometimes thought of as
an extra trapping potential, but self-induced by the dipolar atoms themselves.

The energy of a dipolar condensate is given by the energy functional

E = Ekin + Eext + Esw + Edip , (2.18)

where the different terms are, respectively, the kinetic energy

Ekin =
�

2

2m

∫
dr |∇ψ(r)|2 , (2.19)

the confining potential energy,

Eext =

∫
dr Vext(r)|ψ(r)|2 , (2.20)

the contact interaction energy,

Esw =
g

2

∫
dr |ψ(r)|4 , (2.21)

and the mean-field dipolar energy,

Edip =
1

2

∫
dr |ψ(r)|2

∫
dr′ vdip(r− r′) |ψ(r′)|2 . (2.22)
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Using the factorization ψ =
√

neiS (called Madelung transformation, see Sec. 3.1.1), with
S the phase of the wave function and n = |ψ|2 the density, the kinetic energy can be
written as

Ekin =
�

2

2m

∫
dr

[(∇√n
)2

+ n (∇S)2
]

. (2.23)

The first term on the right-hand side is called quantum pressure (or zero-point kinetic
energy) and becomes especially important at the surface of the condensate, or when the
density presents an oscillating behavior. Notice that it can also be written in terms of√

n∇2
√

n. When it is negligible one enters the Thomas-Fermi regime (see Sec. 2.3). The
second term on the right-hand side of Eq. (2.23) is related to the superfluid velocity that
can be present in the superfluid (for instance, when vortices are considered).

If we take Eq. (2.16), multiply it by ψ∗ and integrate the whole equation over r, we
see that the chemical potential is related to the different energy terms by

E + Esw + Edip = μN , (2.24)

where E is the total energy given by Eq. (2.18). This equation can be thought of as a test
of the code we are using to solve the GP equation. Another good check comes from the
virial theorem, which will be derived in Sec. 4.2 for a dipolar condensate in a harmonic
trap (see Chapter 6 for its extension to the case of a toroidal trap, and Appendix G for a
derivation of the virial theorem using commutators).

Equations (2.12) and (2.16) are integro-differential equations, with the integral part
brought about by dipolar interactions. In general, such kind of equations are complicated
to solve. Let us comment briefly on how the dipolar term has been treated to solve these
equations numerically [Gor02]. Basically we have made use of the convolution theorem
and have written ∫

dr′ |ψ(r′)|2 vdip(r− r′) = F−1 [ñ ṽdip] , (2.25)

where F−1 stands for the inverse Fourier transform, and ñ and ṽdip are, respectively, the
Fourier transforms of the density and of the dipole-dipole potential. The first one has
been calculated numerically, using the FFTW library [Fri05]. The Fourier transform of
vdip is analytical and can be easily calculated by using the identity [Dell04]

vdip(r) = −d2 ∂2

∂z2

1

r
− d2 4π

3
δ(r) , (2.26)

where for simplicity we are using r to denote |r− r′|, and analogously for all coordinates,
and we are assuming the magnetization axis to be the z axis. The delta term appears in
order to regularize the divergence for r → 0. We can recognize 1/r as the Coulomb poten-
tial. The Fourier transforms of both the Coulomb potential (see, for instance, Jackson’s
book, Ref. [Jac99]) and the Dirac delta are very well known, and using the properties of
the Fourier transform (see footnote 2 of Appendix G) we get

ṽdip(k) = −d2 4π

3
(1− 3 cos2 θp) = −d2 4π

3

(
1− 3

k2
z

k2

)
. (2.27)

Note that although the dipole-dipole potential is not well defined at r = 0, its Fourier
transform is well defined everywhere. Equation (2.27) can also be obtained by expanding
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the imaginary exponential entering the definition of Fourier transform in terms of the
spherical Bessel function, and then performing the angular integrals using the properties
of the integration of three spherical harmonics (an example of this method is given in
Appendix G, Sec. G.2.2).

2.2.3 Dimensionless GP equation and dimensionless parameters

Until now we have considered a general external potential, Vext, to derive the Gross-
Pitaevskii equation, but in most experimental situations the confinement of the gas can
be approximated by a harmonic potential with cylindrical (or axial) symmetry. Taking
the axis of symmetry to be the z axis, it is written as

Vho =
1

2
mω2

⊥
(
r2
⊥ + λ2z2

)
, (2.28)

where r2
⊥ = x2 + y2 is the radial coordinate, ω⊥ is the frequency in the radial direction,

and λ = ωz/ω⊥ is the trap anisotropy or trap aspect ratio, with ωz the frequency along
z. The harmonic potential provides a natural length scale: the radial oscillator length,
a⊥ =

√
�/(mω⊥). It is also useful, especially for anisotropic harmonic potentials, to

introduce the oscillator length aho =
√

�/(mωho), with ωho = (ωxωyωz)
1/3 the geometric

mean of the frequencies. Both aho and a⊥ are typically of the order of 1 μm and provide
an order of magnitude of the width of the condensate.

The geometry of the potential (2.28) determines to a great extent the geometry of
the condensate. If two-body interactions are isotropic, the geometry of the condensate
is the same as that of the trap. For λ = 1, the condensate is spherical. For λ > 1 it
shows an oblate geometry, being the width in z smaller than the width along r⊥. The
condensate is then usually referred to as pancake- or disk-shaped. For λ < 1 the geometry
is prolate, meaning that the extent of the condensate is larger in the z direction than
in the radial direction. Such kind of condensates are usually called cigar-shaped. If two-
body interactions are anisotropic due to the dipole-dipole potential, the aspect ratio of the
condensate does not follow exactly λ, since magnetostriction effects tend to enlarge the
condensate in the direction where the dipoles are attractive. This topic will be discussed
in Chapter 4.

Taking advantage of the length and energy scales provided by the harmonic trapping
potential (respectively, a⊥ and �ω⊥), the GP Eq. (2.16) can be expressed in dimensionless
units. This gives rise to the dimensionless GP equation,

− 1

2
∇̃2ψ̃ +

1

2

(
r̃2
⊥ + λ2z̃2

)
ψ̃ + 4π

Na

a⊥
|ψ̃|2ψ̃ +

Nd2m

�2a⊥

∫
dr̃′

∣∣∣ψ̃(r̃′)
∣∣∣2 1− 3 cos2 θ

|̃r− r̃′|3 ψ̃ = μ̃ψ̃ ,

(2.29)
where the tilde indicates dimensionless quantities, that is r̃ = r/a⊥, μ̃ = μ/(�ω⊥), etc.
We have also imposed that the dimensionless wave function is normalized to unity in-
stead of N , which gives the relation ψ(r) =

√
N/a3

⊥ ψ̃(r̃). We see from Eq. (2.29) that
there are three parameters that control the physics of dipolar condensates: λ, Na/a⊥ and
Nd2m/(�2a⊥). The first parameter, the trap anisotropy, controls the geometry of the con-
densate. The second parameter, Na/a⊥, gives the ratio between the strength of s-wave
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interactions with respect to the harmonic trapping. If this parameter is very large one en-
ters the Thomas-Fermi regime (see Sec. 2.3). The third parameter, usually denoted by D,
gives the strength of dipolar interactions with respect to the strength of the confinement,

D =
Nd2m

�2a⊥
. (2.30)

It is especially relevant when the condensate is purely dipolar, that is when a = 0. The
quantity d2m/�

2 has units of length, which allows us define a characteristic length scale
for dipolar interactions. This definition is not unique in the literature, but it turns out
that a good definition is provided by

add =
d2m

3�2
. (2.31)

The factor 1/3 appears such that a homogeneous condensate is unstable for a < add

[San03]. This is also valid for a dipolar condensate in the Thomas-Fermi regime. For
52Cr, add ∼ 15 aB. Since at zero magnetic field a ∼ 100 aB, we can understand that
dipolar effects in chromium will be only significant if the scattering length is reduced by
using the technique of Feshbach resonances.

It is easy to see from Eq. (2.29) that once the trap geometry is fixed, the physics of the
dipolar condensate will be determined by the balance between contact and dipolar inter-
actions. The dimensionless parameter that contains this information is usually denoted
by εdd and is given by

εdd =
4πd2

3g
=

d2m

3�2a
=

add

a
. (2.32)

A homogeneous dipolar condensate or a dipolar condensate in the Thomas-Fermi regime
become unstable when εdd > 1 [San03, Dell04]. Note that the factor 1/3 is the same as
introduced in the definition of add, while the factor 4π is introduced to cancel the 4π that
appears in the definition of d2 for both magnetic and electric dipoles (see Sec. 2.1.2). To
avoid this factor, sometimes a parameter Cdd = 4πd2 is introduced, being Cdd = μ0μ

2
m for

magnetic dipoles and Cdd = μ2
e/ε0 for electric dipoles. Then εdd = Cdd/3g.

As said before, the system we have in mind throughout most part of this thesis is a
condensate of 52Cr atoms. Using Eq. (2.29) the physics that we address can be extended
to any other atomic species with non-vanishing dipole moment, such as 164Dy, 39K, 7Li,
etc., or even to bosonic molecular systems for which Eq. (2.11) for the total two-body
potential remains valid.

2.2.4 Validity and limitations of the Gross-Pitaevskii theory

For Eqs. (2.12) and (2.16) to be applicable there are some conditions that have to be
fulfilled. We have already encountered them, but they are summarized here.

1. They describe a condensate at T = 0. To address finite temperatures, a normal
(thermal) cloud has to be added to the description of the system. A possibility is
to describe the cloud with a Boltzmann equation (see for instance Ref. [Zar09]),
coupled to the GP equation by collision integrals.
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2. The Gross-Pitaevskii theory is valid to describe dilute condensates. This means that
the interparticle separation must be much larger than the characteristic length of
collisions (for contact interactions, it is the scattering length that plays this role). A
good characterization of the diluteness condition is imposing that x = na3 � 1, with
x the diluteness parameter and n the averaged density of the condensate. Notice that
diluteness is also an experimental requirement: since a Bose-Einstein condensate is
a metastable state of matter, condensation can only be achieved for densities much
smaller than those that would lead to clustering and solidification.

3. The Gross-Pitaevskii theory is a mean-field theory, in the sense that the interaction
potential appearing in the equations is a “mean” potential, that is, it is integrated
among all the particles. To solve exactly the many-body Hamiltonian, Eq. (2.1), one
should use for instance Monte-Carlo integration techniques. This technique provides
the exact result, but the calculations are usually time- and memory-consuming, and
good computers can only reach numbers of particles of the order of thousands (in
typical experiments N ∼ 104 − 106).

4. It is implicit in the GP equations that the order parameter, or condensate wave
function, describes a superfluid. In this respect, GP theory will be valid as long as
the system is in the superfluid state. If there are inhomogeneities in the confining
potential that make the system be composed of several localized wave functions (for
instance, in deep optical lattices), the theory is no longer applicable. One should
then move, for instance, to Bose-Hubbard formalism.

5. We have derived GP equations in 3D. They are not strictly true in lower dimension-
ality systems, since in such systems two-body interactions cannot be written as in
Eqs. (2.2) and (2.5). However, GP can be used to study the limit of quasi-2D and
quasi-1D systems, where the confinement in one or two directions, respectively, is
so strong that the condensate wave function can be factorized. The wave function
along the strong confinement directions is then usually taken to be the ground state
of the harmonic oscillator and the dependence on these directions is integrated out
from the GP equation.

6. Even if T = 0, in a real system interactions prevent all the particles to be in the
same single-particle state. There is always a fraction of particles occupying excited
states known as quantum depletion. To derive the GP equation quantum depletion
is neglected, which is a good approximation only for large N . To treat properly the
condensate plus the higher energy occupied states one should work with the density
matrix. A possible method is to use exact diagonalization techniques, but then only
systems with low particle numbers can be addressed.

7. We have seen that GP equations come from a zeroth order expansion of the field
operator, which is treated as a complex number. This means, for instance, that we
are missing two-body (and higher order) correlations.

Despite all these restrictions, the Gross-Pitaevskii theory works perfectly well to de-
scribe a Bose-Einstein condensate in the majority of experimental situations. In addition,
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and surprisingly, it can predict the onset of some phenomena that are not properly taken
into account in the theory. One example is the collapse of the condensate. The equations
derived above describe an equilibrium state and collapse is clearly a phenomenon out of
equilibrium. However, the GP equation predicts correctly the conditions under which col-
lapse will occur (for instance, collapse due to attractive interactions). Another example
is that despite correlations are smoothed out by taking a complex number instead of the
annihilation operator, there are some remnants that the condensate wave function retains.
This in fact is general for Hartree-Fock-like approximations.

2.3 Thomas-Fermi approximation (TF)

When the number of atoms in the condensate is very large, the effects of quantum pressure
become negligible compared to interactions and the term (∇√n)2 in Eq. (2.23) can be
effectively set to zero. This is usually referred to as the Thomas-Fermi approximation
of a condensate4. If there are no velocity fields in the gas, the whole kinetic energy is
neglected; otherwise we should maintain the velocity term ∇S.

2.3.1 Thomas-Fermi approximation for an s-wave condensate

Without the kinetic energy term, the Gross-Pitaevskii Eq. (2.16) for an s-wave condensate
(d = 0) becomes

Vext(r)ψ + g|ψ|2ψ = μψ . (2.33)

From this equation the density of the condensate is given in the Thomas-Fermi approxi-
mation by

n(r) =

⎧⎨⎩
μ− Vext(r)

g
for μ > Vext

0 elsewhere
,

which can be recognized as a form of a local-density approximation (see, for instance,
Ref. [Lip03]). The geometry of the condensate density follows that of the trapping poten-
tial. Let us consider an axially symmetric harmonic trap, given by the potential Eq. (2.28).
In the region where it is nonzero, the density can be written as

n(r) = n0

(
1− r2

⊥
R2
⊥
− z2

R2
z

)
, (2.34)

where n0 = μ/g is the density at the center of the trap. We have introduced the
Thomas-Fermi radii in the radial and z directions, respectively R⊥ and Rz, given by
Ri =

√
2μ/(mω2

i ). The density of a condensate in the Thomas-Fermi approximation is
thus an inverted parabola. Notice that the Thomas-Fermi radii correspond to the classical
turning points.

4Note that, even if the underlying idea is the same (i.e. neglecting the quantum pressure of the ground
state) the Thomas-Fermi approximation has a different manifestation whether the system is bosonic or
fermionic. The case of fermions will be briefly described in Chapter 8.
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The chemical potential is found from the normalization of the density, Eq. (2.34), to
N :

μ =
1

2
�ω⊥

(
15λ

Na

a⊥

)2/5

. (2.35)

Using this expression, the TF radii and the central density can be found,

R⊥ =

√
2μ

mω2
⊥

= a⊥

(
15λ

Na

a⊥

)1/5

(2.36)

Rz =

√
2μ

mω2
z

=
a⊥
λ

(
15λ

Na

a⊥

)1/5

(2.37)

n0 =
15

8π

N

R2
⊥Rz

. (2.38)

From these values and the density (2.34), most magnitudes can be calculated analytically.
Note that the relevant parameter in the TF regime is Na/a⊥, which we have already
encountered in the dimensionless GP Eq. (2.29). It gives the ratio between the strength
of the contact interactions and the confining potential. When Na/a⊥ � 1 the Thomas-
Fermi approximation agrees well with the results obtained solving the full Gross-Pitaevskii
equation (2.16).

2.3.2 Thomas-Fermi approximation for a dipolar condensate

The theory of the Thomas-Fermi approximation for dipolar condensates has been de-
veloped in Refs. [Dell04, Ebe05] and has been applied to study the rotation [Dell07],
expansion and collective excitations [Gio06] of dBECs. It is based on the fact that the
inverted parabola (2.34) is an exact solution of the equation

μ = Vho(r) + gn(r) + Vdip(r) , (2.39)

where Vdip(r) is the mean-field dipolar potential Eq. (2.17). The Thomas-Fermi radii are
used here as variational parameters to find the equilibrium configuration. Since the dipolar
potential is rather more involved and difficult to treat than the contact interaction poten-
tial, the dipolar Thomas-Fermi approximation becomes more complicated. In particular,
the dipolar TF approximation relies on a transcendental equation that has no analytical
solution. For an axially symmetric harmonic potential, Eq. (2.28), this equation reads

κ2

λ2

[
3εdd

f(κ)

1− κ2

(
λ

2
+ 1

)
− 2εdd − 1

]
= εdd − 1 , (2.40)

where κ = R⊥/Rz is the condensate anisotropy parameter and εdd is given by Eq. (2.32).
For εdd > 1 the TF dipolar condensate is unstable, although metastable solutions can
exist, as discussed in Refs. [Dell04, Ebe05]. The function f(κ) comes from the angular
integration of the dipolar potential and is given by

f(κ) =
1 + 2κ2

1− κ2
− 3κ2

(1− κ2)3/2
tanh−1

√
1− κ2 . (2.41)
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It decreases monotonically from f(κ→ 0) = 1 to f(κ→∞) = −2, crossing zero at κ = 1
(a plot of this function will be shown in Chapter 8, Fig. 8.2). The ground state density
profile is thus characterized by the equilibrium Thomas-Fermi radii, given by

R⊥ =

[
15gN

4πmω2
⊥

κ

{
1− εdd

(
1− 3

2

κ2

1− κ2
f(κ)

)}]1/5

(2.42)

Rz =

[
15gN

4πmω2
⊥

κ2

λ2

{
1 + 2εdd

(
1− 3

2

1

1− κ2
f(κ)

)}]1/5

(2.43)

and by the density

n =
15

8π

N

R2
⊥Rz

(
1− r2

⊥
R2
⊥
− z2

R2
z

)
. (2.44)

The different contributions to the energy functional, Eq. (2.18), are [Dell04, Gio06]

Eho =
1

7
N

mω2
⊥

2

(
2R2

⊥ + λ2R2
z

)
(2.45)

Esw =
15

7

N2
�

2a

m

1

R2
⊥Rz

(2.46)

Edip = −15

7

N2
�

2a

m

εdd

R2
⊥Rz

f(κ) . (2.47)

If the system has no cylindrical symmetry, the anisotropy function, f(κ), depends on
the aspect ratios κx = Rx/Rz and κy = Ry/Rz and has the form [Gio06]

f(κx, κy) = 1 + 3κxκy
E(ϕ\α)− F (ϕ\α)

(1− κ2
y)
√

1− κ2
x

, (2.48)

where F (ϕ\α) and E(ϕ\α) are the incomplete elliptic integrals of first and second kind
[Abr72] and their arguments are given by:

sin2 α =
1− κ2

y

1− κ2
x

(2.49)

sin ϕ =
√

1− κ2
x . (2.50)

Much information about f(κx, κy) can be found in Ref. [Gio06]. It can be seen that when
the two arguments are equal, κx = κy, one recovers expression (2.41).



Chapter 3

Physics of vortices in Bose-Einstein
condensates

A condensate in three dimensions is a superfluid1, i.e. a quantum fluid characterized by
zero viscosity that flows without dissipation. One of the clearest evidences of superfluidity
in a system is the appearance of quantized vortices. If the trap is rotated at low frequency
the superfluid cannot follow the movement and remains at rest. As the rotation frequency
is increased and reaches a critical value Ωc, the system responds to rotation by creating
a centered vortex state. This process is usually called vortex nucleation. A hole in the
density appears in the center and the superfluid flows around it with quantized circulation.
This flow is irrotational and has an angular momentum of N�, where N is the number
of atoms in the condensate. This kind of experiment is known as the rotating bucket
experiment, since it was the method used in He to obtain vortices [Don91], and the vortex
that appears is called a vortex line.

In this chapter we summarize some aspects of the physics of vortices in condensates. It
is organized as follows. In Sec. 3.1 we derive the hydrodynamic equations for a condensate
and introduce the vortex velocity field (Sec. 3.1.1). We discuss the main properties of
the vortex line: quantized circulation, vorticity and angular momentum (Sec. 3.1.2). In
Sec. 3.2 we address the structure of vortex lines, that is the vortex core, for s-wave
condensates in the non-interacting limit (Sec. 3.2.1) and for the interacting gas (Sec. 3.2.2),
both the homogeneous case and the Thomas-Fermi regime. In Chapter 5 we will see
how dipolar interactions modify the structure of the core. Section 3.3 is devoted to the
experimental methods used to create (Sec. 3.3.1) and detect (Sec. 3.3.2) vortex states of
different kinds. Also some of the measurements that can be done with vortices, and that
have some relevance for this thesis, are discussed (Sec. 3.3.3). In Sec. 3.4 we comment on
how vortices in rotating condensates are treated within the mean-field framework, that is
with the GP equation in the rotating frame. From the mean-field energy of the vortex
state in the laboratory frame and in the rotating frame (Sec. 3.4.1), a thermodynamical
argument can be used to calculate the critical frequency for vortex nucleation (Sec. 3.4.2).

1In 3D Bose gases, condensation is always accompanied by superfluidity. However, this is not the case
in lower dimensional systems, where one might have a non-superfluid condensate. This topic is discussed
in the appendix of Ref. [Blo08]. Throughout this thesis we consider the two terms as equivalent, since we
deal only with situations where condensates are also superfluids.

27
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Finally, in Sec. 3.5 we comment on the method used to numerically find vortex solutions.
Notice that the results in Sec. 3.1, Sec. 3.4 and Sec. 3.5 are valid both for dipolar and
purely contact interacting condensates, while Sec. 3.2 and Sec. 3.3 refer basically to s-wave
condensates. The effect of dipolar interactions will be treated in Chapters 5 and 6.

3.1 The vortex velocity field

3.1.1 Hydrodynamic equations for a dipolar condensate

The condensate order parameter ψ(r) is in general a complex function, so it can be written
in terms of a modulus and a phase, using the Madelung transformation [Don91], as

ψ(r) =
√

n(r) eiS(r) , (3.1)

where n(r) is the atom density and S(r) the phase of the wave function. The ground state
of a condensate has an arbitrary phase, so it is usually taken to be zero and the wave
function becomes real. As we will see in what follows, a nonzero (inhomogeneous) phase
gives rise to a velocity field in the condensate. Equation (3.1) is completely general for a
superfluid system, therefore for a condensate in 3D. It expresses the fact that condensates
are hydrodynamic systems. Using expression (3.1) one can calculate the current density,
j(r), as

j = −i
�

2m
(ψ∗∇ψ − ψ∇ψ∗) =

�

m
Im [ψ∗∇ψ] = n

�

m
∇S . (3.2)

Using the hydrodynamic relation j = nv, one sees immediately that the superfluid velocity
is related to the phase by

v(r) =
�

m
∇S(r) . (3.3)

Now if Eq. (3.1) is treated as an ansatz for the condensate wave function (which in
general depends also on time) and is substituted into the Gross-Pitaevskii Eq. (2.12), a
set of two coupled equations is found for n(r, t) and v(r, t) (or equivalently, in terms of
n(r, t) and S(r, t)),

∂n

∂t
+∇ · (nv) = 0 (3.4)

m
∂v

∂t
+ ∇

(
− �

2

2m

1√
n
∇2
√

n + Vext + gn + Vdip +
1

2
mv2

)
= 0 . (3.5)

These equations are known as hydrodynamic equations and have been successfully used
in a number of calculations, both for s-wave and dipolar condensates (see, for instance,
Refs. [Dal99, Pet02, Pit03, Lah09]). They are general, in the sense that they are exactly
equivalent to the Gross-Pitaevskii equation. The first equation, Eq. (3.4), is the continuity
equation, which expresses the conservation of mass. The second equation, Eq. (3.5), tells
us that the superfluid is irrotational. If the quantum pressure term is neglected, we recover
the Thomas-Fermi approximation (see Sec. 2.3.1).
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3.1.2 Velocity field of a vortex line

From Eq. (3.3), we see that inhomogeneities in the phase bring about velocity fields, and
therefore currents, in the condensate. One of the most interesting is the vortex line,
which is basically a straight line with zero density, around which the condensate flows
with quantized velocity (properly speaking, it is the circulation of the velocity that is
quantized, as we will see below). In a medium with cylindrical symmetry a vortex line
corresponds to a phase of the wave function S(r) = κϕ, with κ the winding number and
ϕ the azimuthal coordinate. This gives rise to the Feynman-Onsager ansatz for a vortex
line in a superfluid,

ψ(r) =
√

n(r⊥, z) eiκϕ . (3.6)

The associated velocity field is given by

v(r) =
κ�

mr⊥
ϕ̂ . (3.7)

Figure 3.1 shows v(r) and S(r) for a singly quantized vortex line (κ = 1). The velocity
of the fluid is larger as we approach the center of the condensate, and it diverges exactly
on the vortex line, r⊥ = 0. The direction of the flow of atoms follows effectively that
of the growth of the phase gradient, which is anticlockwise. Looking only at the phase
(right panel), a vortex can be thought of as lines of constant phase that emerge from a
(singular) point in space. This representation of vortices in terms of phase lines will be
used in Chapter 7 to relate self-trapping dynamics in the self-induced Josephson junction
to vortex dynamics. Since the velocity diverges, in order to maintain a finite value of the
wave function everywhere, the density must be zero at r⊥ = 0. To allow this, there is
a region close to the line where the density goes from zero to some maximum value in a
smooth way. This region is known as the vortex core, and is related to the healing length
in interacting condensates (see Sec. 3.2).
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Figure 3.1: Velocity field (left) and phase distribution (right) of a centered quantized vortex line
on the plane z = 0. Notice that the central region in the left panel is not drawn because of the
divergence of the velocity for r → 0.
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To see that the velocity field of a vortex line, Eq. (3.7), is indeed quantized, we need
to look at the circulation of the velocity along a closed circuit around the line, given by

Γ =

∮
v · d� =

�κ

m

∮
1

r⊥
ϕ̂ · d� =

�κ

m

∮
1

r⊥
r⊥dϕ =

�κ

m
Δϕ =

h

m
κ . (3.8)

In the last step we have used that the condensate wave function must be single-valued
and its phase can only change by multiples of 2π along a closed circuit (note that the
multiplicity is contained in the integer value κ). The circulation therefore is a quantized
quantity, with h/m the quantum of circulation and κ the quantization number. For a
singly quantized vortex (either line or ring, straight or bended), κ = 1. For multiply
quantized vortices, κ > 1. The latter however are very difficult to obtain, since it is
energetically favorable for a multiply quantized system to organize itself in multiple singly
quantized vortices rather than a big multiply quantized vortex [Don91]. Exceptions to this
statement arise in highly rotating traps, where giant vortices have been experimentally
observed [Eng03], or in toroidal traps, where the vortex core is provided by the hole in
the trapping potential [Ryu07].

The vorticity associated to the vortex velocity field, Eq. (3.7), is given by

ω = ∇× v =
hκ

m
δ(r⊥)ẑ . (3.9)

The fluid is therefore irrotational everywhere except along the line r⊥ = 0. The two-
dimensional Delta function, δ(r⊥), arises from the divergence of the velocity at r⊥ = 0.
Its presence can be understood as follows. If we take the curl of Eq. (3.7) naively, we
see that the vorticity is zero. But rewriting the circulation integral by means of Stokes
theorem,

Γ =

∮
v · d� =

∫
(∇× v) · dS =

∫
ω · dS =

hκ

m
, (3.10)

we see that the surface integral of the vorticity is finite, so that the vorticity cannot
be zero. This is mathematically translated in the presence of a two dimensional Delta
function centered on the vortex line that provides a circulation (surface integral) hκ/m 2.

The z component of the angular momentum of a vortex state can also be easily calcu-
lated using ansatz (3.6),

Lz =

〈
ψ(r)

∣∣∣∣−i�
∂

∂ϕ

∣∣∣∣ψ(r)

〉
= −i�

∫
drn(r)e−iκϕ∂eiκϕ

∂ϕ
= −i2�κ

∫
drn(r) = �κN ,

(3.11)
where N is the number of particles in the condensate. For typical experiments, N ∼ 106.
This means that a vortex state has macroscopic angular momentum, being the angular
momentum per particle κ�. In this respect, a vortex is a highly excited state of the system.
Note that the angular momentum Lz is only a good quantum number if the system shows
cylindrical symmetry. In the case of off-center vortices (Chapter 5) or azimuthal density
distributions (Chapter 6), Lz �= �κN but is rather a smaller quantity.

2This same kind of reasoning is used to introduce the Delta function in Coulomb problems, where the

quantity ∇2 1
|r− r′| appears (see, for instance, Ref. [Jac99]).
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Until now we have implicitly assumed that κ > 0, which gives rise to an anticlockwise
flow (see Fig. 3.1). If it was clockwise, the vortex would be called an antivortex, and
would correspond to κ < 0 and angular momentum Lz = −|κ|N�. For a non-rotating
system, the vortex and the antivortex states are degenerate.

3.2 Structure of the vortex core

We have said above that close to the vortex line there is a region where the density goes
from zero to some finite value. This region is the vortex core, and is determined by the
interactions and the centrifugal term, mv2/2 in Eq. (3.5), introduced by the vortex velocity
field, which pushes the atoms away from the vortex line and defines a low density region
around it. In general, to find the structure of the core one has to solve the Gross-Pitaevskii
equation. However, there are some limits where it is possible to find an analytical solution
for the vortex core, or at least find a characteristic length for its width. In this section we
will assume a purely s-wave condensate and will address the problem of the vortex core
when the gas is harmonically confined and non-interacting (Sec. 3.2.1), and when it is
interacting (Sec. 3.2.2). Dipolar effects on the vortex core will be explored in Chapters 5
and 6, respectively for a harmonically confined dipolar condensate and one where the
trapping potential has toroidal geometry.

3.2.1 Vortex core in non-interacting condensates

We are interested in the structure of the vortex core of a singly quantized vortex in a
non-interacting harmonically trapped condensate. Substituting ansatz (3.6) with κ = 1
and ψv(r⊥, z) ≡√

n(r⊥, z) into the Gross-Pitaevskii Eq. (2.16) gives

− �
2

2m
∇2ψv +

�
2

2mr2
⊥

ψv + Vhoψv = μψv , (3.12)

where we have written the laplacian in cylindrical coordinates and have simplified the
exponential factor. Notice that in the non-interacting case the chemical potential corre-
sponds to the energy per particle, μ = E/N . The centrifugal term ∼ 1/r2

⊥ is related to
the kinetic energy due to the flow of atoms. We assume that Vho is a harmonic potential
with cylindrical symmetry, see Eq. (2.28), which is usually the experimentally relevant
situation. The wave function can be decomposed as ψv = CR(r⊥)Z(z), where C is a con-
stant that will be determined by normalization. The equation for Z is just the quantum
harmonic oscillator (see Appendix E), and its solution is given by Z(z) ∝ exp [−z2/2a2

z],
with az the oscillator length in the z direction. The equation for R is
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[
r⊥

dR

dr⊥

]
+

1

r2
⊥
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1

a4
⊥

r2
⊥R =

2mμ⊥
�2

R . (3.13)

The radial harmonic oscillator length, a⊥ =
√

�/(mω⊥), defines the length scale of the
system. It is easy to check that the solution to the radial Eq. (3.13) has the form

R(r⊥) ∝ r⊥ exp [−r2
⊥/2a2

⊥] . (3.14)
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In the limit r⊥ → 0, the solution shows the asymptotic behavior R(r⊥ → 0) ∝ r⊥. Taking
the wave function, ψv, to be normalized to the number of particles, N , we find that the
density of a vortex line in a harmonically trapped, non-interacting condensate is given by

n(r⊥, z) =
1

π3/2

N

a2
⊥az

(
r⊥
a⊥

)2

exp

[
− 1

a2
⊥

(
r2
⊥ + λ2z2

)]
. (3.15)

The density profile in the z = 0 plane is shown in Fig. 3.2(a) (solid line), together with
the corresponding ground state profile (dashed line). The size of the vortex core is given
by the radial oscillator length, a⊥.
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Figure 3.2: Structure of the vortex core of a trapped condensate (with N = 104, ω⊥ = 200 ×
2π s−1, λ = 11 and a = 100 aB) in the non-interacting regime (a) and in the Thomas-Fermi
regime (b). The corresponding ground state is shown in dashed.

