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“The most beautiful thing we can 

experience is the mysterious.” 

 

-Albert Einstein-

-
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Abstract 

 
Gene translation is a central process that occurs in all three domains of life, in which 

messenger RNA (mRNA) is decoded to produce a specific polypeptide according to the rules 

specified by the genetic code. Our research group studies gene translation, and more 

specifically, the mechanism of transfer RNA (tRNA) aminoacylation.  In the aminoacylation 

reaction, a particular amino acid is transferred to its cognate tRNA. The enzymes catalyzing 

this highly specific reaction are the aminoacyl-tRNA synthetases (aaRS), which are responsible 

for establishing the genetic code. Aminoacyl-tRNA synthetases are the link between the worlds 

of protein and nucleic acids. It is not only the structure-function of these enzymes what has 

captured the biologist’s imagination, but also the possibility that they could tell us the secrets of 

the genetic code. To understand these enzymes is to add a most important piece to the puzzle 

of what the cell is, and how it works.  

 

This work focuses on the genome-wide study and characterization of the gene translation 

machinery using both in silico and in vitro approaches, with a special focus on the two major 

players of the aminoacylation reaction: aaRS and tRNAs. Indeed, in this work I have 

characterized with greater detail the gene translation machinery of Plasmodium falciparum, the 

most deadly species causing malaria, in order to design and screen inhibitors specifically 

targeting its gene translation machinery.  

 

This PhD thesis has been structured into three different sections, corresponding to the different 

projects performed related to the characterization of the gene translation machinery: 

 

1.  Genome-wide characterization of the gene translation machinery and its evolution 

across species 

 

Despite the central role of tRNAs in protein translation, the connections between tRNA gene 

population dynamics and genome evolution have rarely been explored. Indeed, we do not 

understand the reasons for the variability between tRNA pools of different species, nor the 

principles that determine tRNA gene abundances or genomic codon composition. 

 

To understand the evolutionary pressures that shaped the gene translation machinery, we 

analyzed hundreds of genomes in terms of their tRNA gene contents and codon usage. 

Through our analysis we observe that tRNA pools have evolved in a kingdom-specific manner, 
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and that two kingdom-specific tRNA modifications greatly contributed to genome evolution and 

extant codon usage biases: tRNA-dependent adenosine deaminases (ADATs) in Eukarya, and 

uridine methylatransferases (UMs) in Bacteria. Our results suggest that these two tRNA 

modifications exerted a positive selection on their respective genomes, causing a bias towards 

specific codons that are read by these modified tRNAs in highly expressed genes.  Therefore, 

the abundance of codons read by these modified tRNAs in a gene directly correlates with 

genome-wide expression levels. This suggests not only that codon usage bias is a strategy for 

regulating gene expression levels, but also that the modulation of translation efficiency is 

performed through the use of specific tRNA modifications.  

 

The discovery of kingdom-specific strategies to optimize translation efficiency opens new 

possibilities to further improve heterologous gene expression systems. Indeed, preliminar 

results suggest that these modifications may also have potential roles in disease states. Thus, 

tRNA modifications may not be mere “decorations” of the function and structure of RNA 

molecules, but a whole layer of regulation of gene expression levels.   

 

2.  In silico and in vitro drug design targeting the Plasmodium falciparum gene 

translation machinery  

 

The protein synthesis machinery represents one of the most useful targets for the development 

of new anti-infectives.  Several families of broadly used antibiotics exert their function by 

blocking the protein synthesis machinery. And yet, very little is known about the specifics of the 

protein synthesis machinery in Plasmodium. In this work we aim to characterise the tRNA 

biology in Plasmodium falciparum, and to develop both in silico and in vitro screenings for the 

selection of new potential anti-malarial drugs targeting the plasmodial aminoacyl tRNA 

synthetases, which are essential enzymes and proven antimicrobial drug targets, and thus 

represent interesting novel targets for antimalarial drug discovery.   

 

There are three different genomic reservoirs that can be translated in P. falciparum: the 

apicoplastic, the mitochondrial and the nuclear genome.  Our results predict that there is a total 

of 37 nuclear-encoded aaRS genes, which are either targeted to the apicoplast or to the 

cytoplasm, obtaining a full set of aaRS in these two compartments. Amongst the 37 predicted 

ARS, we decided to focus on two of them as candidate antimalarial drug targets: the 

apicoplastic-targeted lysyl-tRNA synthetase (PfKRS-2) and the glutaminyl-tRNA synthetase 

(PfQRS).  
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Plasmodial proteins are difficult to characterize structurally using traditional in vitro approaches.  

However, these problems can be partially overcome using a number of in silico approaches. 

This work is a clear example showing that the combination of both in silico and in vitro 

procedures can facilitate and accelerate the discovery of candidate hits. Furthermore, we also 

show that plasmodial aminoacyl-tRNA synthetases are druggable enzymes that can be used 

as specific targets of antimalarials.  Overall this work shows that it is worth to continue 

characterizing the protein synthesis machinery in Plasmodium falciparum, and use this 

knowledge for the development of new antimalarials. 

 

3.  Method development   

 

To develop the projects mentioned above, two side-projects related to computational 

benchmarking and software development have been performed: 

 

1. Development of a sequence-based method to predict pathogenicity-related proteins 

2. Development of a docking strategy to decipher the reliability, enrichment ratios and 

docking binding pose accuracy when using homology models for docking purposes.
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Abbreviations 
 
 
3D  three-dimensional 
aa   amino acid 
aa-AMP  aminoacyl-adenylate 
aaRS  aminoacyl-tRNA synthetase 
ADAT  tRNA-dependent adenosine 

deaminase 
ADAR  RNA-dependent adenosine 

deaminase  
ADP   adenosine diphosphate 
ATP   adenosine triphosphate 
BLAST  basic local alignment search tool 
bp   base pair 
CDS  coding sequence 
Cter   carboxy-terminal 
DAPI  4�,6-Diamidino-2-phenylindole 

dihydrochloride 
DNA   deoxyribonucleic acid 
dNTP   deoxyribonucleotide triphosphate 
eEF  eukaryotic elongation factor 
EF  elongation factor 
eGFP enhanced green fluorescent 

protein 
eIF  eukaryotic initiation factor 
EMAPII  endothelial monocyte 

activating polypeptide II 
ER  enrichment ratio 
eRF  eukaryotic releasing factor 
GFP  green fluorescent protein 
GTP  guanosine triphosphate 
GS  GlideScore 
hetADAT heterodimeric ADAT 
HGT  horizontal gene transfer 
HTS  high-throughput screening 
Hs  Homo sapiens 
IC50 half maximal inhibitory 

concentration 
IDC intraerythrocytic 

developmental cycle 
IF  initiation factor 
IleRS  isoleucyl-tRNA synthetase 
iRBC  infected red blood cell 
Kb   kilobase 
kDa   kilodaltons 
Ki  inhibition constant 
KM  Michaelis constant 
KRS  lysyl-tRNA synthetase 
LAD  lysyl-adenylate intermediate 
LC-MS/MS liquid chromatography-coupled 

tandem quadrupole mass 
spectrometry 

LeuRS  leucyl-tRNA synthetase 

MARS  multi-synthetase complex 
MD  molecular dynamics 
MRSA  methicillin-resistant 

Staphylococcus aureus 
Mg  magnesium 
miRNA  micro-RNA 
mRNA  messenger RNA 
MS  mass spectrometry 
mTOR  mammalian target of rapamycin 
MW   molecular weight 
Nter   amino-terminal 
ORF   open reading frame 
PCA  principal component analysis 
PCR   polymerase chain reaction 
PDB  protein data bank 
PI3K  phosphoinositide 3-kinase 
Pf  Plasmodium falciparum 
PfKRS-1  Plasmodium falciparum 

cytoplasmatic lysyl-tRNA synthetase 
PfKRS-2  Plasmodium falciparum 

apicoplastic lysyl-tRNA synthetase 
PfTRS  Plasmodium falciparum threonyl-tRNA 

synthetase 
PfQRS  Plasmodium falciparum 

glutaminyl-tRNA synthetase 
PheRS  phenylalanyl-tRNA synthetase 
PPi  inorganic pyrophosphate 
ProRS prolyl-tRNA synthetase 
RBC red blood cell 
RF releasing factor 
RGF relative gene frequency 
RNA  ribonucleic acid 
RNAP RNA polymerase 
RNase ribonuclease 
RRF ribosome recycling factor 
rRNA  ribosomal RNA 
RSCU relative synonymous codon usage 
SBDD structure-based drug design 
SD Shine-Dalgarno 
siRNA small interference RNA 
ThrRS threonyl-tRNA synthetase 
tRNA  transfer RNA 
tRNAaa

NNN tRNA specific for aa bearing the 
codon NNN 

TrpRS tryptophanyl-tRNA synthetase 
UTR untranslated region 
UM uridine methyltransferase 
WB  western blot 
WHO World Health Organization 
wt wild type 
Zn zinc 
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Amino acid abbreviations 
 
A Ala alanine       fMet formyl-methionine 
C Cys  cysteine     N Asn asparagine 
D Asp  aspartic acid     P Pro proline 
E Glu  glutamic acid     Q Gln  glutamine 
F Phe phenylalanine     R Arg  arginine  
G Gly  glycine      S Ser serine 
H  His  histidine     T Thr threonine 
I  Ile  isoleucine     U Sec selenocysteine 
K Lys lysine      V Val valine 
L Leu leucine      W Trp tryptophan 
M Met methionine     Y Tyr tyrosine 
 
 
Modified nucleotides abbreviations  

 
mcm5U  5-methoxycarbonylmethyluridine 
mcm5s2U 5-methoxycarbonylmethyl-2-thiouridine 
s4U  4-thiouridine 
t6A  N

6-threonylcarbamoyladenosine 
m7G   7-methylguanosine 
Cm  2'-O-methylcytidine 
D   dihydrouridine 
I  inosine 
m2G  N

2-methylguanosine  
m2

2G  N
2,N2-dimethylguanosine 

mnm5s2U 5-methylaminomethyl-2-thiouridine 
m5U  5-methyluridine or ribothymidine 
cmo5U  uridine 5-oxyacetic acid 
acp3U  3-(3-amino-3-carboxypropyl)uridine 
s2C  2-thiocytidine 
mcm5Um 5-methoxycarbonylmethyl-2'-O-methyluridine 
ms2t6A   2-methylthio-N6-threonyl carbamoyladenosine 
m5C  5-methylcytidine 
f5C  5-formylcytidine 
mnm5U  5-methylaminomethyluridine 
k2C  lysidine 
�m5s2U  5-taurinomethyl-2-thiouridine 
�   pseudouridine 
xm5s2 U 5-methyl-2-thiouridine derivatives with any substitution at carbon 5 of the uracil 
xmo5U  5-methoxyuridine derivatives with any substitution at carbon 5 of the uracil 
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1. Introduction  
 
1.1 Overview of the gene translation process 
 

1.1.1 The central dogma 

 
The cell is the functional unit of living organisms, and contains DNA, RNA and proteins (Crick 

1958).  Proteins comprise nearly 50% of the cellular mass and serve as enzymes, signalling 

molecules, structural, storage and mechanical components of the cell.    

 

The sequential transition of information from DNA to mRNA to protein constitutes the central 

dogma of molecular biology (Figure 1.1). It states that such information cannot be transferred 

back from protein to either protein or nucleic acid (Crick, 1970). 

 

The specific part of DNA that encodes for an mRNA sequence that will be transcribed into a 

protein is called a gene. For the information of DNA to be converted into protein, the gene has 

to be transcribed into mRNA by RNA polymerase and transcription factors.  In eukaryotic cells 

the primary transcript (pre-mRNA) must be processed further in order to ensure translation. 

This normally includes a 5'-cap, poly-A tail and splicing. Eventually, this mature mRNA finds its 

way to a ribosome, where it is translated.   

 
 

Figure 1.1.  Central dogma of biology.  The dogma is a framework for understanding the transfer of 

sequence information between sequential information-carrying biopolymers.  Crick's initial proposal 

(1970) is shown in black, and later modifications are included in red.    
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1.1.2 The two phases of gene translation 
 

Translating the 4-letter code of RNA into the 22-letter alphabet of proteins is a central feature of 

cellular life. In the gene translation process, messenger RNA (mRNA) is decoded by the 

ribosome to produce a specific amino acid chain that will later fold into an active protein. The 

translation machinery is dedicated to interpreting the nucleic acid code in a two-part process. 

First, amino acids are covalently linked to their cognate tRNAs via an aminoacylation reaction 

catalyzed by a diverse group of proteins, the aminoacyl-tRNA synthetases (aaRS). The 

aminoacyl-tRNAs (aa-tRNAs) are then delivered to the ribosome by elongation factors (EF-Tu 

in bacteria and EF-1A in archaea and eukaryotes) (Krab and Parmeggiani 2002; Hotokezaka et 

al. 2002).  At the ribosome, the tRNA anticodon is matched to the mRNA codon and the 

charged tRNA delivers the next residue of a nascent protein chain (Figure 1.2).   

 

                                   
 

Figure 1.2.  Two phases of protein synthesis.  In the first phase, tRNAs are aminoacylated with their 

cognate tRNA by its specific aaRS (top left).  Then, the aminoacylated tRNAs are delivered to the 

ribosome.  The protein elongation cycle is also depicted.   
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The first phase, concerning tRNA aminoacylation by aaRS, will be covered in greater depth in 

section 1.5.1. Regarding the second phase, the ribosomal protein translation has been 

extensively reviewed (Dale and Uhlenbeck, 2005; Kapp and Lorsch, 2004; Jackson et al. 

2010). Ribosomal translation occurs in four stages: initiation, elongation, termination and 

recycling (Figure 1.3).   

 

- In the initiation step, methionyl initiator tRNA (Met-tRNAMet-i), GTP and eukaryotic 

initiator factor 2 (eIF2) are assembled in the eIF2-GTP-Met-tRNAMet-i ternary complex, 

which binds to the P site of the small (40S) ribosomal subunit. The 43S complex begins 

to scan down the mRNA in the 5’ to 3’ direction, looking for the AUG initiation codon 

with the Kozak sequence (Kozak, 1986).  

 

- During the elongation step, a new aminoacyl-tRNA is carried to the A site of the 

ribosome complexed with eukaryotic elongator factor 1A (eEF1A) and GTP in the 

ternary complex eEF1A�GTP�aa-tRNA. The ribosomal peptidyl transferase center 

(PTC) catalyzes the formation of a peptide bond between the incoming amino acid and 

the growing peptide, resulting in a deacylated tRNA with its acceptor end in the E (exit) 

site. The protein elongation cycle is repeated until a stop codon is encountered, in 

which case, the process of termination is triggered. 

 

- At the termination stage, the eukaryotic releasing factor (eRF) 1 (eRF1) promotes, in 

response to any of the three eukaryotic stop codons UAA, UAG or UGA in the A site, 

the hydrolysis of the ester bond linking the polypeptide chain to the tRNA on the P site 

and, therefore, the release of the completed polypeptide from the ribosome.  

 

- The ribosome recycling process is the less known of the four stages and, contrary to 

prokaryotes, no ribosome recycling factors (RRF) have been found in eukaryotes. 

Instead, eIF3 has been proposed as the principal factor that promotes recycling of the 

ribosomes after termination. 
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-      

       

 

Figure 1.3.  Model of the canonical pathway of eukaryotic translation initiation.  The canonical 

pathway translation initiation is divided into eight stages (2-9), which are followed by the recycling of 

post-termination complexes (post-TCs; 1).  Adapted from Jackson et al., 2010. 
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1.2 The genetic code 
 

The standard genetic code, with some exception, is found throughout all the kingdoms of life.  It 

is composed of 64 different triplets (codons), with 61 of them encoding amino acids. As there 

are many more amino acid codons (64) than amino acids themselves (20), most amino acids 

are encoded by several related codons in what is referred to as degeneracy. The only 

exceptions to the degeneracy are methionine and tryptophan (Figure 1.4). There is a tendency 

for similar codons to specify for similar amino acids (Woese, 1965b).  Mutation or misreading of 

the third base pair of a codon is therefore likely to preserve the amino acid specified, or switch 

it to an amino acid with similar properties.  A certain resemblance is also observed between the 

amino acids specified by codons that share the same residue at the second position.  Codons 

with U at the second position specify hydrophobic amino acids while those with an A in this 

position tend to code for strongly hydrophilic residues.  These similarities seem to indicate that 

the genetic code has evolved to minimize the harm caused by error in the genes or in the 

translation process (Alff-Steinberger, 1969).    

 

                   
 

Figure 1.4.  The genetic code.  Correspondence between codons (DNA triplets) and its corresponding 

amino acid. The combination of the two first letters of the code creates 16 possible codon boxes, where 

each codon box is composed of 4 codons, and is differentiated by the third letter –also known as 

degenerate position, given that codon boxes this position is not important for the establishment of the 

identity of the correct amino acid-.  Stop codons (TAA, TAG, TGA) are highlighted in red.   
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The mechanism through which an organism can read all 61 codons was first hypothesized by 

Francis Crick with his Wobble Hypothesis (Crick, 1958).  Now it is widely known that a tRNA 

has the ability to decode multiple codons through the flexibility in base-pairing between the 

third position (3’ position) of the mRNA codon and the first position (5’ position) of the tRNA 

anticodon, also known as the wobble position (Figure 1.5). 

 

 

               

 
 

Figure 1.5.  mRNA codon- tRNA anticodon base pairing.  The base 34 of the tRNA, also known as 

wobble base, recognizes the base in the 3rd position of the mRNA, also known as the degenerate 

position.  In the example above, the G can pair with either a U or a C.  This allows mRNA to be 

translated with fewer than the 64 tRNAs that would be required without the wobble.   

 



 

 

17 

1.3 Transfer RNAs 
 
Transfers RNAs (tRNAs) are the adaptor molecules first hypothesized by Crick over 50 years 

ago (Crick, 1958).  As a general rule, there is at least one tRNA for each of the twenty amino 

acids used in the standard genetic code.  In many cases, multiple tRNA isoacceptors exist for a 

given amino acid, with these isoacceptors recognizing different or overlapping sets of codons 

for that amino acid.   

 

tRNAs carry amino acids to the ribosome and decode the genetic information of the mRNA.  

However, these ancient molecules have also been shown to participate in other cellular 

processes non-related to translation, such as control of their cognate aaRS expression 

(Ryckelynck et al. 2005) or a primer function in reverse transcription during retrovirus and 

retrotransposon replication (Mak and Kleiman, 1997).   

 

1.3.1 tRNA structure 
 
tRNA molecules are relatively short –typically 75 to 95 nucleotides long- that exhibit a strongly 

conserved secondary structure (Sprinzl et al. 1998).  This secondary structure consists of a 

series of double-stranded stems and single stranded stems (Figure 1.6). The overall structure 

can be depicted in an unfolded cloverleaf form composed of an acceptor stem, D-arm, T-arm 

and T-loop (Holley et al., 1965).   

 

The T and D tRNA loops owe their names to two strongly conserved modifications, 

ribothymidine (T) at position 54 and dihydrouridine (D) at position 16 (Bjork et al. 1999).  

Conserved G18 and G19 in the D-loop interact with conserved �55 and C56 of the T-loop to 

stabilize the structure, along with the Levitt base pair interaction between position 48 of the 

variable loop and position 15 of the D-loop (Kim et al. 1974; Levitt, 1969).  The resulting bent 

hairpin places the acceptor stem and anticodon loop at opposite ends of the molecule.   

 

The acceptor stem consists of seven base pairs followed by an unpaired discriminator base at 

position 73, which is followed by a conserved C74, C75 and A76 sequence. The amino acid is 

charged into the 3’ terminal of the A76 residue.  Bases 34, 35 and 36 of the anticodon loop 

constitute the anticodon that is used by the ribosome to recognize the mRNA codons. The first 

position of the anticodon (base 34) is named wobble base, as it allows non-Watson-Crick base 

pairing with the third position of the mRNA codon (Crick, 1970).  
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Figure 1.6.  Structure of tRNA.  On the left, cloverleaf representation of a tRNA with the key conserved 

residues indicated and each loop and stem highlighted in different colours.  The extra loop or variable 

loop depicted is typically found in tRNASer and tRNALeu. On the right, structural 3D representation of a 

properly folded tRNAAsp, with structures colour-coded as in the cloverleaf representation (Ruff et al., 

1991).  

 

1.3.2 tRNA gene arrangement and transcription 
 

tRNAs tend to be transcribed into long RNA units that are enzymatically trimmed to yield a 

functional tRNA (Deutscher, 1984).  In bacteria, polycistronic as well as monocistronic 

precursors are present, whereas in eukaryotes the majority of the primary transcripts are 

monocistronic. In eukaryotes, RNA polymerase III uses transcription factors to recognize two 

internal tRNA sequences, the A and B box, which are composed of parts of the T-arm and T-

loop or D-arm and D-loop, respectively.   

 

Following transcription and, if necessary, intron removal, the 5’ end of the pre-tRNA transcripts 

are processed by RNAseP (Kole and Altman, 1979).  In bacteria, exonucleases remove excess 

residues from the 3’ end leaving a mature CCA 3’ terminus (Reuven and Deutscher, 1993).  

However, eukaryotes lack this CCA sequence in the gene, and thus, after the processing of the 

3’ end by nucleases, a tRNA nucleotidyl transferase adds the CCA residues to the 3’ terminus 

(Tomita and Weiner, 2001).   



 

 

19 

1.3.3 tRNA gene copy number and abundance 
 

tRNA genes are often present in multiple copies, with higher copy number for tRNAs typically 

corresponding to more frequently used codons in the genome. There are 61 possible tRNA 

isoacceptors, each of them with a different anticodon. In all organisms, less than the possible 

61 tRNA types carry out the decoding of all codons. For example, there are only 40 tRNA 

isoacceptors in E. coli K12, 44 tRNA isoacceptors in D. melanogaster, 48 in C. elegans and 51 

in human (Lowe and Eddy, 1997).  Each of these isoacceptors tends to be present in multiple 

copies, which are unequally distributed, with some tRNA isoacceptors that are over-

represented compared to others, which are missing (Figure 1.7).  

 

Organelles have suffered a drastic reduction of their contents. The number of tRNAs encoded 

by mitochondrial genomes is species-specific.  For instance, the human genome encodes for 

22 tRNA genes that are sufficient for mitochondrial protein synthesis.  However, in other 

organisms such as plants, fungi and protozoa, the situation is different, and some tRNA genes 

are absent in the mitochondrial genome. Trypanosomatids (e.g. Trypanosoma brucei) and 

Apicomplexa (e.g. Plasmodium falciparum) are the most extreme situation with no tRNA genes 

encoded in their mitochondrial genomes.  In these cases, nuclear-encoded tRNAs are imported 

into the mitochondria (Salinas et al. 2008).   

                    
Figure 1.7.  tRNA gene composition of H. sapiens build 37.1.  Amino acids have been divided into 

different boxes depending on the number of isoaccepting tRNAs that encode for the same amino acid. 

The individual tRNA gene copies are shown in black, whereas the total tRNA gene copy number per 

amino acid is shown in green. The tRNA gene predictions have been performed using the tRNAscan-SE 

software (Lowe and Eddy, 1997).   
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In unicellular organisms such as bacteria and fungi, the genomic tRNA copy number correlates 

with the intracellular tRNA levels (Ikemura, 1981; Sorensen and Pedersen 1991; Kanaya et al. 

1999; Tuller et al. 2010). Thus, the expression of a tRNA gene that is not subjected to 

regulation is expected to be similar to its respective copy number (Figure 1.8).  However, in 

higher organisms such as human, several tRNA genes appear as outliers of the plot of tRNA 

levels versus tRNA gene copy number, suggesting that the epigenetic signature and chromatin 

state may play a role in tissue-specific tRNA expression levels (Ernst et al. 2011; Mahlab et al. 

2012).  

 

 

                  
 

Figure 1.8.  Correlation between tRNA gene copy number and tRNA abundances in S. cerevisiae.  
The tRNA abundances have been measured using specific tRNA microarray probes dedicated to this 

species (Dittmar et al. 2004). tRNA levels measured independently with two alternative dyes (Cy3 and 

Cy5).  Adapted from Tuller et al. Cell 2010.   
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1.4 tRNA modifications 
 
Unlike mRNA transcripts, transcripts of tRNA genes undergo extensive post-translational 

processing to become a fully functional and mature tRNA for protein translation. This process is 

known as tRNA editing, and is essential for cell survival (Döring et al. 2001; Nangle et al. 

2006).  tRNA modification is a function of the processing stage, the concentration of the 

substrate and the amount of activity of the tRNA-modifying enzyme.   

 

1.4.1  Types of tRNA modifications 
 
Currently, there are over 100 post-translational modifications that have been identified in tRNA 

(http://rna-mdb.cas.albany.edu/RNAmods/), some of which are shown in Figure 1.9. Some of 

these modifications are found in all three phylogenetic domains, whereas some others are 

domain-specific (Peterkofsky et al. 1971). The tRNA is modified post-transcriptionally by 

modifying enzymes, which are specific for their nucleoside substrate and its position in the 

tRNA.  For instance, the pseudouridine residue (�) found in the anticodon loop (�38) and the 

one found in the T�C loop (�55) are synthesized by different enzymes.  

  

Escherichia coli encodes 86 tRNA genes, which represent 40 different tRNA species 

(gtrnadb.ucsc.edu).  Almost 30 different modified nucleotides have been identified in E. coli 

tRNAs (Table 1). All tRNA species contain �55 and m5U54, and modifications at positions 34 

and 37 are frequent.  Modifications at the wobble position (base 34) can directly affect 

translation by altering the pattern of hydrogen bond donors and acceptors.  Some of these 

modifications increase its wobbling capacities, while others restrict it. Specific modifications can 

be either determinants or anti-determinants for the translation of specific codons.   

 

Some tRNA modifications involve a complete base substitution, in which a tRNA nucleoside is 

post-transcriptionally modified into another nucleoside, with its respective consequences in its 

base-pairing capabilities. The two most common tRNA editing substitutions involve adenosine 

to inosine (A-to-I) deamination, and cytidine to uridine (C-to-U) deamination.   
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Figure 1.9.  Common types and sites for modifications of the four major nucleotides.  A) A choice 

of chemically unusual modified nucleosides.  B) Nucleosides with modifications on the Hogsteen edge.  

C) Nucleosides carrying methyl groups on the Watson-Crick edge.  Adapted from Kellner et al. 2010.      
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Table 1.  tRNA modifications in Escherichia coli  

Modification Name Function 
m2A 2-methyladenosine  

m6A N6-
methyladenosine 

may prevent A36  from base-pairing other than U 

i6A N6-isopentenyladenosine  
ms2i6A 2-methylthio-N6-

pentenyladenosine 
decodes UNN codons, stabilization of 
anticodon:codon interactions, effectively 
compensating for the weak A:U  

t6A N6-threonyl 
carbamoyladenosine 

modification may stabilize U:A base pair at 
the first codon position, positive determinant for 
IleRS 

m6t6A N6-methyl-N6-
threonylcarbamoyladenosine 

may prevent misreading at the first position with a 
U:G base pair 

s2C 2-thiocytidine may increase efficiency of codon:anticodon 
formation 

ac4C N4-acetylcytidine reduces reading of AUG codons, decreases 
misreading of noncognate AUA codons 

k2C lysidine prevents misacylation, changes base-pairing 
ability of C to recognize only A 

Cm 2’-O-methylcytidine pos. 32: restricts nucleotide flexibility 
pos. 34: restricted wobbling with tRNAMet 

D dihydrouridine establishing correct conformation for 
minoacylation 

Gm 2’-O-methylguanosine  
m1G 1-methylguanosine methyl group prohibits base pairing with Watson-

Crick geometry, might prevent out-of phase 
reading with shifted or expanded anticodon methyl 
group may increase base stacking 

m7G 7-methylguanosine  
I inosine increase codon:anticodon pairing possibilities 
Q queuosine minor effects on decoding of U and C 
s4U 4-thiouridine pos. 8: acts as sensor for near-UV light and 

protects cells from such stress, prevents  
expression of SOS response and thus reduces 
mutagenesis 

Y pseudouridine different functions depending on the position: 
pos. 32: ? 
pos. 34, 35: increases translational efficiency 
by stabilizing anticodon:codon pairing 
pos. 38-40: increases translational efficiency 

Um 2’-O-methyluridine  
cmo5 U uridine 5-oxyacetic acid enhance wobbling, tRNAs read A, G and U 
mcmo5 U uridine 5-oxyacetic acid methyl 

ester 
enhance wobbling, tRNAs read A, G and U 

mnm5 U 5-methylaminomethyluridine  
mnm5 Um 5-methylaminomethyl-2-O-

methyluridine 
restricts wobbling, tRNAs read A > G 

mnm5 s2 U 5-methylaminomethyl-2-
thiouridine 

restricts wobbling, tRNAs read A > G 

mnm5 Se2 U 5-methylaminomethyl-2-
selenouridine 

 

acp3 U 3-(3-amino-3-carboxypropyl)-
uridine 

 

m5U ribosylthymine stabilizes tRNA structure, decreases errors and 
increase A-site binding 
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1.4.2 Functions of tRNA modifications 
 

Why are RNA chains modified at all? The simplest answer may be that RNA, as opposed to 

proteins with 20 different amino acids, have only four nucleotides to use, and therefore, the 

evolution of modified nucleosides may have compensated for the shortcoming in flexibility and 

accuracy (Persson et al., 1993). However, most modified nucleotides may not be essential for 

the aminoacylation reaction (Chan et al. 2010), although they constitute important identity 

determinants for many aaRS.   

 

Of special interest are those modifications that affect the functions of the translational 

machinery.  In this regard, modifications at position 34 have an obvious effect on the decoding 

capacity by altering the array of H-bonding groups. The most well described biological 

functions for these tRNA modifications include:  

 

 i)  Extension and restriction of base-pairing capacity  

 ii) Modification of the stability of codon-anticodon interaction  

 iii) Reading frame maintenance  

 iv) Modification in natural non-sense suppression  

 v)  Effects on the efficiency of translation initiation  

 
In vitro transcription of tRNAs allowed a direct comparison between native and unmodified 

tRNAs in E. coli (Sylvers et al. 1993; Tamura et al. 1992).  Such comparisons of the kinetics of 

the aminoacylation reactions revealed that amongst 14 different unmodified tRNAs, all except 3 

accepted the cognate amino acid. Thus, modified nucleotides are not a prerequisite for most 

aminoacylation reactions in vitro, but will affect the kinetics of the reaction.   

 

The non-essentiality of many of these modifications parallels the fact that many DNA 

modifications are not essential for life.  However, in a similar fashion to DNA modifications, 

increasing evidence indicates that tRNA modifications can play regulatory roles in cells, 

especially in response to stress conditions (Chan et al., 2010; Chan et al., 2012).  Like the 

epigenetic states of histone protein modification and DNA methylation, the pattern and 

selectivity of tRNA modifications could also be regulated and maintained in distinct cell types 

and physiological states (Yi and Pan, 2011).  
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1.5 Aminoacyl-tRNA synthetases 
 
Aminoacyl-tRNA synthetases (aaRS) are, together with tRNA, the main players in the first step 

of the protein translation: the aminoacylation reaction. As a consequence of the aminoacylation 

reaction, a particular amino acid is specifically linked to its cognate tRNA. Once this reaction is 

completed, the tRNA is brought to the ribosome and participates in the second step of protein 

translation: the ribosomal peptide synthesis.   

 

1.5.1 Aminoacylation reaction 
 
Aminoacylation by aaRS occurs in two steps.  First, the amino acid is adenylated or “activated” 

with ATP to form aminoacyl-adenylates (aa-AMPs), releasing pyrophosphate (PPi).  Then the 

activated amino acid (aa-AMP), which remains complexed with the enzyme, is then transferred 

onto the 3’ terminal nucleotide (A76) of the tRNA via covalent attachment, yielding free AMP 

and free aminoacyl-tRNA (Figure 1.10).  

              

Figure 1.10.  Aminoacylation reaction.  Aminoacyl-tRNA synthetases catalyze the aminoacyl-tRNA 

(aa-tRNA) formation in two steps: i) activation of the amino acid and ii) transfer of the activated amino 

acid to its cognate tRNA.   
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1.5.2 Classes of aminoacyl-tRNA synthetases 
 

With notable exceptions, there are 20 aaRS, one for each of the amino acids used in the 

genetic code. These aaRS are universally distributed across the tree of life (Nagel and 

Doolittle, 1991).  Although the basic chemical reaction is the same in each case, the 20 aaRS 

fall into two classes containing distinct active site architectures (Cusack et al., 1990; Eriani et 

al., 1990).  Class I and class II enzymes appear to have originated from two separate ancestral 

active site domains or catalytic cores, that contained both amino acid activation and tRNA 

aminoacylation activity (Schimmel and Ribas de Pouplana, 1995).  With the exception of lysyl-

tRNA synthetase, each of the 20 types of aaRS can be assigned to only one of these two 

classes (Figure 1.11).   

 

          

 
 

Figure 1.11. Classes of aaRS.  Depending on the fold of the catalytic site, aaRS can be classified into 

two different classes: class I (Rossman fold) or class II (antiparallel ß-sheet). Each of the enzymes 

corresponding to a given class tend to recognize the tRNA from its minor or major groove side, 

respectively.   
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Class I enzymes have a catalytic core based on a nucleotide binding Rossman fold (consistent 

of a minimum of three parallel ß-strands connected by helices) and contain characteristic HIGH 

and KMSKS motifs for ATP and magnesium (Mg2+) ion interaction (Eriani et al, 1990; Rould et 

al., 1989).  In contrast, the catalytic core of class II aaRS is comprised of an antiparallel ß-

sheet formation flanked by alpha helices.  Class II enzymes contain three conserved motifs 

(Eriani et al., 1990; Leberman et al., 1991).  Motif 1 forms part of the dimer interface whereas 

motifs 2 and 3, located near the active site, participate in the ATP, amino acid and tRNA 

acceptor stem binding.   

 

The differences between the two classes extend beyond their active site structure.  Class I 

aaRS affix the amino acid to the 2’-hydroxyl group of the 3’ end of the tRNA while class II aaRS 

affix the amino acid to the 3’-hydroxyl group of the same residue (Fraser and Rich, 1975; 

Sprinzl and Cramer, 1975).  In addition, class I aaRS approach the acceptor stem of the tRNA 

from the minor groove while class II aaRS approach tRNA from the major groove side (Sissler 

et al., 1997) (Figure 1.11).    

 

Each of these two classes can be further subdivided into three subclasses based on sequence 

analysis of aaRS throughout the tree of life (Cusack, 1997; Nagel and Doolittle, 1991).  Each of 

these six subclasses is believed to have evolved from a separate single common ancestor that 

had previously evolved from the common ancestor of the entire class (O’Donoghue and 

Luthey-Schulten, 2003).   

 

Interestingly, aaRS of the same subgroup tend to recognize similar types of amino acids.  For 

instance, class Ic aaRS recognize aromatic amino acids such as tyrosine and tryptophan while 

class Ib recognizes amino acids with charged side chains such as lysine, glutamate and its 

derivative glutamine. In addition, a certain loose symmetry in the type of amino acid recognized 

by aaRS of different class, but of corresponding subclass, appears to exist. For instance, class 

IIc enzymes recognize the aromatic amino acid phenylalanine, similar to the corresponding 

class Ic enzymes which recognize aromatic amino acids. This symmetry is intriguing given that 

aaRS from different classes approach the tRNA from opposite sides of the molecule and 

therefore might be able to bind the tRNA at the same time (Sissler et al., 1997).  Molecular 

modelling studies have shown that the corresponding subclasses (Ia-IIa; Ib-IIb; Ic-IIc) can 

simultaneously fit on the same tRNA molecule (Ribas de Pouplana and Schimmel, 2001), 

suggesting that the progenitors of corresponding subclasses may have originally bound the 

same tRNA.   
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1.5.3 Evolution of aminoacyl-tRNA synthetases 
 

Aminoacyl-tRNA synthetases are among the oldest proteins. 17 of the aaRS are universally 

distributed across the tree of life and their subsequent evolution marks for the most part the 

evolution of life (Nagel and Doolittle, 1995).  However, three other aaRS appear to have 

evolved clearly after the last common ancestor: glutaminyl-tRNA synthetase (QRS), 

asparaginyl-tRNA synthetase (NRS) and cysteinyl-tRNA synthetase (CRS).  QRS and NRS are 

only found in some bacteria and some eukaryotes, while CRS is not found in some archaea 

(Pavlov et al. 1997).  In species lacking QRS and NRS, tRNAGln and tRNAAsn are first changed 

with glutamate and aspartate, which are afterward modified to glutamine and asparagine, 

respectively, by tRNA- dependent amidotransferases (Curnow et al. 1997) (Figure 1.12). This 

indirect aminoacylation pathway is also seen for cysteine in some archaea where tRNACys is 

first charged with O-phosphoserine, which is afterwards modified to cysteine by Sep-tRNA:Cys-

tRNA synthase (Sauerwald et al. 2005).   

 

                   
 

Figure 1.12.  Mechanisms of aminoacyl-tRNA formation.  Both pathways, direct acylation and tRNA-

dependent amino acid modification, are depicted for glutaminyl-tRNA formation. For example, E. coli 

uses glutaminyl-tRNA synthetase (direct pathway), while B. subtilis employs Glu-tRNAGln 

amidotransferase (indirect pathway) for Gln-tRNAGln formation.  Adapted from Woese et al. 2000.  

 

Most of the aaRS phylogenies are often not consistent with accepted organismal phylogenies, 

i.e. they violate the so-called canonical phylogenetic pattern produced by 16s RNA sequences 

from the three domains of life: Archaea, Bacteria and Eukarya (Figure 1.13).  Furthermore, the 

phylogenies inferred for aaRS of different amino acids often do not agree with another, 
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indicating that aaRS genes have undergone considerable horizontal gene transfer (HGT) 

across and within the three main branches of the tree of life (O’Donoghue and Luthey-

Schulten, 2003).  A clear HGT event from the endosymbiont (proto-mitochondria) to the nuclear 

genome of the host occurred at the origin of eukaryotes. The initial association of the ancestral 

alpha-proteobacteria and its host brought together two complete translation systems with a 

total of 40 different aminoacyl-tRNA synthetases.  However, extant mitochondrial genomes 

encode no longer for aaRS.                        

                 
Figure 1.13. Canonical phylogenetic pattern of the tree of life based on 16s rRNA. Universal 

phylogenetic tree in rooted form, based on the work of Woese, 1977.  Branching order and branch 

lengths are based upon rRNA sequence comparisons.  Each kingdom has been coloured accordingly. 

 
There are five possible fates of a single orthologous gene found in both the bacterial 

endosymbiont and the host after the endosymbiosis (Brown, 2003):  

 

i) gene retention, when the gene is retained in the genomes of both organelle and the 

host (Figure 1.14a) 

ii) gene loss, when the product encoded by a gene of the host genome functions now in 

two compartments: the organelle and the cytoplasm (Figure 1.14b) 

iii) gene co-existence, when the organelle gene is transferred to the host genome, where it 

coexists with the host copy (Figure 1.14c) 

iv) gene replacement, when the organelle gene is transferred to the eukaryotic host 

genome, where it substitutes an existing gene (Figure 1.14d) 

v) gene function acquisition, when an unrelated nuclear gene encodes a protein that has 

acquired a new role in maintaining the organelle (Figure 1.14e) 
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Figure 1.14.  Possible fates of genes in endosymbiosis.  A) Gene retention, where each orthologous 

gene is retained in its genome.  This does not happen with aminoacyl-tRNA synthetases.  B) Gene loss 

of the endosymbiotic gene, and dual targeting of the host gene. C) Gene coexistence, where the 

endosymbiont gene migrates to the nuclear genome, but each gene will be acting in its original 

compartment. D) Gene replacement, where the host gene is lost and the nuclear-encoded endosymbiont 

gene is dually targeted both to the cytosol and organelle. E) New functional gene targeted to the 

endosymbiont. Adapted from Brown, 2003.  
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1.5.4  Domains of aaRS and non-canonical functions 
 

AaRS are multi-domain proteins. Their most conserved, and presumably oldest domains are 

the catalytic cores, which activate amino acids and transfer them to the 3’ ends of tRNAs 

(Figure 1.15).  Additional domains appended to or inserted in the body of aaRS increase 

efficiency and specificity of the aminoacylation process, either by providing additional tRNA 

contacts (e.g. anticodon binding domain), or by hydrolyzing non-cognate amino acid products 

(e.g. editing domains).   

                                          
Figure 1.15. Basic domains of aminoacyl-tRNA synthetases. Three different domains found in E. coli 

isoleucyl-tRNA synthetase.  Each domain has been coloured and is labelled accordingly. 

 
Faithful translation of genetic information from mRNA to protein is critical for cellular function.  

Synthetases achieve the amino acid substrate specificity necessary to keep errors in 

translation to an acceptable level in two ways: preferential binding of the amino acid and 

selective editing of near-cognate amino acids.   It has been postulated that error rates of >1 in 

3.000 in the initial amino acid selection require correction mechanisms to increase the 

accuracy of aminoacylation and thereby reduce error in protein synthesis to a tolerable level 

(Fersht, 1981). When error rates exceed this threshold, the incorrect products are hydrolyzed 

at the secondary amino acid binding sites (editing sites), either by pre-transfer (hydrolysis of 

aminoacyl-adenylate) or post-transfer (hydrolysis of aminoacyl-tRNA) editing mechanisms 

(Jakubowski, 1981) (Figure 1.16).  
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Figure 1.16.  Pre-transfer and post-transfer editing of non-cognate amino acids by aaRS.  The 

amino acid (AA) is activated at the active site (AS) to form aminoacyl-adenylate (AA-AMP).  In pre-

transfer editing, AA-AMP is hydrolyzed directly, whereas in post-transfer editing, the mischarged tRNA is 

translocated to the editing site, where the amino acid is removed.  Adapted from Yadavalli et al. 2008.  

 

 
Besides these basic domains (aminoacylation, anticodon binding and editing), new domains 

and motifs have been progressively added to aaRS to expand their functionalities (Brown et al. 

2010; Park et al. 2008) (Figure 1.17). These appended domains, often dispensable for 

aminoacylation, are considered as markers for the aaRS-associated functions beyond 

translation (Guo et al. 2010).   

                                   
 

Figure 1.17.  Non-canonical functions of aaRS. Adapted from Martinis and Pang, 2007 
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Indeed, during their extended evolution, aaRS have experienced numerous instances of 

duplication, insertion and deletion of domains.  The aaRS-related proteins that have resulted 

from these genetic events are generally known as aaRS-like proteins. This heterogeneous 

group of polypeptides are paralogues of aaRS domains, and they carry out a varied number of 

functions that are not always related to gene translation (Figure 1.18).   

 

                            
 

Figure 1.18.  Alternate functions of aaRS-like proteins. Adapted from Martinis and Pang, 2007. 
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2. Objectives 
 
Chapter 1: Genome-wide characterization of the gene translation machinery and 
its evolution across species 
 

1.1 To characterize the evolution of tRNA genes across species 

1.2 To identify the potential correlations between tRNA gene content and codon usage bias 

1.3 To decipher the potential roles of codon usage bias across a species and between 

species 

1.4 To apply the gained knowledge for biotechnological applications and understanding of 

translation defects in disease states 

 

Chapter 2: In silico and in vitro drug design targeting the Plasmodium falciparum 

gene translation machinery  
 

2.1  To study and characterize the translation machinery of Plasmodium falciparum, 

including the identification of its set of aaRS and tRNAs, genome-wide codon usage 

analysis and the identification of its strategy for maximizing its translation efficiency.    

 

2.2  To identify and characterize novel drug targets in Plasmodium falciparum, including the 

phylogenetical and structural characterization and comparisons between plasmodial 

aaRS and its human homologues, as well as the in vitro determination of the 

subcellular localisations of the candidate plasmodial drug targets. 

 

2.3  To investigate known protein translation inhibitors, generate new lead compounds and 

test them, using diverse drug design strategies, which include structure-based drug 

design, high-throughput screening and screening of combinatorial libraries.  

 

Chapter 3: Method development   
 

3.1 To develop a pipeline and predict the pathogenicity of a protein based on its sequence 

3.2 To quantify the reliability of homology models for docking purposes 

3.3 To develop a workflow that maximizes the performance of homology models for  

  docking purposes   
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3. PhD Advisor Report 
 
 
The remarkable productivity achieved by Ms Novoa during her Ph.D. studies is partially 

reflected in the list of publications that she has, and will, obtain as a result of research during 

this period. It should be noted, however, that Eva started several other projects during these 

last years that have not been included in her thesis because they are still in earlier stages of 

development. I nevertheless expect two additional publications to appear as a direct result of 

these additional efforts. 

 

Given the width of Eva’s activity, I will now comment on her publications following the same 

structure that she has used for her thesis. In general it should be noted that she has managed 

to generate papers in first-rate journals, as well as technically specialized reports, and reviews 

in widely-read journals. 

 
Chapter 1:  Genome-wide characterization of the gene translation machinery 

and its evolution across species 
 
Publication 1:  A role for tRNA modifications in genome structure and codon usage. 

Novoa EM, Pavon-Eternod M. Pan T and Ribas de Pouplana L. 

Cell 2012, 149: 202-213 

 

In this paper, published in the most important biology journal, Eva reported that the emergence 

of two specific tRNA modifications shaped the structure and composition of all extant genomes. 

Through the analysis of more than 500 genomes, she identified two kingdom-specific tRNA 

modifications as major contributors that separated archaeal, bacterial, and eukaryal genomes 

in terms of their tRNA gene composition. We also experimentally demonstrated that human 

gene expression levels correlate well with genomic codon composition if these identified 

modifications are considered. 

 

The relevance of this work cannot be understated. The realization that tRNA modifications may 

represent a new layer of gene translation regulation is completely new, and this paper by Eva 

puts her at the forefront of this new topic. The pioneering nature of the work is well reflected in 

the quality of the Journal that accepted to publish it. 
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Publication 2:  Speeding with control: codon usage, tRNA and ribosomes 

Novoa EM and Ribas de Pouplana L. 

Trends in Genetics 2012 (in press)  

 
As a result of our report in Cell we were invited to publish a review of the field in the broadly 

read journal Trends in Genetics. Here, we discussed the importance of codon-anticodon 

interactions in translation regulation and highlight the contribution of non-random codon 

distributions and post-transcriptional base modifications to this regulation. This article 

constitutes the most up-to-date review of this topic, and will serve as a reference for the whole 

RNA community. 

 

Chapter 2:  Aminoacyl-tRNA synthetases as antimalarial drug targets 
 
Publication 3:  Selective inhibition of an apicoplastic aminoacyl-tRNA synthetase from 

Plasmodium falciparum 

Hoen R*, Novoa EM*, López A, Camacho C, Cubells L, Martin P, Bautista JM, Vieira P, Santos 

M, Cortes A, Ribas de Pouplana L and Royo M.  (*equal contributors) 

J Med Chem (under review) 

 

Eva’s main interest during her thesis was combining in silico research with biochemical studies 

to develop new anti-malarial drugs. In this report she demonstrates the feasibility of coupling 

both strategies for the development of truly specific inhibitors. Indeed, she has demonstrated 

that selective inhibition of apicoplastic ARS is possible, and describes new compounds that 

show antimalarial activity and specifically inhibit Plasmodium apicoplastic lysyl-tRNA 

synthetase. 

 

Publication 4: Systematic study on Plasmodium falciparum aminoacyl-tRNA synthetases as 

antimalarial drug targets 

Camacho C, Novoa EM, Cubells L, Wilkinson B, Martin P, Bautista JM, Cortés A and Ribas de 

Pouplana L. 

To be submitted 

 

As a complementary work to the previous paper, Eva worked in collaboration with members of 

the lab to explore the potential of the aminoacyl-tRNA synthetase (ARS) family as source of 

antimalarial drug targets. The main conclusion of this work is that borrelidin, a natural inhibitor 

of threonyl-tRNA synthetase (ThrRS), stands out for its potent antimalarial effect. Moreover, we 



 
43 

found that certain borrelidin derivatives present higher selectivity towards the P. falciparum 

enzyme, thus revealing promising antimalarial scaffolds that should be further explored for the 

search of novel antimalarial drugs.  

 
Chapter 3:  Method development  
 
Publication 5: A genomics method to identify pathogenicity-related proteins. Application to 

aminoacyl-tRNA synthetase-like proteins. 

Novoa EM, Castro de Moura M, Orozco M and Ribas de Pouplana L.  

FEBS Lett 2010, 584 (2): 460-466. 

 

As part of her training in bioinformatics Eva developed several programs and approaches to 

improve our ability to identify relevant targets, and design active inhibitors against them. As part 

of this general goal she developed a new genomics method to determine the potential 

implication in pathogenicity of any given protein, and applied it in this paper to aminoacyl-tRNA 

synthetases. 

 

Publication  6:   Ensemble docking in homology models. 

Novoa EM, Ribas de Pouplana L, Barril X and Orozco M. 

J Chem Theory Comput 2010, 6 (8): 2547-2557 

 

Following the same general objectives as in the previous article, Eva also dedicated time to the 

problem of inhibitor design against proteins of unknown three-dimensional structure. In this 

paper she described a systematic exploration of the quality of protein structures derived from 

homology modeling when used as templates for high-throughput docking. Remarkably, she 

found that structures derived from homology modeling are often similar in quality for docking 

purposes than real crystal structures, even in cases where the template used to create the 

structural model shows only a moderate sequence identity with the protein of interest.  This 

work has the potential to greatly influence the way that researches approach the problem of 

inhibitor design against proteins of unknown structure but with close homologues in the PDB 

database. 

 

Publication 7:  Small molecule docking from theoretical structural models 

Novoa EM, Ribas de Pouplana L and Orozco M. 

In: “Computational Modelling of Biological Systems: From Molecules to Pathways”.  

Ed Springer, New York (USA) Vol 4, pp 75-96.  
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As a result of her work on the problem of three-dimensional modelling of proteins, and her vast 

understanding of the literature on this topic, Eva was able to produce this extensive review 

chapter that provides readers with a comprehensive analysis of the current approaches to 

small molecule docking in silico. Together with publication 2, this work represents the 

contribution of Eva’s thesis to literature review and topic analysis, and demonstrates the wide 

scope of contributions that her work towards her Ph.D. has produced. 
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4.1.  Chapter 1: Genome-wide characterization of the gene 
   translation machinery and its evolution across species 
 
 
4.1.1.  Introduction 
 
 
4.1.1.1 Control of gene expression 
 

The control of gene expression is a fundamental process and its misregulation is usually 

associated with disease.  It is now well established that gene expression is regulated at 

multiple levels. Gene regulation can be divided into transcriptional and post-transcriptional 

control (Figure 4.1). Furthermore, proteins themselves can be regulated by protein 

modifications and degradation.   

 

                  

 

Figure 4.1.  Scheme of different layers of gene regulation.  The regulatory processes are listed 

according to their involvement in transcriptional, post-transcriptional or post-translational control.  

Adapted from Mata et al., 2005.   
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Transcriptional control has received much attention, through both traditional single-gene 

studies (Kadonaga, 2004) and genome-wide approaches, including expression profiling 

(Lockhart and Winzeler, 2000), transcription factor binding studies and identification of 

regulatory sequence elements (Sandelin et al, 2007) as well as chromatin remodelling and 

epigenetic analyses (Bernstein et al., 2007). In comparison, post-transcriptional control has 

been less extensively studied.  Nevertheless, an increasing appreciation of the importance of 

post-transcriptional gene regulation is emerging. 

 
 
4.1.1.2  Post-transcriptional regulation of gene expression  
 
Post-transcriptional regulation mechanisms comprise various processes such as mRNA 

processing (polyadenylation, capping and splicing), mRNA export and localization, mRNA 

decay, and mRNA translation.  Despite the variety of regulatory mechanisms, they all have one 

thing in common: they ultimately control if, where, and how efficiently a given mRNA is 

translated into protein. Consequently, translation and translational control are central to post-

transcriptional regulation of gene expression.   

 

Why do cells regulate translation and how do they benefit from it? There are several possible 

answers to this question. Regulation at the translational level can happen rapidly without the 

necessity of going through all the upstream processes of gene expression such as 

transcription, mRNA processing and mRNA export. Furthermore, translational regulation is 

usually reversible. Another reason for the regulation of translation is spatial control of gene 

expression within the cell (Schuman et al., 2006). Translational regulation also provides flexible 

control of gene expression, where translational efficiencies of few mRNAs can be affected 

selectively.   

