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Abstract

DNA-based techniques have proved to be very useful methods to study trophic
relationships between pests and their natural enemies. However, most predators are
best defined as omnivores, and the identification of plant-specific DNA should also
allow the identification of the plant species the predators have been feeding on. In this
study, a PCR approach based on the development of specific primers was developed
as a self-marking technique to detect plant DNA within the gut of one heteropteran
omnivorous predator (Macrolophus pygmaeus) and two lepidopteran pest species
(Helicoverpa armigera and Tuta absoluta). Specific tomato primers were designed from
the ITS 1–2 region, which allowed the amplification of a tomato DNA fragment of
332bpwithin the three insect species tested in all cases (100% of detection at t=0) and
did not detect DNA of other plants nor of the starved insects. Plant DNA half-lives at
25°C ranged from 5.8h, to 27.7h and 28.7h within M. pygmaeus, H. armigera and
T. absoluta, respectively. Tomato DNA detection within field-collected M. pygmaeus
suggests dietary mixing in this omnivorous predator and showed a higher detection
of tomato DNA in females and nymphs than males. This study provides a useful
tool to detect and to identify plant food sources of arthropods and to evaluate
crop colonization from surrounding vegetation in conservation biological control
programs.

Keywords: gut-content analysis, specific primers, molecular markers, dispersion,
ITS, ingested plant DNA
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Introduction

In nature, predators and parasitoids move over a broad
range of spatial scales, and it is of vital importance to
understand the dispersal characteristics of these beneficial
insects for biological control of agricultural pests. Different
marking and tracking techniques have been developed in
order to evaluate the movement or identify the sources of
several species of arthropods (Lavandero et al., 2004; Jones
et al., 2006; Wanner et al., 2006; Goubault & Hardy, 2007;

Scarratt et al., 2008; Stephens et al., 2008). However, those
useful methods have a major inconvenience for field studies;
either the insects or the plants need to be marked beforehand.

Many predators are omnivores, consuming plant provided
foods at least during part of their life cycles (Albajes &Alomar,
2004; Wäckers et al., 2005). Enhancing the availability of such
food sources within or close to crops provides resources,
which enhance populations of natural enemies, and adds to
their colonization of the target crop, increasing the effective-
ness of biological control (Landis et al., 2000; Gurr et al., 2004).
Pollen grains, present either on the exoskeleton or within the
gut, have been used to confirm feeding on certain plant species
(Silberbauer et al., 2004). However, procedures for morpho-
logical pollen identification are too time consuming, and not
all predators feed on pollen.
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In recent years, several studies have developed DNA-
based techniques to analyse predator gut contents in arthro-
pods, mainly in those where the feeding does not leave
remains that can be morphologically identified. The first
attempts developed specific SCAR (sequence characterized
amplified region) markers (Agustí et al., 1999, 2000); but, more
recently, other regions like the internal transcribed spacer
region 1 (ITS-1) (Hoogendoorn & Heimpel, 2001) or the cyto-
chrome c oxidase subunits I and II (COI and COII) mito-
chondrial genes have been used to develop prey-specific
primers (Agustí et al., 2003a,b; Greenstone et al., 2007;Weber &
Lundgren, 2009). Based on this, an alternative way to track
movement of omnivorous predators from their refuges would
be the identification of ingested plant DNA within whole
insects, as similarly done in predation gut contents analysis
studies. Even if the COI region has been mainly used for
primer design in gut analysis of predation, it is not clear which
regionwould bemost appropriate for the detection of ingested
plant DNA. ITS 1–2 together with trnH-psbA region have been
proposed to have a faster gene evolution rate than COI in
plants (Chase et al., 2005).

