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Clozapine and olanzapine, but not haloperidol,
suppress serotonin efflux in the medial
prefrontal cortex elicited by phencyclidine
and ketamine

Mercè Amargós-Bosch, Xavier López-Gil, Francesc Artigas and Albert Adell

Department of Neurochemistry, Institut d’Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS), 08036 Barcelona, Spain

Abstract

N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP) and ketamine can evoke

psychotic symptoms in normal individuals and schizophrenic patients. Here, we have examined the

effects of PCP (5 mg/kg) and ketamine (25 mg/kg) on the efflux of serotonin (5-HT) in the medial pre-

frontal cortex (mPFC) and their possible blockade by the antipsychotics, clozapine, olanzapine and halo-

peridol, as well as ritanserin (5-HT2A/2C receptor antagonist) and prazosin (a1-adrenoceptor antagonist).

The systemic administration, but not the local perfusion, of the two NMDA receptor antagonists markedly

increased the efflux of 5-HT in the mPFC. The atypical antipsychotics clozapine (1 mg/kg) and olanzapine

(1 mg/kg), and prazosin (0.3 mg/kg), but not the classical antipsychotic haloperidol (1 mg/kg), reversed

the PCP- and ketamine-induced increase in 5-HT efflux. Ritanserin (5 mg/kg) was able to reverse only

the effect of PCP. These findings indicate that an increased serotonergic transmission in the mPFC

is a functional consequence of NMDA receptor hypofunction and this effect is blocked by atypical

antipsychotic drugs.

Received 24 March 2005 ; Reviewed 18 April 2005 ; Revised 15 June 2005 ; Accepted 15 June 2005
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Introduction

The hypothesis of the N-methyl-D-aspartate (NMDA)

receptor hypofunction in schizophrenia stems from

the observation that NMDA receptor antagonists such

as phencyclidine (PCP) and ketamine can evoke psy-

chotic symptoms in normal individuals and aggravate

them in schizophrenic patients (for review, see Krystal

et al., 2003). For these reasons, NMDA receptor

antagonists have been used in experimental animals to

model neurochemical and behavioural changes that

occur in schizophrenia. Thus, systemic administration

of PCP or dizocilpine (MK-801) increases the firing

of neurons of the medial prefrontal cortex (mPFC) and

causes hyperlocomotion and stereotypies ( Jackson

et al., 2004 ; Jodo et al., 2003 ; Suzuki et al., 2002).

However, microiontophoretically applied PCP does

not alter either mPFC cell firing or hyperlocomotion

(Suzuki et al., 2002), which suggests that the NMDA

receptor antagonists turn on mPFC neurons through

the stimulation of excitatory inputs from brain areas

outside the mPFC. NMDA receptor antagonists

have also been shown to increase extracellular glu-

tamate (Abekawa et al., 2003 ; Lorrain et al., 2003 ;

Moghaddam et al., 1997), dopamine (Adams and

Moghaddam, 1998; Mathé et al., 1999 ; Schmidt

and Fadayel, 1996), and serotonin (5-HT) (Adams and

Moghaddam, 2001; Martin et al., 1998a; Millan et al.,

1999) in the mPFC. The source of this glutamate is

presently unknown, but it has been proposed that

NMDA receptor antagonists may block a tonic inhibi-

tory influence of c-aminobutyric acid (GABA) neurons

over an excitatory projection to the mPFC ( Jodo et al.,

2005 ; Krystal et al., 2003 ; Lorrain et al., 2003 ;

Moghaddam et al., 1997). The increases in dopamine

and 5-HT release are probably due to increments in

dopaminergic (Pawlowski et al., 1990 ; Schmidt and

Fadayel, 1996) and serotonergic (Lejeune et al., 1994)
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cell firing in the ventral tegmental area and the dorsal

raphe nucleus respectively. This latter activation could

result from an enhanced glutamatergic output from the

mPFC neurons, including those projecting to the dorsal

raphe nucleus. Indeed, the electrical or pharmacologi-

cal stimulation of the mPFC increases serotonergic

transmission in the dorsal raphe nucleus (Celada et al.,

2001 ; Martı́n-Ruiz et al., 2001). Nevertheless, a local

effect of NMDA receptor antagonists in the dorsal

raphe nucleus cannot be ruled out (Callado et al., 1999AQ1 ).