 

Although it is clear that translational regulation provides certain advantages in comparison to 

transcriptional regulation, the mechanisms through which it is accomplished have only recently 

started to be deciphered. Translation regulation can be performed both through external 

factors, such as protein factors and miRNAs (Gebauer and Hentze, 2009), although the latter 

remains widely unexplored.  On the other hand, instrinsic factors also affect the mRNA 

translation rate.  A major part of the control occurs at the stage of initiation, where ribosome 

recruitment takes place (Ingolia et al. 2009). The elongation phase has been shown to be 

governed by both mRNA secondary structure (Gray and Hentze, 1994) and the extent of 

adaptation of the coding sequence to the cellular tRNA pool (dos Reis et al. 2004; Sharp and 

Li, 1987).   
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Figure 4.2.  Codon bias within and between genomes. A) The relative synonymous codon usage 

(RSCU) is plotted for 50 randomly selected genes from each of nine species.  RSCU ranges from 0 

(when the codon is absent) through 1 (when there is no bias) to 6 (when a single codon is used 

exclusively in the case of a 6-codon family).  Methionine, tryptophane and stop codons are omitted. 

Genes are in rows and codons are in columns.  Adapted from Plotkin and Kudla, 2011. B) Codon usage 

data tables for E. coli and H. sapiens.  Synonymous codons corresponding to proline are squared in 

black, with the preferred codon of the family box squared in red, respectively. 
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4.1.1.3  Translation efficiency  
 

The final protein levels within a cell will depend on the rate or speed at which the mRNA is 

translated into proteins, on what is termed ‘translation efficiency’.  Several studies have shown 

that the choice of specific codons is important for determining the speed of translation (Arava et 

al. 2003; Tuller et al. 2007). Indeed, when designing heterologous genes, we intend to design 

the gene such that it matches the codon usage bias of the host species, because it will produce 

higher amounts of protein compared to genes containing ‘rare’ codons.  But why would certain 

codons be ‘preferred’ in comparison to others?  

 

4.1.1.3.1  Codon usage bias 

 
As stated in the Introduction (section 1.2), the genetic code determines which of the 61 triplets 

or codons correspond to which of the amino acids. Because there are more codons than amino 

acids, the genetic code is necessarily redundant.  While few amino acids are encoded by a 

single codon, most amino acids are encoded by two to six different codons.  The different 

codons that encode the same amino acid are known as ‘synonymous’ codons. Changes in the 

DNA sequence of a protein between two synonymous codons are often assumed to have no 

effect and are thus called ‘silent’ changes caused by ‘synonymous’ mutations.   

 

Even though synonymous codons encode for the same amino acid, it has been shown for a 

wide variety of organisms that they are not used with equal frequencies across different genes 

(Figure 4.2a). This phenomenon has been termed codon usage bias. Interestingly, the 

direction of codon bias shifts is different between organisms, i.e. the choice of the most 

abundant synonymous codon differs between organisms (Chen et al., 2004) (Figure 4.2b). 

 

4.1.1.3.2   tRNA isoacceptor abundance 

 

It is widely accepted that the reason why certain codons increase the rate of translation of a 

gene is because they are decoded by abundant tRNA species in the cell. Transcripts whose 

codons are biased toward the more abundant tRNAs are found to be more highly expressed 

(Man and Pilpel, 2007; Qin et al. 2004), whereas codons corresponding to rare tRNA species 

may induce long waiting time s and stall elongation at such positions, causing lower translation 

efficiencies. 
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The abundances of tRNA species tend to be proportional to the tRNA gene copy number 

(Tuller et al. 2010; see also Figure 1.8).  However, why are certain tRNA isoacceptor 

abundances higher than others? And more importantly, why the choices of the most abundant 

tRNA isoacceptor change between organisms? (Figure 4.3) To understand the evolution that 

occurred across tRNA gene pools and to answer these questions, we performed a study on the 

evolution of tRNA gene contents throughout the 3 kingdoms of life.  From our analysis, we find 

that the appearance of two different tRNA modification enzymes that increase the translation 

efficiency of certain codons explains the observed differences between the sets of ‘preferred’ 

tRNA isoacceptors across kingdoms. Indeed, the identified strategies to increase translation 

efficiency also explain the codon usage bias observed between high- and low-expressed genes 

in a given species (Publication 1).   

           

                       

Figure 4.3.  tRNA isoacceptor gene copy numbers from 3 diverse species. The ‘preferred’ tRNA 

isoacceptor varies depending on the species.  In this example, only the data tRNA isoacceptor gene 

copy numbers for the amino acids alanine (Ala) and proline (Pro) are shown. The tRNA gene copy 

numbers have been predicted using the tRNAscan-SE software (Lowe and Eddy, 1997). The species 

included belong to the following kingdoms: P. horikoshii (Archaea), E. coli (Bacteria), H. sapiens 

(Eukarya). 

 
 
4.1.1.3.3  tRNA modifications 

 

tRNA modifications, specially those affecting the wobble base position, can affect the 

translation efficiency of a given codon. A same tRNA isoacceptor can read more than one 

codon (e.g. tRNAPhe
GAA can read both UUU and UUC), but it may preferentially recognize one 

codon amongst the ones that it is capable to recognize.  However, once this tRNA is modified, 

its pairing preferences may change, causing that another codon is preferentially recognized, 
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thus enhancing the translation efficiency of this codon.  Therefore, the presence or absence of 

tRNA modifications can change the translation efficiencies of codons by its tRNAs, and 

consequently, the regulation of tRNA modifications constitutes a layer for post-transcriptional 

regulation of protein levels (Publication 2).  
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4.1.2.  Publications 
 
 
Publication 11: 

 
 
 
 
A role for tRNA modifications in genome structure and codon usage. 

 

Novoa EM, Pavon-Eternod M. Pan T and Ribas de Pouplana L. 

Cell 2012, 149: 202-213 
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SUMMARY

Transfer RNA (tRNA) gene content is a differentiating
feature of genomes that contributes to the efficiency
of the translational apparatus, but the principles
shaping tRNA gene copy number and codon compo-
sition are poorly understood. Here, we report that the
emergence of two specific tRNA modifications
shaped the structure and composition of all extant
genomes. Through the analysis of more than 500
genomes, we identify two kingdom-specific tRNA
modifications as major contributors that separated
archaeal, bacterial, and eukaryal genomes in terms
of their tRNA gene composition. We show that,
contrary to prior observations, genomic codon usage
and tRNA gene frequencies correlate in all kingdoms
if these twomodifications are taken into account and
that presence or absence of these modifications
explains patterns of gene expression observed in
previous studies. Finally, we experimentally demon-
strate that human gene expression levels correlate
well with genomic codon composition if these identi-
fied modifications are considered.

INTRODUCTION

Transfer RNAs (tRNAs) are present in all living organisms, acting

as adaptors that link amino acids to codons in messenger RNAs

(mRNA). Based on their aminoacylation identity, all tRNAs are

subdivided into 20 accepting groups (alloacceptors). Each group

comprises several tRNAs (isoacceptors) that translate synony-

mous codons with the same amino acid thanks to synonymous

anticodons that varymostly at the third position. The redundancy

of the genetic code is due to synonymous codons, and solved by

isoacceptor tRNAs.

tRNA genes tend to be present in multiple copies in the

genomes of most organisms, from prokaryotes to eukaryotes,

but the number of gene copies for each tRNA species (tRNAs

with the same anticodon) varies widely from species to species

(Marck and Grosjean, 2002). For any actively dividing cell, the

translation efficiency of a given codon is determined by the

amount of tRNA in the cell (Ikemura, 1981; Bennetzen and Hall,

1982; Sharp et al., 1988; Man and Pilpel, 2007; Akashi, 2003;

Elf et al., 2003; Dittmar et al., 2005). The concentration of each

tRNA is determined by its number of gene copies in the genome

(Tuller et al., 2010a). Thus, tRNA gene content determines rela-

tive tRNA isoacceptor abundances that, in turn, determine codon

translation efficiency. Therefore, the study of tRNA gene content

biasmay help explaining codon usage biases in extant genomes.

Previous reports have shown that the number of genes coding

for each tRNA is not conserved between kingdoms (Gerber and

Keller, 2001; Marck and Grosjean, 2002). The variability in tRNA

gene number is extreme in some cases: certain tRNA species are

absent in entire branches of the phylogenetic tree, whereas

others are clearly predominant (e.g., in Homo sapiens 29 out of

the 43 tRNAAla genes (68%) correspond to the isoacceptor

tRNAAla
AGC). The factors that influence tRNA gene copy number

within genomes have been studied mostly in individual species

(Withers et al., 2006; Gonos and Goddard, 1990; Kanaya et al.,

1999; Dong et al., 1996), but the principles that govern the

evolution of tRNA gene populations remain unknown.

In addition to the variability in tRNA gene content, the diversity

of tRNA populations is further increased by species-specific

base modifications. Thus, the tRNA signature of each species,

defined as the total set of mature tRNAs that results from tRNA

gene transcription, tRNA maturation, and the action of modifica-

tion enzymes, is a complex evolutionary trait. Little is known

about the parameters that shape the tRNA signature of species

in evolution.

Two enzymes are known to cause modifications in base 34

of the anticodon that increase codon-pairing ability: tRNA-

dependent adenosine deaminases (ADATs) and tRNA-dependent

uridine methyltransferases (UMs) (Agris et al., 2007). tRNA-aden-

osine deaminases are essential enzymes found in Bacteria and

Eukarya that catalyze the conversion of adenine-34 to inosine-

34 (A-to-I editing) (Wolf et al., 2002; Gerber and Keller, 1999;

MaasandRich,2000). I34 isable towobblewithadenine, cytosine,

and uridine (Gerber and Keller, 2001). Thus, INN anticodons are

capable of pairing with three different codons. Unlike in Bacteria,

where ADAT only modifies tRNAArg, in Eukarya a heterodimeric

formof this enzyme (hetADAT) formedbyTad2pandTad3pdeam-

inates several tRNAs (Gerber andKeller, 1999). On the other hand,

bacterial UMs, modify uridine to xo5U34, enabling its pairing with

adenine, guanosine and uridine (Yokoyama et al., 1985). Two

enzymes have been identified as responsible for the last step of

xo5U modifications: CmoA and CmoB (Näsvall et al., 2004).
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In this work, we have analyzed the distribution and abundance

of all tRNA genes in more than 500 species across the three

kingdoms of life. We first confirmed that tRNA gene composition

can be considered a single trait that recapitulates the main

evolutionary lines of the tree of life. Using principal component

analysis, we identified those tRNA isoacceptors that became

positively selected (increased in number) in Bacteria and

Eukarya. Our results indicate that the appearance of UMs and

hetADATs contributed to the divergence of eukaryal and bacte-

rial genomes from their archaeal counterparts. The effect of the

modifications caused by these enzymes increased the decoding

capacity of modified tRNAs which, therefore, were positively

selected during evolution. The diverse codon usage biases

displayed by Bacteria and Eukarya are, at least partly, due to

the different modification strategies used to improve translation

efficiency, which are kingdom specific.

RESULTS

tRNA Gene Content as a Tool for Phylogenetic Analysis
The short sequence length of tRNAs, and their susceptibility to be

transferred horizontally, limits the usefulness of their sequences

Figure 1. Genome Phylogeny Based on

tRNA Gene Content

(A) Distance-based phylogeny based on tRNA

gene content, performed with equal number of

species of each kingdom. The four phylogenetic

clusters have been labeled accordingly. The

phylogeny performed with the whole set of 527

species is consistent with these results (see Fig-

ure S1).

(B) Diagram showing the increase in tRNA pop-

ulation complexity in the four main phylogenetic

clusters found in this work (each tRNA is desig-

nated by its anticodon sequence). Each base

at the wobble position is colored according to its

chemical nature. Anticodons labeled with an

asterisk (CGU, CAC, CCU) correspond to tRNA

genes that are not found in all species comprising

the ML-Archaea clade.

for phylogenetic analysis. But tRNA

gene content, defined as the set of tRNA

genes used by a given organism to trans-

late its genome, is unaffected by these

limitations. In gene content-based phy-

logenies the evolutionary distance be-

tween species is calculated on the basis

of acquisition or loss of genes. Gene con-

tent analyses using genome sequences

(Snel et al., 1999; Iwasaki and Takagi,

2007; Fitz-Gibbon and House, 1999),

protein domain content (Yang et al.,

2005), and whole-proteome comparisons

(Tekaia et al., 1999) have been previously

reported.

Using tRNA gene content analysis, we

have built a phylogenetic tree of more

than 500 species that correctly identifies four known clades:

(1) Methanococcus-like Archaea, (2) non-Methanococcus-like

Archaea, (3) Bacteria, and (4) Eukarya (Figure 1A, see also Fig-

ure S1 available online). As can be seen in Figure 1A, tRNA

gene content as a single trait follows the evolution of the whole

tree of life, correctly clustering species into their corresponding

kingdoms. Although this method is not powerful enough to

correctly resolve the inner topology of individual clades, several

outliers in tRNA signatures that have been previously reported

(Man and Pilpel, 2007) are correctly identified by our approach.

This indicates that kingdom-specific parameters drove the diver-

gence of tRNA gene populations between the three kingdoms

of life.

The four clades found in our gene-content analysis corre-

spond to different levels of tRNA population complexity. Indeed,

the tRNA gene populations of the clades vary from the relatively

simple tRNA gene composition of Archaea, to an intermediate

situation in Bacteria, and themost complex tRNA gene set found

in Eukarya (Figure 1B). This increase in complexity implies that,

along evolution, the number of tRNA species tended to increase

through duplications or changes in anticodon specificity. Inter-

estingly, the fact that Methanococcus-related species present
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the simplest decoding strategy coincides with the proposed

ancestral nature of this clade (Stetter, 1996; Brochier and

Philippe, 2002).

To characterize the four identified phylogenetic clades, we

quantified and analyzed the distribution of tRNA isoacceptor

gene copy numbers within each of these four groups. As can

be seen in Figure 2, each clade has different tRNA gene abun-

dances and, more interestingly, unequal enrichment of certain

tRNA isoacceptors. The archaeal clades are characterized by

a relatively uniform distribution of tRNA gene copy numbers,

with little variation between isoacceptors (e.g., all tRNA isoac-

ceptors coding for alanine have similar gene frequencies).

Thus, Archaea presents the simplest decoding scenario, with

a minimal set of tRNA isoacceptors (Figure 1B) and uniform

abundances of tRNA genes (Figure 2). In contrast Bacteria and

Eukarya are more complex, both in terms of relative number

of tRNA isoacceptors and in differences in the frequencies of

tRNA gene copy numbers.

The loss of uniformity in tRNA gene abundances is not equiv-

alent in Eukarya and Bacteria. For example, tRNAs with ANN

anticodons tend to be absent both in archaeal and bacterial

genomes, whereas in Eukarya they are the most abundant

isoacceptors in four-codon (Pro, Ala, Val, Thr) and six-codon

(Ser, Leu, Arg) tRNA sets (Figure 2). It is unclear, however, why

should such selection act in a given kingdom and not in another.

To try to answer this question, we first performed Principal

Component Analysis (PCA) to statistically identify the tRNA iso-

acceptors that have been positively selected in each of the

kingdoms.

Statistical Analysis of tRNA Gene Frequencies
PCA is a mathematical procedure that uses orthogonal trans-

formation to reduce the dimensions of the data (correlated

variables, in our case, tRNA gene frequencies), obtaining new

variables (principal components, PCs) that are linear combina-

tions of the original variables. Multivariate statistical analysis

methods like PCA are particularly well adapted to the multidi-

mensional nature of tRNA gene content data. If the original vari-

ables are correlated, most of the variance can be condensed in

the two first PCs (PC1 and PC2). Analysis of our data shows that

PC1 and PC2 account for 64.5% of the variance of tRNA gene

content values, allowing us to analyze our results in two dimen-

sions (Figure 3).

The scores plot—the transformed variable values (Fig-

ure 3A)—correctly clusters the species used in this analysis

into their three respective kingdoms, and shows that PC1 is

the principal component responsible for the separation of

Bacteria, whereas PC2 is responsible for the separation of

Eukarya (confirmed by t test, p values of 1e-5 and 2e-16, respec-

tively). On the other hand, the loadings plot (Figure 3B) identifies

which variables (tRNA isoacceptors) are contributing most to the

differences between clusters. Top-ranked tRNA isoacceptors

that are significantly associated to Bacteria and Eukarya are

included inside an ellipse. The individual correlation values are

listed in Table S1. Our data shows that eukaryal species present

a positive selection of tRNA(ANN) isoacceptors belonging to

four-codon families (Val, Pro, Ala, Thr), six-codon families (Leu,

Ser) and split tRNA sets (Ile). On the other hand, bacterial species

positively selected tRNA(UNN) isoacceptors for the same codon

families.

The analysis of additional PCs was also performed to identify

minor contributors to the differences between kingdom-specific

tRNA gene populations (Figure S2). Interestingly, PC3 separates

both Bacteria and Eukarya from Archaea due to the contribution

of tRNAArg(ACG), confirming the importance of ANN isoacceptor

tRNAs in the divergence of tRNA gene populations in the three

kingdoms of life (r = 0.44, p value = 5.6e-27).

tRNAModification as a Factor in Translational Efficiency
Translational efficiency is increased by optimized codons, i.e.,

those codons that correspond to the most abundant tRNA

species (Hershberg and Petrov, 2008). Therefore, the positive

selection of tRNA isoacceptors that we observe in our data could

be due to the increased translational efficiency allowed by these

tRNAs. As mentioned previously, kingdom-specific modifying

enzymes exist that can increase the translational efficiency of

tRNAs through modifications of the anticodon wobble base.

We hypothesized that the selection of certain tRNAs over other

isoacceptors, i.e., those identified in our analysis, may be due

to their ability to incorporate anticodon modifications that

increase their pairing repertoire (Figure S3).

If base modifications in the anticodon increase translational

efficiency then those anticodons capable of accepting I34 and

xo5U34 modifications should be positively selected in the

species where the corresponding modification enzymes exist.

We first checked whether genes coding for tRNA(ANN) isoac-

ceptors capable of being modified by hetADATs are overrepre-

sented (Table 1) in species that contain these enzymes. This is

exactly the case, indicating that the activity of hetADATs is ex-

erting a selective force on the tRNA pool. We then checked

whether genes coding for tRNA(UNN) isoacceptors modifiable

by UMs are enriched among Bacteria. Indeed, UNN anticodons

that are modified by UMs are enriched in bacterial genomes,

indicating that the activity of UMs is associated with the

tRNA composition of bacterial species toward U34 tRNAs

(Table 1).

The analysis of further PCs supports the role of these two tRNA

modifications in the divergence of tRNA gene populations. As

mentioned above, PC3 clusters the bacterial and eukaryal king-

doms, and separates them from the archaeal species, mainly

due to the contribution of tRNAArg(ACG). This tRNA isoacceptor

is the only tRNA species deaminated by ADATs both in Bacteria

(through TadA) and Eukarya (through Tad2/Tad3). Thus, our

analysis indicates that the vast majority of the contributions to

the segregation of extant tRNA gene populations are related to

the activity of anticodon-modifying enzymes.

It should be noted that sequence modifications outside the

anticodon can also have effects on codon:anticodon interac-

tions (Geslain and Pan, 2010; Ledoux et al., 2009). However, to

our knowledge, tRNA modifications outside the anticodon have

not been found to expand the decoding capacity of tRNAs.

The analysis of the full set of known tRNA anticodonmodification

enzymes (Table S2) reveals that only bacterial UMs and eukaryal

hetADATs display phylogenetic distributions and sets of tRNA

substrates fully compatible with the families of tRNAs found to

be enriched in our study.
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Figure 2. Unequal Enrichment of tRNA Isoacceptors Is Kingdom Specific

Mean tRNA abundances in the four phylogenetic clusters identified by gene content analysis: (1) Methanococcus-like Archaea, (2) non-Methanococcus-like

Archaea, (3) Bacteria, and (4) Eukarya. Each tRNA anticodon is colored according to its average number of encoding tRNA genes. To deal with exceptional cases

such as Ferroplasma acidarmanus, which is the sole archaea with a tRNALeu(AAG) gene (Marck and Grosjean, 2002), we have considered as absent those tRNA

isoacceptors whose average tRNA gene copy number is between 0 and 0.05 (shown in yellow).
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Correlation between tRNAGeneAbundances andCodon
Usage
Several studies performed on unicellular species have shown a

correlation between tRNA abundance and codon usage (Ike-

mura, 1981; Ran and Higgs, 2010; Kanaya et al., 2001; Dong

et al., 1996). In higher eukaryotes the search for this correlation

has been less successful (Kanaya et al., 2001; dos Reis et al.,

2004), and it has been proposed that in these species translation

efficiency might not be the primary factor influencing codon

usage (Kanaya et al., 2001). Studies in Drosophila melanogaster

have concluded that in this organism selection acts to increase

translation accuracy (Akashi, 1994; Moriyama and Powell,

1998), whereas other authors have linked codon usage in meta-

zoans to several parameters, including average gene length

Figure 3. Identification and Quantification of Overrepresented tRNA Isoacceptors
(A) Biplot of the scores after performing Principal Component Analysis (PCA). Archaea (red), Bacteria (purple) and Eukarya (green) are distinguishable clusters

using this analysis. The archaeal outliers correspond toMethanococcus species, which were already identified as a separate cluster using the tRNA gene content

analysis.

(B) Biplot of the loadings, indicating the tRNA isoacceptors whose frequencies contribute the most to each of the clusters. Each anticodon has been colored

depending on its wobble base. The ellipses surround those anticodons that are significantly associated to the PCs, either with PC1 negative values, which

correspond to Bacteria (purple), or with PC2 negative values, which correspond to Eukarya (green) (see Table S1 for the individual correlation values). See also

Figure S2 and Table S2.

(C) Genome phylogeny based on tRNA-gene content. The distributions of the two wobble base modification enzymes that act upon the tRNA isoacceptors

identified in the PCA are shown. Uridine methyltransferases (UMs, labeled in red) are exclusively distributed across the bacterial kingdom. Heterodimeric

adenosine deaminases (ADATs, labeled in green) are exclusively distributed in eukaryotes. Homodimeric forms of ADATs (TadA) are found in bacteria, but they

only increase the decoding capacity of tRNAArg, and for simplicity, are not shown in the phylogeny.
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(Duret and Mouchiroud, 1999), cost of proofreading, or transla-

tion efficiency (Duret and Mouchiroud, 1999; Duret, 2000; Tuller

et al., 2007, 2010b).

We analyzed the correlation between tRNA gene copy number

and codon usage in more than 500 genomes using previously

reported approaches. We first determined the set of highly

adapted codons (those recognized by tRNAs coded by the

most abundant tRNA genes) and compared them to the set of

highly abundant codons (those with high relative synonymous

codons usage [RSCU], determined from gene sequences of

ribosomal proteins). Our results confirm that the most abundant

codons (highest RSCU) in general correspond to the most

adapted codons (61% match) (for four- and six- codon families,

the two most abundant codons are included in the analysis).

However, as previously reported, this correlation is not perfect,

and it is poor in eukaryotic genomes. Indeed, when considering

the top two tRNA isoacceptors, archaeal species present the

best match (75%), whereas Bacteria and Eukarya showmatches

of 59% and 41%, respectively (Table S3).

Strikingly, the codons whose frequencies do not correlate

well with tRNA gene content values are precisely those codons

corresponding to tRNAs susceptible to be modified either

by adenosine deaminases or uridine methyltransferases (Fig-

ure 4A, see also Figure S4). It is worth noting that hetADATs

and UMs exclusively modify those previously nonmatching

codons (Figure S4). We reclassified those codons in the corre-

lation analysis to account for the increased pairing ability of

anticodons modified by UMs and hetADATs. This new analysis

provided quasiperfect correlations between RSCU values

and tRNA gene copy numbers in Bacteria and Eukarya (95%

match) (Figure 4A). Therefore, tRNA gene copy number is

almost perfectly correlated with codon usage in all kingdoms,

provided that tRNA modifications caused by hetADATs and

UMs are considered. This implies that, in all kingdoms of life,

translational efficiency seems to be a primary factor influencing

codon usage.

To experimentally confirm that association between codon

usage and tRNA abundance is enhanced by the inclusion of

modification enzymes, we determined tRNAArg isoacceptor

concentrations in HeLa and Hek 293T cell lines. We chose

tRNAArg for this analysis because all five human arginine isoac-

ceptors can be individually quantified thanks to isoacceptor-

specific probes. We performed an association analysis for

tRNAArg expression and codon usage in the absence or pres-

ence of modification information. Only after the inclusion of

hetADAT modification information in the calculations could a

good correlation be found between tRNA abundance and codon

usage (Pearson correlation: 0.86 and 0.81 for HeLa and 293T,

respectively) (Figure 4B).

To further confirm these results we also analyzed published

data on gene expression levels in other species. In a recent

study, Kudla et al. synthesized a library of 154 genes coding

for green fluorescent protein (GFP) that varied randomly at

synonymous sites (Kudla et al., 2009). These genes were ex-

pressed in Escherichia coli, and GFP expression levels were

obtained that varied 250-fold across the library. The initial anal-

ysis of this data failed to find a correlation between codon

composition and gene expression (however, see Supek and

Smuc, 2010; Navon and Pilpel, 2011). We wondered whether

the inclusion of the activity of UMs in the model would improve

the correlation between translation efficiency and codon compo-

sition. Thus, we tested whether codon composition correlated

with protein production when the frequencies of UM- and

hetADAT-modifiable anticodons (hereinafter named ‘‘preferred

codons’’) and nonmodifiable anticodons (hereinafter named

‘‘nonpreferred codons’’) were taken into account. This was

indeed the case, and we obtained quasiperfect correlations in

the set of highly expressed GFP genes (94%match) (Figure S4).

Table 1. Overrepresented tRNA Genes Correspond Exactly to Those Isoacceptors Modifiable at the Wobble Position by UMs and

ADATs

ADAT Gene Anticodons Modified by ADATs A34 Anticodons with RGF > 1.6a

Archaea

Any species — — none

Bacteria

E. coli tadA ACG ACG

Eukarya

S. cerevisiae tad2p/tad3p AGA, AGG, AGU, AAC, AGA, ACG, AAU AGA, AGG, AGU, AAC, AGA, ACG, AAU

H. sapiens tad2/tad3 AGA, AGG, AGU, AAC, AGA, ACG, AAU, AAG AGA, AGG, AGU, AAC, AGA, ACG, AAU, AAG

UM Gene Anticodons Modified by UMs U34 Anticodons with RGF > 1.6a

Archaea

Any species — — none

Bacteria

S. enterica cmoA/cmoB UGC, UGG, UGU, UAC, UGA, UAG UGC, UGG, UGU, UAC, UGA, UAG

Eukarya

Any species — — none
aThe RGF threshold was chosen such that the overrepresented tRNA isoacceptors also correspond to themost abundant isoacceptor among its tRNA

codon family.
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Figure 4. Match between Most Adapted Codons and Most Abundant Codons

(A) The match between the highest RSCU codon (green, most abundant codons) and the RGF value of its decoding tRNA (red, most adapted codons) is shown,

for each kingdom, in the left column. The match after correcting the RGF values to account for the activity of UMs and ADATs is shown in the middle column.

Archaea present neither ADATs nor UMs, and therefore the middle column is missing for this kingdom. The increase in the match score between RSCU and RGF

after the correction is shown for each kingdom in the right histogram (except for Archaea).
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Analysis of the Influence of ‘‘Preferred Codons’’ in
Protein Synthesis
Our results indicate that those transcripts whose codon com-

position is best adapted to anticodons modified by ADATs and

UMs are the most efficiently translated. We therefore checked

whether the relative abundance of preferred codons cor-

relates with expression levels of any given gene. In this regard,

genome-wide expression analyses (Lu et al., 2007; Ingolia

et al., 2009; Ishihama et al., 2008; Ghaemmaghami et al., 2003;

Taniguchi et al., 2010) provide experimental quantification of

translational efficiency across a whole genome.

We examined the effect of UM and hetADAT modifications in

published whole genome expression data obtained through

the analysis of the E. coli and Saccharomyces cerevisiae

transcriptomes. We found a good correlation between relative

abundance of ‘‘preferred codons’’ of any given gene and

its protein abundance in E. coli and S. cerevisiae (r = �0.44

and �0.70, respectively) (Figure 5, see also Figure S5). Different

genome-wide expression data sets (Lu et al., 2007; Ishihama

et al., 2008; Newman et al., 2006) produced similar correlations

for both species (r = �0.27 and �0.74, respectively) (Figure S5).

Moreover, an inverse correlation between protein abundance

and nonpreferred codons was also detected, suggesting the

existence of an upper maximum limit of nonpreferred codons

per gene. Thus, the abundance of preferred codons possibly

represents an additional level of translation control that needs

to be considered in addition other mechanisms of posttranscrip-

tional regulation (Mata et al., 2005).

DISCUSSION

Despite the central role of tRNAs in protein translation, the

connections between tRNA gene population dynamics and

genome evolution have rarely been explored. It is known that

in unicellular organisms the most abundant codons are recog-

nized by the most abundant tRNAs in the cell (Withers et al.,

2006; Tuller et al., 2010a). However, we do not understand

the reasons for the variability between tRNA pools of different

species, nor the principles that determine tRNA gene abun-

dances or genomic codon composition.

Our tRNA gene content analysis shows that genomic tRNA

gene composition is an evolutionary trait that separates the

main kingdoms of life. This separation is mainly due to the

selection of tRNA genes containing anticodons modifiable by

(B) Correlation between human tRNAArg isoacceptor abundance determined using tRNA microarrays and codon usage of ribosomal proteins (shown as RSCU),

both for HeLa and HEK293T cell lines. The lack of correlation between these two parameters in the left plot is corrected in the right plot by the inclusion of the

activity of ADATs.

See also Figure S4 and Tables S3–S6.

Figure 5. Correlation between Preferred Codons and Protein Abundance

In both E. coli and S. cerevisiae, the abundance of preferred codons in a gene correlates with protein abundance (Spearman correlation: 0.44 and 0.70, with

p values of 9.7e-20 and 5.1e-52, respectively). Complementarily, the frequency of nonpreferred codons in genes decreases proportionally to protein abundance.

The local density of data points in the graph is signified by their color (darker corresponding to more populated areas of the plot). See also Figure S5.
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kingdom-specific enzymes. This selection is likely driven by the

improved decoding capacity that thesemodifications instill upon

the modified tRNAs. A different solution to maximize tRNA de-

coding capacity was applied by Bacteria and Eukarya, thus

contributing to the extant differences in tRNA pools and genome

compositions.

Archaea would be the most ancestral kingdom in terms of

decoding complexity (Figure 6). In Archaea neither ANN antico-

dons (Marck and Grosjean, 2002) nor ADATs are found (Mian

et al., 1998). Therefore, the emergence of ADATs might be

responsible for the appearance and selection of ANN-containing

tRNAs that increased translation efficiency. In a similar fashion,

the emergence of bacterial UMs would have driven the enrich-

ment of tRNA genes with UNN anticodons in these organisms.

Several groups have demonstrated that preferred codon

frequencies in highly expressed genes correlate with tRNA abun-

dances within the cell (Withers et al., 2006; Tuller et al., 2010a).

However, whether codon usage bias is caused by mutational

bias or by natural selection has been a matter of controversy

(Yang and Nielsen, 2008; Duret, 2002). In fast-growing organ-

isms such as E. coli or S. cerevisiae, codon usage is generally

thought to be under selective pressure (Sharp et al., 2005,

2010; Dong et al., 1996). On the other hand, in slowly growing

organisms such as vertebrates, the existence of this selective

pressure is controversial.

We have shown that the inclusion of modification data caused

by ADATs and UMs in the definition of tRNA populations

improves the codon usage-tRNA gene content correlation in

Bacteria and Eukarya. Likely, the emergence of UMs and

hetADATs in Bacteria and Eukarya allowed for the selection of

new tRNAs that improved translation efficiency, and thus con-

tributed to the evolution of genomic codon composition and

tRNA gene content differences. Using published experimental

data, we have shown that codons recognized by UM- and

Figure 6. Model for the Role of Modification Enzymes in the Evolution of Genome Compositions

The emergence of the two tRNA modification enzymes (heterodimeric ADATs and UMs) was the main factor causing the divergence of decoding strategies

between kingdoms. Archaea represents themost ancestral decoding strategy, where all isoacceptors are equally represented (and ANN anticodons aremissing).

ANN anticodons became overrepresented in eukaryotes due to the emergence of heterodimeric ADATs. Similarly, UNN anticodons became overrepresented in

bacteria due to the appearance of UMs. Modification of the wobble position increased the decoding capacity of tRNAs, and consequently, translation efficiency.

Thus, modifiable tRNAs were positively selected, causing a bias in tRNA gene content distribution which, in turn, caused the codon usage bias characteristic of

the three main kingdoms.
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hetADAT-modifiable anticodons are significantly enriched in

highly expressed genes. Conversely, lowly expressed genes

are enriched in codons recognized by nonmodifiable anticodons.

We have also shown that tRNAArg populations in human cells

do correlate well with genomic codon composition provided

that anticodon modifications caused by hetADATs are consid-

ered in the definition of the different tRNAArg isoacceptor con-

centrations. Thus, as previous studies have proposed for limited

sets of species (Supek et al., 2010; Hershberg and Petrov,

2009; Drummond and Wilke, 2008), we conclude that transla-

tion efficiency influences tRNA gene populations in all kingdoms

of life.

Several studies claim that the most significant parameter ex-

plaining codon bias differences among organisms is the level

of GC content (Chen et al., 2004; Knight et al., 2001). Neverthe-

less, this observation does not explain codon bias variations

within genomes, nor its correlation with gene expression levels.

Anticodon modification strategies designed to improve transla-

tional efficiency could have evolved in parallel to the establish-

ment of species-specific GC contents to ensure that tRNA

gene populations were adapted to optimize translation. It should

be noted that the triplet decoding strategies used by individual

organisms have been determined (Marck and Grosjean, 2002;

Grosjean et al., 2010). Each decoding strategy defines the

minimum set of tRNAs needed to read all codons, and ranges

from 25 up to 46 tRNAs. Interestingly, the defined minimal sets

of eukaryotic and bacterial tRNAs conserve tRNA(ANN) and

tRNA(UNN) isoacceptors respectively.

To summarize, Bacteria and Eukarya used two different tRNA

modifications to increase the translational efficiency of their

respective genomes. This phenomenon, in turn, contributed to

the extant differences in tRNA gene populations and codon

compositions of the main kingdoms of life. The discovery of

kingdom-specific strategies to optimize translation efficiency

opens new possibilities to further improve heterologous gene

expression systems. Indeed, heterologous protein expression

may be further improved if gene compositions are designed to

match the mature tRNA gene population of the host species. In

this regard, recent studies have started to analyze the potential

of codon selection to tune translation efficiency (Cannarozzi

et al., 2010; Tuller et al., 2010b) or protein folding (Zhang et al.,

2009).

EXPERIMENTAL PROCEDURES

tRNA Sequence Retrieval

We have extracted, analyzed and compared over 53,000 sequences corre-

sponding to cytoplasmatic nonorganellar tRNAs from 527 genomes distrib-

uted throughout the three kingdoms of life. All tRNA sequences have been

downloaded from the GtRNAdb (http://gtrnadb.ucsc.edu), which uses the

predictions made by the program tRNAscan-SE (Lowe and Eddy, 1997). Given

that our analysis is based on average tRNA abundances,minormisannotations

that may happen in tRNA genes using this prediction program are not statisti-

cally significant and thus should not affect the final results of this work.

Gene Content Analysis

Using the complete set of tRNA sequences we have built a distance-based

phylogeny constructed on the basis of gene content. The similarity between

two species is determined by the number resulting from dividing the number

of tRNA genes that they have in common by the total number of gene types

(isoacceptors). Using this method we have calculated a distance matrix that

contains all pairwise distance values between the species analyzed. The

distance matrix obtained has been used to cluster the sequences and build

the phylogenetic tree, using the neighbor-joining method implemented in the

program PHYLIP (Felsenstein, 1989). The program iTOL (Letunic and Bork,

2007) has been used for the visualization of the resulting phylogenetic tree.

Principal Component Analysis

A matrix consisting of the tRNA relative gene frequencies (RGF) for each anti-

codon and for all the analyzed species was used as input to perform PCA anal-

ysis (Jolliffe, 2002) using the program R (Team RDC, 2008, R: A Language and

Environment for Statistical Computing, Vienna Austria R Foundation for Statis-

tical Computing). The same software was used to obtain the resulting plots and

to perform the t test and Wilcoxon test on the results. The significance of the

association of the loadings with each principal component was computed

using the FactoMineR package for R (Lê et al., 2008).

Retrieval of Coding Sequences and Codon Usage Estimation

All complete protein-coding sequences (CDS) for each of the selected 107

species were downloaded from the EMBLCDS database (http://www.ebi.ac.

uk/embl/cds). For each species, a subset corresponding to ribosomal proteins

was selected and visually inspected, and finally used as input to estimate

the codon usage of highly expressed proteins using the GCUA software

(McInerney, 1998).

Correlation between Codon Usage and tRNA Gene Content

For each species analyzed, the set of 18 preferred codons and preferred tRNA

isoacceptors was computed (one for each amino acid, excludingMet and Trp).

Initial correlations were computed by using the Watson-Crick base pairing

rules (U:A; A:U; C:G; G:C), and extended correlations were computed

including the extended wobble base pairing that result from the activities of

ADATs (I:A; I:C; I:U) and UMs (xo5U:A; xo5U:G; xo5U:U).

Correlation coefficients were computed as: C = (SM / N) * 100, where M is

the number of codon-anticodon pairs for which there is a match (using

Watson-Crick or extended wobble base pairing rules), and N is the number

of codon-anticodon pairs considered in the analysis. We considered three

different sets of matching codon-anticodon pairs. The simplest set (N = 8)

includes the major tRNA isoacceptors with modifiable anticodons. A second

set (N = 18) includes all major tRNA isoacceptors with the exception of methi-

onine and tryptophan. Finally, a larger set (N = 27) was built by also considering

the second most abundant tRNA isoacceptor from all four-, six-, and split (Ile)

codon families.

The inclusion of modification data in our correlation analysis increases the

number of acceptable codon-anticodon pairs, which could artificially increase

correlation coefficients. To discard the possibility that the correlations that we

obtain are simply the result of the increased number of acceptable pairs we

tested the statistical significance of our data in both scenarios, i.e., with and

without the inclusion of modification data. To that end, we approximated our

data to a binomial distribution, computing for each set of data the expected

distribution of random matches (Table S4). Our results show that the signifi-

cance of our data is not due to the increased number of acceptable pairs

caused by the inclusion of modification data (Tables S5 and S6). Using the

same approach we confirmed that the statistical significance of our results

is independent of the subset of tRNA isoacceptors analyzed.

tRNA Microarrays

tRNA abundance from HeLa and HEK293T cells was measured using

a tRNA specific microarray method described previously (Dittmar et al.,

2006; Pavon-Eternod et al., 2010). The standard tRNA microarray experiment

consists of four steps starting from total RNA: (1) deacylation to remove

remaining amino acids attached to the tRNA, (2) selective Cy3/Cy5 labeling

of tRNA, (3) array hybridization, and (4) data analysis. The relative Cy3 or

Cy5 fluorescent values from each tRNA probe of the same sample are used

to determine the relative abundance of each tRNA in this sample, as described

previously (Pavon-Eternod et al., 2010; Tuller et al., 2010a).
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Protein Abundance and mRNA Levels

Protein abundance values and mRNA measurements of E. coli were taken

from the work of Lu et al. (2007) and Ishihama et al. (2008); protein abundance

values and mRNA levels of S. cerevisiae were taken from the work of Lu et al.

(2007) and Newman et al. (2006). Correlation between protein expression

levels and the abundance of preferred codons is shown in Figure 5 and Figures

S4 and S5, and has been quantified using the Spearman’s rank correlation

coefficient.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and six tables and can be found

with this article online at doi:10.1016/j.cell.2012.01.050.
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Supplemental Information

Figure S1. Genome Phylogeny of the 527 Species Based on tRNA Gene Content, Related to Figure 1

Each identified phylogenetic cluster has been labeled accordingly, and is shown in green (Eukarya), black (Bacteria), red (ML-Archaea) and blue (NML-Archaea).

Cell 149, 202–213, March 30, 2012 ª2012 Elsevier Inc. S1



Figure S2. Identification and Quantification of Overrepresented tRNA Isoacceptors, Related to Figure 3

(A) Biplot of the scores after performing Principal Component Analysis. The left plot shows the PC1 versus PC2 loadings, the middle plot shows PC1 versus PC3,

and the right plot shows PC2 versus PC3. The species have been colored according to their kingdom: Archaea (red), Bacteria (purple) and Eukarya (green).

(B) Biplot of the loadings, indicating the tRNA isoacceptors whose frequencies contribute most to each of the clusters. The tRNA isoacceptors that are signif-

icantly associated to the PCs are circled, and colored according to the kingdom in which they are enriched: Eukarya (green) and Bacteria (purple).
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Figure S3. Codon-Anticodon Recognition at the Wobble Position, Related to Table 1

Representation of all possible codon:anticodon pairings according to the extended wobble base pairing rules. The decoding capacity of both xo5U and I is

increased in comparison to the other bases that can found at the wobble position of the anticodon.
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Figure S4. Correlation between Codon Usage and tRNA Gene Copy Number, Related to Figure 4

(A) For each amino acid and each kingdom, the highest adapted codon, i.e., that corresponding to the highest tRNA gene copy number, has been computed and

compared to the codon with highest RSCU. Correlation results have been presented as heat map, either as match (blue) or mismatch (orange-red). Interestingly,

the majority of nonmatching codons are precisely those susceptible of being recognized by modified tRNAs. When taking into account the wobbling (right)

facilitated by uridine methyltransferases (UMs) or adenosine deaminases (ADATs) we can observe that most nonmatching codons are now matching.

(B) Correlation between the relative abundance of ‘‘nonpreferred’’ codons and GFP fluorescence values (Pearson’s r:�0.51, p-value = 2.5e-11; Spearman’s rho:

�0.50, p-value = 6.2e-11). The local density of data points in the graph is signified by color (darker corresponding to more populated areas of the plot).

(C) Correlation between the most adapted codon (highest RGF) and the most abundant codon (highest RSCU) for low and high expressed GFP sequences. Low

expressed and high expressed GFP sequences were chosen as those having the top or bottom 5% fluorescence among the 154 GFP set. In the left, the direct

correlation between most adapted codon and most frequent codon is shown; in the middle graph the increase in correlation due to the incorporation of UMs is

shown. The histograms represent the percentage of match between RGF and RSCUwith and without the inclusion of the activity of UMs in the calculation of RGF

values. Arginine codons have been excluded from the analysis because all synthetic GFP sequences present extremely high RSCU values for tRNAArg(AGA)

(ranging from 1.71 to 4.29), and therefore cannot be used to measure codon preferences or correlations. Similar results were obtained when using larger datasets

(i.e., the top and bottom 10% fluorescence values in the GFP set).
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Figure S5. Correlations between Codon Usage and Protein Expression Levels, Related to Figure 5

(A) Correlations between the most adapted codons (highest RGF) and protein expression levels without considering modifications are shown both for E. coli and

S. cerevisiae (Spearman’s rho: 0.20 and 0.55, respectively). Similarly, the correlations between the least adapted codons (all those not included before) and

protein expression levels are shown. Only amino acids withmodifiable tRNA isoacceptors have been considered in this data tomake them comparable with those

results shown in Figure 5. The significance of the differences between Figure 5 (with modifications) and this figure is p = 9.4e-5 for E. coli, and p = 6.3e-4 for

S. cerevisiae data, respectively.

(B) Correlation between the number of nonpreferred codons and protein abundance using diverse sources of experimentally determined protein abundances. For

E. coli, the Spearman correlations are �0.48 (p-value = 8.5e-24) and �0.27 (p value = 6.5e-10) using experimental data from Lu et al. (2007) and Ishihama et al.

(2008), respectively. For S. cerevisiae, the Spearman correlations are �0.76 (p value = 4.0e-68) and �0.74 (p-value = 1.2e-69) using data obtained by Lu et al.

(2005) and Newman et al. (2006), respectively.

(C) Correlation between ‘‘nonpreferred’’ codons and translation efficiency. The number of non-UM-preferred and non-ADAT-preferred codons has been

computed for each of the genes whose mRNA and protein abundance data was available (Lu et al., 2007), both for E. coli and S. cerevisiae, respectively.

Translation efficiency has been defined as the ratio between mRNA and protein abundance levels.
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Codon usage and tRNA abundance are critical param-
eters for gene synthesis. However, the forces determin-
ing codon usage bias within genomes and between
organisms, as well as the functional roles of biased
codon compositions,  remain poorly understood. Simi-
larly, the composition and dynamics of mature tRNA
populations in cells in terms of isoacceptor abundances,
and the prevalence and function of base modifications
are not well understood. As we begin to decipher some
of the rules that govern codon usage and tRNA abun-
dances, it is becoming clear that these parameters are a
way to not only increase gene expression, but also
regulate the speed of ribosomal translation, the efficien-
cy of protein folding, and the coordinated expression of
functionally related gene families. Here, we discuss the
importance of codon–anticodon interactions in transla-
tion regulation and highlight the contribution  of non-
random codon distributions  and post-transcriptional
base modifications to this regulation.

Codon usage bias
What is codon usage bias?
Due to the degeneracy of the genetic code, several codons
(‘synonymous’ codons; see Glossary) are translated into the
same amino acid. Synonymous codons are used with dif-
ferent frequencies, a phenomenon known as codon bias.
Codon bias is a defining characteristic of each genome and
is maintained by a balance between selection, mutation,
and genetic drift [1–3]. Despite the relative universality of
the genetic code and the conservation of the translation
machinery across species, codon biases vary dramatically
between organisms. Thus, the most frequent or most rare
codon in a gene varies both between and within species
depending on the gene [1,4].

It is generally accepted that the speed at which ribo-
somes decode a codon depends on the cellular concentra-
tion of the tRNA that recognize it [5–8], although there is
some debate about this assumption [9]. Nevertheless, the
most abundant codons pair with the most abundant tRNAs
and vice versa. As a result, gene codon bias strongly
correlates with gene expression levels in organisms as
diverse as Escherichia coli, Saccharomyces cerevisiae, Cae-
norhabditis elegans, Arabidopsis thaliana, and Drosophila
melanogaster [10–15]. It has been shown that the use of
particular codons can increase the expression of a gene by
more than 1000-fold [16].

Why does codon usage bias exist?
The existence of codon bias is explained by two different
lines of thought [1]. According to ‘selectionists’, codon bias
contributes to the efficiency and accuracy of amino acid
sequence, and this bias is maintained by selection [2,17].
By contrast, ‘mutationalists’ suggest that codon bias exists
because of non-randomness in the mutational patterns,
whereby some codons would be more mutable and, there-
fore, would have lower equilibrium frequencies [18,19].
According to this latter theory, genomic G+C composition
is thought to be a major factor affecting codon usage
variation [20], given that G+C frequencies can range from
<20% to >90% in the third position of codons. These two
explanations are not mutually exclusive, and both are
supported by several studies (vide supra).

A clear association exists between the expression level
of a gene and its codon composition, an observation that
holds for organisms ranging from bacteria to mammals. It
is generally accepted that the variation of codon usage

Review

Glossary

Anticodon: sequence of three nucleotides of a tRNA that is complementary to a

given codon.

Codon: sequence of three nucleotides of an mRNA that specifies the amino

acid that will be added next during protein synthesis.

Mistranslation: phenomenon that occurs when an amino acid is attached to the

wrong tRNA and subsequently misincorporated into the nascent protein.

Preferred codons: subsets of rapidly translated codons that are expected to

increase translation efficiency and, therefore, to be over-represented in highly

expressed proteins.

Ribosome stalling: ribosome pausing, which is thought to happen for several

reasons, including the presence of rare codons, which are decoded more slowly.

Shine-Dalgarno sequence: ribosomal binding site that exists in the mRNA of

Bacteria and Archaea, generally located eight base pairs upstream of the start

codon AUG.

Translation efficiency: rate of mRNA translation into proteins within cells.

tRNA channeling: direct transfer of tRNAs from the aminoacyl-tRNA synthe-

tases to the elongation factor and ribosomes without dissociation. It also

includes the transfer of tRNAs leaving the ribosome to their cognate

aminoacyl-tRNA synthetases, which will regenerate newly charged tRNAs

ready to use again in protein synthesis.

tRNA decoding capacity: ability of a tRNA to recognize more than one codon

from a subset of codons that encode the same amino acid, including both

Watson-Crick and wobble base pairings.

tRNA isoacceptors: tRNA molecules that bind to alternate codons encoding the

same amino acid residue.

tRNA microarray: specific microarray method to quantify tRNAs based on a

fluorescent dye-labeling technique.

tRNA modifications: nucleotide modifications that alter the biophysical and

biochemical properties of a tRNA, causing changes in the structure and

dynamics of the tRNA to fine-tune its function.

Wobble base-pair: non-Watson-Crick base-pairing between two nucleotides in

RNA molecules, but the thermodynamic stability is comparable to that of

Watson-Crick base pairs.

Wobble position: third position in the codon, or first position of the tRNA

anticodon (base 34).Corresponding author: Ribas de Pouplana, L. (lluis.ribas@irbbarcelona.org).
Keywords: codon usage; tRNA; translation efficiency; tRNA modifications.
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between genes of the same genome is a product of selection,
based on the observation that codon bias is more extreme
in highly expressed genes, which are enriched in those
codons that match the most abundant cognate tRNAs
[15,18,21]. However, whether the codon bias found in
highly expressed genes serves to optimize translational
efficiency or improve codon reading accuracy has been a
topic of active debate [18,19,22,23].

A priori, both translation efficiency and accuracy should
be under positive selection. On the one hand, efficient
elongation of a transcript might increase its protein yield
[16] or provide a global benefit to the cell by freeing up
ribosomes that can then translate other messages [24]. On
the other hand, accurate elongation would benefit the cell
by reducing the costs of useless mistranslation products
[22].

Beyond this direct relation between codon composition
and translation speed lies a more complex set of param-
eters that link codon usage and tRNA abundance to gene
expression regulation. Factors such as codon autocorrela-
tion [25], clustering of rare codons [26], mRNA secondary
structure [24], ribosomal density [6], relative abundance of
wobble base pairs [27], presence of Shine-Dalgarno-like
features in coding sequences [9], or interactions with mod-
ified tRNAs [28] can further contribute to the regulation of
gene expression through the phenomenon of synonymous
codon bias and tRNA dynamics (Figure 1).

For example, codon usage bias has been linked to the
control of cell cycle development [29] and stress-mediated
specific responses [30]. Specific tRNAs and, consequently,
certain codon compositions are a crucial component in the
activation of some genetic programs [31], suggesting a
novel layer of genomic regulation that is only now starting
to be explored. Similarly, it has been recently shown that
the emergence of certain anticodon modification enzymes
during evolution has shaped the structure of genomes,
contributing to the regulation of the speed of gene transla-
tion [28] (Figure 2). In this review, we discuss the latest
advances leading to current understanding of how codon
usage and tRNA populations evolved not only to optimize
gene expression, but also to regulate it.

Codon usage and tRNA
Codon frequencies and tRNA abundances
tRNAs translate codons into amino acids during protein
synthesis. Every organism has multiple tRNA species that
read the codons for the same amino acid (tRNA isoaccep-
tors). Several reports have shown that synonymous triplet
variation across species is driven by the adaptation of
codon usage to tRNA abundances or vice versa
[15,16,28,32,33]. However, the search for a correlation
between tRNA abundance and codon usage has been suc-
cessful only in some organisms [5,34]. In several species,
including many bacteria and eukaryotes, this search has
failed [35,36], prompting the proposal that, in the latter
organisms, translation efficiency might not be the primary
factor influencing codon usage [36,37]. However, it was
recently reported that two distinct modifications at the
wobble position of certain anticodons are at the core of this
apparent lack of correlation [28]. These modifications ‘ex-
tend’ the wobble pairing ability of anticodons and influence

the codon usage bias in bacteria and eukaryotes, ultimate-
ly affecting codon usage and genomic tRNA compositions.
The inclusion of these modifications corrects previously
reported discrepancies between codon usage and tRNA
abundance across all extant major phylogenetic groups,
These results suggest not only that codon usage and tRNA
abundances coevolve, but also that the diversification of
the genetic code usage in evolution was at least partially
driven by the appearance of certain tRNA modification
enzymes [28].

Recently, in vivo translational speeds for all sense
codons from S. cerevisiae were determined [38] using ge-
nome-wide ribosome profiling data. Surprisingly, similar
translational speeds among synonymous codons were
found, suggesting that preferentially used codons in highly
expressed proteins are not translated faster than non-
preferred ones. However, a correlation between codon
usage bias and cognate tRNA abundances was indeed
observed. These findings suggest that codon usage bias
found in highly expressed genes is a product of natural
selection for an overall cellular efficiency, rather than a
product of stronger selection for translation efficiency in
more highly expressed genes.