Macrolophus pygmaeus (Rambur) (Heteroptera:Miridae) is a
polyphagous predator that feeds on several arthropod species.
Until recently, M. pygmaeus on tomato has been misidentified
as M. melanotoma (Costa) (=M. caliginosus Wagner) and is still
named as M. caliginosus by commercial beneficial producers
(Martinez-Cascales et al., 2006; Gemeno et al., personal com-
munication). This species spontaneously colonizes field and
greenhouse crops from refuges present in the agricultural
landscape of the Mediterranean basin (Alomar et al., 2002;
Castañé et al., 2004; Gabarra et al., 2004). Like most mirids, it is
an omnivore that also feeds on plant tissues; therefore, it was
selected as a candidate for our study. BecauseM. pygmaeus is a
small sucking insect and it is not knownwhether it feeds either
on phloem or on leaf cells, we suspected that prohibitively
small quantities of plant DNA would be present in its gut
leading on a low detection of plant DNA. For this reason,
we also tested two insects with chewing habits that would
ingest a large amount of plant cells: Helicoverpa armigera
(Hübner) (Lepidoptera: Noctuidae) and Tuta absoluta (Meyrick)
(Lepidoptera: Gelechiidae) larvae, both important tomato
pests.

Here, we show that molecular markers can be used to
specifically identify plant DNA in herbivorous/omnivorous
insects. We have developed a tomato-specific marker which
allows the detection of tomato DNA in the gut of three
different insect species with different feeding types (sucking or
chewing insects) and showed the detection percentages of
tomato DNA within their gut with digestion time. Finally,
we have also shown that this marker allows the identification
of plant DNA within field insects collected in tomato green-
houses with just a PCR reaction, avoiding the process of
sequencing.

Materials and methods

Insects and plants

Macrolophus pygmaeus were reared at IRTA facilities
as explained by Agustí & Gabarra (2009a,b). This colony is
renewed every year with introductions of new field collected
insects near Barcelona (NE Spain). They were maintained on
tobacco plants (Nicotiana tabacum L.) and Ephestia kuehniella
Zeller (Lepidoptera: Pyralidae) eggs. Helicoverpa armigera and

T. absoluta larvae were collected in tomato fields near
Barcelona and maintained on artificial diet and on tomato
plants, respectively. All insects were maintained under con-
trolled conditions of 25±1°C, 70±10% RH and L16:D8 photo-
period. Ephestia kuehniella eggs were provided by Biotop
(Valbonne, France).

Tomato (Solanum lycopersicum L.), cabbage (Brassica oleracea
L.) and tobacco (Nicotiana tabacum L.) plants were cultivated in
greenhouses at IRTA. Potato (Solanum tuberosum L.), auber-
gine (Solanum melongena L.), pepper (Capsicum annum L.),
zucchini (Cucurbita pepo L.) and cucumber (Cucumis sativus L.)
plants were obtained from fields in the vicinity of our facilities.
Carlina corymbosa L.,Ononis natrix L.,Verbascum thapsus L. and
Solanum nigrum L. plants were obtained from the margins of
the previously cited crops in the same area.

DNA extraction

Whole individual insects were homogenized in clean
microcentrifuge tubes to avoid possible contamination by its
own faeces, andDNA extractionswere done using theDNeasy
Tissue Kit (QIAGEN, Hilden, Germany; protocol for insects).
Plant DNAwas extracted from a 1cm diameter leaf disc using
the DNeasy Plant Mini Kit (QIAGEN) following the manu-
facturer’s protocol. Total DNA was eluted with 100ml in the
AE buffer provided in the kit. All DNA extracts were stored at
�20°C.

PCR amplification

Specific tomato primers were designed from the ITS 1–2
region by comparison with sequences of other solanaceous
plants with CLUSTALW (Larkin et al., 2007). Sequences
obtained from GenBank were: S. lycopersicum (AF244747),
S. tuberosum (AY875827), S. nigrum (AJ300211) and N. tabacum
(AJ300215). Guidelines proposed for the design of efficient and
specific primers by Innis & Gelfand (1990) and Saiki (1990)
were followed. Primers were synthesized by Roche Diagnos-
tics, Basel, Switzerland. DNA amplifications were performed
in a 10μl reaction volume containing 1μl of DNA extract, 5μl
of master mix of Multiplex Kit (QIAGEN) and 1μl of primer
mix (10μM). Samples were amplified in a 2720 thermal cycler
(Applied Biosystems, CA, USA) for 40 cycles at 94°C for 30s;
62°C for 2min and 72°C for 90s. A first cycle of denaturation at
95°C for 15min and a final extension at 72°C for 10min were
carried out. Tomato DNA and water were always included as
positive and negative controls, respectively. PCR products
were separated by electrophoresis in 1.5% agarose gels stained
with ethidium bromide and visualized under UV light.

