IV. RESULTATS
IV. RESULTATS

Antecedents

A la figura 37 es representa la regió proximal del promotor γZ, indicant els putatius elements en cis identificats en base a la homologia que presenten amb seqüències reguladores descrites en altres promotores de proteïnes de reserva, tant de monocotiledònies, com de dicotiledònies.

El promotor del gen γZ presenta les caixes TATA-box i CAAT-box a les posicions -27 i -68 respecte l’inici de transcripció, que se situa a 70 pb del primer ATG. Es van identificar 4 seqüències amb homologia al motiu Prolamin-box (Pb) descrit prèviament a promotors de gens de cereals d’expressió específica a llavor (Boronat i col., 1986; Thompson i Larkins, 1989; Ottoboni i col., 1993). Es va identificar també una seqüència parcialment palindròmica amb homologia als elements GCN4 de lleuat i AP1 de mamífers (Hill i col., 1986; Piette i col., 1988), designada com GCN4-like zein motif (GZM). Aquest element GZM es troba només a 8 pb de la caixa Pb3, formant l’anomenat endosperm-box o bifactorial-box, la funcionalitat del qual s’havia posat també de manifest en altres cereals en els promotors dels gens d’hordeïnes d’ordi (Forde i col., 1985; Mena i col., 1998) i de glutelines de blat (Hammond-Kosack i col., 1993) i la importància funcional del qual en l’expressió del gen γZ havia estat demostrada en el nostre grup (Marzábal i col., 1998). S’ha identificat també un element AACA a 4 pb del bifactorial-box, descrit per primer cop en els promotors dels gens de glutelines d’arròs i de rellevant importància per a l’activitat transcripcional d’aquests promotors, tant a nivell quantitatiu com qualitatiu (Wu i col., 2000). També s’han identificat dos motius RY, distribuïts àmpliament en promotors de gens específics de llavor tant de dicotiledònies com de monocotiledònies (revisat per Wohlfarth (1998)). Aquests motius presenten homologia amb l’element Sph del promotor del gen CI de blat de moro (Hattori i col., 1992).

Mitjançant experimentes de footprinting in vivo amb dimetil sulfat (DMS) sobre la regió compresa entre -526 i -331 respecte l’inici de transcripció del promotor γZ (Marzábal i col., 1998) es va identificar, a part dels ja descrits Pb, GZM i AACA, el motiu AZM. La importància funcional d’aquest motiu AZM resta encara per determinar.
Figura 37. Anàlisi de la regió proximal del promotor del gen γZ. Representació esquemàtica de les seqüències reguladores del gen γZ des de l’inici de la traducció (ATG) fins a la posició -549 de la regió promotora. Els possibles elements en cis identificats s’emmarquen: TATA i CAAT box en gris, Prolamin box (Pb1-4) en groc, GCN4-like zein motif (GZM) en vermell, ACGT-like zein motif (AZM) en lila, AACA en verd i RY en blau. Les puntes de flecha indiquen el fragment analitzat per footprinting in vivo. Les flexes negres indiquen els nucleòtids que van mostrar protecció front al DMS mentre que les blanques indiquen les hipersensibilitats.

A continuació es presentaran els resultats obtinguts, ordenats per capítols i seguint els objectius plantegats.
CAPÍTOL 1
CAPÍTOL 1. Caracterització de PBF com activador transcripcional del gen γZ

Assaigs funcionals per transformació d’endospermes de blat de moro

Donades les singulars característiques de la γ-zeïna, el nostre grup estava interessat en estudiar l’activitat transcripcional del gen γZ en endospermes de blat de moro. En un sistema com blat de moro la dificultat d’obtenció de línies transgèniques estables fa altament interessant poder disposar d’un sistema ràpid i versàtil de transformació per expressió transitorià. Es va descartar la utilització de sistemes clàssics com els protoplasts derivats de cèl·lules d’endosperma, ja que aquest sistema presentava com a principal problema la desdiferenciació d’aquest teixit en cultiu, el que limita la seva capacitat per expressar proteïnes de reserva (Lyznic i Tsai, 1989; Ueda i Messing, 1991; Ueda i col., 1994). Així, aprofitant que es disposava d’un canó de partícules, es va posar a punt la tècnica de transformació d’endospermes de blat de moro per a expressió transitorià per biolòstica.

Aquest sistema, a més, ens serviria com a model per poder avaluar amb l’expressió de proteïnes de reserva i els seus mecanismes de regulació transcripcional in vivo. És per això també que, actualment, diversos grups que estudien la regulació de l’expressió gènica en el gra de diferents cereals han desenvolupat tècniques d’expressió transitorià mitjançant biolòstica, adaptades a sistemes homòlegs com és el cas d’ordi (Müller i Knudsen, 1993; Vicente-Carbajosa i col., 1998) o arròs (Hwang i col., 2004).