Variability in tRNA pools
tRNA gene copy number has often been used as a proxy for
tRNA abundance in the cell [26,34,35,39]. This approxima-
tion has been validated for some unicellular organisms,
such as yeast [6] and E. coli [5], but recent studies have
demonstrated that tissue-specific differences in the expres-
sion of tRNA genes exist in more complex organisms [40].
Indeed, microarray-based quantification of cellular tRNAs
shows significant variation in their levels among different
tissues, both in terms of relative enrichments of specific
tRNA isoacceptors and in total tRNA concentration [40].
Importantly, the correlation between relative tRNA abun-
dances and the codon composition of highly expressed,
tissue-specific genes was also observed in the different
tissues analyzed.

Because mature tRNAs in humans are thought to be
very stable, cellular tRNA levels are mostly determined by
tRNA transcription rates [41]. tRNAs are transcribed by a
multisubunit complex of RNA polymerase III (Pol III),
TFIIIB, and TFIIIC [42,43] and are negatively regulated
by Maf1, a protein under the control of the mammalian
target of rapamycin (mTOR) pathway [44]. Thus, the reg-
ulation of tRNA transcript levels is closely linked to cellu-
lar conditions, such as nutrient availability and genome
integrity.

To explore the evolutionary dynamics of tRNA gene
transcription and the variation across different tissues
in mammals, Pol III occupancy has been experimentally
determined in several tissues from six mammalian species
[45]. Pol III binding to different tRNA genes varies sub-
stantially in strength and genomic location for different
species. However, there is a strong conservation of Pol III
occupancy at the genes of grouped tRNA isoacceptor fami-
lies [45]. These results suggest that, although the usage of
individual tRNA genes has evolved rapidly, functional
tRNA isoacceptor families have been maintained through-
out evolution. This indicates that the major evolutionary
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forces driving relative tRNA abundance and codon compo-
sition are conserved across mammals.

Codon usage and the ribosome
Codon distribution and local enrichment
Traditionally, analyses of codon usage for individual genes
have only considered the overall codon composition of
transcripts. However, patterns of unequal codon distribu-
tion along genes exist, and these are thought to be impor-
tant for the control of ribosome speed and translation

stability [6,25]. Indeed, the notion that translation rates
can change across different regions of an mRNA transcript
has been known for some time [46,47] and has recently
gained additional experimental support [48,49].

Recently, a study of the translation efficiency of codons
as a function of their location on the transcript [6] reported
that, for most genes, the speed of translation is reduced
during the first 30–50 codons (known as the ‘translation
ramp’) and then increases for the remainder of the gene.
This ramp of poorly adapted codons (i.e., those read by low
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Figure 1. Relevant mechanisms involving the unequal use of synonymous codons and their effect on translation efficiency. (a) The distribution of synonymous codons

along the gene affects the speed of the ribosome and, consequently, the translation efficiency. As general rules, mRNA transcripts lack strong 50 secondary structure (i) [24],

‘non-preferred’ codons cluster at the beginning of the transcript (ii) [6], and autocorrelated codons, which allow tRNA recycling, increase the speed of translation (iii) [25]. (b)

tRNA gene content tends to correlate with the codon usage bias of highly expressed genes (i) [34]. tRNA gene content biases appear to increase protein translation

efficiency by increasing the number of tRNA isoacceptors that are capable of being modified by tRNA modification enzymes, which expands their wobbling capacity. These

tRNA modification enzymes differ between bacterial [uridine methyltransferases (UMs)] and eukaryal [adenosine deaminases (ADATs)] species, which in turn have caused

differential increases of specific tRNA isoacceptors between kingdoms (ii) [28]. (c) The sets of genes that are expressed in each stage of the cell cycle present similar codon

covariations, and these differ from those found in other stages, suggesting that the codon preferences change during the cell cycle (i) [29]. Codon preferences may change

due to the activity of specific tRNA modification enzymes [e.g., tRNA methyltransferase 9 (Trm9) in Saccharomyces cerevisiae]. Under stress conditions, Trm9 modifies a

subset of tRNAs and, consequently, their decoding capacities and codon preferences, thus enhancing the expression of a subset of codons that is enriched in proteins that

respond to stress (ii) [30].
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abundant tRNAs) would presumably slow elongation at
the beginning of the gene, reducing the frequency of ribo-
somal stalling. This model is further supported by experi-
mentally determined ribosome profile densities along
mRNAs [50] and has now been proposed as a general
feature of gene translation in both prokaryotic and eukary-
otic species.

It has also been shown that once a particular synonymous
codon has been used in a transcript, other codons recognized
by the same tRNA isoacceptor will be favored in that gene
[25]. This observation holds for both frequent and rare
codons, and the observed enrichment diminishes as a func-
tion of the distance between subsequent synonymous
codons. This indicates that sequences optimized for tRNA
reuse are expressed more efficiently than are sequences that
require different tRNA isoacceptors. In accordance with this
model, previous studies have proposed that tRNA diffusion
away from the ribosome is slower than translation, and that

some tRNA channeling takes place to optimize ribosome
function [51]. Specifically, it has been suggested that, after
release from the ribosome, tRNAs remain bound to the multi
tRNA–synthetase complex [52] or to elongation factors [53],
which might themselves be associated with the ribosome.
Such a mechanism would effectively raise the local concen-
tration of tRNAs that recognize codons that have already
appeared in given transcript. Thus, genes that reuse the
same codons, even rare codons, may be more efficiently
transcribed.

Codon composition and RNA secondary structure
At the gene level, it is well known that mRNA structure
influences translational efficiency. In bacteria, the forma-
tion of strong hairpin loops around the Shine-Dalgarno
ribosomal binding site and the initiation codon can signifi-
cantly reduce expression levels [54]. Therefore, strong
mRNA structure near the 50 end of a transcript is generally
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Figure 2. Increased decoding capacity of modified tRNAs at the wobble position. (a) The aminoacylated tRNA enters the ribosome and is selected based on the correct

pairing of its anticodon bases (positions 34, 35, and 36 of the tRNA) with the respective codon. The wobble base (position 34) recognizes the third position of the mRNA

codon, the degenerate codon position. (b) Representation of all possible codon–anticodon pairings according to the extended wobble base-pairing rules. A and C in

position 34 can only recognize one base (shown in green), whereas G and U can recognize two different bases (shown in purple): one through Watson-Crick pairing and the

other through the G:U wobbling. The activities of adenosine deaminases (ADATs; A-to-I conversion) and uridine methyltransferases (UMs; U-to-xo5U conversion) expand

the wobbling capacities of base 34, allowing them to pair with three different codon bases (shown in orange). (c) Proposed model for the effect of tRNA modification

enzymes upon translation efficiency.
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thought of as disadvantageous and can inhibit ribosomal
translation initiation [55,56]. This is further supported by
a study that looked at the expression levels of a synthetic
library of GFPs with random synonymous changes in E.
coli and found that upstream sequence composition influ-
enced mRNA folding near the ribosomal binding site. In
fact, it was estimated that the mRNA sequence composi-
tion in this region explained more than half of the variation
that was found in protein levels [24].

Protein folding regulated by codon composition
Numerous reports indicate that the speed of translation
along some transcripts may be critical to the formation of the
native structure of a protein. Pausing has been identified
during the translation of certain proteins [57–59] and, in
many cases, it appears to be caused by local mRNA struc-
tures [60], which may be required for the correct folding of
the nascent polypeptide [49,61]. These translation effects
support the theory of co-translational protein folding and
highlight the importance of mRNA sequence and codon
usage bias in protein structure formation [62,63]. Indeed,
synonymous mutations can have significant consequences
in the folding process of the nascent protein and even change
the substrate specificity of enzymes [64].

Codon usage and gene regulation
Codon usage and cell cycle control
It is becoming increasingly evident that the use of specific
subsets of codons can be a strategy to optimize parameters
other than protein synthesis efficiency. For example, previ-
ous works in bacteria and fungi demonstrated that func-
tionally related genes that probably need to be expressed at
similar levels tend to have similar patterns of codon bias
[65,66]. In a recent study, it was shown that certain non-
optimal codon compositions were related to cell cycle-depen-
dent oscillations in protein levels [29]. Indeed, cell cycle-
regulated genes display different codon preferences, sug-
gesting that codon usage has a role in cell cycle regulation.

The same study also concluded that cell cycle-regulated
genes have a strong preference for codons with low codon–
anticodon binding affinity [29], based on published ther-
modynamic data for binding affinities of several possible
base pairings [67]. If subsets of functionally related genes

exhibit specific biases towards particular codons, then the
regulation of the expression of these genes may also be
linked to specific codon usage patterns. Thus, it appears
that subsets of ‘preferentially expressed’ genes form coher-
ent groups in terms of codon usage, and that these codon
composition ‘preferences’ change throughout the life cycle
of a cell. Similarly, these codon preferences might also be
capable of responding to a variety of external stimuli, such
as stress [30].

Proteome regulation through modulation of codon-
anticodon pairings
As stated above, genes that need to be expressed at similar
levels tend to have similar codon biases [65,66]. Important-
ly, anticodon bases can be customized by tRNA modifica-
tion enzymes to alter their translation decoding capacity,
potentially impacting the subset of ‘preferred’ codons in the
genome. This potential variability in the sets of ‘preferred’
codons implies that modulating the activity of modification
enzymes may be an avenue for regulating the composition
of the proteome when needed (Figure 3).

The relation between codon frequency and tRNA abun-
dance is further confounded by the existence of post-tran-
scriptional modifications in tRNA nucleotides, over 100 of
which have been recognized and described to date (http://
rna-mdb.cas.albany.edu/RNAmods/). Modifications con-
tribute to tRNA folding, structure, and stability, as well
as to translation efficiency and amino acid substitution
rates [68–70]. Many of the known base modifications are
not essential for life and have often been characterized as a
mere expansion of the repertoire of the nucleotide bases.
Nevertheless, increasing evidence indicates that tRNA
modifications can have regulatory roles in cells, especially
in response to stress conditions [30,71].

The function of many tRNA modifications, particularly
with regards to gene expression regulation, remains un-
clear. To approach this problem, novel mass spectrometric
methods to quantify tRNA modifications with high precision
are being used [72]. One such study exposed S. cerevisiae to
various environmental stresses and analyzed the resulting
changes in tRNA modification levels. Interestingly, the
prevalence of several tRNA modifications changed as a
function of the stress response being activated, suggesting
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‘Non-preferred’
codons

ProteinmRNA

tRNA modifica�on
enzymes

Modified tRNAs

Stress

‘preferred’
codons

‘Non-preferred’
codons

‘preferred’
codons

TRENDS in Genetics 

Figure 3. Codon usage bias as a mechanism for tuning the proteome. In response to a particular signal, such as an environmental stress, the levels of a given tRNA

modification enzyme change, altering the codon preferences of the tRNA. These changes in turn cause an increase in the protein expression levels of those mRNAs that are

found to be enriched in that specific subset of newly ‘preferred’ codons. Such a mechanism may operate on a set of proteins involved in the specific response to the signal

or stress.
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that the control of tRNA modifications in cellular response
pathways is a dynamic process.

Similarly, it has been shown that certain clusters of
yeast mRNAs enriched in AGA codons are differentially
translated under stress due to an increase in anticodon
modifications mediated by tRNA methyltransferase 9
(Trm9) [30]. Therefore, similar transcriptomes may result
in different proteome compositions as a consequence of
changes in the activity of anticodon modification enzymes
[30]. This mechanism is probably not limited to Trm9, and
it is possible that other responses are linked to the activity
of other tRNA modification enzymes (Figure 3, Table 1).

The redundancy of the genetic code offers an opportuni-
ty to fine-tune gene expression levels depending on the
usage of synonymous codons. In this regard, functionally
related genes (i.e., cell cycle-related genes or stress-re-
sponse genes) seem to have similar codon usage profiles,
suggesting that their translation is somehow favored un-
der certain conditions. Whether this regulation is achieved
through changes in tRNA abundance or through the regu-
lation of modifications is something that must be further
studied, although supporting evidence for both regulatory
mechanisms exists [30,40,72,73].

Two tRNA modification enzymes are known to increase
codon-pairing ability: tRNA-dependent adenosine deami-
nases (ADATs) and tRNA-dependent uridine methyltrans-
ferases (UMs) [74,75]. These enzymes expand the wobbling
capacity of tRNAs and increase the translation efficiency of
the codons recognized by the modified tRNAs. Indeed,

highly expressed genes (e.g., ribosomal genes) are found
to be most enriched in ‘preferred’ codons (in this case, those
read by tRNAs with modified anticodons), again support-
ing the possibility that the activity of tRNA modification
enzymes constitutes a novel mechanism for post-transcrip-
tional regulation of protein abundance [28]. However, it is
an open question whether the activity of these enzymes is
regulated in response to specific conditions and, if so, by
what means this regulation is accomplished.

Future directions
mRNA sequences contain far more information than just the
encoded amino acids. Although the multiple regulatory
layers that result from modification of DNA and proteins
have been extensively studied, RNA modifications still re-
main an unexplored territory [76]. In this regard, the com-
plexity of cellular tRNA populations holds great potential
for the discovery of new cellular regulatory mechanisms.

It has been shown that certain post-transcriptional RNA
modifications can be dynamic and reversible, suggesting
that some modifications have functions beyond fine-tuning
the structure and function of the RNA [77]. Similarly, tRNA
modifications can also be regulated and maintained in
distinct cell types and physiological states [76,78].

Information about the range of biological functions of
tRNA modifications has only recently begun to emerge
[30,72]. Due to their complex nature, post-transcriptional
RNA modifications are difficult to study, and understand-
ing of these modifications is sorely lacking compared with

Table 1. Characterization of tRNA modifications in Saccharomyces cerevisiaea

Modification

enzyme

tRNA

modification

Target tRNAsc tRNA

positionc
Changes in modifications in enzyme-lacking

mutantsb
Functionc

Decreasedd Increased

Trm1 m2
2G Several G26 m2

2G –

Trm2 m5U All U54 m5U – Suggested role in tRNA

stabilization and maturation

Trm3 Gm Several G18 – –

Trm4 m5C Several C34, C40,

C48, C49

m5C – Suggested role in

ribosome biogenesis

Trm5 m1G/yW Several G37 yW Y, Gm, Um, Am, m2
2G Required for yW

modification

Trm7 Cm Several C32, G34 ncm5U, yW –

Trm8 m7G Several G46 m7G, (yW) – Required to maintain

tRNA stability

Trm9 mcm5U/mcm5s2U Arg(UCU),

Glu(UUC)

U34 mcm5U, mcm5s2U – Role in stress response;

interacts with Trm112

Trm10 m1G Several G9 m1G ncm5U

Trm11 m2G Several G10 m2G, (yW) – Interacts with Trm112

Trm12 yW Phe G14 yW – Not methyltransferase

Trm13 Cm Gly, His, Pro G4 (Cm) –

Trm44 Um Ser U44 (Um) -–

Trm82 m7G Several G46 m7G, (yW) m1G, m3C, t6A, m2
2G,

m2G, m1I, mcm5U,

mcm5s2U

Required to maintain

tRNA stability; complexes

with Trm8

Tad1 I Ala A37 m1I, yW, (D), (Y) –

Mod5 i6A Several A37 i6A, yW, (D), (Y) –

Tan1 ac4C Leu, Ser C12 ac4C, (yW) m1G, m3C,m1A, m2G,

m1I, mcm5U, m7G

Acetyltransferase

aAbbreviations: A, adenosine; ac, acetyl; C, cytidine; D, dihydrouridine; G, guanosine; I, inosine; m, methyl; mcm, methoxycarbonylmethyl; s, thio; t, threonyl; U, uridine; Y,

pseudouridine; yW, wybutosine.

bData from [72].

cData from public databases.

dChanges shown in parenthesis correspond to more subtle changes in modification levels compared to those shown without parenthesis.
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other areas in cell biology. New technologies capable of
systems-level analyses of RNA modification changes under
diverse cellular conditions will surely bring novel insights
into the biosynthesis of tRNA modifications and their role
in cellular responses [72,79]. We expect that, during the
coming years, these types of approach will shed light on the
roles of tRNA modification enzymes in the proteomic
changes that accompany transitions in the cell cycle, stress
responses, and cell differentiation.

In addition to affecting translation efficiency, codon
choice has also been shown to govern translation fidelity
by influencing the rate of mistranslation [18,19,22]. In-
deed, in the search for the right tRNA, the ribosome might
incorrectly bind to a near-cognate tRNA (i.e., a tRNA with
one base mismatch relative to the codon), causing the
incorporation of a different amino acid. The frequency of
this type of mistranslation error has been estimated in vivo
to range from 10–2 in Bacillus subtilis [80] to 10–5 in yeast
cells [81]. The fact that there is a significant correlation
between codon conservation and conserved amino acid
position suggests that translation accuracy has been under
positive selection [22]. Importantly, however, mistransla-
tion might also be beneficial. Recent work has shown that,
under certain stress conditions, mistranslation rates in-
crease, leading to increased misincorporation of methio-
nine residues into the mammalian proteome [82].
Moreover, in certain organisms, proteome-wide mistrans-
lation has been shown to increase their fitness under
particular environmental conditions [83]. These novel
observations suggest that mistranslation evolved as a
cellular strategy to adapt to environmental changes and
that the codon choice have evolved such that errors can be
introduced in nonessential positions of proteins. Exploring
the biological significance of mistranslation represents one
of the most exciting new directions in this field.

Concluding remarks
Although any given amino acid can be encoded by multiple
codons, these ‘synonymous’ codons are not equally used
across genes or genomes. Codon usage has been shown to
influence gene expression levels, but the precise rules that
govern codon composition remain unclear. Recent efforts
have started to uncover specific parameters that affect
codon choice, such as codon autocorrelation, codon order,
tRNA isoacceptor abundance, or gene coregulation.

In this already complex scenario, tRNA modifications
emerge as novel players that can modulate the translation
efficiency of codons and, consequently, the expression
levels of specific subsets of genes. Indeed, recent studies
suggest that tRNA modifications have an important role in
genome regulation by specifically enhancing the expres-
sion levels of those genes involved in a cellular response.
This indicates that the complexity of mature cellular tRNA
populations, which has only recently started to be appre-
ciated, holds great potential for the discovery of new cellu-
lar regulatory mechanisms.
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4.2.  Chapter 2:  Aminoacyl-tRNA synthetases as  
    antimalarial drug targets 
 
 

4.2.1.  Introduction to Plasmodium falciparum 

 

4.2.1.1.  Plasmodium falciparum malaria 
 
Apicomplexan protozoans form a phylum of obligate intracellular parasites that comprises 

important human pathogens, including Plasmodium sp., the causative agent of malaria. 

Malaria is a mosquito-borne infectious disease that can result in symptoms such as coma, 

respiratory distress, severe anaemia and death.  Approximately half of the world’s population 

is at risk of contracting malaria; however most malaria cases and deaths occur in sub-

Saharan Africa (Figure 4.4).   

 

 
Figure 4.4.  Spatial distribution of Plasmodium falciparum endemicity.  The annual mean of P. 

falciparum parasite rate (PfPR) is the proportion of blood samples showing detectable parasites 

between 2 and 10 years of age, as a measure of endemicity.  Adapted from Hay et al. 2009.   

 
It has been estimated that malaria causes 225 million cases of clinical malaria and 

approximately one million deaths per year (WHO, 2010). Most of these deaths are caused by 

Plasmodium falciparum, one of the four distinct Plasmodium species that affect humans, 
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whereas the high morbidity of P. vivax, which can cause dormant liver-stage infections, also 

accounts for the enormous economic burden.   

 

While isolated efforts to curb malaria with combinations of vector control, education, and 

drugs have proven successful, a global situation has not been reached. Current control 

strategies include both therapeutic and prophylactic chemotherapy and the blocking of 

transmissin using vector control including insectide-impregnated bed nets. Achieving 

eradication would be eased by the availability of effective drugs that would target both liver 

and blood stages of the parasite.   

 

4.2.1.2.  P. falciparum life cycle 
 
P. falciparum has a complex life cycle involving several differentiated forms and two different 

hosts (Figure 4.5).  Within the human host, Plasmodium has two major phases: liver and 

blood.  Subsequent to a bite from an infected mosquito, the Plasmodium sporozoites migrate 

to the liver and infect hepatocytes. After replicating within the hepatocyte, the parasites 

rupture the cell to release merozoites, a stage specialized to infect erythrocytes. However, 

two species (P. vivax and P. ovale) can assume a dormant state (hypnozoites) within the 

liver that commonly lasts for months to years (White, 2011). After exiting the liver, the 

parasite establishes a recurring life cycle in the erythrocytes, named asexual intraerythrocytic 

cycle (IEC), which lasts approximately 48h. All clinical symptoms of malaria are associated 

with the IEC, and it is the target of most antimalarial drug and vaccine strategies (Table 2). 

During the blood stage, some parasites will differentiate into sexual forms that will be 

transmitted back to the mosquito.  

 

Each devlopmental stage is characterised by distinct physiology, and each has varying 

sensitivity to most drugs, making the discovery of a single drug active against all stages 

challenging (Wells et al., 2009).  To date, antimalarial chemotherapy has primarily targeted 

the blood stages (Table 3). Various drugs including atoquavone, primaquine and artemisin 

derivatives are effective to varying degrees against liver-stage parasites. However, 

primaquine is the only drug effective against the dormant hypnozoites. 
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Figure 4.5. Complex life cycle of Plasmodium falciparum.  The life cycle includes two hosts: the 

mosquito Anopheles, and human.  The sexual stage occurs in the mosquito, whereas the asexual 

stages occurring in human erythrocytes cause the symptoms typical of malaria.  Adapted from 

Menard, 2005. 

 
 

Table 2. Current antimalarial drugs, showing their targets and stage of action 

  Stage specificity 
  Liver Blood 
Drug Target Hypnozoite Schizont IEC parasites Gametocytes 

Artemisins Heme? ATP6?  No No Yes Yes 

Atovaquone Cytochrome bc1 No Yes Yes Yes 

Chloroquine Hemozoin No No Yes No 

Doxycycline Ribosomal RNA 
(apicoplast) 

No Yes Yes No 

Primaquine Unknown Yes Yes Yes Yes 

Pyrimethanime Dihydrofolate 
reductase 

No Yes Yes Yes 

Proguanil Dihydrofolate 
reductase 

No Yes Yes Yes 

Quinine Hemozoin No No Yes Yes 

Tetracycline Ribosomal RNA 
(apicoplast) 

No Yes Yes No 
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4.2.1.3.  P. falciparum genome 

 

The 22.8Mb genome of P. falciparum is comprised of 14 linear chromosomes, a circular 

plastid-like genome, and a linear mitochondrial genome.  The malaria genome-sequencing 

consortium estimates that more than 60% of the 5772 predicted open reading frames (ORFs) 

lack sequence similarity to genes from any other known organism (Gardner et al. 2002). 

Although ascribing putative roles for these ORFs in the absence of sequence similarity 

remains challenging, their unique nature may be key to identifying Plasmodium-specific 

candidates for antimalarial strategies.   

 

Plasmodium falciparum presents unique genetic peculiarities compared to other genome.  

Firstly, its nuclear genome is extremely rich in A and T (over 80% AT-rich).  This extreme AT 

bias causes, in turn, an extreme codon usage bias towards those codons that have an A or T 

nucleoside in its degenerate position (Figure 4.6). Indeed, the amino acid composition is also 

biased towards those amino acids encoded by AT-rich codons, such as lysine –encoded by 

AAA- and aspararagine  -encoded by AAT-. Secondly, protein-encoding genes in P. 

falciparum tend to be longer than its homologues in other species –up to 50% longer than 

their yeast homologues- (Frugier et al., 2010). These insertions correspond in most cases to 

Low Complexity Regions (LCRs), which are characterized by single amino acid repeat 

sequences (Figure 4.6c).  Examples of LCRs can be found for all 20 amino acids in the three 

domains of life. However, Plasmodium proteins possess many unique insertions not found in 

homologous proteins from other species. These insertions often take the form of non-globular 

segments that are integrated directly into structured domains that, in theory, bulge out of the 

protein core (Feng et al. 2006).   
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Figure 4.6.  Biased composition of the P. falciparum nuclear genome.  A) Amino acid composition 

of the P. falciparum protein coding genes (green), compared to the human genome (red). B) Codon 

usage of the protein coding genes, measured as relative synonymous codon usage (RSCU). The stop 

codons, Met and Trp not been included in the analysis. C)  Examples of LCRs found in some cytosolic 

plasmodial aaRS. Lysine residues (K) have been coloured in yellow, and asparagine residues (N) 

have been coloured in red.  Panel C is adapted from Frugier et al. 2010. 
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4.2.1.4.  Transcription in P. falciparum 

 

The transcription in P. falciparum has evolved in an extremely specialized mode of 

transcriptional regulation such that it produces a continuous cascade of gene expression that 

is unprecedented in eukaryotic biology (Bozdech et al. 2003). It starts with genes 

corresponding to general cellular processes, such as protein synthesis, and ending with 

Plasmodium-specific functionalities, such as erythrocyte invasion. The transcriptome of the 

IDC resembles a “just-in-time” manufacturing process whereby induction of any gene occurs 

once per cycle, and only at a time when it is required (Figure 4.7). 

                   

 

Figure 4.7.  Transcriptional regulation during IDC. A) Example expression profile of MAL6P1.147 

gene during the IDC, showing the corresponding individual expression profiles for the 14 

oligonucleotides used to measure the gene’s expression levels (Bozdech et al. 2003). This gene is 

expressed during the schizont stage. A red/green colorimetric representation of the gene expression 

ratios for each oligonucleotide is shown. B) Giemsa-staining of the IDC stages.   
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4.2.1.5.  Protein translation in P. falciparum 
 

The protein translation machinery of the P. falciparum parasite is the target of important 

antimalarial drugs, and encompasses many promising targets for future drugs.  Nevertheless, 

its protein translation machinery remains poorly characterized. Plasmodium parasites have 

three subcellular compartments that house genomes: the nucleus, the mitochondrion and the 

apicoplast (an essential organelle that is present in all Apicomplexa and is thought to be 

derived from a secondary endosymbiosis of a red algae). Each of these three compartments 

requires its own compartmentalized transcription and translation apparatus for its survival 

(Jackson et al., 2011).   

 

The apicoplastic machinery translates less than 50 genes encoded by its 35kb circular 

apicoplast genome, which include rRNAs, tRNAs, ribosomal proteins, the translation 

elongation factor Tu (EF-Tu), and also a handful of other poorly characterized proteins 

unrelated to translation (Figure 4.8). However, it also imports many other nuclear-encoded 

proteins needed for its translation (Roy et al., 1999).   

 

The mitochondrion of Plasmodium is amongst those with highest size reduction (6kb), and 

encodes only three proteins: cytochrome c oxidase subunits I and III (Cox1 and Cox3), and 

cytochrome b (Cytb) (Feagin, 1992). The mitochondrial genome does not encode tRNA 

genes, but encodes small fragmented rRNAs, although it is unclear if they are functional. 

Therefore, the mitochondrion must import all proteins and tRNAs needed for the translation 

of its three mitochondrial-encoded transcripts. Despite the apparent incompleteness of the 

mitochondrial machinery and lack of direct evidence for translation in mitochondria, indirect 

evidence suggests that mitochondrial translation is active and is essential.  A major 

antimalarial drug (atovaquone) targets the mitochondrial cytochrome bc1 complex, and point 

mutations in the cytb gene correlate with drug resistance (Afonso et al., 2010).  Indeed, 

cyanide, a drug that inhibits mitochondrial electron transport, is also active against 

Plasmodium, suggesting that the mitochondrial cox genes found in the mitochondrion are 

translated (Painter et al., 2007). 
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Figure 4.8.  Protein translation compartments in Plasmodium falciparum.  Translation takes 

place in the Plasmodium apicoplast (green), mitochondrion (red) and cytosol (orange).  Adapted from 

Jackson et al. 2011. 
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4.2.1.6.  Components of the P. falciparum translation machinery 

 
4.2.1.6.1.  tRNA 

 

A total of 46 tRNA genes, coding for 44 different tRNA isoacceptors, are found in the nuclear 

genome, whereas the apicoplast genome contains 35 genes encoding 26 tRNA isoacceptors 

(Figure 4.9). With the exception of the apicoplastic initiator tRNAMet, characterized by a 

unique variable region (11 nucleotides), they all resemble other eukaryotic tRNAs (Pütz et al., 

2010), and have the potential to adopt a canonical tertiary fold.  

 

                               
 

Figure 4.9.  Distribution of nuclear-encoded tRNA genes in Plasmodium falciparum. Each tRNA 

isoacceptor is represented by its anticodon, and has been coloured depending on its tRNA gene copy 

number.  As a general trait, Plasmodium falciparum has one single tRNA gene copy per tRNA 

isoacceptor. 

 

The most striking observation is that there is only one copy per tRNA isoacceptor in the 

nuclear genome, and therefore Plasmodium has the fewest known tRNA genes of any 

eukaryote.  Whether this limits the translation efficiency in the parasite or whether its RNA 
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polymerase III machinery is regulated by unknown factors is still unclear. If the different 

tRNAs are equally abundant (tRNA abundance is thought to be proportional to the relative 

tRNA gene copy number), the most used codons in the genome will have relatively fewer 

tRNA molecules available per codon, which should limit the translation efficiency.   

 

It is unknown if the expression of plasmodial tRNA genes is under some type of regulation, or 

if other mechanisms compensate such a uniform tRNA gene distriution –e.g. differential 

codon-anticodon affinities, different tRNA half lifes- in order to match its AT-biased genome. 

To solve this intriguing question, members of our lab analyzed the tRNA expression levels 

using published P. falciparum microarray data (Rovira-Graells et al. 2012).  The tRNA levels 

seem to vary across the IDC life cycle –and are similar across different parasite clones-, in a 

similar fashion as plasmodial aaRS (Figure 4.10) Interestingly, the absolute levels of tRNA 

seem to be dispare between different tRNA isoacceptors, suggesting that the tRNA 

abundances in the cell are not reflecting the uniform tRNA gene copy number but instead, 

that there might be a regulation upon tRNA expression levels.  
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Figure 4.10.  Microarray-based P. falciparum tRNA expression levels.  Differential expression of 

nuclear-encoded tRNA genes (A) and apicoplast-encoded tRNA genes (B) along the IDC life cycle.  

For each tRNA gene (columns), 7 different time points across the life cycle have been taken 

(t=10,20,30,34,37,40 and 43h), and from 5 different parasite lines (1.2B, 10G, 3D7A, 3D7B and w41).  

Three tRNA isoacceptors have been randomly chosen for both cytosolic and apicoplastic tRNA genes 

(upper part of each subfigure), and the absolute levels of each tRNA isoacceptor across the IDC and 

for each parasite line (coloured differently) are plotted. Raw data taken from Rovira-Graells et al. 2012.  
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4.2.1.6.2.  Aminoacyl-tRNA synthetases 

 

Nuclear, plastid and mitochondrial genomes show differences in codon usage, but every 

amino acid is used at least once in each of the three compartments, and therefore a full 

complement of tRNAs and aaRS should be necessary for the translation of each genome.   

 

Plasmodium has genes only for 37 aaRS, and these are apparently sufficient to translate the 

nuclear, apicoplast and mitochondrial genomes.  The reduction from a theoretical maximum 

of 60 to 37 genes implies that several Plasmodium aaRS aminoacylate tRNAs that are active 

in more than one subcellular compartment.  Our initial computational studies suggested that 

most of these proteins are either targeted to the apicoplast or the cytosol, but not to the 

mitochondria (Table 3). In accordance with our predictions, the expression peaks of the 

predicted subsets of cytosolic and apicoplast-targeted aaRS seemed to be coordinated, with 

the maximal levels of expression of cytosolic aaRS during the ring stage and of apicoplastic 

aaRS during the trophozoite stage, also correlating with the in life cycle times of cytosolic and 

apicoplastic translation, respectively (Figure 4.11a).  

 

Several P. falciparum aaRS (GlyRS, AlaRS, CysRS and ThrRS) are present only once in the 

genome, and thus should be dually targeted to both compartments. Some of these dual-

targeting predictions have been recently verified by some of our collaborators (Jackson et al., 

2012).  In each of these cases, the gene models start with a predicted apicoplast targeting 

sequence (Foth et al. 2003), which is either alternatively spliced or has two initiation start 

sites, generating two possible isoforms that are either targeted to the cytosol or to the 

apicoplast, respectively.  The other enzyme that is found once is GlnRS, and is expected to 

be located in the cytosol, while the Gln-tRNAGln in the apicoplast is thought to beformed 

through the indirect pathway using apicoplast-targeted amidotransferases. 
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   Table 3.  List of predicted P. falciparum aaRS 

  Mitochondria Apicoplast Cytosol 
Class I    
Arg  1 1 
Cys  1  
Glu  1 1 
Gln ? * 1 
Ile  1 1 
Leu  1 1 
Met  1 1 
Tyr  1 1 
Trp  1 1 
Val  1 1 
Class II    
Ala  1  
Asp  1 1 
Asn  1 1 
Gly  1  
His  1 1 
Lys  1 1 
Phe  2 2 
Pro  1 1 
Ser  1 1 
Thr  1  
Sum 1 ? 20 16 

 *  Amidotransferases predicted to have apicoplastic localization 
 

 
Recent works have started to experimentally demonstrate the specific targeting of the two 

isoleucyl-tRNA synthetases, which are targeted to the apicoplast and cytosol, respectively 

(Istvan et al., 2011).  In addition, in this work we have demonstrated the localisation of the 

apicoplast-targeted lysyl-tRNA synthetase (PfKRS-2) and the cytosolic localisation of 

glutaminyl-tRNA synthetase (PfQRS) (Figure 4.11b and 4.11c).   

 

With respect to mitochondrial protein translation, it is probable that in P. falciparum all 

mitochondrial tRNAs are aminoacylated in the cytosol and transported into the mitochondria 

for use in protein synthesis, in a similar fashion to what has been suggested for Toxoplasma 

gondiii –a closely related apicomplexan protozoa- (Pino et al., 2010; Esseiva et al., 2004). 

Such a mechanism presumably suffers from the deficiency that imported tRNAs would be 

unable to be recharged readily. It is currently unknown if these tRNAs would in some way be 

recycled or degraded after a single use. 
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Figure 4.11.  Predicted set of P. falciparum aaRS. A) Expression times of compartment-specific 

aaRS during the IDC.  Cytosolic aaRS are maximally expressed (red) in the ring stage, while 

apicoplastic aaRS are maximally expressed in the trophozoite stage.  Transcriptomic data has been 

taken from the work published by Bozdech et al. 2003. B) Immunofluorescence assays on transfected 

P. falciparum-infected red blood cells (iRBCs).  P. falciparum parasites have been transfected with a 

vector containing PfQRS-GFP, which localizes in the cytosol. C) Mitotracker has been used to 

specifically label the mitochondria. To check whether PfQRS-GFP also localizes in the mitochondria -

as suggested by the PlasMit subcellular prediction software-, iRBCs have been treated with saponin 

0.10% to break the parasite membrane -but not the organellar membranes- and remove the cytosolic 

fluorescence (Jackson et al., 2012).  However, as can be seen in the figure, there is no colocalization 

between PfQRS-GFP and Mitotracker, indicating that PfQRS is exclusively located in the cytosol. 

Immunofluorescence images obtained with Leica SP2 confocal software.  



 

101 

4.2.1.7. P. falciparum aaRS as drug targets 
 
Once the set of plasmodial aaRS has been identified, which ones would be best to choose 

for antimalarial drug design? The TDR target priorization gives a list of desirable 

characteristics than should be accomplished by a drug target (Aguero et al., 2008): 

 

i. Essentiality:  the target must be an essential gene required for growth and viability, 

whose inhibition kills the pathogen 

ii. Druggability:  the target should present an ability to produce a drug against it, i.e. a 

protein that favours interactions with drug-like chemical compounds 

iii. Selectivity:  the target should not have human homologues, or drugs should be able 

to avoid cross-reactivity with its human homologues 

iv. Stage-specificity:  the target should be highly expressed in stages affecting the 

human host 

v. Feasability for structure-based drug design (SBDD): the target should be 

available as an X-ray crystal, or a good template should be available to build a 

reliable homology model for SBDD purposes.  

vi. Assayability:  the target should be easy to produce as a recombinant protein in order 

to perform an enzyme-based assay, which will be necessary to validate the target.   

 

Taking into account these criteria, all plasmodial aaRS present the same profiles with respect 

to essentiality –they are all essential-, druggability –they are a priori all druggable-, stage-

specificity –they are all highly expressed in human stages-, and feasability for SBDD –there 

is no X-ray for any of them, and similar templates are available for all aaRS to build 

homology models-.  Thus, the two characteristics that can help us choose our targets 

amongst the set of aaRS are selectivity and assayability.    

 

With respect to selectivity, all plasmodial aaRS have human homologues.  However, we can 

choose those that are more distantly related to the human counterparts through the use of 

phylogenetic analyses. We find that the apicoplastic lysyl-tRNA synthetase (PfKRS-2) is an 

interesting drug target because it has a bacterial origin, whereas the human counterpart has 

an eukaryotic origin.  Indeed, lysyl-tRNA synthetase is the unique human aaRS that does not 

have a mitochondrial specific gene –which would be more closely related to the bacterial-like 

gene- because it is produced from alternative splicing from the eukaryotic human KRS, thus 
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being a very good target in terms of selectivity (see Publication 3 for further details).  On the 

other hand, we also find plasmodial glutaminyl-tRNA synthetase (PfQRS) as a candidate 

drug target for its selectivity, because it has a different phylogenetic origin than its human 

counterpart (Figure 4.12).  The human enzyme clusters with the eukaryotic QRS, whereas 

all the Apicomplexan QRS cluster with bacterial QRS.    

 

     
Figure 4.12.  Phylogenetic analysis of glutaminyl-tRNA synthetases.  The consense distance 

matrix is shown.  Bootstrapping has been performed using 100 replicates, using the neighbour-joining 

method (green) and maximum-likelihood method (red).  

 

 

On the other hand, assayability has always been an issue for plasmodial proteins in 

general. Its AT-rich genome and consequently its usual codon usage bias causes that 

heterologous protein expression of P. falciparum genes is in general unsuccessful, obtaining 

either unsoluble proteins or inactive proteins, probably due to incorrect folding (Mehlin et al., 

2006). In this regard, once our initial trials for obtaining soluble and active proteins were 

unsuccessful, we decided to build codon-optimized synthetic genes both for PfQRS and 

PfKRS-2, which were expressed under a wide range of expression conditions –by the IRB 

protein expression facility-, finally obtaining soluble and active protein for in vitro testing.   
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4.2.2.  Introduction: aaRS as drug targets 

 
The emergence of resistance to existing antibiotics demands the development of novel 

antimicrobial agents directed against novel targets.  Historically, bacterial cell wall synthesis, 

protein, DNA and RNA synthesis have been major targets of very successful classes of 

antibiotics such as beta-lactams, glycopeptides, macrolides, aminoglycosides, tetracyclines, 

rifampicins and quinolones.  Amongst the less exploded targets is the family of aaRS, which 

are ancestral enzymes and essential for protein synthesis.  

 

AaRS play essential roles not only in bacteria but also in eukaryotic cells and in 

mitochondria. Therefore, a major prerequisite for any potential new drug is a high selectivity 

for inhibition of the bacterial aaRS over inhibition of their eukaryotic and mitochondrial 

counterparts, given that Inhibition of the host enzymes would have major toxicological 

implications. From a phylogenetical point of view, mitochondrial aaRS are more closely 

related to bacterial aaRS than mammalian cytoplasmatic aaRS.  However, there are still 

sufficient structural differences between mitochondrial and bacterial aaRS to allow the 

development of selective antibiotics.  As a rule of thumb, selectivity of greater than 100-fold is 

desirable (Schimmel et al. 1998).  

 

An important example of the clinical application of an aaRS inhibitor is provided by the 

antibiotic mupirocin (marketed as Bactroban), which selectively inhibits bacterial isoleucyl-

tRNA synthetase (IleRS).  This product is currently the world’s most widely used topical 

antibiotic for the control of methicillin-resistant Staphylococcus aureus infections (MRSA) 

(Boyce, 2001).   

 

The drug design strategies regarding the discovery of aaRS inhibitors can be classified into: 

 

1. Reaction-intermediate mimics 

2. Analogues of natural aaRS inhibitors 

3. Drugs disrupting tRNA interaction 

4. Inhibitors of the aaRS proofreading activity 

5. Virtual screens and structure-based design aaRS inhibitors 

6. High-throughput screening programs 
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4.2.2.1  Reaction intermediate mimics 

 
The structures of the reaction intermediates have been the focus for the development of 

novel synthetic compounds that target aaRS. Aminoacyl-adenylates (AA-AMP) have lower 

dissociation constants than the amino acids and ATP, and thus, the choice of the 

intermediate is advantageous in the design of novel synthetic compounds with high affinity 

(Kim et al. 2003). In the reaction intermediate mimics, the acylphosphate linker of the 

adenylate is generally substituted for another chemically stable group, such as sulfonamides, 

phosphonates or phosphonamides (Figure 4.13).  Other compounds replace the adenine 

with a tetrazole that is linked to one or two additional five- or six-member aromatic or 

heterocyclic rings.   

 

The main issue with these compounds is whether they will be sufficiently selective for 

pathogen enzymes, i.e. they must not interfere with their human counterparts. Initial efforts to 

produce intermediate mimics produced non-selective inhibitors (Heacock et al. 1996) (Figure 

4.13a and 4.13b). Further efforts produced mimics showing up to 250-fold selectivity towards 

bacterial enzymes versus its human counterpart (Yu et al. 1999).  Replacement of the 

adenine moiety in a series of glutamyl-adenylate analogues by other bases resulted in more 

than 1000-fold loss of activity, suggesting that the contribution of the adenine ring is 

important for the binding (Desjardins et al. 1998) (Figure 4.13c and 4.13d).  Contrarily, in a 

set of isoleucyl-adenylate mimics, substitutions in the adenine ring produced strong in vitro 

inhibitors (Figure 4.13e, 4.13f and 4.13g).   

 

As stated above, previous studies have shown that some adenylate mimics can present in 

vitro species-specificity and antibacterial activity without inhibiting their human counterparts.  

However, these compounds generally show limited whole cell activity –probably due to poor 

penetration through the cell wall- (Kim et al. 2003; Schimmel et al. 1998), and low 

bioavailability –due to binding to serum albumin- (Cubist Pharmaceuticals Inc. 1998).  

 

In this work, we have designed and screened a virtual library of ~1800 compounds 

mimetizing the structure of the lysyl-adenylate intermediate. The library was docked both to 

the homology-based model of the apicoplastic PfKRS-2 and to its human homologue. The 

positive predictions were used to synthesize a solid-phase combinatorial library consisting of 

48 compounds, which were in vitro tested using P. falciparum cell cultures. From these, the 
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two best-performing compounds, M-26 and M-37, were chosen as drug candidates for further 

in vitro and in vivo analyses. We confirmed by aminoacylation assays that the inhibitory 

activity of the compounds was due to the specific inhibition of the apicoplastic PfKRS-2.   

Indeed, enzymatic assays indicate that the aminoacylation activity of the human KRS is 

being minimally affected, showing that these compounds selectively inhibit Plasmodium 

apicoplastic KRS (Publication 3).  

 

 
 

Figure 4.13.  Analogues of the reaction intermediate.  A) and B) Prolyl-adenylate analogues 

inhibiting both bacterial and mammalian ProRS (Heacock et al. 1996). C) and D) Glutamyl-adenylate 

analogues  (Desjardins et al. 1998).  The replacement of the N6 position of the adenine reduced the 

inhibitory activity of the compound. E) F) and G) Isoleucyl-adenylate analogues (Hill et al. 1998). H) 

and I) Tyrosyl-aryl dipeptides (Jarvest et al. 1999).  J) Thiazole adenylate mimics inhibiting LeuRS (Yu 

et al. 1999). K) Methionyl-adnylate analogues (Lee et al. 1999).  L) and M)  Aminoalkyl- and 

sulfamoyl-adenylates of arginine, histidine and threonine (Forrest et al. 2000). N) and O) Hydroxamate 

derivatives of the isoleucyl- and methionyl-adenylate intermediates (Lee et al. 2001).   



 

106 

4.2.2.2  Analogues of natural aaRS inhibitors 
 

A number of natural products have been discovered that inhibit the activities of aaRS (Figure 

4.14).  Besides the activity of pseudomonic acid –or mupirocin-, which inhibits IleRS, other 

known natural-product inhibitors are directed against aaRS, such as borrelidin (Nass et al. 

1969); furanomycin (Tanaka et a. 1969); granaticin (Ogilvie et al. 1975); indolmycin (Werner 

et al. 1976); ochratoxin A (Konrad and Roschenthaler, 1977); cispentacin (Konishi et al. 

1989) and purpuromycin (Kirillov et al. 1997). However, none of these aaRS inhibitors have 

been yet commercially developed for different reasons.        
 

          
Figure 4.14.  Natural aaRS inhibitors.  In blue is shown the specific aaRS that is inhibited by each 

compound.  Adapted from Kim et al. 2003. 

 

 In vivo, the ester bond of mupirocin is rapidly hydrolyzed, resulting in monic acid, which is 

inactive, and therefore it is only employed for topical use. Many attempts have been made to 

develop mupirocin derivatives with desirable properties for systemic use. Several laboratories 

designed mupirocin analogues with other substituents replacing the ester bond, but the 

resulting analogues presented higher MIC values, probably due to poor penetration into the 

bacterial cell (Figure 4.15) (Brown et al. 1997). Additional analogues were synthesized, 

which resulted in a lower potency but better pharmacokinetic properties. At GlaxoSmithKline 

(GSK), a docking model based on a crystal structure of IleRS with mupirocin was used for 

the rational design of new inhibitors.  The introduction of an Ile side chain with appropriate 

spacing to the monate ring yielded femtomolar inhibitors due to a gain in binding energy in 

the Ile-binding pocket (Brown et al. 2000).   
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Figure 4.15.  Molecular structures of mupirocin and some of its analogues.  On the top, structure 

of mupirocin, which is the only commercially available aaRS inhibitor.  In the middle and bottom, 

mupirocin analogue structures are shown, taken from the work published by Brown et al.1997.   

 

In order to explore the potential of the aminoacyl-tRNA synthetase family as a source of 

antimalarial drug targets, we have treated Plasmodium falciparum cultures with a battery of 

known and novel aaRS inhibitors, and compared their activities.  Amongst the compounds 

tested, borrelidin, a natural inhibitor of threonyl-tRNA synthetase (TRS) stands out for its 

potent antimalarial effect.  Despite its promising antimalarial activity, borrelidin also inhibits 

human TRS, and is highly toxic to human cells.  To circumvent this problem, we have 

explored the antimalarial activities of a library of borrelidin derivatives, and evaluated their 

cytotoxicity in human cells.  We find that some of these compounds present higher selectivity 

towards the P. falciparum enzyme, whilst maintaining their antiparasitic activity both in vitro 

and in vivo.  We propose that borrelidin is a promising antimalarial scaffold that should be 

further explored for the search of novel antimalarial drugs (Publication 4). 

 
4.2.2.3  Drugs disrupting the tRNA interaction  

 
The examples above follow the tradition of targeting drugs to the catalytic sites of enzymes.  

For many metabolic enzymes, the binding substrate and product is imbedded within the 

catalytic site, because the ligands themselves are small.  In the case of aaRS, the amino 

acids and ATP binding sites are found in the catalytic site, but only the 3’ end of the tRNA is 
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accommodated into the active site. Thus, a compound that blocks these protein-RNA 

interactions that occur out of the catalytic site would be also a potential drug.   

 

Interestingly, in many cases eukaryotic and prokaryotic aaRS have different recognition 

mechanisms for the tRNA molecule. This fact is reflected in the kingdom-specific 

aminoacylation of tRNAs. For example, eukaryotic tyrosyl-tRNA synthetase does not acylate 

bacterial tRNATyr, and vice versa. The reason for this species specificity is due in large part to 

the difference of a single base pair near the acceptor end of tRNATyr:C:G for eukaryote and 

G:C for bacterial tRNATyr.  Interchange of this base pair switches the species specificity of 

acylation, so that the eukaryote enzyme is now capable of charging the bacterial substrate 

and vice versa (Quinn et al. 1995).   

 

Similarly it has been proposed that drugs blocking the hinge movement occurring between 

the anticodon binding domain and the catalytic domain upon tRNA binding would also inhibit 

the aminoacylation reaction by restricting the inter-domain movement required for tRNA 

binding. The lower level of conservation between pathogenic aaRS and its human 

homologues out of the catalytic site make these drugs have lower chances of cross-

reactivity.  

 

In this regard, we attempted to find compounds that could inhibit the hinge movement 

between the catalytic and the anticodon-binding domain of PfKRS-2. First, we predicted 

druggable regions of the protein (SiteMap, Schrödinger), finding that the hinge was amongst 

the top-ranked druggable regions of the protein. Then, to explore the conformational 

variability of the PfKRS-2 hinge, we performed molecular dynamics (MD) using GROMACS 

3.3. The MD simulation included: i) preparation of the structure, ii) MD running (100ns), iii) 

quality assurance of the MD run, and iv) structural analysis of the results.  A principal 

component analysis of the MD simulation allowed us to conclude that the residues involved 

in the hinge movement were amongst the most fluctuating of the protein (Figure 4.16).  
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Figure 4.16.  PCA analysis confirms the hinge movement as principal movement of the protein.  
Each residue has been heat-palette coloured according to its root mean square fluctuation (RMSF).  

Besides the N-ter and C-ter ending residues, the two regions with highest movement are a loop found 

in the catalytic domain, and the hinge found between the catalytic and the anticodon binding domain.  

 

         
Figure 4.17. Docking workflow used to include the hinge flexibility in the docking run.  
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In order to include flexibility in our dockings, we selected a diverse subset of snapshots to be 

docked.  For this, a clustering method was performed on the MD simulation, and the centroid 

of the 6 most populated clusters was selected as a member for the protein ensemble (Figure 

4.17). Each protein conformation of the ensemble was docked against a virtual library of 

ligands that was built using different commercially available databases, which included the 

Prestwick Chemical Library, FDA drugs repository, the E-molecules dataset, and ZINC drug-

like library (Irwin and Shoichet, 2005). We selected the 25 top-ranked candidate inhibitors for 

further in vitro testing, although this part has not been finished yet (Figure 4.18).  To confirm 

the mode of action a compound in vitro, it should inhibit the aminoacylation reaction, but not 

the amino acid activation -which can be specifically measured using a PPi exchange assay- 

(Fersht et al., 1976).  

             

 
Figure 4.18.  Predicted binding mode of a potential hinge inhibitor, as determined by docking.  
Cartoon representation of PfLysRS-2 (green), highlighting the hinge residues involved in the ligand 

recognition (orange). The ligand is shown in cyan.  
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4.2.2.4  Inhibitors of the aaRS proofreading activity 
 
Many aaRS enzymes possess a proofreading (editing) mechanism that hydrolyzes tRNAs 

aminoacylated with the incorrect amino acid (Schimmel and Schimdt, 1995). These editing 

domains, which are separated of more than 30Å of the catalytic (aminoacylation) site, can be 

specifically inhibited, causing the death of the pathogen.   

 

Amongst the few compounds described to specifically target aaRS editing domains are the 

benzoxaboroles, such as the well-described AN2690 (Rock et al. 2007) (Figure 4.19). These 

compounds have an usual chemical attribute: a boron atom. They specifically inhibit the 

leucyl-tRNA synthetase (LeuRS) editing site by forming an adduct with the terminal 

adenosine (A76) of tRNALeu in the editing active site, thus trapping tRNALeu in the editing 

active site 

            

 
Figure 4.19.  Binding mode of AN2690, as shown by X-ray crystallography.  The compound forms 

a covalent bond with the terminal adenosine nucleoside of tRNALeu in the editing active site of LeuRS.  

Each domain of the LeuRS has been coloured independently: editing domain (cyan) catalytic domain 

(yellow), Zn-domain (purple), LeuRS specific insertion (black), anticodon-binding domain (red) and C-

terminal domain (gold).  The tRNA structure is shown in blue tube.  Adapted from Rock et al. 2007.  
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4.2.2.5  Virtual screens and structure-based design  
 

Crystal structures have been determined for many aaRS, often complexed with substrates 

inhibitors of aminoacyl-adenylate intermediate analogues (Cusack, 1997).  Such structural 

information has been used to screen for or optimize compounds that exhibit potent aaRS 

inhibitory activity (Table 4). For instance, a virtual screening of 500.000 compounds yielded 

91 potential MetRS inhibitors with novel scaffold, and the most potent of them had an IC50 of 

237nM (Kim et al. 2006).   
 