Species specificity

The specificity of the tomato primers was tested by
attempting to PCR-amplify DNA from leaf discs of 11 other
cultivated and non-cultivated plant species belonging to six
families (table 1) (n=2). These species were all selected as
being present in the studied area and could potentially be fed
on by the targeted insects. Starved M. pygmaeus, H. armigera
and T. absoluta (n=10) were also tested.

Feeding trials and detection periods

Clean tomato leaves were cut in small discs (2.5cm
diameter) which included a fragment of the central leaf vein,
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where mirids usually feed. Each tomato leaf disc was put on a
0.5-cm thick layer of an agar solution (5‰) in small plastic
boxes (2.6cm diameter). A starved 48h (at 25°C) M. pygmaeus
female was introduced in each plastic box for three hours at
room temperature and was observed every 10min. Only those
individuals that had been seen with the stylet inserted into the
leaf at least three times were considered to have fed and were
frozen until tested by PCR. Lepidopteran feeding trials were
prepared in the same way, but with a tomato leaf disc of 1cm
diameter and without the agar layer. In each of the plastic
boxes, a third or fourth instar larva starved for 48h was
individually confined for three hours at room temperature.
Lepidopteran larvae were only considered for the analysis if
they had consumed at least 10mm² of the tomato leaf.

Once the insects had been observed feeding, they were
either immediately frozen at �20°C (t=0) or maintained at
25°C for 2, 4 or 8h (M. pygmaeus); 6, 8 or 24h (H. armigera) and 8
or 24h (T. absoluta). After that, they were frozen at �20°C.
TwentyM. pygmaeus females were assayed at t=0 and 8h and
16 at t=4h. Ten lepidopteran larvaewere assayed for all times.
Positive (tomato DNA) and negative (free DNA) control
samples were included in all PCRs. Each samplewas tested up
to three times and considered positive if tomato DNA was
detected in one of these three replicates. Negative exponential
equations were fitted to describe the decay in the percentage of
positive responses with time and R2 was calculated (JMP 8.0.1;
SAS Institute Inc.). From these equations, the half-lives (50%
positive detection) were estimated (Greenstone et al., 2007).

Analysis of field collected Macrolophus pygmaeus

We analyzed M. pygmaeus collected from several tomato
greenhouses in the studied area. Those predators were part of
another study that has analyzed predation on two whitefly
species and their parasitoids (Moreno-Ripoll et al., 2009;
personal communication). Once collected, those predators
(25 males, 31 females and 83 nymphs) were frozen at �20°C
prior to DNA extraction. Each individual was analyzed by
PCR using the tomato specific primers developed in this work.

Results

Development of ITS markers

Sequences of ITS-1, 5.8S and ITS-2 regions of S. lycopersi-
cum, S. tuberosum, S. nigrum and N. tabacum were aligned and

compared in order to design one pair of tomato-specific
primers. These primers were named Le2F and Le1R and
their sequence was 5′-CCGAGGCGCGCAAGCTCTTC-3′ and
5′-TAAAGCCTTGCGGCGTGCGAG-3′, respectively. They
amplified a fragment of 332bp for S. lycopersicum including
part of ITS-1 and ITS-2, and the whole 5.8S region.

Species specificity and detection periods

These primers were tomato specific. No other plant species,
neither cultivated nor weeds, amplified a band of the same
length in the cross-reactivity test (fig. 1). Even if a band of a
very high molecular weight was amplified in N. tabacum, this
does not interfere with detection of the specific tomato band.
Besides, a fragment of that size is unlikely to be detected after
digestion. None of the starved insects tested (M. pygmaeus,
H. armigera and T. absoluta) gave false positive results (fig. 2).