Although a hyperactive serotonergic transmission

in the mPFC has been implicated in schizophrenia

(Meltzer, 1989) and in the hyperlocomotion induced

by a reduced NMDA receptor function (Miyamoto

et al., 2001), the precise role of cortical 5-HT on these

effects remains to be determined. However, a relation-

ship between 5-HT and schizophrenia stems from two

main observations. First, 5-HT2A/2C receptor agonists

elicit hallucinogenic states in humans resembling

those present in positive symptomatology (Gouzoulis-

Mayfrank et al., 1998), and markedly increase the

firing rate of pyramidal neurons in the mPFC (Puig

et al., 2003). Likewise, the selective activation of 5-

HT2A receptors in rodent mPFC increases local 5-HT

release (Amargós-Bosch et al., 2004 ; Bortolozzi et al.,

2003 ; Martı́n-Ruiz et al., 2001 ; Puig et al., 2003), which

could point to an activation of mPFC serotonergic

transmission in the illness. Second, atypical anti-

psychotics are effective 5-HT2A receptor antagonists.

In previous studies we have shown that antipsychotic

drugs reverse the increase of the local extracellular

5-HT induced by the pharmacological stimulation of

the mPFC with 5-HT2A and a1-adrenergic receptor

agonists (Amargós-Bosch et al., 2003 ; Bortolozzi et al.,

2003). In the present work, we have examined the

effects of clozapine, olanzapine and haloperidol on

the efflux of 5-HT in the mPFC elicited by PCP and

ketamine. In an attempt to understand the contri-

bution of 5-HT2A/2C and a1-adrenergic receptors in

the action of these antipsychotic drugs, the effects of

ritanserin and prazosin were also tested.

Materials and methods

Animals

Male Wistar rats (Iffa-Credo, Lyon, France) weighing

250–280 g were used. They were maintained on a 12-h

light/dark cycle (lights on at 07:00 hours) and housed

three per cage before surgery and individually after

surgery. Food and water were always freely available.

All experimental procedures were carried out in strict

accordance with European Communities Council

Directive on ‘Protection of Animals Used in Experi-

mental and Other Scientific Purposes’ of 24 November

1986 (86/609/EEC) and were approved by the In-

stitutional Animal Care and Use Committees.

Drugs

Phencyclidine hydrochloride, ritanserin and prazosin

hydrochloride were purchased from Sigma-Aldrich

(Tres Cantos, Spain). Ketamine hydrochloride

(Ketolar1, 50 mg/ml) and haloperidol were pur-

chased as injectable solutions from Pfizer and Lab-

oratorios Esteve (Barcelona, Spain) respectively.

Clozapine was obtained from Tocris (Bristol, UK).

Olanzapine and citalopram hydrobromide were gen-

erously donated by Eli Lilly & Co (Indianapolis, IN,

USA) and H. Lundbeck A/S (Copenhagen-Valby,

Denmark) respectively. PCP and Ketolar1 were dis-

solved in distilled water or artificial cerebrospinal

fluid according to the route of administration. Cloza-

pine, olanzapine, prazosin and ritanserin were dis-

solved in a few drops of glacial acetic acid and further

diluted with distilled water for systemic adminis-

tration, or artificial cerebrospinal fluid (see below for

composition) for local application through dialysis

probes. When needed, the pH of the final concen-

trations was adjusted to 6.5–7.0 with NaHCO3. Because

PCP and ketamine were administered intraperito-

neally (i.p.) and subcutaneously (s.c.) respectively, two

different control groups were run in parallel. One

group consisted of a first s.c. injection followed 20 min

later by an i.p. injection of saline and served as control

for the experiment with PCP. The other group con-

sisted of two s.c. injections of saline and served as

control for the ketamine experiment. When anti-

psychotics, prazosin and ritanserin were administered

alone, a single s.c. injection of saline served as control

group.