Table 4. aaRS inhibitors identified through virtual screening or structure-based drug design 

Screening/compound Target Inhibitor characteristics Reference 

Virtual screen hits MetRS (Escherichia 
coli) 

IC50: 237 nM Kim et al., 2006 

Virtual screen hits AsnRS (Brugia malayi) Micromolar inhibition Sukuru et al., 2006 

Molecular modeling LysRS (Treponema 
pallidum) 

Selective for class I Rao et al., 2006 

Molecular modeling LysRS (Borrelia 
burgdorferi) 

Selective for class I Ambrogelly et al., 
2005 

Molecular modeling TyrRS (bacterial) Selective over eukaryotic Austin and First, 
2002 

Glutamyl-sulfamoyl-
adenosine  

GluRS (E. coli)  Ki: 2.8 nM (E. coli GluRS) 

Ki: 70 nM (mammalian 
enzyme) 

Bernier et al., 2005 

Tyrosinyl-adenylate TyrRS (S. aureus) IC50: 11 nM Brown et al., 1999 

Isovanillate-
hydroxamate 

IleRS (E. coli) IC50: 4.5uM Lee et al., 2001 

Methionyl-adenylate 
analogues 

MetRS (E. coli) IC50: 0.4-2.4nM Vaughan et al., 
2005 

 
As previously stated, drug resistance to available drugs is a major problem causing that 

many antimalarials end losing efficacy.  That is why, in a second part of this project, we tried 

to target this problem by designing dual inhibitors that target two different aaRS 

(multisynthetase inhibitors). The existence of structurally conserved residues across related 
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aaRS provides a realistic opportunity for the discovery of a single molecule that 

simultaneously inhibitrs multiple enzymes.  Such molecules could be of major clinical 

importance, since the pathogen would require simultaneous point mutations within each drug 

target to become resistant, which is an unlikely event.  However, we must consider that 

multisynthetase inhibitors may be susceptible to other strategies of antimicrobial drug 

resistance, including target up-regulation, reduced permeability, drug efflux or drug 

modification systems.    

                     

     
 

Figure 4.20.  Dual hits targeting aaRS, as predicted from high-throughput docking 

 

 

Using a high-throughput docking strategy, more than 300 molecules were predicted to be 

candidate inhibitors of the two aaRS docked (PfQRS and PfKRS-2).  From these, nine 

showed dual specificity for the two enzymes. Interestingly, half of these dual hits were 

tetracycline derivatives (Figure 4.20).  Tetracyclines are commonly used wide-spectrum 

antibiotics that bind to the 30s ribosomal subunit of bacteria, by preventing the docking of 

aminoacylated tRNA to the ribosome.  Thus, it is not surprising that aminoacyl-tRNA 
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synthetases, which also bind the aminoacylated tRNA could be also the target of these 

drugs.  We initially tested a battery of tetracyclines on P. falciparum cultures, finding that 

these compounds inhibited the parasite with a delayed death, probably due to the inhibition 

of the apicoplastic 30s ribosomal subunit (Figure 4.21).  

 
Figure 4.21.  In vitro activities of a battery of tetracyclines tested in vitro on P. falciparum-

iRBCs.  The inhibition has been measured both at 48h first life cycle, inhibition of the cytosolic 

translation machinery- (shown in green) and at 98h -second life cycle, inhibition of the apicoplastic 

translation machinery- (shown in red).  Inhibition measured from Giemsa-stained smears counting.   

Abbreviations: TET, tetracycline; ROLI, rolitetracycline; CHLOR, chlortetracycline; DOX-doxycycline.  

 

Guided by the predicted binding modes of the docked tetracycline molecules, we have 

designed modifications on the tetracycline scaffold in order to increase both the selectivity 

and the binding affinity of these molecules towards the aaRS (Figure 4.22a).  These 

modifications mainly consist in the inclusion of aminoacyl side chains, such that they 

specifically enter the amino acid pocket of the catalytic site.   

 

Interestingly, the aminoacyl-adenylate intermediates present two different binding modes 

depending on whether they correspond to class I or class II.  Class I aminoacyl-adenylates 

place the amino acid side chain pointing down with respect to the N6 position of the adenine 

ring, whereas class II aminoacyl-adenylates place the amino acid side chain pointing left with 

respect to the same position (Figure 4.22b).  Thus, these differences in binding modes allow 

designing tetracyclines derivatives that target both class I and class II aaRS simultaneously. 

In our case, PfQRS is a class I enzyme, whereas PfLysRS-2 is a class II enzyme.  
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Figure 4.22.  Structure-based drug design strategy to increase the binding affinity of 
tetracycline derivatives towards aaRS.  A) Modifications added to the tetracycline derivatives.  B) 

Binding modes of class I and class II aminoacyl-adenylate analogues.  C) Predicted binding mode of 

the natural ligand -glutaminyl-adenylate- (shown in sticks) on the PfQRS binding pocket, and predicted 

binding mode of the proposed tetracycline derivative (shown in lines) also on the PfQRS binding 

pocket.  The binding score of the modified tetracycline (GS=-12.65) is increased with respect to the 

binding score of the initial tetracycline (GS=-10.55).   
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The binding mode of the tetracycline derivative is very similar to the predicted binding mode 

of the initial tetracycline, but the addition of the amino acid side chain -which enters the 

amino acid side chain such as in the case of the aminoacyl-adenylate- (Figure 4.22c) 

increases the binding energy of the ligand, thus potentially changing the binding preferences 

of this compound towards aaRS. However, the synthetic chemistry to build these molecules 

has been problematic, and these molecules are still not available for testing.  

 

4.2.2.6  High-throughput screening programs 
 
Recently, many efforts have focused on the target-based approach that utilizes high-

throughput screening assays (HTS). This technology has been applied to identify novel 

synthetase inhibitors from large compound libraries.  In fact, the similar activities shared by 

the tRNA synthetases allow the utilisation of one kind of in vitro assay to screen all 20 

synthetases (Tao and Schimmel, 2000).   

 

For instance, using this strategy GSK scientists identified antibacterial pyridones and 

pyrimidones that specifically inhibit methionyl-tRNA synthetase (MetRS) and were selective 

against the mammalian enzyme (SmithKline Beecham PLC 2000a); and also a series of 

benzimidazole derivatives with antibacterial activity (SmithKline Beecham PLC 2000b), all of 

them with IC50 values in the nanomolar range.  Furthermore, they also disclosed a novel 

class of substituted quinolones that are potent inhibitors of bacterial MetRS (SmithKline 

Beecham PLC 1999).  Although quinolone derivatives are not structurally related to 

methionine, 3D quantitative structure-activity relationships (3D-QSAR) have shown that these 

molecules compete with methionine for important binding interactions in the amino acid 

binding pocket of MetRS (Kim and Lee, 2003).  

 

Cubist Pharmaceuticals reported other novel pyrazoles (Finn et al. 2003) and proline 

derivatives (Finn et al. 2001), which were potent and selective inhibitors of S.aureus MetRS. 

Other scaffolds of aaRS inhibitors described include compounds as diverse as spirocyclic 

tetrahydrofurans (Hill et al. 2001) or thiazolidinones.   

 

This type of strategy presents several advantages: i) it does not need a priori knowledge on 

any known drugs inhibiting the pathogen; ii) it does not require any knowledge on the 

structure of the drug target; iii) it is an efficient manner to discover novel drug scaffolds 
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inhibiting a given pathogen; and iv) it allows to screen thousands to millions of compound 

libraries in an automated manner, covering a wide range of the chemical space compared to 

low-throughput strategies. The main drawback, however, is that once an active compound is 

found, the target of the drug remains unknown, which makes further hit-to-lead optimisation a 

difficult task for the medicinal chemists.    

 

To experimentally uncover the target of a given compound, assays such as the 

haploinsufficiency-profiling assay (HIP) (Giaever et al. 1999; Hoepfner et al. 2012) can be 

used.  The HIP target discovery assay is based on a genome-wide collection of heterozygous 

knockout yeast strains, each of which contains a marked gene deletion (Winzeler et al. 

1999).  It has been shown that heterozygous diploid strains that bear a deletion in one copy 

show increased sensitivity to a drug compared to those strains that have two copies of the 

gene (Giaever et al. 1999).  However, the drawback of this technique is that the given drug 

must inhibit the same target in yeast, and at the same time, if the yeast target is being 

inhibited, there are higher possibilities that the human counterpart is also inhibited.    
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ABSTRACT  

 

Resistance of malaria parasites to available drugs continues to grow, making the need for new 

antimalarial therapies pressing. In this regard aminoacyl-tRNA synthetases (ARS) constitute a 

promising set of targets to develop novel antimalarials.  ARS are essential enzymes and 

proven antibacterial targets whose ancestral nature facilitates the development of specific 

inhibitors. The cyanobacterial origin of the apicoplast, a relict plastid common to all 

Apicomplexa that is essential for Plasmodium, is reflected in its bacterial-like enzymes 

(including the ARS). Despite their potential as drug targets, apicoplastic ARS remain 

unexplored.  Here we demonstrate that selective inhibition of apicoplastic ARS is feasible, 

and describe new compounds that show antimalarial activity and specifically inhibit 

Plasmodium apicoplastic lysyl-tRNA synthetase. 

 

 



INTRODUCTION  

 

Malaria remains one of the most important infectious diseases in the world, causing acute 

illness on more than 100 million people and leading to approximately 1 million deaths 

annually1. In addition to its human cost, malaria causes a massive economic burden, 

contributing substantially to poverty in the developing world. Effective antimalarial drugs are 

available, but their efficacy is compromised by emerging resistance2. Thus, there is a broad 

consensus about the need to develop new antimalarial drugs.  Malaria is caused by 

Plasmodium, a genus of parasitic protists. At the moment there are over 200 species known of 

this genus, of which at least 11 can infect humans. Amongst them, Plasmodium falciparum 

causes the most severe form of malaria, being responsible for 90% of the deaths1.  

   

The P. falciparum genome project revealed many new potential drug targets3-9, of which 

several are enzymes acting in the apicoplast, a relict plastid derived from secondary 

endosymbiosis of cyanobacteria10 which is essential for the parasite’s survival11,12 . Many of 

its bacterial-like enzymes are substantially different from its mammalian homologues13-15, 

making them excellent drug target candidates. Several antibacterial drugs that are clinically 

used for the treatment of malaria and toxoplasmosis (e.g. doxycycline, clindamycin and 

spiramycin) act upon apicoplastic targets.  These drugs typically display a "delayed death" 

phenotype, which is characterized by the inhibition of parasite growth on the second 

erythrocytic cycle after the drug treatment16-20. 

 

Aminoacyl-tRNA synthetases (ARS) are essential enzymes and proven antimicrobial drug 

targets21,22, and thus represent interesting novel targets for antimalarial drug discovery23. They 

perform a central role in the translation of the genetic code by catalyzing the attachment of 

each amino acid to its cognate transfer RNA (tRNA). Although these enzymes differ widely 

in size, sequence, and oligomeric state, they all carry out a similar two-step reaction22.  In a 

first step, the ARS catalyzes the activation of the amino acid, and in a second step, the 

aminoacyl-adenylate intermediate (AA-AMP) is transferred to the tRNA.  

 

 

 

Currently, ARS inhibition is the mechanism of action of one commercial antibiotic, i.e. 

pseudomonic acid or mupirocin (GSK), a natural product that inhibits bacterial isoleucyl-



tRNA synthetases with an 8000-fold selectivity over their mammalian homologues.  

Mupirocin has also been shown to inhibit apicoplastic isoleucyl-tRNA synthetase of 

Plasmodium24. Other ARS inhibitors described to date include natural products, such as 

borrelidin25,26, granaticin27, indolmycin28 furanomycin29, ochratoxin A30, cispentacin31, and 

several semisynthetic products32-34. Most efforts on the design of new synthetic drugs 

targeting ARS have focused on mimicking the aminoacyl adenylate intermediate (AA-

AMP)21,35-37. Finally, it has recently been reported that cladosporin, a fungal secondary 

metabolite, targets Plasmodium falciparum cytosolic lysyl-tRNA synthetase (PfKRS-1) with 

a selectivity of 100-fold with respect to its human homologue38.  

 

Indeed, the main challenge in using ARS as drug targets is to avoid cross-reactivity with their 

human homologues. In this regard, apicoplast-specific P. falciparum lysyl-tRNA synthetase 

(PfKRS-2) is interesting because its cyanobacterial origin makes it evolutionarily distant from 

human lysyl-tRNA synthetase (HsKRS). In this work we present a new series of compounds 

which selectively inhibit apicoplastic PfKRS-2, thus validating its potential as antimalarial 

drug target, and demonstrating that specific inhibition of apicoplastic ARS is feasible.  

 



RESULTS  

 

Characterization of the lysylation system in Plasmodium falciparum  

Malaria parasites possess two distinct lysyl-tRNA synthetases, PfKRS-1 (PF13_0262), and 

PfKRS-2 (PF14_0166).  Based on subcellular localization prediction software11, PfKRS-1 is 

expected to be cytosolic, whereas PfKRS-2 is expected to be targeted to the apicoplast 

(Figure 1A). Immunofluorescence assays on PfKRS-2leader-GFP transfected P. falciparum 

parasites (Figure1B) indicate that, as expected, PfKRS-2 is exclusively located in the 

apicoplast.   

 

In general, apicoplastic-targeted enzymes tend to be of bacterial origin39. To confirm the 

bacterial origin of PfKRS-2 and evaluate its evolutionary distance with its human homologue, 

we performed a structure-based phylogenetic analysis on class II lysyl-tRNA synthetases 

from all kingdoms (Figure 1C).  Our results show that apicoplastic lysyl-tRNA synthetases 

cluster with bacterial enzymes and are distantly related to HsKRS.   

 

Using a manually curated homology model of PfKRS-2 (Figure S1) we noticed that those 

residues involved in the recognition of lysine in the bacterial, human, and P. falciparum 

enzymes are conserved across species. Importantly, however, other residues in the active site 

cavity that are not involved in substrate recognition are not so well conserved, and the sizes of 

the catalytic cavities are significantly different (Figure 1D). This suggests that PfKRS-2 

might be able to accommodate ligands in the active site that may not be able to bind in the 

HsKRS cavity due to sterical restrictions. Altogether, our analyses suggest that specific 

design of inhibitors targeting the active site of PfKRS-2 is feasible. 

 

Design, selection and synthesis of a library of lysyl-adenylate analogues  

A compound virtual library was designed to identify molecules that may mimic the lysyl-

adenylate intermediate (Figure 2). To construct the library, a proline derivative was used as a 

ribose mimetic, and an heterocycle as an adenylate substitute, as previously described36. In 

addition, four more points of chemical diversity were explored: i) both lysine and thialysine 

derivatives were used as lysine analogues; ii) the phosphate linker was replaced by other 

types of chemical linkers; iii) heterocyclic groups were used as substituents of the adenylate 

moiety, and iv) the stereochemistry of the proline and the lysine derivatives was varied. With 

this approach a library of 1764 compounds was designed and evaluated by docking the 

molecules against the 3D structures of both PfKRS-2 and HsKRS.  



All 1764 compounds were docked both to PfKRS-2 and HsKRS, and the different ligand 

poses obtained were ranked using GlideScore40. The compounds to be synthesized for 

experimental testing were selected on the basis of their selectivity towards the PfKRS-2 

enzyme. By this criterion we selected 36 compounds for further analysis (Table S1).    

 

Amongst the 36 compounds selected, 70% contained an hydroxymate group as phosphate 

analogue, and a proline ring with an (S,S) configuration. Thus, a library of 50 lysyl-adenylate 

analogs based on the (S,S)-4-amino proline scaffold was designed using a hydroxymate group 

as a phosphate linker mimic.  25 compounds contained lysine, while the other 25 carried 

thialysine (Table 1, see also Figure 2). In addition to the predicted hits, a number of predicted 

non-selective and non-active compounds were also synthesized to evaluate the performance 

of the docking calculations (Figure S2B).  

 

The library of potential PfKRS-2 inhibitors was synthesized employing an Alloc/Boc strategy 

based solid-phase synthesis36. Coupling of the Alloc-protected hydroxyproline to the resin 

was followed by the introduction of the protected lysine or thialysine hydroxamic acid moiety 

under Mitsunobu conditions. After removal of the Alloc group with Pd(PPh3)4 and PhSiH3 

introduction of the different carboxylic acids was carried out under standard peptide coupling 

conditions. Subsequent cleavage and protecting group elimination of the products under 

strong acidic condition produced the crude inhibitors. Purification by preparative HPLC 

yielded the desired products with purities of � 85% (Figure 3A). A number of thialysine-

derived products were not obtained due to degradation of the products during purification. 

The obtained products were subjected to biological evaluation. 

 

In vitro testing of the compounds 

All synthesized compounds were initially tested for their ability to kill P. falciparum parasites 

using the pLDH assay41. Inhibitors of apicoplastic protein synthesis kill the parasite in a 

retarded manner16-18, and therefore, we used the "delayed death" phenotype as an initial 

indication that a compound in our library may be preferentially targeting apicoplastic lysyl-

tRNA synthetase. Our initial screening allowed us to select five compounds that presented a 

clear delayed inhibitory effect (Table 2).  The activity of these compounds was further 

confirmed by visual inspection of smears.   

 

The five most active compounds from the library (M-12, M-24, M-26, M-33 and M-37) were 

re-synthesized.  Solution synthesis was used to improve purity and yields, and to minimize 

possible side-reactions (Figure 3B). All products were obtained in purities of >98.5%.  The 



antimalarial activity of the re-synthesized compounds was evaluated by visual analysis of P. 

falciparum smears. Highest inhibition rates were observed for compounds M-12, M-33 and 

M-37 (Table 2).  In order to select specific inhibitors of the apicoplastic translation machinery 

it was decided to focus on those compounds causing a clear delayed effect phenomenon.  

Thus, M-26 and M-37 were chosen as drug candidates for further in vitro and in vivo 

analyses, given that these compounds show maximal difference between the inhibitory rates 

of these compounds at 48 and 96h.  

 

In order to investigate the selectivity and specificity of M-26 and M-37, we first verified their 

ability to inhibit HsKRS, PfKRS-1, and PfKRS-2. In vitro aminoacylation assays were 

performed using radiolabelled lysine and in vitro transcribed tRNALys, and the effect of the 

compounds upon these aminoacylation reactions was quantified. Both M-26 and M-37 were 

found to inhibit PfKRS-2, but were not active against HsKRS or PfKRS-1 (Figure 4), which 

is in accordance with the docking predictions. Thus, we can conclude that M-26 and M-37 are 

selective inhibitors of apicoplastic PfKRS-2. 

 

Structural basis for selectivity 

Through the analysis of the binding mode of the natural ligand (lysyl-adenylate; LAD), it was 

observed that both the adenine and lysine moiety of LAD are being recognized at the binding 

site, and are major contributors to the free energy of binding of the reaction intermediate. In 

agreement with this observation, analogues showing a lysyl-adenylate-like binding mode 

(Figure 5, see also Figure S2A) tend to present higher docking scores. Interestingly, both M-

26 and M-37 present a LAD-like binding mode in PfKRS-2, whereas in HsKRS they present 

either an adenine-like or a lysine-like binding mode, respectively (Figure S2A).  These 

diverse binding modes are due to differences in size of the active site cavities of the two 

enzymes. Whereas the PfKRS-2 cavity can accommodate the inhibitors maintaining the 

recognition of both the lysine and adenine moieties, the catalytic cavity of HsKRS cannot 

accommodate both moieties of these compounds at the same time.  



DISCUSSION AND CONCLUSIONS 

 

During the last years, cell-based screening has been presented as an attractive way to find new 

leads for malaria drug development. However, although these approaches are capable of 

identifying large numbers of hits, they also present serious limitations.  For instance, if an 

initial hit is chemically untreatable, or its target is not known, there may be no possibility to 

proceed to hit-to-lead optimization.  In this regard, the initial validation of targets based on 

chemoinformatic predictions can be a useful approach.  

 

Aminoacyl-tRNA synthetases (ARS) have been recognized for decades as useful targets for 

drug design42,43. Indeed, ARS continue to be used as targets in antibacterial and antiparasitic 

drug discovery programs34,44,45. However, targeting the ARS of a microorganism without 

inhibiting the human counterpart remains a major challenge. The use of methods for 

phylogenetic inference helps to recognize targets whose evolutionary history may favor the 

identification of selective compounds. 

 

Among the twenty-odd aminoacyl-tRNA synthetases LysRS represents an evolutionary 

exception, because this enzyme exists with a class I and a class II fold46. Previous analyses 

have proposed that these two enzyme forms co-existed before the emergence of the last 

universal common ancestor47. Interestingly, the endosymbiotic theory of the origin of 

eukaryotes implies that LysRS of two distinct folds perhaps coexisted in the first eukaryote 

ancestor.  

 

Our phylogenetic results indicate that two class II LysRS evolved during the early maturation 

of the eukaryotic protein synthesis machinery. Our data (Figure 1C) shows that all eukaryotic 

cytosolic LysRS form a sister clade with all the mitochondria-specific enzymes. This supports 

the idea that a bacterial lysS gene (class II fold) functionally replaced its archaeal equivalent 

U (class I fold) in early eukaryotes, and duplicated to produce cytosolic- and mitochondrial-

specific genes. This ancestral composition would then be inherited by all eukaryotic clades, 

evolving differently in each of them. Diplomonads, plants, and metazoans all lost the 

mitochondrial lysS gene, which was replaced in plants and metazoans by the cytosolic 

isozyme. By contrast, some protozoa and fungi retained distinct mitochondrial and cytosolic 

forms of lysS.  

 

Remarkably, apicomplexan protozoa incorporated a second form of LysRS during the 

endosymbiotic event that gave rise to apicoplasts. This is evident from the phylogenetic 



position assigned in our trees to the apicoplast LysRSs of P. falciparum and P. yoelii (Figure 

1C). Whether the apicoplast ancestor was a green or a red algae is still a matter of debate11,15, 

but our data indicates that some of the genes acquired from the apicoplast genome by 

Plasmodium could be direct descendants of bacterial symbionts.  

 

Structural and evolutionary data strongly point at PfKRS-2 as a promising target for the 

development of inhibitors of the apicoplast metabolism in apicomplexan organisms. Here, we 

demonstrate that this enzyme can indeed be specifically inhibited. Using both computational 

and experimental approaches, we have built a series of lysyl-adenylate analogue inhibitors 

designed against apicoplastic lysyl-tRNA synthetases.  We show that some of these molecules 

do inhibit PfKRS-2, and that the activity of its human homologue remains unaffected by these 

compounds. Based on in silico predictions, we identify PfKRS-2-specific features of the 

active site that can explain the selectivity of these compounds. Unfortunately, the analogues 

presented in this work do not possess in vivo antimalarial activity in P. yoelii-infected mice. 

Given the chemical nature of the compounds, their lack of activity is likely due to in vivo 

instability or degradation in the blood stream (Figure S3). Nevertheless, our work validates 

the apicoplastic lysyl-tRNA synthetase as a druggable enzyme that can be selectively 

inhibited, and therefore could be further explored for the development of novel antimalarial 

chemotherapies.   

 

EXPERIMENTAL SECTION 

 

Homology modeling of PfKRS-2 

The sequence of the apicoplastic lysyl-tRNA synthetase of P. falciparum was retrieved from 

the PlasmoDB database (http://PlasmoDB.org).  A PSI-BLAST48 search was performed 

against the Uniprot database (http://www.uniprot.org) in order to obtain a Position-Specific 

Scoring Matrix, which was used as input to perform a new BLAST search against the PDB 

database (http://www.rscb.org), obtaining a list of candidate templates to build the model 

(1lyl, 1bbu, 1e1o). The templates were structurally aligned using STAMP49 to create a profile 

using HMMER50, which was introduced as meta-template for alignment with the target 

sequence.  Finally, the 9v5 version of MODELLER was employed to create structural models 

using default options51. The models generated were manually refined using several methods, 

including corrections of the alignment using the PSI-PRED52 secondary structure predictions 

as guideline, and then followed by a new rebuilding of the model.  The final model was 

analyzed with ProSA53, and validated using PROCHECK54. 

 



Virtual Screening and docking 

Ligand screening and docking was performed with Glide 5.040. Ligands were prepared such 

that several conformations were generated for each input ligand, using the LigPrep55, facility 

of MAESTRO56, while the set-up of the proteins (PfKRS-2 and HsKRS) was done with the 

Protein Preparation Wizard facility.  The receptor grid defining the docking universe was 

defined by defining a cubic box centered on the lysyl-adenylate.  Schrödinger’s GlideScore 

scoring function was used to score the poses. 

 

Solid-phase synthesis 

All solid-phase syntheses were carried out manually in a polypropylene syringe fitted with a 

polyethylene porous disk. Solvents and soluble reagents were removed by suction. Peptide 

synthesis for this work employed a combined Boc/Alloc solid phase strategy on a Fmoc-Rink-

Amide-MBHA resin. Washings between deprotection, coupling, and subsequent deprotection 

steps were carried out with DMF (5�1min) and DCM (5�1 min) using 10 mL of solvent/g of 

resin each time. All the couplings and Fmoc removal were monitored using the Kaiser test.  

See also Figure S4 and S5 and Supplementary Methods.   

 

Synthesis in solution 

Compared to the solid phase synthesis, the protecting group of the amine was changed to the 

UV-active p-nitrobenzyl carbamate (PNZ), which is more stable under acidic conditions and is 

more readily cleaved by hydrogenolysis than the related benzyl carbamate (Z). 

Straightforward introduction of the PNZ protecting group followed by the conversion of the 

carboxylic acid into the corresponding primary amide, using standard peptide coupling 

conditions, gave 60 in good yield. Subsequently, lysine or thialysine were introduced by a 

Mitsonubu reaction. Separation of the formed triphenylphosphine oxide from the 

corresponding products was laborious. In spite of intensive attempts, complete removal of the 

triphenylphosphine oxide from the desired product could not be achieved. It was decided to 

continue the synthesis using the mixture, since the triphenylphosphine oxide does not interfere 

with the outcome of the following reactions. Deprotection of the proline derivative by 

hydrogenolysis, using Pd/C under an H2-atmosphere, followed by coupling of the 

corresponding carboxylic acids under standard peptide coupling conditions 

(WSC·HCl/HOBt·H2O) gave products 65-69 in good yields. Full deprotection of 65-69 by 

40% TFA in DCM and immediate purification of the crudes by preparative HPLC gave the 

final products (M-12, M-24, M-26, M-33 and M-37) in good yields. The final products were 

characterized by standard techniques such as 1H and 13C NMR (Figure S5), exact mass and 

HPLC-MS. 



 

Phylogenetic analysis of lysyl-tRNA synthetases 

The sequences of lysyl-tRNA synthetases reported here are available in Uniprot57. We 

applied the method of structure-based alignment of the active sites of the enzymes, as 

described elsewhere58. Archaeal LysRS-II sequences were initially included in our analysis, 

but were later dropped for two reasons: a) they are generally believed to have emerged 

through lateral gene transfer events59-62, b) in our initial analyses they clustered consistently 

within the bacterial clade. Phylogenetic distributions were calculated by distance and 

maximum likelihood methods using PHYLIP 3.68 package63, using 1000 bootstrap replicates 

in the distance calculations and 100 bootstrap replicates for the maximum likelihood trees. 

 

Cloning and expression of P. falciparum PfKRS-2 

Soluble and active PfKRS-2 was obtained with the following procedure:  the nucleotide 

sequence of the gene coding for PfKRS-2 without the predicted bipartite signal sequence 

(�PfKRS-2) was codon optimized for E. coli, synthesized (MrGene), and inserted into the 

plasmid pQE70.  Expression screening was done using the In-FusionTM based Vector Suite at 

IRB Protein Expression Core Facility.  Different tagged-�PfKRS-2 constructions were built 

and inserted into both E. coli Rosetta and B834 strains. Three soluble proteins were finally 

selected for activity assays, namely �PfKRS-2-sumo, �PfKRS-2-His and �PfKRS-2-Z, 

which included a C-terminal sumo-tag, N-terminal His-tag and a C-terminal Z-tag, 

respectively.  Final concentrations of the His-tag, Sumo-His-tag and Z-tag enzyme were 3.2 

μM, 2.7 μM, 3.4μM, respectively.   Final aminoacylation assays were performed with 

�PfKRS-2-His. 

 

 In vitro aminoacylation assays 

To characterize the activity of our compounds, their effect upon the lysylation of tRNALys  by 

lysyl-tRNA synthetase was tested. In vitro transcribed P. falciparum tRNALys was prepared as 

described64. Aminoacylation was performed at 37ºC in 100 mM Hepes-KOH (pH = 7.2), 20 

mM KCl(aq), 30 mM MgCl2(aq), 0.5 mM DTT(aq), 5 mM ATP, 0.1 mg / ml BSA, 20 μM 

[3H]lysine (500 Ci / mol) (Perkin Elmer) and 5 μM in vitro transcribed tRNA. Reaction 

aliquots were spotted on 3 mm filter disks and washed in 5% trichloroacetic acid(aq) with 100 

μM lysine(aq). Radioactivity was determined by liquid scintillation counting.  Aminoacylation 

rates of human lysyl-tRNA synthetase (HsKRS) were also determined to check for possible 

cross-reactivity of PfKRS-2 inhibitors towards the human homologue.  The reaction was 

performed using in vitro transcribed H. sapiens tRNALys added to 5 μL of human HEK 293T 

cell extracts, at same conditions as for PfKRS-2.  Similarly, aminoacylation rates of P. 



falciparum cytosolic lysyl-tRNA synthetase (PfKRS-1) were determined using in vitro 

transcribed nuclear-encoded tRNALys of P. falciparum added to 5 μL of plasmodial extracts.   

 

Cell-based drug inhibition assays 

a) LDH activity assay 

Initial screens to test the activity of the compounds were done through the LDH activity 

assay, as previously described65. Smears were also prepared for each drug assay to visually 

confirm the absorbance results.  For each tested compound, and LDH activity was measured 

both at 48 and 96h in order to check for delayed effect.  Mupirocin24 and borrelidin25 were 

used as positive controls of inhibition23,24,65.  

 

b) Fluorescence-assisted cell sorting (FACS) 

FACS was used to calculate the IC50 of the most active compounds.  For FACS analysis, 

Syto-11 was used to discriminate parasitized from non-parasitized RBCs.  Each sample was 

diluted at 1:100 in PBS and 0.5 mM Syto-11 in DMSO was added to a final concentration of 

0.5 μM.  Samples were excited at 488 nm and analyzed using an FC500 flow cytometer.   

 

Subcellular localization of PfKRS-2 by immunofluorescence 

Apicoplastic susbcellular localization of PfKRS-2 was predicted using different algorithms, 

including PlasmoAP11, PATS66, PlasMit67, PSORT68 and SignalP69. To experimentally prove 

this prediction, the PfKRS-2 leader sequence was inserted into the XhoI/XmaI digested 

pGlux.1 vector70 (kind gift from Alan Cowman), to generate a C-terminal GFP fusion to the 

N-terminal region of PfKRS-2 that contains the predicted apicoplastic localization signal of 

the protein11. Synchronized cultures of P. falciparum 3D7A were electroporated and 

transfected with the PfKRS-2leader-GFP-containing vector.  After 24h of growth, WR99210 

was added to a final concentration of 10nM to select for transfected parasites. RBCs 

containing transfected parasites expressing PfKRS-2-GFP were washed and fixed for 5 min in 

90:10 methanol-acetone, and incubated with anti-ACP primary antibody (kindly provided by 

Dr. McFadden), which was used to check for colocalization in the apicoplast.  Anti-ACP 

antibodies were detected with a secondary fluorescent antibody AlexaFluor 555 mouse anti-

rabbit (Invitrogen). The samples were mounted with Mowiol (Calbiochem, Merck 

Chemicals), and analyzed with a Leica SP2 confocal microscope.     

 

Zebrafish assays for drug toxicity screening 

Compounds M-26 and M-37 were tested for toxicity on zebrafish embryos71 to anticipate 

possible undesired toxic effects of the compounds. M-26 and M-37 were added at their 



respective IC50 concentrations to zebrafish embryos (20 embryos per compound, independent 

duplicates), and the toxicity was evaluated at 24, 48 and 72h.   

 

In vivo antimalarial activity of the compounds in mice 

The rodent malaria parasite Plasmodium yoelii 17XL (Py17XL) MRA-267 was obtained from 

the Malaria Research and Reference Resource Center, and was maintained by serial blood 

passage in mice and stored in liquid nitrogen. Inbred BALB/cAnNHsd female, 6-8 weeks 

aged, were purchased from Harlan Laboratories and housed under standard conditions of light 

and temperature in the Animal Housing Facility at Complutense University. All mice were 

fed ad libitum on a commercial diet. In vivo experiments were carried out in accordance with 

national and international guidelines for Animal Care. The in vivo antimalarial activity of M-

26 and M-37 was analyzed by using a 4-day-blood suppressive test as previously 

described72,73. Briefly, mice were inoculated 2x107 red blood cells from Py17XL-infected mice 

by intraperitoneal injection. The chemotherapy treatment started 2h later (day 0) with a single 

dose of M-37 stock1 and stock2 (9.75 mg kg-1 day-1) or M-26 stock1 and stock2 (25 mg kg-

1 day-1) by an intraperitoneal injection followed by identical dose administration for the 

following 3 days. Tested drugs were prepared at appropriate doses in aqueous vehicle 

containing 7% Tween-80 and 3% ethanol. The control groups received aqueous vehicle. The 

parasitemia was monitored daily by microscopic examination of Wright's-stained thin-blood 

smears.  

 

SUPPORTING INFORMATION AVAILABILITY 

Supplemental material includes figures S1-S5, table S1 and supplementary methods.  This 
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TABLES 

 

Table 1: List of 46 synthesized compounds, ranked by its GlideScore when docked into the 

PfKRS-2 homology model (Pf-Gscore).   The GlideScore on the human homologue is also 

shown (Hs-Gscore).  See also Figure S2 and Table S1. 

 

 LYSINE DERIVATIVES THIALYSINE DERIVATIVES 

R-group Code1 
Pf-

Gscore 

Hs-

Gscore 

Yield 

(mg) 

Purity 

(%) 
Code 

Pf-

Gscore 

Hs-

Gscore 

Yield 

(mg) 

Purity 

(%) 

 
M-01 -12.94 -9.63 3.5 84.4 M-26 -11.99 -10.85 3.2 96.0 

 

M-02 -12.23 -8.85 9.3 95.0 M-27 -11.06 -7.94 8.1 90.9 

 
M-03 -10.76 -10.32 1.9 53.0 M-28 -9.28 -8.40 - - 

 
M-04 -11.46 -9.66 1.6 90.2 M-29 -10.88 -10.60 - - 

 

M-06 -11.22 -9.91 3.9 98.7 M-31 -9.68 -9.73 - - 

 

M-07 -11.74 -9.40 4.0 93.9 M-32 -10.43 -8.40 11.2 98.5 

 

M-08 -12.70 -8.86 1.1 90.2 M-33 -12.00 -9.89 6.5 92.0 

 
M-09 -9.38 -8.63 3.4 91.4 M-34 -9.25 -10.89 5.1 >99.9 

 

M-11 -10.50 -8.68 12.0 85.8 M-36 -9.75 -9.50 10.1 96.9 

 
M-12 -10.97 -9.12 6.3 89.4 M-37 -10.54 -8.23 8.3 88.2 

 
M-13 -11.00 -8.88 10.4 92.7 M-38 -10.54 -8.23 20.1 86.8 

 
M-14 -11.76 -8.23 4.2 86.5 M-39 -9.84 -9.37 12.6 84.9 

 

M-15 -9.78 -10.68 1.4 99.0 M-40 -10.42 -10.66 12.7 90.0 



 

M-16 -10.43 -11.62 0.9 93.9 M-41 -10.11 -8.38 11.4 88.1 

 
M-17 -9.89 -9.42 1.0 95.3 M-42 -9.89 -10.21 4.9 92.8 

 

M-18 -9.59 -10.55 4.2 86.7 M-43 -9.66 -9.83 8.6 92.6 

 
M-19 -10.26 -8.12 2.0 86.5 M-44 -11.17 -9.54 3.9 96.5 

 
M-20 -10.22 -8.86 1.3 95.3 M-45 -10.49 -9.10 - - 

 
M-21 -9.75 -11.09 1.7 76.5 M-46 -9.99 -8.54 6.5 91.3 

 

M-22 -10.62 -10.69 2.0 89.5 M-47 -12.49 -9.85 9.0 92.7 

 

M-23 -11.19 -10.45 3.0 95.9 M-48 -9.94 -11.59 3.5 93.1 

 

M-24 -9.52 -11.16 0.5 99.0 M-49 -9.79 -10.53 9.0 95.8 

 

M-25 -9.59 -10.77 4.7 92.0 M-50 -10.08 -8.90 - - 

 
1 The subset of selected compounds which were re-synthesized for further in vitro analyses 

are shown in bold. 



Table 2: In vitro inhibition of the five re-synthesized compounds.  See also Figure S5 

 

 SCREENING (purity > 85%, 150 μM) RE-SYNTHESIZED HITS (purity >95%, 50μM) 

 
Purity 

(%) 

LDH 

48h 

(% 

inhib.

) 

LDH 

96h 

(% 

inhib.) 

Smears 

48h (% 

inhib.) 

Smears 

96h (% 

inhib.) 

Purity 

(%) 

Smears 

48h (% 

inhib.) 

Smears 

96h (% 

inhib.) 

IC50 

48h 

(μM) 

IC50 

96h 

(μM) 

Selectivity 

(fold) 

M-12 93 0 45.9 23.2 58.0 99.5 31.7 70.4 172 83.2 2.2 

M-24 92 4.42 58.7 0 58.3 99.5 32.6 42.4 518 427.1 1.2 

M-26 96 0 35.5 0.18 66.0 100 3.90 41.6 551 84.7 6.5 

M-33 85 24.7 100 76.6 98.9 98.6 43.5 77.9 48.1 29.5 1.4 

M-37 88 15.7 65.5 49.7 100 100 6.20 72.7 151 38.4 3.9 

 

* Inhibition of P. falciparum cultures has been measured using: i) the LDH (lactate 

dehydrogenase) assay, and ii) visual inspection of Giemsa-stained smears. 

 

 



FIGURES 

 

Figure 1.  Characterization of the lysylation system in P. falciparum.  A) Domain 

structure of P. falciparum KRS and KRS-2. The bipartite apicoplastic-targeting signal, 

consisting of signal peptide (SP) followed by a transit peptide (TP) is only found shown in 

PF14_0166, suggesting that PF13_0262 corresponds to the cytosolic enzyme, whereas 

PF14_0166 corresponds to the apicoplastic enzyme. B). Immunofluorescence assays of 

infected red blood cells (iRBCs) containing PfKRS-2leader-GFP transfected P. falciparum 

parasites. The GFP-tagged sequence is colocalizing with ACP and not with Mitotracker, 

indicating that it is being specifically targeted to the apicoplast, in agreement with the 

bioinformatic predictions.  C) Phylogenetic analysis of class II lysyl-tRNA synthetases. The 

plasmodial PfKRS-1 and PfKRS-2 are boxed in red, whereas the human HsKRS is boxed in 

blue. PfKRS-2 clusters with bacterial sequences, whereas PfKRS-1 and HsKRS cluster with 

eukaryal sequences.  D) Active site comparison between PfKRS2 and its human homologue.  

The active site is defined as those residues having at least one of their atoms at less than 4Å 

from the ligand. Differing residues are highlighted.  See also Figure S1.  

 

 



Figure 2. Design of the virtual library and synthetic library.  The reaction intermediate 

lysyl-adenylate (left panel) has been subdivided in four parts, which have been colored 

accordingly. A virtual library of 1764 compounds (middle panel) was constructed based on 

the structure of the lysyl-adenylate complex.  Based on the docking predictions, a library of 

48 compounds was built (right panel).   

 



Figure 3.  Synthesis of the library of lysyl-adenylate analogues.  A) Solid-phase synthesis 

of the library. B) Synthesis of the active compounds in solution.  See also Figure S3. 

 



Figure 4.  In vitro inhibition of the aminoacylation reaction catalyzed by PfKRS-2, 

PfKRS-1 and HsKRS.   A) For the two most promising inhibitors, M-26 and M-37, the IC50 

was computed both at 48h (gray) and 96h (black).  Both inhibitors show a clear delayed 

inhibition effect, which is typical of apicoplastic inhibitors.  To verify the target of these 

inhibitors, we performed aminoacylation reactions with the PfKRS-2 enzyme, but also with 

PfKRS-1 and HsKRS enzymes (see Methods).  As can be seen from the figure, both 

compounds inhibit PfKRS-2, whereas the aminoacylation activity of HsKRS and PfKRS-1 

remains practically unaffected.  



Figure 5.   Structural analysis of M-26 and M-37 binding modes.  On the top panel, the 

binding modes of M-26 (magenta) and M-37 (blue) docked into PfKRS-2 are shown. The 

natural ligand (lysyl-adenylate; LAD) is colored in cyan.  Both compounds shown an lysyl-

adenylate-like binding mode in the P. falciparum binding site (GlideScores of -11.99 and -

10.54, for M-26 and M-37, respectively). On the lower panel, the binding modes of M-26 

(magenta) and M-37 (blue) docked into HsKRS are shown.   The natural ligand is shown in 

cyan.  M-26 shows an adenine-like binding mode in H. sapiens (GlideScore = -10.85), 

whereas M-37 shows a lysine-like binding mode (GlideScore = -8.23).   
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1.  SUPPLEMENTAL DATA 

1.1. SUPPLEMENTAL FIGURES AND LEGENDS 

Figure S1, related to Figure 1. Structural characterization of P. falciparum apicoplastic lysyl-

tRNA synthetase.  A) Structural alignment of the catalytic domain of lysyl-tRNA synthetases.  

Only a subset of sequences from the alignment is shown, including archaeal (S.solfataricus), 

bacterial (E. coli, A. aeolicus) and eukaryal (mitochondrial: T. cruzii, cytosolic: A. thaliana, 

apicoplastic: P. falciparum) organisms.  The P. falciparum KRS sequence corresponds to 

PF14_0166 (PfKRS-2).  B) Homology model of the apicoplastic PfKRS-2.  One monomer is shown 

in red, whereas the other domain is colored according to its domains.  The characteristic class II 

catalytic domain is shown in cyan, whereas the anticodon binding domain is shown in green.  The 

natural ligand analogue has been docked to the structure (yellow).  The bipartite apicoplastic 

targeting sequence has not been included in the homology model. 

 



 

 



Figure S2, related to Table 1.  Analysis of the docking predictions.  A) Structural analysis of the 

predicted binding modes of the virtual library.  The predicted binding modes of the docked 

compounds can be grouped into three different classes, depending on the part of the lysyl-adenylate 

(LAD) moiety that is being occupied by the analog:  (1) Lysine-like binding mode (left), where only 

the lysine/thialysine is being recognized is a similar mode as the natural ligand, (2) Adenine-like 

binding mode (middle), where only the heterocycle mimetic is being recognized by the adenine 

pocket, and (3) Adenylate-like binding mode, where both lysine and heterocycle are being 

recognized similarly to the natural ligand binding mode.  The GlideScores (GS) of each of the 

analogues on HsKRS are shown.  Compounds showing adenylate-like binding mode tend to present 

highest GlideScores. B) Evaluation of the docking performance. of the virtual library.     

 

 



Figure S3.  In vivo toxicology and antimalarial activities of M-26 and M-37.  A) In vivo 

toxicology of M-26 and M-37 tested on zebrafish embryos, measured at 24, 48 and 72h.  The 

development of the embryos is unaffected by the presence of the compounds (M-26 and M-37) 

compared to the untreated embryos (C). B) In vivo antimalarial activity of M-26 and M-37 on P. 

yoelii infected mice, shown as percentage of mice survival.   

 

 



Figure S4, related to Figure 3. Synthesis of: (A) O-(4-methoxybenzyl)hydroxylamine (73), (B) di-

tert-butyl 6-(4-methoxybenzyloxyamino)-6-oxohexane-1,5-diyldicarbamate (3) and (C) 2-((tert-

butoxycarbonyl)amino)-3-((2-((tert-butoxycarbonyl)amino)ethyl)thio)propanoic acid 

(BocThiolysine(Boc)OH) (4) 

 

 



Figure S5, related to Table 2. NMR analysis of the synthesized compounds.  (A) 1H and 13C 

NMR spectra of compound 72, (B) 1H and 13C NMR spectra of compound 73, (C) 1H and 13C NMR 

spectra of compound 3, (D) 1H and 13C NMR spectra of compound 77, (E) 1H and 13C NMR spectra 

of compound 78, (F) 1H and 13C NMR spectra of compound 80, (G) 1H and 13C NMR spectra of 

compound 4, (H) 1H and 13C NMR spectra of compound 59, (I) 1H and 13C NMR spectra of 

compound 60, (J) 1H, 13C, Tocsy NMR spectra and LCMS chromatogram of compound M-12, (K) 
1H, 13C, Tocsy NMR spectra and LCMS chromatogram of compound M-24, (L) 1H, 13C, Tocsy 

NMR spectra and LCMS chromatogram of compound M-26, (M) 1H, 13C, Tocsy NMR spectra and 

LCMS chromatogram of compound M-33, (N) 1H, 13C, Tocsy NMR spectra and LCMS 

chromatogram of compound M-37. 

 

 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 





1.2.  SUPPLEMENTAL TABLES 

Table S1, related to Table 1: Yield, purity, purification methods and predicted binding 

modes of obtained products from the first library. 

R-group Code 
Yield 
(mg) 

Purity
1 (%) 

Purificati
on 

Method2 

(% ACN 
(time)) 

Calculated 
Mass 

Found 
Mass 
(M+1) 

Binding 
Mode3 

       pF HS 

 

M-01 3.5 
84.4 

0-17 (18’) 571.15 
574.16 3 1 or 2 

 

M-02 9.3 
95.0 

0-17 (18’) 511.22 
512.17 3 1 or 2 

 

M-03 1.9 
53.0 

0-17 (18’) 445.20 
446.28 3 1 or 2 

 

M-04 1.6 
90.2 

0-17 (18’) 523.11 
524.23 3 2 

 

M-06 3.9 
98.7 

0-17 (18’) 510.20 
511.23 

1 or 
3 

2 

 

M-07 4.0 
93.9 

0-17 (18’) 444.21 
445.21 3 1 

 

M-08 1.1 
90.2 

0-17 (18’) 547.29 
548.22 3 2 

 
M-09 3.4 

91.4 Isocratic 0 
(14’) 

383.16 
384.09 1 2 

 

M-11 12.0 
85.8 Isocratic 0 

(14’) 384.25 
385.04 3 4 

 

M-12 6.3 
89.4 

0-17 (18’) 488.20 
489.18 3 2 

 

M-13 10.4 
92.7 Isocratic 0 

(14’) 
394.21 

395.21 1 3 

 
M-14 4.2 

86.5 Isocratic 0 
(14’) 

367.19 
368.01 

1 or 
3 

2 

 

M-15 1.4 
99.0 

0-17 (18’) 474.26 
475.24 4 2 

 

M-16 0.9 
93.9 Isocratic 0 

(14’) 
444.25 

445.21 3 3 



 

M-17 1.0 
95.3 Isocratic 0 

(14’) 
446.14 

447.13 3 1 or 2 

 

M-18 4.2 
86.7 

0-17 (18’) 482.23 
483.15 1 3 

 
M-19 2.0 

86.5 
0-17 (18’) 472.24 

473.23 4 4 

 

M-20 1.3 
95.3 Isocratic 0 

(14’) 
445.20 

446.22 3 2 

 

M-21 1.7 
76.5 Isocratic 0 

(14’) 
383.16 

384.03 3 1 

 

M-22 2.0 
89.5 

0-17 (18’) 536.20 
537.17 1 1 or 2 

 

M-23 3.0 
95.9 Isocratic 0 

(14’) 
460.21 

461.23 3 3 

 

M-24 0.5 
99.0 

0-17 (18’) 520.24 
521.31 4 3 

 

M-25 4.7 
92.0 Isocratic 0 

(14’) 
413.20 

414.12 1 1 

 

M-26 3.2 96.0 
10-20 (10’) 589.11 592.18 3 1 

 

M-27 8.1 90.9 
20-23 (10’) 529.17 530.26 3 2 

 

M-28 - - 
0-20 (10’) 463.15 - 1 2 

 

M-29 - - 
20-30 (10’) 541.06 - 

1 or 
3 1 or 2 

 

M-31 - - 
15-20 (10’) 528.15 - 1 2 

 

M-32 11.2 98.5 
17-20 (10’) 462.16 463.26 3 2 

 

M-33 6.5 92.0 
35-45 (10’) 565.24 566.38 3 2 

 
M-34 5.1 >99.9 

10-30 (10’) 401.11 402.23 1 3 

 

M-36 10.1 96.9 
0-2 (10’) 402.20 403.29 1 4 

 

M-37 8.3 88.2 
15-25 (10’) 506.15 507.24 3 2 



 

M-38 
20.1 86.8 15-30 (10’) 412.16 413.20 3 2 

 
M-39 

12.6 84.9 0-10 (10’) 385.14 386.23 
1 or 

3 
2 

 

M-40 
12.7 90.0 15-30 (10’) 492.21 493.29 3 2 

 

M-41 
11.4 88.1 15-30 (10’) 462.20 463.26 3 2 

 

M-42 
4.9 92.8 5-12 (10’) 464.09 465.18 

1 or 
3 

3 

 

M-43 
8.6 92.6 15-30 (10’) 500.18 491.24 1 2 or 3 

 
M-44 

3.9 96.5 10-25 (10’) 490.19 491.24 
1 or 

3 
2 

 

M-45 - - 
5-30 (10’) 463.15 - 3 2 

 

M-46 
6.5 91.3 6-8.5 (10’) 401.11 402.16 1 2 

 

M-47 
9.0 92.7 15-25 (10’) 554.15 555.20 1 2 

 

M-48 
3.5 93.1 0-5 (6’) 478.16 479.27 3 1 or 2 

 

M-49 
9.0 95.8 20-30 (10’) 538.19 539.26 4 3 

 

M-50 - - 
0-20 (10’) 431.15 - 1 1 

1 Purities were determined by RP-HPLC-MS (220nm): Column C18 X-bridge (4.6 x 50 mm 

x 3.6 μm); gradient; 5 to 100% B in 4.5 minutes; A: H2O-HCOOH (99.9:0.1), B: ACN-

HCOOH (99.3:0.7) 

2 Final products were purified by preparative RP-HPLCMS using different linear gradients 

of H2O (containing 0.1% HCOOH) and ACN (containing 0.07% HCOOH) at a flow rate of 

16 mL/min. Column: SunfireTM OBD C18, (19 x 100 mm x 5 μm) 

3 1 = Lysine-like; 2 = Adenine-like; 3 = LAD-like; 4 = none 

 



2.  SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

2.1 SOLID-PHASE SYNTHESIS OF THE LYSYL-ADENYLATE ANALOGUE 

LIBRARY 

2.1.1 Materials and Equipment.  

 

All chemical reagents were obtained from commercial suppliers and used without further 

purification. 1H and 13C NMR spectra were recorded at 298 K on a Varian Mercury-400 Fourier 

Transform spectrometer. Chemical shifts are reported in � units (ppm) relative to the residual 

deuterated solvent signals of CHCl3 (
1H NMR: � 7.26; 13C NMR: � 77.0); DMSO (1H NMR: � 2.50; 

13C NMR: � 39.5); MeOH (1H NMR: � 3.31 & 4.84; 13C NMR: � 49.1). The splitting patterns are 

designated as follows: s (singlet), d (doublet), t (triplet), q (quartet), b (broad). The RP-HPLC 

analyses were performed on a Waters Alliance instrument and RP-HPLC-MS on a Waters Alliance 

instrument coupled to a Micromass ZQ spectrometer with an electrospray (ES) probe. The 

purifications by preparative RP-HPLC were performed on a Waters HPLC Autopurification 

FractionLynx UV/MS system with an electrospray (ES) probe. Analytical thin-layer chromatography 

(TLC) was performed on precoated plates (Merck silica gel 60ACC, F254). Visualization of the 

developed chromatogram was achieved with UV light. Manual flash column chromatography was 

performed using silica (Merck, 70-230 mesh). Automated flash chromatography was performed on a 

Teledyne Isco module Companion® with photodiode array detector using Silica-RediSep® columns.  

 

2.1.2. Reactions and couplings. 

 

Fmoc removal. The Fmoc group was removed using the following reaction conditions: (i) DMF (5 � 

1 min); (ii) piperidine/DMF (2:8) (1 � 1 and 2 � 15 min); (iii) DMF (5 � 1 min).  

Coupling to resin. The resin was washed with anhydrous DCM (5 � 1 min) and DMF (5 � 1 min). 

After it was washed, it was treated with Alloc-Hyp-OH (5 eq), DIPCDI (5 eq), and HOBt (5 eq) in 



DMF for 2 h. After the products were washed with DMF (5 � 1 min) and DCM (5 � 1 min), the 

extension of the coupling was monitored by the Kaiser test. 