Tomato DNA was detected within all individuals of the
three insect species tested after they had fed on tomato leaf
discs with 100% detection in both chewing and sucking insects
immediately after feeding (t=0) (fig. 3). In all three species,
tomato DNA detection decreased with time since t=0 within
T. absoluta and after 2h and 6h within M. pygmaeus and
H. armigera, respectively (fig. 3). Detection curves were fitted
to a negative exponential equation starting with the last
detection time where 100% detection was obtained. Equations
were: y=133.1exp�0.17x, R2=0.98; y=114.7exp�0.03x, R2=0.95
and y=88.7exp�0.026x, R2=0.81 for M. pygmaeus, H. armigera
and T. absoluta, respectively. From these equations, half-lives
of tomato DNA detection within their gut were estimated as
5.8h for M. pygmaeus, 27.7h for H. armigera and 28.7h for
T. absoluta.

Analysis of field collected M. pygmaeus

Tomato DNA was found in 30.2% of field-collected
M. pygmaeus (n=139), being much higher in nymphs (36.1%)
and females (32.3%) than in males (8%).

Discussion

In this study, we show the detection of plant DNA within
the gut of three insect species by the use of a specific molecular
marker. Tomato-specific primers were highly specific, show-
ing no cross-reactivity either with other closely-related plant
species or with the insect species tested.

The COI region has been applied extensively in animal
barcoding; but, it is known that, for most of the plant species,
it is not suitable due to its much slower rate of COI gene
evolution in higher plants than in animals (Kress et al., 2005).
There is a lack of consensus on themost appropriate barcoding
locus and criteria to be used in plants (Hollingsworth et al.,
2009; Valentini et al., 2009a). Kress et al. (2005) proposed ITS
and trnH-psbA as the best candidate regions for the design of
plant-specific molecular markers, and ITS has been shown to
work on many plant groups and has been recommended
(Chase et al., 2005; Sass et al., 2007; Chen et al., 2010). According
to these considerations, we have designed a pair of primers
from the ITS region that amplifies a fragment, 332bp long, that
proved very effective for the detection of tomato DNA within
the gut of the insects tested. As previously suggested (Agustí
et al., 1999), those primers were designed to amplify relatively
short fragments to make possible the detection of semi-
digested DNA fragments.

Table 1. Plant species used in the specificity test (n=2).

Family Species

Solanaceae Solanum lycopersicum L., cv Bodar
Solanum tuberosum L., cv. Red Pontiac
Solanum melongena L., cv Cristal
Capsicum annum L., cv. Aristocrata
Nicotiana tabacum L., cv. Brazillan Blend
Solanum nigrum L.*

Cucurbitaceae Cucumis sativus L., cv. Porto
Cucurbita pepo L., cv. Mastil

Cruciferae Brassica oleracea L., cv. Savoy
Compositae Carlina corymbosa L.*
Papilionaceae Ononis natrix L.*
Scrophulariaceae Verbascum thapsus L.*

Species marked with * are non-crop plants.
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In this study, tomato DNA was detected in both a small
sucking insect (around 4mm long) (M. pygmaeus) and two
bigger chewing insects (T. absoluta andH. armigera). Even with
this sucking insect, where the amount of ingested DNA was
expected to be much lower than the bigger amount of leaf
material (and then plant DNA) ingested by the chewers,
the detection was possible in 100% of cases at t=0. As we
expected, a faster loss of detection was found within the
sucking insect. Some other authors obtained longer detection
periods within other sucking insects species compared with
chewing ones (Greenstone et al., 2007; Hosseini et al., 2008);
but, as they also mention, detection depends not only on
the size of the species analyzed but on the species itself.
Degradation of the plant DNA through digestion probably
also depends on other biotic and abiotic factors, as happens
with insect DNA (Lövei et al., 1990; Agustí et al., 1999;Weber &
Lundgren, 2009).

Tomato DNA was identified in many field individuals of
unknown age and feeding history, which shows that even
with a relatively quick digestion of tomato DNA within
M. pygmaeus, this technique is useful to identify plant DNA
in the gut contents of field-collected insects. As with other
predators (Agustí et al., 2003b; Harwood et al., 2007; Juen &
Traugott, 2007), it is possible to analyze feeding events in the
field and opens the possibility for more detailed studies to
confirm the use of a range of food plants.

