EL PAPEL DEL DIACILGLICEROL EN EL TRÁFICO DE MEMBRANAS EN LA ZONA ENTRE EL RETÍCULO ENDOPLASMÁTICO Y EL COMPLEJO DE GOLGI

Tesis presentada por Inés Fernández Ulibarri
para optar al título de Doctor por la Universidad de Barcelona
Resultados
I. El DAG participa en la formación de las vesículas COPI y en el transporte retrógrado de proteínas
Objetivo:

El DAG es necesario para el transporte de proteínas desde el Golgi hasta la membrana plasmática en levaduras71,276,277. Además, en células de mamíferos, es esencial en el TGN para formar los ITs que se transportan a la membrana plasmática247. Sin embargo, no hay ninguna evidencia de su participación en las etapas tempranas de la vía secretora. Así pues, nos centramos en averiguar la implicación del DAG en el transporte de proteínas en la zona del ER/Golgi. Para determinar la contribución del DAG en el transporte entre el RE y el Golgi utilizamos, como primera aproximación, una variedad de fármacos conocidos que inhiben su producción.

1.1.- El propanolol, el U73122 y la FB1 disminuyen los niveles de DAG en el Golgi

Para estudiar el papel del DAG en el transporte de proteínas en la zona del RE/Golgi llevamos a cabo una aproximación farmacológica usando unos inhibidores específicos de las enzimas implicadas, directa o indirectamente, en la producción del DAG. Estos fármacos son el propanolol, que inhibe la PAP143,202,278; el U73122 que inhibe la activación de la PI-PLC166,261,279; la FB1 que inhibe la ceramida sintasa280-282 y el D609 que inhibe la PC-PLC216,283 (Ver Fig.13 de la Introducción). Como hemos citado en la introducción, estos agentes disminuyen los niveles de DAG en muchos tipos celulares.

Teniendo en cuenta que la eficiencia del transporte en la zona RE/Golgi depende de la integridad de los microtúbulos y de los filamentos de actina284, examinamos, en primer lugar, el efecto de estos compuestos sobre su organización285,286. Para ello, tratamos células Vero con propanolol, U73122, D609 o FB1 a diferentes concentraciones y analizamos la organización de la actina y los microtúbulos. De todas las concentraciones ensayadas, seleccionamos aquella en la que la organización del citoesqueleto estaba intacta (Fig.1). A pesar de que a esas concentraciones los microtúbulos y los filamentos de actina tenían una organización aparentemente normal, decidimos hacer un estudio más detallado del efecto de estos fármacos sobre su dinámica. Para examinar si estos fármacos alteraban la dinámica de microtúbulos, tratamos primero las células con nocodazole (NZ; una droga que despolimeriza los microtúbulos) y estudiamos la cinética de repolimerización de los microtúbulos en presencia de los fármacos. Observamos
que de todos los agentes utilizados sólo el D609 bloqueaba la reconstitución de los microtúbulos después de eliminar el NZ del medio (Fig. 2).

Figura 1. El tratamiento con propanolol, U73122, D609 o FB1 no altera la organización del citoesqueleto. Células Vero control y tratadas con propanolol (60 µM; 30 min), U73122 (6 µM; 30 min), D609 (500 µM; 30 min) o FB1 (25 µg/ml; 24 h) se procesaron para inmunofluorescencia usando faloidina-TRITC para visualizar los filamentos de actina (F-actina) anticuerpos anti-β-tubulina para visualizar microtúbulos o anti-giantina para visualizar el Golgi. Escala Bar, 10 µm

Por otro lado, también examinamos la reorganización de las fibras de estrés en células previamente tratadas con latrunculina B (LTB; una droga que despolimeriza las fibras de estrés) en presencia de propanolol, U73122, D609 o FB1. La organización de la actina ya era normal después de 30 min de eliminar la LTB del medio tanto en las células control como en las tratadas con propanolol, U73122 o FB1. Sin embargo, en el caso del D609, las fibras de estrés no pudieron reorganizarse y permanecían despolimerizadas (Fig. 3). Consecuentemente, decidimos utilizar sólo el propanolol, el U73122 y la FB1.

Seguidamente, examinamos si el propanolol, el U73122 y la FB1, a las concentraciones que no alteraban el citoesqueleto, reducían los niveles de DAG en el Golgi. Para ello, utilizamos dos aproximaciones experimentales: (1) el mutante catalíticamente inactivo de la proteína PKD (PKD-KD) y (2) la cuantificación bioquímica de los niveles de DAG en fracciones enriquecidas de Golgi. Con respecto al primero, se sabe que el DAG es suficiente y necesario para reclutar la PKD en las membranas del TGN. Por lo tanto, estudiamos el efecto del propanolol, el U73122 y la FB1 sobre la localización de la PKD en células HeLa que expresan de forma
estable la GST-Flag-PKD-KD, ya que sólo permanece en el Golgi si los niveles de DAG son los adecuados. Observamos que, después de 15 min de tratamiento con propanolol (Fig.4 C, D), U73122 (Fig.4 G, H) o FB1, la PKD-KD se redistribuía del Golgi al citoplasma. Cuando el propanolol se eliminaba del medio, la PKD-KD volvía a asociarse al Golgi (Fig.4 E, F). También cuantificamos los niveles de DAG en las fracciones de Golgi aisladas de cultivos de células HeLa-S control o tratadas con propanolol o U73122 (Fig.4 I). Como esperábamos, ambos tratamientos disminuían los niveles de DAG en las membranas del Golgi, aproximadamente un 45 % respecto al control. En el caso de la FB1, la disminución era aproximadamente de un 60 %.

Figura 2. A diferencia del D609, el tratamiento con propanolol, U73122 o FB1 no altera la dinámica de reensamblaje de los microtúbulos. Las células Vero se trataron, primero, con NZ (30 µM; 2 h), y, seguidamente, con propanolol (60 µM), U73122 (6 µM), D609 (500 µM) o FB1 (25 µg/ml) en presencia de NZ durante 15 min más. Después, el NZ se eliminó del medio y se examinó el reensamblaje de microtúbulos a diferentes tiempos hasta las 2 h en presencia de propanolol, U73122, D609 o FB1. Las células se fijaron y procesaron para inmunofluorescencia usando anticuerpos anti-β-tubulín. Escala Bar, 10 µm.

En resumen, estos resultados indican que tanto el propanolol como el U73122 y como la FB1 disminuyen significativamente los niveles de DAG asociados al Golgi sin alterar la organización ni la dinámica del citoesqueleto de actina ni de microtúbulos.

1.2.- El propanolol y el U73122 bloquean el transporte retrógrado pero no el anterógrado

Para determinar si el mantenimiento de los niveles de DAG en las membranas del Golgi es necesario para el tráfico de membranas en la zona del
RE/Golgi, examinamos el efecto de estos fármacos sobre el flujo de membrana y el transporte de un **cargo** entre el RE y el Golgi. En primer lugar, estudiamos el transporte anterógrado desde el RE al Golgi empleando como marcador la glicoproteína G del virus de la estomatitis vesicular (VSV-G). Existe una variante termosensible del virus (ts045-VSV) que permite sincronizar el transporte de la VSV-G a lo largo de la vía secretora. Así pues, cuando las células se mantienen a la temperatura no permissiva (40 °C), la VSV-G se retiene dentro del RE. Un vez que la VSV-G se ha acumulado en el RE, las células se incuban a la temperatura permissiva (32 °C), para permitir el transporte sincrónico de la VSV-G hacia la membrana plasmática pasando previamente por el Golgi. En las células control, el transporte de la VSV-G desde el RE al Golgi tenía lugar a los 15 min. Esta llegada se detectaba porque la proteína adquiría un patrón de distribución perinuclear (Fig.5 B) en lugar de tener el típico patrón reticular del RE (Fig.5 A). Posteriormente, la VSV-G continuaba su transporte hacia la membrana plasmática alcanzándola a los 60 min (Fig.5 C). En el caso de las células tratadas con propanolol, U7312 o FB1, el transporte de la VSV-G desde el RE al Golgi se producía con la misma cinética que la de las células control (comparar Fig.5 B vs Fig.5 E, H, K). Sin embargo, es interesante destacar que la cinética de transporte de la VSV-G desde el Golgi a la...
membrana plasmática variaba según el tratamiento. Así pues, la VSV-G se quedaba retenida en el Golgi en las células tratadas con propanolol o FB1 (Fig.5 F, L, respectivamente). Por el contrario, en las células tratadas con U73122, la VSV-G ya había alcanzado la membrana plasmática como en las células control (Fig.5 I vs Fig.5 C). En concordancia con los resultados del transporte de la VSV-G, ni el propanolol ni el U73122 ni la FB1 afectaron el reensamblaje normal del Golgi después de eliminar la BFA del medio (Fig.Supl.1 y Fig.Supl.2) (Ver subapartado 7.1 de Materiales y Métodos).

Figura 4. El tratamiento con propanolol o U73122 reduce los niveles de DAG en el Golgi. (A-H) Las células HeLa que expresan de forma estable la GST-flag-PKD-KD (K618N) se trataron con propanolol (60 µM; 15 min) o U73122 (6 µM; 15 min). Posteriormente, se procesaron para inmunofluorescencia usando anticuerpos monoclonales anti-flag para visualizar la PKD-KD y anticuerpos policlonales antigalactosiltransferasa para visualizar el Golgi. (I) Cuantificación del contenido de DAG en las membranas de Golgi aisladas de células HeLa-S control y tratadas con propanolol o U73122 (60 µM y 6 µM, respectivamente; 15 min) con el método de la DAGK. La significación estadística, $p \leq 0.05$ (*). Escala Bar, 10 µm.
Paralelamente, examinamos el efecto de la reducción de los niveles de DAG en el Golgi sobre el transporte retrógrado desde el Golgi al RE. El estudio del transporte retrógrado es más complicado debido a que no existe un repertorio de buenos marcadores de transporte como ocurre en el caso del transporte anterógrado (VSV-G). Sin embargo, una manera sencilla de comprobar si el flujo

Figura 5. Ni el propanolol, ni el U73122 ni la FB1 alteran el transporte anterógrado de la VSV-G. Las células Vero se transfectaron con el mutante termosensible del virus de la estomatitis vesicular (ts045-VSV) y se incubaron a la temperatura no permisiva (40 ºC) durante 2 h (A, D, G, J). Posteriormente, se trataron con propanolol (60 µM), U73122 (6 µM) o FB1 (25 µg/ml) y se incubaron a diferentes tiempos (B-L) a la temperatura permisiva (32 ºC). Finalmente, se fijaron y se procesaron para inmunofluorescencia usando anticuerpos contra la glicoproteína G del VSV. Escala Bar, 10 µm.
retrógrado de membrana en la zona RE/Golgi consiste en emplear la BFA (Ver subapartado 7.1 de los Materiales y Métodos). En las células tratadas con BFA, las proteínas residentes del Golgi que se encuentran en la zona perinuclear (Inserto de la Fig.6 A), se redistribuyeron al RE adquiriendo un característico patrón reticular propio del RE (Fig.6 A). Cuando se añadía primero la BFA y posteriormente el propanolol, el U73122 o la FB1, respectivamente, el Golgi se desensamblaba con la misma cinética que las células control. Por el contrario, cuando el propanolol o el U73122 se añadieron al mismo tiempo o un poco antes que la BFA, la redistribución de los marcadores del Golgi al RE se retrasaba considerablemente (Fig.6 B, C).