Mitsunobu Coupling. To the peptidyl resins preswollen in anhydrous DCM (5 mL) was added PPh3 

(7 eq) and Boc-L-Lys(Boc)-OPMB (3) (7 eq). The mixtures were shaken until the reagents were 

completely dissolved. Then, DIAD (7 eq) was added dropwise at 0 °C, and the mixture was shaken 

overnight at room temperature. After that, the solvent was removed by suction; the resins were 

washed with DCM (5 � 1 min) and then were washed twice with DMF, DCM, methanol, and finally, 

with DCM. 

Alloc Group Removal. Removal of the Alloc group was achieved with Pd(PPh3)4 (0.1 eq) in the 

presence of PhSiH3 (10 eq) in DCM under Ar (2 � 20 min, 25°C).  

N-Acylation. After the NR-Alloc group had been removed, acylations of the R-amino groups were 

carried out using RCOOH (5 eq), DIPCDI (5 eq), and HOBt (5eq) in DMF for 2 h at 25 °C. Resins 

were washed with DMF (5 � 1 min) and DCM (5 � 1 min). Acylations were monitored by the 

chloranil test.  

Cleavage from resin. Rink amide resins were cleaved with TFA/H2O (95:5) for 4 h at room 

temperature. TFA was evaporated; the compounds were dissolved in H2O-MeCN and then 

lyophilized. 

 

2.1.3 Characterization of the compounds. 

 

2-(4-methoxybenzyloxy)isoindoline-1,3-dione (72) - A mixture of 13.1 g (80.0 mmol) of N-

hydroxyphthalimide (70), 26.6 ml (192 mmol) of Et3N and 10.9 ml (80.0 mmol) of p-

methoxybenzyl chloride (71) in 200 ml of DMF was stirred for 1 h at 90°C. The reaction mixture 

was poured into 250 ml of ice-water. A precipitate was formed which was collected by filtration. 

The precipitate was dried in vacuum and used in the next step as obtained. The product was 

obtained as a white solid (17.9 g; 63.3 mmol; 79%). 1H NMR (400 MHz, CDCl3) d = 7.83-7.77 (m, 

2H), 7.75-7.71 (m, 2H), 7.45 (d, J = 8.70 Hz, 2H), 6.89 (d, J = 8.71 Hz, 2H), 5.15 (s, 2H), 3.80 (s, 



3H);  13C NMR (101 MHz, CDCl3) d =  163.5; 160.4; 134.3; 131.6; 128.8; 125.8; 123.4; 113.9; 79.4; 

55.2. 

 

O-(4-methoxybenzyl)hydroxylamine (73) - To a suspension of 17.0 g (60.0 mmol) of 2-(4-

methoxybenzyloxy)isoindoline-1,3-dione (72) in 300 ml of EtOH, 3.45 ml (65.9 mmol) of 

monomethylhydrazine were added. The reaction mixture was refluxed for 1 h. The reaction mixture 

was concentrated in vacuo and the resulting white solid was suspended in ether. The suspension was 

allowed to stand at RT for 30 min The solid was removed by filtration and the organic layer was 

concentrated to obtain the desired product as an yellow oil (6.63g; 43.3 mmol; 72.2%). 1H NMR 

(400 MHz, CDCl3) d = 7.30 (d, J = 8.65 Hz, 2H), 6.90 (d, J = 8.67 Hz, 2H), 5.37 (bs, 2H), 4.62 (s, 

2H), 3.81 (s, 3H); 13C NMR (101 MHz, CDCl3) d = 159.4; 130.0; 129.3; 113.8; 77.5; 55.2. 

 

di-tert-butyl 6-(4-methoxybenzyloxyamino)-6-oxohexane-1,5-diyldicarbamate (3) - A solution 

of 5.50 g (15.9 mmol) of BocLys(Boc)OH (74), 3.14 g (16.4 mmol) of WSC·HCl and 2.43 g (15.9 

mmol) of HOBt·H2O in 75 ml of DCM was stirred for 20 min at RT. To the reaction mixture, a 

solution of 2.44 g (15.9 mmol) of O-(4-methoxybenzyl)hydroxylamine was added (73) in 10 ml of 

DCM. The resulting reaction mixture was stirred overnight at RT. The organic phase was washed 

with 0.1 M HCl(aq) (2 x 75ml). During the first washing a white precipitate was formed which was 

removed by filtration. Then, the organic phase was washed twice with saturated NaHCO3(aq), brine, 

dried over MgSO4, filtered and concentrated. The crude was purified by automated flash column 

chromatography. (ISCO; SiO2, 120 g, Hexane/EtOH, 230 nm) (TLC: SiO2; Hexane/EtOH (4:1); Rf = 

0.45). The desired product was obtained as a white solid (5.43 g; 11.3 mmol; 71%). The purity was 

>98.5% (determined by C18 RP-HPLC-MS, tR 3.08 min, � = 220nm) MS (ES+) calcd. for 

C24H39N3O7: (m/z) 481.28; found: [M+H]= 482.22. 1H NMR (400 MHz, DMSO-d6) d = 11.05 (bs, 

1H), 7.31 (d, J = 8.59 Hz, 2H), 6.92 (d, J = 8.57 Hz, 2H), 6.84 (bd, J = 7.82 Hz, 1H), 6.74 (bt, J = 

4.94 Hz, 1H), 4.68 (s, 2H), 3.75 (s, 3H), 3.73-3.67 (m, 1H), 2.90-2.82 (m, 2H), 1.50-1.41 (m, 2H), 

1.37 (s, 9H), 1.36 (s, 9H), 1.34-1.26 (m, 2H), 1.26-1.10 (m, 2H); 13C NMR (101 MHz, DMSO-d6) d 



= 168.9; 159.2; 155.4; 155.1; 130.5; 127.7; 113.5; 77.8; 77.2; 76.2; 54.9; 51.9; 31.4; 29.0; 28.1; 

28.0; 22.6.  

 

tert-butyl (2-hydroxyethyl)carbamate (77) - To an ice-cooled solution of 30.0 g (138mmol)  of 

tert-butyl-dicarbonate (76) in 60 ml of anhydrous DCM under nitrogen was added 8.30 ml 

(138mmol) of 2-aminoethanol (75). The resultant reaction mixture was stirred for 1.5 h at 0°C. The 

organic phase was washed successively with saturated NaHCO3(aq), brine, dried on MgSO4, filtered 

and concentrated in vacuo to give the title compound as a pale yellow oil which was used in the 

next step without any additional purification (22.0 g; 136mmol; 99%). MS (ES+) calcd. for 

C7H15NO3: (m/z) 161.11; found: [M+H]= 161.95. 1H NMR (400 MHz, CDCl3)  d = 3.69 – 3.64 (m, 

2H), 3.26 (t, J = 5.1 Hz, 2H), 1.43 (s, 9H). 13C NMR (101 MHz, CDCl3) d = 156.8, 79.6, 62.0, 43.1, 

28.4. 

 

2-((tert-butoxycarbonyl)amino)ethyl methanesulfonate (78) - To an ice-cooled  stirred solution 

of 22.0 g (136 mmol) of tert-butyl 2-hydroxyethylcarbamate (77) and 22 mL of anhydrous pyridine 

(273 mmol) in 60 ml of anhydrous DCM under nitrogen was added slowly 12.8 mL (165 mmol) of 

methanesulfonyl chloride. The resulting mixture was stirred 50 min while warming up to RT. The 

reaction mixture was washed successively with 5% HCl(aq) and saturated NaHCO3(aq), dried on 

MgSO4, filtered and concentrated in vacuo to give the compound as a yellow oil which was used in 

the next step without any additional purification (29.8 g; 125mmol; 91%). MS (ES+) calcd. for 

C8H17NO5S: (m/z) 239.08; found [M+H]= 239.92. 1H NMR (400 MHz, CDCl3)  d = 4.27 (t, J = 5.1 

Hz, 2H), 3.45 (dd, J = 4.0 Hz, 2H), 3.02 (s, 3H), 1.43 (s, 9H). 13C NMR (101 MHz, CDCl3) d = 

155.9, 80.1, 69.0, 40.1, 37.5, 28.4. 

 

Methyl 2-((tert-butoxycarbonyl)amino)-3-((2-((tert-

butoxycarbonyl)amino)ethyl)thio)propanoate (79) - To an ice-cooled stirred solution of 25.6 mL 

(124 mmol)  of N-(tert-Butoxycarbonyl)-L-cysteine methyl ester and 48.7 g (149mmol)  of Cs2CO3 

in 30 ml of DMF was added a solution of 29.8 g (125 mmol) of 2-((tert-



butoxycarbonyl)amino)ethyl methanesulfonate (78)  in 10 ml of DMF. The resulting mixture was 

stirred at 0°C for 30 min. Stirring was continued for 4 h while the reaction mixture warmed up to 

RT. The reaction mixture was filtered to remove the excess of Cs2CO3, and the organic layer was 

concentrated in vacuo. The crude was dissolved in DCM, washed successively with brine, dried on 

MgSO4, filtered and concentrated in vacuo to give the compound as yellow oil which was used in 

the next step without any additional purification. MS (ES+) calcd. for C16H30N2O6S: 378,18 (m/z); 

found [M+H]=379.24.  

 

2-((tert-butoxycarbonyl)amino)-3-((2-((tert-butoxycarbonyl)amino)ethyl)thio)propanoic acid 

(BocThialysine(Boc)OH) (80) – To a solution of crude  methyl 2-((tert-butoxycarbonyl)amino)-3-

((2-((tert-butoxycarbonyl)amino)ethyl)thio)propanoate (79) in 50 ml of a  mixture of H2O/MeOH 

(1:1) was added 14.9 g (623 mmol) of LiOH. The reaction mixture was stirred overnight at RT. The 

solution was filtered to remove the excess of LiOH and then acidified with 2 M HCl(aq)  to pH = 3. 

The product was extracted with DCM, washed with brine, dried on MgSO4, filtered and 

concentrated in vacuo to give the desired compound as a yellow oil (26.2 g, 71.8 mmol, 58% over 2 

steps). The purity was >86.6% (determined by C18 RP-HPLC-MS, tR 2.70 min, � = 214nm) MS 

(ES+) calcd. for C15H28N2O6S: 364.17 (m/z); found [M+H]= 365.06. 1H NMR (400 MHz, DMSO-d6) 

� = 7.06 (d, J = 8.3 Hz, 1H), 6.88 (t, J = 5.2 Hz, 1H), 4.03 (td, J = 7.2, 4.6 Hz, 1H), 3.07 (dd, J = 

13.3, 6.5 Hz, 2H), 2.87 (dd, J = 13.5, 4.6 Hz, 1H), 2.72 (dd, J = 13.4, 9.4 Hz, 1H), 2.57 – 2.51 (m, 

2H), 1.38 (s, 9H), 1.37 (s, 9H). 13C NMR (101 MHz, DMSO-d6) � = 172.5, 155.4, 78.2, 77.7, 53.7, 

32.7, 31.4, 28.2. 

 

BocThialysine(Boc)-NH-OPMB (4) - A solution of 26.2 g (71.8mmol) of BocThialysine(Boc)OH 

(80), 13.8 g (71.8 mmol) of WSC·HCl and 11.0 g (71.8 mmol) of HOBt·H2O in 120ml of DCM was 

stirred for 20 min at RT. To the reaction mixture was added a solution of 11.0 g (71.8 mmol) of O-

(4-methoxybenzyl)hydroxylamine (73) in 10 ml of DCM. The resulting reaction mixture was stirred 

overnight at RT. The organic phase was washed with 0.1 M HCl(aq) (2 x 75ml). During the first 

washing a white precipitate was formed which was removed by filtration. Then, the organic phase 



was washed twice with saturated NaHCO3(aq), brine, dried on MgSO4, filtered and concentrated. The 

product was precipitated from DCM/Hexane (20:80) at -4ºC. The desired product was obtained as a 

white solid (26.7 g; 53.5 mmol; 75%). The purity was >85.5% (determined by C18 RP-HPLC-MS, tR 

3.15 min, � = 214nm) MS (ES+) calcd. for C23H37N3O7S: (m/z) 499.24; found: [M+H]= 500.17. 1H 

NMR (400 MHz, CDCl3) � = 9.37 (s, 1H), 7.33 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 5.35 

(d, J = 3.7 Hz, 1H), 4.91 (d, J = 6.2 Hz, 1H), 4.86 (s, 2H), 4.17 (s, 1H), 3.80 (s, 3H), 3.39 – 3.19 (m, 

2H), 2.90 – 2.75 (m, 2H), 2.65 (t, J = 5.2 Hz, 2H), 1.73 (s, 1H), 1.43 (s, 18H). 13C NMR (101 MHz, 

CDCl3) � = 168.2, 160.1, 156.2, 155.5, 131.1, 127.3, 114.0, 78.1, 55.4, 51.9, 39.9, 34.4, 32.9, 28.5. 

 

2.2  SYNTHESIS IN SOLUTION OF COMPOUNDS M-12, M-24, M-26, M-33 and M-

37 

2.2.1 Characterization of the intermediate compounds 

 

(2S,4R)-4-hydroxy-1-((4-nitrobenzyloxy)carbonyl)pyrrolidine-2-carboxylic acid (59) - To an 

ice-cooled solution of 10.0 g (76.2 mmol) of L-hydroxyproline (57) in 80 ml of 2 M NaOH(aq) was 

added dropwise a solution of 16.4 g (76.2 mmol) of 4-nitrobenzyl carbonochloridate (58) in 30 ml of 

DCM. The resulting reaction mixture was stirred for 1 h. The 2 phases were separated and the 

aqueous phase was washed once with DCM. The aqueous phase was acidified with concentrated 

H2SO4 (~5ml) to pH = 2-3. The desired product precipitated and was collected by filtration. The 

aqueous solution was cooled in the refrigerator and a second batch of product was collected. The 

product was obtained as a pale yellow solid, which was used in the next step without any additional 

purification (13.4 g; 43.2 mmol; 56.7%). The product was obtained as a mixture of two rotamers. 

MS(ES+) calculated for C13H14N2O7: (m/z) 310.08; found: [M+H]= 310.97. 1H NMR (400 MHz, 

CD3OD) � = 8.21 (t, J = 8.3 Hz, 2H), 7.58 (dd, J = 13.7, 8.8 Hz, 2H), 5.36 – 5.09 (m, 2H), 4.44 (dt, J 

= 25.9, 8.1 Hz, 2H), 3.69 – 3.48 (m, 2H), 2.39 – 2.25 (m, 1H), 2.16 – 2.03 (m, 1H).  13C NMR (101 



MHz, CD3OD) � = 166.7, 166.4, 146.6, 136.2, 136.1, 119.7, 119.6, 115.1, 115.0, 61.2, 60.5, 57.5, 

57.4, 49.9, 49.6, 46.7, 46.3, 39.5, 30.8, 29.9.  

 

(2S,4R)-4-nitrobenzyl 2-carbamoyl-4-hydroxypyrrolidine-1-carboxylate (60) – To an ice-cooled 

solution of 11.4 g (36.7 mmol) of (2S,4R)-4-hydroxy-1-((4-nitrobenzyloxy)carbonyl)pyrrolidine-2-

carboxylic acid (59) in 30ml of anhydrous acetonitrile was added 8.40 g (43.8 mmol) of WSC·HCl 

and 6.72 g (43.9 mmol) of HOBt·H2O. The resulting reaction mixture was stirred overnight while 

warming up to RT. The reaction mixture was cooled in an ice-bath and 10 ml of a 32% NH4OH(aq) 

solution were added. The reaction mixture was stirred for 30 min at 0ºC and then 1 h at RT. The 

insolubles were removed by filtration and the filtrate was concentrated. The obtained crude was 

purified by automated flash column chromatography. (ISCO-Rf; SiO2, 120g, DCM/MeOH, 272nm) 

(TLC: DCM/MeOH (4:1); UV=254nm; Rf=0.65) The desired product was obtained as a white solid 

(7.5g; 24.3 mmol; 66.3%). The purity was >99.0% (determined by C18 RP-HPLC-MS, tR 1.53 min, � 

= 220nm) The product was obtained as a mixture of two rotamers. MS (ES+) calcd. for C13H15N3O6: 

(m/z) 309.10; found: [M+H]= 309.97. 1H NMR (400 MHz, DMSO-d6) � = 8.23 (d, J = 8.7 Hz, 1H), 

8.19 (d, J = 8.8 Hz, 1H), 7.63 (t, J = 8.2 Hz, 4H), 7.53 (s, 1H), 7.43 (s, 1H), 7.04 (s, 1H), 6.93 (s, 

1H), 5.25 (d, J = 14.5 Hz, 1H), 5.22 – 5.19 (m, 2H), 5.13 (d, J = 14.5 Hz, 1H), 5.06 (t, J = 3.8 Hz, 

1H), 4.32 – 4.23 (m, 3H), 4.18 (t, J = 7.8 Hz, 1H), 3.54 (dd, J = 10.9, 4.4 Hz, 1H), 3.49 – 3.35 (m, 

3H), 2.20 – 2.01 (m, 2H), 1.96 – 1.80 (m, 2H). 13C NMR (101 MHz, DMSO-d6) � = 174.1, 173.6, 

153.9, 153.6, 146.8, 145.0, 145.0, 128.0, 127.7, 123.5, 123.3, 68.6, 67.9, 64.8, 64.7, 58.8, 58.4, 55.5, 

54.8, 39.5, 38.7. 

 

 2.2.2 Characterization of the final compounds M-12, M-24, M-26, M-33, M-37   

A solution of 1.00 g (3.23 mmol) of (2S,4R)-4-nitrobenzyl 2-carbamoyl-4-hydroxypyrrolidine-1-

carboxylate (60), 3.89 mmol of BocThialysine(Boc)-NH-OPMB (4) or BocLys(Boc)-NH-OPMB (3), 

and 2.55 g (9.72 mmol) of triphenylphosphine in 15 ml of THF was stirred for 15 min at RT under 

an Ar-atmosphere. Then 1.53 ml (9.72 mmol) of diethyl azodicarboxylate (DEAD) were added 

slowly. The resulting reaction mixture was stirred overnight at RT under an Ar-atmosphere. LCMS 



showed the presence of the desired product in addition to some side-products. No starting material 

was detected. The reaction mixture was concentrated and the resulting residue was dissolved in 50 

ml of Et2O. The organic phase was left overnight in the fridge. A white precipitate was formed which 

was removed by filtration. The crude was purified by two automated flash column chromatographies 

(ISCO-Rf; SiO2; DCM: DCM/MeOH (4:1); 270 and 210 nm). The desired product was obtained as a 

1:1 mixture of the product with triphenylphosphine oxide. The mixture was used in the next steps 

without any further purification.  

To a solution of the aforementioned crude in 10 ml of MeOH a spatula point of 10% Pd/C was 

added. The suspension was stirred overnight under an H2-atmosphere. The reaction mixture was 

filtered over Celite© and the filtrate was concentrated. The crude yellow oil was divided and used in 

the next step without any further purification. To a solution of 1 equivalent of the appropriate 

carboxylic acid, 1 equivalent of HOBt·H2O and 1 equivalent of WSC·HCl in 15 ml of DCM/DMF 

(9:1) was added 1 batch of the aforementioned crude. The resulting reaction mixture was stirred 

overnight. The reaction mixture was diluted with 20 ml of DCM. The organic layer was washed with 

5% NaHCO3(aq) (2 x 15ml), 0.5% citric acid(aq) (15 ml) and brine (15 ml), filtered over a phase 

separator and concentrated. The crude was dissolved in 10 ml of 40% of TFA in DCM. The solution 

was stirred for 18 h at RT. The reaction mixture was concentrated and the obtained crude was 

purified immediately by semi-preparative HPLC. (X-bridge; ACN/ H2O (20mM NH4HCO3(aq))); 

detection by corresponding mass and wavelength. The products were lyophilized and re-purified by 

semi-preparative HPLC. (X-bridge; ACN/H2O (0.1% HCO2H). 

 

(2S,4S)-4-((S)-2,6-diamino-N-hydroxyhexanamido)-1-(2-(5-phenyloxazol-2-

yl)benzoyl)pyrrolidine-2-carboxamide (M-12) – Purification: detection mass 521 m/z and 

wavelength 311 nm. The product was obtained as a white solid after lyophilizing. (78.9 mg; 0.15 

mmol; 10.1% over 4 steps) The purity was >99.5% (determined by C18 RP-HPLC-MS, tR 1.65 min, � 

= 254nm). The product was obtained as a mixture of 2 conformers in a ratio of 10:7. HRMS (ES+) 

calcd. for C27H32N6O5: (m/z) 520.2434; found: [M+H]= 521.2508. 1H NMR (400 MHz, DMSO-d6, 

conformer 1) d = 8.59 (s, 1H), 8.24 (d, J = 8.03 Hz, 1H), 8.20 (d, J = 1.53 Hz, 1H), 7.66 (s, 1H), 



7.72 (t, J = 8.04 Hz, 1H), 7.41 (d, J = 3.62 Hz, 1H), 7.23 (d, J = 3.64 Hz, 1H), 7.21 (s, 1H) 5.10 (d, 

J = 9.67 Hz, 1H), 4.56 (d, J = 8.64 Hz, 1H), 4.29 (d, J = 7.75 Hz, 1H), 3.86 (dd, J = 13.71, 4.57 Hz, 

2H), 2.76 (t, J = 7.50, 7.50 Hz, 2H), 2.73-2.59 (m, 1H), 2.47-2.46 (m, 1H), 2.45-2.38 (m, 1H), 2.18 

(d, J = 14.04 Hz, 1H), 1.62-1.47 (m, 4H), 1.36-1.19 (m, 2H); 1H NMR (400 MHz, DMSO-d6, 

conformer 2) d = 8.55 (s, 1H), 8.22 (d, J = 1.22 Hz, 1H), 8.19-8.15 (m, 1H), 7.78 (t, J = 8.04 Hz, 

1H), 7.46 (d, J = 3.62 Hz, 1H), 7.45 (s, 1H), 7.27 (d, J = 3.58 Hz, 1H), 7.07 (s, 1H) 5.15 (s, 1H), 

5.06-5.02 (m, 1H), 4.29 (d, J = 7.75 Hz, 1H), 4.28-4.22 (m, 1H), 3.92 (d, J = 13.68 Hz, 1H), 3.86 

(dd, J = 13.71, 4.57 Hz, 2H), 2.76 (t, J = 7.50, 7.50 Hz, 2H), 2.71-2.60 (m, 1H), 2.42 (d, J = 14.35 

Hz, 1H), 1.62-1.47 (m, 4H), 1.36-1.19 (m, 2H); 13C NMR (101 MHz, DMSO-d6) � = 174.2; 173.0; 

163.7; 158.2; 157.9; 157.6; 157.1; 156.8; 152.3; 152.2; 148.4; 148.3; 147.6; 130.8; 130.7; 130.5; 

130.2; 130.0; 122.9; 122.8; 118.7; 118.6; 118.4; 118.4; 115.6; 109.8; 109.7; 75.3; 72.4; 59.6; 53.5; 

53.3; 44.9; 38.4; 37.5; 33.9; 30.0; 30.0; 29.9; 26.4; 21.5. 

 

(2S,4S)-4-((S)-2,6-diamino-N-hydroxyhexanamido)-1-(5-(3-nitrophenyl)furan-2-

carbonyl)pyrrolidine-2-carboxamide (M-24) – Purification: detection mass 489 m/z and 

wavelength 304 nm. The product was obtained as a white solid after lyophilizing. (100 mg; 0.20 

mmol; 13.7% over 4 steps) The purity was >99.5% (determined by C18 RP-HPLC-MS, tR 1.27 min, � 

= 254nm). HRMS (ES+) calcd. for C22H28N6O7: (m/z) 488.2019; found: [M+H]= 489.2091. 1H NMR 

(400 MHz, DMSO-d6, conformer 1) d = 8.45-8.24 (m, 2H), 8.24-8.16 (m, 1H), 7.84-7.71 (m, 3H), 

7.67-7.60 (m, 1H), 7.60-7.47 (m, 3H), 7.47-7.36 (m, 1H), 7.36-7.28 (m, 1H), 4.96-4.86 (m, 1H), 

4.68-4.46 (m, 1H), 4.05-3.87 (m, 1H), 3.54-3.40 (m, 1H), 2.86-2.62 (m, 2H), 2.45-2.35 (m, 1H), 

2.37-2.28 (m, 1H), 1.62-1.36 (m, 4H), 1.35-1.15 (m, 2H) 1H NMR (400 MHz, DMSO-d6, conformer 

2) d = 8.44-8.24 (m, 2H), 8.15-8.09 (m, 1H), 7.84-7.70 (m, 3H), 7.67-7.60 (m, 1H), 7.59-7.47 (m, 

3H), 7.47-7.37 (m, 1H), 7.13-7.06 (m, 1H), 5.08-5.01 (m, 1H), 4.14-3.99 (m, 1H), 3.79-3.68 (m, 1H), 

3.39-3.23 (m, 1H), 2.86-2.65 (m, 2H), 2.39-2.27 (m, 1H), 2.27-2.14 (m, 1H), 1.61-1.37 (m, 2H), 

1.36-1.16 (m, 2H); 13C NMR (101 MHz, DMSO-d6) d = 174.2; 173.0; 163.7; 158.2; 157.9; 157.6; 

157.1; 156.8; 152.3; 152.2; 148.4; 148.3; 147.6; 130.8; 130.7; 130.5; 130.2; 130.0; 122.9; 122.8; 



118.7; 118.6; 118.4; 118.4; 115.6; 109.8; 109.7; 75.3; 72.4; 59.6; 53.5; 53.3; 44.9; 38.4; 37.5; 33.9; 

30.0; 30.0; 29.9; 26.4; 21.5 

 

(2S,4S)-4-(2-amino-3-((2-aminoethyl)thio)-N-hydroxypropanamido)-1-(2-(2-bromophenyl)-1H-

benzo[d]imidazole-5-carbonyl)pyrrolidine-2-carboxamide (M-26) - Purification: detection mass 

592 m/z and wavelength 214 and 290 nm.The product was obtained as a white solid after 

lyophilizing. (37.3 mg; 0.063 mmol; 3.9% over 4 steps). The purity was >99.5% (determined by C18 

RP-HPLC-MS, tR 1.00 min, � = 214nm). HRMS (ES+) calcd. for C24H28BrN7O4S: (m/z)  589.1107; 

found: [M+H]= 592.1155. 1H NMR (600 MHz, DMSO) (Mixture of 2 Conformers) � = 8.41 – 8.30 

(s, 1H), 7.99 – 7.87 (m, 2H),7.87 – 7.80 (d, J = 7.1 Hz, 1H), 7.80 – 7.74 (d, J = 6.6 Hz, 1H), 7.71 – 

7.53 (m, 2H), 7.53 – 7.42 (m, 3H), 7.40 – 7.29 (m, 1H), 7.20 – 7.10 (s, 1H), 7.10 – 7.02 (s, 1H), 5.13 

– 5.00 (s, 1H), 4.99 – 4.85 (s, 1H), 4.71 – 4.54 (m, 1H), 4.40 – 4.26 (m, 1H), 4.16 – 3.96 (s, 1H), 

3.00 – 2.82 (s, 2H), 2.76 – 2.63 (m, 2H), 2.62 – 2.57 (m, 2H), 2.57 – 2.53 (s, 1H), 2.33 – 2.17 (d, J = 

13.2 Hz, 1H), 2.20 – 2.05 (d, J = 12.8 Hz, 1H), 1.31 – 1.14 (s, 1H); 13C NMR (151 MHz, DMSO) � 

= 173.69, 173.42, 170.01, 169.74, 165.13, 162.10, 161.85, 152.07, 151.89, 133.45, 132.29, 132.13, 

131.62, 130.23, 127.87, 122.13, 121.54, 73.72, 72.81, 61.21, 58.65, 54.72, 52.47, 47.01, 39.52, 

34.93, 34.64, 30.46, 28.99. 

 

(2S,4S)-4-(2-amino-3-((2-aminoethyl)thio)-N-hydroxypropanamido)-1-(3-(1,3-diphenyl-1H-

pyrazol-4-yl)propanoyl)pyrrolidine-2-carboxamide (M-33) - Purification: detection mass 566 and 

567 m/z and wavelength 214 and 254 nm. The product was lyophilized and repurified by semi-

preparative HPLC. (X-bridge; ACN/H2O (0.1% HCO2H). The product was obtained as a white solid 

after lyophilizing. (51.3 mg; 0.091 mmol; 4.2% over 4 steps). The purity was >99.5% (determined by 

C18 RP-HPLC-MS, tR 1.88 min, � = 214nm). HRMS (ES+) calcd. for C28H35N7O4S: (m/z)  565.2471; 

found: [M+H]= 566.2541. 1H NMR (400 MHz, CD3OD; conformer 1) d 8.25 – 8.14 (s, 1H), 7.83 – 

7.75 (m, 2H), 7.75 – 7.68 (m, 2H), 7.56 – 7.43 (m, 4H), 7.44 – 7.36 (m, 1H), 7.34 – 7.24 (m, 1H), 

5.22 – 5.12 (m, 1H), 5.16 – 4.99 (m, 1H), 4.66 – 4.52 (dd, J = 8.6, 3.1 Hz, 1H), , 4.34 – 4.14 (m, 1H), 



3.88 – 3.60 (dq, J = 9.4, 4.4 Hz, 3H), 3.15 – 2.95 (m, 6H), 2.89 – 2.51 (m, 4H), 2.42 – 2.31 (m, 1H), 

1.99 – 1.80 (s, 1H), 1.35 – 1.17 (s, 1H). 1H NMR (400 MHz, CD3OD conformer 2)   8.15 - 8.10 (s, 

1H), 7.83 - 7.75 (m, 2H), 7.75 - 7.68 (m, 2H), 7.56 - 7.43 (m, 4H), 7.44 - 7.36 (m, 1H), 7.34 - 7.24 

(m, 1H), 5.22 - 5.12 (m, 1H), 5.16 - 4.99 (m, 1H), 4.66 - 4.52 (dd, J = 8.6, 3.1 Hz, 1H), 4.53 - 4.41 

(m, J = 5.4 Hz, 1H), 3.88 - 3.60 (dq, J = 9.4, 4.4 Hz, 3H), 3.15 - 2.95 (m, 6H), 2.89 - 2.51 (m, 4H), 

2.52 - 2.44 (m, 1H), 1.99 - 1.80 (s, 1H), 1.35 - 1.17 (s, 1H). 13C NMR (101 MHz, CD3OD) � 176.74, 

176.56, 174.20, 174.08, 162.50, 153.04, 141.34, 134.73, 130.58, 130.57, 129.66, 129.19, 129.14, 

129.12, 129.06, 128.91, 127.51, 121.62, 120.02, 119.99, 76.22, 74.77, 60.76, 60.21, 54.05, 53.82, 

47.74, 39.96, 38.38, 36.24, 35.93, 35.67, 35.51, 31.17, 31.12, 20.81, 20.46. 

(2S,4S)-4-(2-amino-3-((2-aminoethyl)thio)-N-hydroxypropanamido)-1-(5-(3-nitrophenyl)furan-

2-carbonyl)pyrrolidine-2-carboxamide (M-37) Purification: detection mass 507 m/z and 

wavelength 214 and 254 nm. The product was obtained as a white solid after lyophilizing. (24.4 mg; 

0.048 mmol; 3% over 4 steps) The purity was >99.5% (determined by C18 RP-HPLC-MS, tR 1.33 

min, � = 214 nm). HRMS (ES+) calcd. for C21H26N6O7S: (m/z)  506.1584; found: [M+H]= 507.1654. 

1H NMR (600 MHz, DMSO-d6, conformer 1) d = 8.60 (s, 1H), 8.36 (s, 3H), 8.23 (dd, J = 15.6, 7.7 

Hz, 2H), 7.80 (t, J = 7.7 Hz, 1H), 7.71 – 7.35 (m, 1H), 7.35 – 7.01 (m, 1H), 5.74 (s, 1H), 5.09 (d, J = 

9.3 Hz, 1H), 5.04 (s, 1H),  4.07 (d, J = 5.6 Hz, 1H), 3.84 (s, 2H), 2.93 – 2.84 (m, 2H), 2.74 – 2.64 (m, 

2H), 2.63 – 2.52 (m, 2H), 2.43 (d, J = 13.5 Hz, 1H), 2.19 (d, J = 13.3 Hz, 1H); 1H NMR (600 MHz, 

DMSO-d6, conformer 2) d = 8.57 (s, 1H), 8.36 (s, 3H), 8.19 (d, J = 7.9 Hz, 2H),  7.74 (t, J = 7.8 Hz, 

1H), 7.71 – 7.35 (m, 1H), 7.35 – 7.01 (m, 1H), 5.74 (s, 1H), 5.16 (s, 1H), 4.57 (d, J = 9.0 Hz, 1H), 

4.26 (d, J = 7.2 Hz, 1H), 4.19 (d, J = 11.4 Hz, 1H), 4.07 (d, J = 5.6 Hz, 1H), 2.93 – 2.84 (m, 2H), 

2.74 – 2.64 (m, 2H), 2.63 – 2.52 (m, 2H), 2.43 (d, J = 13.5 Hz, 1H), 2.19 (d, J = 13.3 Hz, 1H); 13C 

NMR (151 MHz, DMSO) � = 174.07, 172.96, 165.20, 161.92, 157.28, 157.08, 152.32, 148.56, 

147.92, 130.87, 130.27, 122.89, 118.41, 109.81, 74.48, 71.57, 59.91, 53.57, 47.0, 37.67, 34.81, 

34.11, 30.79, 29.00. 
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ABSTRACT 

 

Malaria remains a major global health problem, and emerging resistance to existing drugs results 

in an increasing urgency for new antimalarials. Protein translation is the target of several 

antimalarial drugs currently in use. In order to explore the potential of the aminoacyl-tRNA 

synthetase (ARS) family as source of antimalarial drug targets, we have treated Plasmodium 

falciparum cultures with a battery of both known and novel ARS inhibitors, and compared their 

activities. Amongst the compounds tested, borrelidin, a natural inhibitor of threonyl-tRNA 

synthetase (ThrRS), stands out for its potent antimalarial effect. Despite its promising antimalarial 

activity, borrelidin also inhibits human ThrRS, and is highly toxic to human cells.  To circumvent 

this problem we have explored the antimalarial activities of a library of borrelidin derivatives, and 

evaluated their cytotoxicity in human cells. We find that some of these compounds present higher 

selectivity towards the P. falciparum enzyme, whilst maintaining their antiparasitic activity both in 

vitro and in vivo.  We propose that borrelidin is a promising antimalarial scaffold that should be 

further explored for the search of novel antimalarial drugs.   
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INTRODUCTION 

 

With approximately 250 million clinical cases, and over 1 million attributed deaths per year (WHO 

report 2010), malaria is one of the most severe infectious diseases that lacks an effective 

vaccine. Numerous antibacterials are known to kill malaria parasites (Jomaa et al., 1999; Ralph et 

al.,2001; Seeber, 2003; Surolia and Surolia, 2001), and are commonly used in malaria 

prophylaxis or as components of multiple drug therapies (Borrmann et al., 2004; Miller, 1974).  

However, the emergence of multi-resistant parasites compromise the efficacy of many existing 

chemotherapies (Andriantsoanirina et al., 2009; Bonnet et al., 2009; Carrara et al., 2009), leading 

to a growing urgency for the search of new antimalarials. 

 

Protein translation has been a major focus for drug development. Plasmodium possesses three 

compartments active in protein synthesis: the cytosol, the mitochondrion and a relict plastid 

termed apicoplast. The prokaryotic origin of the apicoplast and mitochondria make many of their 

enzymes attractive targets for drug design. Doxycycline, a tetracycline known to specifically 

inhibit the replication of the apicoplast, is widely used for the prevention and treatment of malaria 

(Dahl et al., 2006). The inhibition of the apicoplast's metabolism causes a phenotype known as 

"delayed death" (Dahl and Rosenthal, 2007), in which the parasites do not show growth inhibition 

during the first asexual cycle during drug treatment (48h), but die in the second asexual cycle 

(98h), even if the drug is removed after the first cycle (Goodman et al., 2007).  

 

Among the less exploited targets of the translation machinery is the family of aminoacyl-tRNA 

synthetases (ARS), which are essential enzymes (reviewed in Ochsner et al., 2007) that catalyze 

the correct attachment of amino acids to their cognate tRNAs. These enzymes are proven 

antibacterial drug targets of both experimental (Hurdle et al., 2005; Kim et al., 2003; Bennett et 

al.,1999; Schimmel et al.,1998) and commercially available drugs (Bactroban, GlaxoSmithKline). 

ARS have also been proposed as potential antimalarial drug targets (Jackson et al., 2011; Istvan 

et al 2010). Sequencing of the P. falciparum genome has allowed the identification of the 

complete set of  plasmodial ARS genes, including several duplicated genes that likely correspond 

to enzymes that are active in the organelles (Bhatt et al, BMC Genomics). Although the three 

compartments are translationally active, only the cytosol and apicoplast are expected to contain 

ARS, while mitochondria are thought to import charged tRNAs (Pino et al., 2010).   

 

The large evolutionary distance between Plasmodium ARS of apicoplastic origin and their human 

homologues supports their potential as antimalarial drug targets. Particularly interesting are those 

ARS that are unique to Plasmodium, and not present in human cells. For instance, lysyl-tRNA 

synthetase (LysRS) is present in two forms in P. falciparum, whereas mammalian cells contain 
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only one protein that is alternatively spliced, and is dually targeted both to the cytosol and 

mitochondria (Hoen et al., 2012).  

 

Here we have analyzed the effect of known inhibitors of ARS and their potential use as 

antimalarials. We have tested and compared a battery of known inhibitors that target 10 different 

ARS with predicted cytosolic, apicoplastic or dual localization. Amongst the compounds tested, 

we find that borrelidin shows excellent antimalarial activity both in vitro and in vivo.  Borrelidin has 

been already described to possess antiangiogenic (Moss et al. 2006; Kawamura et al. 2003), 

antimalarial (Otoguro et al. 2003; Ishiyama et al. 2011) and antimicrobial (Nass et al 1969) 

properties.  However, its high cytotoxicity in humans limit its use (Wilkinson et al., 2006). Thus, 

we tested whether other borrelidin derivatives could be more target specific. We have 

investigated the antimalarial activity of a series of 30 borrelidin derivatives, and have tested their 

cytotoxicity in human cells.  Our results show that several derivatives present higher selectivity 

than borrelidin, indicating that modifications of this compound can lead to increased selectivity 

without losing its antimalarial activity.  The most potent compounds have been tested in P. yoelii-

infected mice, where they clear the infection efficiently.  These promising results suggest that 

borrelidin should be further explored as an antimalarial scaffold, and confirm that aminoacyl-tRNA 

synthetases are promising antimalarial drug targets that can be selectively inhibited.    
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RESULTS 

 

1.   Screening of Known ARS Inhibitors on P. falciparum 

In order to identify the antimalarial activity of a battery of ARS inhibitors, a phenotypic screen was 

run against in vitro cultures of P. falciparum (Table 1). Our collection of inhibitors included: i)  

analogues of the natural ligands or reaction intermediates (mechanism-based inhibitors), ii) 

natural inhibitors and their derivatives, and iii) novel scaffolds targeting ARS (Figure 1). To 

address the issue of variable drug effects at different life stages, inhibitory compounds were 

applied to tightly synchronized cells, and analyzed by comparing the multiplication of parasites 

between treated and control parasites (Giemmsa-smears counting), both at 48 (first asexual 

cycle), and 96 hours (second asexual cycle).  A drug was considered to cause delayed-death if it 

met the two following conditions: i) there was no measurable growth inhibition after 48h of 

treatment (first asexual cycle) at drug concentrations 10-fold higher than those needed to inhibit 

50% of parasite growth at 96h (second asexual cycle), and ii) parasite growth inhibition was 

insensitive to the presence or absence of drug during the second asexual cycle (Goodman et al. 

2007).  

 

Mechanism-based inhibitors presented inhibition of plasmodial ARS in the nanomolar range 

(Table 1, see also Figure S1), with the exception of thialysine. Our results suggest that these 

compounds inhibit cytosolic ARS. Small decreases in IC50(96h) values cannot be considered as 

delayed-death phenotypes, and may only suggest that the apicoplastic enzyme is more sensitive 

than its respective cytosolic homologue. 

 

Natural ARS inhibitors were also tested on P. falciparum cultures (Table 1). Pseudomonic acid 

(PA) is produced by Pseudomonas fluorescens and is a potent and specific inhibitor of bacterial 

isoleucyl-tRNA synthetases, with an 8000-fold selectivity with respect to to mammalian enzymes 

(Hugues et al., 1980; Farmer et al., 1992). In our assays PA was relatively inactive at 48h 

(IC50(48h)=257μM), but was active in the nanomolar range in the second asexual cycle 

(IC50(96h)=93nM). This delayed-death phenotype is consistent with its high selectivity towards 

bacterial-type enzymes (Ward et al., 1986; Parenti et al., 1987), such as the apicoplast-targeted 

isoleucyl-tRNA synthetase (IleRS-2). This increased potency after a second cycle was seen even 

if PA was removed from the culture after the first cycle of incubation.   

 

Borrelidin, a potent macrolide antibiotic produced by Streptomyces rochei, inhibits mammalian, 

bacterial and protozoan threonyl-tRNA synthetases (ThrRS) (Nass et al., 1969; Gerken and Arfin, 

1984; Otoguro et al., 2003; Ishiyama et al. ,2011). As previously described (Otoguro et al., 2003), 

we observed a strong inhibition of parasite growth by borrelidin within the first 48h (Table 1), thus 
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showing an immediate death phenotype. Cispentacin, a proline analog that inhibits prolyl-tRNA 

synthetase, is isolated from Bacillus cereus and Streptomyces setonii, and has been shown to 

effectively protect against systemic Candida albicans and Cryptococcus neoformans infections 

(Oki et al., 1989). In our tests, however, cispentacin is a weak inhibitor of Plasmodium cultures. 

This could be due to the fact that in fungi, cispentacin accumulates at high intracellular levels 

through an active transport mechanism (Capobianco et al., 1993) that might be missing in 

Plasmodium. 

 

AN2729 (Anacor Pharmaceuticals Inc) is a member of a new class of broad-spectrum antifungals 

that inhibit LeuRS (Rock et al., 2007; Barak and Loo, 2007). We investigated the effect of 

AN2729 on the parasite growth, and observed that this compound is capable of inhibiting P. 

falciparum cultures at low micromolar concentrations at 48h, indicating that boron-based drugs 

might also be useful for antimalarial drug design.   

 

2. Dual Targeting Approaches  

It is generally accepted that antimalarial treatments based on drug combinations help to prevent 

the appearance of drug resistance. Usually these combinations are based on compounds that 

target different enzymes and metabolic routes. However, we hypothesized that the combination of 

drugs that target the same metabolic process, e.g. tRNA aminoacylation, could produce a 

synergistic effect. Thus, we decided to test a combination of pseudomonic acid and borrelidin, 

given that amongst the battery of tested ARS inhibitors, these two compounds were shown to 

inhibit most efficiently plasmodial cultures in vitro.   

 

To test whether the simultaneous use of both drugs modified their respective kinetics, we 

analyzed the effect of the combination of both compounds in vitro, at different concentrations 

around their respective IC50 concentrations as previously described (Cokol et al., 2011; Pereira et 

al., 2011), and analyzed the parasitemia after a second cycle (96h). As can be seen in Figure 2, 

neither synergy nor antagonism was observed, given that the effect of the combination of the two 

compounds corresponds exactly to the sum of their individual effects, indicating that the two 

metabolic pathways targeted are not affected by the inhibition of the other.  This may be due to 

the fact that pseudomonic acid is primarily affecting the apicoplastic translational machinery -

specifically IleRS-2- whereas borrelidin is inhibiting the cytosolic ThrRS. The fact that protein 

synthesis in cytosol and apicoplast occur at different times of the life cycle (Bozdech et al., 2003) 

could explain why a synergistic effect cannot be observed when using PA:borrelidin drug 

combinations.   
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We then investigated the antimalarial activity of both PA and borrelidin using in vivo P. yoelii-

infected mice (Figure2C). PA did not reduce the parasitemia of infected mice. This result was 

expected as it has been described that, following intravenous or oral administration, this 

compound is rapidly metabolized to its inactive metabolite monic acid by the effect of esterases 

(Boyce JM., 2001; Hurdle et al., 2005).  On the other hand, treatment with borrelidin reduced 95% 

of the parasitemia of infected mice, which is similar to the behavior observed with the positive 

control chloroquine.  Complementarily, we performed survival time experiments with infected 

mice that consisted in drug treatment on the 3rd day post-infection followed by removal of the 

treatment, and a final measure of the mice survival.  P. yoelii-infected mice treated with 

chloroquine survived in average of 6 days post-infection as compared to untreated infected mice 

which survived until day 4. P. yoelii-infected mice treated with borrelidin also survived in average 

6 days, thus performing similar to chloroquine (Table 2).  These results are in agreement with 

previous reports (Otoguro et al., 2003; Ishiyama et al., 2011) 

 

3.  Antimalarial Activity of Borrelidin Derivatives  

 

Borrelidin as an antimalarial scaffold 

With an IC50 of 0.97nM, borrelidin is a more potent antimalarial drug than artemether, artesunate 

and chloroquine (Otoguro et al., 2003; Ishiyama et al., 2011). Its activity is thought to arise from 

the inhibition of threonyl tRNA synthetase (ThrRS) (Vong et al., 2004).  Previous reports have 

shown that borrelidin is a noncompetitive inhibitor with respect to threonine, and inhibits the 

amino acid activation step, as shown by ATP-PPi exchange and transient kinetic assay (Ruan et 

al., 2005).  Genetic selection of E. coli borrelidin-resistant mutants has shown that borrelidin binds 

to a hydrophobic region proximal to the zinc at the active site of the E. coli ThrRS (Ruan et al., 

2005).  Indeed, the fact that other ARS do not have such a hydrophobic core in this part of their 

active site may explain why borrelidin only inhibits ThrRS but not any other ARS.  To further 

confirm that the inhibition of P. falciparum cultures is due to the inhibition of ThrRS, we confirmed 

that the cluster of amino acids binding borrelidin in E. coli ThrRS is conserved in P. falciparum 

ThrRS (Figure S2).   

 

In vitro antimalarial activity of borrelidin derivatives. 

The results presented in this study point to borrelidin as a potential antimalarial agent (IC50= 

0,97nM). However, borrelidin also causes human cell toxicity in the nanomolar range 

(IC50=345nM, tested on HEK 293T cells), presumably as a consequence of the inhibition of 

human ThrRS. Therefore, we decided to test other borrelidin derivatives to search for more potent 

and selective antimalarial compounds.    
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For this, a library of 30 borrelidin derivatives was tested against P. falciparum cultures at 100nM. 

We find that 13 of these derivatives are active in vitro (Figure 4A).  We calculated the IC50 values 

for these 13 compounds both in P. falciparum and human cell cultures, finding that all borrelidin 

derivatives show lower inhibitory activities -higher IC50- against P. falciparum cultures than 

borrelidin (Table 3).  However, most of these molecules also appeared to be more selective than 

borrelidin towards the plasmodial enzyme (Table 3).  Indeed, the selectivity of borrelidin for P. 

falciparum ThrRS versus its human homologue is 355-fold, whereas some of the derivatives 

tested present up to 16.000-fold selectivity towards the P. falciparum enzyme (e.g. BC-195), 

which implies a 50-fold increase in selectivity compared to borrelidin (Figure 4B). These 

encouraging results indicate that borrelidin derivatives are potent antimalarials in the low 

nanomolar range that show increased selectivity towards the plasmodial enzyme, showing low 

cross-reactivity towards its human homologue. 

 

In vivo treatment of P.yoelii-infected mice with borrelidin derivatives 

Amongst the 13 borrelidin derivatives that presented antimalarial activity at 100nM, we selected 5 

compounds that presented highest selectivity (B-194, B-195, B-196, B-220 and B-240) for in vivo 

studies with P. yoelii-infected mice.  Each of the 5 borrelidin analogues was tested at two different 

concentrations: 0,25 mg/kg/day -which is the effective dose of borrelidin-, and 6mg/kg/day –which 

is the effective dose of chloroquine- (Table 4).  For each compound and each dose, the average 

parasitemia was measured after treatment with each of the compounds (Figure 4C), and the mice 

survival was monitored during over 20 days after drug treatment (Figure S3).  

 

Our results show that two out the five tested compounds (BC-196 and BC-220) yield 100% 

survival at 6mg/kg/day (Table 4). The most promising compound is BC-220, which at 6mg/kg/day 

completely clears the parasitemia -even better than borrelidin or chloroquine- using the 4-day-

test. Indeed, this compound is already showing 80% mice survival and a very good suppression 

at 0,25mg/kg/day. Interestingly, this compound was not the most potent analogue in vitro, 

suggesting that the compound bioavailability or other ADME properties are important in 

determining which hits are best in vivo. 
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DISCUSSION 

 

Aminoacyl-tRNA synthetases have been proposed for many years to be druggable targets that 

can be used for drug discovery (Kim et al. 2003; Schimmel et al. 1998). Although for many years 

plasmodial aminoacyl-tRNA synthetases have remained unexplored as drug targets, recent works 

have shown not only that these enzymes are druggable but also that selective inhibition of these 

enzymes versus its human homologues is feasible (Istvan et al. 2011; Hoepfner et al. 2012; Hoen 

et al. 2012) 

 

In this work we first evaluated and tested a series of known ARS inhibitors on P. falciparum cell 

cultures, to explore which compounds showed stronger antimalarial activities. Amongst the tested 

compounds, we find that borrelidin is the strongest antimalarial inhibitor (IC50=2nM), which 

efficiently clears the plasmodial infection. However, borrelidin is not selective enough for clinical 

applications (Otoguro et al., 2003).  

 

In spite of these results, we tested library of borrelidin analogues to find active compounds that 

were also selective. From our library of analogues, we find five compounds that present at least a 

10-fold increase in selectivity compared to borrelidin, which were selected for further in vivo 

assays. Importantly, one of these compounds, BC-220, shows strong in vivo activity with parasite 

clearance comparable to chloroquine and 100% mice survival.  

 

These encouraging results suggest that borrelidin is a good scaffold for antimalarial drug design, 

validate threonyl-tRNA synthetase as a druggable antimalarial drug target, and present a series 

of compounds that should be further characterized for future clinical testing.  
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MATERIALS AND METHODS  

 

Reagents 

Natural aminoacyl-tRNA synthetase inhibitors were purchased from the following companies: 

pseudomonic acid (GlaxoSmithKline), borrelidin (Fluorochem), cispentacin (Acros organics), 

thialysine (Sigma). AN2729 was a gift from ANACOR.  The battery of borrelidin derivatives was 

obtained from Biotica Technology Ltd (Cambridge, UK).  Sulfamoyl adenosine analogues were a 

kind gift from Magali Frugier (CNRS, France).   

 

IC50 determinations 

IC50 determinations were performed with synchronous 3D7A parasite cultures.  Parasites were 

cultured in human erythrocytes in RPMI 1640 medium supplemented with glutamine. FACS was 

used to measure calculate the IC50 of the most active compounds, by using Syto-11 to 

discriminate parasitized from non-parasitized RBCs.  Each sample was diluted at 1:100 in PBS 

and 0.5mM Syto-11 in DMSO was added to a final concentration of 0.5μM.  Samples were 

excited at 488nm and analyzed using an FC500 flow cytometer.  Data analysis was performed 

with the software package Prism.   

 

Cell-based drug inhibition assays 

Initial screens to test the activity were performed using the lactate dehydrogenase (LDH) activity 

assay. To perform the assay, 20 μl of sorbitol-synchronized infected erythrocytes (3% hematocrit) 

in each well of a 96-well plate was mixed with 100μl of Malstat reagent, 10μl of 2mg/ml of 

nitroblue tetrazolium and 10�l of 0,2�g/ml phenylethyl sulfate. After 30min incubation in the dark, 

the reaction was stopped by adding 100μl of 5% acetic acid to each well.  Absorbance at 590nm 

(A590) was measured on a plate reader to quantify the LDH activity proportional to the 

parasitemia. Smears were also prepared for each drug assay to visually confirm the absorbance 

results. For each tested compound, parasite LDH activity was measured both at 48 and 96h in 

order to check for a delayed death phenotype. 

 

Cytotoxicity assays on human cells 

Cytoxicity was measured using the Cell Profileration assay WST-1 (Roche) on HEK293T cells.  

Cells were cultured in a 96-well microplate, and incubated during 2-4h with WST-1.  During this 

incubation period, viable cells convert WST-1 to a soluble formazan salt, which is quantified at 

450nm with an ELISA plate reader. 