L’estructura del gra de blat de moro, en el que l’endosperma es troba protegit per 3 embolcall, que des de la capa més exterior fins a la més interna corresponen al pericarp, la nucel·la i l’aleurona, fa que prèviament al bombardeig sigui necessària la dissecció sota la lupa d’aquestes capes. D’aquesta manera, l’endosperma queda exposat directament a les partícules i el bombardeig resulta eficient. A la figura 38 es mostren els resultats d’un experiment de transformació d’endosperme de blat de moro de 15 DAP amb el gen marcador GUS sota control del promotor del gen γZ (Torrent i col., 1997). Es pot observar com no s’obté expressió GUS a endosperma si no es dissecciona l’aleurona prèviament a la transformació.
Degut a l’origen clonal del teixit que conforma l’endosperma, existeix un gradient de cèl·lules transcripcionalment actives, gràficament representades per cèl·lules que mantenien el seu nucli intacte, des de l’exterior cap a l’interior del teixit (veure figura 63, pàgina 128). Això fa que l’activitat transcripcional a l’endosperma en desenvolupament vaig quedant limitada a les capes més externes del gra. És per això que els experiments de bombardeig es realitzen sobre seccions tangencials de les capes més externes d’endospermes de blat de moro (casquets). Aquest sistema d’expressió transitòria presenta com a principal inconveniència que és incómodo per analitzar activadors transcripcionals, però en limita el seu ús a l’hora d’avaluar l’activitat de repressors. A més, l’elevada variabilitat entre experiments, derivada de les limitacions de la pròpia tècnica, obliguen a realitzar co-bombardeig de les construccions a analitzar amb una construcció que actúi com a control intern de transformació. En el nostre cas, hem utilitzat sistemàticament el gen informador LUC sota control del promotor constitutiu 35S del Virus del Mosaic de la Coliflor (CaMV 35S promoter) com a control.

Els resultats d’un treball previ desenvolupat al nostre laboratori (Torrent i col., 1997) demostraven la conveniència d’utilitzar grans de blat de moro de 15 DAP per a realitzar els assaigs d’expressió transitòria per biològica, ja que s’havia observat que en aquest estadi del desenvolupament, un fragment de 1,7 Kb del promotor del gen de la γ-zeïna (γZ) fusionat al gen marcador GUS (1639γZp:GUS) presentava un elevat nivell d’expressió a endosperme de blat de moro (veure figura 38).
1.1. Determinació del domini activador de PBF sobre el promotor γZ

Sabent que PBF era un potent activador transcripcional del promotor γZ i disposant de les dades prèvies del nostre grup (Marzábal, 2002), volíem determinar quin n’era el domini activador. Per fer-ho vam realitzar experiments de co-transformació sobre endospermes de blat de moro jove (12-15 DAP) amb una construcció informadora que contenia el gen informador GUS sota control de la regió proximal del promotor γZ (527γZp::GUS) a quantitat fixa (2 μg) i com a efectors del promotor γZ es van provar quantitats creixents (de 0,5 a 2 μg) de PBF i els seus dominis N i C-terminal per separat, expressats sota control del promotor constitutiu 35S (figura 39).

A la figura 39.A es mostra l’estructura en dominis de PBF. La regió N-terminal del factor (en taronja a la figura) conté el domini Dof responsable de la unió al DNA i s’hi indica amb un asterisc la posició de les Cys implicades en la formació del dit de Zn. Els residus que formen el dit de Zn es mostren subratllats. En el domini C-terminal (en verd a la figura) s’indica la posició d’una regió rica en Asn, que podria estar relacionada amb la capacitat activadora de PBF, així com els residus de Ser susceptibles de ser fosforilats i putativament implicats en la regulació de la funció de PBF.

A la figura 39.B es mostren les diverses construccions de PBF utilitzades en els assaigs d’expressió transitòria, amb els diferents dominis de la proteïna formant un cassett d’expressió amb el promotor constitutiu 35S del Virus del Mosaic de la Colíflor (CaMV 35S promoter), el primer intrò de l’AdhI i el terminator nos. S’indica, a més, l’esquema de la construcció utilitzada com a control intern de transformació que, en el nostre cas, ha estat el gen informador LUC sota control del promotor constitutiu 35S. L’ús d’aquest control de transformació ens permet minimitzar l’elevada variabilitat entre experiments que presenta la tècnica d’expressió transitòria per biològica, ja que els resultats els expressarem en unitats relatives GUS/LUC.