Estos experimentos se cuantificaron y observamos que la cinética de desensamblaje en las células tratadas con propanolol o U73122 es mucho más lenta que en las células control, especialmente en el caso del propanolol ya que después de 20 min de acción de la BFA todavía un 90% de las células permanecían con el Golgi aparentemente intacto (Fig.6 D). Sin embargo, la FB1 no alteraba en absoluto la cinética de desensamblaje del Golgi inducido por la BFA (Fig.Supl.2). Por lo tanto, a diferencia de la FB1, el propanolol y el U73122 enlentecían el flujo de membrana del Golgi al RE. Para confirmar este resultado, examinamos la
distribución subcelular del receptor de KDEL. Como hemos dicho en la introducción, el KDELr media el retorno de proteínas solubles residentes del RE que se han escapado de dicho compartimento\(^{287}\). El KDELr localiza tanto en el Golgi como en numerosas estructuras puntiformes citoplasmáticas, que representan estructuras tubulovesiculares que ciclan continuamente entre el RE y el Golgi (Fig.7 A). La modificación de esta distribución refleja una alteración en el tráfico anterógrado o retrógrado\(^{287}\). En células Vero tratadas con propanolol (Fig.7 B) o U73122 (Fig.7 C), se reducía el marco del KDELr en las estructuras puntiformes citoplasmáticas (Fig.7 D). También observamos el mismo efecto sobre la distribución subcelular en células NRK y HeLa (Fig. Supl.3). Al cuantificar el efecto de cada uno de los fármacos sobre estas alteraciones morfológicas, observamos que las alteraciones eran más contundentes con el propanolol que con el U73122 (Fig.7 D). En concordancia con los resultados de la BFA, las células tratadas con FB1 no alteraban el patrón de distribución del KDELr (Fig. Supl.2).

Figura 7. El propanolol y el U73122 alteran el patrón de distribución del KDELr. (A-C) Distribución subcelular del KDELr usando anticuerpos policlonales anti-KDELr en células Vero control y tratadas con propanolol (60 µM; 60 min; B) o U73122 (6 µM; 60 min; C). (H) Cuantificación de los cambios morfológicos. La significancia estadística, \(p \leq 0.01 (**) \) y \(p \leq 0.001 (***) \). Escala Bar, 10 µm.
Por tanto, estos resultados sugieren que sólo las especies moleculares de DAG procedente de las vías alteradas por el propanolol o U73122 son necesarias para el transporte retrógrado (desde el Golgi al RE) pero no para el transporte anterógrado (desde el RE al Golgi). Se ha postulado que la inhibición de la PAP por el propanolol y la inhibición de la PI-PLC por el U73122 pueden reducir diferentes especies moleculares de DAG167. De manera que examinamos si el propanolol o el U73122 tenían un efecto aditivo o sinérgico sobre el transporte retrógrado de proteínas desde el Golgi al RE. Las células se trataron a unas concentraciones bajas de los fármacos que no afectaban ni al desensamblaje de Golgi ni al patrón de distribución del KDELr (Fig.8 A, B). Cuando las células se incubaron con los dos fármacos juntos (propanolol+U73122), se bloqueaba el desensamblaje del Golgi inducido por BFA y cambiaba la distribución subcelular de KDELr (Fig.8 C). Estos resultados no se distinguieron de aquellos en los que utilizaron cada compuesto por separado a concentraciones más altas (Fig.7 A, B). También coincidimos las células con la concentración habitual de trabajo de propanolol (60 µM) y U73122 (6 µM), y observamos que el cambio de distribución del KDELr duraba más tiempo que cuando se incubaban por separado (120 min vs. 60 min) (Fig.Supl.4 B). Además, la incubación de las células con ambos compuestos también inhibía durante más tiempo el desensamblaje de Golgi inducido por BFA (60 min vs 30 min) (Fig.Supl.4 A). Todos estos resultados sugieren que diferentes especies moleculares de DAG participan en el transporte retrógrado en la zona RE/Golgi.

Figura 8. El cambio de distribución del KDELr se ve reforzado por el tratamiento conjunto del propanolol y del U73122. (A-B) Las células Vero que se trataron con propanolol (40 µM; 60 min) o U73122 (4 µM; 60 min) mostraron un patrón de distribución de KDELr indistinguible del control (Comparar con la Fig.7 A). (C) En las células tratadas con propanolol (40 µM) junto con U73122 (4 µM), el patrón subcelular no se distinguía de aquellos tratados sólo con propanolol (60 µM) o U73122 (6 µM) (Comparar con la Fig.7 B y C, respectivamente). Escala Bar, 10 µm.
1.3.- El propanolol y el U73122 alteran la formación de túbulos en las membranas de Golgi inducido por la BFA

Una de las características típicas del efecto de la BFA es que, previo a la fusión de las membranas del Golgi con el RE, se produce la pérdida del coatómero (COPI) en las membranas de Golgi. Esto se debe a que la BFA impide la activación de Arf1 y, consecuentemente, las proteínas del coatómero no pueden reclutarse a la membrana y quedan libres en el citoplasma. Para conocer con más detalle si la causa del efecto inhibidor del propanolol y del U73122 sobre el flujo retrógrado producido por la BFA es producto de un retraso en la disociación del coatómero, examinamos la cinética de disociación del coatómero de las membranas de Golgi en presencia de la BFA (Fig.9). En las células control y tratadas con propanolol o U73122, la proteína β-COP (uno de los componentes del COPI) se localizaba en el Golgi (Fig.9 A, C, E). Después de 2 min de tratamiento con BFA, la β-COP se redistribuía al citoplasma mientras que la GM130 (un típico marcador residente del cis-Golgi) permanecía en la zona perinuclear (Fig.9 G, F). En las células tratadas con propanolol más BFA o U73122 más BFA, observamos que la cinética de disociación del coatómero era la misma que la observada en el control (Fig.9 G, H, K). Este resultado indica que el DAG ejerce su acción en un paso posterior a la disociación del coatómero de las membranas del Golgi.

Sabemos que la BFA, después de inducir la disociación del coatómero de las membranas de Golgi, promueve la formación de túbulos en el Golgi que se van alargando hasta que se fusionan finalmente con el RE. Por este motivo, examinamos si el propanolol o el U73122 alteraban la formación o elongación de los túbulos del Golgi inducidos por la BFA. La generación de los túbulos se examinó in vivo grabando a las células HeLa que expresaban de forma estable una proteína residente de Golgi, la galactosiltransferasa (GalTasa) fusionada con la proteína fluorescente amarilla (YFP) durante el tratamiento con propanolol más BFA o U73122 más BFA (Fig.10). Como esperábamos, las células tratadas sólo con BFA mostraron numerosos túbulos delgados derivados del Golgi, los cuales se fusionaron irreversiblemente con el RE después de unos minutos (Fig.10 A; video 1). El tratamiento con propanolol reducía considerablemente el número de túbulos que emergían del Golgi pero el diámetro de los mismos era mucho mayor (Fig.10 B; video 2). Además, estos túbulos gruesos podían elongarse pero no conseguían fusionarse con el RE, de manera que volvían al Golgi. En el tratamiento con U73122 también se disminuía significativamente del proceso de tubulación, aunque en este caso, los túbulos eran similares a los que se veían en el tratamiento sólo con BFA (Fig.10 C; video 3). Por tanto, podemos concluir que la desaceleración del
Resultados I

desensamblaje del Golgi inducido por la BFA en células tratadas con propanolol o U73122 no se debe a una alteración en la cinética de disociación del coatómero COPI del Golgi sino a una interferencia en la formación y progreso de los túbulos que emergen del Golgi y su posterior fusión con el RE.

Figura 9. Ni el propanolol ni el U73122 alteran la cinética de disociación del coatómero inducida por la BFA. Células Vero control (A, B) o tratadas con propanolol (60 µM; 5 min; C, D) o U73122 (6 µM; 5 min; E, F). A continuación, se trataron 3 min con BFA (5 µg/ml; G-L), se fijaron y procesaron para inmunofluorescencia usando anticuerpos monoclonaless anti-GM130 y policlonales anti-β-COP. Escala Bar, 10 µm.
1.4.- El DOG y el PDBu previenen la inhibición del transporte retrógrado del receptor de KDEL inducido por el propanolol y el U73122

Para establecer una relación directa entre el efecto del propanolol o del U73122 sobre el transporte retrógrado en la zona del RE/Golgi y la disminución de los niveles de DAG en el Golgi, examinamos si las alteraciones en el tráfico causadas por estos fármacos podían evitarse añadiendo DAG. Para llevar a cabo estos experimentos, utilizamos dos tipos de DAG exógenos, el DOG y el PDBu, que son permeables a la membrana plasmática y pueden introducirse en las membranas intracelulares290-294. En primer lugar, examinamos el efecto del DOG y del PDBu sobre la organización del citoesqueleto. Los experimentos control demostraron que ni el tratamiento con DOG ni con PDBu a las concentraciones indicadas alteraron el citoesqueleto de actina ni el de los microtúbulos (control Fig.1 vs Fig.Supl.5). A continuación, examinamos si el DOG y el PDBu se incorporaban en las membranas del Golgi. Se ha descrito que ciertas proteínas contienen una secuencia conservada de 50 aa, denominada dominio C1295, que le sirve para unirse al DAG. Estos dominios C1 actúan como sensores del DAG en las membranas celulares167 y, en particular, el dominio C1b de la PKCθ se comporta como un