 

 

 



 

203 

In vivo P. yoelii infected mice treatments  

The in vivo study was carried out according to standard protocol following the “4 day Test” 

(Moneriz et al., Malar J 2011). P. yoelii-infected mice were divided into non-treated control, 

chloroquine-treated, borrelidin-treated, and borrelidin analogue-treated groups. Each group 

consisted of 5 to 10 mice. On day 0, each mouse was injected with 200μl of 2x106 infected red 

blood cells intravenously. Two hours after inoculation, each mouse was orally treated with 200 μl 

of borrelidin, borrelidin analogue, pseudomonic acid or chloroquine. Control mice were given 

200μl of distilled water orally. The treatment was repeated for the next 3 days for all the groups of 

animals. Every day, thin blood smears were obtained and stained with Giemsa to compute the 

parasitemia. The number of dead mice was recorded daily from all the study groups to determine 

the average of survival time of the infected mice after treatment.    
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Figure 1.  Structures of known ARS inhibitors tested on P. falciparum cultures 
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Figure 2.  Dual targeting approaches.   

A) Experimental set-up for classification of drug interactions. Inhibition rates were measured for 

all pairwise combinations of five drug concentrations, linearly increasing from 0 to 3 times the IC50 

inhibitory concentration (green).  Isophenotypic curves parallel to the diagonal for independent 

drug pairs, concave for synergistic drug pairs, and convex for antagonistic drug pairs, according 

to Loewe additivity.  B) In vitro testing for multiple targeting effect produced by the combination of 

pseudomonic acid and borrelidin on parasite cultures. C) In vivo inhibitory activities in P.yoelii-

infected mice of known ARS inhibitors that presented most potent in vitro inhibition: borrelidin and 

pseudomonic acid.  Chloroquine has been used as positive control.  Survival times with the 

removal of the drug on the 3rd day post infection with the different drug chemotherapies tested.  
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B      C  
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Figure 3. Library of borrelidin analogues.  Library of borrelidin derivatives tested on cell-based 

assays of P. falciparum cultures.   
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Figure 4.  Antimalarial activity of the library of borrelidin derivatives.  A) In vitro antimalarial 

activities of borrelidin derivatives tested at 100nM. Borrelidin (BOR) has also been included as 

positive control.  Compounds inhibiting over 80% at 100nM (13 amongst the 30 compounds 

tested) were considered to be active, and were selected for IC50 determination in both P. 

falciparum and Hek293T cultures. B) Fold selectivity comparison of the 13 selected borrelidin 

derivatives compared to borrelidin. Borrelidin fold selectivity has been normalized to 1. C) 

Average parasitemias in P. yoelii-infected mice treated with the different compounds, determined 

by microscopic examination of Wright’s stained flood films taken on day 4 after drug treatment.  

Compound BC-240 was not measured at 0.25 mg/kg.   
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Table 1.  List of known ARS inhibitors tested on P. falciparum cultures 
 

Inhibitor Target IC50 (48h) IC50 (96h) Fold 
96h/48h 

Mechanism-Based inhibitors (analogues)       

Glu-SA Glutamyl-tRNA synthetase 
PF13_0257 / MAL13P1.281 372,2 nM 463,5 nM 1 

Gln-SA Glutaminyl-tRNA synthetase 
PF13_0170 172,4 nM 150,3 nM 1 

Asn-SA Asparaginyl-tRNA synthetase   
PFB0525w / PFE0475w 88,3 nM 73,35 nM 1 

Tyr- SA Tyrosyl-tRNA synthetase 
MAL8P1.125 / PF11_0181 98,5 nM 84,6 nM 1 

Ser-SA Seryl-tRNA synthetase 
PF07_0073 / PFL0770w 39,5 nM 16,9 nM 2 

Thialysine Lysyl-tRNA synthetase 
PF13_0262 / PF14_0166 484,8 μM 154,3 μM 3 

Natural inhibitors       

Mupirocin Isoleucyl-tRNA synthetase 
PF13_0179 / PFL1210w 257 μM 93 nM 2763 

Borrelidin Threonine-tRNA synthetase 
PF11_0270 1,24 nM 0,97 nM 1 

Cispentacin Prolyl-tRNA synthetase 
PFL0670c / PFI1240c 573,4 μM 462,8 μM 1 

Novel scaffolds       

AN2729 Leucyl-tRNA synthetase 
PFF1095w / PF08_0011 1,03 μM 0,68 μM 2 
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Table 2. In vivo intraperitoneal antimalarial activities and curative activity of known ARS inhibitors 

as antimalarial treatments against P. yoelii yoelii 17XL during 4-day test. 

 

 

 

Compound Dose 
(mg/kg/day) 

Average % 
parasitemia 

Average % 
suppression 

% Survival Survival 
time (days) 

 
Negative 
control 

 
Chloroquine 

 
Mupirocin 

 
Borrelidin 

 
Mupir + borr 

 

 
 
 
 

30 
 

2.5 
 

0.25 
 

2.5 & 0.25 
 

 
 

94.54 ± 1.1 
 

0 ± 0 
 

92.73 ± 1.7 
 

1.3 ± 0.5 
 

0.66 ± 0.4 
 

 
 

0 
 

100 ± 0 
 

10.05 ± 7.6 
 

98.86 ± 0.5 
 

99.31 ± 0.4 
 

 
 

0 
 

100 
 

40 
 

100 
 

100 
 

 
 

4.15 ± 0.1 
 

-- 
 

4.6 ± 0.3 
 

-- 
 

-- 
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Table 3.  In vitro inhibitory activities of borrelidin derivatives both in P. falciparum cultures and 

human HEK293 cells.  

 

  Plasmodium falciparum Human cells - Hek293T Fold selectivity 

  IC50 48h IC50 96h IC50 72h IC5072h (Hs) / IC5096h (Pf) 

BC194 3,88 nM 3,49 nM 13,32 μM 3816 

BC195 7,15 nM 4,48 nM 72,06 μM 16084 

BC196 6,73 nM 4,4 nM 59,75 μM 13579 

BC197 93,68 nM 76,71 nM > 100 μM   >1303 

BC218 17,4 nM 25 nM 4,61 μM 184 

BC219 25,35 nM 18,59 nM 53,63 μM 2884 

BC220 44,36 nM 23,71 nM 95,99 μM 4048 

BC221 36,08 nM 24,19 nM 16,87 μM 697 

BC236 57,3 nM 55,21 nM 24,02 μM 435 

BC239 8,137 nM 8,05 nM 16,76 μM 2081 

BC240 9,625 nM 17,25 nM 92,26 μM 5348 

BC249 11,06 nM 25 nM 17,14 μM 685 

BC253 100,6 nM 56,95 nM  > 100 μM  > 1755 

Borrelidin 1,24 nM 0,97 nM 345 nM 355 
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Table 4. In vivo intraperitoneal antimalarial activities and curative activity of the 5 most selective 

borrelidin derivatives (B-194, B-195, B-196, B-220 and B-240) against P. yoelii yoelii 17XL-

infected mice (n=4-10).   

 

 Compound Dose 

(mg/kg/day) 

Average % 

parasitemia 

Average % 

suppresion 

% survival Survival time in 

fatal cases (days) 

Negative 
control 

- 87.0 ± 2.6 0 0 4.8 ± 0.3 

Chloroquine 6 2.2 ± 2.4 97.5 ± 2.75 100 - 

Borrelidin 0.25 1.3 ± 0.3 98.9 ± 0.5 100 - 

BC-194 0.25 

6 

71.5 ± 4.25 

9.0 ± 1.95 

17.8 ± 4.9 

89.7 ± 2.2 

0 

40 

5.0 ± 0.1 

8.33 ± 0.3 

BC-195 0.25 

6 

87.2 ± 3.0 

41.7 ± 13.3 

1.7 ± 2.1 

52.0 ± 15.3 

0 

25 

4.7 ± 0.7 

6.3 ± 0.3 

BC-196 0.25 

6 

75.8 ± 2.6 

4.7 ± 2.0 

12.8 ± 3.0 

94.6 ± 2.3 

0 

100 

5.2 ± 0.2 

- 

BC-220 0.25 

6 

3.3 ± 1.2 

0.1 ± 0.1 

96.2 ± 1.3 

99.9 ± 0.2 

80 

100 

9.0 ± 0.1 

- 

BC-240 6 19.1 ± 5.5 78.1 ± 6.3 60 7.5 ± 0.3 
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Figure S1. Peripheral blood smears of infected mice treated with different drugs. Blood 

smears were taken from each treated mouse on the 2nd, 4th, and 6th day post-infection (dpi) 

stained with Wright’s eosin methylene blue solution and evaluated under microscope. 

Representative blood smears taken from i) infected mice treated with vehicle, ii) chloroquine, iii) 

mupirocin, iv) borrelidin, and v) mupirocin & borrelidin. 
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Figure S2. Multiple sequence alignment of threonyl-tRNA synthetases.  Residues involved in 

borrelidin recognition are labeled with an asterisk.  The three first sequences (Escherichia coli, 

Homo sapiens and Plasmodium falciparum) correspond to the bacterial-type ThrRS, and present 

conserved residues at the hydrophobic cluster, and are therefore expected to be sensitive to 

borrelidin.  On the other hand, Pyrococcus abyssi ThrRS corresponds to an archaeal-type ThrRS, 

which does not conserve the hydrophobic cluster residues identified to interact with borrelidin, 

and has been shown to be non-sensitive to borrelidin.   
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Figure S3.  In vivo mice survival of activities in P. yoelii-infected mice treated with the 

selected subset of borrelidin derivatives. Percentage of mice survival of P. yoelii-infected 

mice, measured over 20 days after drug treatment. Chloroquine (Cq) has been used as positive 

control. 

 

 
 





 

221 

4.3.  Chapter 3:  Method development     
 
4.3.1.  Introduction 

 
4.3.1.1.  A sequence-based prediction method to identify pathogenicity-related 
proteins.  

 

4.3.1.1.1.  Use of sequence-based homology searches to predict protein function 

 

Genome sequencing efforts are providing us with large amounts of sequence data.  Without 

including metagenomic data, there are over 3.000 bacterial complete genomes published 

(www.genomesonline.org). The genomes of prokaryotes possess specific and relatively well-

understood promoter sequences, such as transcription factor binding sites, that are relatively 

easy to identify, allowing us to annotate its open reading frames (ORFs).   

 

However, identifying a gene and understanding its function are altogether different matters.  At 

least one-fourth of genes that are identified in bacterial genomes are “hypothetical” or of 

unknown function. For many genome sequences, the only annotation that will be available will 

be based on computational predictions and comparisons with related microorganisms.   

 

The dominant method of function “prediction” uses sequence homology software, because 

most proteins generally fall into a relatively small number of homologous protein families of 

related structure and usually of at least somewhat related function. Indeed, two proteins that 

diverged through evolution from a common ancestral sequence tend to have structural and 

functional characteristics in common. In this regard, computer programs for sequence-

database homology search –e.g. BLAST, HMMER and FASTA- can be used to discern 

whether a given protein is homologous to an already known sequence or sequence family.  

 

In this work we have developed a method to predict if a protein is related with pathogenicity, 

based exclusively on its sequence. For this aim, developed an algorithm that builds a protein 

profile for each input sequence, and is launched against a curated dataset of complete 

sequenced genomes –which includes a set of known human pathogens- to find its 

homologues.  Finally, we consider a protein as pathogenicity-related if it is over-represented in 
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a set of proteomes from human pathogens compared to what should be expected by chance 

(Publication 5). 

 

However, it is important to remember that homology offers only a “low-resolution” prediction of 

function. Thus, sequence homology analysis can often determine what a protein is likely to do, 

but not whether if it will be pathogenic or not, because a small number of changes may have a 

profound biological effect (Yoshida et al., 2001).  Therefore, from our sequence-based analysis 

we cannot state whether a given protein sequence will be pathogenic or not, but the fact that its 

homologues–although with unknown function- are over-represented in human pathogens can 

give us a hint about its potential role in pathogenicity.  Thus, this tool has the potential to 

shorten the list of proteins with unknown function that should deserve further characterization 

as potential drug targets.    

 

4.3.1.1.2.  Application of the method to functionally-related proteins 

 

During their extended evolution genes coding for aaRS have experienced numerous instances 

of duplication, insertion and deletion of domains. The aaRS-related proteins that have resulted 

from these genetic events are generally known as aminoacyl-tRNA synthetase-like proteins 

(aaRS-like). This heterogeneous group of polypeptides carries out an equally varied number of 

functions that need not be related to gene translation. Several of these proteins remain 

uncharacterized. At least sixteen different aaRS-like proteins have been identified to date, but 

their functions remain incompletely understood.   

Importantly, several of these aaRS-like proteins have been related to pathogenicity in several 

species.  For this reason, we decided to investigate whether specific aaRS-like enzymes are 

found to be over-represented in pathogenic species compared to non-pathogenic species.  To 

this end, we combined the analysis of the phylogenetic distribution of bacterial aaRS-like 

proteins with a simple and rapid algorithm for the identification of proteins that are over-

represented in human pathogenic organisms. Our method positively identifies AsnA as over-

represented in pathogenic species. Interestingly, AsnA has already been described as 

important in bacterial pathogens of plants and animals, and we suggest that its importance in 

infection may be extended to human microbial infections, and thus its role in pathogenicity 

should be further investigated (Publication 5). 
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4.3.1.1.3.  Application of the method to whole genomes 

Amongst the set of fully sequenced genomes, the P. falciparum genome contains by far the 

largest percentage –around 50%- of unknown or “hypothetical” proteins (Gardner et al., 2002). 

This lack of knowledge clearly limits the development of novel antimalarials and impedes a 

better understanding of the biology of the parasite. Thus, choosing useful targets for 

antimalarial drug design can be a difficult task.   

In order to short-list which proteins could be priorized as antimalarial drug targets, we applied 

our sequence-based method to predict pathogenicity-related proteins to the full set of P. 

falciparum proteins (Figure 4.23). We considered those proteins with ER-species>2 and ER-

proteins>2 as pathogenicity-related proteins, obtaining a list of 1209 ORFs.  From these, if we 

remove those that present human homologs, we obtain a final list of 798 ORFs (~15% of the  

proteome).  

           

Figure 4.23.  P. falciparum whole proteome analysis.   
 

Previous works have already suggested to short-list the number of potential uncharacterized 

proteins that deserve further attention for antimalarial drug design. It was suggested to focus 

on apicoplast-targeted enzymes, because the prokaryotic origin of these nuclear-encoded 

apicoplast-targeted sequences makes them excellent drug targets (McFadden and Roos, 

1999), and several inhibitors targeting these enzymes have already been shown to kill the 

parasite (Fichera and Roos 1997; Jomaa et al. 1999). Therefore, DeRisi and colleagues cross-

referenced the list of predicted apicoplast-targeted sequences (plasmoDB.org) with those 

genes found to be maximally expressed between 33 and 36 hours post-infection (hpi) –which 

correspond to the expression times of the plastid genome-, resulting in a list of 124 in-phase 



 

224 

apicoplast-targeted genes (Bozdech et al., 2003).  Importantly, from these, 76 ORFs (62%) 

were of unknown function, and are likely to include excellent candidate drug targets.  

In a similar fashion, they also checked which genes presented expression profiles with similar 

characteristics to those involved in merozoite invasion–amongst them are seven of the best-

known malaria vaccine candidates, including AMA1, MSP1, MSP3, MSP5, EBA175, RAP1 and 

RESA1-, obtaining a list of 262 ORFs (Bozdech et al., 2003).  Another work also provided a list 

of 425 ORFs that were shown to be associated to P. falciparum heterochromatin protein 1 

(PfHP1) (Flueck et al. 2009).  This protein is a major structural component of virulence gene 

island throughout the genome, and is highly associated with the majority of known exported 

proteins involved in host-parasite interactions -e.g. var, rif, stevor, surfin, pfmc-2tm- (Flueck et 

al. 2009).  

Taking into account these different approaches, we decided to provide a more solid list of 

candidate proteins, related with pathogenicity or to be used as drug/vaccine targets.  For this 

aim, we cross-referenced our set of pathogenicity-related proteins (798 ORFs) with: i) the 124 

set of in-phase apicoplast-targeted genes (Bozdech et al. 2003); ii) the 262 ORFs presenting 

similar expression profiles as merozoite invasion proteins (Bozdech et al. 2003); and iii) the 

425 PfHP1-associated ORFs (Flueck et al. 2009).  Two different intersections between the lists 

have been built, depending on whether the aim is to find candidate drug targets (Figure 4.24a) 

or candidate vaccine targets (Figure 4.24b).  The specific ORFs found in the center of the 

Venn diagrams are shown in Table 5.  

           
Figure 4.24.  Venn diagrams showing intersections between several lists of plasmodial ORFs to 
decipher potential vaccine and drug candidates. A) Strategy to find candidate drug targets, by 

intesecting in-phase apicoplast-targeted genes, pathogenicity-related genes and genes without human 

homologues. B) Strategy to find candidate vaccine targets, by intersecting in-phase merozoite invasion 

genes, PfHP1-associated genes and pathogenicity-related genes.  
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Table 5. List of potential P .falciparum drug and vaccine candidates 

 

Gene ID PlasmoDB Annotation 
Drug candidates 

MAL8P1.61 conserved Plasmodium protein, unknown function 
PF08_0101 conserved Plasmodium protein, unknown function 
PF10_0030 conserved Plasmodium protein, unknown function 
PF10_0207 conserved Plasmodium membrane protein, unknown function 
PF11_0324 conserved Plasmodium protein, unknown function 
PF13_0025 apical membrane antigen 1 (AMA1) 
PF14_0249 conserved Plasmodium protein, unknown function 
PF14_0566 conserved Plasmodium protein, unknown function 
PFC0435w parasite-infected erythrocyte surface protein (PIESP1) 
PFC0670c conserved Plasmodium protein, unknown function 
PFD0760c conserved Plasmodium protein, unknown function 
PFE0710w conserved Plasmodium protein, unknown function 
PFL0875w conserved Plasmodium protein, unknown function 

Vaccine candidates 
PF10_0355 merozoite surface protein (MSP3.8) 
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4.3.1.2.  Ensemble docking from homology models 
 
The genome sequencing efforts are providing us with a lot of information for hundreds of 

organisms, including humans.  We are now faced with describing, controlling and modifying the 

functions of proteins encoded by these genomes.  This task is generally facilitated by protein 

three-dimensional structures, which are best determined by experimental methods such as X-

ray crystallography and NMR spectroscopy.  Despite significant advances in these techniques, 

the gap between the number of known sequences and structures continues to grow (Baker and 

Sali, 2001).  Protein structure prediction methods attempt to bridge this gap, being comparative 

modeling the most reliable of the available methods to predict the 3D structure of a protein 

(Marti-Renom et al., 2000).  

 

It is widely accepted that docking to comparative models is more challenging and less 

successful than docking to crystallographic structures (Figure 4.25), although a series of 

papers demonstrate the success in the use of comparative models in computational drug 

design studies (Schafferhans and Klebe, 2001; Evers and Klebe, 2004).  However, little work 

has been done to quantify the accuracy of docking to comparative models (McGovern and 

Shoichet, J Med Chem 2003).  

             
Figure 4.25.  The reliabiity of homology models depends on the target-template sequence 
identity. Homology models over the 30% sequence identity are considered to be in the safe homology 

modeling zone. Below 30% sequence identity, serious errors might occur, and result in the basic fold 

being mis-predicted (Sander and Schneider, 1991). 
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We have attempted to determine the minimum sequence identity required to obtain docking 

results sufficiently similar to those obtained with crystallographic structures.  We explored with 

great detail the quality of proteins structures derived from homology modeling for high 

throughput docking using state-of-the-art computational methods. We find that, contrary to 

common believe, structures derived from homology modeling are often of similar quality for 

docking purposes than the real crystal structure, even in cases where the template used to 

create the structural model shows a moderate sequence identity with the protein of interest.  

Indeed, we designed an “ensemble docking” approach (Craig et al., 2010) based on homology 

models that outperforms in most cases the docking performance using single experimental 

structures (Figure 4.26). Using this approach we estimate that the number of human proteins 

ameanable to high throughput docking for the design of increases five times, raising the 

possibility to perform proteome-scale docking experiments (Publication 6 and Publication 7).  

 

       

 
 

Figure 4.26. Rationale behind the ensemble docking approach. The classical docking approach 

consists in single docking one protein structure –generally an holo structure- against a set of ligands.  

The ensemble docking approach consists in docking a set of protein structures –holo structures with 

different ligands bound in its active site- against the set of ligands.  Since each binding site is specialized 

for the recognition of its ligand –and similar scaffolds-, each structure of the ensemble will recognize a 

different subset of active ligands that otherwise would not be found using a single structure.   
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a b s t r a c t

During their extended evolution genes coding for aminoacyl-tRNA synthetases (ARS) have experi-
enced numerous instances of duplication, insertion and deletion of domains. The ARS-related pro-
teins that have resulted from these genetic events are generally known as aminoacyl-tRNA
synthetase-like proteins (ARS-like). This heterogeneous group of polypeptides carries out an equally
varied number of functions that need not be related to gene translation. Several of these proteins
remain uncharacterized. At least 16 different ARS-like proteins have been identified to date, but
their functions remain incompletely understood. Here we review the individual phylogenetic distri-
bution of these proteins in bacteria, and apply a new genomics method to determine their potential
implication in pathogenicity.
�� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

Aminoacyl-tRNA synthetases represent an extraordinary exam-
ple of functional and structural conservation [1]. Across all living
species most of these enzymes display an almost identical struc-
ture, providing one of the few cases where phylogenetic and struc-
tural analyses can be expected to yield information about the first
evolutionary steps of cellular life on earth [2–4]. As would be ex-
pected from a large group of enzymes, with complicated modular
structures and extremely long evolutionary lives, a large group of
related proteins has formed as a result of total or partial duplica-
tions of ARS genes [5,6]. In addition, some ARS-like proteins may
exist that are coded by ancestral genes that were lately fused to
a pre-existing ARS. Differentiating between these two possibilities
can be difficult.

Functionally speaking ARS-like proteins are not a homogeneous
class. However, a global analysis of their distribution is interesting
because it provides information on the evolutionary history of ARS,
and it might help to identify tendencies in the functional roles that
ARS-related domains adopt when they diverge from their ancestral
enzymes. Moreover, the species distribution of each ARS-like pro-
tein is likely to provide information on its biological role. More spe-
cifically, the search for correlations between gene distribution and

complex biological phenotypes can be a powerful tool for the iden-
tification of biological function.

Here we combine the analysis of the phylogenetic distribution of
bacterial ARS-like proteins with a simple and rapid algorithm for the
identification of proteins that are over-represented in human path-
ogenic organisms. First, we have applied our method to re-examine
the different ARS-like proteins found in bacteria, clustering them
according to a sequence-similarity profile. Secondly, we have ana-
lyzed whether each of the 11 bacterial ARS-like proteins that we ob-
tain is functionally linked to bacterial virulence (Fig. 1). Our method
positively identifiesAsnAasover-represented inpathogenic species.
AsnAhas alreadybeendescribedas important inbacterial pathogens
of plants and animals [7,8]. We suggest that its importance in infec-
tion may be extended to human microbial infections.

2. Methods

2.1. Protein profile generation and determination of phylogenetic
distributions

We selected 16 well-documented ARS-like proteins for our
study (Table 1). For each of them, a multiple alignment was built
with ClustalW [29] using the Gonnet protein matrix, followed by
a Hidden Markov profile building using the HMMER package
[30]. Each protein profile was used as query to find all existing
homologues in the Uniprot database (www.uniprot.org). In order
to apply a consistent criterion to the determination of each
protein’s distribution we applied a cutoff value to the search for
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homologues (per-sequence E-value cutoff of 10.0). This procedure
identified clusters of proteins that were considered as
evolutionarily related and treated as a single family. Those families
present in bacteria were selected for further analysis. The distribu-
tion found for each bacterial ARS-like family was graphically dis-
played through the quantification of all its homologous sequences
in the main bacterial phyla and the representation of these frequen-
cies on a model phylogenetic tree of bacteria [31] (Fig. 2).

To correct for the fact that not all bacterial phyla are equally rep-
resented among the Uniprot database, a standardization of the val-
ues of the ARS-like proteins was done in order to obtain final values
comparable among the different bacterial phyla. The relative abun-
dance of each protein in a phylum was computed by dividing the

number of protein hits found in that phylum by the total number
of proteins found for the phylum in the Uniprot database:

Relative abundance ¼ No: “X” in phylum
No: proteins of phylum in Uniprot

ð1Þ

Since a protein of a given species may be represented more than
once in the Uniprot database – e.g. same protein from different
strains –, only semi-quantitative values can be obtained from this
analysis. Nevertheless, the calculation is accurate enough to pro-
vide an estimation of the distribution of each ARS-like protein
among bacterial phyla.

2.2. Correlation analysis of protein distributions and pathogenicity

2.2.1. Database preparation and construction of the set of human
pathogens

In order to identify proteins over-represented in pathogenic
species the curated set of complete proteomes from the Integr8
database (2069 complete proteomes) was used (www.ebi.ac.uk/in-
tegr8). This collection was further modified to obtain our final pro-
teome dataset (viral proteomes were removed and only one
proteome per species was used) of 910 complete proteomes.

In over-representation studies a carefully curated dataset is
essential to avoid artificial over-representation of data (e.g. frag-
ments of the proteins, point mutations, more that one strain per
species) that leads to non-reliable values of enrichment. From
the final dataset of 910 complete proteomes, 168 were identified
as belonging to human pathogens. This was done with the help
of different curated databases: HAMAP database (http://www.
expasy.ch/sprot/hamap/), pathogenic bacteria database (bac.hs.
med.kyoto-u.ac.jp), national microbiology pathogen data resource
(www.nmpdr.org), pathogenic fungi database (www.pfdb.net),

Fig. 1. Schematic representation of the over-representation analysis performed in this work.

Table 1
List of the 16 ARS-like proteins considered in this study.

Synthetase-like aaRS paralog Reference

Ybak ProRS [9,10]
HisZ HisRS [11,12]
AlaX AlaRS [5,13]
PrdX (ProX) ProRS [13,14]
GluX (YadB) GluRS [15]
CTP Class I ARS [16]
ATPS Class I ARS [16]
EMAP-II MetRS, TyrRS [17–19]
Arc1p MetRS, TyrRS [20]
Trbp111 MetRS, TyrRS [21]
BirA SerRS [22,23]
AsnA AspRS, AsnRS [24,25]
ThrRS-ed ThrRS [26]
Gcn2 HisRS [11]
Pol gamma B GlyRS [27]
PoxA/GenX LysRS [28]
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Fig. 2. Phylogenetic distribution and relative abundance of the 11 bacterial ARS-like proteins considered in this work. Each tree is labeled according to the protein whose
distribution is being analyzed. The tree labeled UNIPROT shows the number of proteins per phylum that are included in the database used. The relative abundance (r.a.) of
each protein in each phylum is represented by a colored circle at the end of the phylum’s branch: blue (r.a. P 25), salmon (r.a. P 10) and yellow (0 > r.a. > 10). Only bacterial
relative abundances are shown.
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Fig. 2 (continued)
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eukaryotic pathogens database (eupathdb.org), and pathogen por-
tal (www.pathogenportal.org). The final list of human pathogens
includes 146 bacteria, 11 fungi and 12 protozoa.

2.2.2. Construction of a control dataset
Both positive and negative controls were included in the study

for external validation of the method. Negative controls used are
proteins not expected to be over-represented in human pathogens
(tubulin, enolase, alanyl-tRNA synthetase, lactate dehydrogenase,
and pyruvate dehydrogenase). Positive controls were built with
proteins known to be linked to pathogenicity – e.g. virulence fac-
tors – (haemolysin, gamma-glutamyl transpeptidase, CapC, fim2
fimbrial subunit precursor, lipopolysaccharide transferase, sycE
secretion chaperone, heme exporter protein CcmC, long polar fimb-
rial chaperone, adhesin, cholera enterotoxin, streptococcal exo-
toxin I and lipoteichoic acid synthase).

2.2.3. Calculation of over-representation indices
Protein profiles were built for both controls and test cases (ARS-

like proteins) following the same procedure explained above. Each
protein profile was compared to our curated set of Integr8 proteo-
mes, to obtain the complete list of homologues for each of the pro-
teins among the 910 proteomes. We considered a protein as
pathogenicity-related if it was found over-represented in the set
of human pathogens compared to what is expected by chance.
Over-representation was measured using two different indices:
enrichment rate of the number of proteins (ER-proteins) and
enrichment rate of the number of species (ER-species), which are
computed as follows:

ER-species ¼ Pathogenic species with “X”=Species with “X”
Pathogenic species=Species in database

ð2Þ

ER-proteins ¼ No: “X” in path: spp=No: “X” in database
Proteins in path: spp=Proteins in database

ð3Þ

where ‘‘X” is the queried protein of interest.
Although both ratios quantify the over-representation of a given

protein among pathogen species they may produce different
enrichment ratios because a species can have one or more homo-
logues of the queried protein. Thus, enrichment must be quantified
both in terms of number of proteins and number of species.

Significance testing on protein distribution results was per-
formed using a one-tailed test, and threshold values were com-
puted both for 1% and 0.1% false positive rates (FP) [32,33]. In
one-tailed tests, we can compute the threshold or cutoff value
depending on the false positive rates (FP) that we accept:

Threshold ð5% FPÞ ¼ X � 1:64r
_ ð4Þ

Threshold ð1% FPÞ ¼ X � 2:32r
_ ð5Þ

Threshold ð0:1% FPÞ ¼ X � 3:09r
_ ð6Þ

where �X is the population mean and r
_

is the estimator of the stan-
dard deviation of the population. By plotting ER-species as a func-
tion of ER-proteins, control proteins that are not linked to
pathogenicity should be clustered around the (1, 1) coordinates. A
protein that is not over-represented is expected to fall into the nor-
mal distribution of the negative controls, with cutoff values that de-
pend on the rate of false positives that we accept.

3. Results

3.1. Distribution of bacterial ARS-like proteins

Analysis of the phylogenetic distributions among the different
bacterial phyla was performed for the complete set of ARS-like pro-

teins (Fig. 2). From the 16 ARS-like proteins initially analyzed (Ta-
ble 1) Arc1p, Gcn2, ThrRS-ed, Polcb and AlaX2 were excluded
because their distribution was found to be limited to eukarya
(Gcn2 and Arc1p), archaea (ThrRS-ed), or eukarya and archaea
(AlaX2, Polcb). Emap-II and Trpb111 sequences were merged into
one unique class because 90% of the sequences identified as
Trbp111 are also present in the Emap-II profile. The distributions
of the resulting 11 ARS-like proteins present in bacterial phyla
are shown in Fig. 2. Minority phyla have not been represented in
order to simplify the presentation of the results.

3.2. Identification of pathogenicity-related ARS-like proteins

We have constructed a simple and fast algorithm to determine
whether a given protein is significantly over-represented in patho-
genic organisms, and we have applied the method to bacterial ARS-
like proteins. We consider a protein as pathogenicity-related if it is
over-represented in a set of proteomes from human pathogens
compared to what it should be expected by chance.

We computed the enrichment values (ER-proteins and ER-spe-
cies, see Section 2), both for the set of controls and for the ARS-like
proteins (Table 2). By plotting the enrichment rates (Fig. 3), we can
clearly distinguish two differently distributed populations, corre-
sponding to the negative and positive controls. The negative con-
trol distribution is centered around ER-proteins = 1 and ER-
species = 1, whereas the positive control distribution (pathogenic-
ity-related) has a higher variance and goes from non-enrichment
values to high enrichment values. ARS-like proteins are mainly dis-
tributed among the negative control distribution, with the excep-
tion of AsnA, which clusters with pathogenicity-related proteins.

Table 2
Overrepresentation values for the different ARS-like proteins, including the negative
and positive controls used in this study.

ER-proteins ER-species

Negative controls
Tubulin 1.1 1.55
Enolase 1.01 0.96
Alanyl-tRNA synthetase 1.14 1.02
Lactate deshydrogenase 0.89 0.86
Pyruvate deshydrogenase 0.93 0.92

Positive controls
Lipoteichoic acid synthase 1.24 1.17
Adhesin yadA 6.17 5.42
Haemolysin 2.06 1.81
Glutamyl transpeptidase 0.95 0.91
CapC 1.68 1.55
Fimbrial subunit precursor 2.26 2.71
LPS transferase 2.92 2.56
SycE secretion chaperone 3.08 2.71
Heme exporter protein 1.32 1.17
Fimbrial chaperone 2.46 1.87
Cholera enterotoxin 6.17 5.42
Streptococcal exotoxin 6.17 5.42
Coagulase 5.11 4.42
HifA – pilin 3.08 2.71

ARS-like proteins
AlaX 0.5 0.51
ThrX 1.11 1
AsnA 2.53 1.79
ATPS 0.76 0.69
BirA 0.97 0.87
CTP 1 0.91
GluX 1.21 1.43
HisZ 0.44 0.4
PoxA 1.29 0.97
PrdX (ProX) 0.86 0.77
Ybak 1.2 1.06
EMAP-II 1.13 0.98
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Significance testing on the distribution results for AsnA was
performed using a one-tailed test as described above. Since the
ER-proteins mean for the negative controls is 1.014 ± 0.107, the
thresholds corresponding for 5% FP, 1% FP and 0.1% FP are 1.19,
1.26 and 1.34, respectively. Taking this into account, AsnA is not
a member of the negative control distribution with a P-value that
approaches zero even at 0.1% FP. Thus, our results suggest that
AsnA might be correlated with pathogenicity. GluX slightly devi-
ates from the negative control set, however ER-proteins and -spe-
cies values for GluX are below its respective cutoffs for a 1% false
positive rate. Thus we can conclude that this deviation is not statis-
tically significant and that GluX is not over-represented in human
pathogens.

4. Discussion

The evolutionary relationships between ARS and ARS-like pro-
teins have been analyzed previously through the use of phyloge-
netic methods [3,34,35]. This approach represents the best
available strategy for the identification of cladistic relationships,
but it is easily confounded by the extremely long evolutionary
times experienced by aminoacyl-tRNA synthetases and their re-
lated proteins. Irrespectively of clade relationships, the species dis-
tribution of genes represents important information that can be
linked to function and, indirectly, to evolutionary origin. Here we
have analyzed the distribution of an ARS-like proteins families in
bacteria and built a simple algorithm to analyze correlations be-
tween the distribution of a given protein and the pathogenicity
of the species where it is present. The 11 ARS-like protein families
that we have analyzed display very different distribution patterns
among bacterial phyla. A grosso modo, we can distinguish between
proteins that are universally or almost universally present, those
that are present in the majority of phyla, and those that are present
only in a minority of the main bacterial groups.

A wide distribution of a protein possibly reflects an ancient ori-
gin of the gene but lateral gene transfer, which is particularly wide-

spread among bacteria, should always be considered an alternative
explanation. This is the case for the proteins CTP, EMAP II, YadB,
HisZ, and PoxA. Among this group are enzymes whose function is
completely unrelated to gene translation (CTP, HisZ, and PoxA)
and others that remain linked to tRNA biology (EMAP II and YadB).
Interestingly, PoxA is a well-known pathogenicity factor in Salmo-
nella [28]. However, its wide distribution suggests that its biologi-
cal function is not exclusively linked to the establishment of
infection, and the protein does not appear to be over-represented
in pathogenic species (Figs. 2 and 3). Obviously negative values
for enrichment in pathogens do not eliminate the possibility that
a protein is a virulence factor. However, significant positive enrich-
ment rates should be indicative of proteins whose function is path-
ogenicity-related.

Abundant but not universally distributed bacterial ARS-like
families represent an important fraction of the set analyzed here
(AlaX, ATPS, BirA, YbaK). Interestingly, two trans editing domains
are present in this group, indicating that the need for misacylation
correction may not be universal among bacteria. The scattered dis-
tribution of these enzymes may suggest that lateral gene transfer
occurred among those species where the fidelity of the genetic
code is particularly compromised and benefits from the function
of in-trans editing domains [26].

It should be stressed that this situation needs not to be related
to the specific kinetic behavior of the concerned ARS but can be
caused by environmental conditions that, for instance, change
the relative availability of similar amino acids. This situation would
clearly favor the lateral transfer of these genes among species un-
der similar environmental stresses.

Finally a small set of proteins (AsnA and PrdX) present a very
limited distribution among bacteria. PrdX was originally described
as the trans-editing enzyme ProX from Clostridium sticklandii, and
shown to specifically deacylate alanyl-tRNAPro [13,36]. PrdX and
YbaK are two different trans-editing enzymes that hydrolyze dif-
ferent forms of mischarged tRNAPro [13]. Consistent with previous
reports, YbaK and PrdX groups do not overlap in our analysis. How-

Fig. 3. Distribution of over-representation values for all ARS-like proteins (yellow boxes), and positive or negative controls for pathogenicity (red squares and blue diamonds,
respectively). The position of AsnA is marked by an arrow and labeled accordingly.
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ever, they do display overlapping distributions at the phylum level,
as would be expected from two independent editing domains that
recognize different substrates. Despite its more limited distribu-
tion PrdX is not over-represented in pathogenic bacteria (Fig. 3).

Asparagine synthetase (AsnA) is a paralog of asparagine- and
aspartyl-tRNA synthetases that displays a limited distribution
among bacterial phyla. AsnA is unique among the ARS-like proteins
analyzed here because it is significantly over-represented in hu-
man pathogenic bacteria. AsnA has been shown to act as a viru-
lence factor in fish and plant pathogens, although the molecular
bases for this role in virulence remain unknown [7,8]. From our
data it is reasonable to predict that AsnA may also be a virulence
factor among human pathogens that, as such, deserves further
analysis and consideration as a potential therapeutic target.
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Abstract: We present here a systematic exploration of the quality of protein structures derived
from homology modeling when used as templates for high-throughput docking. It is found that
structures derived from homology modeling are often similar in quality for docking purposes
than real crystal structures, even in cases where the template used to create the structural
model shows only a moderate sequence identity with the protein of interest. We designed an
“ensemble docking” approach based on the use of multiple homology models. The method
provides results which are usually of better quality than those expected from single experimental
X-ray structures. The use of this approach allows us to increase around five times the universe
of use of high-throughput docking approaches for human proteins, by covering over 75% of
known human therapeutic targets.

Introduction

New algorithms and computers are making possible the use
of atomistic docking approaches in a high-throughput (HTD)
regime, being possible to screen in silico libraries containing
105-106 compounds against a limited number of protein
targets.1-3 However, we cannot ignore that the requirement
of computational efficiency implies the introduction of severe
simplifications in both the description of molecular interac-
tions and the coverage of the conformational space of ligands
and proteins.4-6 As a result, docking methods have problems

in representing ligand-induced conformational changes in the
protein, and in general the quality of docking algorithms
decreases as the docked drug differs from that bound in the
crystal structure.7,8 However, despite all these limitations,
the power of current docking algorithms is beyond all doubt,
and many authors have demonstrated that their use largely
enriches the possibility to find a good binder from a large
library of decoys and that the proposed optimal poses are
good starting points for lead-optimization processes.9-12 It
is not surprising, then, that virtual screening based on docking
algorithms is a routine task in medicinal chemistry labora-
tories.11,13,14

The inputs of docking algorithms are ligand and protein
structures, and the outputs are a series of “poses”, i.e.,
possible configurations of the protein-ligand complex, which
are then scored using an empirically refined function yielding
to a small subset of preferred binding modes with the
associated binding affinity.15-17 Given the number of ap-
proximations done in a docking algorithm, the practical
purpose of HTD is not the accurate ranking of potential
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binders, but the enrichment of true binders among the top-
ranked compounds and the recovery of good leads for
refinement.

The need to have a three-dimensional structure of the target
protein strongly limits the use of docking algorithms, and
despite the impressive advance of structural genomics, the
number of proteins for which experimental structure is known
represents only a small fraction of the total proteome. Thus,
the 2010 version of the Protein Data Bank (PDB) contains
around 60000 entries, but only 42.5% (25560) of them
correspond to unique proteins from which only 15% (3935)
are human.18,19 In comparison, sequence analysis suggests
that the total number of human proteins ranges between
20332sSwissprot20sand 93110sRefSeq21sprobably twice
or more if spliced forms are considered,22 which means that
the PDB covers only between 2 and 19% of the human
proteins. The gap between structure and sequence becomes
even larger if we consider proteins from virus, bacteria, or
other pathogens for which little structural information exists.

Protein structure can be predicted by a variety of com-
putational methods,23 homology modeling (also named
comparative modeling) being the most accurate one in cases
where there is a clear sequence identity between the target
protein and at least one template with known three-
dimensional structure.24,25 The quality of the structure
derived from homology modeling roughly correlates with
the sequence identity between the target protein and template
proteins.26 Thus, it is accepted that for sequence identities
below 30% less than half of the residues have their CR

correctly placed.27,28 The percentage of correctly placed
residues increases to 85% for identities ranging from 30 to
50%, and most of the CRs are well-positioned for sequence
identities above 50%. Inside the high-quality range no direct
correlation exists between the accuracy of the model and
the sequence identity with the template, and evaluation of
the expected quality of a model is still an unsolved
problem.29 In fact, the concept of “goodness” is not unique,
since it depends on its planned use.30 For example a model
with an accuracy around 3.5 Å in backbone positioning may
be good enough for understanding protein function or
designing mutations but is expected to be of small utility
for prediction of ligand binding.26-31

Different authors have tried to evaluate the quality of
homology models for docking experiments. Thus, McGovern
and Shoichet performed high-throughput docking on 10 target
enzymes for which apo, holo, and homology model structures
were available, finding that they were useful for enriching
the screening, but not as powerful as the holo-crystal
structure.32 Diller and Li reported good enrichments (in some
cases similar to those obtained with the crystal structure)
when model structures of six kinases obtained for identities
in the range of 30-50% were used to screen a large library.33

Similar results were obtained by Oshiro et al.34 in the study
of two targets (CDK2 and factor VIIa), by Gilson’s group
with a set of five targets,35 and by Ferrara and Jacoby in the
analysis of insulin growth factor I receptor.36 In a very recent
paper Fan et al.37 found good results when ensembles of
homology models of several proteins were used to screen
for ligands in the DUD database38 using the DOCK computer

program.39 All these studies illustrate the power of homology
models to guide docking experiments but also underline their
limitations related to the lack of “a priori” evaluations on
the quality of the model for docking purposes and on the
problems of selecting a priori a structural model from the
battery of solutions given by homology modeling routines
(for discussion see ref 36).
The introduction of protein flexibility is the next step in

docking, and there is a significant amount of work focused
in this direction.40,41 Among the different approaches sug-
gested, “ensemble docking” (also known as multiple docking)
is one of the most popular ones. It assumes that the effect
of target flexibility in docking can be represented by using
a Boltzmann ensemble of conformations for the protein
instead of just a single rigid structure. Different methods for
generating ensembles have been proposed, including mo-
lecular dynamics42,43 (from a known experimental structure
of the target), crystallographic (X-ray),44-47 and spectro-
scopic (NMR).48,49 All these approaches require experimental
knowledge of protein structure and are then able to cover
just a small fraction of proteome. In this contribution,
following the pioneering work by Fan et al.,37 we explore
the possibility of using ensembles derived from homology
(comparative) modeling. This approach is simple and fast
and, if successful, would allow us to dramatically expand
the range of applicability of ensemble docking approaches.
We explored, with a wide range of metrics and for a large
number of proteins, not only the ability of the approach to
enrich in active ligands drug libraries but also the structural
quality of the docking predictions, a crucial element in lead
optimization procedures. We designed and tested a procedure
to perform ensemble docking based on the combination of
Modeller50 and Glide,51 finding that the results are in general
of better quality than those expected when a single-crystal
structure is used as a template in docking experiments.

Methods

Protein Data Sets. We defined two sets of proteins of
our study: one for training and another for testing. The
training set was defined considering proteins for which at
least 30 crystal ligand-bound structures were available in
PDB (with the same sequence or at most one single
mutation). PDBs with point mutations were only used to
build the set of active ligands but were not included in the
set of docked proteins. This set of proteins includes thrombin
(2cn0, 1ay6, 1bmm, 1tom, 1xm1), renin (2g24, 1bil, 1hrn,
1rne, 2g1r), cyclin-dependent kinase 2sCDK2s(1aq1, 1e1v,
1gz8, 1jsv, 3ddq), and protein tyrosine phosphatase 1BsPTP-
1Bs(2f71, 1c83, 1g7g, 1ony, 2h4g). The test set was created
using less restrictive conditions in terms of the number of
crystallized structures availablesat least eightsand contained
R-momorcharin (1mrg, 1aha, 1mom, 1f8q, 1ahb), trypsin
(1tng, 1tnl, 1f0t, 1lqe, 2by5), p38 kinase (3hp2, 1w7h, 2baj,
3c5u, 3cg2), HIV retrotranscriptase (3jyt, 1dtq, 1rt1, 1s6p,
3dol), factor Xa (2vvc, 1ezq, 1fax, 1lpk, 1nfu), and heat
shock protein 90sHSP90s(1yet, 1osf, 1uy6, 1yc4, 2ccs).

Homology Modeling. The derivation of model structures
was performed using scripts designed for HTD production
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trying to mimic the standard expert procedure for homology
modeling (see Figure 1). We are aware that by using
automatic protocols homology modeling might be prone to
errors, related mostly to misalignment problems, which can
be easily corrected by manual refinement. However, to
evaluate a pure HTD scenario, no human refinement was
done here, which means that results presented here can be
considered a lower limit of accuracy for the technique.
Accordingly, the sequence of each target protein was
extracted from the PDB, transformed to FASTA-format, and
launched against the Pfam-A database52 using HMMER53

to assign the sequence to a superfamily. All the FASTA files
for which there is a PDB corresponding to this same
superfamilysall the candidate templatesswere retrieved and
aligned to the target sequence using ClustalW.54 After this
procedure each template was placed into different categories
depending on its percentage sequence identity: 80-100,
60-80, 40-60, 30-40, 25-30, 20-25, 15-20, and 10-15%.
For each sequence-identity category we selected 15 templates
considering only proteins bound to ligand and solved at the
highest resolution possible. Each set of 15 templates was
divided into five subsets in order to build five different
models per sequence-identity category. It is important to
remark that the five models per sequence-identity category
were built on the basis of different templates. Such templates
were structurally aligned by STAMP,55 creating then a profile
using HMMER, which was introduced as a meta-template
for alignment of the target sequence (see Figure 1). Finally,
the 9v5 version of MODELLER50 was used to create
structural models using default options.

Ligand Selection. The active ligands to dock were
downloaded from the PDB database (www.rcsb.org), by
selecting all available X-ray ligands from PDB complexes
for each of the proteins of the study. All the available ligands

were subjected to similarity analysis using MOE56 imple-
mentation of MACCS structural fingerprints57 and distributed
in 80% identity clusters. Only one compound per cluster was
selected, which guarantees the diversity of the ligands,
avoiding bias derived from the overrepresentation of the same
scaffold. The set of known ligands was mixed with 1000
diverse “decoys” (molecules not described as binders for
these proteins) which were selected from the most populated
clusters obtained using Reynolds’ algorithm at a similarity
cutoff level of 60%58 on a local database containing 1.7
million commercially available compoundssalready filtered
by drug-likeness criteria: Lipinski rules, Veber rules, and
lack of reactive groups.59-61 The percentage of active ligands
ranged from 0.5 to 10%, depending on the protein.

Docking Procedure. Ligand screening and docking was
performed using the Glide 5.0 program.51 The extraprecision
Glide docking (Glide XP) protocol was used for the training
set, while the standard-precision (Glide SP) protocol was
used for the test set, trying then to mimic a normal HTD
procedure (in practice, we found very small differences
between both scoring functions). Starting from the PDB
structures, ligands were prepared using the LigPrep62 facility
in Schrödinger utility MAESTRO,63 by generating low-
energy ionization and tautomeric states within the range of
pH 7.0 ( 2.0. All ligands were energy-minimized using the
OPLS_2005 force field implemented in MAESTRO.63 The
setup of proteins was done with the Protein Preparation
Wizard facility, which included hydrogen optimization,
protonation, and geometry optimization using again the
OPLS_2005 force field. The receptor grid defining the
docking universe was built centered on the crystallographic
ligand, which was then removed as any other nonprotein
molecule.

Figure 1. Comparative model building work flow. The process is automated such that a FASTA sequence is given as input,
and a total of 40 homology models that range from 10 to 100% sequence identity are obtained. The software used at each step
is detailed in Methods.
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Metrics for Preevaluation of Model Quality.The structural
quality of the model was evaluated using both global and
local parameters. The global quality indexes included global
root-mean-square deviation (rmsd; model-reference PDB),
global sequence identity, number of gaps in the alignment,
and sequence coverage of the model. The local parameters
were always referred to the binding site (defined as the set
of residues with at least one atom at less than 5 Å from the
crystal ligand) and included binding site rmsd, binding site
sequence identity, and atom conservation in binding site
structure. All rmsd measures were computed using the
MMTSB tool set.64

Metrics for Evaluation of Success in Docking. The
success of docking was measured by analyzing the following:
(1) the ability of the models to predict the structure of the
ligand-protein complex and (2) the applicability of the
models for virtual screening purposes. The ability of models
to predict the structure of the complex was assessed by (i)
measuring the proportion of docked poses with rmsd below
2 Å from crystal structure using an SVL script in MOE, (ii)
measuring the rmsd obtained when comparing the best-
docked pose (rmsd-based selection) and the best-ranked pose
(GlideScore-based selection) with the crystallographic ligand,
and (iii) measuring the similarity between ligand-protein
contact maps in models and crystal structures, which are
determined by comparing the number of atoms that are
conserved from those found at less than 5 Å from the docked
ligandscompared to the original PDB where the docked

ligand is found. Thus, for each docked ligand, a different
ligand-protein map is built and compared to its correspond-
ing PDB.
The utility of the models for virtual screening purposes

was evaluated by assessing the performance of the homology
models to discriminate between active compounds and
decoys (inactive). A virtual screening run selects a list of
molecules (n) from a given database of N entries, which
includes both actives (true positive compounds, TP) and
decoys (false positive compounds, FP). Actives (A) that have
not been found by the screening method are false negatives
(FN), and decoys that have not been selected are true
negatives (TN). The optimum screening is that able to
recover all true positives, without recovering any false
positive.
Many different enrichment descriptors described in the

literature have been considered in this work.65,66 First we
computed the sensitiVity (true positive rate; TPR; see eq 1)
and the specificity (true negative rate; TNR see eq 2) indexes.
The first indicates the ability of the method to recover the
real ligands, while the second informs on its ability to avoid
decoys.

where FPR stands for false positive rate.

Figure 2. Recovery of active (nondashed lines) and inactive ligands (dashed lines) for each of the proteins of the training set.
As can be seen in the plots, both active and inactive ligand recovery increases as the GS threshold decreases. The different
colors correspond to different sequence identity ranges: blue (PDB), red (model 80-100), and green (model 40-60). The selected
PDBs are all high-resolution holo conformations: 2cn0, 1aq1, 2g24, and 2f71, which correspond to thrombin, cdk2, renin, and
PTP-1B, respectively.

sensitivity ) TPR ) TP
(TP + FN)

(1)

specificity ) TNR ) TN
(FP + TN)

) 1 - FPR (2)
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The accuracy (Acc; eq 3) index was used to describe the
percentage of molecules which have been correctly classified
by the screening protocol, whileprecision (positive predictive
value; PPV) was used to describe the proportion of true
positives among the list of selected compounds given by the
docking (eq 4).

To assess the ability of the models to obtain true actives
among the first ranked compounds (an extra requirement in
HTD studies67), the enrichment factor (EF, eq 5) was used.

ROC (receiver operating characteristic; true positive versus
false positive rates) curves and the associated AUC curves
(area under the ROC curve) have also been used to determine
the discriminatory power of the virtual screening procedure.
These metrics are especially powerful since they are not
dependent on the ratio of actives to decoys of the
database.68-70

Results and Discussion

Structural Quality of the Models. Modeller50 provides
good global models when using structural templates with
sequence identities above 25% (Supporting Information
Figures S1 and S2). The use of templates with sequence
identities below such a threshold can yield wrong structures
due mainly to alignment errors or to the presence of large
unfolded regions. The atom conservationsi.e., the similarity
between ligand-protein contact mapssat binding sites grows
faster than global sequence identity, and for identities as
small as 25-30% around 60-70% of the atoms at the
experimental binding site are conserved in the model
(Supporting Information Figure S3). The heavy-atoms rmsd
between model and real binding sites are typically below 2
Å for sequence identities above 25% (Supporting Information
Figure S4). Clearly, then, structural models created using
homology modeling not only reproduce well global protein
structure but also provide quite important details of the
binding site. Whether or not the quality of these details is
enough for drug docking studies will be the main subject of
discussion in the remaining of our communication.