En analitzar l’activitat del promotor γZ (representada pels valors relatius d’expressió GUS/LUC, quantificats per luminometria) en els casquets d’endosperma transformats va resultar que PBF actuava com a regulador positiu de l’expressió sobre el promotor γZ, activant-ne l’expressió entre 2 i 4 cops per sobre dels seus nivells basals. La seva capacitat activadora era dosi-dependent: a mida que la quantitat de PBF assajada augmentava, l’activitat del promotor augmentava també. Aquest resultat estava d’acord amb dades prèvies del nostre grup (Marzábal, 2002). En canvi, ni el domini N-terminal (bdPBF, que conté el domini responsable de la unió al DNA) ni el domini C-terminal (CtPBF, que conté la regió que suposàvem responsable de l’activació transcripcional de PBF) per separat eren capaços d’actuar com a reguladors positius del promotor γZ (figura 39.C.), indicant que
ambdós dominis o bé la conformació global de la proteïna són necessaris per a la seva funcionalitat.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MDMISGSTAA TSTPHNNQZ VMLSSPIIKE EARDPKQTRA</td>
</tr>
<tr>
<td></td>
<td>MPIGGSGER KPRPQLPEAL KCPRDCSNT KCYYNNYSM</td>
</tr>
<tr>
<td></td>
<td>SQPRYFCKAC RRYWTHGGTL RNVPIGGGR KNKASRFVL</td>
</tr>
<tr>
<td></td>
<td>GSHTSSSSSA TYAPLSPTSN ASSSNMSINK HMMPVPMTM</td>
</tr>
<tr>
<td></td>
<td>PTPTMTGLFP NVLPTLMPTG GGGFDFTMD NQHRLSFTP</td>
</tr>
<tr>
<td></td>
<td>MLPSQGPVP MLAAGGSET PSFEMLRGG IFHGSSSYNT</td>
</tr>
<tr>
<td></td>
<td>SLTMSGGNN MDKPFSLPSY GAMCTNQLSG STNDARQLV</td>
</tr>
<tr>
<td></td>
<td>GPQDNKAIM KSSNNGVS LLNLWYWKHN NNNNNNNNN</td>
</tr>
<tr>
<td>B</td>
<td>NNNNNNGKQ</td>
</tr>
</tbody>
</table>

Figura 39. Capacitat d’activació de PBF i els seus dominis sobre el promotor γZ en experiments de co-transformació sobre endospermes de blat de moro de 12-15 DAP.

A. Sequència aminoaclidica i estructura en dominis de PBF: domini N-terminal en taronja i domini C-terminal en verd. Amb un asterisc es marquen les Cys encarregades de coordinar l’àtom de Zn i se subratllia el domini Dof. En vermell i subratllat es marquen els motius reconeguts per CK2 identificats per PROSITE.

B. Esquema de les construccions utilitzades en els experiments de co-bombardeig, amb els diferents efectors (formant un casset d’expressió amb el promotor constitutiu 35S, el primer intrò de l’Adh1 i el terminador nos) sobre la construcció 527γz:GUS i la construcció amb el gen LUC usada com a control de transformació (en un casset d’expressió amb el promotor 35S, el primer intrò del gen Shrunken i el terminador nos). Els dominis N i C-terminal de PBF (bdPBF i CIPBF) són complementaris i cobreixen la sequència aminoaclidica del factor PBF en la seva totalitat.

C. Resultats obtinguts en els experiments de co-bombardeig expressats com a relació GUS/LUC. Al nivell basàl d’expressió del promotor γZ (sense efectors) se li ha assignat valor 1 (línia vermella). PBF és capaç d’activar l’expressió del promotor γZ 2-4 cops sobre els nivells basals mentre que els dominis N i C-terminal per separat no són capaços de fer-ho.
1.2. L’activació de l’expressió de γZ a través de PBF requereix la unió del factor al promotor