3.2.2 Vortex core in interacting condensates

If we consider a vortex line in a uniform condensate, the GP equation can be written for
the modulus of the wave function, ψv(r⊥), as

− �
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2m
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d

dr⊥
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r⊥

dψv
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]
+

�
2

2mr2
⊥

ψv +
4π�

2a

m
ψ3

v = μψv , (3.16)

where we have used the definition of g, Eq. (2.3). The chemical potential is that of the
uniform Bose gas, μ = gn, with n the (uniform) density. Following Ref. [Pit03], we write
ψv(r⊥) =

√
n f(r⊥/ξ), which takes into account that for large distances from the vortex

line ψv must tend to its bulk value
√

n. The quantity ξ is called the healing length and is
given by ξ = 1/

√
8πna. Using this ansatz, the equation becomes

d2f

dx2
+

1

x

df

dx
+

(
1− 1

x2

)
f − f 3 = 0 , (3.17)

where we have introduced the dimensionless variable x = r⊥/ξ. For a typical atom density
n ∼ 1014 cm−3 and a scattering length a = 100 aB, we find ξ = 0.27 μm. The healing length
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gives the length scale at which a perturbation in the density recovers the bulk value. It is
sometimes also known as coherence length.

For the trapped gas in the Thomas-Fermi regime the definition of healing length above
is still valid if we consider the density n as the density at the center of the trap, n0. The
expression for the healing length then becomes

ξ =
1√

8πn0a
, (3.18)

and as above it introduces a new length scale in the problem. Figure 3.2(b) shows the
vortex profile in the plane z = 0 for a condensate in the Thomas-Fermi limit, following
the ansatz

n(r⊥, z) = n0

(
1− r2

⊥
R2
⊥
− z2

R2
z

)(
1− ξ2

r2
⊥ + ξ2

)
(3.19)

for the density (see Sec. 2.3.1 for the definition n0, R⊥ and Rz). The product of the first
two factors in Eq. (3.19) describes the ground state density, while the third factor models
the vortex core shape. Notice that this ansatz is not an exact solution of the corresponding
Gross-Pitaevskii equation (even neglecting the quantum pressure term), but it can be used
as a variational ansatz with parameters R⊥, Rz and ξ. Taking their definitions directly
(without applying any variational procedure), the error introduced in the normalization
of the density is less than 1% in the case of Fig. 3.2. Comparing the profiles for the non-
interacting condensate, Fig. 3.2(a), and for the condensate in the TF limit, Fig. 3.2(b),
we see that the reduction of the peak density by a factor ∼ 10 is accounted for by a larger
extension of the condensate in the TF regime. We clearly see in this figure that the effect
of interactions is to reduce the density at the center of the trap while increasing the extent
of the cloud, both in the ground state and in the presence of a vortex.

3.3 Experiments with vortices

One of milestone experiments in the field of Bose-Einstein condensation is the creation
and detection of quantized vortex states. The presence of vortices in a condensate is a
clear prove that condensates are also superfluids. The first vortex experiments in BECs
were reported in Refs. [Mat99, Mad00, Abo01], where by expanding the condensate cloud
single vortices and vortex lattices were detected as empty holes in the density. Since
then vortices have attracted a lot of attention and much investigation has been carried
out. In this section we summarize some of the main results that have been obtained
experimentally, focusing on how vortices can be generated and detected. The information
contained in this section is not exhaustive, and does not pretend to be, but we will address
those topics that are more relevant for this thesis.

3.3.1 Creation of vortices

There are several methods for creating vorticity in a condensate, based on mainly two
processes: stirring and phase imprinting. Both stirring and phase imprinting are general
methods that can be implemented in many different ways. Also, they can be combined
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depending on the experimental setup and the system at hand. For instance, the first vortex
experiments in condensates [Mat99] used coherent transitions between the two species of
a BEC mixture, whose ac Stark effect was controlled by a rotating laser beam. In a way,
they used both phase-imprinting and rotation (sometimes this method is referred to as
phase engineering).

The first method, stirring, is the cold atom counterpart of the rotating bucket exper-
iment in superfluid helium. In this method (see for instance Refs. [Mad00, Hod02]), the
vortex state is obtained by rotating a slightly deformed trap3 at an angular frequency
Ω > Ωc, where Ωc is the critical rotation frequency. At this frequency the trap responds
to rotation in a quantized way, nucleating a vortex at the center (see Fig. 1.3). The
nucleation process is mediated by the instability of a collective mode [Dal00], giving a
critical frequency as predicted by Ωc = min[ωm/m], with m the third component of an-
gular momentum corresponding to the excitation of frequency ωm (notice that this is
analogous to the Landau criterion for the superfluid velocity [Don91]). For wide stirring
beams, the mode that becomes unstable is the surface quadrupole mode (see [Str96]),
for which m = 2 and ω2 =

√
2ω⊥. This gives rise to a critical frequency Ωc = ω⊥/

√
2

which agrees very well with experiments [Mad01]. If the trap is rotated faster (but always
with Ω < ω⊥), many vortices are nucleated and they organize themselves in a triangular
lattice [Abo01], called Abrikosov lattice in analogy to vortices in superconductors (see, for
instance, Ref. [Tin96]). For frequencies Ω→ ω⊥, the number of vortices becomes so large
that the distance between them is smaller than the vortex cores, entering the strongly in-
teracting regime (see reviews [Blo08, Fet09]), where highly correlated states are predicted
to form. For Ω = ω⊥ the condensate is unstable. Notice that vortices can also be obtained
by rotating the normal gas (above the critical temperature) and then cooling it down until
condensation is reached [Hal01].

The second method for creating vortex states in a condensate is phase imprinting. It
uses optical fields (lasers and microwaves) to create an inhomogeneous phase in the con-
densate, with the symmetry required by the vortex state. The difficulty of implementing
this method in the experiment lies in the need to go from a ground state with maxi-
mum density at the center to a vortex state with zero density at the center. This can
be overcome, for instance, by working with two different species. In this case the second
species can produce a hole in the density of the first species [Mat99]. Another possibility
for phase-imprinting is to transfer angular momentum directly from light to the atoms,
for instance using a Laguerre-Gaussian beam [And06]. This family of laser beams carry
angular momentum along the direction of propagation, and can be used to transfer the
desired angular momentum to the atoms. This method has been used, for instance, to
obtain vortex states and persistent currents in a toroidal geometry [Ryu07], where the
hole in the density is provided by the trapping potential. Apart from vortex states, phase
imprinting is a natural way to generate solitons in the condensate.

In addition to vortex lines and lattices, other vortex configurations can exist, but

3The deformation of the trap is crucial in experiments where the trapping potential has cylindrical
symmetry. If the deformation is not introduced, the system is an eigenstate of L̂z and it is thus not
possible to go from zero angular momentum (ground state) to a macroscopic angular momentum (N�

for a centered vortex). The deformed trap is usually taken to be elliptical and the ellipse rotates in time,
conferring angular momentum to the condensate.
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are in general non-equilibrium situations, such as vortex dipoles or vortex rings. They
are dynamically generated as decay products of some excited state, such as a soliton
[And01, Dut01], or by collision of condensates with a different phase [Sch07]. A vortex
dipole is a coupled pair of vortex and antivortex with a particular dynamics [Mar01b],
reminiscent of electrical charges: if two vortices with the same charge (either two vortices
or two antivortices) repel each other, two vortices with opposite charge attract each other.
Vortex dipoles are generally defined in 2D systems, where there is no bending of the cores.
In 3D systems, depending on the geometry, the vortices can be so bended that the vortex
dipole closes on itself and forms a vortex ring. Vortex dipoles have been experimentally
observed in the literature [Nee10], as well as vortex rings [And01, Sho09].

Another method to dynamically generate vorticity is by drag of an object, which can
be for instance a focused laser beam. Again this method comes directly from helium,
where vortices (in general, vortex rings) can be created by moving an ion through the
superfluid (see [Don91]). This method for creation of vortices is associated to a critical
velocity for the object, vc: below vc the superfluid remains at rest, while above vc quantized
vortices appear. In superfluid helium, the critical velocity is related to the Landau critical
velocity. In condensates, however, there seems to be some controversy and the mechanism
leading to the critical velocity is under discussion. Related to this method of vortex
creation, there has recently been an extreme implementation of it by shaking the whole
condensate [Henn09a]. For large oscillations of the cloud, the system becomes turbulent
and a tangled mess of vortices and antivortices in all directions appear [Henn09b] and
collisions, mergings and annihilations can be studied.

3.3.2 Detection of vortices

In order to detect vortex states in a condensate, two main methods have been used. On
the one hand, expansion of the condensate leads to a measurable density with a hole in
the middle (see Figs. 1.1 and 3.4). If the zero density at the center did not correspond
to a vortex, during expansion it would fill up with atoms. On the other hand, vortex
states can also be detected by interferometry. If two condensates, one with a vortex and
the other without, are left to expand and interfere, the resulting interference fringes show
a dislocation at the vortex location. This is shown in Fig. 3.3, where the results from
a numerical simulation are compared to the experiment reported in [Che01]. In the real
experiment dislocations are harder to see, but can anyway be used to detect vorticity.

Figure 3.3: Left panel: Numerical prediction of the interference pattern when two condensates
collide with (a) zero vortices, (b) one vortex and (c) two vortices. Right panel: Experimental
measurement of interference fringes for two condensates with (a) zero vortices and (b) one vortex.
From [Che01].
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3.3.3 Vortex dynamics

Centered vortex lines are stationary states of the Gross-Pitaevskii equation. However, in
the experiments, vortices can present some dynamics. One of the most clear examples is
the motion of an off-center vortex, which follows nearly circular trajectories, showing thus
precession around the trap symmetry axis. This precession mode is shown in a series of
pictures from [And00] in Fig. 3.4. The period of the orbit can be related to the excitation
of the anomalous mode (see for instance [Fet09]), and also to the frequency (Ωm) at which
the energy of a centered vortex becomes a local minimum in the rotating frame [Svi00]
(see Sec. 3.4).

Figure 3.4: Precession of an off-axis vortex in a BEC. Top row: experimental measurements.
Bottom row: corresponding numerical simulations. From [And00].

Another interesting dynamical aspect of quantized vortices is their effect on the fre-
quency of collective excitations. The presence of a vortex, and thus of an axis of quan-
tization, breaks the degeneracy between the ±m components of the excitation. For the
quadrupole mode, for instance, the frequency splitting of the modes m = +2 and m = −2
allows for a precise measurement of the angular momentum [Zam98, Che00]. Excitation
of this particular mode can lead to the generation of Kelvin modes [Bre03], which are
helicoidal excitations of the vortex line.

3.4 Gross-Pitaevskii equation in the rotating frame

As we have seen, vortex states are the way a superfluid responds to rotation. To study
them from a theoretical point of view and in the mean-field framework, it is sometimes
useful to write the GP equation in the rotating frame (see, for instance, Ref. [Fet09]),

− �
2

2m
∇2ψ + Vextψ + g|ψ|2ψ +

∫
dr′vdip(r− r′)|ψ(r′)|2ψ − ΩL̂zψ = μψ , (3.20)

where the rotation has been assumed to be around the z axis, that is Ω = Ω ẑ, with Ω
the rotation frequency. The angular momentum operator is defined as L = r × p. The
z-component of this operator is L̂z = −i�∂ϕ and its expectation value is denoted by Lz.

The term −ΩL̂z favors solutions with Lz > 0, that is, solutions that present anticlockwise
rotation. Since for axially symmetric configurations [H, L̂z] = 0, the solutions (eigenstates)
of Eq. (3.20) are the same as those of Eq. (2.16). Energetically, however, these solutions
differ due to the rotation energy.
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3.4.1 Energy functional in the rotating frame

The energy functional in the rotating frame is given by

E(rot) = Ekin + Eext + Esw + Edip −Erot , (3.21)

where the first four terms are given by Eqs. (2.19)–(2.22) and

Erot =

∫
drψ∗(r)L̂zψ(r) = ΩLz (3.22)

is the energy given to the system by the “classical” rotation of its container (which is
indeed a classical rotator, since it is either a magnetic or an optical trap). Notice that the
last identity only holds for axially symmetric systems, since only there is Lz well defined.
When the rotation of the container Ω is small, the superfluid cannot follow and Lz = 0,
and therefore Erot = 0. There is no energy transfer from the rotating container to the
superfluid. However when the rotation frequency reaches the critical rotation frequency,
Ω = Ωc, the superfluid responds to rotation by nucleating a vortex at the center. Its
angular momentum jumps to the finite value Lz = N� and the rotation energy transfered
to the superfluid becomes Erot = N�Ωc.

From Eq. (3.21) we can write

E(lab) = E(rot) + ΩLz , (3.23)

where E(lab) is the energy measured in the laboratory frame. Let us briefly comment here
on the solutions of Eq. (3.20). For Ω = 0, obviously ψ = ψgs and E(rot) = E(lab) = Egs,
where ψgs and Egs denote respectively the wave function and the energy of the ground
state. For Ω < Ωc, the solution is the ground state and still E(rot) = E(lab) = Egs, since
Lz = 0. There exists a metastable frequency [Fet09], Ωm < Ωc, for which the vortex state
becomes metastable, i.e. a centered and a slightly displaced vortex have the same energy
in the rotating frame. It is related to the precession frequency of a slightly off-center
vortex state (see also Sec. 5.2). For Ω > Ωm a centered vortex state is a metastable
solution of Eq. (3.20), since the energy is a local minimum. In this condition, and still

above the critical frequency, E
(rot)
v > Egs. Below Ωc, the vortex state becomes the solution

of Eq. (3.20), that is it minimizes the functional (3.21). Note that E
(lab)
v > Egs always,

since the vortex state is an excited eigenstate of the mean-field Hamiltonian.

3.4.2 Critical frequency for vortex nucleation

From Eq. (3.23) it is possible to define the critical frequency, Ωc, as the frequency at
which the energy of the vortex in the rotating frame equals the energy of the ground
state, E

(rot)
v = Egs (notice that the ground state energy is independent of the reference

frame, since for this state Lz = 0). From this thermodynamical argument the critical
frequency is written as

Ωc =
1

N�

(
E(lab)

v − Egs

)
. (3.24)
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In the s-wave Thomas-Fermi limit (see Sec. 2.3.1) it is possible to find an analytical
expression for Ωc using Eq. (3.24) [Lun97],

Ωc =
5

2

�

mR2
⊥

ln
0.671R⊥

ξ
. (3.25)

Equation (3.24) (or its Thomas-Fermi version, Eq. (3.25)) provides an approxima-
tion to the experimental critical frequency, although they don’t agree perfectly. Equa-
tion (3.24) gives a critical frequency smaller than the experimental frequency (see for
instance [Mad00]). This discrepancy can be interpreted as the existence of a nucleation
energy barrier (see Sec. 5.1.3) that the system needs to overcome in order to bring the
vortex from the surface to the center of the condensate.

3.5 Numerical generation of vortex states

Numerically, centered vortex states can be generated by imaginary time evolution (see
Appendix A) of the Gross-Pitaevskii equation (2.16), imposing an initial phase eiϕ to the
ground state wave function and letting the system evolve without any constraint. In this
way, the minimization procedure is constrained to a local energy minimum and the vortex
solution is found. In cartesian coordinates, the initial wave function reads

ψini(x, y, z) = ψgs(x, y, z)
x + iy√
x2 + y2

. (3.26)

Note that the phase term is not well defined for x = y = 0. Since at this point (vortex
core) the density must be zero, without loss of generality we set ψini(0, 0, z) = 0. This
method only holds if the vortex is initially imposed at the center of the trap. If it is slightly
displaced from x = y = 0, the imaginary time converges to the real energy minimum, that
is the ground state solution, with Lz = 0. Notice that the method is equivalent to the
minimization of the energy functional in the laboratory frame, that is, with Ω = 0. It
works due to the possibility that the imaginary time falls into a metastable state (if the
simulation is not run for enough time). In general this is considered a drawback of the
imaginary-time propagation, but in this case it turns out to be useful for the calculation.

A more physical mechanism to numerically generate vortex states is to solve the Gross-
Pitaevskii equation in the rotating frame, Eq. (3.20). For small rotation frequencies the
algorithm converges to the ground state (Lz = 0), since the rotational energy Erot is
not enough to bring a vortex to the center of the condensate. For frequencies larger
than a certain critical frequency, Ωnum

c , the vortex solution is found. In analogy to the
experiments, for even larger frequencies, vortex lattice states can be generated. In general
Ωnum

c �= Ωc. Again this discrepancy can be understood with the concept of energy barriers:
in the imaginary-time evolution the vortices are created at the external surface of the
condensate (where the density is close to zero and the phase fluctuations are large) and
then they enter the condensate. In this process they need to overcome a nucleation energy
barrier, since off-axis vortices have a higher energy than centered vortices (this topic will
be addressed in detail in Sec. 5.1.3, in Chapter 5).
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Finally, we want to say some words about the dynamical nucleation of vortex states.
If one wants to study the nucleation process numerically, using a mean-field theory4, via
a time dependent simulation, one needs to break the symmetry of the equations in both
time and space. The latter is accounted for by introducing a trapping potential that
is slightly elliptical, as is done in the experiments [Mad00]. In a way, it is equivalent to
exciting the surface quadrupole mode and bring it close to instability. The time symmetry
is broken by using a time-dependent potential, as for instance a time-dependent rotation
frequency [Lobo04], or including dissipation [Tsu02, Kas03]. If the simulation is energy
conserving (that is, in the absence of time-dependent potentials or dissipation terms), even
if the trap is slightly deformed, no dynamical nucleation of vortices can be numerically
studied. The dynamical nucleation process was beautifully addressed in Ref. [Kas03]
including dissipation in the TDGP, as is shown in Fig. 3.5.

Figure 3.5: Numerical simulation of the vortex nucleation process: the axially symmetric ground
state (a) is elliptically deformed (b) and this deformation is rotated in time above a critical
frequency (c). After some time instability takes place at the surface (d) and vortices enter the
condensate (e–g), organizing themselves in a lattice geometry (h). From [Kas03].

4Notice that during vortex nucleation there is a symmetry breaking where the order parameter changes
from even parity (ground state) to odd parity (vortex state). It has been shown that at Ωc the system en-
ters a strongly correlated regime which cannot be addressed within mean-field [Dag09b]. Gross-Pitaevskii
equation predicts instability, whereas direct diagonalization methods predict entanglement between a zero
and a two-vortex state.
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Chapter 4

Ground state of harmonically
confined dipolar condensates

Since the experimental achievement of an atomic condensate with strong dipolar interac-
tions in 2005 [Gri05] (see also [Bea08]), the physics of dipolar Bose-Einstein condensates
(dBECs) has received much attention (for a review see [Lah09]). The most explored sys-
tem has been the harmonically confined condensate, since up to date is the only geometry
available in experiments. In this chapter we address the ground state of this system and
study its static and dynamical properties. In some cases, the reproducibility of the results
in the literature has provided us with a good check of the numerical code.

This chapter is organized as follows. In Sec. 4.1 we analyze the anisotropic deformation
of the density profiles (Sec. 4.1.1), and we find that for certain parameters the maximum
density appears away from the center of the trap, giving rise to a biconcave-shaped dipo-
lar condensate (Sec. 4.1.2). In Sec. 4.2 we develop the 3D virial theorem for a dipolar
condensate confined in a harmonic potential, which we have routinely used as a check
of the accuracy of the simulations, especially of the spatial grid where the equations are
solved. In Sec. 4.3 we address collective excitations of the condensate, focusing on the sur-
face quadrupole mode. We solve the TDGP equation to find the frequency of oscillation
(Sec. 4.3.1), and compare it with the result provided by the Thomas-Fermi approximation
(Sec. 4.3.2), which has been obtained by minimization of the action (see also Chapter 8).

Before starting the discussion, let us comment some numerical considerations that will
be applied during most part of this thesis. We have seen in Chapter 2 that the mean-field
dipolar interactions can bring about anisotropy (due to the cos2 θ term) and long-range
effects (due to their 1/r3 dependence) to the physics of condensates. Also they render
the GP equation a non-local equation, and this makes its numerical solution complicated.
Throughout this thesis we routinely use the imaginary-time step method (see Appendix A)
to solve the GP Eq. (2.16). This method can become quite time-consuming, but it leads
to the ground state without the need to start from a configuration close to the solution
(as happens in conjugate gradient method, which in contrast is much faster). To solve
the TDGP Eq. (2.12) we use a Hamming’s algorithm (see Appendix B) initialized by
a fourth-order Runge-Kutta (see Appendix C). Both equations are in all cases solved
in three dimensions. We use Fourier transform techniques to calculate the mean-field
dipolar potential, as described in Sec. 2.2. The spatial grid used in the simulations has
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been chosen such that the density goes to zero (i.e., is at least 12 orders of magnitude
smaller than the peak density) at the borders, and such that it is large enough to avoid
the effect of the replicas of the interaction potential. These replicas appear naturally when
we go to Fourier space to perform the Fourier transform, since the real space system has
finite dimensions. To check that our results are not affected by this, we take a grid where
the energy does not change significantly when the grid extent is increased.

4.1 Ground state of a dipolar Bose-Einstein conden-

sate

Before studying vortex states it is interesting to characterize the ground state wave func-
tion of the system, ψgs(r). We are interested in finding a set of parameters that allow us
to explore different stable regimes of the condensate. As has been extensively discussed
in the literature (see Chapter 1, or Ref. [Lah09] for a review), instability is related to the
attractive part of the dipolar interaction, which arises in the direction where the dipoles
are located head-to-tail. The stability diagram has been calculated in Ref. [Ron07] for a
purely dipolar condensate. It is shown in the left panel of Fig. 4.1, in terms of the dipolar
parameter D, see Eq. (2.30), and λ. We can distinguish three main regions: the unstable
region (in white), the region where the ground state shows a maximum density at the
center (in blue), and the region where the ground state shows a biconcave structure (in
darker blue). The latter does not appear for all trap aspect ratios, but only in isolated
islands. As a starting point, we have checked that the results of our full 3D calculation are
in agreement with this stability diagram. Since pancake configurations are more stable
than those spherical or cigar-shaped, we work with a pancake geometry with an aspect
ratio of λ = 11, which we will keep for most of the thesis. We see from Fig. 4.1 that for
this trap aspect ratio the dBEC shows both a “normal” ground state for D � 70 and a
biconcave ground state for 70 � D � 85, while for D � 85 it becomes unstable.

Apart from dipolar interactions, a dBEC also shows contact interactions, characterized
by the s-wave scattering length. Since they are repulsive for chromium, contact interac-
tions help to stabilize the system. Depending on the trap aspect ratio, there exists a
critical scattering length below which the condensate is unstable. This is shown in the
right panel of Fig. 4.1, as reported in [Koch08]. For λ = 11, the critical scattering length
is predicted to be ac � −10 aB.

We have seen in Sec. 2.2.3 that it is possible to define a length scale for dipolar inter-
actions in a condensate of chromium, add ∼ 15 aB. This parameter cannot be identified
with a scattering length due to dipole-dipole interactions, but is telling us that in order
to observe dipolar effects, the s-wave scattering length should be comparable to add. This
is equivalent to saying that the dipolar parameter εdd = add/a should be as large as possi-
ble. Since the magnetic dipole moment is fixed for chromium1, magnifying dipolar effects

1The magnetic dipole moment of chromium atoms cannot be changed since it comes from their elec-
tronic and nuclear structure. However, there are some techniques that allow for an effective tuning of
the dipolar moment. One of them is relevant if the physics that we want to address is in a quasi-2D
configuration. In this case, changing the angle between trap and polarization axes leads to a tuning on
the effective dipolar interaction on the plane (see for instance [Mal11a]). Another mechanism relies on
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Figure 4.1: Left: Stability diagram in parameter space D − λ, taken from Ref. [Ron07]. The
white region marks the region where the condensate is unstable; the blue region marks the stable
region; the darker blue “islands” mark the biconcave configurations. Right: Critical values of
the s-wave scattering length below which a dBEC with N = 2 × 104 and ωho = 700 × 2π s−1

is unstable, from Ref. [Koch08]. The square symbols mark the experimental measurements; the
thick solid line (green) is the prediction of the GP Eq. (2.16); the thin solid line is the solution
provided by the dipolar TF approximation (see Sec. 2.3.2). Inset: Corresponding stability curve
for a purely s-wave condensate.

means reducing the scattering length via Feshbach resonances. Then the anisotropic na-
ture of the interaction becomes important and its effects can be experimentally measured.
This is the picture we have in mind throughout the thesis whenever dipolar effects are
enhanced.

4.1.1 Anisotropic deformation of the ground state

The anisotropy of the ground state is one of the most visible and studied properties of a
dipolar condensate. It has received strong attention, both theoretically and experimen-
tally. When the interactions are isotropic, the shape of the condensate follows that of the
confining potential2. This is no longer the case for dipolar interactions. The main effect of
their anisotropic nature on the ground state of the system is to deform the condensate with
respect to the trap geometry. This effect, which is called magnetostriction (electrostric-
tion for electric dipoles), is a direct consequence of the anisotropy of the dipolar potential
and depends on the specific trap that is considered. For a spherical trap, the effect of the

the coupling of the dipole moment to a rotating magnetic field. If it is rotated fast enough, one can
also achieve an effective tuning of the dipole-dipole interaction [Gio02]. Notice that the situation will
be different for condensates of heteronuclear molecules, where the dipole moment should be externally
controllable with an electric field.

2Note that isotropic interactions do not imply that the condensate aspect ratio, κ, coincides with the
trap anisotropy, λ. It is only under the Thomas-Fermi approximation for s-wave condensates that κ = λ.
In the non-interacting limit, κ =

√
λ and in intermediate situations one has to solve the GP equation.

However, what is true for isotropic interactions is that if λ = 1 then κ = 1, as well as if λ > 1 then κ > 1
and if λ < 1 then κ < 1.
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dipolar interaction is to squeeze the cloud along the repulsive direction while stretching
it in the attractive direction. Although this might be somewhat counter-intuitive, it is
easily explained by taking into consideration the particular shape of the dipolar potential
[Stu05]: since the dipolar potential shows a saddle configuration with two minima along
the magnetization axis (attractive direction) it is less expensive for the system to accom-
modate more dipoles along this direction than along the repulsive one, thus the cloud size
becomes larger in the former and smaller in the latter.

The magnetostriction effect is also present in pancake-shaped traps, but in this geom-
etry the stretching and squeezing might be different. Also, the fact that the dipoles are
aligned along the trap symmetry axis or forming an angle with it introduces a quantitative
difference. We analyze the two limiting cases of magnetization parallel and perpendicular
to the symmetry axis.

First, we address the case of the magnetization axis parallel to the trap symmetry axis
(z). We consider a condensate of chromium containing N = 105 atoms in a trap with
frequencies ω⊥ = 8.4× 2π s−1 and ωz = 92.5× 2π s−1, interacting via s-wave (a = 5 aB)
and dipolar (μm = 6 μB) interactions. The asymmetry parameter of such a configuration
is λ = 11 and the dipolar parameters take the values D = 50 and εdd � 3 3. To analyze
the magnetostriction effect in this geometry, we compare the root-mean-square (rms) radii
along r⊥ and z, denoted respectively by Rrms and Zrms, in three different situations: a
purely s-wave condensate, a condensate with s-wave plus dipolar interactions, and a purely
dipolar condensate (the corresponding density profiles can be seen in Fig. 5.1 together
with those of a vortex). The results are given in Table 4.1. Comparing the purely s-
wave condensate with the dipolar plus s-wave, we see that the condensate stretches in
both directions when dipolar interactions are added, in contrast to what is found in a
spherical trap. The same situation takes place when contact interactions are added to
a purely dipolar condensate. Notice that even if both radii increase, the cloud aspect
ratio κ = Rrms/Zrms also increases, which is in agreement with the experimental results
reported in Ref. [Stu05]. The difference of behavior with respect to the spherical case can
be understood as follows. In the pancake-shaped trap the condensate is tightly confined
in the z direction so that the energy decrease achieved by putting more and more dipoles
along the magnetization direction has to overcome a stronger trapping potential. The
result of this energetic balance is that the system cannot accommodate so many atoms
along the z axis, and hence the cloud has to stretch also radially.

Table 4.1: Root-mean-squared (rms) radii and aspect ratio of a dBEC with λ = 11 and magne-
tization along the trap axis.

Interaction Rrms (μm) Zrms (μm) κ
s-wave 9.157 1.106 8.279
dipolar + s-wave 12.435 1.288 9.654
Dipolar 11.618 1.282 9.062

When the dipoles are aligned perpendicularly to the trap axis (say, they are aligned

3Notice that a condensate in the Thomas-Fermi regime is unstable for εdd > 1 [Dell04], but the
configuration we are dealing with is clearly away from the TF range of validity (in particular, the density
profiles, see Fig. 5.1, are far from an inverted parabola).
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along y), the cylindrical symmetry of the system is broken and anisotropic effects be-
come even more evident. In a pancake-shape trap, collapse occurs at larger scattering
lengths (compared to the parallel configuration), so that the dipolar condensate is in gen-
eral less stable. Figure 4.2 shows density profiles along the three directions of space for
different scattering lengths. Analogously to the parallel case, for a large scattering length
(a = 100 aB) the dipolar effects are almost negligible, since contact interactions control
mostly the physics of the system. The condensate is still pancake shaped, with the x
and y sizes almost equal and the z size much smaller due to the trap anisotropy. When
the scattering length is reduced (to, for instance, a = 20 aB) the dipolar effects become
enhanced and the magnetization direction is privileged, yielding therefore a larger size
than in the perpendicular direction (x). For a further reduction of the scattering length
down to a = 12 aB the condensate resembles a cigar with a similar size in the x and z
directions but a much larger one along y. For a < 12 aB the system becomes unstable due
to the attractive component of the interaction. We will see in Chapter 6 that if the trap is
toroidal instead of harmonic, collapse curiously occurs at the same scattering length. In a
dBEC confined in a pancake trap potential with the dipoles aligned perpendicularly to the
trap axis, a change in the scattering length is directly translated to a significant change
in the condensate geometry. In this particular case, just by reducing the scattering length
from 100 aB to 12 aB, it is possible to tune the geometry from a nearly pancake-shaped to
a nearly cigar-shaped condensate.
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Figure 4.2: Ground state densities along the x-axis (solid line), y-axis (dashed line) and z-axis
(dotted line) for a harmonically trapped condensate with λ = 11 for three different scattering
lengths: a = 100, 20, 12 aB (from left to right). The magnetization axis (y) is perpendicular to
the trap symmetry axis (z).

4.1.2 Red-blood cell (biconcave) density structure

From Fig. 4.1 (left panel) we see that for large D, before collapse occurs, a dBEC with λ =
11 shows a biconcave structure. We have discussed in Sec. 4.1.1 that the dipolar potential
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shows two minima along the magnetization direction. In general, they do not affect
dramatically the structure of the ground state density, but in the biconcave regions the
two minima of the dipolar potential become deep enough to exceed the trapping potential.
When this happens the corresponding density shows its maximum value away from the
center. These structures are known as biconcave or red-blood-cell density structures (see
Ref. [Ron07]). As shown in Fig. 4.1, biconcave densities appear in isolated regions of
the parameter space defined by D and λ (for a = 0), especially close to the instability
threshold. These structures are both energetically and dynamically stable. However, if the
value of D is slightly increased the condensate enters the unstable regime and undergoes
collapse, which is thought to be of angular type [Ron07]. Biconcave density structures
have been predicted to occur also at finite scattering lengths [Lu10]. They can become
more pronounced in the presence of vortices, where more than one maximum can be seen
in the density profile [Wil08]. In analogy with helium, this hints at a relation between
biconcave structure and the roton mode in a dipolar gas [Ron07, Wil08].

Figure 4.3 shows the density profiles of two different stable ground state configurations
of a purely dipolar (a = 0) condensate, one of them having a normal shape, while the
other shows a biconcave structure. They both correspond to a condensate confined in a
harmonic potential with asymmetry λ = 11 (ω⊥ = 8.4× 2π s−1 and ωz = 92.5× 2π s−1),
but two different numbers of trapped atoms: N = 105 (solid line) and N = 1.6 × 105

(dashed line), which correspond to dipolar interaction parameters D = 50 and D = 80,
respectively. These density structures agree well with the stability diagram of Ref. [Ron07].
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cave structure. The two curves cor-
respond to dipolar parameters D = 50
and D = 80, corresponding to N = 105

and N = 1.6 × 105, for a trap with
λ = 11.