Docking Enrichment Using Single-Structure Homology
Models.The second point to analyze was the quality of single
homology models when used to recover specifically active
ligands from a mixture of ligands and decoys. Within the
Glide framework the number of hits recovered in a docking
depends on the scoring (GS) threshold. For very restrictive
GS values very few decoys (false positives) are recovered,
but many real ligands might be lost. On the contrary, when
very permissive GS values are used, all real ligands are
recovered, but at the expense of increasing dramatically the
number of incorrectly selected decoys. Results shown in
Figure 2 demonstrate that using a single PDB structure as T
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template Glide is able to recover typically between 40 and
90% of the real ligands with a small number of false positives
for a very strict scoring function threshold (-GS ) 8). The
ratio of true positive increases about 10 percentile points for
-GS ) 7 and 5-10 extra points for -GS ) 6, keeping still
an acceptable rate of recovery of false positives; for larger
-GS values the rate of false positives becomes unacceptable.
In any case, the improvement with respect to random selec-
tion is very clear, demonstrating the performance of the Glide
docking algorithm.
When homology models are used for docking, the per-

formance of Glide is not lost (Figure 2 and Table 1), even
in cases where the models are built using proteins with a
modest level of homology as templates. It is especially
encouraging that in some cases homology models outperform
experimental structures for drug docking, a result already
found by other authors32,37 and which encourages the use
of modeled protein structures for drug design experiments.
The fact that homology models outperform X-ray structure
for thrombin might appear surprising but is on the line of
previous works with this protein32 which demonstrated that
probably the holo structure of thrombin is overspecialized
for ligand binding, with problems arising in cross-docking
experiments similar to those performed here. Homology
models, less refined for a particular ligand binding mode,
are then more successful.

Structural Quality of the Docking Poses Obtained Us-
ing Single-Structure Homology Models. The ability of the
docking algorithm to capture specifically the maximum of
active ligands is the major requirement for hit finding.
However, to guide the optimization of the hit, there is an
additional requirement: the drug needs to be correctly placed
at the binding site. When using an experimental PDB
structure as template, Glide is able to find poses that are
very close (rmsd < 2 Å) to the bound conformation found
in crystal in around 50% of cases, and in fact in more than
30% of cases the best scored poses (typically -GS > 8)
match the experimental conformation (Figure 3A). Very
interestingly, the global performance of the method does not
change significantly when single homology models built from
sequence identities above 40% are used, and even models
built from templates with sequence identities around 25%
can provide reasonable results. Again, it is remarkable that
for some proteins homology models can provide more
accurate binding mode predictions than the experimental
structurese.g., thrombin homology models recover on aver-
age 20% more correctly docked ligands compared to the
crystallographic structures.

Ensemble Docking versus Single-Structure Docking.
Proteins adapt their structure to the bound ligand, which
explains the problems of docking methods to recognize active

Figure 3. Recovery of correctly docked ligands versus sequence identity of the models. The recovery is defined as the fraction
of correctly active docked ligandssless than 2 Å rmsd from the crystal structureswith respect to the total active docked and
scored ligands. (A) In the upper plot, the best-ranked active ligand pose is chosen from all the proposed poses by using a
score-based selection, whereas in the lower plot the best-docked ligand pose is chosen by using an rmsd-based selection. (B)
Recovery of correctly docked ligands versus sequence identity when using an ensemble docking approach. Both score-based
selectionsi.e., best rankedsand rmsd-based selectionsi.e., best dockedsare shown. Each protein of the training set is labeled
accordingly, and the mean value of the four training set proteins is shown in black.
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ligands when the protein structure has been solved in the
presence of a very different compound. This problem is
graphically illustrated in Figures 3B and Supporting Informa-
tion Figure S5, which show the dispersion of results that
can be obtained for a given protein when different high-
resolution X-ray structures are used for docking. We can
alleviate this problem by docking the drug against all the
protein structures, selecting then as optimal docking mode
that with the best scoring. This strategy is known as multiple
docking or ensemble docking, which has been used and
described in previous papers.40,71-76 An ensemble of receptor
conformations provides a structural degree of freedom that
cannot be achieved with other flexible-receptor docking
methods, such as induced-fit docking (IFD).77 In our
ensemble docking procedure, we have used five different
structures, which is in accordance with the number of
receptor structures used in previous papers.71,73 This en-
semble docking procedure (using at this point only experi-
mental structures) leads to a clear improvement with respect
to the average situation found when docking was done for
single structures if a restrictive GS threshold is used (see
Table 1). In fact, for strict threshold values the ensemble
docking approach yields in most cases better results than
those obtained by using the best “dockable” experimental
structure, while the performance can decay for permissive
thresholds due to the retrieval of false positives. It is also
worth noting that the ensemble docking approach improves

also the chances to recover good structural models for lead
optimization procedures (compare Figure 3A with Figure 3B,
and see Supporting Information Figure S6).

Ensemble Docking from Homology Models. The pre-
ceding analysis suggests that in general better docking results
are obtained if all the experimental structural information
of a protein is used as input for an ensemble docking
procedure. The question is now, whether or not this situation
is maintained for the less accurate ensembles generated by
comparative modeling. Results in Table 1 demonstrate that
the use of ensembles increases very significantly sensitivity
(70-100%) with respect to single models, decreasing only
slightly the specificity (around 6% for -GS g 8), leading
to an overall improvement in the docking results. Thus,
improvement made by the use of ensemble docking is more
important in cases where the initial structures have lower
AUCs, such as those in homology models.

Homology-modeling based ensemble docking coupled
with good structural models and strict scoring thresholds
outperforms in most cases single-structure docking performed
using experimental structures (Table 1 and Figure 4). In fact,
the quality of the ensemble docking results for accurate
homology models (sequence identity above 80%) is indis-
tinguishable from those obtained using experimental en-
sembles, and on average more than 80% of active ligands
are recovered with a small percentage of recovered decoys

Figure 4. Ensemble docking versus single docking approach. The performance of both approaches is being compared in terms
of recovered active ligands and decoys for the four proteins of the training set. The single docking approach performance is
shown with blue and cyan lines, which correspond to the recovery of active and inactive ligands, respectively. Similarly, the red
and orange lines correspond to the active and inactive ligand recovery, respectively, when using an ensemble docking approach.
In all cases, the difference between active and inactive recovery is higher when using ensemble docking. Results shown
correspond to -GS ) 8.

Ensemble Docking from Homology Models J. Chem. Theory Comput., Vol. 6, No. 8, 2010 2553



(Figure 4) when homology ensembles are used. The ensemble
docking protocol is very robust to the decrease in sequence
identity, given that models with sequence identities in the
range of 30-40% still provide good results. On the contrary,
the protocol outlined here is very sensitive to the scoring
threshold used, and less strict GS values increase excessively
the recovery of false positives (Table 1 and Supporting
Information Figures S7 and S8).
Finally, it is worth noting the large structural quality of

the complexes obtained in homology-derived ensemble
docking even when templates were not very homologous
(Figure 5 and Supporting Information Figure S6). In fact, in
most cases docking using ensembles of homology models
outperform single experimental structure docking (Figure 4).

Validation of Results.Analysis on four proteins for which
a large amount of structural data exist suggested (see above)
that ensemble docking using homology models with sequence
identity above 30-40% displayed a good ability to specif-
ically recover active ligands when used as input for Glide
calculations. Furthermore, the suggested complexes were in
general reasonably close to the experimental binding modes,
suggesting that the derived poses could be safely used in
lead-optimization procedures. Analysis of the data suggests
that the best balance between sensitivity and specificity is
obtained when strict Glide scoring values were used to
discriminate between active and decoy complexes. It is
however unclear whether these results are general or specific
for the proteins considered up to now. To analyze this point,
we studied the ability of Glide on homology modeling
ensembles of six unrelated proteins (see Methods).

Results summarized in Figure 6 demonstrate the good
screening performance of the ensemble-docking approach
performed with homology models also in the completely
unrelated set of proteins used for validation. It is difficult to
extend results of this small set of proteins to the entire
proteome, but results suggest that docking performed using
ensembles of homology models created using templates with
sequence identity in the range of 30-40% leads to results
which are of similar quality (according to most metrics) than
those obtained using a single experimental structure. The
screening performance of docking using ensembles of high-
quality homology models is in general superior to that of
docking using a single experimental structure and similar to
docking procedures using an ensemble of experimental
structures. Finally, Figure 7 confirms the geometrical quality
of the complexes resulting from the homology model based
docking procedure and accordingly its potential use in lead
optimization processes. Our results indicate that the use of
ensembles of homology modelssbuilt with Modellersas
input for Glidesusing strict scoring thresholdssimproves
both the retrieval of active ligands from a chemical library
and also the recovery of good structural complexes for lead
optimization processes.

Gain in the Coverage of the Dockable Proteome.Results
above suggest that an identity range of 30-40% is enough
to build ensembles of homology models which can signifi-
cantly enrich chemical libraries in active ligands. These
results allow us to expand the applicability of structure-based
drug design to a large universe of targets. Thus, while only
19% of (20332sSwissprot-annotated) human proteins can

Figure 5. Performance of ensemble PDBs versus single PDBs. Performance (y-axis) is measured as the difference between
the true positive rate (TPR) and the false positive rate (FPR). The dashed lines correspond to single PDBs, whereas the nondashed
lines correspond to the average and ensemble of the PDBs, labeled with orange and brown, respectively. In all cases except for
renin, the ensemble performs better than any single PDB at strict GS thresholds. However, in all proteins of the training set, the
ensemble’s performance decreases more rapidlysi.e., has higher slopesthan any of the single PDBs.
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be subjected to docking experiments using experimental
structures, around 55% of (Swissprot) known human proteins
can be studied by ensemble docking using homology models
built from templates with 40% identity (Supporting Informa-
tion Figure S9). Furthermore, less than 50% of human
proteins of pharmacological interest have crystal structure
available (DrugBank78). This coverage increases 41%si.e.,
covering over 75% of the human drug targetsswhen using
homology models up to 30% identity (see Supporting
Information Figure S10).
With all the required cautions needed in the use of

homology models for docking purposes (related mostly to

the problems in finding good templates and in determining
“a priori” the quality of the model), we suggest that the use
of comparative models can enlarge dramatically the universe
of applicability of small-molecule docking approaches,
opening the possibility to analyze all potential cross-
interactions of drug candidates, warning on potential adverse
effects, opening new horizons both in the development of
“dirty” drugs and in the determination of new indications
for already annotated drugs.

ABBREVIATION.A, actives; Acc, accuracy; AUC, area
under ROC curve; CDK2, cyclin-dependent kinase 2; EF,
enrichment factor; ENS, ensemble; FN, false negatives; FP,
false positives; FPR, false positive rate; GS, glide score; HIV,
human immunodeficiency virus; HSP90, heat shock protein
90; HTD, high throughput docking; IFD, induced-fit docking;
MACCS, molecular access system; PPV, positive predictive
value; PTP-1B, protein tyrosine phosphatase 1B; rmsd, root-
mean-square deviation; ROC, receiver operating character-
istic; seq id, sequence identity; SVL, scientific vector
language; TN, true negatives; TNR, true negative rate; TP,
true positives; TPR, true positive rate.
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Supporting Information Available: Figures S1-S10
showing global rmsd between the homology models and the
reference pdb, the correlation between the percentages of
sequence identity and their sequence coverage, correlation

Figure 6. Enrichment descriptors for the test set. Only ensemble results for sequence identities>30% are shown for simplification.
In the four top plots (sensitivity, specificity, accuracy, and PPV), enrichment descriptors are computed for -GS ) 8 (blue) and
-GS ) 7 (red).

Figure 7. Recovery of correctly docked active ligands of the
test set. A ligand is considered as correctly docked when its rmsd
with the crystallographic ligand is below 2 Å. Both score-based
selectionsi.e., best rankedsand rmsd-based selectionsi.e, best
dockedsare shown. Single docking averages are shown in red
and orange, whereas ensemble docking averages are shown
in blue and cyan.
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between the binding site sequence conservation and the
percentage of sequence identity of the model, rmsd of the
binding site, ROC curve plots for thrombin pdbs, similarity
between ligand and protein contact maps, ensemble versus
single docking approach, coverage of the human proteome,
and structural coverage of human targets of pharmaceutical
interest. This material is available free of charge via the
Internet at http://pubs.acs.org.
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Figure S1.  Global RMSD between the homology models and the reference PDB.  The proteins of the 

training set are labeled in cyan (thrombin), orange (cdk2), green (renin) and purple (PTP-1B). 
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Figure S2.  Correlation between percentage of sequence identity of the models and their percentage of 

sequence coverage.  Homology models over 30% present very high sequence coverage values, in all 

cases over 80% sequence coverage.  The proteins are labeled in cyan (cdk2), red (thrombin), green 

(renin) and purple (PTP-1B). 
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Figure S3.  Correlation between the binding site sequence conservation and the percentage of sequence 

identity of the model.  The percentage of conserved atoms in the binding site has been extracted from 

the structure of the model -not from its sequence alignment-.  The binding site has been defined as the 

atoms of the protein that are found at least at less than 5Å from the reference ligand. To compute the 

percentage of conserved atoms in the binding site, each model was structurally superimposed to its 

reference PDB.  Once superimposed, atoms of the binding site of the model were defined as those found 

at 5Å from the reference PDB ligand.  The chosen reference ligand is originally found in an "holo" 

structure: 2cn0 (thrombin), 1aq1 (cdk2), 2g24 (renin), 2f71 (PTP-1B).  Each protein is labeled 

accordingly.   

 

 



 5 

Figure S4.  RMSD of the binding site for the comparative models of the 4 proteins of the training set.  

The binding site is defined as those residues that have at least one atom at less than 5Å from the ligand.  

Each protein is labeled accordingly.   
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Figure S5.  ROC curve plots for thrombin PDBs.  Dashed lines correspond to ROC curves of single 

thrombin PDBs (1ay6, 1bmm, 1tom, 1xm1 and 2cn0), whereas non-dashed lines correspond to the 

average of all single PDBs (orange) and ensemble of these PDBs (brown).  Clearly, the ensemble 

performs better than the best-performing PDB.   



 7 

Figure S6.  Similarity between ligand-protein contact maps.  For each docked ligand, a contact map -

i.e., a list of atoms or residues found at less than 5Å from the ligand- is compared to the contact map of 

the original PDB that included experimentally the ligand.  Thus, these results indicate the maximum 

percentage of atoms that can be doing right contacts. For the homology models, only ensemble docking 

results are shown.  The upper plot shows the percentage of common atoms of the contact maps, whereas 

the lower plot shows the percentage of common residues.  Each of the proteins of the training set is 

labeled accordingly, and the mean value is shown in black.   
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Figure S7.  Ensemble docking approach versus single docking approach. The single docking approach 

performance is represented with blue and cyan lines, which correspond to the recovery of active and 

inactive ligands, respectively.  Similarly, the red and orange lines correspond to the active and inactive 

ligand recovery, respectively, when using an ensemble docking approach. Results shown correspond to -

GS=7. 
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Figure S8. Ensemble docking approach versus single docking approach. The single docking approach 

performance is represented with blue and cyan lines, which correspond to the recovery of active and 

inactive ligands, respectively.  Similarly, the red and orange lines correspond to the active and inactive 

ligand recovery, respectively, when using an ensemble docking approach. Results shown correspond to -

GS=6.   
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Figure S9.  Coverage of the human proteome using comparative modeling.  At a 50% sequence identity, 

less than half of the human proteome can be modeled.  However, below 50%, the number of proteins 

that can be modeled rapidly increases, reaching a 78% of human proteins that can be modeled with a 

threshold of 30% sequence identity.  
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Figure S10.  Structural coverage of human targets of pharmacological interest depending on the 

sequence identity threshold.  A 30% sequence identity threshold - which still gives very good results 

when using the ensemble docking approach - allows us to cover 41% more human drug targets, 

obtaining a final coverage of 75% of the human drug targets.  The list of targets has been obtained from 

the DrugBank database.  
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Small Molecule Docking from Theoretical
Structural Models

Eva Maria Novoa, Lluis Ribas de Pouplana, and Modesto Orozco

1 Docking as a Method for Drug Design

Structural approaches to rational drug design rely on the basic assumption that
pharmacological activity requires, as necessary but not sufficient condition, the
binding of a drug to one or several cellular targets, proteins in most cases. The tradi-
tional paradigm assumes that drugs that interact only with a single cellular target are
specific and accordingly have little secondary effects, while promiscuous molecules
are more likely to generate undesirable side effects. However, current examples in-
dicate that often efficient drugs are able to interact with several biological targets [1]
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in Biomedicine, Josep Samitier 1–5, Barcelona 08028, Spain
e-mail: modesto@mmb.pcb.ub.es

N. Dokholyan (ed.), Computational Modeling of Biological Systems: From Molecules
to Pathways, Biological and Medical Physics, Biomedical Engineering,
DOI 10.1007/978-1-4614-2146-7 4, © Springer Science+Business Media, LLC 2012

75



76 E.M. Novoa et al.

and in fact some dirty drugs,1 such as chlorpromazine, dextromethorphan, and ibo-
gaine exhibit desired pharmacological properties [2]. These considerations highlight
the tremendous difficulty of designing small molecules that both have satisfactory
ADME properties and the ability of interacting with a limited set of target proteins
with a high affinity, avoiding at the same time undesirable interactions with other
proteins. In this complex and challenging scenario, computer simulations emerge as
the basic tool to guide medicinal chemists during the drug discovery process.
Since early works in the 1980s, molecular docking has arised as a leading

simulation technique to facilitate the drug design. The traditional paradigm of
docking, known as rigid-body docking approach, assumes implicitly the Fisher’s
lock-and-keymodel [3], and considers that the ligand-induced structural changes of
the protein are negligible [4]. However, drugs generally exhibit a certain degree of
flexibility, and the bioactive conformationmight not be themost stable conformation
in solution [5, 6]. This fact leads to the need of considering drug flexibility for a
successful docking simulation. Furthermore, analysis of the Protein Data Bank [7]
reveals that ligand binding can introduce non-negligible changes in protein structure
which often affect the binding site, raising tremendous difficulties for docking
techniques, especially in cases where structural changes are not only binding-
specific, but also drug-specific [8]. A second limitation in docking experiments
arises from the evaluation of the ligand-binding free energy. Free-energy simulation
techniques are expensive calculations that remain impractical for the evaluation
of large numbers of ligands [9]. Current docking strategies are based on the
combination of very fast functions, which intend to predict binding poses and rank
them by means of a more complex equation (the “scoring function”), which has been
parameterized to reproduce experimental binding data of protein–drug complexes
[10]. However, scoring functions implemented in docking programs make various
assumptions and simplifications, and do not fully account for all phenomena that
determine molecular recognition.
Despite all the challenges, the major practical limitation for docking procedures

does not emerge from technical uncertainties in the evaluation or scoring of
docking poses, but comes from the lack of experimentally solved protein structures.
Indeed, despite the massive effort focused in the experimental resolution of protein
structures, 2010 version of the PDB contains less than 4,000 unique human proteins,
while RefSeq [11] suggests the existence of nearly 100,000 human proteins, twice
or more if splicing variants are considered. Therefore, the current version of PDB
is covering only around 4% of the known human proteome [12]. This sequence-
structure gap becomes even larger if we consider proteins from virus, bacteria, or
other pathogens for which less amount of structural information exists.
The evaluation of the potential interactions of drugs with multiple targets is

severely limited if the analysis relies exclusively on experimentally solved struc-
tures. Fortunately, this limitation can be partially solved with the use of predicted
models of proteins as templates for docking (Fig. 1). In this chapter, we very briefly

1Drugs that bind to several molecular targets or receptors, and therefore tend to have a wide range
of effects and possibly negative side effects.
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Structural coverage human proteins (RefSeq)

Unknown structures

Known experimental
structure

Model at 40% identity

Model at 30% identity

Fig. 1 Structural coverage of human proteins according to RefSeq without including splicing
variants

review the state-of-the-art of docking procedures, making special emphasis on the
potential use of ensembles of structural protein models derived from homology
modeling in high-throughput docking experiments.

2 Docking Algorithms

There is a plethora of docking algorithms and strategies that have been implemented
in a large variety of computer programs, some local and used by a restricted
community, and others commercially available that have a wide user community. It
is out of our scope to review all of them here, and we just outline the basic formalism
behind the most popular ones. The reader is addressed to excellent reviews to gain
a more complete view on current algorithms [10, 13–16].
In principle, all docking algorithms follow a stepwise procedure: (1) several

estimates of the ligand–protein complex (binding poses) are proposed, and (2) these
poses are then ranked using a scoring function and offered to the user, who typically
focuses his/her attention to the best scored ones. Given that scoring functions
are fitted against experimental binding data, scoring values have “free energy of
binding” units. Therefore, they can be used to differentiate between good and bad
drug candidates and even to have an estimate of the binding free energy of the drug.
The differences between the different docking programs rely on (1) the method

used to explore the drug-binding landscape, (2) the method used to introduce
flexibility, and (3) the nature and the parameterization of the scoring function. For
example, DOCK [17], one of the first widely used docking programs, performs a
geometrically based docking of the ligands based on isomorphic subgraph matching
algorithms [18], which is later refined by considering the chemical nature of the
ligand and the binding site. Different scoring functions—mostly in the AMBER [19]
force-field—are used during the different stages of the fitting and ranking process,
including complex physical functions calling to atomistic force-field calculations
coupled to Generalized Born or Poisson–Boltzmann calculations. The popular
AUTODOCK program [20] offers a variety of optimizers including Monte Carlo
simulated annealing and different genetic algorithms using smoothed potential
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energy terms precomputed in a regular grid.2 Scoring is performed considering
ligand-entropic terms and desolvation contributions in addition to ligand–protein
interaction terms. GOLD [21], another very popular program, uses a sampling
protocol similar to the genetic algorithm implemented in AUTODOCK and a very
wide range of well-validated scoring functions, which include specific corrections
such as those for metal ions and covalent interactions [22]. This program includes
also specific scoring functions for kinases and offers the possibility to incorporate
user-refined scoring functions. The program FLExX [23], which has also an ex-
cellent record of success, uses a geometry-fitting algorithm derived from computer
vision engineering, where drugs grow in optimum orientations and conformations
at the binding site from an original seed fragment. The program permits the
introduction of knowledge-based pharmacological restraints and the incorporation
of essential water molecules and crucial metal ions in the binding site. Scoring
is based on a simple physical scoring function based on OPLS [24] force-field
parameters. ICM [25], a powerful program to fit small ligands to proteins, uses
a smoothed atomistic energy function coupled with a Monte Carlo algorithm in
internal coordinates to sample the drug–protein binding space. Its scoring function
contains the usual contributions plus two desolvation correction terms. GLIDE [26],
a widely used docking program in the pharmaceutical industry, uses a “funnel
strategy” where each pose passes a series of hierarchical filters that evaluate the
ligand–receptor interactions, including spatial fit, complementarity of interactions
using a grid-based method, and finally an evaluation and minimization using OPLS-
AA nonbonded ligand–receptor interaction energy. GLIDE incorporates a variety
of scoring functions with increasing computational complexity. MedusaDock [27],
a recently developed software, is a docking method which models both ligand and
receptor flexibility in a rapid manner by using sets of discrete rotamers, obtaining
quite good results with targets which are known to be very flexible.
In addition to those implemented in standard programs, many other scoring

functions have been developed (for a review see [28]), using experimentally
calibrated master equations similar to that in (1).

�Gbinding D ˛Eele C ˇEvW C �EHBond C ıGdesolv C "Slig C �E
lig
dist C 'Gothers; (1)

whereEele andEvW stand for usual electrostatic and van derWaals terms—typically
smoothed to avoid nuclei discontinuities. Hydrogen bonds contribution is sometimes
explicitly included in EHbond, while in others it is captured by Eele and EvW. The
ligand and protein desolvation contribution (typically computed from occluded
surface/volumes) are included in Gdesolv, the loss of ligand entropy upon binding
is introduced in Slig (typically roughly approximated by counting the number of
rotable bonds in the ligand), and the constrained energy is captured by Elig. Other
additional terms can be included, such as corrections for covalent interactions,

2Representation of the receptor energetic contributions (mainly electrostatic and van der Waals) to
be read during the ligand scoring.
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cation–  contacts, special metal–ligand interactions, presence of buried waters in
the binding cavity, and many others. All these different terms are weighted using
parameters that are fitted against empirical data. As discussed above, different
programs offer the user the possibility of using family specific scoring functions and
to incorporate his/her own scoring functions. However, the large number of available
scoring functions has generated an obvious confusion in the users community and
has driven to the popularization of strategies based on consensus or meta-scoring
functions. Future work needs to be done by the community to order this explosion
of different scoring strategies.
Flexibility is treated at different levels by various programs. Ligands with poten-

tial drug-like properties tend to be small and moderately flexible, which facilitates
the determination of the optimum docking conformation by different methods such
as energy minimization, Monte Carlo, genetic algorithms, molecular dynamics,
and many others. The complexity here arises from the need to determine which
is the optimum geometry in solution [6]. As noted above, the incorporation of the
protein flexibility is much more difficult due to the large number of protein degrees
of freedom, and none “final” algorithm has been yet developed. Many programs
allow the user to refine a reduced number of residues in the protein—generally
limited to side chains—by using rotamer libraries [29], Monte Carlo [30], or
restrainedmolecular dynamics [31]. Nevertheless, one of the most popular strategies
consists in the “ensemble” docking approach, which assumes that the effect of target
flexibility in docking can be represented by using a Boltzmann ensemble of confor-
mations for the protein instead of just a single rigid structure. Different methods
for generating ensembles have been proposed, including molecular dynamics from
a known experimental structure of the target [32, 33], crystallographic (X-ray) [34–
37], and spectroscopic (NMR) [38, 39]-derived structures.
A common feature in most descriptions of new docking methods is the claim

that it is more accurate than the competitors. In our experience, the performance of
docking algorithms changes in each version and depends quite significantly on the
nature of the problem and the skills of the modeler running the project, factors that
hinder the validity of the conclusions derived from blind test experiments [40]. An
estimate of the market share taken by the different docking algorithms is also dif-
ficult to determine, particularly in a scenario of site-licenses, cost-related decisions
in the selection of docking engines and where publication is not often a priority.
However, a simple analysis of the literature (ISI CITATION MANAGER) in 2009
reveals that the market is quite equally divided among different codes (see Fig. 2).

3 Scenario for Docking Use

The literature is full of examples of use of docking algorithms in drug design
procedures, and the documentation accompanying the different computer programs
illustrates many examples where docking has been crucial to derive significant
results. Even thoughmost docking studies are done inside pharmaceutical industries
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Fig. 2 Number of citations in scientific literature of commonly used docking algorithms in 2009

and are never published, analysis of the literature reveals that the word “docking”
has been used in the title or abstract in 1,565 publications during 2009.
Docking can be done in quite different scenarios, where objectives and success

criteria can be quite different:

1. Derivation of structural binding mode for a known binder
2. Determination of primary or secondary targets for a drug
3. Virtual high-throughput screening (vHTS)

The derivation of a structural binding mode for a small molecule is probably the
most traditional use of docking algorithms. Within this paradigm, the process starts
after high-throughput experimental studies (or alternative methods) that detect one
or several small molecules which display activity against a given target. However,
there are many factors that determine whether these “hits” can become “leads”
or can be modified to improve their properties. Such a lead optimization process
requires a quite detailed knowledge of the binding mode, something that only in
silico docking can provide with the required velocity. In this context, the use of
docking methods is defined by the limited number of drugs to consider and by the
existence of a single target protein. The accuracy is, however, crucial since errors in
the placement of the drug can completely misguide the lead optimization process.
A basic metric commonly used for evaluating the accuracy of the predicted binding
modes of docking programs is the root mean square deviation (RMSD) between the
predicted conformation and the native pose of the ligand:

RMSD D
 X

N

.Ri � Rj /2

N

!1=2

; (2)

where R stands for the ligand coordinates in the predicted binding mode .i/ and
in the native pose .j /, and N is the total number of atoms. In many practical
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cases, the predicted binding mode can be useful even if there is a significant RMSD,
provided that some key groups are properly located. Then, it is also convenient to
use more case-specific descriptors for the validation of docking methods such as the
generalized RMSD:

RMSD D
 X

N

�n.Ri � Rj /2

N

!1=2

; (3)

whereN is the total number of atoms in the drug and the weighting factor �n reflects
the importance of the residue n in defining the bioactive drug–protein complex.
Many other qualitative measures of structural quality of the docking poses have
been suggested [41].
Docking programs do not provide a single pose as an output, but a series of them

ranked according to the scoring function. Thus, it is not an uncommon situation
that the real binding mode is detected, but not top-ranked by the scoring function.
Thus, an additional requirement for the derivation of a structural bindingmode is the
correct ranking of the good docking solution, which would guarantee that the final
user does not disregard it in a further study. A quite common global estimate of the
accuracy of the predicted binding mode is the “2 Å RMSD rule,” which consists in
computing the percentage of predicted binding modes of the ligands that are found
at less than 2 Å from the native pose. In a recent study [12], we found that for a
selected set of proteins, around 30% of the correctly predicted docked poses are
disregarded due to a failure in the scoring of these poses. Thus, instead of correctly
predicting the bindingmode of 43% of the poses, only 30% of the poses are correctly
predicted and scored (see Fig. 3).

The determination of primary or secondary targets for a drug is an increasing
field of application for docking algorithms, especially due to the emergence of
“drug repositioning” strategies [42], i.e., the identification of new indications for
existing drugs. Both new indications and adverse drug reactions are caused by
unexpected ligand–protein interactions on secondary targets, and can be explored
through docking experiments. The objective here is not necessarily to predict the
binding mode with extreme accuracy, but to detect possible targets for a drug.
During the last decades, the dominant philosophy in drug design has been the

“one gene, one drug, one disease” paradigm. However, many effective drugs have
shown to act via modulation of multiple proteins rather than single targets. Indeed,
recent studies suggest that selective compounds compared to multitarget drugs may
exhibit lower clinical efficacy [43,44]. In this regard, parallel large-scale multitarget
virtual screening is a promising method to derive secondary targets.

The use of docking in vHTS is a common practice in pharmacological research
due to its reduced cost compared to experimental HT techniques and to the existence
of large virtual chemical libraries—containing over a million of potential ligands—
available for screening [10]. The main objective of this type of projects is to mine
the original library and derive a small subset of compounds, which has a larger
percentage of promising ligand candidates, a process that is known as “enrichment.”
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Fig. 3 Binding mode prediction accuracy of for five different human proteins: thrombin, rennin,
cyclin-dependent kinase 2 (CDK2), and protein phosphatase 1B (PTP-1B)

Technically, vHTS requires very fast computer strategies, especially in cases where
primary and secondary targets are screened simultaneously. Current protocols for
vHTS are based on filtering strategies, where basic geometrical or pharmacological
criteria are used to obtain a more focused chemical library.
The evaluation of the performance of docking methods is especially important

considering the cost of the calculation. Here, the most important objective is to
check the ability of the method to discriminate between active compounds and
decoys (inactive). A virtual screening run selects a list of molecules .n/ from a given
database of N entries, which includes both actives (true positive compounds, TP)
and decoys (false positive compounds, FP). Actives (A) that have not been found
by the screening method are false negatives (FN) and decoys that have not been
selected are true negatives (TN). The optimum screening is that able to recover all
the true positives, without recovering any false positive. Although it is clear that
virtual screening methods can be assessed by their ability to discriminate between
active and inactive compounds, assessing the enrichment in a virtual screening
procedure is a nontrivial task. Many different enrichment descriptors have been
described in the literature [45,46], and they can all provide different information on
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the performance of the screening. A combination of several enrichment descriptors
is recommended if the aim is to evaluate the performance of a docking algorithm.
The most popular descriptors used to evaluate the quality of docking experiments

in this scenario are the sensitivity [true positive rate; TPR; see (4)], which indicates
the ability of the method to recover the true ligands, and the specificity [true negative
rate; TNR see (5)], which informs on its ability to avoid decoys.

Sensitivity D TPR D TP

TPC FN
; (4)

Specificity D TNR D TN

FPC TN
D 1 � FPR; (5)

where FPR stands for false positive rate. Also, accuracy [Acc; (6)] describes the per-
centage of molecules which have been correctly classified by the screening protocol,
and the precision (positive predictive value; PPV) gives accounts for the proportion
of true positives among the list of selected compounds given by the docking (7).

Acc D TPC TN

N
D A

N
� TPRC

�
1 � A

N

�
� TNR: (6)

PPV D TP

TPC FP
: (7)

In order to o assess the ability of the models to obtain true actives among the
first ranked compounds (an extra requirement in high-throughput docking) [47], the
enrichment factor [EF, (8)] can be used:

EF D TP=n

A=N
: (8)

Recently, receiver operating characteristic (ROC; true positive vs. false positive
rates) curves and the associated area under the ROC curves (AUC) have also become
very popular to evaluate the discriminatory power of the virtual screening procedure
[48–50]. The main advantage of these metrics is that they are independent on the
ratio of actives to decoys of the database and accordingly they are good measures of
the global performance of a docking algorithm in a vHTS procedure.

4 Protein Structure Prediction

One of the major practical limitations to the use of docking in pharmacological
research lies in the need of high accurate structural data for the protein. Fortunately,
protein structure can be predicted by a variety of computationalmethods, homology-
modeling (also named comparative modeling) being the most accurate one in
cases where there is a clear homolog with known structure [51, 52]. Building a
protein structure from homology modeling requires a template—a protein with
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similar amino acid sequence—and involves four major steps: fold assignment,
sequence alignment, model building, and model refinement. Several computer
packages are available to perform all this process automatically, such as the SWISS-
MODEL software [53], the 3D-JIGSAW package [54], or the ModWeb tool [55].
Nevertheless, the general consensus [52] is that manually curated models derived
from the use of programs, such as MODELLER [56], are more reliable than
automatic procedures.
One of the most critical steps in homology modeling is the identification of the

proper template. The simplest method that can be used for this purpose is a simple
BLAST search [57] against the PDB database. However, methods based on multiple
sequence alignments or profiles have demonstrated to be much more sensitive in
identifying distantly related homologs [57, 58]. Choosing the best template among
the candidates derived from multiple alignments is crucial for the final accuracy
of the model and in addition to sequence identity we need to consider that “holo”
structures are always better templates than “apo” ones [59]. In the case that several
holo candidates are available, we should favor the structure containing a similar
ligand to the one that we aim to dock [60, 61].
Another crucial step in the model generation is the alignment of the target

with the template(s). This procedure can be done easily with standard alignment
algorithms in cases of large identity between template(s) and target protein.
However, in difficult cases (below 30% sequence identity), the alignment obtained
by standard methods needs to be refined by:

1. Including structural information of the template, i.e., avoiding gaps in secondary
structure elements, in buried regions, or between two residues that are far in
space [62–65].

2. Building a multiple structure-based alignment of the templates and use them to
align the target sequence to it.

3. Calculating the target and template sequence profiles by aligning them with
sequences sufficiently similar to the target and template sequences respectively,
so that they can be aligned without significant errors. The final target-template
alignment is then obtained by aligning the two profiles [66, 67].

In general, the use of multiple structures and multiple sequences benefits from the
evolutionary and structural information about the templates and target sequence, and
often produces a better alignment for modeling than pairwise alignment methods
[68, 69]. In any case, once the template is selected and the target protein is aligned,
the structural model can be generated using different approaches. In this context,
MODELLER [56], one of the most widely used homology modeling engines,
typically builds models by enforcing spatial restraints derived from the template
structure(s).
The quality of the structure derived from homology modeling roughly correlates

with the sequence identity between the target and the template proteins [70]. Thus,
it is accepted that for sequence identities below 30% less than half of the residues
have their C’ correctly placed [71, 72]. The percentage of correctly placed residues
increases to 85% for identities ranging from 30 to 50% and most of the C’s are well
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Fig. 4 The ligand–receptor interaction energy is strongly altered by slight translation and/or
rotation movements of the ligand. The ligand–receptor binding energy (Ebinding) has been
computed as the difference of the potential energy of the complex [Epot(L–R)] with respect to
the individual potential energies of the ligand [Epot(L)] and the receptor [Epot(R)]. The ligand
shown has been taken from the structure of a human CDK2 (PDB code 1ckp)

positioned for sequence identities above 50%. Inside the high-quality range no direct
correlation exists between the accuracy of the model and the sequence identity with
the template, and evaluation of the expected quality of a model is still an unsolved
problem [73]. In fact, the concept of “accuracy of the model” can be arbitrary, since
it depends on its planned use. For example, a model with accuracy around 3.5 Å
in backbone positioning may be sufficient for understanding protein function or
designing mutations, but is expected to be of small utility for predicting ligand
binding [74, 75], since the strong dependence of the ligand–receptor interaction
energy on fine geometrical details (Fig. 4) implies that small structural errors might
cause a large bias in the binding calculation. A deep discussion on this point is
presented in the next section of this chapter.

5 HT Docking from Homology Modeled Structures

The use of homology models in docking calculations has been recently explored
by different groups, finding in general quite encouraging results. McGovern and
Shoichet [59] performed a high-throughput docking on ten enzymes for which
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Fig. 5 Binding site comparison of thrombin PDB structure (2cn0, shown ingreen) with homology
models of different sequence identity (blue). The ligand shown (magenta) corresponds to the
crystallized ligand in the 2cn0 structure. As can be seen from the figure, even at low sequence
identities the binding site structure is still reasonably conserved

apo, holo, and homology model structures were available, suggesting that they
were useful for enriching the screening, but in general not as powerful as the
holo-crystal structure. Diller and Li [76] reported significant enrichments of the
homology models of six kinases with identities in the range of 30–50% when used
to screen a large chemical library. Similar results were obtained by Oshiro et al. [77]
in the study of two targets (cyclin-dependent kinase 2 (CDK2) and factor VIIa), by
Gilson’s group [78] with a set of five targets, and by Ferrara and Jacoby [79] in
the analysis of insulin growth factor I receptor. All these results suggest that the
conservation of the binding sites in modeled structures is sufficient, and does not
affect docking accuracy significantly (Fig. 5).
Recently, various groups have suggested [12, 80] using ensembles of homology

models as templates, developing automatic strategies valid within the HT-regime
(Fig. 6). The use of the ensemble docking approach coupled to homology modeling
has two main advantages: (1) there is no need to identify the “best” performing
homology model and (2) protein flexibility is implicitly included in the docking
run. When using the ensemble docking approach, each homology model is built on
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Fig. 6 Example of workflow [12] for building homology models to be used in the ensemble
docking approach

a basis of a different template, and thus the binding site is specialized to recognize
a different subset of active ligands. As a result, there is an improvement in the
probabilities of detecting “true positives” (Fig. 6).
Different studies using ensemble docking with experimental structures have

obtained controversial results. Some authors [34] state that ensemble docking
clearly improves the performance of the docking process, while others [37, 81, 82]
complain about the increase in “false negatives” and suggest that the enrichment of
the results using ensembles is not so different when compared to a good-performing
crystal structure (although the rules to select “a priori” which is a good-performing
crystal structure are not evident). The situation when using homology models is
more evident, since in this case the use of ensembles increases very significantly
the sensitivity with respect to single models, decreasing only slightly the specificity
and leading to an overall clear improvement of the docking results [12]. Figure 7
illustrates the increase in the proportion of correctly predicted binding modes
when using ensemble docking compared to single model docking—only homology
models are being considered in the figure. In this example, single models produce
moderate binding mode predictions, being able to recover 30% of correctly docked
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Fig. 7 Recovery of correctly docked active ligands for a selected set of proteins (’-momorcharin,
trypsin, p38 kinase, HIV retrotranscriptase, factor Xa, and heat shock protein 90). As can be seen
from the figure, the correctly docked ligand recovery is dependent both on the strategy of docking
(ensemble docking versus single docking) and on the sequence identity of the template. A ligand
is considered as correctly docked when its RMSD with the crystallographic ligand is below 2 Å.
Both score-based selection—i.e., best ranked—and RMSD-based selection—i.e., best docked—
are shown. Single docking averages are shown in black and green, whereas ensemble docking
averages are shown in red and cyan. These results were obtained by docking a database containing
both known actives and decoys, using Glide docking program in an SP—standard precision—mode
(data from [12])

ligands (21% if we only take into account the best ranked solution), whereas the
ensemble docking approach increases the correctly docked ligands to 57% (29%
when considering the best ranked solution).
Homology modeling-based ensemble docking coupled with good structural

models and strict scoring methods can outperform single PDB docking (Fig. 8).
Furthermore, the ensemble docking protocol is very robust to the decrease in
sequence identity, given that models with sequence identities in the range of 30–40%
still provide good results for most proteins.
A better view on the overall quality of the homology-based ensemble docking

approach is obtained by analyzing simultaneously its ability for vHTS (i.e., its
capability to recover specifically active ligands from the dataset) and in the context
of structural determination of binding modes (i.e., its capability to yield good
structural solution as the top ranked ones). Results displayed in Figs. 8 and 9 provide
evidence on the power of the ensemble docking approach in a wide range of working
scenarios.
As a summary, the general accepted “rule” is that only models built with more

than 50% sequence identity are accurate enough for docking and the accuracy
in docking is higher with holo structures than homology models [75, 77, 83].
However, recent available studies using ensemble docking with homology models
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Fig. 8 Ensemble docking versus single docking approach. The performance of both approaches
is being compared in terms of recovered active ligands and decoys for four human proteins: renin,
thrombin, cyclin- CDK2, and PTP-1B. The single docking approach performance is represented
with green and lime lines, which correspond to the recovery of active and inactive ligands,
respectively. Similarly, the red and orange lines correspond to the active and inactive ligand
recovery, respectively, when using an ensemble docking approach. In all cases, the difference
between active (true ligands) and inactive (decoys) recovery is higher when using ensemble
docking. Results where obtained using Glide computer program in an extra-precision (XP) mode
with a GlideScore (GS) thresholdD �8 (data from [12])

[12] strongly suggest that models with sequence identity above 30–40% display a
considerable ability to specifically recover active ligands, and can even outperform
single crystal structures. Although it is difficult to extend results of the small set of
proteins used in these studies to the entire proteome, the use of ensemble docking
is extremely recommended over single docking, especially when using homology
models. Moreover, the use of homology models is not limited to the retrieval of
active ligands from a chemical library, but can also provide structural complexes
with sufficient accuracy for lead optimization processes.

6 Increasing Coverage

As noted in the beginning of this chapter, despite the tremendous effort focused for
many decades in the experimental determination of protein structures, the current
version of PDB covers only a small fraction of human proteins. This coverage is
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Fig. 9 Expected percentage of success in docking experiments performed using the ensemble
docking approach (both for X-ray and homology models, the later obtained from templates with
different degrees of sequence identities). Recovery rates have been computed as average recovery
rates of four human proteins: renin, thrombin, CDK2, and PTP-1B

even smaller if we focus on protein structures coming from pathogens. Our group
and others [12, 80] have suggested that homology models derived from templates
with identity ranges of 30–40% can significantly enrich chemical libraries. These
results allow us to expand dramatically the universe of use of docking techniques
(Fig. 1), especially in the case of human proteins with pharmacological interest
(taken from DrugBank database; [84]), which are covered over 75% when using
homology models up to 30% identity (Fig. 10).
Thus, with all the required cautions needed in the use of homology models

for docking purposes (related mostly to the problems in finding good templates
and in determining “a priori” the quality of the model), the use of comparative
models can enlarge dramatically the universe of applicability of small-molecule
docking approaches. Ensemble docking performed on homology models provides
results of similar, or even better quality than those obtained with single crystal
structures, leading to a clear enrichment in the chemical libraries, and producing
poses of good structural quality, even in cases where ligand binding implies
non-negligible changes in protein structure. Altogether ensemble docking from
homology modeling appears as a promising alternative to extend the use of docking
strategies in drug-design pipelines.
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Fig. 10 Structural coverage of human targets of pharmacological interest depending on the
sequence identity threshold used in homology modeling. A 30% sequence identity threshold—
which still gives very good results when using the ensemble docking approach—allows us to
cover 41% more human drug targets, obtaining a final coverage of 75% of the human drug targets.
The superimposition of the crystal structure of thrombin (green, PDB code 2cn0) and homology
models built with different sequence identity—90% (orange), 50% (blue), and 30% (salmon)—is
also shown
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5. Discussion and Conclusions 
 
5.1 Role of tRNA modifications in genome structure and codon usage 
 

5.1.1  The appearance of two tRNA modification enzymes shaped the tRNA gene 
content and the codon usage bias 
 
As discussed previously, the degeneracy of the genetic code implies that several 'synonymous' 

codons code for the same amino acid, although they are not used with equal frequencies. 

Codon usage bias is a critical determinant for gene expression and genome function, but why 

and how it differs between organisms remains poorly understood.   

 

In this work we have tried to answer the following questions:  

 

i) Why are some codons preferred relative to others recognized by the same anticodon? 

ii) How do tRNA gene pools evolve in terms of anticodon number and type?  

iii) How do tRNA gene pools co-evolve with codon usage in relation to the optimization of 

the translation machinery and the maximization of growth?  

 

i) Why are some codons preferred relative to others recognized by the same anticodon? 

 

There is abundant literature regarding codon usage biases, and sophisticated technniques 

profit from this information to infer adaptive evolution (Suzuki et al., 2001), horizontal transfer 

(Médigue et al., 1991), expression levels (Sharp and Li, 1987) and cellular localization 

(Chiapello et al., 1999).  However, most works are focused on the analysis of codon 

frequencies from DNA sequences (Andersson and Kurland, 1990; Duret 2002).  The 

complementary approach, understanding the tRNA gene number and anticodon trype, has 

been much less developed in the framework of comparative genomics, and has mostly been 

focused on the correlation between tRNA content and codon usage within one or a few species 

(Ikemura 1985; Kanaya et al., 1999; Duret, 2000). 

 

From our tRNA gene content analysis, we find that tRNA gene content has evolved in a 

kingdom-specific manner, thanks to the appearance of two distinct tRNA modification enzymes 

(ADATs and UMs) that increase the translation efficiency of a subset of tRNA isoacceptors.  

These tRNA isoacceptors susceptible of being either ADAT- or UM- modified are found to be 
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enriched in gene copy number in their respective genomes, and thus are ‘preferred’ relative to 

others recognized by the same anticodon.   

 

ii) How do tRNA gene pools evolve in terms of anticodon number and type?  

 

It has been suggested that it is more favorable to have more tRNAs of the same type –several 

copies for a same tRNA isoacceptor-, because this allows the co-evolution of codon usage bias 

in highly expressed genes, which then creates a strong demand for these smaller sets of 

tRNAs (Curran and Yarus, 1989; Berg and Kurland, 1997).  In this regard, we propose that 

tRNA gene content, and consequently, codon usage bias, have evolved to increase mostly 

those tRNA isoacceptors -and the codons read by them- susceptible to be ADAT- or UM- 

modifiable, given that they increase the translation efficiency.  

 

We propose a critical factor that had not been previously taken into account in tRNA evolution 

or codon usage bias: how modification at the wobble position of the anticodon impacts codon 

utilization. Indeed, inclusion of this parameter leads to near-perfect correlations between codon 

usage and tRNA abundance, and is consistent across known extant major phylogenetic groups 

(Figure 5.1). This provides a compelling scenario for the diversification of genetic code usage 

in evolution driven by tRNA modifications.  

 

iii) How do tRNA gene pools co-evolve with codon usage in relation to the optimization 

of the translation machinery and the maximization of growth?  

 

Our results suggest that tRNA gene content has evolved to increase those tRNA isoacceptors 

are modifiable by ADATs or UMs.  Importantly, these tRNA modifications expand the decoding 

capacity of the tRNA isoacceptors, suggesting that translation efficiency has been a major 

factor in determining the evolution of tRNA gene content across species.  Furthermore, we find 

that codon usage bias in highly expressed proteins has evolved such that they are enriched in 

'preferred' codons (those read by specific modified tRNAs), indicating that the activity of tRNA 

modification enzymes constitutes a novel post-transcriptional regulation mechanism of protein 

abundances.  
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Figure 5.1.  Quantitative correlation between tRNA gene content and codon usage.  Each tRNA 

isoacceptor has been coloured according to its wobble base.  Initial correlations have been computed 

taking into account the W-C codon-anticodon possible base-pairings.  The inclusion of G-U wobble base-

pairing did not substantially increase the Pearson correlations (data not shown).  When including the 

modification information in Eukarya (ADATs) and Bacteria (UMs), the Pearson correlations were 

significantly increased.   

 

 

5.1.2 tRNA gene content within each kingdom does not follow the tree of life 
 
From our tRNA gene content analysis, we could see that the evolution of the tRNA gene 

content followed the evolution of the tree of life, in the sense that it clusters species from the 

same kingdom together, and coincides with the appearance of hetADATs in Eukarya and UMs 

in Bacteria (Figure 5.2).  However, bacterial species seem to be widely spreaded in the 

phylogeny.  What is causing the difference between the diverse Bacteria?  
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Figure 5.2. Phylogeny based on tRNA gene content. The four phylogenetic clades identified have 

been coloured accordingly, and the tRNA modification enzymes responsible for the separation are 

labelled accordingly: UMs in Bacteria (black), and hetADATs in Eukarya (green). Adapted from Novoa et 

al., 2012. 

 
To decipher which variable/s explained the distribution of bacterial species, we first checked 

whether the separation of the species followed the rRNA canonical tree of life. However, this 

did not seem to be the case (Figure 5.3). Then, what is explaining the diversity in tRNA gene 

content found across bacteria? To answer this question, we investigated whether the species 

were clustered depending on other parameters, such as: salinity, oxygen requirement, 

temperature, pathogenicity, ability to live in multiple habitats, genome size or GC content. For 

each bacterial species, we annotated its diverse characteristics (e.g. aerobic, anaerobic, 

facultative or microaerophilic -in the case of oxygen requirement-) and searched for a possible 

correlation between its tRNA gene content and any of the analyzed parameters.  For better 

visualization of the results, we performed a principal component analysis (PCA) of the tRNA 

relative gene frequencies (RGF) of each species, and plotted each species in a two 

dimensional plot. Each species was then coloured according to its characteristics, for each of 

the variables analyzed (Figure 5.4).   

 

We found that none of the variables tested was explaining the variance found in the tRNA gene 

content.  If the any of the variables would be explaining the differences between the species, 

we would expect that the species would be grouped by its color, which is not the case.  Thus, 

with this data we cannot conclude what is causing the differences in tRNA gene content 

between bacterial species.   
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However, from our tRNA gene content analysis throughout the three kingdoms (Figure 5.2 and 

Publication 1), we found that the appearance of UMs and hetADATs, and consequently, its 

differences in the strategies for maximizing translation efficiency, caused a clear separation of 

the three kingdoms in terms of tRNA gene content.  Nevertheless, it is possible that within 

Bacteria, the major force driving tRNA gene content evolution was not selection, but instead, 

mutational drift.   

 

The fact that the bacterial phylogeny based on tRNA gene content does not follow the tree of 

life is compatible with the idea that the separation of the species into its corresponding 

kingdoms (Figure 5.2) is a consequence of the appearance of two modification enzymes.  If 

the tRNA phylogeny was only a mere mirror of the rRNA phylogeny, we should also see a 

taxonomic clustering within bacteria (Figure 5.3 and Figure 5.4a).   

 

             

 
 

Figure 5.3.  Bacterial phylogeny based on tRNA gene content.  Each species has been coloured 

according to its corresponding phylum.  
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Figure 5.4. Correlation between tRNA gene content and other variables within bacterial species. A 

principal component analysis of the tRNA relative gene frequencies (RGF) has been performed on all 

bacterial species.  Each dot represents a bacterial species, and has been coloured according to its 

phylum (A), salinity (B), oxygen requirement (C), temperature (D), pathogenicity (E), ability to live in 

multiple habitats (F), genome size (G) or GC content (H). It is important to remark that or each type of 

analysis, data were not available for all species, and therefore each analysis does not contain exactly the 

same subset of bacterial species. 



 
295 

 
Cont. Figure 5.4 . Correlation between tRNA gene content and other variables within bacterial 

species.  
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5.1.3  tRNA modifications as a novel mechanism for post-transcriptional 
regulation  
 

As we begin to decipher some of the rules that govern codon usage and tRNA abundances it is 

becoming clear that both parameters are not just a means to increase gene expression, but 

also tools used by genomes to regulate the speed of protein translation, the efficiency of 

protein folding, and the expression of functionally related gene families.  

 

The discovery of the importance of ADATs and UMs in translation efficiency opens new 

questions and opens novel research lines and biotechnological applications. More specifically, 

we are interested in answering the two following questions: 

 

i) Can we enhance the protein expression levels by increasing the relative abundance of 

codons read by ADAT- or UM-modifiable tRNAs?  

ii) Do tRNA modification enzymes have a role in the changes in protein expression levels 

observed in cancer? 

 

i) Can we enhance the protein expression levels by increasing the relative abundance of 

codons read by ADAT- or UM-modifiable tRNAs?  

 

The expression of functional proteins in heterologous hosts is a cornerstone of modern 

biotechnology.  Proteins are often difficult to express outside their original context, due to 

factors such as the presence of codons that are rarely used in the desired host, or regulatory 

elements within their coding sequence.  Differences in codon usage can impede translation due 

to the demand for one or more tRNAs that may be rare or lacking in the population (Kane, 

1995; Goldman et al., 1995). Insufficient tRNA pools can then lead to translational stalling, 

premature translation termination, translation frameshifting and amino acid misincorporation 

(Kurland and Gallant, 1996).  To overcome this limitation, codon-optimized synthetic genes can 

be used to enhance the expression of heterologous proteins. 