Els resultats anteriors suggerien que l’activitat de PBF era dependent de la seva unió al DNA. Aquesta hipòtesi era recolzada per resultats que posaven de manifest com una versió mutada de PBF (mutPBF, que té mutades les Cys encarregades de coordinar l’àtom de Zn, centre de l’estructura del domini Dof de PBF) no era capaç d’activar l’expressió del promotor γZ en experiments d’expressió transitòria, tot i contenir tant el domini N-terminal com el C-terminal (Marzabal, 2002). Així, vam decidir estudiar la capacitat d’activació del promotor γZ amb un factor quimèric que contenia el domini C-terminal de la PBF de blat de moro (mPBF) fusionat al domini Dof de la PBF d’ordi (bPBF). Com ja s’ha comentat anteriorment, s’han descrit els factors ortòlegs a PBF en altres cereals com ordi i blat (Mena i col., 1998). I tot i que la identitat de seqüència entre mPBF i les altres PBFs descrites (bPBF i wPBF) és molt baixa a nivell de proteïna sencera, la seqüència aminoacídica dels seus dominis Dof és pràcticament idèntica (figura 40), amb una identitat del 100% entre bPBF i wPBF i una identitat del 89% respecte mPBF. Tot i la seva similitud a nivell del domini Dof, les propietats d’unió al DNA de les 3 proteïnes i les seves capacitats activadores diferencien lleugerament. És per això que vam escollir el domini Dof d’una PBF d’una espècie diferent a blat de moro, esperant que l’addició d’un domini Dof heteròleg proporcionés ancoratge al DNA, sense participar en l’activació del promotor γZ.

![Diagrama](https://via.placeholder.com/150)

Figura 40. Comparació a nivell de seqüència aminoacídica entre les diferents PBF de cereals descrites. A. Identitat de seqüència a nivell de proteïna sencera (PS) i de domini Dof entre PBF de blat (wPBF), blat de moro (mPBF) i ordi (bPBF). **B.** Alineament de seqüències dels dominis Dof de cadascuna de les PBFs.

D’aquesta manera vam realitzar els experiments de co-transformació amb la construcció informadora que conté el gen informador GUS sota control de la regió proximal del promotor γZ (527γZp:GUS) a quantitat fixa (2 µg) i com a efectors del promotor γZ es van provar quantitats creixents (de 0,5 a 2 µg) de mPBF (com a control positiu d’activació), el factor quimèric dof-CtPBF (fusió transcripcional del domini Dof de bPBF al domini C-terminal de mPBF) i el domini Dof de bPBF, tots ells formant un casset d’expressió amb el
promotor constitutiu 35S, el primer intró de l’AdhI i el terminador nos. Com a control intern de transformació vam utilitzar el gen informador LUC sota control del promotor constitutiu 35S (figura 41.A).

En analitzar l’expressió GUS/LUC (per luminometria) en els casquets d’endosperma transformats va resultar que el gen químèric dof-CtPBF actuava com a regulador positiu de l’expressió sobre el promotor γZ. I la seva capacitat activadora era similar o inclús lleugerament superior a la de la pròpia mPBF, aconseguint una activació del promotor γZ entre 3 i 5 cops per sobre dels seus nivells basals. De forma similar a mPBF, la capacitat activadora de la quimera dof-CtPBF era també dosi-dependent: a mida que la quantitat d’efector assajada augmentava, la capacitat activadora augmentava també. En canvi, el domini Dof de bPBF (dof bPBF) no va ser capaç d’activar l’expressió del promotor γZ (figura 41.B.), de forma similar al que passava amb el domini N-terminal de mPBF. Amb aquest experiment ens asseguràvem que el domini Dof de bPBF que havíem escollit per a obtenir el nostre factor químèric no era el responsable de l’activitat.

![Diagrama de l'expressió de PBF químèrica](diagram.png)

Figura 41. Capacitat d’activació de PBF químèrica sobre el promotor γZ en experiments de co-transformació sobre endospermes de blat de moro de 12-15 DAP. A. Esquema de les construccions utilitzades en els experiments de co-bobardeig, amb els diferents efectors (en un casquet d’expressió amb el promotor 35S, el primer intrò de l’AdhI i el terminador nos) sobre la construcció 527γZp:GUS i la construcció amb el gen LUC usada com a control de transformació (en un casquet d’expressió amb el promotor 35S, el primer intrò del gen *Shrunken* i el terminador nos). PBF químèrica conté el domini C-terminal de mPBF fusionat al domini Dof de bPBF i dof-bPBF correspon al domini Dof alliat de bPBF. B. Resultats obtinguts en els experiments de co-bobardeig expressats com a relació GUS/LUC. Al nivell basal d’expressió del promotor γZ (sense efectors) se li ha assignat valor 1 (línia vermella). PBF químèrica és capaç d’activar l’expressió del promotor γZ 3-5 cops sobre els nivells basals mentre que mPBF l’activa 2-4 cops. El domini Dof de bPBF no actua l’expressió del promotor γZ.