Microdialysis procedures

Concentric dialysis probes with a 4-mm long mem-

brane were implanted under sodium pentobarbital

anaesthesia (60 mg/kg i.p.) in the mPFC (AP

+3.2 mm, L x0.8 mm, DV x6.0 mm; from Bregma)

according to Paxinos andWatson (1986). Microdialysis

experiments were conducted 20–24 h after surgery in

freely moving rats by continuously perfusing probes

with artificial cerebrospinal fluid containing 125 mM

NaCl, 2.5 mM KCl, 1.26 mM CaCl2, 1.18 mM MgCl2 and

1 mM citalopram, at a rate of 1.5 ml/min. Dialysate

samples of 30 ml were collected every 20 min. After a

100-min stabilization period, four dialysate samples

were collected to obtain basal 5-HT values before

2 M. Amargós-Bosch et al.



pharmacological treatment. At the completion of

dialysis experiments, rats were given an overdose of

sodium pentobarbital and a Fast Green solution was

perfused through the dialysis probes to stain the

surrounding tissue.

Biochemical determinations

The concentration of 5-HT in dialysate samples

was determined by HPLC using a 3-mm octadecylsilica

(ODS) column (7.5 cmr0.46 cm; Beckman, San

Ramon, CA, USA) and detected amperometrically

with a Hewlett-Packard 1049 detector (Palo Alto, CA,

USA) set at an oxidation potential of 0.6 V. The

detection limit for 5-HT was estimated to bey1 fmol/

sample.

Experimental design

Basically, each experimental group started with the

collection of four dialysate samples before drug ad-

ministration (basal values). Then, a systemic injection

(i.p. or s.c.) of saline or a drug (clozapine, olanzapine,

haloperidol, prazosin or ritanserin), followed by the

administration of a NMDA receptor antagonist (PCP

or ketamine) or saline. To examine the local effects of

NMDA receptor antagonists on extracellular 5-HT,

successive increasing concentrations of PCP or keta-

mine were perfused for 80 min following the collection

of four basal dialysate samples. The rats of the corre-

sponding control group were perfused only with arti-

ficial cerebrospinal fluid.

Statistics

Data (mean¡S.E.M.) are expressed as fmol/fraction

(uncorrected for recovery) and shown in figures

as percentages of basal values, averaged from four

fractions collected before treatment. The changes in

dialysate 5-HT were analysed by two-way repeated-

measures analysis of variance (ANOVA) with time

and drug as factors. Area under the curve (AUC) was

also calculated for the different treatments and ex-

pressed as percentage from the same period of control

rats. When significant effects were found, post-hoc

Newman–Keuls tests were used to compare the effects

of each drug (or combination thereof) with the corre-

sponding control group. The level of significance was

set at p<0.05. For the sake of clarity, significant effects

are depicted only in the AUC figures.

Results

The basal (pre-drug) concentration of 5-HT was not

significantly different among all experimental groups

and amounted to 37.6¡1.7 fmol/sample (n=126). The

perfusion of PCP (10, 30, 100, 300 mM) or ketamine (100,

300, 1000 mM) in the mPFC did not change the local

concentration of 5-HT (Figure 1). There was no differ-

ence between the three control groups used with

regard to dialysate 5-HT. As described thoroughly in

the literature, the systemic administration of PCP

(5 mg/kg i.p.) and ketamine (25 mg/kg s.c.) to rats

evoked a marked hyperlocomotion and stereotypies

(behavioural observation). The concentration of 5-HT

was also elevated significantly following the systemic

administration of PCP (F1,12=17.28, p<0.002) and

ketamine (F1,12=16.26, p<0.002). The effect of PCPwas

y20% higher than that of ketamine, but this difference

did not reach statistical significance. The PCP-induced

increase of 5-HT was suppressed by clozapine 1.0 mg/

kg s.c. (F1,11=10.79, p<0.01), olanzapine 1.0 mg/kg s.c.