 

Most codon-optimization algorithms attempt to mimic the codon usage bias of the host species 

in order to improve the protein expression levels of the heterologous protein. However, the 

discovery of kingdom-specific strategies based on tRNA modification enzymes to optimize 

translation efficiency (ADATs in Eukarya and UMs in Bacteria) opens new possibilities to further 

improve heterologous gene expression systems.  

 



 
297 

We suggest that, to mimic the translation efficiency strategy of the host species, i.e. to increase 

the abundance of codons read by ADAT- or UM- modifiable tRNAs (depending on whether the 

host species in an eukaryote or a prokaryote), can improve heterologous protein expression by 

helping gene compositions match the mature tRNA gene population of the host species 

(Figure 5.5). 

 

          
 

Figure 5.5.  Codon optimization strategy based on tRNA modifications. A) Representation of three 

mRNA sequences (blue) with different codon usage. ‘Preferred’ codons (green) correspond to those read 

by ADAT- or UM-modified tRNAs, whereas ‘non-preferred’ codons (red) correspond to those codons that 

cannot read by ADAT- or UM-modified tRNAs –and an alternative codon of the same family box would 

be capable of being read by an ADAT- or UM-modified tRNA.  B) Genetic code table highlighting ADAT-

‘preferred’ and ‘non-preferred’ codons.   
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To experimentally verify this hypothesis, we have synthesized 2 GFP sequences with different 

codon usage, one of them containing codons recognizable by ADAT-modifiable tRNAs (GFP-

ADAT), whereas the other contains codons non-recognizable by ADAT-modifiable tRNAs 

(GFP-nonADAT). The synthetic GFP sequences have been designed such that they have 

similar codon-adaptation index (CAI), GC-content, and codon autocorrelation (Canarozzi et al. 

2010), but different percentage of ADAT-modifiable codons.  

 

We expect to transfect each plasmid to HEK293T cells. The expression levels of GFP and 

ADAT will be measured both at the mRNA (qPCR) and protein level (WB and FACS).  We 

predict that the GFP-ADAT sequence should be expressed at higher levels than the GFP-

nonADAT. To verify that the differences observed in expression levels are due to ADAT, we will 

knockdown ADAT2. The knockdown should only decrease the levels of GFP-ADAT, but not of 

GFP-nonADAT (Figure 5.6).   

 

Codon optimisation followed by gene synthesis is a useful but expensive for expressing 

problematic recombinant proteins.  An alternative to this method is the use of certain strains 

such as RosettaTM, which contain plasmids with extra copies of certain tRNA isoacceptors. 

Previous works already showed that expression yields of proteins whose genes contain rare 

codons can be dramatlcally improved when the cognate tRNA is increased in copy number 

within the host, which is achieved by inserting the wild type tRNA gene on a multiple copy 

plasmid (Rosenberg et al., 1993; Seidel et al., 1992). For instance, the yield of human tissue 

plasminogen was increased 10-fold in a strain that contained tRNAArg
UCU –which recognizes 

AGG/AGA codons- (Brinkmann et al., 1989). Following the results of the pRIG plasmid, which 

contained extra copies of the most rare tRNA genes in E. coli (Baca and Hol, 2000), Novagen 

added two tRNA genes to the pRIG plasmid to create the pRARE plasmid (Figure 5.7). The 

plasmids were transformed into various strains to create the RosettaTM series of expression 

hosts, and are now commonly used in many laboratories for the heterologous expression of 

proteins with “rare” codon usage biases.  
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Figure 5.6.  Pipeline and expected results of the experiment. Each of the three vectors (GFP-WT, 

GFP-ADAT, and GFP-nonADAT) contain a GFP sequence with different codon usage bias, but similar 

CAI, GC-content and codon autocorrelation.  After transfecting the cells, we expect to see similar levels 

of mRNA, but diverse levels of protein (higher in GFP-ADAT than GFP-nonADAT).  After transfecting 

siRNA(ADAT2), we expect to see a decrease in the protein levels of GFP-ADAT and GFP-WT, but not in 

GFP-nonADAT.  This would demonstrate that the differences in protein expression levels are due to the 

presence of  codons recognizable by ADAT-modifiable tRNAs.  
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In this regard, we propose that instead of using a plasmid that adds extra copies of tRNA genes 

that are in lower copy number in the host, a better strategy would be the use of a plasmid that 

mimics the translation efficiency strategy of the original host.  For instance, if we aim to express 

an eukaryotic protein in E. coli, we should mimic the eukaryotic strategy for increasing 

translation efficiency, which consists in the use of ADAT-modified tRNAs.  We propose a novel 

vector, pADAT, which could be used to enhance heterologous protein expression of eukaryotic 

proteins in bacterial systems. This plasmid contains a bicistronic construct of the ADAT2-

ADAT3 ORFs, and the tRNA isoacceptors that are used as substrates of ADAT.  

 

   

Figure 5.7. Biotechnological applications for heterologous protein expression.  In the left, the 

structure of the pRARE plasmid (Novagen), which is found in the RosettaTM competent cells. In the right, 

the proposed structure of the pADAT plasmid, which contains the ORFs encoding for ADAT2 and ADAT3 

–the functional enzyme is an heterodimer-, and the tRNA genes used as ADAT2/3 substrates. 
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ii) Do tRNA modification enzymes have a role in the changes in protein expression levels 

observed in cancer? 

 

In the last years it has become increasingly apparent that the mis-regulation of protein 

translation plays a critical role in cell transformation and tumorigenesis (White, 2004; Marshall 

and White, 2008; Chen et al., 1997). A wide variety of human tumors have been shown to 

depend on activated signal transduction pathways that control protein translation, i.e. PI 3-

kinase and mTOR pathways.  Indeed, inhibition of mTOR-driven protein translation by the drug 

rapamycin is now in clincal trials as cancer treatment.   

 

The work presented here suggests that ADAT plays an essential role in translation efficiency.  

Given that protein translation is altered in cancer cells, it would be worth to characterise 

whether the proteins involved in these proteomic changes can be partly explained by changes 

in ADAT levels. Many efforts have been placed to identify the mis-translated proteins that 

contribute to oncogenesis.  However, we suggest that besides focusing on the mis-translated 

proteins, it would be important to understand the potential proteins causing this mistranslation, 

and ADAT represents an interesting candidate for this role.  

 

How would changes in ADAT levels affect protein translation? It would be reasonable to think 

that ADAT downregulation could cause a decrease in translation efficiency, and consequently, 

a change in the proteome composition, whereas ADAT upregulation could cause protein 

mistranslation, by modification of near-cognate tRNA isoacceptors that should not be modified 

by ADAT. Both characteristics (protein mistranslation and changes in proteome composition) 

are seen in cancerous cells.  

 

To have an initial overview of the possible up/down regulation of ADAT levels in cancerous 

tissues, the Gene Expression Atlas was used. This database provides meta-analysis based 

summary statistics over a curated subset of the ArrayExpress Archive, which services queries 

for biologically interesting genes or samples (Figure 5.8).  Interestingly, ADAT2 shows 

differential expression with respect to normal cells in many of the experiments analyzed, 

suggesting that it may play a role in the mis-regulation of protein translation in cancer cells.   

 

Given that mRNA levels are not necessarily reflected in protein levels, ADAT2 levels in diverse 

cancer cell lines were analyzed (Figure 5.9a). Amongst the 9 different breast and lung cancer 

cell lines analyzed, we observe up to 12-fold differences in ADAT2 levels.  Furthermore, when 

comparing Ras-transformed and non-Ras transformed mouse 3T3 fibroblasts, an 19-fold 
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difference in its ADAT2 protein levels is found (Figure 5.9b). These results suggest that the 

levels of ADAT2 proteins are modified in cancerous cells, and support the hypothesis of the 

role of ADAT2 in the mis-regulation of protein translation in cancer. These preliminar results 

support the hypothesis of a possible role of ADATs in protein translation mis-regulation in 

cancer cells. However, further work should be done to identify the precise roles of ADAT mis-

regulation in cancer.             

                     
Figure 5.8.  Transcription expression profiles of ADAT2 in diverse cancerous tissues.  ADAT2 is 

found to be differentially expressed in 219 experiments, including tissues from 68 organismal parts and 

166 cell lines.  Red arrows indicate over-expression, whereas blue arrows indicate under-expression. 

Data taken from the Gene Expression Atlas (http://www.ebi.ac.uk/gxa/). 

 

               

Figure 5.9.  Protein expression levels of ADAT2 in cancer cells, as determined from Western Blot. 
A) Levels of ADAT2 (measured from WB) in diverse breast and lung cancer cell lines, normalized by 

tubulin levels.  The units have been arbitrarily assigned (T47D cell line has been normalized to 1).  B)  

Levels of ADAT2 in 3T3 mouse fibroblasts and Ras-transformed 3T3 mouse fibroblasts.  In both A) and 

B), the total amount of protein was previously determined by Bradford assay in order to charge similar 

amounts of protein in each lane. The levels of loaded protein were checked by measuring tubulin levels 

and Hsp60 levels, respectively.   



 
303 

5.2  Aminoacyl-tRNA synthetases as antimalarial drug targets  
 
5.2.1. Antimalarial drug discovery: old and new approaches 
 

Resistance of malaria parasites to available drugs continues to grow, increasingly limiting our 

ability to control this serious disease (Nwaka, 2005). Indeed, endoperoxides are the only drug 

class for which clinically significant resistance has not been reported (Eastman and Fidock, 

2009). Although our understanding of the parasite’s biology has increased with the sequences 

of the Plasmodium genome (Gardner et al., 2002), few new drug targets or classes of drugs 

have been clinically validated (Munos, 2006). Major antimalarial efforts during the last years 

include strategies as diverse as: the use of combination therapy, the development of analogues 

of existing agents, the discovery of natural products, the use of compounds that were originally 

developed against other diseases, the evaluation of drug resistance reversers and the 

consideration of new chemotherapeutic targets (Rosenthal, 2003; Goodman et al., 2007; Dahl 

and Rosenthal, 2007; Dahl et al., 2006).  

 

Amongst the latter, several high-throughput in vitro screenings against P.falciparum iRBCs 

have been recently published (Gamo et al., 2010; Guiguemde et al., 2010; Plouffe et al., 2008). 

A library of 2 million compounds from GlaxoSmithKline’s chemical library was screened aginst 

P. falciparum cultures, from which 13.500 inhibited parasite growth and more than 8.000 also 

showed potent activity against a multidrug resistant strain (Gamo et al., 2010). The public 

availability of this large set of potent and drug-like antiplasmodial structures provides 

reasonable staring points for further drug development.  In a similar fashion, chemical genetic 

approaches to assay more than 300.000 chemicals (Guiguemde et al., 2010) and more than 

12.000 natural products (Plouffe et al., 2008) against P. falciparum iRBCs have been 

performed. While these approaches are extremely powerful to identify novel potent antimalarial 

scaffolds, the lack of knowledge of their respective drug targets constricts the hit-to-lead 

optimisation process in the drug development process.  Thus, the major limitation at this stage 

of drug development is the identification of the drug targets for this large amount of chemical 

scaffolds that have now seen the light as novel antimalarial starting points. 

 

Importantly, some of the positive hits provided by these high-throughput screens have been 

further characterised by to identify the most promising compounds (Meister et al., 2011), and 

finally discover its target using reverse genomic approaches (Hoepfner et al. 2012).  The target 

identification strategy applied in this latter work (Giaver et al., 1999; Winzeler et al., 1999) 

constitutes a successful case in which the target of a phenotypic screen was successfully 
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defined by a combination of genetic and biochemical approaches. However, it is important to 

remark that although the employed strategy for deciphering the target was successful in this 

occasion, it presents serious limitations. In first place, the target must inhibit the yeast enzyme 

(but not the human counterpart if we want the drug to be selective). Furthermore, the 

confirmation of the target requires the development of resistant parasites, implying that the 

parasite is capable of finding in a relatively easy manner a strategy to develop resistance, 

which is an undesirable property for a potential drug target.  

 

Altogether, although high-throughput screens are powerful tools for identifying novel 

antimalarial scaffolds, the inverse approach in drug discovery, starting from the target, is still 

extremely useful, and offers different advantages but also some other limitations.  The major 

limitation for proper structure-based drug design in the case of most antimalarial targets is the 

lack of experimentally determined structures.  Thus, we must rely on homology-based models 

for the initial in silico screenings.  In this work we attempted to determine the reliability of 

homology models for docking purposes, in order to identify the limitations of the technique 

when using homology models with modest sequence identities.  We find that homology models 

up to 30% sequence identity still provide reasonable enrichments and binding mode 

predictions, and thus can be used for docking purposes. 

 

5.2.2 Our approach: aaRS as antimalarial drug targets  

 

Plasmodial proteins can be difficult to characterize structurally using traditional in vitro 

approaches. These problems can be partially overcome using a number of in silico 

approaches.  This work is a clear example which shows that the combination of both in silico an 

in vitro procedures can facilitate and accelerate the discovery of candidate hits.  

 

aaRS are already the target of commercialized drugs (Bactroban, GlaxoSmithKline), and have 

been used for as drug targets in the search of novel antibacterials.  However, until recently, the 

have remained unexplored as potential antimalarial drug targets. Here we have employed four 

different drug design strategies for discovering and developing novel antimalarials targeting 

plasmodial aaRS (Figure 5.10): 

i) Analogues of the aaRS reaction intermediates 

ii) Derivatives of known aaRS inhibitors 

iii) High-throughput virtual screening methods for the search of novel scaffolds 

iv) Inhibitors of the hinge movement required for tRNA binding 
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Figure 5.10.  Outline of the diverse drug design strategies used in this work for the development 
of novel antimalarial drugs targeting P. falciparum aaRS. These approaches include the 

development of: i) Mimics of the aminoacyl-adenylate have been performed against PfKRS-2; ii) 

derivatives of known aaRS inhibitors targeting PfTRS; iii) of dual inhibitors targeting both PfKRS-2 and 

PfQRS identified using high-throughput virtual screens; and iv) inhibitors of non-catalytic sites such as 

the inhibition of hinge movement of PfKRS-2, which is required for proper aminoacylation.   

 
i) Analogues of the aaRS reaction intermediates 

Both using phylogenetic methods and structural comparisons, we show that PfKRS-2 and its 

human counterpart are distantly related.  Taking advantage of the structural differences found 

between their catalytic sites, we designed, virtually screened, synthesized and tested a library 

of lysyl-adenylate analogues.  Amongst the synthesized hits, we find two compounds that show 

clear inhibition of the PfKRS-2 enzyme. Importantly, these two compounds do not inhibit the 

HsKRS enzyme.  

 

The major drawback of the two molecules that show both in vitro activity against PfKRS-2 and 

also selectivity versus its human homologue is their low potency – the IC50 values are 38.4 and 

84.7uM, respectively-.  Their low potency is probably the cause of the lack of in vivo activity in 

P. yoelii-infected mice. However, other plausible explanations would be a differential inhibitory 
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activity towards the P. yoelii enzyme compared to the P. falciparum enzyme, or the in vivo 

instability of the compounds in the blood stream, among others.  It would be worth to 

characterise the precise failure of the drug in vivo to improve the potency of the compounds in 

a future second round of synthesis of this family of compounds.  

 

Another limitation of this set of compounds is that their primary target is an apicoplastic 

enzyme.  Apicoplastic proteins constitute interesting targets due to its cyanobacterial origin, 

making it a good choice for the development of selective drugs. Indeed, multiple antibiotics with 

antimalarial activity exert their effects by interfering with apicoplastic proteins, including 

apicoplastic ribosomes (tetracyclines, macrolides and lincosamides), apicoplastic RNA 

polymerases (rifampicin) or apicoplastic DNA gyrases (fluoroquinolones). However, the effects 

of these compounds are not seen immediately after drug treatment. Instead, they present a 

“delayed” death, in which the drug-treated parasites inherit a non-functional apicoplast, leading 

to a delayed but potent antimalarial effect during the second life cycle of the parasite, i.e. 

98hours post-treatment.  Nevertheless, doxycycline, clindamycin and azithromycin are effective 

and commonly used antimalarials, though slow acting.  Thus, they are best used in 

combination with a more rapid acting drug (Borrmann et al., 2004; Noedl et al., 2006; Taylor et 

al., 2001).   

 

In summary, our results validate PfKRS-2 as a druggable enzyme that can be selectively 

inhibited, and provide starting points for future antimalarial drug design and hit-to-lead 

optimisation for the generation of new drugs based on the reaction intermediate.   

 

ii) Derivatives of known aaRS inhibitors  

After initial in vitro screenings of a library of known aaRS inhibitors on cell cultures of P. 

falciparum-infected RBCs, we chose borrelidin as the most potent compound showing inhibitory 

activity, with an IC50 of 1nM. However, borrelidin does not show enough selectivity towards the 

plasmodial enzyme versus its human counterpart, and therefore cannot be used for clinical 

purposes. In this regard, we intended to find borrelidin derivatives that showed higher selectivity 

while maintaining their potency.  Fortunately, some of the compounds show an increase of 10-

fold in selectivity, whilst maintaining almost the same potency. Indeed, these compounds 

cleared the parasitemia of P. yoelii-infected mice using doses comparable to chloroquine, a 

commonly used antimalarial drug.  Therefore, we suggest that these promising compounds 

should be further investigated and characterised –e.g. ADME properties or pharmacokinetics- 

as antimalarial drug candidates, in order to continue towards future clinical trials.   
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To further perform hit-to-lead optimisation, a reliable docking model of the drug in the active 

site of both PfTRS and HsTRS would be of great help. Unfortunately, the prediction of a reliable 

binding mode for these compounds could not be yet obtained. The binding site of  the natural 

compound borrelidin also remains unknown, although previous studies on the E. coli enzyme 

have shown that borrelidin is a non-competitive inhibitor of threonyl-tRNA synthetase with 

respect to its natural substrates (Ruan et al., 2005).  Thus, our future work on this project 

includes the prediction of the binding mode for these compounds, in order to explain the basis 

for their target selectivity, and use this knowledge to fasten the development of borrelidin 

analogues as antimalarial drugs.  

 

5.2.3. Future work on aaRS as antimalarial drug targets 
 
Aminoacyl-tRNA synthetases have been proposed as useful drug targets for many years (Kim 

et al., 2003; Schimmel et al., 1998; Ochsner et al., 2007). However, until recently, they have 

remained completely unexplored as antimalarial drug targets. This work aimed first to 

characterize the set of aaRS in P. falciparum, then select the best potential drug targets 

amongst the set of plasmodial aaRS, and finally design and evaluate candidate drugs which 

would selectively inhibit plasmodial aaRS.  

 

From this work we find that plasmodial aminoacyl-tRNA synthetases are indeed druggable 

enzymes that can be used as antimalarial drug targets. Our results suggest that further 

characterization of the protein synthesis machinery in Plasmodium falciparum should be 

performed, and used for the development of new antimalarials. Importantly, we find that 

borrelidin analogues constitute interesting scaffolds as antimalarial drug targets, given that they 

are potent inhibitors both in vitro and in vivo with high selectivity towards the plasmodial 

enzyme versus its human counterpart.  

 

Winzeler and colleagues (Hoepfner et al., 2012) recently identified the target of an antimalarial 

drug, cladosporin, which had been previously identified as inhibitor of intraerythrocytic parasites 

through high-throughput phenotypic screens (Plouffe et al., 2008).  Interestingly, the target of 

cladosporin was shown to be the cytosolic lysyl-tRNA synthetase (PfKRS-1). Altogether, these 

findings validate aminoacyl-tRNA synthetases as drug targets for malaria and potentially in 

related parasitic diseases (e.g. toxoplasma, leishmania, trypanosome). The essential role of 

this family of enzymes in both liver and blood stages represents a tremendous opportunity for 

the discovery of the next generation of antimalarials.  
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6. Summary (Spanish) 

 

6.1.  Resumen 
 

La traducción de proteinas es un proceso central que ocurre en los tres dominios de la vida, en 

el cual el ARN mensajero (ARNm) es descodificado para producir un polipéptido específico, 

según las normas del código genético.  Nuestro grupo de investigación estudia la traducción 

genética, y más específicamente, el mecanismo mediante el cual el ARN de transferencia 

(ARNt) es aminoacilado.  En la reacción de aminoacilación, un amino acido particular es 

transferido a su ARNt específico.  Las enzimas que catalizan esta reacción altamente 

específica son las aminoacil-ARNt sintetasas (aaRS), y son responsables de establecer el 

código genético.  Las aaRS son el link entre los mundos proteico y de ácidos nucleicos.  No es 

solo la relación entre la estructura y función lo que ha capturado la imaginación de los 

biólogos, pero tambien la posibilidad de que estas proteinas pudiesen desvelarnos los 

secretos del código genético.  Entender el funcionamiento de estas enzimas es añadir una 

pieza de gran importancia al puzzle de lo que la célula es, y cómo funciona.  

 

Este trabajo está centrado en el estudio y la caracterización de la maquinaria de traducción 

genética usando tanto aproximaciones in silico como in vitro, con un énfasis especial en los 

dos jugadores de la reacción de aminoacilación: las aaRS y los ARNt. Además, en este trabajo 

he caracterizado con mayor detalle la maquinaria de traducción genética de Plasmodium 

falciparum, la especie mñás mortal causante de la malaria, con el fin de diseñar y testear 

inhibidores que específicamente inhiban su maquinaria de traducción genética.   

 

Esta tesis ha sido estructurada en tres secciones distintas, correspondientes a los diferentes 

proyectos que se han realizado relacionados con la caracterización de la maquinaria de 

traducción genética: 

 

6.1.1. Caracterización de la maquinaria de traducción genética y su evolución en las 

especies 

 

A pesar del paper central de los ARNt en la traducción de proteinas, las conexiones entre la 

dimámica de la población de genes de ARNt y la evolución de los genomas apenas han sido 

estudiadas.  Además, no comprendemos por qué existen variaciones entre los pools de ARNt 
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entre las distintas especies, ni los principios que determinan las abundancias de ARNt o la 

composición de codones de los genomas.  

 

Para entender las presiones evolutivas que dieron forma a la maquinaria de traducción 

genética, hemos analizado cientos de genomas desde el punto de vista de su contenido de 

genes de ARNt y su uso de codones.  A través de nuestro analisis observamos que dos 

enzimas de modificación del tRNA específicas de reino contribuyeron en gran medida a la 

evolución de los genomas y a la aparición de los actuales usos de codones: las adenosina 

deaminasas dependientes de ARNt (ADATs) en Eukarya, y las uridina metiltransferasas (UMs) 

en Bacteria.  Nuestros resultados sugieren que estas dos enzimas de modificación del tRNA 

ejercieron una selección positiva en sus respectivos genomas, causando una desviación hacia 

aquellos codones que podían ser leídos por estos ARNt modificados en genes altamente 

expresados.  Por tanto, la abundancia de codones leidos por estos ARNt modificados en un 

gen correlaciona directamente con sus niveles de expresión.  Esto sugiere no solo que la 

desviación en el uso de codones es una estrategia para regular los niveles de expresión 

génica, sino también que la modulación de la eficiencia de traducción tiene lugar a través del 

uso de modificaciones de ARNt específicas.   

 

El descubrimiento de estrategias específicas de reino para optimizar la eficiencia de traducción 

abre nuevas posibilidades para mejorar la expresión heteróloga de proteinas.  Además, 

resultados preliminares sugieren que estas modificaciones pueden tener potenciales papeles 

en ciertas enfermedades.  Por tanto, las modificaciones de ARNt pueden no ser solo 

“decoraciones” de la función y la estructura de los ARNt, sino más bien toda una capa de 

regulación de los niveles de expresión génica.  

 

6.1.2. Diseño de fármacos in vitro e in vivo contra la maquinaria de traducción genética 

de Plasmodium falciparum 

 

La maquinaria de traducción genética representa una de las más útiles dianas para el 

desarrollo de nuevos antiinfectivos.  Varias familias de antibióticos funcionan bloqueando la 

síntesis proteica.  Y a pesar de ello, se conoce muy poco de la maquinaria de traducción 

genética en Plasmodium.  En este trabajo pretendemos caracterizar la biología del ARNt en 

Plasmodium falciparum, y desarrollar screenings in silico e in vitro para seleccionar nuevos 

fármacos antimaláricos que inhiban la actividad de las aminoacil-ARNt sintetasas de 

Plasmodium, que son enzimas esenciales y dianas farmacológicas demostradas, y que por 
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tanto representan interestantes dianas nuevas en el descubrimiento de nuevos fármacos 

antimaláricos.   

 

Hay tres diferentes reservorios genómicos que pueden ser traducidos en P. falciparum: el 

apicoplástico, el mitocondrial y el nuclear. Nuestros resultados predicen que hay un total de 37 

aaRS codificadas en el genoma nuclear, que van dirigidas al citosol o al apicoplasto, 

obteniendo un set de aaRS completo en ambos compartimentos. De las 37 aaRS que se 

predicen, hemos decidido focalizarnos en dos de ellas como dianas antimaláricas: la lisil-ARNt 

sintetasa apicoplastica (PfKRS-2) y la glutaminil-ARNt sintetasa (PfQRS).   

 

Las proteinas de Plasmodium son dificiles de caracterizar usando las tradicionales 

aproximaciones in vitro. Sin embargo, algunos de estos problemas pueden solventarse usando 

algunas aproximaciones in silico.  Este trabajo es un claro ejemplo que demuestra que la 

combinación de estrategias in silico e in vitro puede facilitar y acelerar el descubrimiento de 

fármacos.  Además, demostramos que las aminoacil-ARNt sintetasas de Plasmodium son 

enzimas que se pueden inhibir y que por tanto pueden ser usados como dianas antimalárias.  

En resumen, este trabajo demuestra que debe seguir caracterizandose la maquinaria de 

traducción genética en Plasmodium falciparum, y usar este conocimiento para el desarrollo de 

nuevos antimaláricos.   

 

6.1.3. Desarrollo de métodos 

 
Para desarrollar los proyectos mencionados antes, dos proyectos adicionales computacionales 

has sido realizados:  

 

1. Desarrollo de un método para predecir proteinas relacionadas con patogenicidad a 

partir de su secuencia aminoacídica 

2. Desarrollo de una estrategia de docking para determinar la predictibilidad, ratios de 

enriquecimiento y precisión de predicción de los modos de unión de los fármacos 

cuando se usan modelos de homología para hacer docking 
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2.  Introducción 
 

2.1.  La traducción genética 

 

La transición secuencial de información de ADN a ARNm a proteina constituye el dogma 

central de la biología molecular.  Determina que esta información no puede ser transferida 

hacia atrás desde la proteina a la proteina o a ácido nucleico (Crick, 1970).   

 

Traducir el código de 4 letras del ARN al alfabeto de 22 letras de las proteinas es una parte 

central de la célula.  En el proceso de traducción genético, el ARNm es descodificado en el 

ribosoma para producir una cadena de amino acidos que después se plegará para dar lugar a 

una proteina activa.  La maquinaria de traducción está dedicada a interpretar el código de 

ácidos nucleicos en un proceso que tiene dos fases.  Primero, los amino acidos son unidos a 

sus correspondientes ARNt a través de una reacción catalizada por un grupo de proteinas 

conocidas como aminoacil-ARNt sintetasas (aaRS).  Los aminoacil-ARNt (aa-ARNt) son 

llevados al ribosoma por factores de elongación, y en el ribosoma el anticodon del ARNt es 

encajado con el codon del ARNm, produciendose la transferencia del amino acido cargado en 

el ARNt a la cadena polipeptídica que se está sintetizando.   

 

El código genético estandar, con alguna excepción, es el mismo en todas las especies.  Esta 

compuesto de 64 tripletes distintos (codones), de los cuales 61 codifican amino acidos.  Como 

hay más codones (64) que amino acidos (20), la mayoría de amino acidos están codificados 

por varios codones.  Este fenómeno es conocido como degeneración del código genético.  Las 

únicas excepciones a esta degeneración son la metionina y el triptófano.   

 

El mecanismo mediante el cual un organismo puede leer los 61 codones fue hipotetizado por 

primera vez por Francis Crick en su “Hipótesis Bamboleante” (“Wobble Hypothesis”).  Ahora se 

sabe que un ARNt tiene la capacidad de descodificar múltiples codones a través de la 

flexibilidad de emparejamiento entre la tercera posición (3’) del codón de ARNm y la primera 

posición (5’) del anticodón de ARNt, también conocido como la posición bamboleante (“wobble 

position”).   
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2.2.   El ARNt 

 

Los ARN de transferencia (ARNt) son las moléculas adaptoras que hipotetizó Crick hace más 

de 50 años (Crick, 1958).  Como regla general, hay al menos un ARNt para cada uno de los 20 

amino acidos.  En muchos casos, hay múltiples isoaceptores de ARNt para un mismo amino 

acido, con cada uno de estos isoaceptores reconociendo diferentes o solapados subgrupos de 

codones para el mismo amino acido.   

 

Los ARNt son relativamente cortos – de 75 a 95 nucleótidos- y exhiben una conservada 

estructura secundaria (Sprinzl et al., 1998).  Esta estructura en forma de trebol contiene un 

brazo aceptor, un brazo D, un brazo T y un lazo T.   

 

Los genes de ARNt suelen estar presented en multiples copias, con un número de copias de 

ARNt correspondiente para aquellos codones más altamente usados en el genoma.  Por tanto, 

la distribución de isoaceptores no es uniforme, e incluso algunos isoaceptores (de los 64 

posibles) estan ausentes.   

 

En organismos unicelulares, el número de copias de un gen de ARNt correlaciona con el nivel 

intracelular de ARNt (Sorensen y Pedersen, 1991; Tuller et al., 2010).  Por tanto, se cree que 

la expresión de los genes de ARNt es proporcional a su relativo número de copias en el 

genoma.  Sin embargo, en organismos superiores, varios genes de ARNt no siguen esta regla, 

sugiriendo que otras variables como la epigenética pueden estar jugando en un papel en la 

expresión de niveles de ARNt.  

 

Los transcritos de ARNt suren extensas modificaciones post-transcripcionales para dar lugar a 

un ARNt completamente funcional y maduro para ser usado en la traducción genética.  Este 

proceso es conocido como edición de ARNt, y es esencial para la supervivencia de las células 

(Döring et al., 2001; Nangle et al., 2006).  Hay más de 100 modificaciones post-

transcripcionales identificadas en los ARNt. Algunas de estas modificaciones están distribuidas 

en los tres dominios de la vida, mientras que otras son específicas de dominio.  

 

Las modificaciones de ARNt tienen diversas funciones, incluyendo: 

 i)  Extensión y restricción de su capacidad de emparejamiento con bases 

 ii)  Modificación de la estabilidad de la interacción codón-anticodón 

 iii) Mantenimiento de la pauta de lectura 

 iv)  Efectos en la eficiencia de traducción 
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2.3.  Las aminoacil-ARNt sintetasas 

 

Las aminoacil-ARNt sintetasas (aaRS) son, conjuntamente con el ARNt, las protagonistas de 

la primera fase de la traducción de proteinas: la reacción de aminoacilación.  Esta reacción 

ocurre en dos pasos.  En el primero, el amino ácido es adenilado o “activado” por el ATP para 

formar aminoacil-adenilato (aa-AMP), liberando pirofosfato (PPi).  Después, el amino ácido 

activado, que permanece unido a la enzima, es transferido al extremo 3’ terminal (A76) del 

ARNt mediante un enlance covalente, liberándose AMP y aminoacil-ARNt.   

 

Con notables excepciones, hay 20 aaRS en cada organismo, una para cada amino acido 

usado en el código genético.  Estas 20 aaRS caen en dos distintas clases, según su 

arquitectura del centro activo (Eriani et al., 1990): las aaRS de clase I tienen una aquirectura 

basada en un plegamiento Rossman, mientras que las de clase II tienen una estructura de 

hoja beta antiparalela flanqueada por hélices alfa.  

 

Las aaRS son una familia de proteinas multidominio.  Tienen un dominio catalitico que lleva a 

cabo la función de aminoacilación, pero además pueden tener unidos varios dominios que 

llevan a cabo funciones como el incremento de la especificidad de sustrato o el incremento de 

la eficiencia de la aminoacilación.  Además de estos dominios básicos, nuevos dominios y 

motivos han sido añadido progresivamente a las aaRS para expandir sus funcionalidades.  

Además, durante su evolución, las aaRS han experimentado numerosos eventos de 

duplicaciones, inserciones y eliminaciones de dominios.  Las pseudo-ARS son proteinas que 

han resultado de estos eventos.  Esta familia de parálogos de dominios de aaRS llevan a cabo 

muchas funciones que no siempre estan relacionadas con la traducción de proteinas (Martinis 

y Pang, 2007).   

 

La mayoría de filogenias de aaRS no son consistentes con la filogenia de los organismos, es 

decir, que violan el patrón canónico filogenético que se encuentra en muchas otras enzimas, y 

que separa Archaea, Bacteria y Eukarya.  Esto es debido a la abundance transferencia 

horizontal que ha ocurrido en la familia de aaRS.   

 

La fidelidad de traducción de información del ARNm a la proteina es esencial para la función 

celular.  Las sintetasas deben tener una especificidad de sustrato muy alta para evitar 

possibles errores, y esta se consigue mediante la especificidad de amino acido y la edición de 

amino acidos cargados erroneamente.   
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2.4.  Plasmodium falciparum  

 

La malaria causa 225 millones de casos clínicos al año y aproximadamente un millón de 

muertes anuales (OMS, 2010).  La mayoría de estas muertes está causada por la especie 

Plasmodium falciparum, una de las cuatro especies de Plasmodium que afectan a los 

humanos.  A pesar de que hay fármacos contra la malaria, no se ha llegado a una situación 

global.  Los mecanismos de control actuales incluyen terapias profilácticas y terapéuticas, así 

como mecanismos de bloqueo de la transmisión del vector, el mosquito Anopheles.   

 

El genoma de Plasmodium falciparum incluye ~5770 genes, de los cuales muchos no tienen 

homología con ningún otro organismo conocido (Gardner et al., 2002).  Esto causa dificultades 

para describir sus funciones, pero a la vez son interesantes candidatos para identificar 

posibles dianas terapéuticas específicas de Plasmodium. El genoma de P. falciparum es 

extremadamente rica en A y T (más del 80% del genoma), causando que su uso de codones 

sea especialmente desviado, con un enriquecimiento extremo de aquellos codones acabados 

en A y T. Además, los genes de P. falciparum tienden a ser mucho más largos que sus 

homólogos en otras especies –hasta un 50% más largos- (Frugier et al., 2010).  Estas 

inserciones corresponden en muchos casos a regiones de baja complejidad (LCRs), que están 

caracterizadas por repeticiones de un mismo amino ácido.   

 

La maquinaria de traducción de P. falciparum es diana de importantes fármacos antimaláricos.  

Sin embargo, esta maquinaria está muy poco caracterizada. P. falciparum contiene tres 

compartimentos celulares con genomas: el núcleo, la mitocondria y el apicoplasto –un 

organelo esencial presente en todos los Apicomplexa-. Cada uno de estos compartimentos 

requiere su propia transcripción y traducción para su supervivencia (Jackson et al., 2011).  Los 

tres genomas utilizan al menos una vez todos los amino acidos, y por tanto un set completo de 

aaRS es necesario para la traducción de estos.  Plasmodium falciparum contiene 37 aaRS 

codificadas en el núcleo, y estas van dirigidas al citosol o al apicoplasto.  Se cree que la 

mitocondria utiliza ARNt previamente aminoacilados en el citosol, que son importados y 

usados para la síntesis de proteinas mitocondriales.   



 
318 

2.5 aaRS como dianas farmacológicas 

 

La aparición de resistencias a los antibióticos existentes requiere el desarrollo de nuevos 

agentes antimicrobianos dirigidos contra nuevas dianas.  Las aaRS constituyen una familia de 

enzimas ancestrales y esenciales para la síntesis de proteinas, y por tanto, candidatas como 

dianas farmacológicas. El mayor requisito que debe cumplir cualquier fármaco que inhiba una 

aaRS es una alta selectividad hacia la enzima del patógeno en comparación con su homólogo 

humano. Esta selectividad es posilble, ya que las aaRS son diana de un fármaco 

comercializado, el ácido pseudomónico (comercializado como Bactroban, GlaxoSmithKline), 

que inhibe la isoleucil-ARNt sintetasa bacteriana, con una selectividad de 8000 veces en 

comparación con su homólogo humano.  

 

Las estrategias de diseño de fármacos basadas en aaRS pueden ser clasificadas en: 

 

1. Análogos de los intermediarios de la reacción de aminoacilación 

2. Análogos de inhibidores naturales de aaRS 

3. Fármacos que impiden la interaccion con el tRNA 

4. Inhibidores de la actividad de edición de las aaRS 

5. Screening virtual y inhibidores basados en estructura 

6. Screening in vitro a alta escala 
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3.  Objetivos 

 

Capítulo 1: Caracterización de la maquinaria de traducción genética y su evolución en 

las especies 

 

1. Caracterización de la evolución de genes de tRNA en las distintas especies 

 

2. Identificación de las correlaciones potenciales entre el contenido de genes de ARNt y el 

uso de codones 

 

3. Determinar los papeles potenciales de uso desigual de codones dentro de los genes de 

una especie y entre distintas especies 

 

4. Aplicar el conocimiento adquirido para aplicaciones biotecnológicas y mejora de la 

comprensión de los defectos en la traducción genética en las enfermedades 

 

Capítulo 2: Diseño de fármacos in vitro e in vivo contra la maquinaria de traducción 

genética de Plasmodium falciparum  

 

1. Estudiar y caracterizar la maquinaria de traducción genética de Plasmodium 

falciparum, incluyendo la identificación de sus aminoacil-ARNt sintetasas y sus ARNt, 

uso de codones y identificación de su estrategia para maximizar su eficiencia de 

traducción.  

 

2. Identificación y caracterización de nuevas dianas farmacológicas en Plasmodium 

falciparum, incluyendo el análisis filogenético, la caracterización estructural y las 

comparaciones entre distinas aminoacil-ARNt sintetasas y sus homólogos humanos, 

asi como la determinación in vitro de las localizaciones subcelulares de las dianas 

farmacológicas elegidas. 

 

3. Investigar el uso de inhibidores de traducción genética en Plasmodium falciparum, 

generar nuevos compuestos y testearlos, usando para ello distintas estrategias de 

diseño de fármacos, que incluyen el diseño de fármacos basado en estructura, el 

screening virtual de alta escala y el uso de librerias combinatorias. 
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Capítulo 3: Desarrollo de métodos 

 

1. Desarrollar un método para predecir la patogenicidad de una proteina basada en su 

secuencia aminoacídica 

 

2. Cuantificar la capacidad de predicción de los modelos de homología para usos de 

docking 

 

3. Desarrollar un protocolo para maximizar la predictibilidad de los modelos de homología 

para usos de docking 
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4.  Publicaciones 
 

Publicación 1:  A role for tRNA modifications in genome structure and codon usage. 

Novoa EM, Pavon-Eternod M. Pan T and Ribas de Pouplana L. 

Cell 2012, 149: 202-213 

 

1. Papel de las modificationes de tRNA en la estructura del genoma y el uso de codones 

El número de copias de genes de ARN de transferencia (ARNt) es una característica 

diferenciadora de los genomas, que contribuye a la eficiencia de la maquinaria de traducción, 

pero los principios que determinan el número de copias génicas de ARNt y la composición de 

codones todavía no se comprenden.  En este trabajo determinamos que la aparición de dos 

enzimas específicas de modificación del ARNt moldearon la estructura y la composición de los 

genomas.  A través del análisis de más de 500 genomas, identificamos dos enzimas de 

modificación de ARNt específicas como principales contribuyentes que causaron la separación 

de los genomas de Archaea, Bacteria y Eukarya en términos de su composición de genes de 

ARNt. Demostamos, contrariamente a observaciones anteriores, que el uso de codones y las 

frecuencias génicas de ARNt estan correlacionadas en todos los reinos si estas dos 

modificaciones son tenidas en cuenta, y que la presencia o ausencia de estas modificaciones 

explica los patrones de expresión génica observada en estudios previos.  Finalmente, 

demostramos experimentalmente que los niveles de expresión de genes en humanos 

correlacionan con la composición genómica de codones si estas modificaciones son tenidas en 

cuenta.   

 

Publicación 2:  Speeding with control: codon usage, tRNA and ribosomes 

Novoa EM and Ribas de Pouplana L. 

Trends in Genetics 2012 (in press)  

 

2. Aumentando el control: uso de codones, ARNt y ribosomas 

El uso de codones y la abundancia de ARNt son parámetros críticos para la síntesis de genes.  

Sin embargo, las fuerzas que determinan la desviación en el uso de codones dentro de los 

genomas y entre organismos distintos, al igual que las funciones de las composiciones con 

desviaciones de codones, están poco comprendidas.  De forma similar, la composición y 

dinámica de las poblaciones maduras de ARNt en las células en términos de abundancias de 

ioaceptores, y la prevalencia y función de las modificaciones de nucleótidos de ARNt tampoco 

se comprenden.  A medida que comenzamos a comprender las reglas que gobiernan el uso de 

codones y la abundancia de ARNt, es cada vez más evidente que estos parámetros no solo 
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son una forma de aumentar los niveles de expresión de proteinas, sino que también regulan la 

velocidad de traducción génica, la eficiencia de plegamiento de proteínas, y la expresión 

coordinada de familias de genes funcionalmente relacionadas.  Aquí discutimos la importancia 

de las interacciones codón-anticodón en la regulación de la traducción, y remarcamos la 

contribución de las distribuciones no aleatorias de codones y de las modificaciones post-

transcripcionales en esta regulación.  

 
Publication 3:  Selective inhibition of an apicoplastic aminoacyl-tRNA synthetase from 

Plasmodium falciparum  

Hoen R*, Novoa EM*, López A, Camacho C, Cubells L, Martin P, Bautista JM, Vieira P, Santos 

M, Cortes A, Ribas de Pouplana L and Royo M.  (*equal contributors) 

J Med Chem (under review) 

 

3. Inhibición selectiva de una aminoacil-ARNt sintetasa apicoplástica de Plasmodium 

falciparum 

La resistencia de los párasitos maláricos a los fármacos disponibles sigue creciendo, haciendo 

necesario el desarrollo de nuevas terapias antimaláricas. Las aminoacil-ARNt sintetasas (ARS) 

constituyen un conjunto de dianas prometedoras para el desarrollo de nuevos antimaláricos.  

Las ARS son enzimas esenciales y dianas antibacterianas demostradas, cuya naturaleza 

ancestral facilita el desarrollo de inhibidores específicos. El origen cianobacterial del 

apicoplasto, un orgánulo común a todos los Apicomplexa y que es esencial para Plasmodium, 

está reflejado en sus enzimas de tipo bacteriano (incluyendo las ARS).  A pesar de su 

potencial para ser dianas farmacológicas, las ARS apicoplásticas permanecen inexploradas.  

Aquí demostramos que la inhibición selectiva de ARS apicoplásticas es posible, y describimos 

una serie de nuevos compuestos que presentan actividad antimalárica y que específicamente 

inhiben la lisil-ARNt sintetasa apicoplástica de Plasmodium.  

 

Publicación 4: Systematic study on Plasmodium falciparum aminoacyl-tRNA synthetases as 

antimalarial drug targets 

Camacho C, Novoa EM, Cubells L, Wilkinson B, Martin P, Bautista JM, Cortés A and Ribas de 

Pouplana L. 

To be submitted 

 

4. Estudio sistemático de las aminoacil-ARNt sintetasas de Plasmodium falciparum 

como dianas farmacológicas 

La malaria sigue siendo un problema mayor de salud global, y la emergente resistencia a los 
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actuales fármacos resulta en una urgencia para el desarrollo de nuevos antimaláricos.  Nuevos 

antibiótios para los cuales los parásitos todavía no hayan adquirido resistencia deben ser 

desarrollados.  La traducción de proteinas es la diana de varios fármacos antimaláricos 

actualmente en suo.  Para explorar el potencial de las aminoacil-ARNt sintetasas (ARS) como 

posibles dianas antimaláricas, hemos tratado cultivos de Plasmodium falciparum con una 

batteia de fármacos de ARS, y hemos comparado sus actividades.  Entre los compuestos 

probados, la borrelidina, un inhibidor natural de la treonil-ARNt sintetasa (ThrRS) tiene un 

potente efecto antimalárico.  A pesar de su prometedora actividad antimalárica, la borrelidina 

también inhibie la ThrRS humana, y es altamente tóxica para las células humanas.   Para 

evitar este problema, hemos explorado las actividades antimaláricas de una librería de 

análogos de borrelidina, y hemos evaluado su citotoxicidad en células humanas.  Encontramos 

que algunos de estos compuestos presentan mayor selectividad hacia la enzima de 

Plasmodium, mientras mantiene su actividad antiparasític tanto in vitro como in vivo.  

Proponemos que la borrelidina es un prometedor fármaco antimalárico que debería ser 

explorado en mayor profundidad en la búsqueda de nuevos fármacos antimaláricos.   

 
Publication 5: A genomics method to identify pathogenicity-related proteins. Application to 

aminoacyl-tRNA synthetase-like proteins. 

Novoa EM, Castro de Moura M, Orozco M and Ribas de Pouplana L.  

FEBS Lett 2010, 584 (2): 460-466. 

 

5. Un método genómico para la identificación de proteinas relacionadas con 

patogenicidad.  Aplicacion a la familia de pseudo-aminoacil-ARNt sintetasas 

Durante su larga evolución, las aminoacil-ARNt sintetasas (ARS) han experimentado 

numerosos eventos de duplicación, inserción y eliminación de dominios.  Las pseudo-ARS son 

proteínas resultantes de estos eventos genéticos.  Este grupo de polipéptidos llevan a cabo 

una variedad de funciones que no necesariamente tiene que estar relacionadas con la 

traducción de proteinas.  Muchas de estas proteinas permanecen sin caracterizar.  Al menos 

16 diferentes pseudo-ARS han sido identificadas, pero sus funciones permanecen 

incomprendidas.  Aquí revisamos la distribución filogenética individual de estas proteinas en 

bacterias, y aplicamos un nuevo método genómico para determinar su potencial implicación en 

patogenicidad.   

 

Publicación  6:   Ensemble docking in homology models. 

Novoa EM, Ribas de Pouplana L, Barril X and Orozco M. 

J Chem Theory Comput 2010, 6 (8): 2547-2557 
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6.  Docking por conjunto en modelos de homología 

En este trabajo presentamos una exploración sistemática de la calidad de estructuras proteicas 

derivadas del modelaje por homología, cuando son usadas como molde para docking a alta 

escala.  Encontramos que las estructuras derivadas de modelaje por homología tiene 

amenudo una calidad similar para docking que las estructuras provinentes de cristalización, 

incluso en aquellos casos en los que el molde usado para crear el modelo de homología solo 

tiene una moderada identidad de secuencia con la proteina de interés.  Hemos diseñado una 

estrategia de “docking por conjunto” basada en el uso de múltiples modelos de homología.  El 

método produce resultado que son de mejor calidad que los obtenidos por una sola estructura 

experimental de rayos X. El uso de esta estrategia nos permite aumentar hasta cinco veces el 

universo de proteinas humanas que se pueden utilizar para fines de docking a alta escala, 

permitiendo cubrir alrededor del 75% de las dianas terapéuticas humanas.   

. 

 

Publication 7:  Small molecule docking from theoretical structural models 

Novoa EM, Ribas de Pouplana L and Orozco M. 

In: “Computational Modelling of Biological Systems: From Molecules to Pathways”.  

Ed Springer, New York (USA) Vol 4, pp 75-96.  

 

7.  Docking de pequeñas moléculas a partir de modelos teóricos estructurales.   

El docking molecular ha sido usado desde 1980 como técnica de simulación líder que facilita el 

diseño de fármacos y el proceso de descubrimiento de fármacos.  A pesar de que el número 

de algoritmos de docking disponibles ha aumentado durante los últimos años, incluir la 

flexibilidad de proteinas y ligandos en estas simulaciones todavía es un reto pendiente.  En 

este capítulo revisamos los actuales algoritmos de docking y sus usos, con un enfoque 

especial en el uso de modelos de homología para docking.  
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5.  Discusión y conclusiones 
 
 

5.1.  Papel de las modificaciones de ARNt en la estructura del genoma y el uso de 

codones 

 

De nuestro analisis de contenido de genes de ARNt, encontramos que el contenido de genes 

de ARNt ha evolucionado de una forma diferente en cada dominio de la vida, gracias a la 

aparición de distintas enzimas de modificación del ARNt (ADATs en Eukarya, y UMs en 

Bacteria). Estas modificaciones aumentan la eficiencia de traducción de un grupo de 

isoaceptores de ARNt, que son precisamente los que se encuentran aumentados en número 

de copia de genes.  Debido a su aumentada eficiencia de traducción, los codones que son 

leidos por estos ARNt modificados son más abundantes en proteinas que tienen que 

expresarse a altos niveles (e.g. proteinas ribosomales), en comparación con aquellas proteinas 

que no se expresan a niveles tan altos. 

 

Nuestros resultados sugieren que el contenido de genes de ARNt ha evolucionao para 

aumentar aquellos que son modificables por ADATs o UMs.  Estas modificaciones expanden la 

capacidad de descodificar codones de los isoaceptores de ARNt, cosa que sugiere que la 

eficiencia de traducción ha sido un factor principal a la hora de determinar la evolución del 

contenido de genes de ARNt en las distintas especies.  

 

El hecho de que las proteinas que tienen altos niveles de expresión tengan distintos 

enriquecimientos en codones que las que son expresadas en menores niveles, y que estos 

cambios esten relacionados con su potencial para ser leidos por ARNt modificados o no, 

sugiere que la actividad de las enzimas de modificación constituye un nuevo mechanismo de 

regulación post-transcripcional de los niveles de expresión de proteinas.    

 

Nuestros resultados nos hicieron interesarnos por casos en los que la traducción de proteinas 

está alterada, como es en el caso de enfermedades como el cáncer. Es por ello que decidimos 

mirar si tal vez los distintos niveles de expresión de proteinas en células cancerosas podrian 

estar causados por cambios en los niveles de enzimas de modificación de ARNt.  Resultados 

preliminares demuestran que las células cancerosas tienen los niveles de ADAT modificados 

con respecto a no cancerosas, y que estos niveles varian según el tipo de cáncer y linea 

celular.  Estos resultados apoyan la hipótesis de un potencial papel de ADAT en la 

desregulación de la traducción de proteinas en cancer, y por tanto, se debería continuar con 

esta linea de trabajo para identificar el papel preciso de ADAT en células cancerosas. 



 
326 

5.2.  Aminoacil-ARNt sintetasas de Plasmodium falciparum como dianas farmacológicas  

 

Se necesitan nuevos antimaláricos con gran urgencia.  Las aaRS son dianas de fármacos 

comercializados, y han sido estudiadas como dianas de muchos fármacos antibacterianos, 

pero no como dianas antimaláricas. En este trabajo se han utlizado distintas estrategias para 

el desarrollo de nuevos antimaláricos contra las aaRS de P. falciparum, incluyendo: 

 

i) Análogos de los intermediarios de la reacción de aminoacilación (contra PfKRS-2) 

ii) Derivados de productos naturales inhibidores de aaRS (contra PfTRS, entre otras) 

iii) Screening virtual a alta escala (contra PfKRS-2 y PfQRS) 

iv) Inhibidores del movimiento de hinge requerido para la unión del ARNt (contra PfKRS-2) 

 

Recientmente, Winzeler y colaboradores (Hoepfner et al., 2012) han identificado la diana de un 

fármaco antimalárico, la cladosporina.  Esta molécula había sido identificado como inhibidor de 

parásito intraeritrocíticos a través de screenings in vitro a gran escala (Plouffe et al., 2008), y a 

través de aproximaciones genómicas reversas determinaron que la diana farmacológica de 

esta molécula era la lisil-ARNt sintetasa citosólica (PfKRS-1).   

 

En este trabajo demostramos que las aminoacil-ARNt sintetasas de Plasmodium falciparum 

son enzimas contra las cuales se pueden producir fármacos antimaláricos. Encontramos que 

los análogos de borrelidina consituyen potentes inhibidores tanto in vitro como in vivo, y que 

presentan una alta selectividad hacia el enzima malárico en comparación con su homólogo 

humano. Por tanto, debería seguirse caracterizando en mayor detalle la maquinaria de 

traducción genética de P. falciparum, y usar este conocimiento para el desarrollo de nuevos 

antimaláricos. 

 

En resumen, estos resultados validan las aminoacil-ARNt sintetasas como dianas 

farmacológicas contra la malaria y potencialmente en enfermedades parasíticas relacionadas.  

El papel esencial de esta familia de enzimas tanto en la fases tanto de hígado como de sangre 

representa una gran oportunidad para el descubrimiento de la futura generación de 

antimaláricos.    
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