4.2 Virial theorem for a dipolar condensate

Virial expressions are relations between the different energy contributions that have to
be fulfilled if the system is in equilibrium. In the case of a non-interacting system in a
harmonic potential we find the well-known result Ekin = Eho. To derive the virial theorem
for a dipolar condensate we consider that the external potential is the 3D harmonic poten-
tial, Vho = m/2 (ω2

xx
2 + ω2

yy
2 + ω2

zz
2). The virial theorem can be found by imposing that

the energy must be a minimum and independent of a scaling r → νr of the coordinates,
where ν is here an arbitrary scaling parameter. The condensate wave function scales as
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Ψ(r) → Ψν(r) = CΨ(νr), where C is a normalization constant. The principle of scale
invariance ensures that the norm of the wave function is preserved, that is∫

dr |ψ(r)|2 =

∫
dr |ψν(r)|2 = |C|2

∫
dr |ψ(νr)|2 = N , (4.1)

which gives C = ν3/2. Using this result, we can find the scaling laws for the different
terms of the energy. For the kinetic energy, it gives

Ekin,ν =
�

2

2m

∫
dr |∇ψν(r)|2 = ν3 �

2

2m

∫
ν−3d(νr)ν2 |∇νrψ(νr)|2 =

= ν2 �
2

2m

∫
dr′ |∇′ψ(r′)|2 = ν2Ekin , (4.2)

where we have introduced the variable r′ = νr for clarity. The harmonic oscillator energy
scales as

Eho,ν =

∫
dr Vho(r)|ψν(r)|2 =

m

2

∫
dr

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
) |ψν(r)|2 =

=
m

2

∫
ν−3dr′ ν−2

(
ω2

x(x
′)2 + ω2

y(y
′)2 + ω2

z(z
′)2

)
ν3|ψ(r′)|2 =

= ν−2

∫
dr′ Vho(r

′)|ψ(r′)|2 = ν−2Eho . (4.3)

For the contact interaction we find

Esw,ν =
g

2

∫
dr |ψν(r)|4 =

g

2

∫
ν−3dr′ ν6 |ψ(r′)|4 = ν3 g

2

∫
dr′ |ψ(r′)|4 = ν3Esw . (4.4)

Finally, the scaling law for the dipolar interaction gives

Edip,ν =
1

2

μ0μ
2
m

4π

∫
dr1

∫
dr2|ψν(r1)|2|ψν(r2)|21− 3 cos2 θ

|r1 − r2|3 =

=
1

2

μ0μ
2
m

4π

∫
ν−3dr′1

∫
ν−3dr′2ν

6|ψ(r′1)|2|ψ(r′2)|2ν3 1− 3 cos2 θ

|r′1 − r′2|3

= ν3 1

2

μ0μ
2
m

4π

∫
dr′1

∫
dr′2|ψ(r′1)|2|ψ(r′2)|2

1− 3 cos2 θ

|r′1 − r′2|3
= ν3Edip . (4.5)

Grouping all the terms, we find that the total energy scales as

Eν = ν2Ekin + ν−2Eho + ν3Esw + ν3Edip . (4.6)

Imposing the equilibrium condition,

dEν

dν

∣∣∣∣
ν=1

= 0 , (4.7)

one finds the virial theorem for a dipolar condensate,

2Ekin − 2Eho + 3Esw + 3Edip = 0 . (4.8)
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It is the same expression as for a degenerate gas of dipolar fermions [Sogo09]. The virial
theorem can be used as a test of the accuracy of the numerical algorithm. Notice that
the virial theorem, Eq. (4.8), is not affected by the rotation energy Erot, since this energy
term is not sensitive to a scaling of the density, that is Erot,ν = Erot (see Sec. 3.4.1 for its
definition).

The virial theorem derived in this section is an isotropic 3D virial theorem, in the
sense that the three directions of space are scaled in the same way. However, other kinds
of scaling can be used. For instance, one can think of scaling only in one direction, in the
radial coordinates (x and y), etc. In Sec. 4.3.2 and in Chapter 8 we will use the radial virial
theorem, which is not straightforward to find for dipolar gases. The scaling argument used
in this section is not the only method to derive virial relations. In Appendix G we derive
the 3D virial expression above using a complementary method based on commutators of
the Hamiltonian with a given excitation operator.

4.3 Collective excitations of the ground state: sur-

face quadrupole mode

Collective excitations are an important subject in the physics of condensates, since they
give information about physical properties that cannot be directly measured in the experi-
ments. One of the most important collective modes is the dipole mode, which corresponds
to the center of mass motion of a condensate in a harmonic trap. The dipole-mode oscilla-
tion frequency in direction i is thus ωi, with i = x, y, z. The dipole mode is unaffected by
two-body interactions, fulfilling Kohn’s theorem. It allows experimentalists to determine
the trap frequencies with high precision, while from the computational point of view it
can be used as a check of a numerical code. We have indeed numerically checked that the
trap frequencies are recovered from the dipole mode frequencies when a proper boost is
applied to the initial wave function. For instance, if the operator eiλ̃kxx, with λ̃ a small
parameter, is applied to the initial wave function (similarly to the quadrupole excitation
below) the expectation value 〈x〉(t) oscillates in time at a frequency ωx. This perturbation
of the initial wave function is equivalent to a displacement of the center of mass of the
condensate.

Another collective mode that has been widely addressed in the literature is the radial
quadrupole mode. It gives rise to oscillations of the density on the plane xy that alter-
natively stretch and squeeze the condensate along x and y, while they do not affect the
density along z. This mode is a surface mode, and is quite independent of the equation
of state of the system. Regarding the physics of vortices this mode has been excited to
rotate the trap in optical stirring experiments [Mad00], as well as to create helical waves
in vortices, or Kelvin modes [Bre03]. The radial quadrupole mode is of special importance
in the physics of fermions, as we will see in Chapter 8.

In this section we study the shift that dipolar interactions produce in the frequency
of the radial quadrupole mode, for a polarization parallel to the trap axis. We solve the
TDGP equation for a small amplitude perturbation of the wave function with quadrupolar
symmetry and compare the result with that corresponding to a purely contact interact-
ing condensate (Sec. 4.3.1). In a second stage we use the Thomas- Fermi approximation
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for dipolar condensates to find an expression for the frequency of the radial quadrupole
(Sec. 4.3.2). We check that both methods agree well and that, in contrast to s-wave interac-
tions, the frequency of the quadrupole mode for dipolar condensates in the Thomas-Fermi
regime depends on the trap aspect ratio, as well as on the strength of the interactions.

4.3.1 Numerical calculation of the quadrupole mode

To find the frequency of the quadrupole mode numerically, we calculate the response to
a small-amplitude perturbation of the wave function with quadrupolar symmetry. The
method consists on mainly three steps. In the first one, the ground state of the system is
found by evolving the GP Eq. (2.16) in imaginary-time until convergence is reached. In
a second step, we perturb this wave function with the proper operator and let it evolve
by simulating the TDGP Eq. (2.12) in real-time dynamics. We have considered the t = 0
perturbed wave function to be of the type

Ψ(r, t = 0) = eiλ̃(x2−y2)ψ(r) , (4.9)

where λ̃ is the parameter that controls the strength of the perturbation. It must be small
in order to stay in the regime where linear response theory works, that is, the regime
where ansatz (4.9) is a solution of the linearized GP equation and where the response
is characterized by a single frequency. The perturbation (4.9) imposes a velocity field
v ∝ ∇(x2 − y2). During the time evolution we have recorded the expectation value of
x2 − y2. As a third step, the Fourier transform of 〈x2 − y2〉(t) is computed and the
quadrupole spectrum is obtained. Since the signal that we want to transform is finite,
the frequency peaks in the spectrum present some replica. In order to get rid of them we
apply a Hann window before the Fourier transform, namely:

f̃ =

⎧⎨⎩ 1
2
f

[
1− cos

(
2πt

T

)]
if t < T

0 if t > T
(4.10)

with f the signal obtained during the numerical evolution and f̃ the actual signal we
Fourier-transform. In this expression T represents the time reached by the simulation.

We consider a system of N = 150000 atoms of 52Cr with the dipole moments oriented
along the z axis in an axisymmetric trap with frequencies ω⊥ = 200 × 2π s−1 and ωz =
40 × 2π s−1 (which makes λ = 0.2). Since purely dipolar condensates are unstable in
cigar-shaped traps (see Fig. 4.1), we assume a scattering length of a = 20 aB, which can
be reached experimentally via Feshbach resonances. For this configuration, εdd = 0.76
and Na/a⊥ = 161. Figure 4.4 shows the quadrupole mode frequency for a purely s-wave
condensate and one with s-wave plus dipolar interactions. Indeed, we can see that there
is a general shift of the spectrum induced exclusively by the dipole-dipole interaction.

Notice that in the s-wave case, the frequency of the quadrupole mode calculated nu-
merically is larger than the

√
2ω⊥ value predicted within Thomas-Fermi approximation

[Str96]. The difference is accounted for by the kinetic energy, which is nonzero in the
numerical simulation and has been taken to be negligible in the Thomas-Fermi limit. The
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Figure 4.4: Frequency splitting of the quadrupolar mode induced by dipolar interactions as
predicted by the numerical simulation of the TDGP Eq. (2.12). The solid black curve corresponds
to a purely s-wave condensate and the dashed red line to a dipolar plus s-wave condensate.

first correction to the
√

2ω⊥ result is given by (see for instance [Zam98])

ωQ =
√

2ω⊥

[
1 +

Ekin⊥

Eho⊥

]1/2

, (4.11)

yielding a frequency ωQ = 1.48ω⊥4, which is very close to the 1.47ω⊥ of the numerical
simulation.

4.3.2 Quadrupole mode in the Thomas-Fermi regime

There are several methods to calculate analytically the frequency of collective oscillations
in the Thomas-Fermi regime: linearization of the hydrodynamic Eqs. (3.4) and (3.5),
using a sum rule approach, or minimization of the action. All these methods have been
successfully used for contact interacting condensates. For systems that in addition interact
via a dipolar potential, we find that a variational procedure applied to the action is the
easiest method. This will be the case both for dipolar condensates in the Thomas-Fermi
regime, as well as for a dipolar gas of fermions (which will be addressed in Chapter 8 using
the method detailed here).

The basic idea of the method is to apply a variational principle to the action,

S =

∫
dt

〈
Ψ

∣∣∣∣H − i�
∂

∂t

∣∣∣∣Ψ〉
, (4.12)

where the variations are taken with respect to the parameters that characterize the exci-
tation of the wave function Ψ. For the quadrupole mode, the excited wave function has
the form

Ψ = eiα(t)(x2−y2)ψb(e
−b(t)x, eb(t)y, z) , (4.13)

4The values for the kinetic and the harmonic oscillator energies have been calculated numerically from
the converged ground state, Ekin⊥ = 2.6199× 104

�ω⊥ and Eho⊥ = 2.7113× 105
�ω⊥.
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with α and b the variational parameters taking care of the velocity field and the deforma-
tion of the density brought about by the excitation, respectively. Notice that the phase
factor in Eq. (4.13) has the same form as in Eq. (4.9). In contrast, the density modulation
is fixed in (4.13) by parameter b, while it is obtained from the time evolution of the wave
function in the computational method.

The first term under the action integral is the energy functional corresponding to the
state Ψ. By introducing Eq. (4.13) into the energy functional Eq. (2.18) and taking the
quantum pressure term to be negligible (TF approximation), we find that the different
terms of the energy functional (see Eqs. (2.19)–(2.22)) are given by

Ekin(α) =

∫
drn(r)

1

2
mv2 =

2�
2

m
α2N〈r2

⊥〉 (4.14)

Eho(b) =

∫
drn(r)

1

2
mω2

⊥(r2
⊥ + λ2z2) = Eho + mω2

⊥b2N〈r2
⊥〉 (4.15)

Esw(b) =

∫
dr[n(r)]2

1

2
g = Esw (4.16)

Edip(b) = Edip(e
bR⊥, e−bR⊥, Rz) = Edip − 15

14

N2
�

2a

m

εdd

R2
⊥Rz

b2Ng(κ) , (4.17)

where the kinetic energy contribution corresponds to the term coming from the phase
factor, according to Eq. (3.3). The dependence on Rx = ebR⊥ and Ry = e−bR⊥ in the
dipolar energy is contained in the anisotropy function f(x, y) given by Eq. (2.48). Finally,
Eho, Esw and Edip are the ground state energy terms, given by Eqs. (2.45)–(2.47). Notice
that these terms correspond to a second-order expansion in α and b. The function g(κ)
corresponds to a second derivative of f(ebκ, e−bκ) with respect to b, see Eq. (8.24). This
function goes to zero for κ → 0 and κ → ∞ and reaches a maximum around κ = 2.37.
It will be discussed in greater detail in Chapter 8 (see Fig. 8.2). The second term in the
action integral gives 〈

Ψ

∣∣∣∣−i�
∂

∂t

∣∣∣∣Ψ〉
= 2�α̇bN〈r2

⊥〉 , (4.18)

where α̇ refers to the time derivative of α. Taking all the terms together, the action can
be written as

S = S0 +

∫
dt

[
2�

2

m
α2N〈r2

⊥〉+ mω2
⊥b2N〈r2

⊥〉 −
15

14

N2
�

2a

m

εdd

R2
⊥Rz

b2g(κ) + 2�α̇bN〈r2
⊥〉

]
,

(4.19)
where S0 is the action of the ground state. Taking now variations with respect to α and
b and setting them to zero, one finds the two coupled equations

2
�

m
α− ḃ = 0 (4.20)

2mω2
⊥b〈r2

⊥〉 −
15

7

N�
2a

m

εdd

R2
⊥Rz

bg(κ) + 2�α̇〈r2
⊥〉 = 0 , (4.21)

which can be rewritten in the shape of a harmonic oscillator, b̈+ω2b = 0 and analogously
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for α. The frequency ω corresponds to the quadrupole mode, which is given by

ωQ =
√

2ω⊥

⎡⎣1− 1

4

εdd

1 + εdd

(
3
2

κ2f(κ)
1−κ2 − 1

) g(κ)

⎤⎦1/2

, (4.22)

where we have used that 〈r2
⊥〉 = 2/7 R2

⊥. For zero dipolar interactions (εdd = 0), we recover
the quadrupole mode frequency for an s-wave condensate in the TF limit, ωQ =

√
2ω⊥

[Str96]. Figure 4.5(a) shows the behavior of the quadrupole frequency as a function of
the scattering length, which is related to εdd by Eq. (2.32), for a condensate of 52Cr. The
vertical dotted line indicates the value of add, below which a dBEC in the TF regime is
dynamically unstable5. For completeness, Fig. 4.5(b) shows the dependence of κ/λ on a
for different trap aspect ratios. We clearly see from both figures that the dipolar effect
on the frequency and on the condensate deformation becomes larger as the scattering
length is reduced. For λ = 0.2, the condensate shows unstable behavior for scattering
lengths around add ∼ 15 aB, which can be clearly recognized as a sharp reduction of ωQ

(notice that this is in agreement with the stability diagram shown in the right panel of
Fig. 4.1). For a < add, the value of ωQ becomes imaginary and the condensate is predicted
to collapse. For larger trap aspect ratios, the TF approximation gives metastable solutions
[Dell04], and collapse due to the quadrupole mode is predicted to occur at a < add. We
see that the most stable configuration is that with the largest λ.

0 20 40 60 80 100
a / aB

1.0

1.2

1.4

1.6

ω
Q

 / 
ω

⊥

λ = 0.2
λ = 1.5
λ = 5

(a)

0 20 40 60 80 100
a / aB

0.5

0.6

0.7

0.8

0.9

1.0

κ 
/ λ

λ = 0.2
λ = 1.5
λ = 5

(b)

Figure 4.5: (a) Quadrupole mode frequency as a function of the scattering length for different
trap aspect ratios. (b) Ratio κ/λ between the condensate and the trap aspect ratios as a function
of the scattering length.

From Eq. (4.22) we see that ωQ <
√

2ω⊥ for a dBEC, independently of the trap
aspect ratio considered. For the case in Fig. 4.4, Eq. (4.22) predicts ωQ = 1.38ω⊥. The
discrepancy between this and the numerical result can be understood in terms of the
kinetic energy. To derive Eq. (4.22) we are setting the quantum pressure term to zero,
but it might not be totally negligible. The correction to the frequency would be analogous

5Notice that even if it is predicted to be unstable for a < add, for large λ the TF solution is (energeti-
cally) stable [Dell04]. This is the reason why the curves ωQ in Fig. 4.5(a) are drawn below add.
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to Eq. (4.11), yielding ωQ = 1.54ω⊥6, which is very close to the numerical result, 1.53ω⊥.
Notice that this correction causes the quadrupole mode frequency to be larger than the
hydrodynamic result

√
2ω⊥, which is indeed what we find with the numerical simulations.

Very recently the radial quadrupole frequency has been calculated adding corrections
beyond the mean-field TF approximation [Lima11], finding a positive correction that
could raise the value of ωQ above

√
2ω⊥.

6The values for the kinetic and the harmonic oscillator energies have been calculated numerically from
the converged ground state, Ekin⊥ = 0.3884× 105

�ω⊥ and Eho⊥ = 1.6064× 105
�ω⊥.
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Chapter 5

Vortex states in harmonically
confined dipolar condensates

Quantized vortex states are a clear signature of superfluidity in a system. In Chapter 3
we have described the main features of vortices in contact interacting condensates. In
this chapter we extend the study of quantized vortices to harmonically confined dipolar
condensates, with the aim of analyzing how the new long-range and anisotropic interaction
modifies them.

The chapter is organized as follows. In Sec. 5.1 we address the static properties of the
vortex state. We look at the structure of the vortex core (Sec. 5.1.1) and characterize the
nucleation process by studying the rotation frequency (Sec. 5.1.2) and the energy barrier
the system needs to overcome (Sec. 5.1.3). In Sec. 5.2 the TDGP equation is applied to
study the precession of the vortex in presence of dipolar interactions.

5.1 Vortex states in a dipolar condensate

We have numerically computed a vortex state by imprinting a phase to the initial wave
function and solving the GP equation (2.16) in the rotating frame without fixing the
vorticity during the minimization process. We have used ansatz (3.26) for the initial wave
function and have solved the GP equation (2.16) in imaginary time. As expected, for
small values of Ω the system converges to a vortex-free configuration that corresponds to
the ground state, while for values of the angular frequency equal or slightly larger than
the critical one, a centered vortex state configuration minimizes the energy in the rotating
frame. We have checked that the circulation is quantized around the vorticity line.

In this section, the system in which we are interested is characterized by N = 105,
ω⊥ = 8.4 × 2π s−1 and ωz = 92.5 × 2π s−1 (λ = 11), with the dipoles aligned along the
trap symmetry axis (z). For chromium, this corresponds to D = 50. The ground state
of this configuration has been discussed in Sec. 4.1 and the corresponding density profile
along x is shown in Fig. 5.1 (middle panel, solid line).

55
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5.1.1 Structure of the vortex core

The vortex states we have obtained are straight vortex lines. For a condensate with only
contact interaction the local healing length, Eq. (3.18), provides a characteristic length
for describing the core size of a vortex. In the presence of dipole-dipole interactions
the parameter thus defined does no longer provide a good estimate of the vortex core
size. Figure 5.1 shows the density profiles for the ground state and the vortex state of
a condensate interacting via: s-wave interactions only (left panel), s-wave plus dipolar
interactions (middle panel), and dipolar interactions only (right panel). The contact
interaction is characterized by a = 5 aB. For this set of parameters, a⊥ = 4.81 μm and
ξ = 0.294 μm.
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Figure 5.1: Density profiles for vortex
(dashed) and ground (solid) states of
condensates whose atoms interact via
s-wave (left panel), s-wave plus dipo-
lar (middle panel) and dipolar (right
panel) interactions, for a = 5 aB .

A possible characterization of the core is given by Eq. (3.19), which has been applied to
dipolar condensates in Ref. [Dell07] assuming the variational ansatz for the vortex density
profile

nv(r⊥, z) = n0

(
1− r2

⊥
R2
⊥
− z2

Z2

)(
1− β2

r2
⊥ + β2

)
, (5.1)

with β, R⊥ and Z variational parameters. Clearly, the quotient between the vortex and
ground state densities in the TF limit is zero at the vortex position and unity outside the
vortex core (see Sec. 3.2, Fig. 3.2). In particular, it is easy to verify that β corresponds to
the radius at which this quotient is equal to 1/2 at the z = 0 plane. Using the numerically
calculated vortex and ground state densities nv(r) and ngs(r), we propose as a definition
of the core radius β the r⊥ value in the z = 0 plane that satisfies:

f(r⊥ = β, z = 0) =
nv(r⊥ = β, z = 0)

ngs(r⊥ = β, z = 0)
=

1

2
. (5.2)

This generalizes ansatz (5.1) to numerically generated densities. The density profile along
the x axis, nv(x, y = 0, z = 0), is shown in Fig. 5.2(a) for a vortex in a condensate with
dipolar plus contact interactions (solid line) and with only contact interaction (dashed
line), with a = 5 aB. In the inset, the ratio f is depicted as a function of the distance to
the vortex core for both cases. We can see that f does not take the value f = 1 outside the
core. This is due to the fact that the system does not lie in the TF regime and the structure



5.1 Vortex states in a dipolar condensate 57

of the condensate surface becomes important. When no dipolar effects are considered, the
deviation from the value f = 1 is larger, since the density is more Gaussian-like than
an inverted parabola, meaning that for this configuration the condensate is close to the
non-interacting limit. Nevertheless, Eq. (5.2) still provides a good definition of the vortex
core.
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Figure 5.2: (a) Vortex density profile as a function of x at y = z = 0 for BECs with contact
(a = 5 aB) plus dipolar interaction (solid line) and only contact interaction (dashed line). Inset:
f as a function of the distance to the vortex core for both cases; the value of the core radius β
is also indicated. (b) Ratio of the vortex core size (β) and the radial size of the condensate with
respect to the scattering length. Solid curve: s-wave plus dipolar interactions. Dashed curve:
only s-wave interactions.

Figure 5.2(b) shows the ratio β/Rrms of the vortex core size to the radial size (Rrms =√〈r2
⊥〉) of the disk-shaped condensates of Fig. 5.2(a) for different values of the s-wave

scattering length. The effect of dipolar interactions for large scattering lengths is to slightly
increase the relative value of the core size with respect to the radial size of the condensate
above the value of the purely s-wave case, as already discussed [Dell07]. However, when
a < 20aB, the ratio β/Rrms is smaller for a condensate with dipolar interactions than in a
purely contact interaction BEC. This is due to the small repulsive interaction brought by
the dipole-dipole potential, which becomes noticeable only for small scattering lengths.
This interaction has the effect of decreasing the central density of the condensate as
compared to the purely s-wave case and this causes a smaller core radius and a broader
ground state.

5.1.2 Critical rotation frequency and vortex generation

As we have discussed in Chapter 3, the inclusion of vorticity in a condensate is accompa-
nied by an energy cost due to the appearance of angular momentum. In a frame rotating
at an angular frequency Ω about the z axis (see Sec. 3.4), the energy of a condensate
carrying angular momentum Lz is E(lab) − ΩLz . At low rotation frequencies this energy
is minimal without the vortex (ground state configuration). But if Ω is large enough the
creation of a vortex can become favorable due to the −ΩL̂z term in Eq. (3.20). This
happens at the critical frequency Ωc given by Eq. (3.24).
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The critical rotation frequency depends on the interaction parameters (scattering
length, dipole moment), as well as on the number of atoms and the trap geometry. We
plot Ωc in Fig. 5.3(a) as a function of the scattering length, for the same condensate
as in Sec. 5.1.1 (see also Sec. 4.1.1). As a reference we have also calculated the critical
angular velocity necessary to nucleate a vortex in the corresponding non-dipolar conden-
sate (dashed curve). For large scattering lengths, the dipolar condensate is controlled by
contact interactions and the critical frequency becomes equal to that of the non-dipolar
condensate. For smaller scattering lengths the inclusion of the dipole-dipole interaction
decreases the value of Ωc. It is hence energetically easier to nucleate a vortex when dipolar
interactions are present. This can be understood as follows: in the pancake geometry the
mean-field interaction between dipoles is repulsive on average, giving rise to a maximum
of density smaller than in the purely s-wave condensate (see Fig. 5.1) which makes it
easier to take the atoms away from the z axis and nucleate a centered vortex. Note that
in the non-interacting limit, the critical frequency tends to ω⊥, as is expected from the
theory. In the dipolar condensate, for a = 0 the value of Ωc is about one fourth of ω⊥.
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Figure 5.3: (a) Critical angular velocity for a singly quantized vortex in a pancake trap with
aspect ratio λ = 11, as a function of the s-wave scattering length. The solid line corresponds to
s-wave plus dipolar interactions. The dashed line corresponds to only s-wave contact interaction.
Inset: behavior of Ωc(a) around a ∼ 0 for a condensate with s-wave plus dipolar interactions. (b)
Critical angular velocity as a function of the number of atoms. The solid line corresponds to a
dipolar condensate, and the dashed line to a condensate with only contact interaction (a = 5 aB).

The inset of Fig. 5.3(a) shows a detail of the behavior of Ωc(a) for small values of the
s-wave scattering length, corresponding to the case of contact plus dipolar interactions.
Ωc presents a maximum around a scattering length a � 2aB, which corresponds to a
dimensionless parameter εdd = 7.57. The presence of this maximum is a consequence of
the balance between contact and dipolar interactions and appears just before collapse.

The critical angular velocity for producing a vortex is plotted in Fig. 5.3(b) as a
function of the number of atoms, for a purely dipolar condensate (solid line) and for a
condensate with only contact interaction with a = 5 aB (dashed line). For a given number
of atoms the effective repulsion of the dipolar interaction in a pancake shaped condensate
is larger than the repulsive contact interaction; therefore, Ωc is smaller in a purely dipolar
condensate. However, both curves have a similar behavior: Ωc decreases with increasing
N , as the repulsion also increases.
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5.1.3 Energy barrier

The critical frequency calculated in Sec. 5.1.2 is based on a thermodynamical consideration
that takes into account the energy of the vortex at the center of the trap and thus provides
a lower bound to the experimental critical frequency. This difference can be understood
in terms of an energy barrier the system needs to overcome to bring the vortex from the
surface to the center of the condensate [Svi00, Kra02]. That is, the nucleation of a vortex
is associated with the existence of an energy barrier in the configuration space between
the initial vortex-free state and the final centered vortex state. The formation energy
of a vortex can be estimated by calculating the energy of a single off-center vortex as a
function of the vortex core position.

We calculate the energy barrier, ΔE(dv, Ω), as the vortex energy in the rotating frame
as a function of the vortex distance from the symmetry axis, dv =

√
x2

v + y2
v. It is defined

with respect to the ground state energy as ΔE(dv, Ω) = E(rot)(dv, Ω)−Egs, and it is related
to the energy in the laboratory frame by Eq. (3.23). Note that the energy barrier depends
on the actual value of Ω but the energy in the laboratory frame does not. For Ω = Ωc

and dv = 0 we have ΔE(0, Ωc) = 0 since under these conditions the energy of a centered
vortex is exactly the rotation energy, which comes directly from the definition of critical
frequency, Eq. (3.24). For a vortex near the boundary of the condensate Lz → 0 [Gui01],
whence ΔE(dv, Ω) → 0. Between these two limits, the energy barrier reaches a maximum
value ΔEmax at the position dvmax, corresponding to the extra energy the system needs in
order to carry the vortex from the surface to the center of the condensate.

We generate an off-axis vortex at position rv = (xv, yv, z) using the ansatz [Jez08a]

ψini(r) = ψgs(r)
(x− xv) + i (y − yv)√
(x− xv)2 + (y − yv)2

, (5.3)

which generalizes ansatz Eq. (3.26) for a centered vortex line. The energy ΔE(dv, Ω) is
calculated by solving the GP equation in the rotating frame, taking Eq. (5.3) as initial
wave function. In order to obtain the solution for the displaced vortex, which is not a
minimum of Eq. (3.20), we have imposed that during the minimization process the initial
nodal planes are kept constant, that is:

Re [Ψ(xv, y, z)] = 0 ∀ y, z (5.4)

Im [Ψ(x, yv, z)] = 0 ∀x, z . (5.5)

With this method, the quantization of the circulation is ensured in all cases, but the
solutions are restricted to the case of straight vortex lines.

We plot in the left panel of Fig. 5.4 the vortex formation energy as a function of
the vortex displacement from the center, corresponding to the same condensate as in
Fig. 5.3(a) rotating at the critical rotational frequency Ωc. The distance of the vortex
core to the symmetry axis is expressed in units of Rrms of the corresponding ground state.
The dashed line corresponds to the purely contact interaction BEC (with a = 5 aB), the
dash-dotted line to a condensate with contact plus dipolar interactions, and the solid
line corresponds to a purely dipolar BEC (D = 50). The three critical barriers have the
same qualitative behavior as a function of the dimensionless displacement of the vortex
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core dv/Rrms. The maximum of the barrier height is located around dvmax/Rrms ∼ 1.1 for
the contact interaction BEC and around dvmax/Rrms ∼ 1.2 for the other cases. As already
guessed in Sec. 5.1.2, the nucleation is easier in a condensate with dipolar interactions than
with only s-wave interactions, since the repulsion is larger in average. From the figure
we can see that the main effect of contact interactions is to decrease the barrier height
(compare dipolar and dipolar plus s-wave curves), while the effect of the anisotropic and
long-range dipolar interaction is to move the maximum of the barrier towards the surface
of the condensate (compare s-wave and dipolar plus s-wave curves).

0 0.5 1.0 1.5 2.0 2.5
dv / Rrms

0

0.01

0.02

0.03

0.04

0.05

ΔE
 / 

h_ ω
⊥

sw
sw + dip
dip

0 0.5 1.0 1.5 2.0 2.5
dv / Rrms

-0.04

-0.02

0

0.02

0.04

ΔE
 / 

h_ ω
⊥

sw
sw + dip
dip

Figure 5.4: Vortex formation energy as a function of the vortex displacement from the center.
The dashed line corresponds to the purely contact interaction BEC (sw, with a = 5 aB), the
solid line corresponds to a purely dipolar BEC (dip), and the dash-dotted line to a condensate
with contact plus dipolar interactions(sw + dip). Left panel: Ω = Ωc; Right panel: Ω > Ωc.

We plot in the right panel of Fig. 5.4 the same curves as in the left panel but calculated
at larger angular velocities Ω > Ωc, namely Ω = 0.48 ω⊥ for the purely contact interaction
BEC with a = 5 aB (dashed line) and Ω = 0.28 ω⊥ for both the purely dipolar BEC (solid
line) and the condensate with the two types of interactions acting simultaneously (dash-
dotted line). As expected, for rotational frequencies larger than the corresponding critical
one, the state with a centered vortex is preferable. However, the nucleation of the vortex
is inhibited by the barrier separating the vortex-free state from the centered vortex state.
The effect of the nature of the interactions is the same as in the barriers at Ωc: contact
interactions raise the barrier maximum, while dipolar interactions move it outwards.

Thomas-Fermi models of the energy barrier

In the TF limit it is possible to obtain analytic expressions for the energy barrier for
vortex nucleation [Svi00, Kra02, Fet09] (see also [Abad10b] for more details). Although
we are dealing with 3D systems, since the trap anisotropy parameter is large, λ = 11, the
2D limit is worth considering. In these limits the position of the barrier maximum and
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its height are given by

d2D
vmax

= R⊥

√
1− Ω2D

c

2Ω
(5.6)

ΔE2D
max(Ω) ≡ ΔE2D(dvmax , Ω) =

(Ω2D
c )2

4Ω
(5.7)

for a 2D geometry, and

d3D
vmax

= R⊥

√
1− 3

5

Ω3D
c

Ω
(5.8)

ΔE3D
max(Ω) ≡ ΔE3D(dvmax, Ω) =

2

3
Ω3D

c

(
3

5

Ω3D
c

Ω

)3/2

(5.9)

for a 3D geometry. The radial Thomas-Fermi radius, R⊥, is related to the rms-radius by
R⊥ =

√
3Rrms in both cases.

To obtain an order of magnitude for the energy barriers, it is possible to combine the
TF results (5.6) and (5.9) with the numerical values of Ωc and R⊥ (the latter calculated as√

3Rrms) obtained from the simulations. This pseudo-analytical method avoids thus the
calculation of the complete energy barrier. Table 5.1 shows the main parameters of the
barriers using these approximations at the critical frequency. We see from the table that
the 3D approximation is in good agreement with the characteristics of the barriers found
in the numerical simulation, whereas the 2D approximation shows some deviation. This
means that in spite of the large anisotropy of the trapping potential, the 3D nature of
the condensate is important to characterize the vortex energetics. In addition, the energy
of the maximum is better reproduced for condensates with dipolar or both interactions.
This happens because the corresponding density profiles (see Fig. 5.1) are closer to the
TF inverted parabola profile than those of the purely s-wave condensate.

Table 5.1: Comparison of the energy barrier maximum and its position obtained in the numerical
simulation (GP) and the 2D and 3D pseudo-analytical results.