Figura 10. El propanolol, pero no el U73122, altera el proceso de tubulación del Golgi inducido por la BFA. Serie de imágenes de las películas de las células HeLa que expresan de forma estable la YFP-GalTasa grabadas durante el tratamiento con BFA (5 µg/ml; A), propanolol (60 µM) más BFA y U73122 (6 µM) más BFA. Las imágenes que se muestran en el panel A se obtuvieron del video 1 (Células HeLa estables con GalTasa-YFP tratadas con BFA), las que se muestran en el panel B se obtuvieron del video 2 (Células HeLa estables con GalTasa-YFP tratadas con propanolol más BFA) y las que se muestran en el panel C se obtuvieron del video 3 (Células HeLa estables con GalTasa-YFP tratadas con U73122 más BFA).
sensor de los niveles de DAG en el Golgi229. Como ya se había descrito en linfocitos167, en las células que se transfectaron con el dominio C1b unido a la proteína fluorescente verde (GFP), el dominio C1 se localizaba en el Golgi (Fig.11 B, E). Teniendo en cuenta que el dominio C1 tiene mucha afinidad por el Golgi,

Figura 11. El DOG y el PDBu se incorporan en las membranes de Golgi. (A) Cuantificación de la fluorescencia del dominio C1b-GFP en el Golgi en células grabadas in vivo con un microscopio confocal. Las células COS-1 se transfectaron con el dominio C1b-GFP de la PKC\textgreek{b} y, posteriormente, se trataron con PMA (250 nM; 30 min), PMA más DOG (3 \textmu M) o PMA más PDBu (250 nM). (B-E) En condiciones control, el dominio C1b-GFP localizaba mayoritariamente en el Golgi. (C-F). Después de 10 min de tratamiento con PMA, el dominio C1b se localizaba en la membrana plasmática. La adición de DOG después de 10 min de tratamiento con PMA provocaba que el C1b-GFP regresara más rápido al Golgi (ver flecha en el G) en comparación con las células tratadas sólo con PMA (D). Escala Bar, 10 \textmu m. La significancia estadística, \(p \leq 0.01\) (**2) y \(p \leq 0.001\) (**2).
pensamos que una buena estrategia para estudiar si el DOG y el PDBu se incorporaban en este compartimento consistía, primero, en inducir la disociación del dominio C1 del Golgi y, posteriormente, en facilitar su translocación al mismo con el tratamiento de DOG y PDBu. Si este fuera el caso, la cinética de translocación del dominio C1 al Golgi en las células tratadas con DOG y PDBu sería más rápida que en las células control. Respecto al primero, utilizamos el PMA como control positivo de la disociación del dominio C1 del CG a la membrana plasmática, ya que es un análogo sintético del DAG que se acumula en la membrana plasmática. Como ya se había descrito en otros tipos celulares167, después del tratamiento con PMA, el dominio C1b se translocaba rápidamente a la membrana plasmática (Fig.11 C, F).

Observamos que sólo un 20% del dominio C1b quedaba asociado al Golgi después de 5-10 min de tratamiento con PMA (Fig.11 A). Después de 15 min, la fluorescencia en el Golgi continuaba siendo muy baja (Fig.11 A; video 4). Con esta base, añadimos el DOG o el PDBu en el momento en el que la asociación del dominio C1b con el Golgi era la más baja (entre 5 y 10 min después del tratamiento con PMA). Esperábamos ver un regreso rápido del dominio C1b desde la membrana plasmática al Golgi debido a la incorporación DAG exógeno en las membranas intracelulares. De hecho, al añadir el DOG o el PDBu a las células tratadas con PMA, la fluorescencia del dominio C1b en el Golgi se recuperaba mucho más rápidamente que en aquellas células en las que se trataron sólo con PMA [Fig.11 A; comparar Fig.11 D con la Fig.11 G y video 4 (PMA) con video 5 (PMA+DOG)]. Por lo tanto,
este resultado indica que el DOG y el PDBu se incorporan en las endomembranas y en particular en el Golgi.

Figura 13. El DOG y el PDBu previenen la alteración del patrón de distribución subcelular del receptor de KDEL. Las células Vero se trataron durante 1 h con DOG (3 µM; B), PDBu (250 nM; C), propanolol (60 µM; D), DOG más propanolol (E) o PDBu más propanolol (F). Posteriormente, se fijaron y procesaron para inmunofluorescencia usando anti-KDELr. (G) Análisis cuantitativo de las estructuras puntiformes citoplasmáticas en cada condición experimental. La significancia estadística, p ≤ 0.05 (*), p ≤ 0.01 (**) y p ≤ 0.001 (***) . Escala Bar, 10 µm.

A continuación, examinamos si el DOG y/o el PDBu (Fig.12) incorporados en las membranas de Golgi compensaban la disminución del DAG inducida por el propanolol y el U73122. Para ello monitorizamos in vivo el comportamiento del
dominio C1b-GFP asociado al Golgi después de los diferentes tratamientos (Fig.12). Observamos que la fluorescencia del dominio C1b-GFP asociada al Golgi en las células tratadas con propanolol, disminuía en los primeros 5 min y finalmente se recuperaba a los 15 min (Fig.12 A, B; video 6). También observamos una disociación, aunque menor, en las células tratadas con U73122. Estos resultados coinciden con la reducción de la unión de la PKD-KD (Fig.4 A) y la cuantificación de los niveles de DAG en el Golgi (Fig.4 I). En este sentido, al igual que la PKD-KD, las células tratadas con la FB1 no mostraron la localización característica del dominio C1b-GFP en el Golgi, sino que se había redistribuido al citoplasma (Fig.Supl.2 C). Por otro lado, las células tratadas con DOG durante 15 min no modificaron la localización del dominio C1b en el Golgi (Fig.12 A, B), aunque observamos una pequeña bajada en las células tratadas con PDBu. Sin embargo, cuando las células se preincubaron con el DOG y, posteriormente, se trataron con el propanolol durante 15 min más, la disminución de la fluorescencia en el Golgi fue significativamente atenuada (Fig.12 A, B; video 7). Todos estos resultados indican que tanto el DOG como el PDBu se incorporan en las membranas del Golgi y que compensan la disminución del DAG endógeno en el Golgi inducido por el propanolol y el U73122.

![Figura 14. El DOG previene el efecto inhibidor del propanolol y del U73122 sobre el desensamblaje del Golgi inducido por la BFA. (A) Las células Vero se preincubaron con DOG (3 µM) 15 min antes de añadir la BFA (5 µg/ml) (B) o BFA más propanolol (60 µM) (C) o BFA más U73122 (6 µM) (D). Después se procesaron para inmunofluorescencia usando anticuerpos monoclonales anti-CTR433 para visualizar el Golgi. Escala Bar, 10 µm. (Comparar con Fig.6 A-C) (E) Análisis cuantitativo de los resultados. La significancia estadística, \(p \leq 0.05 \) (*), \(p \leq 0.01 \) (**) y \(p \leq 0.001 \) (***).](image-url)
Por último, examinamos si el DOG o el PDBu podían contrarestar las alteraciones causadas por el propanolol o el U73122 en el transporte retrógrado de proteínas. Las células se incubaron simultáneamente con el DOG o el PDBu más el propanolol o el U73122 y se procesaron para inmunofluorescencia para analizar el patrón de distribución del receptor de KDEL. Como se muestra en la Fig.13, el patrón de marcaje en células tratadas con el DOG más propanolol o el PDBu más el propanolol (Fig.13 E, F) era igual al observado en las células control (Fig.13 A). Las células tratadas con el DOG o el PDBu tampoco presentaban ninguna alteración en la distribución subcelular del KDELr (Fig.13 B, C). Además, este resultado coincide con que tanto el DOG como el PDBu contrarrestaron significativamente la inhibición del desensamblaje del Golgi en células tratadas con propanolol o U73122 (Fig.14).

Todos estos resultados demuestran que el DAG exógeno compensa eficientemente la disminución de los niveles endógenos de DAG en el Golgi y previene las alteraciones en el transporte desde el Golgi al RE inducidos por el propanolol o el U73122.

1.5.- El DOG y el PDBu previenen el aumento de la densidad de gemas asociadas al Golgi inducidas por el propanolol o el U73122

Aunque la morfología de Golgi parecía inalterada cuando se examinó en el microscopio de epifluorescencia, hicimos un estudio de la organización ultraestructural del Golgi en células Vero (Fig.15) y en NRK (Fig.16) tratadas tanto con propanolol o U73122. En el análisis convencional de MET, el Golgi se componía de 4-6 cisternas aplanadas y apiladas con muy pocos perfiles túbulovesiculares

| Tabla 1. Parámetros estereológicos: V_{cist-G}, densidad de volumen (%); S_{cist-G}, densidad de superficie (μm^{-1}) de la cisterna respecto al stack de Golgi; N_{ves-G}, densidad numérica (μm^{-3}) de perfiles vesiculares en el peri-Golgi respecto al stack de Golgi. N_{bud}, número de gemas en el peri-Golgi por in μm^{2}. Los datos se representan la media ± S.D. de tres experimentos independientes. La significancia estadística, * ($p \leq 0.05$), ** ($p \leq 0.01$) y *** ($p \leq 0.001$). |

<table>
<thead>
<tr>
<th></th>
<th>V_{cist-G} (%)3</th>
<th>S_{cist-G} ($\mu m^{-1})^4$</th>
<th>N_{ves-G} ($\mu m^{-3})^4$</th>
<th>N_{bud} ($\mu m^{2})^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>36.2 ± 2.5</td>
<td>16.0 ± 1.6</td>
<td>267.0 ± 53.3</td>
<td>1.1 ± 0.3</td>
</tr>
<tr>
<td>Propanolol</td>
<td>$40.7 \pm 3.0**$</td>
<td>21.2 ± 4.0</td>
<td>$592.8 \pm 45.5***$</td>
<td>$4.0 \pm 1.0***$</td>
</tr>
<tr>
<td>U73122</td>
<td>38.2 ± 1.2</td>
<td>17.4 ± 1.5</td>
<td>$466.3 \pm 57.9**$</td>
<td>$3.0 \pm 0.7**$</td>
</tr>
<tr>
<td>DOG</td>
<td>37.1 ± 2.0</td>
<td>18.8 ± 1.2</td>
<td>386 ± 34</td>
<td>1.0 ± 0.6</td>
</tr>
<tr>
<td>DOG + propanolol</td>
<td>38.1 ± 3.3</td>
<td>17.1 ± 2.0</td>
<td>301 ± 40</td>
<td>1.3 ± 0.6</td>
</tr>
<tr>
<td>DOG + U73122</td>
<td>37.3 ± 2.7</td>
<td>16.1 ± 1.9</td>
<td>281 ± 62</td>
<td>1.1 ± 0.4</td>
</tr>
</tbody>
</table>

3 V_{cist-G}, volume density.
4 S_{cist-G}, surface density of cisterna.
4 N_{ves-G}, numerical density of peri-Golgi vesicle profiles.
4 N_{bud}, number of Golgi buds per μm^{2}.
* Statistical significance: * ($p \leq 0.05$), ** ($p \leq 0.01$) and *** ($p \leq 0.001$).
cerca de las cisternas. Las células tratadas tanto con propanolol (Fig.15 B y Fig.16 B) como con U73122 (Fig.15 C) presentaban las cisternas de Golgi fragmentadas.