(F1,14=5.24, p<0.05), ritanserin 5.0 mg/kg i.p. (F1,11=
5.12, p<0.05) and prazosin 0.3 mg/kg s.c. (F1,9=14.08,

p<0.005), but not by haloperidol 0.1 mg/kg and

1.0 mg/kg s.c. (Figure 2). In a similar way, the keta-

mine-induced increase of 5-HT was abolished by

clozapine 1.0 mg/kg s.c. (F1,12=12.92, p<0.005), olan-

zapine 1.0 mg/kg s.c. (F1,14=5.61, p<0.05) and prazo-

sin 0.3 mg/kg s.c. (F1,12=30.66, p<0.0002), but not by

haloperidol 1.0 mg/kg s.c. and ritanserin 5.0 mg/kg

i.p. (Figure 3). When injected alone (Figure 4), cloza-

pine 1.0 mg/kg s.c. (F1,9=8.38, p<0.02), haloperidol

1.0 mg/kg s.c. (F1,7=6.39, p<0.05) and prazosin

0.3 mg/kg s.c. (F1,8=15.67, p<0.005), reduced mPFC

5-HT to the same extent (y70% of baseline values). In

contrast, ritanserin 5.0 mg/kg i.p. resulted in a 20%
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Figure 1. Effects of the local perfusion of different

concentrations (in mM) of PCP (n=5 for each concentration)

and ketamine (n=5 for each concentration) on the 5-HT efflux

in the mPFC. There was no significant effect of any NMDA

receptor antagonist at the concentrations tested. Data

(mean¡S.E.M.) are expressed as percentage of baseline.
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increase (F1,11=10.05, p<0.01) and olanzapine 1.0 mg/

kg s.c. produced no change in dialysate 5-HT. It was

of note that none of these drugs evoked any gross

behavioural change when administered alone (behav-

ioural observation).

Discussion

The first main finding of this study is that the systemic

administration of the NMDA receptor antagonists,

PCP and ketamine, increases the efflux of 5-HT in the

mPFC. To the best of our knowledge, this was pre-

viously shown for PCP (Adams and Moghaddam,

2001; Martin et al., 1998a; Millan et al., 1999), but not

for ketamine. Likewise, previous work had shown

increases in 5-hydroxyindoleacetic acid (5-HIAA) fol-

lowing MK-801 administration (Kashiwa et al., 1995;

Lindefors et al., 1997 ; Löscher et al., 1993), which

could be indicative of an enhanced 5-HT metabolism

and/or release. Altogether these findings indicate that

an increased serotonergic transmission in the mPFC is

a general response to NMDA receptor hypofunction.

There does not seem to be differences between com-

petitive and non-competitive NMDA receptor an-

tagonists since both classes of compounds produce a

similar activation of cortical serotonergic pathways

(Löscher et al., 1993) and 5-HT release (Ceglia et al.,

2004). Furthermore, this effect does not result from a

direct action of these compounds on the mPFC be-

cause the local application of PCP or ketamine did not

produce any change in the concentration of 5-HT.

In line with our results, the intra-mPFC administration

of NMDA receptor antagonists does not affect the local

neuronal activity (Aghajanian and Marek, 2000; Jodo

et al., 2003 ; Suzuki et al., 2002), which suggests that

the NMDA receptors responsible for such actions are

located outside the mPFC. One possible site of action

of NMDA receptor antagonists is the ventral hippo-

campus because the local application of PCP or

MK-801 in this region increases the firing of pyramidal

neurons in the mPFC (Jodo et al., 2005). According to

the hypothesis of the disinhibition of glutamatergic

input to the mPFC (see Introduction), PCP and keta-

mine would increase glutamate release onto

non-NMDA receptors in the mPFC (Krystal et al.,

2003 ; Lorrain et al., 2003 ; Moghaddam et al., 1997).
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Figure 2. Effects of phencyclidine (PCP) 5 mg/kg i.p. on the

5–HT efflux in the mPFC alone (n=8) or in combination with

antipsychotic drugs (a) or receptor antagonists (b). Data

(mean¡S.E.M.) in (a) and (b) are expressed as percentage of

baseline. The group SAL+PCP in (a) has been replotted in

(b). Data in (c) represent the area under the curve (AUC) of

the different treatments. PCP increased dialysate 5-HT with

respect to the control group (n=6) that received two

injections of saline (SAL). The effect of PCP was blocked by

pretreatment with clozapine 1.0 mg/kg s.c. (CLZ, n=5),

olanzapine 1.0 mg/kg s.c. (OLZ, n=8) and prazosin 0.3 mg/

kg, s.c. (PRZ, n=4), but not by haloperidol 0.1 mg/kg s.c.