Case Ωc/ω⊥ Rrms(μm) ΔEmax/�ω⊥ dvmax/Rrms

GP 0.047 1.09
s-wave 0.45 9.16 2D 0.112 1.22

3D 0.084 1.09

GP 0.040 1.17
both 0.25 12.44 2D 0.062 1.22

3D 0.046 1.09

GP 0.044 1.16
dipolar 0.25 11.62 2D 0.062 1.22

3D 0.046 1.09
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5.2 Vortex precession

In this section we address the precession dynamics of a slightly off-center vortex in a dipo-
lar condensate. We show that the presence of dipolar interactions reduces the precession
frequency of the vortex, as compared to a condensate with only contact interactions. We
estimate the precession frequency by applying the results of the Thomas-Fermi approxi-
mation for contact interacting condensates, which gives the right order of magnitude.

Figure 5.5 shows the density profiles both for a contact interacting condensate (left
panel) and for a dipolar condensate (right panel) of the ground state (solid) and of an off-
center vortex at dv = 2 μm (dashed). The two configurations are calculated for the same
parameters as in Sec. 5.1 (see also Sec. 4.1): ω⊥ = 8.4×2π s−1, ωz = 92.5×2π s−1, N = 105,
and for a = 20 aB. At this scattering length, the numerical critical frequency, i.e. obtained
from Eq. (3.24), is Ωc = 0.23 ω⊥ for the dipolar condensate and Ωc = 0.30 ω⊥ for the s-
wave condensate (see Fig. 5.3), and the condensate radii are R⊥ = 26 μm and R⊥ = 23 μm,
respectively for the dipolar and the s-wave condensates. Here R⊥ is estimated as the value
of r⊥ at which the densities in Fig. 5.5 would fall to zero if they had parabolic profiles.
Numerically, the off-center vortex at dv = 2 μm is generated by imaginary time evolution
imposing that the density is zero along a line with coordinates (dv, 0, z). With this ansatz
we do not allow for bending of the core, but it might be a good approximation since we
are dealing with large pancakes (λ = 11) and the vortex core is very close to the trap axis.
In contrast to Sec. 5.1.3 we do not need to impose that the wave function vanishes on the
nodal planes, since here we are dealing with off-center vortex states that are very close to
the trap symmetry axis and the quantization is always preserved.
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Figure 5.5: Density profiles for a BEC with
as = 20 aB when only contact interactions are
taken into account (left panel) or both interac-
tions (right panel).
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Figure 5.6: Comparison of the precession for
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To investigate the precession of the vortex, once the imaginary-time simulation is
converged, we let the state evolve in real time without pinning the vorticity. We find
that the vortex precesses around the symmetry axis in the same sense as its velocity field,
that is counterclockwise. In order to measure the period of precession, we have followed
the position of the core on the plane z = 0 and have measured the time evolution of the
local density at the position r = (dv, 0, 0), which corresponds to the initial position of the
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vortex core at the z = 0 plane (Fig. 5.5). The numerical results for dv = 2 μm are shown
in Fig. 5.6. We see that the precession periods are T ∼ 0.68 s and T ∼ 0.50 s, respectively,
for dipolar and s-wave condensates.

For a non-rotating disk-shaped condensate in the Thomas-Fermi limit, the precession
frequency is related to the metastable frequency Ωm by [Fet09]

ωprec =
Ωm

1− d2
v/R

2
⊥

, (5.10)

where in this expression R⊥ is the TF radius given by Eq. (2.36). For a vortex near the axis
of symmetry, the precession frequency should be Ωm. Physically, the metastable frequency
is the rotation frequency above which a vortex in the center of the trap is no longer sitting
in a local energy minimum in the rotating frame (see Sec. 5.1.3). At this particular point,
the slope of the energy barrier at the center must be zero (i.e., the derivative of the energy
in the rotating frame evaluated at dv = 0 vanishes). For contact interacting condensates,
the metastable frequency is given by

Ωm =
3

5
Ωc =

3

2

�

mR2
⊥

ln
0.671R⊥

ξ
, (5.11)

where we have used Eq. (3.25) for the critical frequency.
The factor 1− d2

v/R
2
⊥ appearing in the denominator of Eq. (5.10) comes from the (in-

verted) parabolic shape of the density profile of a BEC in the Thomas-Fermi limit [Fet09].
Since in the Thomas-Fermi limit the parabolic solution to the density is also exact for a
dipolar condensate [Dell04] (see also Ref. [Ebe05]), Eq. (5.10) can still provide an estimate
of the precession frequency, provided an appropriate Ωm is used. A rude approximation
to Ωm would be to calculate it from the numerical critical frequency. With the same
spirit as in Ref. [Dell07], where very good agreement was found for Ωc when Eq. (3.25)
was used for dipolar condensates, we calculate the precession frequency using the s-wave
Thomas-Fermi approximation applied to dipolar condensates. We will see that this simple
calculation gives the correct order of magnitude of the precession frequency.

Table 5.2: Comparison of precession periods calculated using different approaches.

Method T (s) (s-wave) T (s) (dipolar)
Pure Thomas-Fermi 0.726 0.726
Mixed Thomas-Fermi 0.661 0.875
Numerical 0.500 0.680

For dv = 2 μm, the period of precession is estimated using Eq. (5.10) and Ωm = 3Ωc/5,
giving T = 0.875 s for the dipolar condensate and T = 0.661 s for the s-wave condensate.
In Table 5.2 these periods (named “mixed Thomas-Fermi”) are compared to the ones
predicted by the “pure Thomas-Fermi” approximation, where R⊥, ξ and n0 are obtained
from Eqs. (2.36), (3.18) and (2.38), respectively, and assume a purely contact interacting
condensate. In Table 5.2 there appear also the precession periods found by numerically
simulating the precession process, that is by solving the time-dependent Gross-Pitaevskii
equation for an off-center vortex (see Fig. 5.6). They give a smaller value value than
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Thomas-Fermi approximations. This means that in a real experiment the velocity at
which the vortex precesses around the symmetry axis will be higher than the predictions
of the TF models.



Chapter 6

Toroidally confined dipolar
condensates

The aim of this chapter is to address dipolar Bose-Einstein condensates that have been
confined in toroidal traps, emphasizing the role of vortices in such systems. Toroidal con-
fining potentials can be achieved in the laboratory using different methods. In particular,
they can be generated by superimposing a blue-detuned Gaussian beam propagating along
the z axis to the usual harmonic confinement in the three dimensions [Ram99]. It can be
expressed mathematically as

Vext =
m

2
(ω2
⊥r2
⊥ + ω2

zz
2) + V0 e−2r2

⊥/σ2
0 , (6.1)

where V0 is proportional to the intensity of the Gaussian beam and σ0 is the beam waist.
When the magnetization axis (y in what follows) is perpendicular to the trap symmetry
axis (z), the condensate density becomes inhomogeneous along the torus defined by the
confining potential. This angular dependence can be interpreted as a self-induced energy
barrier created by the specific atom distribution. In Sec. 6.1 we explore the ground state
configuration of such a system, while in Sec. 6.2 vortex states and persistent currents are
analyzed. The effective potential landscape of this system can be interpreted as a double-
well potential in the azimuthal direction. In Chapter 7 we will show that this self-induced
potential constitutes a self-induced bosonic Josephson junction.

The physics addressed in this chapter, as well as in Chapter 7, is scalable in terms of the
parameters appearing in the dimensionless GP Eq. (2.29). For the case considered here λ =
11, Na/a⊥ = 96.77 and D = 24.99, plus the dimensionless Gaussian parameters σ0/a⊥ =
2.08 and V0/(�ω⊥) = 15. In the simulations, this is achieved in a 52Cr condensate with
N = 5× 104, ω⊥ = 8.4× 2π s−1, ωz = 92.5× 2π s−1, a = 14 aB and σ0 = 10μm. Using the
dimensionless constants it is easy to export the same physics to another set of parameters
experimentally accessible in 52Cr [Gri05, Bea08, Koch08], or even to condensates of alkali
gases such as 39K or 7Li, where dipolar effects have been observed in Refs. [Fat08] and
[Pol09], respectively, making use of a soft zero crossing of the scattering length near a
Feshbach resonance.

Notice that the Gaussian part of the trapping potential scales in a different way as the
harmonic part. This means that the virial theorem Eq. (4.8) cannot be used here, but has
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to be accordingly modified to

2Ekin − 2Eext + 2

∫
dr|ψ|2V0

(
1 +

2r2
⊥

σ2
0

)
e−2r2

⊥/σ2
0 + 3Esw + 3Edip = 0 , (6.2)

where Eext is the energy corresponding to potential Eq. (6.1). We have checked that this
virial expression is fulfilled in all cases presented up to 4% of the total energy.

6.1 Ground state in a toroidal trap

The ground state of a dipolar condensate confined in a toroidal trap is found by mini-
mizing the energy functional, Eq. (2.18), via imaginary time evolution (see Appendix A).
The Gaussian potential in Eq. (6.1) introduces a repulsive barrier along the z axis. For
large scattering lengths this barrier is not enough to burn a hole at the center of the
condensate. However, when the scattering length is reduced, the chemical potential of
the condensate becomes smaller and eventually equals V0, under which condition a hole
appears at the center. Figure 6.1(a) shows both the chemical potential and the effective
height of the Gaussian barrier, ΔVG, as a function of the scattering length, for a fixed
laser intensity V0 = 15�ω⊥. This Gaussian barrier arises from the effective potential,
Veff(r) = Vext(r) + Vdip(r), and is defined as the difference between the minimum and
central effective potentials along the x axis. Note that the effective Gaussian barrier is
not constant with a, even if V0 is fixed. This comes from the density-dependence of the
dipolar potential (that is, the dipolar term in the Gross-Pitaevskii equation). By changing
V0 one can choose the scattering length for the onset of toroidal geometry. In Chapter 7
we will see that the effective potential is responsible for the Josephson junction character
of the system. The appearance of Vdip in its definition is telling us that in dipolar systems,
the mean-field dipolar interaction enters mainly as an anisotropic trapping potential that
introduces an extra modulation of the density. This was already guessed in the bicon-
cave density structures of Sec. 4.1.2, but in the toroidal system this fact has dramatic
consequences and opens a new physical situation.
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Figure 6.1: (a) Chemical potential and effective Gaussian barrier as a function of the scattering
length, for V0 = 15�ω⊥. (b) Density profiles of the ground state configuration along x-axis (solid
line), y-axis (dashed line) and z-axis (dotted line), for a = 100, 30, 14 aB (from left to right).
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The panels of Fig. 6.1(b) show the density profiles for different scattering lengths.
As can be seen, they change accordingly to the effective Gaussian potential. When the
scattering length is large (case a = 100 aB), the chemical potential is also large and the
main effect of the Gaussian barrier is to decrease the central density of the cloud. In this
regime, the dipole-dipole interaction introduces only a slight perturbation of the density,
which is almost symmetric in the z = 0 plane. As the scattering length is reduced, the
toroidal geometry arises when μ ∼ ΔVG. For a = 30 aB, the hole is already formed,
with a central density reduced one order of magnitude with respect to the density at the
maxima1. At this scattering length anisotropic dipolar effects start to be noticeable. For
lower values of a, the dipolar interaction becomes dominant and the condensate density
shows azimuthal dependence. The maximum value of the density lies along the x axis,
perpendicularly both to the trap symmetry axis and the magnetization direction. This
inhomogeneous density distribution is not particular of condensates, but has also been
shown to appear in Fermi gases that interact via dipole-dipole interactions [Dut07, Zol11].

Figure 6.2: (a) Effective potential, Veff, as a function of x and y at the z = 0 plane for a toroidal
condensate with a = 20 aB and V0 = 15 �ω⊥. (b) Corresponding condensate density on the plane
z = 0. (c) Diagram qualitatively showing the effective dipolar interaction in the torus.

To understand the azimuthal density structure, we show Fig. 6.2(a) the effective po-
tential, Veff, for a condensate with a = 20 aB. It presents a maximum at the center due to
the Gaussian beam. Far from the center, the potential is dominated basically by the har-
monic potential. For intermediate distances, it is the mean-field dipolar interaction, Vdip,
that controls the potential: it is attractive on the x axis, therefore showing two minima,
and repulsive on the y axis, where two saddle points are located. These saddle points can
be thought of as self-induced potential barriers in the azimuthal direction. The density,
Fig. 6.2(b), follows the shape of Veff(r), hence showing a two-peak configuration with two
larger maxima on the x axis (at the potential minima) and two saddle points on the y
axis (at the potential saddle points). The anisotropic character of the effective potential
can be easily understood with the help of the scheme in Fig. 6.2(c). In this figure we have
schematically delimited two types of regions A and B with dashed lines. Within region A
the dipoles are mainly displayed side-by-side, giving a net repulsive interaction. In region

1Note that the density at the center is not exactly zero, as would happen for classical particles, because
we are dealing with a quantum gas. The condition μ = ΔVG is in some way equivalent to the classical
turning point.
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B the atoms are mainly located head-to-tail, which gives an effective attractive interac-
tion. A straightforward effect of the location of regions A and B is that it is energetically
favorable for the system to accommodate more dipoles in regions B. Therefore, a dipolar
condensate confined in a toroidal trap shows large density maxima in the perpendicular
direction to the magnetization axis, and saddle points in the magnetization direction.

To quantitatively analyze the azimuthal density dependence, we show in Fig. 6.3 the
evolution of the maximum density values along the x-axis, ngs(xm), and along the y-axis,
ngs(ym), as a function of the scattering length. A strong deviation of both quantities
occurs when the scattering length is reduced below the value in which the condensate
geometry becomes multiply connected, a ∼ 30 aB.
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Figure 6.3: Density values at
the critical points (xm, 0, 0) and
(0, ym, 0), which correspond to a
maximum (solid line) and a saddle
point (dashed line) in the density, re-
spectively. In the inset the quotient
of these heights is drawn.

To find the azimuthal density distribution, the smallest scattering length it is possible
to achieve with the set of parameters used here is a = 13 aB. Below this value, a spatial
symmetry breaking (SB) occurs. The atoms accumulate around one of the wells of the
effective potential and the condensate resembles an origin-displaced cigar-shaped conden-
sate. This can be seen in Fig. 6.4, where we compare the equidensity lines in the z = 0
plane of two different configurations with a = 20 aB (left) and a = 12 aB (right). For
a = 20 aB the system still presents reflection symmetry but for a = 12 aB the symmetry
is broken. It is interesting to observe that not only do the atoms accumulate at one side
of the ring but also their density distribution appears more resistive to curve. This ef-
fect is a consequence of the fact that the dipolar interaction forces the particles to locate
themselves head-to-tail. From the mean-field point of view, the phenomenon of symme-
try breaking occurs because the attractive part of the dipolar interaction becomes large
enough to be energetically favorable for the system to distribute all atoms in only one of
the minima of the potential. With the present choice of parameters, a further reduction of
the scattering length leads to collapse. Notice that the critical value a = 12 aB is the same
as in harmonic confinement (see Sec. 4.1). We have checked that the symmetry broken
solution is independent of the way the system is initialized, by starting the minimization
procedure with different initial wave functions, including a symmetric wave function and
a randomly generated one. In all cases we have obtained the same final asymmetric state,
which confirms that it is not an artifact of the numerics. The two possible symmetry
broken states (with all particles in the left or in the right) are degenerate in energy. The
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fact that the numerics converges to one or the other is due to a negligibly small but asym-
metric numerical error that favors one state with respect to the other. A change in grid
size, for instance, can make the simulation converge to the right state (with all the atoms
in the right well) instead of the left state as in Fig. 6.4.
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Figure 6.4: Density contours for the ground state configuration in the z = 0 plane for a conden-
sate with a = 20 aB (left panel) and a = 12 aB (right panel).

Symmetry breaking phenomena are a signature of a quantum phase transition and are
presently under strong discussion [Cir98, Jul10a]. For purely s-wave condensates, they
have been predicted to show mainly in double-well potentials, but also in the vortex nu-
cleation process [Dag09a], in mixtures of Bose gases confined in double-ring traps [Mal10],
etc. In dipolar condensates confined in double-well traps, they have been addressed in
Refs. [Xio09, Asad09]. In Ref. [Xio09], the magnetization direction was used to induce
SB, while in Ref. [Asad09] it was the number of dipoles in the double well that drove
it. The mechanism triggering the effect is the presence of a repulsive barrier in systems
that are dominated by attractive interactions. The main difference between the present
configuration and the ones exposed in Refs. [Xio09, Asad09] is that we deal with a self-
induced SB, since it is the dipolar interaction itself and its anisotropic character that
brings about the effect. Recently, there has been some effort to relate symmetry breaking
phenomena in cold atoms to the existence of a Schrödinger cat state [Dag09a, Jul10a].
For dipolar condensates, such a strongly entangled state has been theoretically proposed
in a three-well configuration [Lah10].

6.2 Vortex states in a toroidal trap

Now we turn to the study of vortices in dipolar condensates that are confined in a toroidal
trap, with the goal of understanding how the density inhomogeneity introduced by the
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dipolar interaction affects the velocity field. Toroidal traps have been experimentally
shown to be capable of sustaining persistent flows [Ryu07]. This fact is related to the
existence of metastable vortices [Cap09]. The superfluid character of the BEC ensures that
the fluid will flow without viscosity, i.e. without dissipation. For instance, the experiment
in Ref. [Ryu07] was capable of maintaining the persistent current for up to 10 s (which
was the duration of the experiment). This section is devoted to the characterization of
the anisotropic velocity flow that a phase-imprinted metastable vortex introduces in the
toroidal condensate in presence of dipolar interactions.

To generate a vortex state along the z axis with circulation κ, we first obtain the
ground state order parameter ψgs from Eq. (2.16) and then imprint a velocity field in the
form [Jez08b]

ψini(r) = ψgs(r)

(
x + iy√
x2 + y2

)κ

, (6.3)

with κ the quantum number related to the velocity circulation. We use this ansatz as the
initial wave function of the imaginary-time evolution of the GP equation (2.16). After
convergence, we obtain the κ-vortex state of the system. In the toroidal trap, the core of
the vortex is directly the hole created by the laser beam along the z direction. Note that
with our choice of magnetization axis (y) the axial symmetry is removed and thus the
angular momentum along the z axis is no longer Lz = κ�N , since the angular momentum
operator does not commute with the Hamiltonian anymore.

A signal that the system can sustain metastable vortices (that is, persistent currents
in the non-rotating system) is the presence of a valley in the ground state density land-
scape, which may produce a local vortex energy minimum [Cap09]. In this case, after
the minimization process, one can obtain a vortex state captured in the toroidal trap due
to a vortex energy barrier produced by the surrounding density maxima. In our system,
where the axial symmetry is not achieved, the energy barrier is related to the height of the
saddle points of the density landscape which are located along the y-axis (see Fig. 6.2).

In Fig. 6.5 we show the ground and two-vortex state densities for a dipolar condensate
with a = 100 aB. Since the ground state is a simply connected condensate, the density does
not vanish at the center, hence we find that multiply quantized vortices are less favored
than multiple singly-quantized vortices. Although the initial imprinting method produces
a doubly-quantized vortex along the z-axis at x = 0 and y = 0, during the minimization
process the vortex splits into two singly-quantized vortices. Since the density maximum
(saddle-point) is smaller along the y direction the final state converges to two vortices
placed at the y-axis, as can be seen in the central panel of Fig. 6.5. This stationary
configuration is possible because the velocity field due to the other vortex cancels with
the contribution to the vortex velocity provided by the density inhomogeneity [Jez08b].

We have found that the initial doubly-quantized vortex always splits in two singly-
quantized vortices, even in the case of multiply connected geometry. This happens because
for scattering lengths between a = 25 aB and a = 30 aB the density at the center of the
trap is very small, but not exactly zero. This gives rise to two vortex lines instead of one,
even if their cores are very close together. Below a = 25 aB the system is not capable of
sustaining two vortices, since the height at the density saddle-points is not large enough.

To characterize the velocity field in the case of large asymmetric density configurations
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Figure 6.5: Density profiles for the ground state (solid line) and a two vortex state (dashed line)
for a condensate with a = 100 aB .

in the toroidal trap, we have studied singly quantized vortices (κ = 1). In this case, the
vortex is nucleated along the trap symmetry axis. In contrast to the case of a large
scattering length, for small scattering lengths the presence of the vortex does not produce
a large change in the density distribution compared to the vortex-free configuration, since
the vortex core is directly the hole in the toroidal potential.

The initially imprinted velocity field, Eq. (6.3), assumes axial symmetry. Our system is
not axially symmetric and thus the modulus of the velocity field, for a given radius, varies
around the torus. This is simply understood by reminding that in stationary conditions
the current is constant along the torus,

I =

∫
j · dS =

∫
|ψ|2 v(r) · dS , (6.4)

where j is the current density given by Eq. (3.2) and dS is the surface element. The
velocity field v(r) is related to the phase S(r) of the wave function through Eq. (3.3).
The integral in Eq. (6.4) is calculated in a torus section. Since this quantity has to be
constant, it is easy to see from this equation that for the angles where the density is lower
(regions A in Fig. 6.2(c)) the velocity is larger, while in the angles where the density shows
a maximum (regions B in Fig. 6.2(c)) the velocity is minimum.

In Fig. 6.6(b) we display the x and y components of the velocity field at the positions
ym and xm of the density maxima, respectively vx(ym) and vy(xm) (see also Fig. 6.6(a)).
For a = 100 aB, the dipolar effects are small, the densities along each axis are similar and,
therefore, the two components of the velocity are equal. When we reduce the value of the
scattering length, dipolar effects become sizeable and the density difference increases (see
Fig. 6.3), hence increasing the difference in both components of the velocity. This can be
used to generate an inhomogeneous local velocity field along the torus, by only tuning the
scattering length using a Feshbach resonance.
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Figure 6.6: (a) Schematic diagram representing the components of the velocity along the ring-
shaped dBEC. (b) Velocity field components vy (solid line) and vx (dashed line) at the density
maxima xm and ym, respectively, as a function of the scattering length. In the inset, the ratio
between the two is shown.

Although the angular momentum Lz is not conserved, its expectation value 〈Lz〉 can
provide a qualitative estimation of the difference between the velocity field in the different
regions of the torus. As expected, for large scattering lengths the angular momentum
per particle is almost one, see Fig. 6.7. As a decreases the angular momentum decreases,
being the variation much stronger when the condensate exhibits a hole, below a ∼ 30 aB.
The reduction in the angular momentum is an evidence of the presence of self-induced
energy barriers, which diminish the net particle flow. Since in our case the azimuthal
energy barrier is larger when the scattering length is reduced, a measure of the angular
momentum in the z direction could provide information of the strength of the dipolar
interaction with respect to the contact interaction.
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Figure 6.7: Expectation value of the angular momentum as a function of the scattering length.



Chapter 7

The self-induced bosonic Josephson
junction

As we have seen in Chapter 6, the combination of the toroidal trapping potential and the
anisotropic mean-field dipolar potential gives rise to a self-induced potential that breaks
the axial symmetry of the external confinement. This effective potential can be recognized
as the effective potential introduced in Sec. 6.1, Veff(r) = Vext(r) + Vdip(r), and it has the
shape of a ring-shaped double well. Figure 7.1(a) shows its projection on the plane z = 0
for a dBEC with scattering length a = 14 aB and V0 = 30 �ω⊥1, for the same confining
potential as in Chapter 6, Eq. (6.1). The two wells are formed perpendicularly to both the
trap symmetry axis (z) and the polarization axis (y). The density adapts to the effective
potential, giving rise to an anisotropic distribution along the torus, as can be seen in
Fig. 7.1(b). Since the centered Gaussian potential introduces a strong repulsive barrier at
r⊥ = 0 that prevents the atoms from tunneling through it, the double well structure arises
in the azimuthal direction. The top panel of Fig. 7.1(c) shows the minimum effective
potential along the azimuthal coordinate, ϕ, with the two minima at ϕ = 0 and ϕ = π
and the two barriers at ϕ = π/2 and ϕ = 3π/2. Note that it is not defined at fixed radius,
but r⊥ slightly changes with ϕ, being however close to r⊥ ∼ 2.5 a⊥. According to this
effective ring-shaped double well, the atoms localize mostly in the attractive regions inside
the wells, producing the azimuthal density dependence. This is seen in the bottom panel
of Fig. 7.1(c), which shows the maximum density along ϕ on the z = 0 plane.

Although the self-induced double-well configuration is highly reminiscent of double-
well potentials in one dimension, there are still some differences, namely: i) the potential
barriers separating the two wells are self-induced, depending therefore strongly on the
condensate density; ii) the two wells are connected via two links instead of one; and iii)
the double well appears in the azimuthal coordinate, implying that the whole configuration
is clearly far from being one-dimensional. However, under some conditions, the system
can behave as a usual bosonic Josephson junction, showing the same kind of physics
as in double-well potentials. Note also that this junction really consists of two coupled

1Note that we have increased the value of V0 from 15 �ω⊥ of Chapter 6 to 30 �ω⊥. This has been
done in order to have a vanishingly small density at the center and thus to prevent atoms from tunneling
across the Gaussian barrier. The ratio between central and maximum density is approximately 10−4 for
V0 = 15 �ω⊥ and 10−8 for V0 = 30 �ω⊥, for a = 14 aB.
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Figure 7.1: Effective potential (a) and corresponding ground state density (b) in the z = 0 plane.
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junctions, which in this scenario behave in phase in much the same way as the array
of nano-apertures does in the experiments with helium [Per97, Hos05]. Since it is the
mean-field dipolar potential that is responsible for the double-well structure, we call this
junction a self-induced Josephson junction (SIJJ).

The aim of this chapter is to study in detail the SIJJ, characterizing its dynamical
regimes and exploring its physics by means of numerically simulating the TDGP Eq. (2.12).
In Sec. 7.1 the dynamics in the junction is analyzed in terms of two coupled variables,
the population imbalance and the phase difference. Both Josephson (Sec. 7.1.1) and self-
trapping (Sec. 7.1.2) oscillations are predicted. In Sec. 7.2 we show that they can be
qualitatively described by a two-mode model (see also Appendix F for a detailed analysis
of this model). The self-trapping regime is analyzed with further detail in Sec. 7.3, where
the dynamics is characterized by the phase of the wave function. This allows us to relate
self-trapping to a phase-slippage process, which is well known in superfluid helium.

We study the dynamics by evolving the TDGP Eq. (2.12) in real-time (see Appen-
dices B and C). Since there are no external time-dependent potentials both the number
of particles and the energy must be conserved. During the simulations, the deviations in
the total energy we have found are of 10−4 % for the Josephson case and 5× 10−3 % for
the self-trapping case, with respect to the initial total energy. The deviation in the total
number of particles is smaller than 10−5 % in all cases.

7.1 Characterization of the system as a junction

If the height of the barrier separating the two wells, ΔVeff, is large compared to the
chemical potential, μ, the system behaves as two weakly-linked condensates. The weak-
link condition can be reached by tuning the s-wave scattering length to small values,
which should still be large enough to prevent spatial spontaneous symmetry breaking
(see Sec. 6.1). Figure 7.2 shows the height of the potential barrier along the azimuthal
direction as a function of the scattering length (solid line), together with the chemical
potential of the dBEC (dashed line). The condition ΔVeff/μ = 1 occurs at a � 14.5 aB.
For smaller scattering lengths we are in a regime of weak coupling between condensates
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or high barrier, while for larger scattering lengths the system enters a regime of strong
coupling or low barrier.

15 20 25
a / aB
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μ / h_ω⊥

ΔVeff / h
_ω⊥

Figure 7.2: Azimuthal barrier height
(solid) and chemical potential of the
dBEC as a function of the scattering
length.

Josephson effects in BECs are characterized by the tunneling dynamics between two
potential wells [Sme97, Rag99, Alb05]. The barriers separating the two wells divide the
space into left (L) and right (R) sides, respectively defined by x ≤ 0 and x ≥ 0. In
complete analogy with double-well systems [Sme97], we analyze the tunneling dynamics
in terms of the population imbalance (Z) and the phase difference (φ) between the left
and right wells, given by

Z(t) =
NL(t)−NR(t)

N
(7.1)

φ(t) = φR(t)− φL(t) , (7.2)

where NL(R)(t) corresponds to the number of atoms on the left (right) side, and φL(R)(t)
the phase of the dipolar condensate on the left (right) side. The total number of atoms
is N = NL(t) + NR(t). These quantities are calculated as a function of time from the
condensate wave function Ψ(r, t), which is obtained by solving the TDGP Eq. (2.12). In
the numerical evolution the number of atoms in the left (right) well is found computing the
integral: NL(R)(t) =

∫
L(R)

dr|Ψ(r, t)|2 . The local phase φ(r, t) enters in the wave function
as:

Ψ(r, t) =
√

n(r, t) ei φ(r,t) ,

where the local density is n(r, t) = |Ψ(r, t)|2 . The phase on the left side is defined as:

φL(t) =
1

NL

∫
L

drn(r, t) φ(r, t) . (7.3)

In the numerical implementation, φL(t) has been calculated similarly as in Ref. [Mele11].
We compute the averaged wave function in the left well,

ΨL =
1

NL

∫
L

drn(r, t) Ψ(r, t) , (7.4)

and calculate the corresponding phase by considering the real and imaginary parts of ΨL,

φL(t) = arctan
Im[ΨL]

Re[ΨL]
. (7.5)



76 The self-induced bosonic Josephson junction

The phase on the right, φR(t), is defined and computed analogously. The dynamic regimes
of Josephson junctions depend strongly on the initial conditions, which are defined by the
population imbalance and the phase difference at time t = 0, respectively Z(0) and φ(0).
Following the method used in experiments in bosonic Josephson junctions [Alb05] we
consider the case of initial population imbalance and zero initial phase, that is Z(0) �= 0
and φ(0) = 0. In the experiments the system is firstly prepared in a slightly asymmetric
double-well potential, which ensures that there are more atoms in one well than in the
other. In the numerics, we mimic this process and obtain the imbalanced wave function
using imaginary-time evolution of the GP Eq. (2.16) with a tilting potential Vtilt(r) =
Ṽ0x that ensures an initial population imbalance between the two wells. At t = 0 the
asymmetry is removed and the condensate is left to evolve in a symmetric double-well
potential with this initial non-zero population imbalance.

7.1.1 Small imbalance regime: Josephson oscillations

The regime of Josephson2 (or plasma) oscillations consists on the coherent tunneling of
atoms through a potential barrier that weakly links two condensates (see Fig. 1.4). These
oscillations take place for small values of the initial imbalance. Figure 7.3 shows the
dynamic evolution of the population imbalance and the phase difference corresponding to
initial conditions Z(0) = 0.1 and φ(0) = 0, for three different scattering lengths at both
sides of the condition ΔVeff/μ = 1. Z(t) and φ(t) present sinusoidal oscillations shifted by
π/2, and the time average of the population imbalance is zero. In this regime, the atoms
tunnel periodically from the left to the right well and back. The wave function of the
dBEC at each well remains coherent during this process, that is with a uniform phase.
This is translated into a phase difference that oscillates in time at the same frequency as
the imbalance.

From Fig. 7.3 it is clear that the SIJJ can sustain Josephson oscillations even though
the barriers are self-induced by the interplay between dipolar interaction and the toroidal
geometry. Moreover, the ring-shaped double-well structure of the potential is maintained
in time even if the two wells and the two barriers present some dynamics (and this indeed
happens since we are dealing with a self-induced potential). In other words, we can state
that the self-induced barriers are robust because they maintain the sinusoidal shape of
the Josephson oscillations. Notice that this is true even for a large density in the barrier
position, as is the case of a = 15.5 aB, for which μ > ΔVeff (see Fig. 7.2). A similar system
has been studied in Ref. [Bla11] for a toroidal condensate with one barrier, finding that for
large overlaps it is still possible to define a Josephson frequency, but for a certain barrier
height another mode appears and the system can no longer be described with just one
frequency.

2Sometimes the term “Josephson regime” is used to distinguish it from the Fock and the Rabi regimes
(as defined in Ref. [Leg01] and references therein). These regimes are classified in terms of the ratio
between the coupling energy between the wells (K) and the strength non-linear (on-site) interaction (U):
for K/U � N−2 the system lies in the Rabi regime, for N−2 � K/U � 1 the system lies in the Josephson
regime, and for 1 � K/U the system lies in the Fock regime. We keep always within the Josephson regime
in this terminology, since the parameter K/U ∼ 0.03, as can be estimated using the two-mode model
discussed below.
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Figure 7.3: Time evolution of the population imbalance (left panels) and phase difference
(right panels) with initial conditions Z(0) = 0.1 and φ(0) = 0, for scattering lengths a =
13.5, 14, 15.5 aB .