Aquests resultats ens indiquen que el domini activador de PBF se situa a la seva regió C-terminal, on es localitza una regió rica en Asn que podria estar implicada en l’activitat de la proteïna. Podem dir, a més, que el domini C-terminal, per si sol, no és capaç d’activar l’expressió del promotor γZ, sinó que per fer-ho necessita unir-se al DNA, a través del domini Dof de la proteïna.
CAPÍTOL 2
CAPÍTOL 2. GAMYB, un nou regulador transcripcional del promotor γZ

2.1. Introducció a GAMYB

A la regió proximal del promotor del gen de la γ-zeïna, hi ha un element AACA 4 pb a 5’ del bifactorial-box, tal i com s’esquematitza a la figura 37. Aquest element, descrit per primer cop en els promotors dels gens de glutelines d’arròs (Wu i col., 2000), presenta gran similitud amb l’element de resposta a gibberel·lines (GARE). A la figura 42 es mostra com 10 dels 13 nucleòtids que defineixen el consens del motiu AACA són idèntics al motiu GARE localitzat a la regió promotora dels gens d’α-amilases de cereals (Takaiwa i col., 1996). La importància de l’element AACA com a diana d’elements en trans en el promotor γZ havia estat prèviament establerta mitjançant experiments de footprinting in vivo (Marzábal i col., 1998).

| AACA | A A C A A A C T C T | A T C |
| GARE | T A A C A A A N T C T | G G |

Figura 42. Similitud de seqüència entre la caixa AACA i els elements GARE. Alineament de seqüències entre la caixa AACA present en els promotors de gens que codifiquen per prolamines i l’element de resposta a gibberel·lines (GARE) dels gens de les α-amilases.

Gubler i col., basant-se en la relativa homologia de seqüència entre les dianes de reconeixement dels factors Myb R2R3 i la regió central del GARE (veure introducció, figura 18) present al promotor d’un gen que codificava per una α-amilasa d’ordi, van clonar un factor de tipus Myb que responia a gibberel·lines i alhora era capaç de transactivar l’expressió del gen de l’α-amilasa a partir del seu promotor en cèl·lules d’aleurona d’ordi. Va ser així com es va clonar el primer gen GAMYB en cereals (Gubler i col., 1995).

Posteriorment es van descriure els homòlegs a GAMYB en altres cereals com arròs (Gubler i col., 1997), civada (Rollason i col., 1999) i blat (Chen i col., 2001), així com els seus possibles homòlegs a Arabidopsis thaliana (Gocal i col., 2001; Millar i Gubler, 2005). El factor GAMYB, doncs, va ser descrit per primer cop a ordi com a regulador transcripcional de gens d’α-amilases a aleurona, implicat en la mobilització de les reserves de midó durant la germinació. Posteriorment, i també a ordi, GAMYB es va descriure com a regulator positiu de l’expressió de proteïnes de reserva (Díaz i col., 2002). Díaz i col. demostren, a més, la interacció de la proteïna bGAMYB amb bPBF (l’ortòleg a mPBF) per a la formació dels complex transcripcionalment actiu que regula l’expressió del gen de la B-hordeïna a ordi.
Aquest fet, unit a la conservació d’elements reguladors entre les regions promotores dels gens de prolamines de cereals (veure introducció, figura 8) i, en concret, de la B-hordeïna i la γ-zeïna, ens va fer pensar que probablement existís un homòleg a GAMYB a blat de moro, que pogués estar implicat en la regulació de l’expressió del gen de la γ-Zeïna. A més, l’elevada identitat entre els diferents gens GAMYB clonats fins al moment feia possible trobar-lo en base a homologia de seqüència.