(HAL 0.1, n=4), haloperidol 1.0 mg/kg s.c. (HAL 1, n=5) or

ritanserin 5.0 mg/k i.p. (RIT, n=5). *p<0.05 compared to

SAL+PCP group and #p<0.05 compared to SAL+SAL

group.
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The stimulation of such non-NMDA receptors would,

in turn, produce an enhanced glutamatergic output

from the mPFC neurons, including those projecting to

the dorsal raphe nucleus, thereby enhancing sero-

tonergic cell firing and cortical 5-HT efflux. Therefore,

the observed effects on 5-HT efflux would be second-

ary to a primary release of glutamate in the mPFC. In

line with these results, the release of 5-HT in the mPFC

evoked by the 5-HT2A/2C receptor agonist 1-(2,5-di-

methoxy-4-iodophenyl)-2-aminopropane (DOI) or the

a1-adrenoceptor agonist cirazoline was reversed by

the a-amino-3-hydroxy-5-methyl-4-isoxazole propi-

onate (AMPA)/kainate receptor blockade and by the

activation of mGluR2/3 receptors (Amargós-Bosch et

al., 2003 ; Bortolozzi et al., 2003 ; Martı́n-Ruiz et al.,

2001). However, although this functional interplay

between the mPFC and the dorsal raphe nucleus is

well documented (Amargós-Bosch et al., 2003; Celada

et al., 2001; Hajós et al., 1998 ; Lucas et al., 2005 ;

Martı́n-Ruiz et al., 2001), a direct influence of NMDA

receptor antagonists on serotonergic neurons at the

level of the dorsal raphe nucleus cannot be discarded.

Indeed, the local application of MK-801 into the dorsal

raphe nucleus increases the local release of 5-HT both

in vitro (Callado et al., 1999 AQ1) and in vivo (Tao and

Auerbach, 2000). A third alternative could be that the

NMDA receptor antagonist-induced excess of cortical

glutamate would act on AMPA receptors presumably

located on serotonergic terminals in the mPFC, thus

promoting 5-HT release. Several reports have de-

scribed the presence of such AMPA receptors in the

presynaptic compartment with a role in the regulation

of transmitter release (Schenk and Matteoli, 2004).

Moreover, the existence of presynaptic AMPA

receptors in serotonergic nerve endings has been

proposed in other regions of the brain (Maione et al.,

1997) although it remains to be determined in the

mPFC.

The second important finding of the present study

is that the increased efflux of 5-HT produced by the

systemic administration of PCP and ketamine was

reversed by the atypical antipsychotics clozapine and

olanzapine, but not by the classical antipsychotic

haloperidol. The blocking effect of olanzapine was
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Figure 3. Effects of ketamine (KET) 25 mg/kg s.c. on the 5-HT

efflux in the mPFC alone (n=9) or in combination with

antipsychotic drugs (a) or receptor antagonists (b). Data

(mean¡S.E.M.) in (a) and (b) are expressed as percentage of

baseline. The group SAL+KET in (a) has been replotted in

(b). Data in (c) represent the area under the curve (AUC) of

the different treatments. Ketamine increased dialysate 5-HT

with respect to the control group (n=5) that received two

injections of saline (SAL). The effect of ketamine was blocked

by pretreatment with clozapine 1.0 mg/kg s.c. (CLZ, n=5),

olanzapine 1.0 mg/kg s.c. (OLZ, n=7) and prazosin 0.3 mg/

kg s.c. (PRZ, n=5) and, but not by haloperidol 1.0 mg/kg s.c.

(HAL 1, n=4) or ritanserin 5.0 mg/kg i.p. (RIT, n=4).

*p<0.05 compared to SAL+KET group and #p<0.05

compared to SAL+SAL group.
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delayed in comparison with that of clozapine, which

may be related to differences in kinetics of the drugs.