7.1.2 Large imbalance regime: macroscopic quantum self-trapping

For a large initial population imbalance, the SIJJ enters the regime of self-trapping os-
cillations (see Fig. 1.4). This can be clearly seen in Fig. 7.4, where the imbalance and
the phase difference are plotted as a function of time for initial conditions Z(0) = 0.65
and φ(0) = 0, for a = 14 aB. In this situation, the time average of the imbalance remains
close to 0.5 and the phase difference is unbounded (running phase mode). Although in
this regime the atoms remain locked in one of the wells, there is still some tunneling of
particles at a frequency higher than in the Josephson regime. From Fig. 7.4 it follows
that dipolar condensates in a ring-shaped double-well potential can sustain self-trapping
dynamics even though the barriers are self-induced. However, the imbalance oscillations
are non-sinusoidal but have a more involved structure, which hints at a rich self-trapping
dynamics. In this sense, self-trapping is more sensitive to imperfections of the double-well
structure than Josephson oscillations, where the numerical signal was clearly sinusoidal.
This situation therefore cannot be described within the framework of two mode models
(see Sec. 7.2). To understand better self-trapping dynamics one needs to study the time
evolution in a more local way, that is by looking at the information that is hidden in the
average quantities Z and φ. This will be duly addressed in Sec. 7.3.
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Figure 7.4: Time evolution of the population imbalance (left panel) and phase difference (right
panel) for initial conditions Z(0) = 0.65 and φ(0) = 0, for a scattering length a = 14 aB .

7.2 Two-mode models for the SIJJ

To gain insight into the tunneling dynamics obtained by evolving the TDGP equation,
we have performed a two-mode analysis of the SIJJ, taking into account both s-wave
and dipolar interactions (see Appendix F for a more detailed discussion of the model).
The two-mode model (TMM) relies on the assumption that the dynamical behavior of a
Josephson junction can be fully captured by analyzing the coherent dynamics between two
spatially localized modes: the left and right modes, respectively ΦL(r) and ΦR(r). In this
approximation, the condensate order parameter is written using the ansatz [Sme97, Rag99]

Ψ(r, t) = ψL(t)ΦL(r) + ψR(t)ΦR(r) , (7.6)

with 〈Φi|Φj〉 = δij, and the coefficients fulfill ψj(t) =
√

Nj(t)e
iφj(t), i, j = L, R. Note that

in this ansatz the time evolution is contained only in the coefficients ψj(t).
By substituting ansatz (7.6) into Eq. (2.12) and performing some algebra retaining all

the overlapping terms [Gio00, Ana06] (see also Appendix F), one obtains the two-mode
equations for a symmetric dipolar SIJJ,

Ż =(−1 + α)
√

1− Z2 sin φ + ε(1− Z2) sin 2φ (7.7)

φ̇ =ΛZ − (−1 + α)
Z√

1− Z2
cos φ− εZ cos 2φ , (7.8)

with

Λ =
U

2K
N − B + 2I1 + D1

2K
N (7.9)

α =
I2 + D3

K
N (7.10)

ε =
I1 + D1

2K
N . (7.11)

The quantities U, K, B, Ii, Di are integrals of combinations of the modes ΦL and ΦR

with the different operators in the GP equation: U contains information of the kinetic
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and trapping energies in each of the wells, K is related to the kinetic and trapping energies
in the barrier (overlapping region), B is the interaction energy in each well, and Ii and
Di are, respectively, the s-wave and dipolar interactions in the barrier region. Their
definitions are given in Appendix F. Also, in this appendix the complete expressions (for
non-symmetric configurations) provided by the two-mode model in a SIJJ are given. The
only parameters that appear in Eqs. (7.7) and (7.8) are Λ, α and ε, which depend on both
dipolar and s-wave interactions. All information regarding the geometry (in particular,
the self-induced potential) is self-contained in these parameters. If the system is well in
the regime of weak link it is a good approximation to neglect the overlap integrals relating
the modes in the two wells. This means Ii = Di = 0. The equations then take a much
simpler form while keeping the information about the different dynamical regimes:

Ż = −
√

1− Z2 sin φ (7.12)

φ̇ = ΛZ +
Z√

1− Z2
cos φ . (7.13)

In the following we will refer to Eqs. (7.12)–(7.13) as crude TMM, to distinguish them
from the full TMM Eqs. (7.7)–(7.8). Note that in the crude TMM the parameter Λ
takes a different expression than in the full TMM, but that we keep the same symbol.
In Table 7.1 the values of the parameters appearing in the TMM are given for a =
14 aB. In all these expressions time is expressed in units of the Rabi frequency, ΩR =
2K/�, which corresponds to the frequency at which the non-interacting system oscillates3

(Rabi oscillations). However, this regime cannot take place in a SIJJ, since in absence
of interactions the two wells do not exist. For a = 14 aB, the Rabi frequency is ΩR =
0.50× 2π s−1.

Table 7.1: Parameters of the two-mode models for a SIJJ, for a = 14 aB .

Parameter crude TMM full TTM

Λ 18.281 17.836
α — 0.131
ε — 0.118

To compute the integrals U, K, B, Ii, Di (see Appendix F) and therefore to determine
the parameters (7.9)–(7.11), we have used the left and right modes defined as [Ana06]:
ΦL(R)(r) = (Φs(r)±Φas(r))/

√
2, where Φs(r) and Φas(r) are the symmetric (ground state)

and antisymmetric (first excited state) wave functions of the double well potential of
Fig. 7.1(a). We have numerically generated the wave functions Φs(r) and Φas(r) by evolv-
ing the GP equation in imaginary time. The ground state is obtained without imposing
any restriction. To obtain the first excited state, the desired symmetry has to be imposed

3Notice that the Rabi frequency is only properly defined for the non-interacting system, where K is
calculated using the non-interacting left and right modes (see Appendix F for the definition of K). We use
the same term for the interacting system for convenience, but we should keep in mind that now the wave
functions are the interacting ones. In other words, the non-interacting system would not oscillate with
the Rabi frequency calculated here, since it has been found using the modes obtained for the interacting
system.
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to the initial wave function, which is forced to be antisymmetric. We use

Φini
as (r) =

x

|x| Φs(r) (7.14)

as the initial wave function of the calculation, and let it evolve without any other restric-
tion4 until it converges to Φas. The dynamics within the TMM has been obtained by
solving Eqs. (7.7)-(7.8) and Eqs. (7.12)-(7.13) using a fourth-order Runge-Kutta method
(see Appendix C).

The remaining of this section is organized as follows. Firstly, we calculate the critical
condition, Zc, above which self-trapping occurs for φ(0) = 0. Secondly, we compare the
results of the TMM with those given by the TDGP equation.

7.2.1 Critical regime

The critical condition can be obtained using the condition of energy conservation. For
this we need to find the Hamiltonian describing the system, which can be obtained from
the fact that Z and φ are conjugate variables and therefore obey the equations of motion

Ż = −∂H

∂φ
φ̇ =

∂H

∂Z
. (7.15)

Solving the system for the TMMs yields

Hcrude(Z, φ) =
1

2
ΛZ2 −

√
1− Z2 cos φ (7.16)

Hfull(Z, φ) =
1

2
ΛZ2 − (1− α)

√
1− Z2 cos φ +

1

2
ε(1− Z2) cos 2φ . (7.17)

To find Zc we need to impose the condition that the energy is conserved throughout the
tunneling process, and in particular between the initial configuration and the configuration
at a time t when Z(t) = 0 for φ(t) = π, that is H(Zc, 0) = H(0, π), where we have
considered for simplicity that the initial phase difference φ(0) is zero (see Appendix F for
a detailed analysis of the Hamiltonian and its solutions). Note that the condition above
arises from the fact that if the imbalance does not reach zero when the phase reaches
the value π (moment at which the particle current changes sign), then the imbalance will
never be zero and therefore the system will remain in a self-trapped configuration (see for
instance Ref. [Rag99]). Proceeding in this way, we find Zc for the symmetric crude and
full TMM, respectively

Zcrude
c = 2

√
Λ− 1

Λ
(7.18)

Z full
c = 2

√
1− α

√
Λ− ε− 1 + α

Λ− ε
. (7.19)

4Note that, even though the imaginary time method should evolve to the real ground state Φs(r) of
the Hamiltonian, the symmetry properties imposed in the initial condition (7.14) are hard to break and
therefore the calculation converges to a local minimum where the solution is antisymmetric.
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In Fig. 7.5 the critical population imbalance above which self-trapping occurs is plot-
ted as a function of the scattering length, both for the crude (dashed) and the full (solid)
TMMs. Around a ≈ 14.5 aB both TMMs predict the same result for the critical imbal-
ance. This happens because the α parameter is very small for a = 14.5 aB, α = 0.03, in
comparison with its value at a = 14 aB, α = 0.13. This is an effect of the fact that in
dipolar plus s-wave condensates we have two competing interactions. At a ≈ 14.5 aB they
are such that they cancel out in the α parameter, which accounts for the main difference
between crude and full TMMs. We have indicated in the figure the time-dependent runs
of the Gross-Pitaevskii equation we have carried out. We see that they are consistent with
the predictions of TMM, since the TDGP predicts Josephson or self-trapping oscillations
in the same regime of parameters as the TMMs do.
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Figure 7.5: Critical initial population im-
balance as a function of the scattering
length, predicted by the standard and im-
proved two-mode models. The points corre-
spond to the time-dependent simulation: in
darker blue for Josephson oscillations and
in lighter blue for self-trapping oscillations.

7.2.2 Comparison with the time dependent simulation

In Fig. 7.6 we show the numerical result given by the TDGP and the solutions provided
by the TMMs for a = 14 aB and initial conditions Z(0) = 0.1 and φ(0) = 0. We see
from the figure that the TMM is a good qualitative approximation to the full dynamics
given by the TDGP Eq. (2.12): the order of magnitude of the frequency and amplitude
of the oscillations, as well as the dynamical regime imposed by the initial conditions, are
well predicted. As can be expected, though, the full TMM approaches more the TDGP
result than its crude counterpart. This tells us that the overlap terms Ii and Di are
important and cannot be neglected. This is consistent with the fact that for a = 14 aB

the weak-link condition is not fully satisfied, since ΔVeff � 1.1μ (see Fig. 7.2). Table 7.2
provides a comparison of the frequencies obtained in the different methods for different
scattering lengths (see also Fig. 7.3). We can conclude that both TMMs predict the
order of magnitude of the Josephson oscillations but fail to give a quantitative good
approximation.

Table 7.2: Comparison of oscillation frequencies predicted by the different methods.

a/aB ωTDGP/ω⊥ ωfull/ω⊥ ωcrude/ω⊥
13.5 0.11 0.15 0.20
14.0 0.15 0.20 0.26
15.5 0.25 0.33 0.38
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Figure 7.6: Comparison of the Joseph-
son oscillations obtained with the
TDGP Eq. (2.12), the crude and the
full TMM, for a = 14 aB .

The discrepancy between the TDGP dynamics and the TMM can be attributed to a
combination of different factors. Here we list some of them:

1. As can be seen from Fig. 7.2, with this SIJJ it is not possible to address systems
for which ΔVeff � μ. Therefore the systems analyzed do not lie in a deep weak-link
regime. This means that the two-mode ansatz, Eq. (7.6), is not an extremely good
approximation. It has been recently shown both experimentally and theoretically
that the fact that the system does not lie in the deep weak-link limit gives rise to a
frequency in the two-mode approximation larger than the experimental one [Bla11],
which is in agreement with our findings (see Fig. 7.6 and Table 7.2). On the other
hand, the fact that the junction is not really a weak link causes higher excited states
of the double well to contribute to the dynamics [Jul10b].

2. The self-induced nature of the double well means that it depends on time, which is
not taken into account in a TMM with time-independent parameters.

3. The SIJJ presented here is clearly two-dimensional, whereas the TMM mimics it
as one-dimensional. Dynamics in other directions different than x might affect the
behavior of the imbalance and the phase difference [Sme03, Mele11]. The SIJJ
is clearly not one-dimensional, and it can be understood that dynamics does not
take place in just the azimuthal direction. Since two-mode models treat only the
dynamics in only one direction, by assuming a two-mode description we are oblivious
of the fact that there can be relevant dynamics occurring in the other directions.

4. Ansatz (7.6) is a good approximation for narrow junctions. For wider junctions, as
is the case of the SIJJ, local dynamics within the junction becomes important and
leads to a departure of the frequency from the ideal one given by TMMs.

7.3 Vortex-induced phase slippage

In this section the self-trapping regime of a SIJJ is studied in detail and is shown to be
very closely related to the process of phase-slippage. This process generally takes place in
AC Josephson junctions. In this regime the phase difference increases linearly in time and
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proportionally to the external voltage applied or chemical potential difference between two
superfluid baths. This linear growth can be interpreted as a periodic change of the phase
difference by an amount of 2π, or as the system periodically undergoing a phase-slip. The
current understanding is that phase slips are related to the dynamical creation of vortices,
which cross the flow path and leave a 2π phase behind [And66].

We consider the case a = 14 aB, V = 30 �ω⊥ and initial population imbalance of Z(0) =
0.65 (see Fig. 7.4). The initial density is given in Fig. 7.7(a). The two potential barriers
separating the wells are slightly displaced from the y axis. In this section, to perform a
more accurate analysis of the self-trapping regime, we have included the displacement of
the junctions (of about 15◦ from the y axis) into the definition of left and right wells, giving
rise to a left well slightly larger than the right one. Figure 7.7(b) shows the time evolution
of the imbalance and the phase calculated with this definition of left and right sides.
There is a slight quantitative improvement in the two signals with respect to Sec. 7.1,
since now the zero crossing of the phase corresponds to a maximum of imbalance. The π
crossings however are still dephased in relation to the minima of imbalance. Notice that
in Fig. 7.7(b) we only show the first three oscillations of the imbalance. As can be seen
from Fig. 7.4 this pattern is repeated in time.
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Figure 7.7: (a) Initial density configuration on the plane z = 0. As a guide to the eye, the
dashed lines mark the points where the density is nmax/10. (b) Evolution of the imbalance and
the phase with the redefined left and right sides (for comparison, see Fig. 7.4).

The time derivative of the population imbalance is related to the flow of atoms across
the junction. At the maxima and minima of the imbalance its slope changes sign, so that
the flow of atoms is reversed. In a two mode description, when the imbalance reaches
a maximum the phase difference is zero, while in a minimum it reaches π. However,
looking more closely to the coupled dynamics given by TDGP, we see that in the minima
of imbalance the phase difference does not exactly correspond to φ = π. This fact hints
at a richer dynamics that is not accounted for in the two macroscopic variables Z and φ,
but comes from a local behavior. In other words, since the junction is a wide junction, the
local currents within it affect the gross dynamics contained in Z and φ. To understand
better the irregularities of the signal in Fig. 7.7(b), we have to look at the dynamics of the
local phase. We find two main results. On the one hand, we see that the flux inversion
in the minima of the imbalance is accompanied by the crossing of a vortex through each
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junction. These vortices are dynamically created and constitute the phase-slip process
that takes place when the phase difference reaches π. On the other hand, the currents
generated by the phase gradients within the junction propagate and affect the phase in
each one of the wells, giving rise to a slight spatial dependence of the phase and thus to
small currents within the wells. This new phase gradients become currents in the wells that
are not properly accounted for in Z and φ and are mostly the responsible of the dephasing
between these two variables. Figure 7.8 shows snapshots of the density distribution (top
row) and the phase (bottom row) on the plane z = 0 at the minima (odd number panels)
and maxima (even number panels) of the imbalance. Note that the final configuration is
very close to the initial system, Fig. 7.7(a).

Figure 7.8: Snapshots of the density (top row) and the phase (bottom row) on the plane z = 0
at different times: (a) and (g) t = 8.55ω−1

⊥ , (b) and (h) t = 17.10ω−1
⊥ , (c) and (i) t = 25.22ω−1

⊥ ,
(d) and (j) t = 33.56ω−1

⊥ , (e) and (k) t = 41.47ω−1
⊥ , (f) and (l) t = 50.23ω−1

⊥ . As a guide to the
eye, the dashed lines mark the points where the density is nmax/10.

Let us examine the dynamical nucleation of vortices in more detail. In the top panels of
Fig. 7.9 we schematically describe the vortex-induced phase-slip process that contributes
to the flux inversion in the minima of the imbalance. Before reaching the minimum,
since the phase difference is very large, there is an accumulation of phase between the two
condensates, producing a large phase gradient along the line that connects both junctions.
The atoms tunnel from the left to the right well, acquiring a velocity associated to this
gradient, as indicated in Fig. 7.9(a). The velocity is larger in the low density regions,
namely the central hole giving rise to the toroidal geometry and the external region.
When the phase difference is π, the velocity reaches a critical value and two vortices are
nucleated, a vortex-antivortex pair to ensure angular momentum conservation, as seen
in Fig. 7.9(b). Subsequently both vortices cross simultaneously the section of the torus
in opposite directions, each one moving outwards through one link, producing the phase
slip in the junction. After the passage of the vortex (antivortex) the sign of the local
velocity in the link is changed, leading thus to the inversion of the flux of atoms, as shown
schematically in Fig. 7.9(c). The vortex (antivortex) with positive (negative) charge is
defined with the phase gradient in the counterclockwise (clockwise) direction.

Panels (d), (e) and (f) of Fig. 7.9 show the phase of the wave function, in the z = 0
plane of the upper junction, around the first minimum of Z(t) at the moments schemati-
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Figure 7.9: Top: scheme of the phase-
slippage process in the SIJJ. The solid
lines represent constant phase curves
and the arrows indicate the phase gra-
dient, and thus the velocity field, along
the junctions. We have drawn the fol-
lowing three steps: a) Phase accumu-
lation along the junctions, b) Vortex-
antivortex pair separation after the nu-
cleation and c) Inversion of the velocity
field after the vortices cross the torus.
Bottom: Snapshots of the numerical
phase around the upper junction at z =
0, as a function of x and y. The times
are: (d) t = 6.41ω−1

⊥ , (e) t = 8.12ω−1
⊥ ,

and (f) t = 8.76ω−1
⊥ .

cally represented in (a), (b) and (c), respectively. A vortex-antivortex pair is nucleated in
the center, separates and then the vortex (antivortex) crosses the lower (upper) junction.
The same effect is produced if an antivortex and a vortex are nucleated at opposite points
of the external surface of the condensate and then cross the torus and annihilate at the
center. Analyzing the dynamics we see that both processes take place at different minima.
A similar phenomenon has been addressed in Ref. [Pia09], where a single external barrier
was raised in a toroidally confined s-wave condensate with a nonzero initial angular mo-
mentum. In that work the appearance of vortices from the external or internal surfaces of
the torus was controlled by the height of the barrier, while the nonzero angular momen-
tum favored the first process. Here, however, both processes are equivalent. We want to
note that all the vortices we predict correspond to quantized vortex lines, with no visible
bending along the z direction. The quantization is guaranteed by the fact that the phase
changes by 2π around the singularity. The angular momentum remains zero throughout
the simulation and there is no net creation of vorticity in the system.

In order to complete the description of the vortex-induced phase slip, we have computed
the mean velocity of the atoms across the upper and lower junction as a function of time,
see Fig. 7.10. As expected, both junctions behave coherently (in phase) and present the
same physics: simultaneously to the nucleation and crossing of the vortices through the
junctions, there is a steep drop of the velocity in each junction. In analogy with the
experiments carried out in superfluid helium, this drop marks the point at which a phase
slip takes place. From the sharp decrease of the mean velocity it is possible to estimate
the vortex passage velocity using vp = Δ/δt, where Δ ∼ 2 a⊥ is the width of the barrier
and δt is the time it takes the vortex to cross it as read from Fig. 7.10. For the three
minima it gives: v

(1)
p = 2.7 ω⊥a⊥, v

(2)
p = 4.2 ω⊥a⊥ and v

(3)
p = 8.2 ω⊥a⊥.
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Figure 7.10: Velocity of the atoms at the upper and lower junctions as a function of time. The
steep drops correspond to the crossing of a vortex (phase-slip). As a guide to the eye, the
imbalance has been plotted in an arbitrary scale as a dashed line.



Chapter 8

Radial quadrupole mode in dipolar
Fermi gases

At very low temperature a gas of atoms or molecules is ruled by quantum statistics.
Throughout this thesis we have addressed the case of integer spin particles (bosons),
which are described by Bose-Einstein statistics and condense below a critical temperature
(see for instance [Hua63, Pat88]). In this chapter we address half-integer spin particles
(fermions), which are described by Fermi-Dirac statistics. In this case, the Pauli exclusion
principle forbids the occupation of the same single-particle state and below a critical
temperature the gas becomes degenerate. This degeneration temperature is called Fermi
temperature, TF . Below TF all single-particle states are occupied up to the Fermi energy,
defining thus a filled Fermi sphere or a Fermi surface in momentum space (see for instance
[Lip03]). For the ideal uniform gas at T = 0 and in 3D, the Fermi energy, εF , takes the
form

εF =
�

2k2
F

2m
=

�
2

2m

(
6π2n

)2/3
= kBTF , (8.1)

where kF = (6π2n)2/3 is the Fermi momentum (all states with momentum k ≤ kF are
occupied), n is density of the gas and kB the Boltzmann constant. The Fermi energy
of the ideal Fermi gas is its chemical potential at T = 0. Notice that expression (8.1)
corresponds to a polarized Fermi gas, that is, all particles have the same spin. For the
unpolarized case, the expression is the same but has a factor 3 instead of 6 that accounts
for the spin degree of freedom. In Appendix E the ideal Fermi gas trapped in a harmonic
potential will be analyzed.

The presence of interactions affects this picture, since they lead to a phase transition
between the degenerate (normal) state to a superfluid state. The critical temperature is
much lower than the degeneration temperature (a typical order of magnitude is Tc ∼ 0.2 TF

for contact interacting Fermi gases1 [Gio08]). The superfluid state has a different nature
depending on the sign of the interactions: attractive interactions give rise to Cooper
pairing (Bardeen-Cooper-Schrieffer, or BCS, theory), repulsive interactions give rise to
a molecular condensate (BEC), and infinite interactions bring the system into unitarity.

1Notice that, due to the Pauli exclusion principle, identical fermions cannot interact via s-wave contact
interactions. One then needs a two-species, or unpolarized, Fermi gas.
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The crossover between these three manifestations of the superfluid state has received much
attention in the literature (see [Gio08] and references therein).

The achievement of a dipolar Bose-Einstein condensate in 2005 [Gri05] has generated a
huge interest in dipolar quantum gases. On the fermionic side, there have been important
advances in cooling a dipolar Fermi gas to degeneration [Mir11]. Since dipolar interactions
are long-range, they are not forbidden for single-species Fermi gases and they can give
rise to superfluidity [Bar04]. Also, the transition from normal to superfluid states can be
reached by tilting the magnetization axis of the dipoles in a 2D geometry [Bru08]: for a
certain angle between the trap axis and the magnetization direction, the attractive part of
the dipole-dipole interaction becomes strong enough to allow for Cooper pairing. On the
other hand, due to their anisotropic character, dipolar interactions have been shown to
deform the Fermi surface through exchange interactions [Miy08, Zha09], which contribute
to destabilize the system.

An important subject in quantum gases is the characterization of collective oscillations.
Their frequencies can be measured in the experiments, giving information about many
properties of the system, such as the equation of state, its collisional regime, the trapping
frequencies, or the angular momentum (see for instance [Pet02, Pit03]). For dipolar Fermi
gases, collective modes have received some attention in the literature [Gor03, Sogo09,
Lima10a, Lima10b]. Among all the different collective modes are of particular interest the
surface modes, which are insensitive to the equation of state but depend strongly on the
collisional regime of the gas. We distinguish between the collisionless and hydrodynamic
regimes. At very low temperatures, interactions are quenched by the Pauli principle and
the system is said to be in the collisionless regime, where interactions are so weak and
slow than they can be treated as a perturbation and even neglected. At a slightly higher
temperature, the system is in the hydrodynamic regime, where interactions are fast enough
to obtain local equilibrium in a time scale much smaller than the dynamical process under
consideration. In this regime, the equations governing the behavior of the system are
hydrodynamic equations. Note that superfluids also obey hydrodynamic equations (see
Sec. 3.1.1), but this is due to coherence rather than interactions. When necessary we
will distinguish the collisional hydrodynamic regime from the superfluid hydrodynamic
regime. An important surface mode is the radial quadrupole mode, since it has been a
good tool to experimentally distinguish between hydrodynamic and collisionless regimes
in ultracold non-dipolar Fermi gases [Vic99, Alt07].

The aim of this chapter is to study analytically and within mean-field framework the
surface quadrupole mode of a quantum gas of dipolar fermions. The dipolar interactions
affect the frequency of this mode and shift it to smaller or larger values compared to
non-dipolar gases. We show that this mode can be useful experimentally to determine
whether the gas is in the hydrodynamic or the collisionless regime, even if the frequencies
corresponding to them are shifted with respect to the corresponding s-wave values [Str96,
Vic99]. In Sec. 8.1 we describe the ground state of a gas of dipolar fermions within the
Thomas-Fermi approximation. In Sec. 8.2 we calculate the frequency of the quadrupole
mode both in the collisionless and the hydrodynamic regimes by taking variations of the
action (see also Sec. 4.3.2), and show that it can be used as a tool to measure the transition
between normal to superfluid states when the trap aspect ratio is brought from very large
to smaller values.
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8.1 Ground state of dipolar fermions

We consider a quantum gas of identical fermions (atoms or molecules) interacting via
dipole-dipole interactions (see Sec. 2.1.2) at T = 0, confined in an axially symmetric
harmonic trap with λ = ωz/ω⊥ (see Eq. (2.28)). If the number of particles is very large,
the system can be studied within the local density approximation, also known as Thomas-
Fermi regime. In this approximation, the system behaves locally as a uniform gas with a
local chemical potential, μ(r), given by

μ(r) = μ0 − Vho(r) , (8.2)

where μ0 is the chemical potential of the gas, obtained from the normalization of the
density,

∫
n(r)dr = N . Notice that in the presence of interactions μ0 can no longer

be identified with the Fermi energy, even at T = 0. The local chemical potential, μ,
depends on r through the density, that is μ[n(r)]. In the trapped non-interacting gas (see
Appendix E), the Thomas-Fermi approximation assumes μ(n) to locally have the same
density dependence as the uniform system. Analogously, we assume that in the interacting
case it is given locally by the same density dependence as the chemical potential of the
(ideal) uniform gas, Eq. (8.1),

μ(n) =
�

2

2m

(
6π2n

)2/3
, (8.3)

which gives rise to the density

n(r) =
8

π2

N

R2
⊥Rz

(
1− r2

⊥
R2
⊥
− z2

R2
z

)3/2

, (8.4)

where the Thomas-Fermi radii R⊥ and Rz are now variational parameters that contain the
corrections due to the dipolar interaction. Let us comment now on the implicit assumption
we make in writing Eq. (8.3). This expression is exact when one wants to build the
local density approximation for a non-interacting, harmonically trapped Fermi gas (see
Appendix E). However, when interactions are taken into account the local chemical
potential for the uniform system will not in general go as ∼ n2/3, but will depend on a
different power of n since two-body interactions usually go as ∼ n. In writing Eq. (8.3),
and therefore Eq. (8.4), we are making the further assumption that μ ∼ n2/3 even in the
presence of dipolar interactions. The effect of this power in what follows only affects the
numerical prefactors of the different equations. Notice that in the case of bosons in the
Thomas-Fermi regime (see Sec. 2.3) the local chemical potential goes as ∼ n, and in this
case is exact (both for contact and dipolar interactions). The local density approximation
is valid for a potential slowly varying in space, whose energy levels form a continuum and
do not affect the equation of state of the gas. The condition that the potential is slowly
varying in space means that aho � 1/kF , that is the length scale associated to variations
in the density of the gas, 1/kF , is much smaller than the length scale of variations in
the confining potential, aho. It can be easily seen that this condition is equivalent to
�ωho � μ0, which can be interpreted as a quasi-continuum spectrum of the harmonic
oscillator energy states, �ωho, in comparison to the energy scale provided by the chemical
potential.
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Within the Thomas-Fermi approximation, the energy functional describing a gas of
dipolar fermions is given by

E[n] = Ekin[n] + Eho[n] + Edip[n] , (8.5)

where the kinetic, harmonic oscillator and dipolar energies are respectively given by the
integrals

Ekin[n] =
3

5

�
2

2m
(6π2)2/3

∫
dr [n(r)]5/3 (8.6)

Eho[n] =

∫
drn(r)Vho(r) (8.7)

Edip[n] =

∫
dr1 n(r1)

∫
dr2n(r2)vdip(r1 − r2) . (8.8)

The microscopic dipole-dipole potential, vdip, is given by Eq. (2.5), as in the case of bosons.
Notice that the exchange term arising from two-body interactions (see for instance [Lip03])
has been neglected. This assumption is supported by the fact that far from instability the
exchange energy has a value close zero and is much smaller than the other contributions
to the total energy [Sogo09]. The effect of the exchange interaction in dipolar Fermi
gases is to deform the Fermi surface and to modify the stability diagram [Miy08, Zha09,
Sogo09, Lima10a, Lima10b]. An important effect appears for pancake configurations:
when the exchange interaction is neglected, pancake-shaped Fermi gases are always stable
above λ ≈ 5.3, while the inclusion of the exchange term leads to instability for all λ values
[Miy08]. The results presented in this chapter will be therefore valid away from instability,
where corrections due to the Fock exchange term are small.

The ground state properties of the gas are obtained by minimization of the energy func-
tional with the constraint imposed by normalization, −μ0

∫
drn(r) (see also Appendix D).

Taking expression (8.4) for the density, the different ground state energy terms are given
by

Ekin =
3

8
NεF (8.9)

Eho =
1

8
Nε0

F

(
2

R2
⊥

(R0
⊥)2

+ λ2 R2
z

(R0
z)

2

)
(8.10)

Edip = −1

4
NεF εddf(κ) . (8.11)

In these expressions ε0
F = (6N)1/3

�ωho is the Fermi energy of the trapped non-interacting
gas and εF ≡ μ0 = �

2k2
F/2m is the chemical potential2, with kF the Fermi momentum

defined from the density through the normalization condition R2
⊥Rzk

3
F = 48N . The non-

interacting Thomas-Fermi radii are defined through the Fermi energy as R0
i =

√
2ε0

F /mω2
i .

2As has been already noted above, the chemical potential coincides with the Thomas-Fermi energy
only for the non-interacting gas at T = 0. Here we are using the notation εF instead of μ0 for convenience,
and sometimes we refer to εF as the Fermi energy of the interacting gas.
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The dipolar parameter εdd is dimensionless and represents the ratio between the dipolar
energy and the Fermi energy. It is defined as:

εdd = ε0
ddk̃F =

211

3435π2

d2k3
F

εF

, (8.12)

where k̃F = kF/k0
F , with the non-interacting Fermi momentum k0

F = (48N)1/6/aho, and
d2 contains information about the dipole moment (see Sec. 2.1.2). The parameter ε0

dd,
defined as

ε0
dd =

211

3435π2

d2(k0
F )3

ε0
F

, (8.13)

is independent of the density and can thus be controlled externally. The non-interacting
Fermi energy is related to the non-interacting Fermi momentum through the usual relation
ε0
F = �

2(k0
F )2/2m. Figure 8.1 shows the dependence between ε0

dd and εdd for the ground
state of the system. Note that the difference between ε0

dd and εdd is due to the departure
of kF from the noninteracting value k0

F , as can be seen from the definition (8.12).
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Figure 8.1: Density-dependent dipo-
lar parameter εdd as a function of the
externally controllable dipolar para-
menter ε0

dd.

The expression of the dipolar energy, Eq. (8.11), is very similar to the dipolar en-
ergy of a condensate in the Thomas-Fermi approximation, Eq. (2.47), once εdd and kF

are substituted by their definitions. That is, in both cases the dipolar energy has the
dependence Edip ∼ f(κ)/(R2

⊥Rz). The function f(κ) (with κ = R⊥/Rz), which we have
already encountered in Sec. 2.3.2 (see Eq. (2.41)), contains all the information about the
anisotropy of the interaction. It is shown in Fig. 8.2 (black solid line), together with two of
its derivatives that we will meet later. The function f(κ) saturates for κ → 0 and κ →∞
at the values 1 and −2, respectively. This indicates that for very prolate (λ � 1) or oblate
(λ � 1) geometries the dipolar interaction loses its long-range character and effectively
acts as a contact interaction. For the spherical gas, κ = 1, the function f(κ) vanishes,
which means that the dipolar energy is zero for this configuration. Much information
about this function can be found in Refs. [Dell04, Ebe05, Gio06].