GAMYB d’ordi és un activador del promotor γZ

Fruit d’una col·laboració amb el grup del Dr. Jesús Vicente-Carbajosa (Laboratorio de Bioquímica y Biología Molecular, Departamento de Biotecnología, ETS Ingenieros Agrónomos, UPM, Madrid), disposàvem de la construcció corresponent al factor GAMYB d’ordi (bGAMYB) sota control del promotor constitutiu 35S (figura 43.A). L’homologia existent en el mecanismes d’acumulació de proteïnes de reserva entre els diferents cereals ha estat àmpliament estudiada i la funcionalitat creuada de diferents promotors de prolamines en diferents cereals, tant per expressió transitòria com en transformació estable, ha estat també demostrada (Holdsworth i col., 1995; Wu i col., 1998; Norre i col., 2002; Hwang i col., 2004). És per això que vam decidir provar la capacitat reguladora del factor heteròleg bGAMYB sobre el promotor del gen de la γ-zeïna en el nostre sistema. Així, es van realitzar experiments de co-transformació sobre endospermes joves de blat de moro (12-15 DAP) utilitzant la construcció 527γZp:GUS i, com a efectors del promotor γZ, el factor PBF de blat de moro (com a control positiu d’activació) i el factor GAMYB d’ordi, expressats sota control del promotor constitutiu 35S (figura 43.A). Esperàvem que la resposta del promotor γZ a un efector heteròleg fos inferior a la produïda pels factors homòlegs de blat de moro i atès que els experiments previs amb PBF mostraven una resposta activadora dosi-dependent, sense arribar a saturar l’activació, vam decidir provar tots els efectors a la quantitat màxima establerta prèviament (2μg/experiment). Així, en analitzar l’activitat del promotor γZ (representada pels valors relatius d’expressió GUS/LUC, quantificats per luminometria) sobre els casquets d’endosperma transformat va resultar que bGAMYB era capaç d’activar l’expressió del promotor γZ, tot i que a nivells inferiors a mPBF: bGAMYB aconseguia activar el promotor γZ entre 2 i 3 cops sobre els seus nivells basals, mentre que mPBF produïa activacions entre 4 i 5 cops (figura 43.B).
Figura 43. Capacitat d’activació de GAMYB d’ordi sobre el promotor γZ en experiments de co-transformació sobre endospermes de blat de moro de 12-15 DAP. A. Esquema de les construccions utilitzades en els experiments de co-bombardeig, amb els diferents efectors (formant un casset d’expressió amb el promotor constituu 35S, el primer intrò de l’Adh1 i el terminador nos) sobre la construcció 527γZp:GUS i la construcció amb el gen LUC usada com a control de transformació (en un casset d’expressió amb el promotor 35S, el primer intrò del gen Shrunk en i el terminador nos). B. Resultats obtinguts en els experiments de co-bombardeig expressats com a relació GUS/LUC. Al nivell basal d’expressió del promotor γZ (sense effectors) se li ha assignat valor 1 (llínia vermella). PBF és capaç d’activar l’expressió del promotor γZ 4-5 cops sobre els nivells basals mentre que GAMYB d’ordi (bGAMYB) és capaç d’activar-la 2-3 cops.

A la vista d’aquests resultats ens vam plantejar el clonatge del gen ortòleg de GAMYB a blat de moro per a, posteriorment, poder caracteritzar la resposta del promotor γZ al seu propi regulador.
2.2. Clonatge de *ZmGAMYB*, el gen GAMYB de blat de moro

2.2.1. Anàlisi *in silico* dels gens GAMYB a monocotiledònies i dicotiledònies

Com a pas previ al clonatge pròpiament dit de GAMYB, vam realitzar una cerca a les bases de dades per trobar les seqüències dels gens GAMYB descrites fins al moment. Aquesta cerca va proporcionar 8 seqüències descrites d’aquest gen, 4 de les quals eren d’espècies cereals. La llista de seqüències obtingudes així com els corresponents nombros d’accés al GeneBank es detallen a la taula IV. A més, la cerca de seqüències amb homologia a gens GAMYB ja descrits ens va proporcionar 4 ESTs (*Expressed Sequence Tag*) de blat de moro.

Taula IV. Gens GAMYB descrits a diferents espècies i ESTs trobades a blat de moro.

<table>
<thead>
<tr>
<th>Nom</th>
<th>Espècie</th>
<th>GeneBankK</th>
<th>Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>HvGAMYB</td>
<td>Hordeum vulgare</td>
<td>X87690</td>
<td>(Gubler i col., 1995)</td>
</tr>
<tr>
<td>LtGAMYB</td>
<td>Lolium temulentum</td>
<td>AF114162</td>
<td>(Gocal i col., 2001)</td>
</tr>
<tr>
<td>OsGAMYB</td>
<td>Oryza sativa</td>
<td>X98355</td>
<td>(Gubler i col., 1997)</td>
</tr>
<tr>
<td>AvGAMYB</td>
<td>Avena sativa</td>
<td>AJ133638</td>
<td>Rollason (1999), unpublished</td>
</tr>
<tr>
<td>TaGAMYB</td>
<td>Triticum aestivum</td>
<td>AB044084</td>
<td>(Chen i col., 2001)</td>
</tr>
<tr>
<td>Atmyb33</td>
<td>Arabidopsis thaliana</td>
<td>AF411969</td>
<td>(Gocal i col., 2001)</td>
</tr>
<tr>
<td>Atmyb65</td>
<td>Arabidopsis thaliana</td>
<td>AF048840</td>
<td>(Gocal i col., 2001)</td>
</tr>
<tr>
<td>Atmyb101</td>
<td>Arabidopsis thaliana</td>
<td>AF411970</td>
<td>(Gocal i col., 2001)</td>
</tr>
</tbody>
</table>