In general, atypical antipsychotics have been shown to

be more effective than classical antipsychotics in re-

versing behavioural deficits (for review, see Jentsch

and Roth, 1999) and the blockade of NMDA responses

on pyramidal neurons of the mPFC (Wang and Liang,

1998) elicited by PCP. It remains to be determined,

however, if the effects of clozapine and olanzapine are

dependent on cortical glutamate changes. Previous

research appeared to point in that direction inasmuch

as clozapine tended to block glutamate efflux induced

by PCP (Adams and Moghaddam, 2001). However,

the high variability of the responses precluded any

definitive conclusion. On the other hand, the effects of

PCP and ketamine were antagonized by the selective

a1-adrenoceptor antagonist prazosin. Both clozapine

and haloperidol possess a similar affinity for the

a1-adrenoceptor (Arnt and Skarsfeldt, 1998 ; Millan

et al., 1998) and together with olanzapine are able to

inhibit serotonergic cell firing in the dorsal raphe

nucleus through a1-adrenoceptor antagonism (Millan

et al., 1998 ; Sprouse et al., 1999). Furthermore, cloza-

pine and haloperidol occupy a similar amount (y50%)

of cortical a1-adrenoceptors at the doses used in the

present work (Chaki et al., 1999 TQ1). Altogether these

findings would suggest that, at the doses tested, the

partial occupancy of a1-adrenoceptors is not respon-

sible for the different effects of these drugs on the

efflux of 5-HT and that these effects would not result

from an inhibition of serotonergic cell firing but rather

from a direct cortical action. In contrast, the dose of

prazosin fully occupies brain a1-adrenoceptors (Patel

et al., 2001). Thus, its effects may result not only from a

post-synaptic action in the mPFC since its local appli-

cation in the mPFC markedly reduced 5-HT release

(Amargós-Bosch et al., 2003), but also from its strong

inhibition of serotonergic cell firing at the raphe level

(Baraban and Aghajanian, 1980). Nevertheless, it

should be kept in mind that the sole blockade of

a1-adrenoceptors does not posses antipsychotic action.

In addition to a1-adrenoceptors, clozapine and

olanzapine exhibit affinities much greater than that of

haloperidol for 5-HT2C receptors (Arnt and Skarsfeldt,

1998 ; Bymaster et al., 1996). However, antagonism at

5-HT2C receptors increases serotonergic transmission.

Thus, a selective 5-HT2C receptor antagonist (SB

242084) is able to potentiate cortical 5-HT release eli-

cited by 5-HT reuptake blockade (Cremers et al., 2004).

This is probably the mechanism by which ritanserin

slightly but significantly increased mPFC 5-HT in the

present work.

Finally, clozapine and olanzapine share a high

affinity for the 5-HT2A receptor (Arnt and Skarsfeldt,

1998 ; Bymaster et al., 1996), which suggests that this

receptor could theoretically play a role in the action of

these drugs in reducing the increased efflux of 5-HT

evoked by PCP and ketamine. In fact, the 5-HT2A/2C

receptor antagonist ritanserin was able to abolish

the effects of PCP on the 5-HT efflux, which can be

predominantly attributed to its 5-HT2A antagonistic

properties (see above). In accord with our results, the

selective 5-HT2A receptor antagonist, M100907, offsets

the PCP-induced hyperlocomotion, although PCP

does not directly interact with 5-HT2A receptors

(Millan et al., 1999). In addition, the pharmacological

stimulation of the mPFC with S-AMPA is also
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Figure 4. Effects of haloperidol 1.0 mg/kg s.c. (HAL 1, n=4),

olanzapine (OLZ, n=4), clozapine 1.0 mg/kg s.c. (CLZ,

n=6), ritanserin 5.0 mg/kg i.p. (RIT, n=6) and prazosin

0.3 mg/kg s.c. (PRZ, n=5) on 5-HT efflux in the mPFC. Data

(mean¡S.E.M.) in (a) are expressed as percentage of baseline.

Data in (b) represent the area under the curve (AUC) of the

different treatments. With respect to the saline-treated group

(SAL, n=7), only haloperidol (*p<0.05), clozapine (*p<0.02)

and prazosin (*p<0.005) significantly reduced 5-HT efflux.
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reversed by 5-HT2A receptor antagonists (Amargós-

Bosch et al., 2003), which suggests that the 5-HT2A

antagonism is able to counteract an excessive stimu-

lation of AMPA receptors in the mPFC. However,

ritanserin did not antagonize the ketamine-induced

increase in 5-HT efflux, despite it being somewhat

lower than that produced by PCP. One possibility of

reconciling these apparently discordant findings is

that 5-HT2A/2C receptor blockade may be effective only

in conditions of a high serotonergic tone. In accord-

ance with this, M100907 can block MK-801-induced

hyperlocomotion, but not after 5-HT depletion (Martin

et al., 1998b). The precise location of the 5-HT2A

receptors responsible for these effects remains to be

determined. It is of significance that, although

M100907 is able to block the effects of 5-HT2A receptor

agonists at the level of the dorsal raphe nucleus

(Boothman et al., 2003), the evidence that 5-HT cells

do not express 5-HT2A (Cornea-Hébert et al., 1999 ;

Pompeiano et al., 1994) further suggests that post-

synaptic (possibly cortical) 5-HT2A receptors are

involved.