Además, el propanolol también provocaba una dilatación de las mismas. Es interesante destacar que ambos agentes inducían un incremento de perfiles vesiculares muy cerca de la cisterna de Golgi que se caracterizaban por tener una

Figura 15. El propanolol y el U73122 inducen un aumento de perfiles vesiculares COPI que son contrarestados con el DOG o el PDBu. Las células Vero control (A), tratadas con propanolol (60 µM; B), U73122 (6 µM; C), DOG (3 µM; D), DOG más propanolol (E) o DOG más U73122 (F) se fijaron y procesaron para MET convencional. Escala Bar, 200 nm.
cubierta electrodensa que, por su localización y morfología, recordaban a las vesículas COPI (Fig.15 B y Fig.16 B/propanolol, puntas de flechas e insertos; Fig.15 C/U73122, puntas de flecha; Tabla 1). En las células control generalmente no se detectaron estos perfiles vesiculares redondos asociados a las cisternas de Golgi (Fig.15 A y Fig.16 A; Tabla 1).

Figura 16. La tomografía electrónica revela que el propanolol congela el proceso de fisión de las vesículas COPI de las cisternas de Golgi. Las células NRK control (A) y tratadas con propanolol (60µM; B-D) se procesaron para MET. Representativos perfiles vesiculares COPI (B; inserto). (C) Secciones virtuales consecutivas de 6 nm de grosor extraídas del tomograma. (D1-D3) Modelo tridimensional generado por el seguimiento manual de las imágenes del tomograma mostrado en el C. Las cisternas se representan en azul, las vesículas COPI unidas a la cisterna en rojo y las separadas en verde. El panel D2 es el mismo que el D1 pero se ha rotado lateralmente 45 ° sobre el eje de las X. El panel D3 es una ampliación de una zona (marcada por la flecha roja) mostrada en los otros dos paneles anteriores. Escala Bar, 200 nm.
A partir de los análisis de MET convencional no podíamos concluir si los perfiles vesiculares redondos cercanos a la membrana eran vesículas libres ya que podían corresponder a gemas asociados a las cisternas o incluso a estructuras tubulares identificadas como vesículas. Para poder identificar qué tipo de estructura eran esos perfiles vesiculares utilizamos la tomografía electrónica para obtener secciones virtuales ultrafinas de unos 5-8 nm de grosor y al mismo tiempo mediante el modelado manual obtener una imagen 3D del Golgi. Esta técnica consiste en la reconstrucción de una estructura tridimensional basándose en micrografías tomadas a partir de secciones gruesas (250 nm) a distintos ángulos (tilt series) usando un microscopio electrónico. Las tilt series se convierten en un tomograma (serie de fotografías en el eje Z) mediante un proceso de proyección. Posteriormente se pueden identificar la continuidad de las membranas en el tomograma y generar un modelo tridimensional. Este procesamiento se llevó a cabo tanto en células NRK control como en células tratadas con propanolol.

![Figura 17. La localización de CtBP3/BARS en el Golgi no se altera ni con el propanolol ni con el propanolol más el U73122. (A) Las células Vero control o tratadas con (B) propanolol (60µM; 30min) o (C) propanolol (60µM; 30min) más U73122 (6µM; 30min) se permeabilizaron con SLO y procesaron para inmunofluorescencia usando anticuerpos anti- BARS. Escala Bar, 10 µm.](image)

Los tomogramas de las células tratadas con propanolol (video 8) mostraron claramente que las cisternas estaban dilatadas y que presentaban un aumento anormal de gemas enganchadas a las cisternas a través de un delgado cuello (Ver las estructuras contorneadas de la Fig.16 C). El modelo tridimensional de estos tomogramas confirmaba la presencia de numerosas vesículas unidas todavía a la cisterna del Golgi (vesículas coloreadas en rojo de la Fig.16 D1-3; video 9) que tenían una cubierta electrodensa muy característica del coatómero (Fig.15B y Fig.16B, puntas de flechas e insertos; Fig.16 C; video 8). A continuación, examinamos si el DOG y el PDBu prevenían estas alteraciones estructurales en el Golgi. Para ello, las células se preincubaron con el DOG o el PDBu durante 15 min. A continuación, se trataron con propanolol o U73122 durante 15 min más. Finalmente, se procesaron para MET. La arquitectura del Golgi en células tratadas
con DOG junto con el propanolol o el U73122 (Fig.15 E, F, respectivamente) era igual a la de las células control (Fig.15 A). Resultados similares se obtuvieron con el PDBu. Es importante destacar que ni el DOG (Fig.15 D) ni el PDBu alteraban la organización del Golgi. Realizamos un estudio estereológico de las alteraciones estructurales. Como se indica en la Tabla 1, el propanolol aumentaba el área de superficie de membrana de Golgi (como se esperaba en un proceso de dilatación), mientras ambos el propanolol y el U73122 aumentaron la densidad de perfiles vesiculares redondos localizados en la periferia del Golgi. Por el contrario, no había diferencias significativas en ningún parámetro estereológico cuando se compararon las células control con las tratadas con DOG más propanolol. En resumen, el análisis estructural sugiere que tanto el propanolol como el U73122 impiden el proceso de fisión de las vesículas con cubierta COPI y además este bloqueo se previene añadiendo DAG.

1.6.- La reducción del DAG disminuye la localización de ArfGAP1, pero no de CtBP3/BARS, en las membranas de Golgi

Estudios recientes apuntan la importancia de ArfGAP1 y CtBP3/BARS en la formación de vesículas COPI113. Con el objetivo de examinar el acoplamiento funcional entre el DAG y CtBP3/BARS, las células Vero se trataron con propanolol y después se permeabilizaron con estreptolisina O para eliminar la mayor parte de la proteína que se encontraba en el núcleo o en el citoplasma. De esta manera, se facilitaba la detección de CtBP3/BARS en las membranas del Golgi (Fig.17 A). En las células control, CtBP3/BARS se localizaba en la zona perinuclear (Fig.17 A). Ni el propanolol (Fig.17 B) ni los dos agentes juntos (propanolol+U73122) (Fig.17 C) disminuían la asociación de CtBP3/BARS con las membranas de Golgi.

A continuación, examinamos la localización de la proteína ARFGAP1 en el Golgi, la cual controla la formación de las vesículas COPI en la zona de transporte de ER/Golgi81,121,296 y cuya localización y activación parece ser \textit{in vitro}128 parcialmente dependiente de DAG a través de ensayos. Como esperábamos, en las células control la proteína ArfGAP1-GFP se localizaba casi exclusivamente en el Golgi (Fig.18 A). La expresión de ArfGAP1-GFP no alteraba la localización de β-COP o CtBP3/BARS (Fig.Supl.6). Posteriormente, monitorizamos \textit{in vivo} la dinámica de ArfGAP1-GFP mediante microscopía confocal. Las células tratadas con propanolol mostraron una disminución de un 50% de la ArfGAP1 asociada al Golgi (Fig.18 B, C; video 10). También se producía una reducción, aunque menor, con el tratamiento de U73122. Cuando las células se preincubaron con DOG más propanolol, se observaba una disminución de un 20% de la ArfGAP1 asociada al
Golgi, es decir, una bajada mucho menor de la observada con el tratamiento sólo con propanolol (Fig.18 B, C; video 11). Cuando las células se trataron únicamente con DOG, ArfGAP1-GFP permanecía asociada al Golgi (Fig.18 B, C).

Para concluir, estos datos indican que el DAG participa directamente en el reclutamiento funcional de ArfGAP1-GFP en el Golgi.

Figura 18. El DOG previene parcialmente la disociación de la proteína ArfGAP1-GFP del Golgi inducida por el propanolol. (A) Las células COS-1 transfectadas con el plásmido ArfGAP1-GFP se procesaron para inmunofluorescencia usando anti-CTR433 (Los asteriscos indican las células que están transfectadas). (B) Cuantificación de la fluorescencia de la ArfGAP1-GFP asociada a Golgi después del tratamiento con propanolol (60µM) o DOG (3µM) más propanolol (n=8 células). Escala Bar, 10µm. (C) Análisis cuantitativo de la fluorescencia de la ArfGAP1-GFP asociada a Golgi después de 5 min de tratamiento con propanolol (60µM), DOG (3µM), DOG más con propanolol. La significancia estadística, *p ≤ 0.05, **p ≤ 0.01 y ***p ≤ 0.001. (n= 8 células).
Figuras Suplementarias
Figura Suplementaria 1. Ni el propanolol ni el U73122 alteran el reensamblaje del Golgi una vez eliminado la BFA. Las células NRK se trataron primero con BFA (5 µg/ml; 60 min) y seguidamente con propanolol (60 µM) o U73122 (6 µM). Este tratamiento inducía completamente el desensamblaje del Golgi. Después se eliminaba la BFA y examinamos el reensamblaje del Golgi en presencia de propanolol y U73122 al cabo de 1 h. Después, las células se fijaron y procesaron para inmunofluorescencia usando anticuerpos monoclonales anti-CTR433. Escala Bar, 10 µm.
Figura Suplementaria 2. (A) La FB1 no altera el flujo de membrana en la zona del RE/Golgi. Desensamblaje y reensamblaje del Golgi en presencia y después de eliminar la BFA en células NRK control y tratadas con FB1 (25 µg/ml; 24 h). (B) La FB1 redistribuye el dominio C1 al citoplasma. Las células COS-1 transfectadas con el dominio C1b-PKCb-GFP control y tratadas con FB1 (25 µg/ml; 24 h) se procesaron para inmunofluorescencia usando anti-CTR433. (C) La FB1 no altera el patrón de distribución del KDELr. Las células Vero control y tratadas con FB1 (25 µg/ml; 24 h) se procesaron para inmunofluorescencia usando anti-KDELr. Escala Bar, 10 µm.
Figura suplementaria 3. El propanolol altera el patrón de distribución del KDELr en células NRK y HeLa. Las células control y tratadas con propanolol (60 µM; 1 h) se procesaron para inmunofluorescencia usando anticuerpos policlonales anti-KDELr. Escala Bar, 10 µm.
Figura suplementaria 4. (A) **El propanolol y el U73122 tienen un efecto sumatorio sobre el desensamblaje del Golgi en presencia de BFA.** Las células Vero se pretrataron primero con propanolol (60 µM), U73122 (6 µM) o juntos (propanolol+U73122) durante 5 min y, a continuación, se añadió la BFA y se incubaron durante 30 y 60 min en presencia de propanolol, U73122 o juntos. Posteriormente, las células se procesaron para inmunofluorescencia usando anti-CTR433. (B) **El propanolol y el U73122 tienen un efecto sumatorio sobre el patrón de distribución del KDELr.** Las células Vero se trataron con propanolol (60 µM), U73122 (6 µM) o juntos (propanolol+U73122) durante 2 h. Después, se procesaron para inmunofluorescencia usando anti-KDELr. Escala Bar, 10 µm.
Figura suplementaria 5. Ni el DOG ni el PDBu alteran la organización de las fibras de estrés.