Such techniques can also be used to understand trophic
interactions of omnivorous predators. In predatory Heterop-
tera, the functions of omnivory and the functional relation-
ships between plant and prey feeding are still poorly
understood; and it is not clear to what extent they depend
on relative availability, amount or nutritional value of the food
types (Gillespie & McGregor, 2000; Sinia et al., 2004; Albajes
et al., 2006). In some cases, the digestive capabilities of
these omnivorous predators may vary through their lives
(Lundgren & Weber, 2010). Comparing our data with those
obtained by Moreno-Ripoll et al. (2009; personal communi-
cation) using specific primers of two whiteflies and their
parasitoids, 13.7% of all individuals were positive for both
tomato and insect prey, whereas only-plant or only-prey
remains were found in 16.6% and 25.9% of their guts.
Simultaneous detection of both food sources wasmuch higher
on nymphs than on females and males (19.3%, 6.5% and 4%,
respectively). The fact that tomato DNAwas detected in many
field-collected M. pygmaeus clearly shows that plant material
was consumed within a few hours of capture. Detection of
both plant and prey within the same individual suggests
dietary mixing, mainly in nymphs, according to a model
where plant feeding is essential for predation (Sinia et al.,
2004).

Recently, some studies (Miller et al., 2006; Matheson et al.,
2007; Jurado-Rivera et al., 2009; Valentini et al., 2009b) have
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Fig. 1. PCR products obtained using the tomato-specific ITS primers (332bp). Lanes 3–26 show different plant species: 3–4, Verbascum
Thapsus; 5–6, Ononis natrix; 7–8, Carlina corymbosa; 9–10, Brassica oleracea; 11–12, Cucurbita pepo; 13–14, Cucumis sativus; 15–16, Capsicum
anuun; 17–18, Solanum nigrum; 19–20, Solanum melongena; 21–22, Solanum tuberosum; 23–24, Nicotiana tabacum; 25–26, Solanum lycopersicum.
Lane 2, negative control. Lane 1 and 27, 100bp molecular-size marker.
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Fig. 2. PCR products obtained using the tomato-specific ITS
primers (332bp). Lane 3, starved M. pygmaeus; lane 4, starved
T. absoluta; lane 5, starved H. armigera; lane 6, M. pygmaeus fed on
tomato; lane 7, T. absoluta fed on tomato; lane 8,H. armigera fed on
tomato; lane 9, tomato. Lane 2, negative control. Lane 1 and 10,
100bp molecular-size marker.
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Fig. 3. Detectability of tomato DNA in the gut of M. pygmaeus,
T. absoluta and H. armigera at different times after ingestion.
Equations and R2 values are shown in the text (., H. armigera;
, T. absoluta; ^, M. pygmaeus).
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identified plant meal composition in insects by molecular
methods. In these studies, plant DNA fragments from insect
guts were sequenced and compared for homologies in the
BLAST database (http://blast.ncbi.nlm.nih.gov) in an attempt
to identify the ingested plant species. Such procedures, a very
powerful tool when identifying unknown ingested plants, are
not very practical in field studies where the aim is to confirm
the ingestion of a limited number of host plants and where
a very high number of insects should be analysed (e.g. to
confirm plant sources of predators in crop colonization
studies). That would not only require sequencing each DNA
fragment found in their gut, but even cloning each fragment
when several DNA fragments are present within the insect at
the same time. In this case, it is much cheaper and more
suitable to develop specific plant primers, in order to identify
plant DNA with just a PCR as it has been done in most of the
studies about molecular detection of predation and parasitism
(King et al., 2008; Gariepy et al., 2007; Agustí et al., 2005).
If several plant DNAs are expected, a multiplex PCR can be
used by developing one specific pair of primers for each of the
plant species, avoiding the cloning and sequencing needed in
the previously cited studies.

This study shows the detection of tomato DNA within the
gut of insects by using a specific molecular marker. This
marker allows knowing the percentage of insects which have
been found to consume tomato plant in an insect population.
This is a promising technique in conservation biological
control because it can speed up the identification of food
plants of colonizing species in the agricultural landscape
surrounding target crops.
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