Taking the Thomas-Fermi radii as variational parameters, minimization of the energy
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functional leads to the equilibrium expressions for the Thomas-Fermi radii [Lima10b]

R̃2
⊥

k̃2
F

= 1− εdd

[
1− 3

2

κ2

1− κ2
f(κ)

]
(8.14)

R̃2
z

k̃2
F

= 1 + 2εdd

[
1− 3

2

1

1− κ2
f(κ)

]
, (8.15)

where R̃i = Ri/R
0
i . Combining equations (8.14) and (8.15), one can find a transcendental

equation for κ as a function of λ and εdd,

κ2

λ2

[
3εdd

f(κ)

1− κ2

(
λ

2
+ 1

)
− 2εdd − 1

]
= εdd − 1 . (8.16)

This expression is the same for bosons and fermions, see Sec. 2.3.2, provided the pa-
rameter εdd is properly defined. With Eq. (8.14) and Eq. (8.16) the ground state of the
system is fully determined. The problem contains two independent parameters, εdd and
κ, which depend themselves on the density of the gas via kF . To make a link with the
externally controlled magnitudes, represented by ε0

dd, we need to understand how these
two parameters are related, and how they change when the trap aspect ratio λ is changed.
Figure 8.3 shows the dependence between κ/λ and εdd for different values of λ. For zero
dipolar interactions we recover the non-interacting limit, for which κ = λ. Note that
the magnetostriction (electrostriction) effect (see Sec. 4.1) is larger for λ ∼ 1, while it
is much smaller for very small or very large trap aspect ratios. The dashed lines in the
figure mark the regions for which the solution including exchange interactions predicts
instability [Miy08, Lima10a], while neglecting them gives a stable solution. We will keep
this notation in what follows.

8.2 Frequency of the radial quadrupole mode

In the same way as we did for bosons in Sec. 4.3, to find the frequency of the radial
quadrupole mode for a quantum gas of fermions, the quantum action,

S =

∫
dt

〈
Ψ

∣∣∣∣H − i�
∂

∂t

∣∣∣∣Ψ〉
, (8.17)
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potential. Dashed line marks instability as predicted by including exchange interactions (see for
instance [Miy08]).

has to be minimized for a state Ψ slightly perturbed from equilibrium. This state is the
many-body wave function of the system of N fermions, which is in general a complicated
state built as a combination of Slater determinants. In the case of the radial quadrupole
excitation, the perturbed wave function is written as a function of two parameters α(t) and
β(t) (which, respectively, contain the information about the perturbation of the velocity
field and the density distribution) as follows:

|Ψ〉 = eiα(t)
P

k(x2
k−y2

k)eiβ(t)
P

k((xkpx
k−ykpy

k)+h.c.) |Ψ0〉 , (8.18)

with pi
k the linear momentum along i = x, y corresponding to particle k and k = 1, . . . , N .

For α = 0 and β = 0 we recover the equilibrium wave function Ψ0 that minimizes the
action. The corresponding density is given, as in the case for bosons (Sec. 4.3.2), in terms
of b(t), defined as β = eb − 1,

n(x, y, z) = n0(e
−b(t)x, eb(t)y, z) . (8.19)

Note that the perturbation (8.18) preserves the norm of the wave function.
The first term in the action integral, Eq. (8.17), is the energy functional of the per-

turbed state Ψ. At this level, the difference between hydrodynamic (HD) and collisionless
(CL) fermions comes from the kinetic energy. In the hydrodynamic regime, fermions are
always in local equilibrium due to interactions (in the collisional hydrodynamic regime)
or due to coherence (in the superfluid regime). This means that Eq. (8.6) is still valid
even when the wave function is perturbed and the kinetic energy becomes

E
(HD)
kin (b) = Ekin . (8.20)

In contrast, collisionless fermions are sensitive to the currents created by the density
perturbation and the kinetic energy cannot be reduced to only the energy coming from
the Fermi surface (in other words, the currents due to the quantum pressure term ∇2

√
n

cannot be neglected). This leads to a kinetic energy

E
(CL)
kin (b) = Ekin + 2b2Ekin⊥ , (8.21)
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where Ekin⊥ is the kinetic energy associated to the radial degree of freedom. In addition,
we have the kinetic energy contribution coming from the velocity introduced by the per-
turbation, v ∝ α∇(x2 − y2), which gives rise to a term proportional to α2 (see Sec. 4.3).
The action can thus be written as

S(HD)(α, b) = S0 +

∫
dt

[
2�

2

m
α2N〈r2

⊥〉+ mω2
⊥b2N〈r2

⊥〉 −
εF εdd

8
b2Ng(κ) + 2�α̇bN〈r2

⊥〉
]

(8.22)
in the hydrodynamic regime, and as

S(CL)(α, b) =S0 +

∫
dt

[
2�

2

m
α2N〈r2

⊥〉+ 2b2Ekin⊥ + mω2
⊥b2N〈r2

⊥〉 −
εF εdd

8
b2Ng(κ)+

+ 2�α̇bN〈r2
⊥〉

]
(8.23)

in the collisionless regime. In these expressions S0 is the unperturbed action and the
function g(κ) is the second derivative of f(ebκ, e−bκ) evaluated at b = 0,

g(κ) =
∂2f(ebκ, e−bκ)

∂b2

∣∣∣∣
b=0

=
3κ2

2

√
1− κ2(2 + 13κ2)− κ2(12 + 3κ2) tanh−1

√
1− κ2

(1− κ2)7/2
.

(8.24)
Notice that we have already found this function in Sec. 4.3.2, when the quadrupole mode
in condensates was addressed. It is shown in Fig. 8.2 (blue dash-dotted line).

Minimizing the action with respect to α and b and staying at second order in these
parameters3 we find the frequency of the quadrupole mode. In the hydrodynamic regime
it is given by

ω
(HD)
Q =

√
2ω⊥

⎡⎣1− 1

4

εdd

1 + εdd

(
3
2

κ2f(κ)
1−κ2 − 1

) g(κ)

⎤⎦1/2

, (8.25)

where we have used that 〈r2
⊥〉 = R2

⊥/4 for the density (8.4). For zero dipolar interac-
tions the usual hydrodynamic result, ωQ =

√
2ω⊥, is obtained4. In Ref. [Lima10b] this

frequency is calculated in the (collisional) hydrodynamic regime taking into account the
deformation of the Fermi surface arising from the exchange term. In the collisionless
regime the quadrupole frequency is given by

ω
(CL)
Q = 2ω⊥

⎡⎣1 +
1

2

εdd

1 + εdd

(
3
2

κ2f(κ)
1−κ2 − 1

) (
f(κ) +

1

2
h(κ)− 1

4
g(κ)

)⎤⎦1/2

, (8.26)

3The zeroth order is obviously the unperturbed wave function, while the first order must vanish
because the action is a minimum (in general, this first order gives rise to the virial theorem associated to
the perturbation).

4Note that a gas of fermions can never be non-interacting if it is in the HD regime: either it reaches
hydrodynamics because of collisions (collisional HD) or because it is superfluid (superfluid HD). In contrast
to bosons, superfluidity in fermionic systems can only exist in the presence of interactions.
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where h(κ) is the first derivative of f(e−bκ) evaluated at b = 0,

h(κ) =
∂f(e−bκ)

∂b

∣∣∣∣
b=0

=
3κ2

(1− κ2)5/2

[
−3
√

1− κ2 + (2 + κ2) tanh−1
√

1− κ2
]

. (8.27)

It is shown in Fig. 8.2 (red dashed line). For εdd → 0 the non-interacting limit is recovered
and the frequency is 2ω⊥.

To write Eq. (8.26) we have used the radial virial theorem for a dipolar Fermi gas:

2Ekin⊥ − 2Eho⊥ + 2Edip − 1

4
NεF εddh(κ) = 0 , (8.28)

with Eho⊥ = mω2
⊥N〈r2

⊥〉/2 and Edip given by (8.11). The radial virial expression is
obtained by considering a scaling transformation of the ground state wave function of the
type ψ(x, y, z) → ψα(ebx, eby, z) and imposing that the energy is a minimum. The first
order derivative of the scaled energy with respect to b must be zero (equilibrium condition)
and this gives rise to the virial relation. Note that this ansatz does not conserve the norm
(it is a compressional mode). An alternative method to derive the virial relation based
on commutators of the Hamiltonian with the excitation operator will be discussed in
Appendix G.

The first thing that can be said about the frequency in the HD regime, Eq. (8.25),
is that it is the same functional expression for bosons and for HD fermions (given the
proper εdd), see Eq. (4.22). This is a consequence of the fact that the quadrupole is a
surface mode, and it is thus insensitive to the details of the equation of state. In this
regime the quadrupole frequency is shifted with respect to the usual

√
2ω⊥ result by an

amount mainly coming from the anisotropic character of the dipolar interaction. This
shift vanishes for κ → 0 and κ →∞, since in these two limits the system is so deformed
that it is no longer sensitive to the anisotropy of the interaction. This is reflected in the
flat behavior of f(κ) for very pancake and very cigar-shaped traps, as well as in the fact
that g(κ) tends to zero in these limits (see Fig. 8.2). The top panels of Fig. 8.4 show
the behavior of the quadrupole frequency in the HD regime as a function of the dipolar
parameter εdd for different trap aspect ratios λ (black lines). The dashed lines mark the
εdd values for which the Fermi gas is no longer stable, according to [Sogo09]. We see from
the figure that the frequency is always smaller than

√
2ω⊥ and that the shift is larger

for intermediate trap aspect ratios. The effect of the anisotropic character of the dipolar
interaction is to quench even further the value of the quadrupole frequency. However, as
discussed in Ref. [Lima10b], the shift is not strongly dependent on the strength of the
dipole-dipole interactions.

In the CL regime the situation is much different. In this case the direction of the shift
introduced by the dipolar interaction depends strongly on the geometry of the system,
as can be seen from the top panels of Fig. 8.4 (red lines). In a general way we can say
that for cigar-shaped clouds, the shift is positive and the quadrupole frequency is larger
than the non-interacting value (2ω⊥), while for pancake-shaped clouds the shift is always
negative, and therefore the frequency is smaller than its non-interacting value. For λ ∼ 2
we find that the shift is very small for all values of εdd. Away from this value of λ the
shift always increases as the dipolar strength is increased. In contrast to HD regime, the
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Figure 8.4: Top panels: Quadrupole frequency as a function of the dipolar strength εdd, both
for the CL and the HD regimes and for different trap aspect ratios. Bottom panel: Quadrupole
frequency as a function of λ for ε0

ddλ
−1/6 = 0.5.

shift of the quadrupole frequency in the CL regime does not vanish in the limit of large
κ, but tends to a value that depends only on εdd,

ωCL
Q (κ →∞) = 2ω⊥

(
1− εdd

1 + 2εdd

)1/2

. (8.29)

For very large εdd (and in the limit κ →∞) it reaches the HD frequency,
√

2ω⊥. We recall
at this point that expression (8.29) is only valid far from instability, and that εdd can not
be increased at will. Notice that this situation is very similar to the first and zero sound
scenario of Fermi systems: the sound velocity found in the elastic or collisionless regime
(zero sound) is larger than the sound velocity that is found in the hydrodynamic regime
(first sound). In analogy to what we find for the radial quadrupole mode, the difference
between zero and first sound velocities arises due to the restoring force that appears in
the collisionless regime, which is in turn brought about by the modification of the Fermi
surface due to the perturbation.

For very pancake systems, superfluidity cannot take place because the interactions
are mainly repulsive. However, for not so pancake configurations the attractive part of
the dipolar interaction can give rise to pairing and superfluidity [Bar04]. The radial
quadrupole mode could be a good experimental test of the conditions of this transition.
The bottom panel of Fig. 8.4 shows the dependence of the quadrupole frequency on the
trap aspect ratio, for a given value of ε0

ddλ
−1/6. This parameter is independent of the

geometry of the gas (λ or κ) or its density, and is fixed by the species considered and
the number of particles. For highly pancake traps the frequency should correspond to
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the CL prediction, given by the upper (red) line in the figure. As the trap aspect ratio
is decreased, at some point the attractive dipolar interactions will cause the gas to go
to the superfluid phase, and the quadrupole frequency should drop abruptly to its HD
value, given by the lower line (black) in the figure. This jump should be experimentally
observable. Following Ref. [Bar04], for a gas containing N = 106 fermionic particles with
ε0

dd = 0.5, the transition should take place at λ ∼ 4: for larger trap parameters the gas
would be collisionless, while for lower aspect ratios it should be superfluid. Notice however
that from the point of view of the radial quadrupole mode, there is no way of distinguishing
between the superfluid state and a normal gas in the collisional hydrodynamic regime.
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Chapter 9

Conclusions and prospects

In this thesis we have studied the effects of the dipole-dipole interaction on the physics
of ultracold quantum gases within a mean-field framework. We have focused mainly on
dipolar condensates, in particular the effects of the anisotropy of the interaction on the
ground state and on quantized vortex states, which are a clear manifestation of the super-
fluid nature of the quantum gas. In addition, we have found that in a toroidal geometry,
for a certain configuration, the system becomes a self-induced Josephson junction when
excited properly. We have also addressed ultracold fermionic gases and have analyzed
the effect of the dipole-dipole interaction in the frequency of the radial quadrupole mode,
both in the hydrodynamic and the collisionless regimes.

Chapter 1 has introduced the physical context in which this thesis is developed, giving
the main related results in the literature. Also, an outline has been provided.

Chapters 2 and 3 have been devoted to summarize the theoretical (and briefly, ex-
perimental) framework underlying the results exposed in the subsequent chapters. In
Chapter 2 we have discussed the mean-field approach to the physics of a Bose-Einstein
condensate where the atoms interact both via s-wave contact and dipole-dipole inter-
actions. We have described the interactions present in a dipolar condensate and have
sketched the derivation of the Gross-Pitaevskii equation for this system. This equation
constitutes the theoretical framework in which the results presented in this thesis (con-
cerning Bose gases) are studied. Also we have given an overview of the Thomas-Fermi
approximation both for contact and dipolar condensates.

In Chapter 3 we have reviewed some aspects of the physics of vortices in condensates.
We have shown that a vortex in a superfluid presents a quantized velocity field around
the axis of rotation. We have calculated the shape of the vortex core in some limiting
cases, namely the non-interacting uniform gas, the non-interacting trapped condensate
and the Thomas-Fermi regime. We have also discussed the experimental achievements
concerning vortices most relevant for this thesis, and have given some hints as how to
generate vortices numerically.
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Chapter 4 has been devoted to the ground state of dipolar Bose-Einstein condensates
confined in harmonic traps. The main results we have obtained are the following:

1. The anisotropy of dipolar interactions modifies the aspect ratio of the condensate
compared to an s-wave condensate. In particular, in a pancake-shaped harmonic
trap, when the magnetization axis is parallel to the trap symmetry axis, the gas is
elongated in both directions of space (parallel and perpendicular to the trap axis),
giving the net effect of increasing the condensate aspect ratio. For dipoles aligned
perpendicularly to the trap symmetry axis, the anisotropic effects are so strong that
can even invert the geometry of the cloud: a dipolar condensate in a pancake trap
might become cigar shaped.

2. For certain trap aspect ratios and interaction strengths, biconcave density profiles
appear, with the density away from the trap center. We have seen that these struc-
tures are a direct consequence of the specific shape of the mean-field dipolar poten-
tial, which shows a minimum away from the center.

3. We have derived the virial theorem for a dipolar condensate, by using the fact that
the energy must be a minimum irrespective of scaling transformations of the wave
function.

4. The dipolar interaction has an effect on the frequency of the collective modes (ex-
cept for the dipole mode, which due to Kohn’s theorem is unaffected by two-body
interactions). In particular, the frequency of the radial (or surface) quadrupole
mode is shifted to larger values, as predicted by the numerical simulation of the
time-dependent Gross-Pitaevskii equation. Within the Thomas-Fermi approxima-
tion, however, the shift is always negative, giving rise to a frequency smaller than
the hydrodynamic

√
2ω⊥ value. The difference between the two results is accounted

for by the kinetic energy, which is neglected in Thomas-Fermi approach.

In Chapter 5 we have studied the effects of the dipole-dipole interaction on the proper-
ties of quantized vortex states in harmonically confined condensates. The results we have
obtained can be summarized in the following list.

1. The anisotropy and long-range character of the dipolar interaction also show up in
vortex states, affecting the structure of the vortex core and the critical frequency
for vortex nucleation. Also, the nucleation energy barrier is slightly modified by the
presence of dipolar interactions. Our results indicate that in rotating systems it is
energetically easier to create vorticity in a dipolar condensate than in a condensate
without dipolar interactions, for the same strength of the s-wave scattering length.

2. The dipolar interaction slows down the precession of off-centered vortices around
the symmetry axis of the trap, compared to vortices in s-wave condensates.

Vortex states in a dipolar condensate are excited states of the system, and therefore
are predicted to be less stable than the ground state. This means that the regions in
the configuration space where vortices can exist are smaller than those where a stable
condensate can form. The main channel of instability appears when the attractive part
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of the dipole-dipole interaction for a certain density configuration becomes very strong,
resulting in a single high density peak or in several high density peaks (this is sometimes
referred to as “pencil-like” instability). For singly quantized vortices, the high density
region appears around the vortex core created by the repulsive kinetic energy of the vortex.
It might happen that the regions where a single vortex is unstable, a two-vortex state would
be stable, since the associated density profile would not reach so high values. Simulations
of the Gross-Pitaevskii equation predict this situation to be possible, indicating that the
multiple vortex states are energetically stable. However, it remains to be seen if they
would also be dynamically stable, and therefore become a possible situation to study in
the experiments.

In Chapter 6 we have studied the effects induced by the anisotropic nature of the
dipolar interaction in a Bose-Einstein condensate of chromium atoms in the case of a
trapping potential with toroidal geometry. We have considered the magnetization axis (y)
to be perpendicular to the trap symmetry axis (z) and we have analyzed the system for
different scattering lengths. In this configuration, anisotropic effects are enhanced. The
main results within this topic are the following.

1. For scattering lengths below the natural one (a < 100 aB), the density parts from
the cylindrical symmetry of contact interactions and becomes inhomogeneously dis-
tributed along the toroidal potential, showing density peaks and saddle configura-
tions as the azimuthal angle is varied. The density peaks form on the x-axis, where
the net mean-field dipolar interaction is mainly attractive, while the saddle points
are located on the y axis, where the interaction is mainly repulsive and the atoms are
thus pushed away. The inhomogeneity in the density becomes stronger as the scat-
tering length is reduced, and becomes especially important below a = 30 aB, which
corresponds to the onset of the multiple connected geometry in our configuration.

2. For a low enough value of the scattering length (a ∼ 12 aB) a dipolar-induced sym-
metry breaking phenomenon occurs: the atoms concentrate in only one of the density
peaks, reminding thus of a cigar-shaped condensate parallel to the magnetization
direction.

3. Accordingly to the inhomogeneous density structure, vortex velocity fields show a
strong azimuthal dependence. Following a given constant radius along the torus,
the absolute value of the velocity is smaller (larger) where the density shows a
maximum (minimum), in the intersection with the x axis (y axis). Under this
situation the expectation value of the z-component of the angular momentum is not
quantized, and its reduction with respect to the non-dipolar system is an evidence
of the presence of self-induced energy barriers.

Symmetry breakings in mean-field theory are known to be related to the existence of
Schrödinger cat states in more quantum approaches (as, for instance, the Bose-Hubbard
model). Whether a cat state would be sustained in a self-induced double-well potential
is still unknown. On the other hand, the breaking of cylindrical symmetry caused by the
dipolar interaction raises the question of how should the system be rotated. In the scheme
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presented in this chapter, the system was non-rotating and vortices were obtained through
phase imprinting. However, one can think of other interesting schemes. For instance,
when the magnetic field is stationary while the trapping potential rotates, or when just
the magnetic field is rotated. In the latter case one would expect a different behavior
when the magnetic field is rapidly rotating or when it can be treated adiabatically. Notice
however that the dynamical evolution would not be energy conserving.

In Chapter 7 we have introduced the concept of a dipolar self-induced bosonic Joseph-
son junction. This junction is created by the anisotropic character of the dipolar interac-
tion modulated by a toroidal trap, which gives rise to a ring-shaped, double-well effective
potential. We have learned the following aspects of the physics of such a system.

1. It sustains both Josephson oscillations and a self-trapping regime, depending on the
initial population imbalance between the two wells. The Josephson regime is quite
robust against a modification of the scattering length, whereas self-trapping oscilla-
tions are far from the ideal sinusoidal-like shape and are therefore more sensitive to
a change in the parameters.

2. There is qualitative agreement between a two-mode model applied to the junction
and the results from the Gross-Pitaevskii equation, especially in the determination
of the critical condition that separates Josephson orbits from self-trapped orbits.

3. We have performed a detailed analysis of self-trapping dynamics in the self-induced
Josephson junction, especially focusing in the dynamics of the phase. We have seen
that the coherent passage of a vortex and an antivortex across the two coupled junc-
tions triggers the inversion of the flux of atoms in the minima of imbalance, where
the phase difference reaches π. These results hint at a close relationship between the
processes of self-trapping, AC Josephson effect and phase-slippage, and can serve to
gain a deeper understanding of non-linear dynamics in bosonic Josephson junctions.

A question that arises in the Josephson junction scheme introduced here is how the system
would behave for different couplings between the junctions. In the scheme proposed the
two junctions act in phase, which in a more electronic sense means that they are connected
in parallel. But they could also behave out of phase (with no need of carrying vorticity).
Using an analogy with superconducting Josephson junctions, it might be interesting to see
whether quantum coherence is maintained if the two junctions are different, for instance
if one is larger than the other. In this case, coherence between vortices might or might
not be preserved when the imbalance changes sign during the self-trapping evolution.
Still in analogy with superconductors, an inviting question is whether the system formed
by the two coupled self-induced Josephson junctions can be understood as the bosonic
analog of the superconducting quantum interference device (SQUID). In such a device, the
Josephson oscillations would be affected by a small external rotation of the setup (instead
of a magnetic field), allowing for a precise determination of the rotation frequency.

In Chapter 8 we have addressed some aspects of the physics of ultracold dipolar Fermi
gases. Concretely, the radial (or surface) quadrupole mode has been calculated within
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mean-field theory, using a Thomas-Fermi-like density profile. We have considered both
the hydrodynamic and collisionless regimes. The first can be reached either because of
collisions (when they are so fast that they keep local equilibrium in the time scale provided
by the oscillation) or because of coherence (in the superfluid regime). The main results
we have found can be summarized in the following points:

1. By minimization of the action with respect to the parameters that characterize
the quadrupole excitation, we have found the expressions for the frequency in the
hydrodynamic and collisionless regimes. From these equations the frequency can be
seen to depend on only two dimensionless parameters, which we call εdd and κ. The
first one contains information about the strength of the dipole-dipole interaction
with respect to the Fermi energy, while κ characterizes the deformation of the gas
induced by the dipole force. The equation for hydrodynamic fermions has the same
formal shape than that for bosons, provided the parameter εdd is accordingly defined.

2. In the hydrodynamic regime, dipolar interactions introduce a shift in the quadrupole
frequency, in contrast to contact interactions. This shift is always negative in this
model, giving a frequency smaller than in contact-interacting Fermi gases.

3. In the collisionless regime, dipolar interactions also have an effect on the frequency
of the radial quadrupole mode, and introduce a large shift with respect to the non-
interacting system. In contrast to the hydrodynamic regime, in the collisionless
regime this shift is positive of negative depending on the geometry of the trap.

4. The shift in frequency is larger in the collisionless regime than in the hydrodynamic
regime, and could be used experimentally to monitor the transition or the crossover
between the two regimes. The phase transition would correspond to the collisionless
to superfluid transition, while the crossover would take place between the collisionless
and collisional hydrodynamic regimes of a degenerate Fermi gas.

An intriguing question about the physics of dipolar fermions is the dependence of the
chemical potential on the density. Provided it is a potential function, μ ∼ nα, it remains
to be understood what is the right exponent α. In the literature, the value α = 2/3 has
been widely used, its main motivation being the fact that dipolar interactions are treated
as a perturbation to the density of the ideal gas. However, in a situation where the dipole
force becomes dominant, this exponent could be different.
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Appendix A

Imaginary time step method

The imaginary time step method (ITSM) is a numerical method of the family of relaxation
methods used to find the ground state solution of a given Hamiltonian, H . In this appendix
we derive the main expressions, and give details of the extra considerations implemented
in the programs to make the algorithm more efficient.

Let us call {|ψn〉} a basis set of non-dengenerate eigenfunctions of H . They fulfill the
eigenvalue equation

H |ψn〉 = En |ψn〉 , (A.1)

with En the energy corresponding the state |ψn〉. We denote the ground state as ψ0 and
the corresponding energy as E0. E0 is the smallest of the set of eigenvalues {En}. Given
an arbitrary wave function |Φ〉, its expansion in terms of the basis of H is given by

|Φ〉 =
∑

n

〈ψn|Φ〉 |ψn〉 =
∑

n

an |ψn〉 . (A.2)

The wave function |Φ〉 evolves in time according to H . At a time t the time evolution will
be given by the evolution operator, U(t) = e−iHt/�, as

|Φ(t)〉 = e−iHt/� |Φ〉 = e−iHt/�
∑

n

an |ψ〉 =
∑

n

ane−iEnt/� |ψn〉 . (A.3)

We now set the time t to be imaginary (whence the name of imaginary time method).
We define a new time τ ∈ R from t = −i�τ and then we separate the summation over n
in Eq. (A.3) into a term containing n = 0 and the summation over the rest. Notice that
this introduction makes the operator in the exponential become non-unitary, which means
that the norm will not in general be preserved. In terms of τ , Eq. (A.3) is rewritten as

|Φ(τ)〉 = a0e
−E0τ |ψ0〉+

∑
n �=0

ane−Enτ |ψn〉 . (A.4)

Since the energies (by definition) fulfill E0 < E1 · · · < En < · · · , in the limit τ → ∞ the
contribution of the states with n �= 0 will be exponentially killed. The ITSM is based on
this fact, which can be stated as

lim
τ→∞

|Φ(τ)〉 ∝ e−E0τ |ψ0〉 . (A.5)
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Therefore, for an infinite time, the wave function converges to the ground state of the
system. This is true for whatever initial wave function we are using, provided there is
some non-zero component of the ground state, that is provided a0 �= 0 in Eq. (A.2).

To implement this method numerically, the algorithm is as follows:

(1) Start with an initial normalized guess function, φ(0).

(2) Propagate it an imaginary time step δτ and build φ(1) = e−Hδτφ(0). To first order in
δτ we have

φ(1) � (1−Hδτ)φ(0)

1− E(0)δτ
, (A.6)

where the denominator accounts for the normalization of φ(1). We have introduced
the energy corresponding to φ(0),

E(0) = 〈φ(0)|H|φ(0)〉 . (A.7)

(3) Repeat the process n times, with n large enough. At the end, the wave function and
the energy will be given, respectively, by:

φ(n+1) =
(1−Hδτ)φ(n)

1− E(n)δτ
(A.8)

E(n) = 〈φ(n)|H|φ(n)〉 . (A.9)

For n → ∞, φ(n) → ψ0, the ground state wave function. The imaginary time step, δτ
has to be small enough to ensure the stability of the algorithm and to let the system
evolve smoothly to its ground state, but large enough to make this process efficient. For
Schrödinger-like problems, an estimation of the maximum δτ allowed is given by

δτmax � (Δx)2

4

2m

�2
, (A.10)

where Δx is the spacing of the spatial mesh on which the wave function is defined. For a
3D mesh, we can use the minimum grid step size.

In the case of the Gross-Pitaevskii equation, the eigenstate ψ0 is given by the ground
state condensate wave function, ψgs. It is useful to write the eigenvalue equation as
(H − μ)Ψ = εΨ, where we have separated out the contribution of the ground state, μ,
and where Ψ is still the non-converged wave function. This expression should converge to
the state with ε = 0 and Ψ = ψgs. Notice that in the GP Eq. (2.16) the eigenvalues are
given by the chemical potential instead of the energy (see Chapter 2). Equation (A.8) is
accordingly modified as

Ψ(τ + δτ) = Ψ(τ)− δτ(H − μ)Ψ(τ) , (A.11)

where we have labeled the step n with the label τ for convenience. Also for convenience
in what follows, the wave function at τ + δτ is not normalized yet. Notice also that now
the wave function is a function of four variables, Ψ = Ψ(x, y, z; τ). The imaginary time
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propagation must be carried out for every one of the nx × ny × nz points of the spatial
grid (with ni the number of points in direction i = x, y, z).

In order to accelerate the convergence process, we have introduced two further features
in Eq. (A.11) (see Ref. [Bar03]): a smoothing of the wave function and viscosity terms.
The smoothing operation is performed as

ΔΨ(x, y, z; τ) =
1

2

{
ΔΨ(x, y, z) +

1

6
[ΔΨ(x−Δx, y, z) + ΔΨ(x + Δx, y, z)+

+ΔΨ(x, y −Δy, z) + ΔΨ(x, y + Δy, z) + ΔΨ(x, y, z −Δz) + ΔΨ(x, y, z + Δz)]

}
,

(A.12)

where ΔΨ(τ) ≡ Ψ(τ + δτ) − Ψ(τ). With this operation we can use a slightly higher δτ
while keeping the numerical evolution stable. The wave function in the next step is then
built as

Ψ(τ + δτ) = Ψ(τ) + ΔΨ(τ) + αV [Ψ(τ)−Ψ(τ − δτ)] , (A.13)

with αV = 0.7, which characterizes the viscosity term. After this process the wave function
has to be normalized.

The convergence of the solution to the ground state of the system is not easily assessed.
A possibility is to track the energy change (or the change in chemical potential) between
iterations. Since in general this quantity is small between two subsequent iterations,
one can track the energy change every, say, 50 iterations and establish a “self-made”
convergence criterion. When the energy change is very small (in our simulations, it is
typically of the order of 10−10Etot, with Etot the total energy) we say that the algorithm
is converged and that we have found the ground state of H . Sometimes, if the energy of
the ground state is very close to the energy of an excited state or the imaginary time step
is large or there is some symmetry of the initial wave function that has to be broken, the
algorithm can stay in a false minimum for an amount of time, looking as if it was already
converged to the ground state (this is sometimes called a metastable solution). There are
several possibilities to deal with this situation. One of them is to initialize the ITSM with
a different trial function: from random numbers, from a particular shape (for instance,
from a Thomas-Fermi profile in the case of BEC problems), etc. Another possibility is to
reduce the imaginary time step or the grid spacing when the energy change between two
iterations becomes smaller than some quantity. A third possibility is to leave the program
running for a very long time. We have applied the first and third methods, which are
easier to implement, in several of the calculations presented in the thesis. Sometimes
the false minimum solution can be useful, as is the case of a centered vortex in a non-
rotating condensate (see Chapter 6) or the asymmetric state of a double well potential
(see Chapter 7).
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Appendix B

Hamming’s method:
predictor-corrector-modifier

Hamming’s algorithm comes from a family of iterative methods to numerically integrate
ordinary differential equations (see, for instance, [Ral60]). They are known as predictor-
corrector methods because at each step they make a sensible guess (or prediction) of the
solution and correct it using the information contained in the differential equation. This
process is repeated several times until a good convergence is found for this step. Some
of the methods, such as Hamming’s, add an intermediate step where a function, called
modifier, is introduced to subtract the error caused by the predictor and the corrector.
This allows one to eliminate the iterations, so that the differential equation is solved faster.

Let us assume we want to solve the differential equation

dy

dx
= f(x, y) , (B.1)

with the initial conditions given by y(x0) = y0 and y′(x0) = y′0. If there are more than
one equations, the method works the same but now with y as a vector containing the
different functions we want to find. We use the notation yn = y(xn), y′n = y′(xn) and
h = xn+1 − xn, where the index n numbers the iteration step. The iterative procedure is
based on the general form

yn+1 = a0yn + a1yn−1 + · · ·+ apyn−p + h(b−1y
′
n+1 + b0y

′
n + · · ·+ bpy

′
n−p) + En , (B.2)

where En is the error associated to step n + 1. For a given p, the coefficients ai and bi

are found by expanding each yi and y′i in a Taylor series in h around xi. Equating the
coefficients of 1, h, h2, . . . on both sides of Eq. (B.2) gives the value of ai and bi.