Las células tratadas con DOG y PDBu se fijaron y procesaron para inmunofluorescencia usando faloidina-TRITC. Escala Bar, 10 µm.
Figura suplementaria 6. Localización de CtBP3/BARS y de β-COP en células que
sobreexpresan ArfGAP1-GFP. Las células COS-1 se transfecionaron con ArfGAP1-GFP y se procesaron
para inmunofluorescencia usando anticuerpos anti-CtBP3/BARS y anti- β-COP. Escala Bar, 10 μm.
 Videos

Video 1. La BFA induce la tubulación del Golgi en células HeLa que expresan constitutivamente la GalTasa-YFP.

Video 2. El propanolol altera la tubulación del Golgi inducida por la BFA en células HeLa que expresan constitutivamente la GalTasa-YFP.

Video 3. El U73122 altera la tubulación del Golgi inducida por la BFA en células HeLa que expresan constitutivamente la GalTasa-YFP.

Video 4. Células COS-1 transfectadas con C1b PKCθ-GFP y tratadas con PMA (250 nM). En el control, el dominio C1-GFP se localizaba en el Golgi. Cuando se añadía el PMA, el dominio C1 rápidamente se translocaba desde el Golgi a la membrana plasmática.

Video 5. Células COS-1 transfectadas con C1b PKCθ-GFP y tratadas con PMA (250 nM) más DOG (3 µM). Las células se trataron con PMA y el DOG se añadía después de 5 min. A diferencia del video 3 (solo PMA), el dominio C1-GFP volvía al Golgi en cuanto se añadía el DOG.

Video 6. Células COS-1 transfectadas con el C1b PKCθ-GFP y tratadas con propanolol (60 µM). Cuando se añadía con propanolol, el dominio C1-GFP asociado al Golgi se translocaba parcialmente al citoplasma por un corto período de tiempo y después regresaba al Golgi.

Video 7. Células COS-1 transfectadas con el C1b PKCθ-GFP y tratadas con DOG (3 µM) más propanolol (60 µM). El pretratamiento con DOG prevenía la translocación del dominio C1 inducido por el propanolol (video 6), el cual permanecía en el Golgi a pesar de la presencia del propanolol.

Video 8. Eje dual de tomografía electrónica de sección semifina de 250 nm que contiene un stack de Golgi de las células NRK tratadas con propanolol (60 µM/15 min).

Video 9. Modelo tridimensional del stack de Golgi mostrado en el video 7 de las células NRK tratadas con propanolol. Destacan numerosos intermediarios de transporte con cubierta COPI todavía unidos a la cisterna.

Video 10. Células COS-1 transfectadas con ArfGAP1-GFP tratadas con propanolol (60 µM). La fluorescencia de la ArfGAP1-GFP asociada a Golgi se perdía después de la adición del propanolol.
Video 11. Células COS-1 transfectadas con ArfGAP1-GFP tratadas con DOG (3 µM) y propanolol (60 µM). La reducción de la fluorescencia de la ArfGAP1-GFP asociada a Golgi inducida por propanolol (video 9) se prevenía parcialmente con el pretratamiento con DOG.
II. La LPP3 en la organización del Golgi y en el transporte en la zona del RE/Golgi
Objetivo:

Se han propuesto numerosas vías metabólicas que conllevan a la síntesis del DAG en el Golgi. Cada una de estas vías produciría diferentes especies moleculares de DAG que participaría de forma específica en los procesos de transporte asociados al Golgi. En el apartado anterior (Resultados I) demostramos que el DAG formado a partir de la PAP/LPP y de la PI-PLC participa en el transporte retrógrado desde el Golgi al RE. Así pues nos centramos en determinar cuales son las enzimas que controlan los niveles necesarios de DAG en el cis-Golgi para la formación de las vesículas COPI y la regulación del transporte retrógrado. Teniendo en cuenta que los efectos del propanolol (inhibidor de la PAP/LPP) en el tráfico eran más contundentes que los del U73122 (inhibidor de la PI-PLC), pensamos que la PAP/LPP debía ser el primer candidato a estudiar. En particular, la LPP3 (PAP2b) ya que es la única isoforma descrita, hasta ahora, en el Golgi205. Para determinar el papel de la LPP3 en la regulación de los niveles de DAG y en la organización y transporte asociado a este compartimento seguimos dos estrategias experimentales: ARN de interferencia para disminuir la expresión de la LPP3 y vectores de expresión para aumentarla.

2.1.- La LPP3 se comporta como una proteína residente del complejo de Golgi en presencia de BFA y NZ

Como hemos mencionado anteriormente, la LPP3 se encuentra en el Golgi de las células Swiss 3T3205. Teniendo en cuenta que el DAG es necesario para la formación de las vesículas COPI, pensamos que el DAG que se genera a partir de la actividad de la LPP3 participaría activamente en este proceso. De manera que es de esperar que la LPP3 se localice en la parte cis del Golgi pues es donde se forman mayoritariamente estas vesículas. Por este motivo, analizamos, en primer lugar, si la LPP3 se localizaba en la parte cis del Golgi. Para ello, empleamos los anticuerpos anti-GM130 y anti-giantina como marcadores de esta zona del Golgi. En células Swiss 3T3, observamos que la LPP3 endógena se encontraba en la zona perinuclear y que colocalizaba con la GM130 (Fig.20 D-F). Además, en células COS-7 que sobreexpresan la LPP3-GFP, colocalizaba con la giantina (Fig.19 A, B, inserto).

Posteriormente, para determinar si la LPP3 es una proteína residente del Golgi, examinamos su comportamiento frente a diferentes tratamientos que desorganizan la estructura y, en algunos casos, la composición molecular del Golgi. Para ello, las células COS-7 se tranfectaron con la forma silvestre de la LPP3-GFP y, posteriormente, se trataron con BFA o con NZ. Observamos que la LPP3-GFP se comportaba como los marcadores residentes del Golgi (Fig.19 C-F) en presencia de
Figura 19. La LPP3 se comporta como una proteína residente del Golgi en presencia de BFA y NZ. Las células COS-7 transfectadas con el vector de LPP3-GFP después de 12 h de expresión se trataron con BFA (5 µg/ml; 20 min) (C, D) o con NZ (30 µM; 2 h) (E, F). Posteriormente, se procesaron para inmunofluorescencia usando anticuerpos anti-giantina para visualizar el Golgi. Los asteriscos representan las células transfectadas. Escala Bar, 10 µm.

ambos agentes. En células tratadas con BFA, la LPP3 se distribuía dando lugar a un patrón de tinción reticular (ER-like) como consecuencia de la fusión de las membranas del Golgi con las del RE (Fig.19 C, D). En el tratamiento con NZ, la LPP3-GFP se distribuía en estructuras puntiformes dispersas por todo el citoplasma debido a la reorganización del Golgi en mini-Golgis (ministacks) por efecto de la despolimerización de los MTs (Fig.19 E, F).

Estos resultados son indicativos de que la LPP3 es una proteína residente del Golgi y que se localiza en la zona cis.

2.2.- La LPP3 es necesaria para mantener los niveles de DAG en el complejo de Golgi

Estudios previos han demostrado que la LPP3 participa en la regulación de los niveles totales de DAG205,297. Sin embargo, no hay ninguna evidencia de que actúe directamente en los niveles de DAG en el Golgi. Con la finalidad de caracterizar el papel de la LPP3 en la formación del DAG en el Golgi, analizamos si el silenciamiento y la sobreexpresión de la LPP3 afectaban la morfología y la función del Golgi. En primer lugar, estudiamos el efecto de ambas estrategias sobre los niveles de DAG en las membranas de Golgi. Para disminuir la expresión de la LPP3 utilizamos el sistema de silenciamiento lentiviral mediado por ARNs de interferencias short hairpin (shRNAs) (Fig.20 A). Como se ha descrito anteriormente, la LPP3 endógena es muy abundante en las células Swiss 3T3 respecto a otras líneas celulares205. Además se localiza en la zona perinuclear.
Figura 20. Silenciamiento de la LPP3 en las células Swiss 3T3 por shRNA. (A) Secuencia de los shRNA utilizados para el silenciamiento de la LPP3. (B) Análisis de la expresión de la LPP3 endógena en lisados de células Swiss 3T3 control e infectadas con los lentivirus shRNA indicados después de 96 h (4 d) de la infección. La α-tubulina se utilizó como control de carga. (C) Cuantificación del resultado mostrado en el panel B, en el cual las columnas representan el radio obtenido de las respectivas densitometrías de la LPP3 y la tubulina de cada condición experimental (Los valores son la media ± SD de 3 experimentos independientes). La significancia estadística, p < 0.05 (*), p < 0.01 (**) y p < 0.001 (***) (D-F) Las células control y (G-H) las infectadas con los lentivirus shRNA LPP3 se fijaron a los 4 d después de la infección. Posteriormente se procesaron para inmunofluorescencia usando anti-LPP3 y anti-GM130 y se visualizaron en el microscopio confocal. Escala Bar, 10 µm.
haciendo de estas células un buen modelo para nuestro estudio. Por tanto, analizamos la expresión de la LPP3 en los lisados de las células Swiss 3T3 infectadas con los diferentes lentivirus shRNA LPP3 solos (TRC49 ó TRC51) o combinados (TRC49 + TRC51) por *western blotting*. Observamos una reducción de los niveles de expresión de la LPP3 después de 96 h de infección (Fig.20 B, C) siendo el efecto mayor cuando se combinaron ambos lentivirus (~ 99%; Fig.20 B, C). Sin embargo, las células que se infectaron solamente con un tipo de lentivirus (TRC49 ó TRC51) tenían una morfología normal mientras que en las que se combinaron (TRC49 + TRC51) se redondeaban y morían. Por tanto, debido a la inviabilidad de las células infectadas con los dos lentivirus, decidimos realizar los experimentos infectando las células con uno solo (TRC49 ó TRC51). Como era de esperar, a nivel de inmunofluorescencia observamos que las células infectadas con los lentivirus no se detectaba LPP3 en el Golgi (Fig.20 G-I).