ESTs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TFrnRNA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EST9093 like 5’ GAMYB protein</td>
<td>Zea mays</td>
<td>CF348909</td>
<td>Yang & McCormick, 2004, unpublished</td>
</tr>
<tr>
<td>(2) MEST71-H05 3’</td>
<td>Zea mays</td>
<td>BM073663</td>
<td>Qiu, EST from B73, 2001, unpublished</td>
</tr>
<tr>
<td>(4) EL01N0530C06</td>
<td>Zea mays</td>
<td>CA405191</td>
<td>(Lai i col., 2004)</td>
</tr>
</tbody>
</table>

2.2.2. Clonatge de GAMYB a blat de moro

La cerca a les bases de dades ens va proporcionar quatre ESTs de blat de moro. Aquestes seqüències eren parcialment solapants i cobrien uns 1600 bp dels aproximadament 2500 bp descrits pels gens GAMYB d’ordi i arròs (figura 44).
Figura 44. Alineament de ESTs de blat de moro i dels gens GAMYB d’ordi i arròs.

Es van triar les regions més homologues als gens GAMYB d’ordi (HvGAMYB) i d’arròs (OsGAMYB) i es van comparar amb la seqüència obtinguda per la EST0903 (cedida per la Dra. Sheila McCormick, Plant Gene Expression Center, Albany, Califòrnia), la més llarga de les que havíem trobat a les bases de dades i amb major homologia als gens GAMYB d’ordi i arròs. Així es va poder dissenyar una parella d’encebadors per abordar el clonatge de GAMYB de blat de moro (figura 45).

Figura 45. Alineament de la EST 0903 de blat de moro amb els gens GAMYB d’ordi i arròs. Es mostra la posició dels oligonucleòtids omyb2 (sense) i omyb3 (anti-sense) emprats en el clonatge de GAMYB de blat de moro.

La seqüència codificant per GAMYB es va obtenir per RT-PCR sobre RNA total d’endosperma de 15 DAP, usant com a encebadors específics la parella omyb2/omyb3 (veure taula I, apartat A.2.2, material i mètodes). La RT-PCR va proporcionar una banda única a 1500bp (figura 46), que corresponia a la mida calculada pel fragment amplificat per omyb2/omyb3 sobre la seqüència teòrica de GAMYB (deduïda a partir de les ESTs de blat de moro de que disposàvem i dels gens HvGAMYB i OsGAMYB). Posteriorment, aquesta banda es va retallar, purificar i clonar en el vector pTZR-TA (AmpR, Fermentas) i es va assemblar amb el clon EST0903 per restriccio amb EcoRV. Així es va obtenir la seqüència sencera del cDNA de GAMYB de blat de moro, d’ara en endavant ZmGAMYB. La seqüència nucleotídica completa per a ZmGAMYB així com la seqüència aminoacídica deduïda es mostren a la taula VII (apèndix, pàgina 218).
Figura 46. RT-PCR pel gen ZmGAMYB sobre RNA total de blat de moro. La RT-PCR es va realitzar amb els oligos omyb1 i omyb3 sobre RNA total d’endosperma de 15 DAP, proporcionant una banda intensa a 1500 bp (assenyalada amb una flecha). Es va utilitzar també RNA d’embrió a 20 DAP i es va amplificar una banda molt més débil que a endosperma.

El cDNA aïllat pel gen ZmGAMYB codificava per un marc obert de lectura que donava lloc a una proteïna de 560 aminoàcids i 60kDa de pes molecular calculat. Aquesta proteïna contenia els dominis R2R3 típics dels factors de transcripció de tipus Myb de plantes. La seva seqüència aminoacídica, així com la seva estructura en dominis es presenten a la figura 47.