Regardless of the precise mechanism, it seems that

the ability to prevent the NMDA receptor antagonist-

induced enhancement of 5-HT efflux in the mPFCmay

be a characteristic of atypical antipsychotic drugs. At

the dose of 1 mg/kg, it is possible that occupancy of

both a1-adrenergic and 5-HT2A receptors by clozapine

and olanzapine may contribute to the blockade of the

NMDA receptor antagonism-induced increase in cor-

tical 5-HT efflux. Given that an overactive serotonergic

transmission has been inferred to occur in schizo-

phrenia, a reduction of 5-HT in the mPFC may be

suggestive of a better antipsychotic profile for

negative-cognitive symptoms. It must be taken into

consideration, however, that the effects observed in

the present work are limited to the pharmacological

profiles of clozapine and olanzapine. While all classi-

cal antipsychotics are characterized by a predominant

D2 receptor antagonism, within the atypical class each

drug possesses a distinct pharmacological profile. It is,

therefore, difficult to assign the blockade of NMDA

receptor antagonist-induced release of cortical 5-HT

to a particular receptor interaction, although the

5-HT2A receptor seems to have an important

contribution.
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Hajós M, Richards CD, Székely AD, Sharp T (1998). An

electrophysiological and neuroanatomical study of the

medial prefrontal cortical projections to the midbrain

raphe nuclei in the rat. Neuroscience 87, 95–108.

Jackson ME, Homayoun H, Moghaddam B (2004). NMDA

receptor hypofunction produces concomitant firing rate

potentiation and burst activity reduction in the prefrontal

cortex. Proceedings of the National Academy of Sciences USA

101, 8467–8472.

Jentsch JD, Roth RH (1999). The neuropsychopharmacology

of phencyclidine : from NMDA receptor hypofunction to

the dopamine hypothesis of schizophrenia.

Neuropsychopharmacology 20, 201–225.

Jodo E, Suzuki Y, Katayama T, Hoshino K-Y, Takeuchi S,

Niwa S-I, Kayama Y (2005). Activation of medial

prefrontal cortex by phencyclidine is mediated via a

hippocampo-prefrontal pathway. Cerebral Cortex 15,

663–669.

Jodo E, Suzuki Y, Takeuchi S, Niwa S, Kayama Y (2003).

Different effects of phencyclidine and methamphetamine

on firing activity of medial prefrontal cortex neurons

in freely moving rats. Brain Research 962, 226–231.

Kashiwa A, Nishikawa T, Nishijima K, Umino A,

Takahashi K (1995). Dizocilpine (MK-801) elicits a

tetrodotoxin-sensitive increase in extracellular release of

dopamine in rat medial frontal cortex. Neurochemistry

International 26, 269–279.

Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A,

Hoffman R (2003). NMDA receptor antagonist effects,

cortical glutamatergic function, and schizophrenia : toward

a paradigm shift in medication development.

Psychopharmacology 169, 215–233.

Lejeune F, Gobert A, Rivet J-M, Millan MJ (1994). Blockade

of transmission at NMDA receptors facilitates the electrical

and synthetic activity of ascending serotoninergic

neurones. Brain Research 656, 427–431.

Lindefors N, Barati S, O’Connor WT (1997). Differential

effects of single and repeated ketamine administration on

dopamine, serotonin and GABA transmission in rat medial

prefrontal cortex. Brain Research 759, 205–212.

Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, VarneyMA

(2003). Effects of ketamine and N-methyl-D-aspartate on

glutamate and dopamine release in the rat prefrontal

cortex : modulation by a group II selective metabotropic

glutamate receptor agonist LY379268. Neuroscience 117,

697–706.
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