A continuación, examinamos el efecto del silenciamiento de la LPP3 sobre los niveles endógenos de DAG mediante la técnica de la DAGK. Curiosamente, observamos que los niveles de DAG totales no disminuyeron cuando las células se infectaron sólo con uno de los lentivirus (TRC49 ó TRC51) pero se apreciaba una disminución significativa cuando se infectaron con los dos juntos (TRC49 + TRC51) (Fig.21 A). Por otra parte, analizamos el efecto del silenciamiento de la LPP3 sobre el DAG en las membranas de Golgi. Para ello, transfectamos las células Swiss 3T3 control y las infectadas con el shRNA LPP3 (TRC51) con un vector de expresión que codifica para el dominio C1b de la proteína PKCθ fusionada con la GFP (C1b-PKCθ-GFP). Utilizamos este vector como sensor de los niveles de DAG en las membranas del Golgi (Ver Resultados I). En las células control, el vector C1-PKCθ-GFP se localizaba mayoritariamente en el Golgi (Fig.21 B, D, C, E y b, d, b', d'). Sin embargo, en las células con la LPP3 silenciada, el C1-PKCθ-GFP mostraba una relocalización al citoplasma (Fig.21 F, H, G, I y f, h, f' y h'). Esto se debe a que los niveles de DAG en las membranas de Golgi en las células shRNA LPP3 no son suficientes para mantener el C1-PKCθ-GFP asociadas a ellas.

Paralelamente, ensayamos el efecto de la sobreexpresión de la LPP3 sobre los niveles de DAG en el Golgi en donde cabría esperar un aumento. En este caso, no utilizamos las Swiss 3T3 sino las células COS-7. Esto se debe a que la LPP3 endógena en este tipo celular es muy baja lo que facilita estudiar el efecto del aumento de la LPP3 sobre los niveles de DAG. Al igual que en los experimentos de silenciamiento de la LPP3, no se observaron diferencias significativas en los niveles de DAG totales en células COS 7 transfectadas con la forma silvestre de la LPP3 (LPP3-GFP) ni tampoco con un mutante catalíticamente inactivo de la LPP3 (LPP3-
Figura 21. El silenciamiento de la LPP3 disminuye los niveles de DAG en el Golgi. (A) Cuantificación de los niveles DAG en los extractos lipídicos totales obtenidos de las células Swiss 3T3 control o infectadas con los diferentes lentivirus (TRC49, TRC51 ó TRC49 + TRC51) mediante el ensayo de la DAG quinasa (DAGK). El contenido de DAG se determinó cuantificando la cantidad de PA marcado con 32P con un Phosphoimager y el programa NIH. Los resultados representan la media ± SD de dos experimentos independientes. Significancia estadística, p ≤ 0.01 (**). (B-h') Células control e infectadas con los lentivirus shRNA LPP3 (TRC49) se transfectaron con el vector de expresión que codifica C1b-PKCθ-GFP. Posteriormente, se procesaron para inmunofluorescencia utilizando anticuerpos monoclonales anti-GM130 para visualizar el Golgi. En las células control (B, D, C, E y b, d, b',d') el C1b-PKCθ-GFP se localizaba en el Golgi mientras que en las silenciadas (F, H, G, I y f, h, f', h') se translocaba al citoplasma. Bar, 10 µm. (b-h') Recuadro punteado de los paneles B, D, F, H, respectivamente, amplificado correspondiente a la región perinuclear de la célula. (b, d, f, h) Paneles que mantienen la escala original de grises y (b', d', f', h') paneles b, d, f y h a los que se les cambió la escala de color. Está representado de la siguiente manera: rojo: fluorescencia de GFP máxima; verde: fluorescencia de GFP intermedia; azul: fluorescencia de GFP mínima. En la parte de abajo se representa la escala de color completa.
S203T-GFP) (Fig. 22 A). A continuación, empleamos el dominio C1b de la PKCθ. Un aumento de los niveles del DAG en el Golgi comportaría un aumento de la fluorescencia del C1b-CFP (proteína fluorescente azul cian) en este compartimento. Sin embargo, este comportamiento no resultó tan evidente como esperábamos y no observamos ningún incremento del dominio C1 en el Golgi. Pensamos que como la mayoría del dominio C1 se encontraba en el Golgi, aumentos en el DAG no nos permitirían ver incrementos de la fluorescencia. Así pues, empleamos otra estrategia: la PKCε fosforilada en el residuo Ser 729 (p-PKCε). La PKCε se encuentra en el citoplasma y su asociación con el Golgi depende de la fosforilación en el residuo Ser 729 y de su dominio C1 (En los Resultados III demostramos que el DAG induce la localización de la p-PKCε en el Golgi).

Figura 22. La sobreexpresión de la LPP3 aumenta los niveles de DAG en el Golgi. (A) Cuantificación de los niveles DAG en los extractos lipídicos totales obtenidos de las células COS-7 control y transfectadas con el LPP3-GFP o LPP3-S203T-GFP mediante el ensayo de la DAG quinasa (DAGK). El contenido de DAG se determinó cuantificando la cantidad de PA marcado con ³²P con un Phosphoimager y el programa NIH. Los resultados representan la media ± SD de dos experimentos independientes. Las células COS-7 se transfectaron con el LPP3-GFP (B, C, c’) y con el LPP3-S203T-GFP (D, E, e’). Después de 12 h de expresión se fijaron y procesaron para inmunofluorescencia utilizando anticuerpos anti-p-PKCε. (c’e’) Paneles C, E en los que se les se han cambiado la escala de fluorescencia original por una de color y se representa de la misma manera que en la Figura 21. Los asteriscos representan las células tranfectadas. Escala Bar, 10 µm.
Razonamos que un aumento de los niveles de DAG provocado por la sobreexpresión de la forma silvestre de la LPP3 induciría el reclutamiento de la p-PKCε a las membranas de Golgi. En las células control la p-PKCε se localizaba mayoritariamente en el citoplasma y sólo había un marcado tenue en la zona perinuclear (Fig.22 C, E; células sin asteriscos). Cuando las células COS-7 se transfectoron con el vector LPP3-GFP, la presencia de la p-PKCε aumentaba significativamente en el Golgi (Fig.22 B, C, c'; asteriscos). Para estar seguros de que este efecto se debía a la LPP3, expresamos un mutante inactivo de esta fosfatasa y vimos que no sólo no se producía un aumento en el reclutamiento de la p-PKCε sino que incluso disminuía (Fig.22 D, E, e'; asteriscos).

Estos resultados nos permiten concluir que la LPP3 participa en la formación del DAG en las membranas del Golgi.

2.3.- El silenciamiento de la LPP3 inhibe el transporte retrógrado de proteínas

Teniendo en cuenta que la disminución del DAG en Golgi alteraba el transporte retrógrado de proteínas pero no el anterógrado, examinamos si el silenciamiento de la LPP3 bloqueaba el transporte desde el Golgi al RE. En primer lugar, analizamos el efecto del silenciamiento de la LPP3 sobre la cinética de desensamblaje del Golgi en presencia de BFA (Fig.23). Observamos que la cinética de desensamblaje del Golgi de las células shRNA LPP3 era mucho más lenta que la de las células control (Fig.23 A). Después de 5 min de tratamiento con BFA, un 80 % de las células shRNA LPP3 presentaban el Golgi intacto (Fig.23 A, F, G) mientras que las control sólo un 30 % (Fig.23 A, C, D).

A continuación, estudiamos la distribución subcelular del KDELr en células Swiss 3T3 con la LPP3 silenciada. En muchos tipos celulares, como las células COS, Vero o HeLa, el KDELr endógeno se detecta en el Golgi y en unas estructuras puntiformes citoplasmáticas. Como ya hemos visto (Resultados I), la desaparición de esas estructuras citoplasmáticas indican una alteración en el tráfico retrógrado del Golgi al RE. En el caso de las Swiss 3T3, el KDELr sólo se detecta en la zona perinuclear pero no en las estructuras puntiformes en el citoplasma (Fig.24 A). Consecuentemente, una alteración en transporte retrógrado no conllevaría ningún cambio en la distribución del KDELr. Por este motivo, utilizamos otra estrategia experimental que nos permitía estudiar el transporte del Golgi al RE. Debido a que el KDELr cicla constantemente entre el RE y el Golgi, una disminución de la temperatura (15 ºC) comporta su acumulación en el compartimento intermedio o ERGIC (CI). Esta redistribución se caracteriza por la desaparición parcial del patrón
de marcaje en la zona perinuclear y la aparición de un mayor punteado citoplasmático (Fig.24 B; inserto). A diferencia del comportamiento del KDELR en las células control, las células con shRNA LPP3 incubadas a 15 °C mostraban la típica localización perinuclear que colocalizaba con GMAP210 (un marcador de Golgi) (Comparar Fig.24 B, D; insertos). También, examinamos el efecto de la

Figura 23. El silenciamiento de la LPP3 retrasa la cinética de desensamblaje del Golgi en presencia de BFA. (A) Análisis cuantitativo de la cinética de desensamblaje del Golgi en presencia de BFA durante 5, 10, 15 min. Los valores son la media ± SD de 3 experimentos independientes. La significancia estadística, p < 0.05 (*), p < 0.01 (**) y p < 0.001 (**). (B-D) Las células Swiss 3T3 control e (E-G) infectadas con los shRNA LPP3 lentivirus (TRC51) se trataron con BFA (5 µg/ml) durante 5 min y se procesaron para inmunofluorescencia usando anticuerpos monoclonales anti-CTR433 para visualizar el Golgi. Las células con la LPP3 silenciada mostraban un retraso en el desensamblaje del Golgi inducido por la BFA. Escala Bar, 10 µm.
expresión del mutante catalítico inactivo de la LPP3 (LPP3-S203T) sobre el patrón de distribución subcelular del KDELr en células COS-7. Sorprendentemente, no observamos ningún cambio en la distribución del KDELr (Fig. 24 G, g).