In the Hamming’s algorithm the p value in Eq. (B.2) is equal to 3, that is the function
at a certain iteration step is built from the value of the function and its first derivative in
the previous four steps. Numerically, the solution to the differential Eq. (B.1) is found by
applying the following four steps recursively:

(1) Predictor: give a prediction pn+1 of the solution at step n+1 using its value at steps
n, n− 1, n− 2 and n− 3,

pn+1 = yn−3 +
4h

3
(2y′n − y′n−1 + 2y′n−2) . (B.3)
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(2) Modifier: from the predicted solution pn+1 define a modifier function and its deriva-
tive as

mn+1 = pn+1 − 112

121
(pn − cn) (B.4)

m′
n+1 = f(xn+1, mn+1) . (B.5)

(3) Corrector: use the modifier to define a corrector function

cn+1 =
1

8

[
9yn − yn−2 + 3h(m′

n+1 + 2y′n − y′n−1)
]

. (B.6)

(4) Final Value: write the function at step n + 1 as

yn+1 = cn+1 +
9

121
(pn+1 − cn+1) . (B.7)

Notice that this algorithm requires the knowledge of the functions at steps 0, −1, −2
and −3 to calculate the first iteration, y1, which means that the Hamming’s method is
not self-starting. This is usually arranged by using another numerical method, such as
the fourth-order Runge-Kutta method (see Appendix C), which is self-starting. Then,
the first three time steps are evaluated using the Runge-Kutta method and they are then
used in the Hamming’s method to evaluate the fourth and subsequent steps. The error
associated to Hamming’s method is given by the truncation error,

En+1 = cn+1 − pn+1 =
121

360
h5y(5)(ξ) , (B.8)

where ξ is a value of x in the interval [xn, xn+1]. This error comes from truncating the
Taylor series at order h4, and therefore is of order h5. If this error grows very much, the
numerics becomes unstable and no solution is found. To control En+1, the step h must be
small enough.

Comparing Eq. (B.1) with the TDGP Eq. (2.12) we can identify: y → Ψ(r, t), x → t
and

f(x, y)→ − i

�

[
− �

2

2m
∇2Ψ + VextΨ + g|Ψ|2Ψ + VdipΨ

]
. (B.9)

The step h → δt is the time step of the numerical simulation. For the simulations carried
out in this thesis, the time step of the Hamming’s algorithm is typically δt ∼ 10−6−10−7 s,
which gives an error of the order of En+1 ∼ 10−12 μm−3/2. On the other hand, since there
are no dissipation terms, the energy and the number of particles must be conserved,
which gives a measure of the “relative error” associated with the code in a particular
implementation. In the calculations presented here, the errors in the energy and the
number of particles were less than 5 × 10−3 % and 10−5 % with respect to their initial
values. Notice that the time evolution of the wave function requires an extra consideration
since Ψ is defined in a three dimensional grid (it is therefore a complex matrix of dimension
nx× ny ×nz). The process detailed in (B.3)–(B.7) has to be applied at every point of the
grid. This means that pn+1, mn+1, cm+1 and their derivatives are themselves matrices of
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dimension nx × ny × nz. The algorithm therefore requires that we keep in memory many
big matrices. This makes the simulations very time-consuming, especially if the Fourier
transforms associated with the dipolar mean-field potential Vdip are computed. To give
an example, to calculate the Josephson oscillations in Chapter 7 (Fig. 7.3) the simulation
ran for about a week with a Xeon processor, with a spatial grid of 128× 128× 96 points.
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Appendix C

Fourth-order Runge-Kutta method

Runge-Kutta methods are a family of numerical methods that are used to solve differential
equations. They use the function and its first derivatives calculated at a given step to find
the solution at the next step. The idea is to solve the set of n differential equations

dyi

dx
= y′i(x) = fi(y0(x), y1(x), . . . , yn(x)), i = 1, . . . , n (C.1)

where for convenience we call y0(x) = x, which gives y′0(x) = 1. The initial conditions are
given by the values yi(x0) = yi0, for i = 1, . . . , n. The idea behind the method is to find
the values yi(x0 + h), where h is a (small) increment in x. This is done by approximating
the functions yi to their Taylor expansion

yi(x0 + h) = yi(x0) + hy′i(x0) +
h2

2!
y

(2)
i (x0) + · · · , (C.2)

where higher than first-order derivatives are calculated by evaluating several first-order
derivatives. In the fourth-order Runge-Kutta method four first-order derivatives are used
in the expansion to obtain an agreement of order h4 with the Taylor series.

The algorithm consists of the following steps (see for instance [Ral60])

(1) Set j = 1.

(2) Calculate for i = 0, 1, . . . , n:

y′ij = kij = fi(y0,j−1, y1,j−1, . . . , yn,j−1) . (C.3)

(3) Calculate for i = 0, 1, . . . , n:

yij = yi,j−1 + h[aj(kij − bjqi,j−1)] (C.4)

qij = qi,j−1 + 3[aj(kij − bjqi,j−1)− cjkij ] . (C.5)

Initially, qi0(x0) = 0 for all i. At the next steps of the solution, qi0(x + h) = qi4(x).
The constants aj , bj and cj are

a1 = 1
2

b1 = 2 c1 = 1
2

a2 = 1−
√

1
2

b2 = 1 c2 = 1−
√

1
2

a3 = 1 +
√

1
2

b3 = 1 c3 = 1 +
√

1
2

a4 = 1
6

b4 = 2 c4 = 1
2
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(4) Repeat steps (2) and (3) for j = 2, 3, 4.

At the end of this process the solution is given by yi(x+h) = yi4(x). This value is used as
initial value for the next step, that is yi4(x) → yi0(x

′), which after the process (1)–(4) will
give the result yi(x

′+h) = yi4(x
′), where we have introduced the notation x′ = x+h for the

sake of clarity. This process is repeated until the function y(x) is found in the interesting
range of x. In contrast to the Hamming’s algorithm (Appendix B), Runge-Kutta methods
are self-starting, since only the values at the previous point are needed. However, since it
requires the evaluation of the derivatives at each step, it can be time-consuming.

In the results presented, this Runge-Kutta method has been routinely used to initialize
the Hamming’s algorithm and also to solve the two coupled equations for the two-mode
model of a Josephson junction. In the first case, the equation that has to be solved is the
TDGP Eq. (2.12). It is only one equation, so n = 1 in this case. We can identify the
generic variables used above as x→ t, y1 → Ψ(r, t) and

f1(y0, y1) → − i

�

[
− �

2

2m
∇2Ψ + VextΨ + g|Ψ|2Ψ + VdipΨ

]
, (C.6)

with y0 = t. Notice that, as happened in the Hamming’s algorithm, the wave function is
defined in a three-dimensional mesh of nx × ny × nz points, which means that the whole
Runge-Kutta process has to be performed in every mesh point.

In the case of the two-mode equations (see Chapter 7), we have two equations so n = 2.
We can identify x→ t, y1 → Z(t), y2 → φ(t) and

f1(y0, y1, y2)→ (−1 + α)
√

1− Z2 sin φ + ε(1− Z2) sin 2φ (C.7)

f2(y0, y1, y2)→ ΛZ − (−1 + α)
Z√

1− Z2
cos φ− εZ cos 2φ , (C.8)

for the full two-mode model and the corresponding expressions (with α = ε = 0) for the
crude two-mode model. The initial conditions are given by y1,0 → Z(0) and y2,0 → φ(0).
In this case, we do not need to define any spatial mesh, which makes the algorithm very
fast.



Appendix D

GP equations from the quantum
action and the energy functional

In Chapter 2 we have derived the Gross-Pitaevskii equation from the many-body Hamilto-
nian, using the second quantization formalism and performing a mean-field approximation
there. The Gross-Pitaevskii equation is therefore semiclassical. In this appendix we dis-
cuss an alternative way to arrive at the time-dependent and stationary Gross-Pitaevskii
Eqs. (2.12) and (2.16), which is via a variational procedure applied to the action and the
energy functional, respectively.

D.1 Quantum action and TDGP equation

To obtain time-dependent properties of a quantum system one considers the quantum
action, defined by

S =

∫
dt

〈
Φ

∣∣∣∣H − i�
∂

∂t

∣∣∣∣Φ〉
, (D.1)

where H is the many-body Hamiltonian, see Eq. (2.1). Note that there are two terms
entering the action. The first of them, 〈Φ|H|Φ〉 is related to the energy of the system
at time t. The second term on the right-hand side, 〈Φ| − i�∂t|Φ〉, will give us the time
dependence of the wave function. In this expression Φ is the many-body wave function of
the bosonic system, defined from the single-particle wave functions, ϕ0, as

Φ(r1, r2, . . . , rN , t) = ϕ0(r1, t)ϕ0(r2, t) · · ·ϕ0(rN , t) , (D.2)

where we assume that all particles occupy the ground state. The bracket in Eq. (D.1) is
the Lagrangian density, L(t), and in terms of single-particle wave functions it reads

L(t) =

∫
dr1dr2 · · ·drN

N∏
k=1

ϕ∗0(rk, t)

[
N∑

i=1

− �
2

2m
∇2

i +

N∑
i=1

Vext,i +
1

2

N∑
i,j=1

vint,ij

]
N∏

l=1

ϕ0(rl, t)−

− i�

∫
dr1dr2 · · ·drN

N∏
k=1

ϕ∗0(rk, t)

[
∂

∂t

N∏
l=1

ϕ0(rl, t)

]
, (D.3)
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which can be integrated to give

L(t) =− �
2N

2m

∫
drϕ∗0(r, t)∇2ϕ0(r, t) + N

∫
drϕ∗0(r, t)Vext(r)ϕ0(r, t)+

+
N(N − 1)

2

∫
dr dr′ ϕ∗0(r, t)ϕ

∗
0(r

′, t)vint(r, r
′)ϕ0(r, t)ϕ0(r

′, t)−

− i�N

∫
drϕ∗0(r, t)

∂ϕ0(r, t)

∂t
. (D.4)

If the number of particles in the condensate is very large, N(N − 1) � N2. Let us then
write the action in terms of the condensate wave function. This just means changing√

Nϕ0(r, t) by Ψ(r, t), so that the factors N disappear. To obtain the equations of motion
we set the variations of the action with respect to Ψ∗ or Ψ to zero, that is

δS

δΨ∗
=

δ

δΨ∗

[∫
dtL(t)

]
= 0 , (D.5)

and analogously for Ψ. Proceeding in this way gives

δS =

∫
dt

∫
dr

{
− �

2

2m
∇2Ψ(r, t) + Vext(r)Ψ(r, t)+

+

[∫
dr′Ψ∗(r′, t)vint(r, r

′)Ψ(r′, t)
]

Ψ(r, t)− i�
∂Ψ(r, t)

∂t

}
δΨ∗(r, t) = 0 . (D.6)

This must be zero irrespective of the shape of δΨ∗(r, t), since the action must always be
a minimum. This leads us then to Eq. (2.10),

i�
∂

∂t
Ψ(r, t) =

[
− �

2

2m
∇2 + Vext(r) +

∫
dr′Ψ∗(r′, t)vint(r, r

′)Ψ(r′, t)
]

Ψ(r, t) . (D.7)

Using Eq. (2.11) for vint we find the TDGP Eq. (2.12).

D.2 Energy functional and GP equation

In order to find the stationary GP equation, we need to impose that the energy is a min-
imum, while conserving the number of particles. This is done by applying the variational
procedure

δ

δψ∗

[
E[ψ, ψ∗]− μ

∫
drψ∗(r)ψ(r)

]
= 0 , (D.8)

where E[ψ, ψ∗] is the energy functional and μ is the Lagrange multiplier we use to impose
the constraint that the number of particles is conserved. The integral is just equal to N
for the solutions of the variational equation and μ is the chemical potential. The energy
functional is defined as

E[ψ, ψ∗] = 〈Φ |H |Φ〉 =

∫
dr

{
− �

2

2m
ψ∗(r)∇2ψ(r) + ψ∗(r)Vext(r)ψ(r) +

+
1

2
ψ∗(r)

[∫
dr′ ψ∗(r′)vint(r, r

′)ψ(r′)
]

ψ(r)

}
. (D.9)
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Taking variations and imposing that the energy must be a minimum irrespective of δψ∗,
we find

− �
2

2m
∇2ψ(r) + Vext(r)ψ(r) +

[∫
dr′ ψ∗(r′)vint(r, r

′)ψ(r′)
]

ψ(r) = μψ(r) . (D.10)

For the contact plus dipole-dipole interaction potential, Eq. (2.11), we recover the time-
independent GP Eq. (2.16). If variations are taken with respect to ψ instead of ψ∗, we
find the same equation but for ψ∗ instead of ψ.

The energy functional E[ψ, ψ∗] is sometimes treated as a functional of the density,
E[n]. This is exact for the ground state of the Bose-Einstein condensate, for which ψ is
real (except for an arbitrary phase) and n =

√
ψ. In this case the functional (D.9) can be

written as

E[n] =

∫
dr

{
�

2

2m

[
∇
√

n(r)
]2

+ Vext(r)n(r) +
1

2
n(r)

[∫
dr′ vint(r, r

′)n(r′)
]}

, (D.11)

and Eq. (2.16) can be found by varying with respect to n.
The energy functional theory is a variational theory, and therefore it provides an

upper bound to the real energy (see, for instance, the book by Lipparini, Ref. [Lip03], for
a complete discussion of the density functional theory, or DFT). Since the variations are
taken with respect to the whole of the wave function, instead of some free parameters, it
is sometimes said that it is equivalent to varying with respect to an infinite number of
parameters.
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Appendix E

Quantum harmonic oscillator

As we have seen during the thesis, the harmonic oscillator confinement is very important,
both for Bose and Fermi systems. Non-interacting (ideal) condensates and degenerate
Fermi gases are an important limiting case that can be reached experimentally. They
constitute the ground state of a many-body quantum harmonic oscillator, which is in
itself one of the most important and well-known models of physical systems. For the sake
of completeness we devote this Appendix to the quantum harmonic oscillator. We start
with the single particle case in 3D and then we build the ground state many-body states,
both for bosons (condensate) and for fermions (using the local-density approximation).

E.1 Single-particle harmonic oscillator

The properties of a quantum particle confined in a harmonic trap are given by the harmonic
oscillator Hamiltonian

ĥ =
p̂2

2m
+

1

2
m(ω2

xx̂
2 + ω2

y ŷ
2 + ω2

z ẑ
2) , (E.1)

with m the mass of the particle, ωk the trapping frequencies along the axes k = x, y, z,
and p̂2 = p̂2

x + p̂2
y + p̂2

z the square of the linear momentum operator. Notice the hat
symbol in the operators, which we have added to avoid any ambiguity. The momentum
operators, p̂k = −i�∇k, do not commute with the position operators, but [p̂k, r̂k] = −i�.
Hamiltonian (E.1) satisfies the eigenvalue equation

ĥ |ϕn〉 = en |ϕn〉 , (E.2)

where {|ϕn〉} is the set of eigenstates of ĥ, characterized by the set of quantum numbers
n, and en is the energy corresponding to state |ϕn〉.

There are several ways of solving the ground state of the quantum harmonic oscillator.
A very elegant way is by introducing the creation and annihilation operators1, as is done

1More than creation and annihilation operators, â† and â should be at this stage called raising and
lowering operators, since their effect is to raise a particle to a higher state and to lower it to a lower
state, respectively. Here we are dealing with a one-particle “gas”. However, when a many-particle gas
is considered, for instance in second quantization, these same operators have the meaning of adding or
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in Ref. [Coh77]. For every direction rk (with rx = x, etc.) they are defined through r̂k

and p̂k as

â†k =
1√
2

[
1

ak

r̂k − i
ak

�
p̂k

]
(E.3)

âk =
1√
2

[
1

ak
r̂k + i

ak

�
p̂k

]
, (E.4)

where we have introduced the harmonic oscillator length in each direction, ak =
√

�/(mωk).

The creation and annihilation operators satisfy the commutation relations [âk, â
†
k′] = δkk′

and zero for all the other commutators. In terms of these operators, the Hamiltonian
takes the well-known form

ĥ =
∑

k=x,y,z

�ωk

(
â†kâk +

1

2

)
. (E.5)

The ground state of this Hamiltonian has energy

e0 =
1

2
�(ωx + ωy + ωz) . (E.6)

Since the Hamiltonian can be decomposed in independent terms that depend each on
only one variable, |ϕ0〉 can be written as |ϕ0〉 ≡ |X〉 |Y 〉 |Z〉. An equation for the ground
state wave function can be found by multiplying both sides of Eq. (E.4) by |ϕ0〉 and
recalling that â |ϕ0〉 = 0. In coordinate representation, that is multiplying the equation
by 〈r| ≡ 〈x| 〈y| 〈z|, we find

1

a2
k

〈r| r̂k |ϕ0〉+ i
1

�
〈r| p̂k |ϕ0〉 = 0 , (E.7)

with k = x, y, z. This leads to three first-order differential equations. They are identical
so we will only solve it for, say, X(x) ≡ 〈x|X〉:

dX

dx
+

x

a2
x

X = 0 . (E.8)

Now the solution to this is straightforward,

d ln(X) = − x

a2
x

dx ⇒ X(x) = C(y, z) exp

[
− x2

2a2
x

]
. (E.9)

Taking into account the solution in the other directions we find

ϕ0(r) = C exp

[
− x2

2a2
x

− y2

2a2
y

− z2

2a2
z

]
, (E.10)

subtracting a particle from a given state. This double interpretation of â† and â allows us thus to keep the
words creation and annihilation. Notice also that in the single-particle case â† and â obey commutation
relations, irrespective of the bosonic or fermionic character of the particle; this will not be the case for
the N -particle gas, especially for fermions (see for instance Ref. [Lip03] for more details).
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where C is a constant to be determined by normalization. Imposing that the wave function
has to be normalized to unity,

∫
dr|ϕ0|2 = 1, we finally find

ϕ0(r) =

(
1

πa2
ho

)3/4

exp

[
− x2

2a2
x

− y2

2a2
y

− z2

2a2
z

]
, (E.11)

where aho =
√

�/(mωho) is the harmonic oscillator length, and ωho = (ωxωyωz)
1/3 is

the geometric mean of the frequencies. The ground state wave function of the harmonic
oscillator is thus a Gaussian with mean width aho.

E.2 The ideal quantum gas in a harmonic trap

An ideal gas is one where its components do not interact with each other. The many-body
Hamiltonian of an ideal gas confined in a harmonic trap is

H =

N∑
i=1

p2
i

2m
+

N∑
i=1

1

2
m(ω2

xx
2
i + ω2

yy
2
i + ω2

zz
2
i ) =

N∑
i=1

hi , (E.12)

where hi represents the single-particle Hamiltonian acting on particle i. The set of eigen-
states of h, {|ϕk〉}, defines a basis of the one-body Hilbert space. In this case, the many-
body states are defined in a Hilbert space which is the product of one-body Hilbert spaces.
The many-body wave functions can therefore be written as linear combinations of prod-
ucts of single-particle wave functions. These products need to have the right symmetry
properties: bosons require symmetric many-body wave functions (no sign appears under
exchange of two particles) whereas fermions require antisymmetric many-body wave func-
tions (a sign appears under exchange of two particles). Both ideal Bose and Fermi gases
are important limiting cases of the real gases that can be achieved experimentally, and
also provide a useful limit for theoretical analysis.

E.2.1 Ground state of a harmonically confined ideal Bose gas

For an ideal Bose gas of N particles, the ground state configuration consists on all the
particles occupying one (the lowest) single-particle state, |ϕ0〉. The many-body state is
then defined as a direct product of N single-particle wave functions,

|Φ0〉 = |ϕ0〉 ⊗ |ϕ0〉 ⊗ · · · ⊗ |ϕ0〉 . (E.13)

The energy corresponding to the many-body state (E.13) is E0 = Ne0, where e0 is the
energy of the state ϕ0. The excited states of the non-interacting Bose system are given
by

ΨB(r1, r2, . . . , rN) =

√
n1! n2! · · ·

N !

∑
P

P
N∏

i=1

ϕki
(ri) , (E.14)

where nk is the occupation number of state k (that is, the number of times the wave
function ϕk appears in the product), the operator P indicates permutations of the indices
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and ki represents the quantum number of the state occupied by particle i. The numerical
factor in front arises from the indistinguishability of the particles, and the operator P
ensures that the wave function is properly symmetrized: the interchange of two particles
should leave the many-body wave function unchanged, that is it has to be symmetric.

In coordinate representation the condensate wave function of the non-interacting gas,
Ψ0(r), is given by

Ψ0(r) =
√

N

(
1

πa2
ho

)3/4

exp

[
− x2

2a2
x

− y2

2a2
y

− z2

2a2
z

]
(E.15)

and it is normalized to the total number of particles. In the left panel of Fig. E.1 Ψ0(r) is
shown for the isotropic harmonic oscillator (with N = 106). It corresponds to a Gaussian of
width given by aho, which was the solution to the single-particle case, since the many-body
wave function is the product of identical single-particle wave functions. This is equivalent
to saying that the lowest lying single-particle state is macroscopically occupied, which is
the definition of a condensate. This state corresponds to the Bose-Einstein condensate
predicted by Bose and Einstein in 1925.
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Figure E.1: Density profiles of the ground state of a non-interacting Bose gas (left) and of a
non-interacting Fermi gas in the Thomas-Fermi approximation (right) confined in a isotropic
harmonic oscillator potential. In both cases N = 106.

E.2.2 Ground state of a harmonically confined Fermi gas

In the case of non-interacting (or ideal) fermions the Pauli exclusion principle prevents
two identical particles to be in the same state, and therefore the ground state consists on
a particle occupying each state up to an energy εF , called the Fermi energy (see Chap-
ter 8). The solution to the non-interacting Fermi gas confined in a harmonic potential,
ΨF (r1, r2, . . . , rN) ≡ ΨF is in general complicated, since it is given by the Slater determi-
nant

ΨF =
1√
N !

∑
P

(−1)P P
N∏

i=1

ϕki
(ri) =

1√
N !

∣∣∣∣∣∣∣∣∣
ϕk1(r1) ϕk1(r2) · · · ϕk1(rN)
ϕk2(r1) ϕk2(r2) · · · ϕk2(rN)

...
...

. . .
...

ϕkN
(r1) ϕkN

(r2) · · · ϕkN
(rN)

∣∣∣∣∣∣∣∣∣
,
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where the permutation operator P ensures the right symmetrization (in this case, the
many body wave function must be antisymmetric under the exchange of two fermions).
The ground state is obtained by setting the states ϕki

to be the N lowest energy states.
As the number of particles in the gas grows, working in terms of a Slater determinant

becomes very hard. If the number of particles is large enough, though, one can use
a semiclassical approximation called the local-density approximation (see, for instance,
Ref. [Gio08]). It relies on the consideration that if the potential is slowly varying in space,
the energy levels of the system form a continuum and do not affect the equation of state
of the gas. The condition that the potential is slowly varying in space can be stated as
aho � 1/kF , that is the length scale associated to variations in the density of the gas, 1/kF ,
is much smaller than the length scale of variations in the confining harmonic potential,
aho. It can be easily seen that this condition is equivalent to �ωho � εF , which can
be interpreted as a quasi-continuum spectrum of the harmonic oscillator energy states,
�ωho, in comparison to the energy scale provided by the Fermi energy. Under these
conditions, the kinetic energy density2 can be taken to be the one of the uniform system
(see Chapter 8),

τ(n) =
3

5

�
2

2m
(6π2)2/3n2/3 . (E.17)

With this approximation, the density is given by3

n(r) =
1

6π2

(
μ− Vho(r)

�2/2m

)3/2

=
8

π2

N

R3

(
1− r2

R2

)3/2

, (E.19)

where μ is the chemical potential, which can be seen to be μ = (6N)1/3
�ωho from the

normalization of the density to N . Since the system is still ideal and we are at T = 0, we
have μ = εF . Notice that we have assumed an isotropic harmonic oscillator of frequency
ωho, which allows us to define the Thomas-Fermi radius, R =

√
2μ/(mω2

ho). The right
panel of Fig. E.1 shows the density distribution of the trapped ideal Fermi gas with
N = 106, which can be compared to that of the equivalent Bose gas (left panel). It can
be clearly seen that the Fermi energy behaves as a strong repulsive potential, pushing the
atoms away from the center. The extent of the Fermi gas at T = 0 is several times larger
than the corresponding Bose gas, and the central density is much lower. The quantity

μ(r) = μ− Vho(r) =
�

2

2m
(6π2)2/3n2/3 (E.20)

2The kinetic energy density, τ(n), is defined such that its integration in space gives the total energy
of an ideal, uniform Fermi gas, that is

E

N
=

∫
τ(n)n dr =

3
5

εF . (E.16)

3This can be shown by taking variations of the energy functional with respect to n and setting them
to zero,

δ

δn

[∫
τ(n)ndr +

∫
Vho(r)ndr− μ

∫
ndr

]
= 0 , (E.18)

where μ is a Lagrange multiplier introduced to keep the number of particles constrained to N .



124 Quantum harmonic oscillator

can be interpreted as a local chemical potential. The local-density approximation, in a
way, tells us that the chemical potential of the confined ideal Fermi gas is locally the
chemical potential of a corresponding uniform system. The local-density approximation
is usually referred to as the Thomas-Fermi approximation.



Appendix F

Two-mode equations for a dipolar
Josephson junction

Josephson oscillations in a double-well dBEC can be effectively studied by means of a
two-mode model (TMM). The basic assumption underlying this method is that the wave
function of the condensate Ψ(r, t) can be expressed in terms of the wave functions of the
modes localized in the left and right wells, respectively ΦL(r) and ΦR(r), using ansatz
Eq. (7.6),

Ψ(r, t) = ψL(t)ΦL(r) + ψR(t)ΦR(r) . (F.1)

The dynamical properties are contained in the coefficients ψL(t) =
√

NL(t)eiφL(t) and

ψR(t) =
√

NR(t)eiφR(t), with Ni and φi the number of atoms and phase in each of the
wells (i.e. i = L, R). The two-mode ansatz Eq. (F.1) is an approximation to the solution of
the TDGP equation: the TDGP equation is nonlinear, which means that the superposition
principle does not hold. However, if the two localized wave functions are well separated
and their overlap in the tunneling region is small (condition of weak link), the nonlinear
interaction in this region is negligible and the superposition principle is preserved. In the
weak link limit, the two mode ansatz Eq. (F.1) is still a good approximation to the real
wave function (see, for instance, the discussion in the Appendix A of Ref. [Rag99]).

Substituting Eq. (F.1) into the TDGP Eq. (2.12), multiplying by Φ∗L (respectively,
Φ∗R), integrating over dr and considering Φi(r) real gives:

i�
∂

∂t
ψL(t) =

[∫
dr

(
− �

2

2m
ΦL∇2ΦL + VextΦ

2
L + gNLΦ4

L + 2gNRΦ2
LΦ2

R + gψLψ�
RΦ3

LΦR+

+

∫
dr′vdip

{
NL(Φ′L)2Φ2

L + NR(Φ′R)2Φ2
L + ψLψ�

RΦ′LΦ′RΦ2
L + NRΦ′LΦ′RΦLΦR

})]
ψL+

+

[∫
dr

(
− �

2

2m
ΦL∇2ΦR + VextΦLΦR + gNRΦLΦ3

R + 2gNLΦ3
LΦR + gψ�

LψRΦ2
LΦ2

R+

+

∫
dr′vdip

{
NLΦ′LΦ′RΦ2

L + NL(Φ′L)2ΦLΦR + ψ�
LψRΦ′LΦ′RΦLΦR + NR(Φ′R)2ΦLΦR

})]
ψR

(F.2)

and analogously for ψR(t). Notice that we have set by construction
∫

drΦRΦL = 0.
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We will discuss first what we call the crude two-mode model , in which some overlap
integrals are neglected, and then the full two-mode model, in which all overlap integrals
are taken into account. In the literature these equations have been derived for s-wave
condensates [Sme97, Rag99, Ana06] and have been recently applied to purely dipolar
condensates [Xio09, Asad09].

F.1 Crude two-mode model for dipolar condensates

If the overlap between the modes in the left and the right is very small, two-body interac-
tions are mainly given by the atoms that are in the same well, not in different wells. This
means that the terms with the shape

∫
drvintΦLΦR, where vint is here a generic two-body

potential, can be neglected. Proceeding in such a way gives

i�
∂

∂t
ψL(t) =

[∫
dr

(
− �

2

2m
ΦL∇2ΦL + VextΦ

2
L + gNLΦ4

L+

+

∫
dr′vdip

{
NL(Φ′L)2 + NR(Φ′R)2

}
Φ2

L

)]
ψL+

+

[∫
dr

(
− �

2

2m
ΦL∇2ΦR + VextΦLΦR

)]
ψR (F.3)

i�
∂

∂t
ψR(t) =

[∫
dr

(
− �

2

2m
ΦR∇2ΦR + VextΦ

2
R + gNRΦ4

R+

+

∫
dr′vdip

{
NR(Φ′R)2 + NL(Φ′L)2

}
Φ2

R

)]
ψR+

+

[∫
dr

(
− �

2

2m
ΦR∇2ΦL + VextΦRΦL

)]
ψL . (F.4)

Defining the quantities:

EL =

∫
dr

(
�

2

2m
|∇ΦL|2 + |ΦL|2Vext

)
(F.5)

ER =

∫
dr

(
�

2

2m
|∇ΦR|2 + |ΦR|2Vext

)
(F.6)

K = −
∫

dr

(
− �

2

2m
∇ΦL∇ΦR + ΦLΦRVext

)
(F.7)

UL =

∫
dr

[
g|ΦL|4 +

∫
dr′vdip|Φ′L|2|ΦL|2

]
(F.8)

UR =

∫
dr

[
g|ΦR|4 +

∫
dr′vdip|Φ′R|2|ΦR|2

]
(F.9)

B =

∫
dr|ΦL|2

∫
dr′vdip|Φ′R|2 , (F.10)
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with Φ′ ≡ Φ(r′), one can rewrite equations (F.3) and (F.4) as

i�
∂ψL

∂t
=

[
(EL + BN) + (UL −B) NL

]
ψL −KψR (F.11)

i�
∂ψR

∂t
=

[
(ER + BN) + (UR −B) NR

]
ψR −KψL , (F.12)

where the condition N = N1 + N2 has been used.

We now introduce the population imbalance

Z(t) =
NL(t)−NR(t)

N
(F.13)

and the phase difference

φ(t) = φR(t)− φL(t) . (F.14)

It is possible to rewrite equations (F.11) and (F.12) in terms of these conjugate variables,
by substituting the expressions for ψL(t) and ψR(t) in terms of Z and φ into Eqs. (F.11)
and (F.12), and separating in real and imaginary parts. As a result we find

Ż = −√1− Z2 sin φ (F.15)

φ̇ = ΔE + ΛZ +
Z√

1− Z2
cos φ , (F.16)

where the dimensionless parameters ΔE and Λ are defined by

ΔE =
EL − ER

2K
+

UL − UR

4K
N (F.17)

Λ =
UL + UR − 2B

4K
N . (F.18)

In Eqs. (F.15) and (F.16), time has been expressed in units of the Rabi frequency, ΩR =
2K/�. This is formally the frequency at which the non-interacting system oscillates, which
can be seen by setting the interaction integrals (F.8)–(F.10) to zero: in this case Λ = 0
and Eqs. (F.15) and (F.16) admit harmonic solutions with the frequency given by ΩR.
Notice that the value of ΩR calculated using the value of K of the interacting case would
not be the frequency at which the non-interacting system would oscillate, since to find this
latter frequency one should calculate K using the non-interacting left and right modes.
The quantity Λ characterizes the departure of the oscillations from the non-interacting
case. We can see from its definition that it is determined by the two-body interactions
within each well. We will see below that it is this parameter that allows for macroscopic
quantum self-trapping, which is not present in superfluid or superconductor Josephson
junctions. The parameter ΔE gives the difference in energy between left and right wells.
In this thesis we have only considered symmetric double-wells, for which ΔE = 0 and one
recovers Eqs. (7.12) and (7.13).