Por último, examinamos el efecto del silenciamiento de la LPP3 sobre el transporte retrógrado de la toxina Shiga. La toxina Shiga se une al glicolípido GB3 de la membrana plasmática y se endocita siguiendo la vía de los endosomas tempranos. Seguidamente, se transporta al RE atravesando el Golgi. Las células

![Figura 24. El silenciamiento de la LPP3 altera el patrón de distribución del receptor de KDELr al pasar las células de 37 °C a 15 °C. Las células control (A a,) e infectadas con los LPP3 shRNA lentivirus (TRC51) (C, c,) a 37 °C. Posteriormente, se incubaron las células control (B, b) y shRNA LPP3 (D, d) a 15 °C durante 1 h. Posteriormente, se procesaron para inmunofluorescencia usando los anticuerpos monoclonales anti-KDELr y policlonales anti-GMAP120. Las células COS-7 transfectadas con el LPP3-GFP (24h expresión; E, e y 12 h expresión; F, f) o el mutante inactivo LPP3-S203T-GFP (24 h expresión; G, g) se procesaron para inmunofluorescencia usando anti-KDELr. Los asteriscos representan las células tranfectadas. Escala Bar, 10 µm.](image-url)
control y las células con el shRNA LPP3 se incubaron con el fragmento B de la toxina Shiga, que lleva acoplado en el extremo carboxilo terminal la secuencia KDEL, propia de retención en el RE. Además, el fragmento está marcado con Cy3 (STx-B-KDEL-Cy3). Las células se incubaron con la toxina a 4 ºC durante 45 min y después a 19.5 ºC para acumularla en los endosomas tempranos (Fig.25 A, B). Posteriormente, las células se incubaron a 37 ºC para inducir el transporte sincronizado de la toxina hacia el RE pasando por el Golgi. Después de 2 h a 37 ºC,
la STx-B-KDEL-Cy3 alcanzaba el Golgi como muestra la colocalización de la toxina con la giantina (Fig.25 C, D). A las 4 h, la ST-B-KDEL-Cy3 empezaba a tener una distribución reticular como consecuencia de su llegada al RE, aunque todavía colocalizaba parcialmente con la giantina (Fig.25 E, F). Finalmente, a las 6 h ya se encontraba mayoritariamente en el RE (Fig.25 G, H). Por el contrario, en las células con el shRNA LPP3, la toxina todavía se encontraba en el Golgi al cabo de 4 y 6 h (Fig.25 M-O). De manera que podemos concluir que el silenciamiento de la LPP3 enlentece la cinética de transporte de la STx-B-KDEL-Cy3 al RE.

Si el silenciamiento de la LPP3 retrasa considerablemente el transporte de proteínas del Golgi al RE, pensamos que un aumento de su expresión aceleraría esta vía. Para comprobarlo, transfectamos la forma silvestre de la LPP3 en células COS-7 y estudiamos el efecto sobre la distribución subcelular del KDELr. Las células que sobreexpresaban la LPP3-GFP presentaban un patrón de distribución del KDELr similar a la del control (Fig.24 E, e, F, f; asteriscos).

Estos resultados sugieren que sólo la disminución del DAG asociado a la actividad de la LPP3, y no su incremento, regula el transporte de proteínas desde el Golgi hacia el RE.

2.4.- Modificaciones en la expresión de la LPP3 alteran la estructura del complejo de Golgi

Hemos visto que el silenciamiento de la LPP3 no parecía alterar la morfología de Golgi (Fig.20 G-I), al menos cuando se examinaba al microscopio de fluorescencia. Este resultado es consistente con lo observado con el propanolol. Visto que a nivel ultraestructural el propanolol conducía alteraciones importantes en la organización del Golgi, quisimos analizar el efecto de la LPP3 sobre la ultraestructura de este compartimento en células Swiss 3T3 control y con la LPP3 silenciada (Fig.26). En células control, el Golgi aparecía como una estructura altamente organizada en el que las cisternas o stacks estaban aplanadas y apiladas unas sobre otras (Fig.26 A, B). Por el contrario, las células shRNA LPP3 mostraron un incremento de perfiles vesiculares unidos o muy próximos a las cisternas (Fig.26 C, D, E) en las que se observaba una cubierta electrodensa típica del coatómero. Este resultado sugiere que el silenciamiento de la LPP3 afecta también a la escisión de las vesículas nacientes de la cisterna, de forma similar a lo observado con el propanolol y U73122 (Ver Resultados I).

Por otro lado, si el silenciamiento de la LPP3 bloquea el proceso de fisión de las vesículas COPI, pensamos que su sobreactivación induciría una vesiculación o tubulación descontrolada del Golgi. Como se observa en la Fig.27, la morfología del
Golgi en las células COS-7 se caracteriza por ser muy compacto.

Figura 26. La depleción de la LPP3 induce un incremento de perfiles vesiculares COPI. Las células Swiss 3T3 control (A, B) e infectadas con los shRNA LPP3 lentivirus (TRC49) (C-E) se fijaron y procesaron para microscopía electrónica de transmisión (MET). (B) Ampliación del panel A. (D) Ampliación del panel C. (E) Ampliación del panel D. El silenciamiento de la LPP3 desorganiza la estructura del Golgi. El Golgi normal contiene las cisternas aplanadas con muy pocos perfiles túbulovesiculares peri-Golgi (A, B). Además, aumenta el número de elementos vesiculares alrededor de las cisternas (C-D) que contienen una cubierta electrodensa que es característico del complejo COPI (E). Escala Bar, 200 µm

(Fig.27 B). En las células COS-7 transfectadas con la LPP3-GFP durante 12 h, no se veía ningún efecto aparente sobre la morfología del Golgi (Fig.27 A, B).
Curiosamente, cuando se aumentaba el tiempo de expresión a 24h, la LPP3 comportaba la pérdida del típico marcaje perinuclear compacto (Fig. 27 C, E), dando un fenotipo no compacto, tubulado o fragmentado (Fig. 27 D, F). La morfología del Golgi era normal en el 90 % de las células después de 12 h de la transfección mientras que sólo el 50 % de las células mantenían este fenotipo normal después de 24 h de expresión.

Figura 27. La sobreexpresión de la LPP3 induce la desorganización del Golgi. (A-F) Las células COS-7 se transfecaron con el vector de expresión que codifica LPP3-GFP durante (A, B) 12 h o (C, D, E, F) 24 h o con el LPP3-S203T-GFP durante 24h (G, H). Posteriormente, se fijaron y se procesaron para inmunofluorescencia usando anticuerpos monoclonales anti-CTR433 para visualizar el Golgi. Escala Bar, 10 µm. (I) Análisis cuantitativo de la morfología del Golgi en células transfectadas con LPP3-GFP o LPP3-S203T-GFP. La significancia estadística, p < 0.01 (**).
Para confirmar que este efecto sobre la morfología del Golgi se debía específicamente al incremento de los niveles de DAG asociado a la actividad fosfatasa de la LPP3 y no como consecuencia de la sobreexpresión, examinamos si el mutante inactivo de la actividad fosfatasa de la LPP3 (LPP3-S203T) evitaba dichas alteraciones en la organización del Golgi. Como esperábamos, la expresión del mutante catalítico prevenía significativamente la desorganización del Golgi (Fig.27 G, H, I). Estos resultados sugieren que el aumento del DAG debido a la sobreexpresión de la LPP3 induce la desorganización del Golgi pero, curiosamente, no afecta a las funciones de transporte retrógrado en la zona RE/Golgi.
III. Regulación de la localización de la PKCε en el Golgi como efector del DAG y su participación en el transporte entre el RE y el Golgi
Objetivo:

Hemos descrito en la introducción, que el DAG actúa como un segundo mensajero modulando la localización y la actividad enzimática de ciertas proteínas citoplasmáticas en el Golgi. Estas proteínas tienen un dominio de unión a DAG (dominio C1) que le permite su interacción directa con este lípido y así regular diferentes procesos asociados al Golgi. La PKD se recluta al TGN a través de su unión con el DAG y resulta esencial para la formación de ITs en el TGN143. Por lo tanto, nos centramos en averiguar si otras isoformas de las PKCs participan como efectores del DAG en el transporte retrógrado en la zona ER/Golgi. Teniendo en cuenta que la PKCε interacciona con el coatómero245, pensamos que podría ser un buen candidato para regular el transporte ER/Golgi de forma similar a la que PKD realiza en el TGN.

3.1.- La PKCε se comporta como una proteína residente del Golgi en presencia de brefeldina A

Para determinar si la PKCε se localiza en el Golgi, en primer lugar, examinamos la cantidad de PKCε asociada a la fracción de membrana P16 (fracción que contiene membranas de Golgi entre otras membranas intracelulares) de células Vero y también con la fracción enriquecida de Golgi asiladas de células HeLa-S. En la Fig.29 G mostramos que la PKCε se encuentra tanto en la fracción P16 como en la fracción enriquecida de Golgi. Paralelamente, transfectamos la forma silvestre de la PKCε fusionada con la GFP (PKCε-GFP) en células COS-7 y examinamos su localización. Tal como se había descrito en la literatura237,298, observamos que la PKCε se localizaba principalmente en el Golgi aunque también en el citoplasma y la membrana plasmática (Fig.28 A). A continuación, examinamos si la localización de la PKCε dependía de Arf1 estudiando su comportamiento frente a la BFA. Observamos que las células transfectadas con la PKCε-GFP tenían la misma cinética de desensamblaje que la giantina (una proteína residente de Golgi) (Fig.28 A). En los primeros 5 min, la PKCε se encontraba en los túbulos y finalmente a los 15 min adquiría un patrón de distribución reticular debido a la fusión de las membranas del Golgi con el RE. Además, también observamos que la PKCε-GFP tenía una cinética de desensamblaje mucho más lenta que la del coatómero (Fig.28 B). La β-COP es uno de los componentes del coatómero que asocia al Golgi de una manera Arf1-dependiente. Como consecuencia de la inactivación de Arf1 por la BFA, la β-COP no puede reclutarse y queda libre en el citoplasma. Así pues, después de 2.5 min de tratamiento con BFA, la β-COP ya se había disociado mientras que la PKCε permanecía todavía unida a las membranas de Golgi.
Por tanto, con estos resultados podemos concluir que la localización de la PKCε en el Golgi es independiente de Arf1.
3.2.- La localización de la PKCε en el Golgi depende de los niveles de DAG

La PKCε se asocia al Golgi a través de su dominio C1 pero no se ha estudiado en detalle su mecanismo de localización. Teniendo en cuenta que una mutación puntual en este dominio impide su reclutamiento en el Golgi237, es lógico pensar que su asociación con este compartimento depende en gran medida del DAG. Así que examinamos el efecto de la disminución de los niveles de DAG sobre...
la localización de la PKCε en el Golgi. Para ello, transfectamos las células COS-7 con la localización de la PKCε en el Golgi. Para ello, transfectamos las células COS-7 con la localización de la PKCε en el Golgi. Para ello, transfectamos las células COS-7 con

Figura 29. El propanolol induce la translocalización de la PKCε del Golgi al citoplasma. (A) En células COS-7 transfectadas con la PKCε-GFP se examinó la localización de la PKCε-GFP en el Golgi después del tratamiento con propanolol (60 µM) in vivo usando el microscopio confocal de fluorescencia (n = 6 células). (B) Análisis cuantitativo de la fluorescencia de la PKCε-GFP asociada al Golgi después de 5 min de tratamiento (n = 6 células). La significancia estadística, p ≤ 0.001 (**). (C-F) Serie de imágenes o frames representativas de una de las películas (vídeo 12) de las células que expresan PKCε-GFP grabadas durante el tratamiento con propanolol (60 µM). (c'-f') Ampliación de los paneles C-F, respectivamente. La escala de colores se representa de la siguiente manera: rojo: fluorescencia de GFP máxima; verde: fluorescencia de GFP intermedia; azul: fluorescencia de GFP mínima. En la parte de abajo se representa la escala de color completa. (G) Expresión de la PKCε en la fracción soluble S16 y la fracción de membrana P16 de células Vero y (H) fracciones enriquecidas en Golgi de células HeLa-S control y tratadas con propanolol (60 µM). Como control de carga se utilizó anti-tubulina y anti-golgina 97, respectivamente.
la PKCε-GFP y las tratamos con propanolol durante 15 min. La cinética de localización de la PKCε en el Golgi se grabó in vivo en el microscopio confocal. En las células tratadas con propanolol, la fluorescencia de la GFP en el Golgi disminuía significativamente como consecuencia de la disociación de la PKCε del Golgi (Fig.29; video 12). La bajada máxima de fluorescencia se encontraba entre los 3.5 y 7 min de tratamiento siendo en este momento de un 40% (Fig.29 A, D, d’). A continuación, la fluorescencia en el Golgi se recuperaba parcialmente (Fig.29 A, E, e’, F, f’). También examinamos si la disminución de DAG inducida por el propanolol afectaba a la asociación de la PKCε con las membranas de Golgi aisladas de células HeLa-S. En concordancia con los resultados anterior, en las células tratadas con propanolol, la PKCε no se reclutaba al Golgi (Fig.29 H).

Estos resultados muestran que la localización de la PKCε en el Golgi está regulada por el DAG.

3.3.- El DOG aumenta el reclutamiento de la PKCε fosforilada en el Golgi

Se ha descrito que, a parte del dominio C1, la fosforilación del residuo Ser 729 resulta esencial para la localización de la PKCε en el Golgi. Sin embargo, no se conoce con precisión si la unión de la PKCε a las membranas de Golgi a través del dominio C1 está condicionada por su estado de fosforilación o viceversa.

![Figura 30. La forma fosforilada de PKCε se localiza en el Golgi. Las células COS-7 se transfecaron con la PKCε-GFP (A-D) y PKCε-KD-GFP (E-H) y se procesaron para inmunofluorescencia usando anticuerpos monoclonales anti- PKCε (B, F) y policlonales anti-p-PKCe (D, H). Ampliación del panel B que corresponde a la zona recuadrada. Los asteriscos representan las células transfecadas. Escala Bar, 10 µm.](image-url)
Teniendo en cuenta que la localización de la PKCε depende de los niveles de DAG en el Golgi, nos planteamos estudiar si el DAG aumenta el reclutamiento de la PKCε en su estado fosforilado. En primer lugar, examinamos la localización de la PKCε fosforilada en el residuo Ser 729 (p-PKCε). Para ello, transfectamos las células

![Image: Figures showing the effect of DOG on PKCε localization](image-url)

Figura 31. El DOG induce el reclutamiento de la PKCε fosforilada en el Golgi. Las células Swiss 3T3 se incubaron durante 15 min con diferentes concentraciones de DOG (3 µM) y (50 µM). Posteriormente, se procesaron para inmunofluorescencia usando anticuerpos monoclonales anti-giantina y policlonales anti-p-PKCε. Comparar la intensidad de la fluorescencia de los recuadros dentro de los paneles control, DOG 3 µM y 50 µM. Escala Bar, 10 µm.

COS-7 con la PKCε-GFP y se procesaron para inmunofluorescencia usando anticuerpos anti-PKCε (para visualizar la holoenzima) y anti-p-PKCε (para visualizar sólo la PKCε fosforilada en el residuo Ser 729). La PKCε sobreexpresada colocalizaba totalmente con el anticuerpo que reconoce toda la holoenzima (Fig.30 A, B; asteriscos). Sin embargo, el anticuerpo que reconoce la forma fosforilada no
colocalizaba totalmente con el GFP sino que mayoritariamente lo hacía con la localizada en el Golgi (Fig. 30 C, D; asteriscos). Este resultado sugiere que la forma fosforilada de la PKCε es la que se encuentra mayoritariamente en el Golgi.

Figura 32. El mutante inactivo de la PKCε no altera la dinámica de desensamblaje del Golgi inducida por BFA. Las células COS-7 se transfectoron con la PKCε-KD-GFP y se trataron con BFA (5 µg/ml) durante 2.5 min, 5 min y 15 min. Después, se procesaron para inmunofluorescencia usando anticuerpos monoclonales anti-giantina. Comparar con el control (Figura 28 A). Escala Bar, 10 µm.

Paralelamente, estudiamos si el DAG aumenta el reclutamiento de la p-PKCε en el Golgi. Para ello, las células Swiss 3T3 se trataron con diferentes concentraciones de DOG y se procesaron para una doble inmunofluorescencia utilizando anticuerpos anti-p-PKCε y anti-giantina. En células control se observaba
un marcaje muy tenue de la PKCε fosforilada en la zona perinuclear (Fig.31; Inserto). Al tratar con 3 µM de DOG se producía un pequeño incremento de la p-PKCε en el Golgi (Fig.31; Inserto) pero resultó mayor cuando se utilizó una concentración 10 veces superior de DOG (30 µM) (Fig.31; Inserto). Estos resultados sugieren que el aumento de los niveles de los DAG estimula el reclutamiento de la PKCε en el Golgi y que ésta está mayoritariamente fosforilada.

También estudiamos si el estado de fosforilación está condicionado por la actividad quinasa de la enzima. Para ello, las células se transfectaron con el mutante catalíticamente inactivo de la PKCε y empleamos los anticuerpos anti-PKCε y anti-p-PKCε. La localización de la forma p-PKCε (Fig.30 G, H; asteriscos) no cambiaba de distribución y continuaba localizándose en el Golgi. Este resultado sugiere que la fosforilación de la PKCε, al menos en la Ser 729, es independiente de la actividad quinasa.

3.4.- El mutante catalítico inactivo de la PKCε no altera el transporte retrógrado de proteínas

Para determinar si la PKCε asociada al Golgi es una proteína efectora del DAG y participa en el transporte retrógrado de proteínas, examinamos el efecto de

![Figura 33. El mutante inactivo de la PKCε no altera el patrón de distribución del receptor de KDEL. Las células COS-7 se transfectaron con el vector PKCε-KD-GFP y se procesaron para inmunofluorescencia usando anticuerpos policlonales anti-KDELr. El asterisco representa a célula transfectada. Escala Bar, 10 µm.](image)
la expresión del mutante inactivo de la PKCε sobre la cinética de desensamblaje del Golgi inducida por la BFA. Para nuestra sorpresa, el mutante inactivo no alteraba la cinética del desensamblaje de Golgi (Fig.32) siendo igual que la de las células control (Fig.28 A). También examinamos el efecto de la expresión de este mutante sobre el patrón de distribución del KDELr. Para ello, las células COS-7 se transfectaron con el PKCε-KDEL-GFP y se procesaron para inmunofluorescencia usando anticuerpos anti-KDELr. En las células transfectadas se observaba un patrón subcelular indistinguible del control (Fig.33). Estos resultados sugieren que la PKCε a pesar de ser reclutada en el Golgi a través del DAG no parece participar en las funciones de transporte en la zona ER/Golgi.

3.5.- La PKCε localiza mayoritariamente en el TGN

Teniendo en cuenta que la PKCε no parece participar en las etapas tempranas de la vía secretora, nos planteamos estudiar en detalle la localización de la PKCε en

Figura 34. La PKCε localiza mayoritariamente en el TGN. Las células COS-7 se transfectaron con la PKCε-GFP (A, E) y se procesaron para inmunofluorescencia usando anti-TGN46 (B) y anti-GM130 (F). Ampliación del los recuadros que están dentro de los paneles C y G, respectivamente (D, H). Las imágenes se captaron en el microscopio confocal. Escala Bar, 10 µm.
los compartimentos del Golgi. Para ello, las células COS-7 se transfecaron con la PKCε-GFP y se procesaron para inmunofluorescencia usando anticuerpos anti-GM130, un marcador del cis-Golgi, y anticuerpos anti-TGN46 para visualizar el TGN. Observamos que la PKCε colocalizaba mejor con el TGN46 (Fig.34 A-D) que con el GM130 (Fig.34 E-H). Estos resultados indican que la PKCε está preferentemente asociada a la red trans-Golgi y este hecho explicaría la ausencia de alteraciones en el transporte en la zona ER/Golgi.
Videos

Video 12. Células COS-7 transfectadas con PKCε-GFP tratadas con propanolol (60 µM). Cuando se añadía el propanolol, la PKCε-GFP asociada al Golgi se translocaba parcialmente al citoplasma y después regresaba al Golgi.