128 Two-mode equations for a dipolar Josephson junction

F.2 Full two-mode model for dipolar condensates

If all the terms in Eq. (F.2) (and the corresponding equation for ψR(t)) are retained, we
find

i�
∂ψL

∂t
=

[
EL + ULNL + (B + 2I1 + D1)NR + (I2L + D2L)ψLψR

]
ψL+

+
[
−K + (I2L + D2L + D3L)NL + (I2R + D3R)NR + (I1 + D1)ψLψR

]
ψR (F.19)

i�
∂ψR

∂t
=

[
ER + URNR + (B + 2I1 + D1)NL + (I2R + D2R)ψLψR

]
ψR+

+
[
−K + (I2R + D2R + D3R)NR + (I2L + D3L)NL + (I1 + D1)ψLψR

]
ψL , (F.20)

where we have introduced the parameters

I1 =g

∫
dr|ΦL|2|ΦR|2 (F.21)

I2L =g

∫
dr|ΦL|2ΦLΦR (F.22)

I2R =g

∫
dr|ΦR|2ΦLΦR (F.23)

D1 =

∫
drΦLΦR

∫
dr′vdipΦ

′
LΦ′R (F.24)

D2L =

∫
dr |ΦL|2

∫
dr′vdipΦ

′
LΦ′R (F.25)

D2R =

∫
dr |ΦR|2

∫
dr′vdipΦ

′
LΦ′R (F.26)

D3L =

∫
drΦLΦR

∫
dr′vdip|Φ′L|2 (F.27)

D3R =

∫
drΦLΦR

∫
dr′vdip|Φ′R|2 (F.28)

in addition to those defined in Eqs. (F.5)–(F.10). In these expressions we have used Φ′ ≡
Φ(r′) to simplify the notation. Note that for a symmetric configuration I2L = I2R ≡ I2,
D2L = D2R ≡ D2 and D3L = D3R ≡ D3.

Using the decomposition of ψL and ψR in terms of Ni and φi we obtain:

i
�

2NL

∂NL

∂t
− �

∂φL

∂t
= EL + ULNL + (B + 2I1 + D1)NR + (I2L + D2L)

√
NLNRei(φL−φR)+

+
[
−K + (2I2L + D2L + D3L)NL + (I2R + D3R)NR

]√NR

NL
ei(φR−φL)+

+ (I1 + D1)NRei2(φL−φR) , (F.29)

and equivalently for ψR. We separate now these equations in real and imaginary parts,
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and recalling the definitions of population imbalance and phase difference, we obtain:

Ż =
2K

�

[
−1 +

I2L + I2R + D3L + D3R

2K
N + Z

I2L − I2R + D3L −D3R

2K
N

]√
1− Z2 sin φ

+
I1 + D1

�
N(1− Z2) sin 2φ (F.30)

�φ̇ =EL − ER +
UL − UR

2
N +

(
UL + UR

2
− B − 2I1 −D1

)
NZ+

+
N

2

[
3(I2L − I2R) + 2(D2L −D2R) + D3L −D3R

]√
1− Z2 cos φ+

+
[
2K −N(I2R + I2L + D3R + D3L)

] Z√
1− Z2

cos φ+

+
N

2

[
I2R − I2L + D3R −D3L

] 1 + Z2

√
1− Z2

cos φ− (I1 + D1)NZ cos 2φ . (F.31)

We define now the following dimensionless parameters:

ΔE =
EL − ER

2K
+

UL − UR

4K
N (F.32)

Λ =
UL + UR

4K
N − B + 2I1 + D1

2K
N (F.33)

α =
I2L + I2R + D3L + D3R

2K
N (F.34)

β =
I2L − I2R + D3L −D3R

2K
N (F.35)

δ =
3(I2L − I2R) + 2(D2L −D2R) + D3L −D3R

4K
N (F.36)

ε =
I1 + D1

2K
N . (F.37)

Then the full two-mode equations for a dipolar Josephson junction are given by:

Ż =(−1 + α + βZ)
√

1− Z2 sin φ + ε(1− Z2) sin 2φ (F.38)

φ̇ =ΔE + ΛZ +

[
δ
√

1− Z2 − (−1 + α)
Z√

1− Z2
− 1 + Z2

√
1− Z2

β

]
cos φ− εZ cos 2φ ,

(F.39)

where the time t in the derivatives has been expressed in units of the Rabi frequency,
ΩR = 2K/�. If the two wells in L and R are symmetric, we have ΔE = β = δ = 0 and
we recover Eqs. (7.7) and (7.8).

F.3 Hamiltonian and classification of the orbits

The Hamiltonian of the system described by the two-mode models can be found by inte-
gration of Hamilton equations,

Ż = −∂H

∂φ
φ̇ =

∂H

∂Z
. (F.40)



130 Two-mode equations for a dipolar Josephson junction

Let us consider the crude two-mode model with symmetric double wells, that is ΔE = 0.
The discussion that follows can be extended to the full two-mode model and to asymmetric
double wells, but the kind of orbits found by taking into account these corrections is
qualitatively the same. Using Eqs. (F.15)–(F.16) we find the two-mode Hamiltonian

Hcrude(Z, φ) =
1

2
ΛZ2 −

√
1− Z2 cos φ . (F.41)

Let us examine the behavior of the Hamiltonian Hcrude(Z, φ). For convenience we restrict
to the family of solutions with Λ > 1, which is the experimentally relevant situation (see,
for instance, Refs. [Rag99] and [Mele11] for a detailed discussion for all Λ). The first
critical point is Z = 0, φ = 0, where the Hamiltonian is a minimum. The second critical
point is Z = 0, φ = π, which is a saddle-point. In addition, the Hamiltonian shows a
maximum at Zmax =

√
1− 1/Λ2, φ = π. Notice that there are equivalent critical points

at the negative Z and φ regions. They are summarized in Table F.1.

Table F.1: Critical points in the crude two-mode Hamiltonian (Λ > 1).

Description Critical point (Z, φ) Value for Λ = 2.5 Value for Λ = 18
Minimum (0, 0) (0, 0) (0, 0)
Saddle (0,±π) (0,±π) (0,±π)
Maximum (±Zmax,±π) (0.916,±π) (0.998,±π)

To analyze the types of orbits predicted by the two-mode Hamiltonian, we look at the
curves of constant H in the (Z, φ) space. Two examples are shown in Fig. F.1 for Λ = 2.5
(left panel) and Λ = 18 (right panel). In these examples, closed orbits exist around the
minimum and around the maximum of the Hamiltonian, represented respectively as solid
black or solid blue lines. In these orbits both the imbalance and the phase are restricted
between two values, either around (0, 0), shown as a black point, or around (±Zmax,±π),
shown as blue points. In the first case they are known as Josephson or plasma oscillations,
while in the second case they are referred to as π-modes1. In Fig. F.1 π-modes are shown
only for small Λ; for large Λ they also exist but the regime of parameters where they can
be found becomes vanishingly small as Λ is increased.

The value of the Hamiltonian corresponding to the saddle point (0, π), shown as a red
point in Fig. F.1, defines the separatrix line, which separates closed from unbound orbits.
The separatrix is shown as a red dotted line. In the region of unbound orbits, the value
of imbalance oscillates around Z �= 0 (with the time average 〈Z〉 �= 0) and the phase
periodically takes all values in the range (−π, π], as shown in the dashed lines of Fig. F.1.
Setting the initial phase to φ(0) = 0 the separatrix line defines a critical value for the
initial imbalance, Z(0) = Zc, given by the condition H(Zc, 0) = H(0, π),

Zc = 2

√
Λ− 1

Λ
, (F.42)

which is valid for Λ > 2, as will be discussed below. For the examples in Fig. F.1, the
critical imbalance takes the value Zc = 0.980 for Λ = 2.5 and Zc = 0.458 for Λ = 18.

1Notice that these π-modes correspond to self-trapped orbits, since the imbalance is always larger than
zero. However, the phase here is bounded too, in contrast to running-phase self-trapped oscillations.
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Figure F.1: Orbits predicted by the crude TMM, for Λ = 2.5 (left panel) and Λ = 18 (right
panel). The small numbers indicate the values of Z(0) for φ(0) = 0 (written along the line φ = 0)
and for φ(0) = π (written along the line φ = π). The orbits around the minimum (black point)
are shown in black, while the orbits around the maximum (blue points) are shown in blue. The
running-phase modes are shown as dashed black lines. The separatrix is shown as a red dotted
line, and the saddle point is marked in red. The small red numbers indicate the value of Zc

given by Eq. (F.42).

For Z(0) < Zc, the orbits are closed in the space defined by (Z, φ), while for Z > Zc the
orbits are unbounded in φ and the imbalance never crosses zero. This latter regime is
usually known as self-trapping (or running-phase mode), while the former corresponds to
Josephson or plasma oscillations.

If instead we set the initial phase to φ(0) = π, the condition H(Z(0), φ(0)) > H(1, 0)
defines a second critical initial imbalance,

Zc2 =

√
1− 4

Λ2
, (F.43)

which is again valid only for Λ > 2. For the examples in Fig. F.1, the second critical
imbalance takes the value Zc2 = 0.600 for Λ = 2.5 and Zc2 = 0.994 for Λ = 18. For
Z > Zc2 the system follows bound orbits around φ = π, while for Z < Zc2 it evolves
according to the running-phase mode. For Λ = 2, Zc = 1 and Zc2 = 0, which implies
that the only running-phase mode that can exist is the critical orbit (which reaches Z = 0
or φ = 0 only in an infinite amount of time). For Λ < 2 running-phase modes are not
possible, but there appears a new orbit (not shown in the figure) where both the imbalance
and the phase are bounded (with 〈Z〉 = 0, 〈φ〉 = π).

We have seen that there are four different orbits, which can be classified as zero-phase
modes and π-phase modes (or π-modes), according to whether the time average of their
phase is zero or π. Table F.2 summarizes the classification of the orbits. There are two
zero-phase modes, usually known as Josephson (or plasma) and self-trapping (or running-
phase mode). These two modes have been measured experimentally [Alb05] (see also
[Cat01, Levy07]) and have been predicted in Chapter 7 of this thesis for a self-induced
Josephson junction. Examples of them are given in Fig. F.2, in panels (a) and (b).
Correspondingly, the π-modes can also be classified in terms of a self-trapped π-mode (for
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which 〈Z〉 �= 0) and a “plasma” π-mode (for which 〈Z〉 = 0). Notice that both π-phase
modes are closed orbits, respectively around the maximum and around the saddle point
of H . They are shown in (c) and (d) panels of Fig. F.2. Notice that the phase appears in
the figures beyond the range (−π, π].

Table F.2: Kinds of orbits and their description for Λ > 1.

Kind of orbit Description Regime
Josephson (plasma) 〈Z〉 = 0, 〈φ〉 = 0 Z < Zc

Self-trapping (running-phase) 〈Z〉 �= 0, 〈φ〉 = 0 Z > Zc or Z < Zc2, for Λ > 2
π-mode (self-trapped) 〈Z〉 �= 0, 〈φ〉 = π Z > Zc2

π-mode (“plasma”) 〈Z〉 = 0, 〈φ〉 = π Z < Zc2, for Λ < 2

Finally, the classification of the orbits predicted by TMMs can be carried out by
fixing the initial condition Z(0) = Z0 and modifying Λ (see discussions, for instance,
in [Rag99, Mele11]). For φ(0) = 0 one can define a critical interaction parameter that
takes the value Λc = 2(1 −

√
1− Z2

0 )/Z2
0 . For Λ < Λc the system will evolve in time

according to Josephson oscillations, while for Λ > Λc it will show self-trapping (running-
phase mode). For initial condition φ(0) = π, and always for Λ > 1, the system shows
self-trapping for Λ < Λc2 and self-trapped π-modes for Λ > Λc2. This second critical
condition can be found imposing H(Z0, φ0) = H(1, 0) at Λc2. For the crude TMM it
gives Λc2 = 2/

√
1− Z2

0 , where Z0 = Z(0). Notice again that the running-phase region
disappears for Λc = Λc2 ≤ 2.

F.4 Small-amplitude oscillations

Before concluding this appendix, we will briefly address small-amplitude oscillations,
which allow for simple analytical expressions for the frequency of oscillation of the system
in the Josephson regime. We take Eqs. (7.12)–(7.13) and Eqs. (7.7)–(7.8), respectively for
the crude and the full TMMs, and study the evolution of the imbalance and the phase
around an equilibrium position. We write Z = Z0 + δZ and φ = φ0 + δφ and substitute
these expressions into the equations. Taking the equilibrium position to be Z0 = 0, φ0 = 0
and keeping the terms in first order in δφ or δZ gives the linearized equations

Ż = −δφ (F.44)

φ̇ = δZ(Λ + 1) (F.45)

for the crude TMM, and

Ż = −(1− α− 2ε)δφ (F.46)

φ̇ = (Λ + 1− α− ε)δZ (F.47)

for the full TMM. Taking the second derivative and combining the equations, we see that
they can be written as Z̈ + ω2Z = 0, and analogously for the phase. The frequency ω can
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Figure F.2: Examples of the orbits predicted by TMMs: (a) Josephson oscillations, (b) self-
trapping (running-phase), (c) self-trapped π-mode, (d) “plasma” π-mode. The initial conditions
and the value of Λ are indicated in the labels.

be identified with

ωc =
√

Λ + 1 (F.48)

ωf =
√

(Λ + 1− α− ε)(1− α− 2ε) (F.49)

for the crude (c) and full (f) TMMs. The solution for Z(0) = Z0 and φ(0) = 0 is given by

Z(t) = Z0 cos(ωt) (F.50)

φ(t) = ωZ0 sin(ωt) . (F.51)

The main result for small amplitude oscillations is that the frequency is independent of
the initial conditions, in contrast to large amplitude oscillations.



134 Two-mode equations for a dipolar Josephson junction



Appendix G

3D and radial virial relations for
ultracold dipolar gases

In Secs. 4.2 and 8.2 we have used the virial theorem (3D and radial, respectively) for a
dipolar gas. The procedure to arrive at expressions (4.8) and (8.28) has been by mini-
mization of the energy functional with respect to the parameters characterizing a scaling
transformation of the system. There is an equivalent way to derive virial theorems, and
is by using commutators. In this appendix we derive the 3D virial theorem and the ra-
dial virial theorem for ultracold dipolar gases with the method of commutators. In the
case of the radial virial expression, which in the Thomas-Fermi approximation is given by
Eq. (8.28), we derive in this appendix a virial relation that is general for any ground state
of the system. This derivation is constructive in the sense that it allows us to understand
better the dipole-dipole potential, since it requires that the dipolar potential, in analogy to
the Coulomb potential, is treated as a distribution, properly taking care of the divergence
at r→ 0.

To derive the virial expressions, the many-body Hamiltonian is needed. For a system
of quantum particles interacting both via s-wave contact and dipolar interactions it is
given by

H =Hkin + Hho + Hsw + Hdip (G.1)

Hkin =
∑

i

p2
i

2m
(G.2)

Hho =
∑

i

m

2
(ω2

xx
2
i + ω2

yy
2
i + ω2

zz
2
i ) (G.3)

Hsw =
1

2

∑
i�=j

g δ(ri − rj) (G.4)

Hdip =
1

2

∑
i�=j

d2

|ri − rj |3
(

1− 3
(zi − zj)

2

|ri − rj|2
)

, (G.5)

where i = 1, . . . , N and j = 1, . . . , N , with N the total number of particles. Notice that
we consider both s-wave interactions and dipolar interactions, so that the results are easily
restricted to the case of identical bosons (for which g �= 0 in general) or identical fermions
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(for which g = 0). The definition of the coupling constants g and d2 is given in Sec. 2.1.
To simplify the notation, we use |ri − rj | ≡ rij and analogously for each coordinate.

Given a perturbation operator A and a strength of the perturbation λ, the energy of
the system is given by

E(λ) = 〈0| e−iλAHeiλA |0〉 =

= 〈0| (1− iλA− 1

2
λ2A2 + O(λ3))H(1 + iλA− 1

2
λ2A2 + O(λ3)) |0〉 =

= 〈0|H |0〉+ iλ 〈0| [H, A] |0〉+
1

2
λ2 〈0| [A, [H, A]] |0〉+ O(λ3) , (G.6)

where |0〉 refers to the ground state wave function. By expanding the energy around the
equilibrium configuration, λ = 0, we find

E(λ) = E0 + λ
∂E

∂λ

∣∣∣∣
λ=0

+
λ2

2

∂2E

∂λ2

∣∣∣∣
λ=0

+ O(λ3) . (G.7)

Recalling that the energy is a minimum and therefore the first derivative must vanish,
and comparing expressions (G.6) and (G.7) we find the following identity,

〈0| [H, A] |0〉 = 0 , (G.8)

which leads to the virial relation. We see that setting to zero the expectation value of the
commutator [H, A] is equivalent to setting to zero the first order derivative of the energy
functional with respect to the scaling parameter. The two methods are equivalent, but
sometimes one of them turns out to be more complicated than the other. Notice that
Eq. (G.8) can be also obtained form the Ehrenfest theorem of quantum mechanics,

d

dt
〈A〉 =

1

i�
〈[A, H ]〉+

〈
∂A

∂t

〉
, (G.9)

which in Heisenberg picture can be obtained just by taking the expectation value of the
Heisenberg equation. For an operator A that does not explicitly depend on time (and this
is the case, since we will only address operators of the type A ∼ r ·p), the second term on
the right-hand side is zero. At equilibrium, for the ground state wave function, the time
derivative of 〈A〉 will also be zero. This lead us thus to the relation Eq. (G.8).

G.1 3D virial theorem

The 3D virial theorem can be found from a scaling transformation of the density (see
Sec. 4.2), which can be related to the excitation of the breathing mode. The operator
associated to this excitation is A =

∑
k(rk · pk + pk · rk)/2, with k = 1, . . . , N . Notice

that the operator A has to be hermitian, whence the introduction of the factor 1/2 and
the scalar product p · r. Introducing this operator in Eq. (G.8) we find

2Ekin − 2Eho + 3Esw + 3Edip = 0 , (G.10)
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where the different terms of the Hamiltonian, Eqs. (G.2)–(G.5), give the following contri-
butions

〈0| [A, Hkin] |0〉 = 2i�Ekin (G.11)

〈0| [A, Hho] |0〉 = −2i�Eho (G.12)

〈0| [A, Hsw] |0〉 = 3i�Esw (G.13)

〈0| [A, Hdip] |0〉 = 3i�Edip (G.14)

and where the different energy contributions are given by

Ekin =

〈
0

∣∣∣∣∣∑
i

p2
xi

+ p2
yi

+ p2
zi

2m

∣∣∣∣∣ 0
〉

(G.15)

Eho =

〈
0

∣∣∣∣∣∑
i

m

2
(ω2

xx
2
i + ω2

yy
2
i + ω2

zz
2
i )

∣∣∣∣∣ 0
〉

(G.16)

Esw =

〈
0

∣∣∣∣∣ 1

2

∑
i�=j

gδ(ri − rj)

∣∣∣∣∣ 0
〉

(G.17)

Edip =

〈
0

∣∣∣∣∣ 1

2

∑
i�=j

d2

r3
ij

(
1− 3

z2
ij

r2
ij

) ∣∣∣∣∣ 0
〉

. (G.18)

G.1.1 Derivation of the 3D virial theorem

The Hamiltonian is given by Eqs. (G.1)-(G.5). To get the virial theorem for a dipolar gas
in 3D, Eq. (G.10), we have to calculate the commutator

[A, H ] =

[∑
k

1

2
(rk · pk + pk · rk),

∑
i

p2
i

2m
+

∑
i

m

2
(ω2

xx
2
i + ω2

yy
2
i + ω2

zz
2
i )

]
+

+

[∑
k

1

2
(rk · pk + pk · rk),

1

2

∑
i�=j

δ(ri − rj) +
1

2

∑
i�=j

d2

r3
ij

(
1− 3

z2
ij

r2
ij

)]
. (G.19)

The only commutators that will survive in the summations are those that involve variables
with the same indices. Then

[A, H ] =
1

2

∑
i

[
ri · pi + pi · ri,

p2
i

2m
+

m

2
(ω2

xx
2
i + ω2

yy
2
i + ω2

zz
2
i )

]
+

+
∑
i�=j

1

2

[
ri · pi + pi · ri + rj · pj + pj · rj,

1

2
δ(ri − rj) +

d2

2

1

r3
ij

(
1− 3

z2
ij

r2
ij

)]
.

(G.20)
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Now using ri · pi = −i�(xi∂xi
+ yi∂yi

+ zi∂zi
) we can write

ri · pi + rj · pj = −i�(xi∂xi
+ yi∂yi

+ zi∂zi
)− i�(xj∂xj

+ yj∂yj
+ zj∂zj

) =

= −i�

(
xi

∂xij

∂xi

∂xij
+ xj

∂xij

∂xj

∂xij
+ yi

∂yij

∂yi

∂yij
+ yj

∂yij

∂yj

∂yij
+ zi

∂zij

∂zi

∂zij
+ zj

∂zij

∂zji
∂zij

)
=

= −i�
(
xi∂xij

− xj∂xij
+ yi∂yij

− yj∂yij
+ zi∂zij

− zj∂zij

)
=

= −i�(xij∂xij
+ yij∂yij

+ zij∂zij
) . (G.21)

And the expression for the commutator becomes

[A, H ] =
1

2

∑
i

[
(ri · pi + pi · ri),

p2
i

2m
+

m

2
(ω2

xx
2
i + ω2

yy
2
i + ω2

zz
2
i )

]
+

+
∑
i�=j

1

2

[
rij · pij + pij · rij,

1

2
δ(ri − rj) +

d2

2

1

r3
ij

(
1− 3

z2
ij

r2
ij

)]
=

=
1

2

1

2m

∑
i

[
ri · pi + pi · ri, p

2
i

]− i�
m

2

∑
i

ri · ∇i(ω
2
xx

2
i + ω2
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2
i + ω2

zz
2
i )−

− i�
1

2

∑
i�=j

rij · ∇ijδ(ri − rj)− i�
d2

2

∑
i�=j

rij · ∇ij

[
1

r3
ij

(
1− 3

z2
ij

r2
ij

)]
, (G.22)

where we have used the property

[A, H(r)] =
1

2
[r · p + p · r, H(r)] = −i� r · (∇H(r)) . (G.23)

The commutator corresponding to the kinetic energy has three contributions, corre-
sponding to the components x, y and z. Dropping the indices i for simplicity we find

[xpx + pxx, p2
x] = [xpx, p

2
x] + [pxx, p2

x] = [x, p2
x]px + [x, p2

x]px =

= 2[x, px]p
2
x + 2[x, px]p

2
x = 4i�p2

x . (G.24)

Note that px is an operator so it should be extracted from the commutator accordingly,
but since the commutator is a scalar (identity operator) it commutes with px. Summing
for x, y and z we have

[r · p + p · r, p2] = 4i�p2 . (G.25)

The whole commutator will be

[A, H ] =2i�
1

2m

∑
i

p2
i − 2i�

m

2

∑
i

(ω2
xx

2
i + ω2

yy
2
i + ω2

zz
2
i ) + 3i�

1

2

∑
i�=j

δ(ri − rj)+

+ 3i�
d2

2

∑
i�=j

1

r3
ij

(
1− 3

z2
ij

r2
ij

)
, (G.26)
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where we have used the properties of the Delta function1 and that the derivative of the
dipole-dipole interaction is

r · ∇
[
d2

r3

(
1− 3

z2

r2

)]
= −3

d2

r3

[
1− 3

z2

r2

]
. (G.27)

Notice that this result can be obtained taking the derivative naively, without taking care
of the divergence of the dipole-dipole interaction for r → 0. This happens because some
of the terms associated to the derivative in the three directions cancel out exactly. This is
better understood in k-space, where the Fourier transform of the dipole-dipole interaction
does not present any problem. Fourier transforming the last equation we find2

F
[
r · ∇

[
d2

r3

(
1− 3z2

r2

)]]
= d24π

3
∇k · k

(
1− 3

k2
z

k2

)
=

= d24π

3

[
3

(
1− 3

k2
z

k2

)
+ 6

k2
xk

2
z

k4
+ 6

k2
yk

2
z

k4
+ 6

k4
z

k4
− 6

k2
z

k2

]
= 3d24π

3

(
1− 3

k2
z

k2

)
. (G.28)

We can recognize the right-hand side as−3 times the Fourier transform of the dipole-dipole
interaction, Eq. (2.27).

The expectation value of the commutator evaluated in the ground state gives

〈0| [A, H ] |0〉 = 2i�Ekin − 2i�Eho + 3i�Esw + 3i�Edip . (G.29)

Equating this quantity to zero gives the 3D virial relation

2Ekin − 2Eho + 3Esw + 3Edip = 0 , (G.30)

which is Eq. (G.10).

G.2 Radial virial theorem

When the perturbation operator is A =
∑

k(r⊥k
· p⊥k

+ p⊥k
· r⊥k

)/2, corresponding to a
breathing excitation on the plane xy, then the virial reads

2E⊥
kin − 2E⊥

ho + 2Esw + Edip = 0 , (G.31)

1We use the property

x
∂δ(r)
∂x

= −δ(r)

of the distribution δ(r), which is valid under the integration sign introduced by the expectation value in
Eq. (G.8).

2Notice that we use the following properties of the Fourier transform

F [∂xf(x)] = 2πikF [f(x)] = 2πikf̃(k)

∂kf̃(k) = ∂kF [f(x)] = −2πiF [xf(x)] .
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with the different terms defined as

E⊥
kin =

〈
0

∣∣∣∣∣∑
i

p2
xi

+ p2
yi

2m

∣∣∣∣∣ 0
〉

(G.32)

E⊥
ho =

〈
0

∣∣∣∣∣∑
i

m

2
(ω2

xx
2
i + ω2

yy
2
i )

∣∣∣∣∣ 0
〉

(G.33)

E⊥
sw =

〈
0

∣∣∣∣∣ 1

2

∑
i�=j

gδ(ri − rj)

∣∣∣∣∣ 0
〉

(G.34)

Edip =

〈
0

∣∣∣∣∣ 1

2

∑
i�=j

[
3
d2

r3
ij

r2
⊥ij

r2
ij

(
1− 5

z2
ij

r2
ij

)
− d216π

15
δ(rij)

] ∣∣∣∣∣ 0
〉

. (G.35)

Note that Edip is not the dipolar energy, but rather the quantity that comes from the
derivative of the dipolar potential as a distribution. We have checked that the virial
theorem Eq. (G.31) is fulfilled by the ground state of a dipolar condensate in different
harmonic trapping potentials, obtained from the numerical solution of the Gross-Pitaevskii
equation Eq. (2.16).

G.2.1 Derivation of the radial virial theorem

Let us calculate the different contributions to the radial virial, Eq. (G.31), separately.
We will use the results given in Sec. G.1.1 whenever possible, adapting them to the 2D
geometry. Also, to simplify the notation, the summation symbols and the subscripts will
be dropped, as well as the hermitian form of the operator A, since it gives exactly twice
the value of the non-hermitian form, which cancels with the 1/2 in front.

For the kinetic energy term we have

[A, Hkin] =

[
r⊥ · p⊥,

p2

2m

]
=

1

2m
[xpx + ypy, p

2
x + p2

y] =
1

2m
[xpx, p

2
x] + [ypy, p

2
y] =

=
2

2m
[x, px]p

2
x +

2

2m
[y, py]p

2
y = 2i�

p2
⊥

2m
. (G.36)

For the (harmonic) trapping potential we have

[A, Hho] =
[
r⊥ · p⊥,

m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)
]

=
m

2
[xpx + ypy, ω

2
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2] =
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mω2
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mω2
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2
y2[py, y] = −2i�
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2
(ω2

xx
2 + ω2
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2) . (G.37)

For the contact interaction term we have (see footnote 1)

[A, Hg] = [r⊥ · p⊥, gδ(r)] = −i�gr⊥ · ∇⊥δ(r) = −2i�δ(r) . (G.38)

For the dipolar interaction term, the situation is slightly more complicated, since the
dipolar potential can not be treated as a normal function, but has to be treated as a
distribution, less well known than δ(r). The reason for this is that (even though it is
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integrable) the dipole potential Eq. (G.5) is not well defined at r = 0. It is a similar situ-
ation to what happens with the Coulomb potential 1/r. One possible way to circumvent
this situation is to work in Fourier space, since the Fourier transform of vdip(r), given by
Eq. (2.27), is well defined in all the domain. The contribution of the dipolar interaction
to the commutator will be

[A, Hdip] = −i�r⊥ · ∇⊥vdip(r) = −i�x∂xvdip(r)− i�y∂yvdip(r) . (G.39)

Fourier transforming the commutator gives

F [A, Hdip] = +i�∂kxkxṽdip(k) + i�∂kykyṽdip(k) =
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, (G.40)

where we have used the expressions in footnote 2. To calculate the commutator in real
space we can use expression (see Sec. G.2.2)

F [v⊥] = F
[

1

r3

r2
⊥

r2

(
1− 5

z2

r2

)]
= −8π

3

(
1

5
− cos4 θp

)
, (G.41)

from where we find the relation

F [A, Hdip] = 3i�d2F
[

1

r3

r2
⊥

r2

(
1− 5
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r2
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− i�d216π

15
. (G.42)

Transforming back to real space we find

[A, Hdip] = 3i�d2 1

r3

r2
⊥

r2

(
1− 5

z2

r2

)
− i�d216π

15
δ(r) . (G.43)

Note that the first term on the right-hand-side is the same term that we would have
obtained if we had taken the naive derivative (i.e. as a function instead of a distribution)
of the dipolar interaction, Eq. (G.5). The second term regularizes thus the divergence of
(x∂x + y∂y)vdip at r = 0.

Adding all the contributions we finally find the 2D virial theorem for a dipolar con-
densate, as expressed in Eqs. (G.31)–(G.35).
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G.2.2 Fourier transform of v⊥
In this section we derive the Fourier transform of the quantity, v⊥, defined as
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√
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√
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, (G.44)

where we have used the spherical harmonics

Y00 =

√
1

4π
(G.45)
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√
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⇒ sin2 θ =
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16π

5
Y20

)
(G.47)

The Fourier transform will then be

F [v⊥] =

∫
drre−2πip·rv⊥ =
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where we have used the expansion of the exponential in terms of the spherical Bessel
function, j�, and spherical harmonics,

e−2πip·r = 4π

∞∑
�=0

i�j�(2πpr)

m=�∑
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Y ∗
�m(p̂)Y�m(r̂) , (G.49)

and where we have defined the integral I as
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The last integral can be evaluated making use of the Clebsch-Gordan coefficients∫
dΩ Y�1m2Y�2m2Y

∗
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since the coefficients 〈2000|2020〉 = 1, 〈2200|2220〉 = −√2/7 and 〈2400|2420〉 =
√

2/7
are the only ones that survive once the sum over � is taken. The integral I is then
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Substituting into the expression of the Fourier transform Eq. (G.48), we find

F [v⊥] = −16π
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The integrals of the spherical Bessel functions can be calculated as follows. For the
sake of clarity in the expressions we use the variable z ≡ 2πpr. The integral containing
j2 gives3∫

dz
1

z
j2(z) =

∫
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3We have used the following results for the sin z and cos z integrals,∫
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This integral has to be evaluated between 0 and ∞. The second limit gives directly 0
and the first limit gives indetermination. We have to study the limit of the expression for
z → 0,∫ ∞

0

dz
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. (G.56)

Analogously, the integral containing j4 can be calculated as (see footnote 3)∫
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Again this integral has to be evaluated between 0 and ∞. The second limit gives directly
0 and the first limit gives indetermination. We have to study the limit of the expression
for z → 0,∫ ∞

0

dz
1

z
j4(z) =− lim

z→0

[
−21

sin z

z5
+ 21

cos z

z4
+ 8

sin z

z3
− cos z

z2

]
=

=− lim
z→0

[
−21

(
1

z4
− 1

6

1

z2
+

1

120

)
+ 21

(
1

z4
− 1

2

1

z2
+

1

24

)
+

+8

(
1

z2
− 1

6

)
−

(
1

z2
− 1

2

)]
=

2

15
. (G.58)

Substituting these two results into Eq. (G.54) gives

F [v⊥] =
4

7
4π

√
16π

5
Y ∗

20(p̂)
1

3
+

32π

21

√
4πY ∗

40(p̂)
2

15
=

=
16π

21
(3 cos2 θp − 1) +

4π

7

(
35 cos4 θp − 30 cos2 θp + 3

) 2

15
=

=
8π

3
cos4 θp +

(
16π

7
− 16π

7

)
cos2 θp − 16π

21
+

8π

35
=

8π

3
cos4 θp − 8π

15
, (G.59)

where we have used

Y40 =
3

8
√

4π

(
35 cos4 θp − 30 cos2 θp + 3

)
. (G.60)

Rewriting,

F [v⊥] =
8π

3

(
cos4 θp − 1

5

)
. (G.61)
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[Mele11] M. Melé-Messeguer, B. Juliá-Dı́az, M. Guilleumas, A. Polls, and A. Sanpera,
New J. Phys. 13, 033012 (2011).
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