<table>
<thead>
<tr>
<th></th>
<th>MYRVKSEGEG EEGDCEMML QEOMDSDLVAD DVSSGGGSPH RGVTPLKKG</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>PWTSAEADIL VDVYKKNGEG NWNAVQKNTG LFRCGKSCRL RWANHLPN</td>
</tr>
<tr>
<td>101</td>
<td>KKGATPEEE RLIIIQLHAKM GNKWARMAGH LPGRDNEIK NYWNTI</td>
</tr>
<tr>
<td>151</td>
<td>QRASLPYTPA SCVNQSTNEQ QOLSNGNFGG ENISNDLLSG NSLYLDP</td>
</tr>
<tr>
<td>201</td>
<td>DNFIAPEAL SYAQLSALS ISNLLGQ</td>
</tr>
<tr>
<td>251</td>
<td>CVLPALSDAI DSVLSSADHF SNDSEKLRQA LGFDYLNEAN ASSKSIAP</td>
</tr>
<tr>
<td>301</td>
<td>VALTGHAFL NGNFSASRT NGPLMKELPS QDTESDPNS WLYKTVAP</td>
</tr>
<tr>
<td>351</td>
<td>QPTELVPYL QSPSATPSVK SECASPRNSG LLEELLHEAQ ALRSGKNQ</td>
</tr>
<tr>
<td>401</td>
<td>SVRSSSSSAG TPYETTVVSS PEFDGDEGYW EEQPSFLSE YAHSFNSF</td>
</tr>
<tr>
<td>451</td>
<td>ESTPVSAAAS PDIQLSKIS PAQPSMGSG EQALEPKHES AASPRPLN</td>
</tr>
<tr>
<td>501</td>
<td>PDALFSGNAAC PSIFNNAIT MLLNGNIDAE FKPGLDGIV LDSSWMH</td>
</tr>
<tr>
<td>551</td>
<td>HAFQMAFK</td>
</tr>
</tbody>
</table>

Figura 47. Seqüència aminoacídica deduïda per GAMYB de blat de moro. Amb requadres rosa i verd s’indiquen les seqüències corresponents als dominis R2 i R3 típics dels dominis Myb dels factors de transcripció de plantes. En taronja s’ha marcat el domini C-terminal de la proteïna, contra el que es van obtenir anticossos específics (veure apartat 2.6.2., resultats).

Posteriorment, vam alinear la seqüència aminoacídica de GAMYB de blat de moro (mGAMYB) amb les seqüències d’altres factors GAMYB ja descrits (figura 48), posant de
manifest l’elevada homologia entre totes elles no només a nivell de les repeticions R2R3 sinó també a nivell de proteïna sencera.

Figura 48. Alineament de seqüències de les proteïnes GAMYB de blat de moro, ordi, arròs i civada. Es mostra l’alineament de les seqüències aminoaclidiques pel factors GAMYB de blat de moro (mGAMYB), ordi (bGAMYB), arròs (oGAMYB) i civada (aGAMYB). S’emmarquen en rosa i verd les repeticions R2 i R3 respectivament, típiques dels factors de transcripció de tipus Myb de plantes. L’alineament s’ha generat amb el programa GeneDoc.

La identitat entre les quatre seqüències alineades es troba al voltant del 70%: mGAMYB presenta un 81% d’identitat amb l’homòleg d’arròs, un 79% amb el d’ordi i un 77% amb el de civada, tal i com es posa de manifest en realitzar l’alineament filogenètic (figura 49).

Figura 49. Alineament filogenètic de les proteïnes GAMYB de blat de moro, ordi, arròs i civada, obtingut amb el programa CLUSTAL X, en el que es mostren les distàncies filogenètiques entre parèntesi.

A partir de la seqüència del cDNA de *ZmGAMYB*, es van realitzar diferents construccions per a la sobreexpressió en *E.coli* (per a l’obtenció d’anticossos específics i per a la realització d’assaigs d’interacció amb el DNA *in vitro* (EMSA)), així com per a la continuació dels assaigs funcionals descrits a l’inici d’aquest capítol.
2.3. Patró d’expressió del gen ZmGAMYB durant el desenvolupament del gra blat de moro

Per confirmar si mGAMYB podia actuar com a regulador transcripcional de la γ-Zeïna, volíem caracteritzar-ne el patró d’expressió al llarg del desenvolupament del gra. Els nivells de transcrit per ZmGAMYB es van determinar per Northern-blot sobre diferents teixits de blat de moro i a diferents moments del desenvolupament, tal i com es mostra a la figura 50. La hibridació es va realitzar amb una sonda de 1048 bp obtinguda per restricció amb EcoRI-XhoI sobre la construcció pTZ-EST0903. El fragment escollit com a sonda comprenia l’extrem C-terminal del gen ZmGAMYB, així com la regió 3’ no traduïda, però no el domini Myb conservat per a no detectar altres MYBs diferents a GAMYB.

A fi d’establir si l’expressió de ZmGAMYB podia coincidir en el temps amb la de ZmPBF, es va comparar el seu patró d’expressió amb els patrons ja coneguts de PBF i el propi gen de la γ-Zeïna, sobre els mateixos teixits i en el mateix moment del desenvolupament. Per a la detecció del transcrit de ZmPBF es va utilitzar una sonda obtinguda per restricció amb XbaI-SpeI sobre PMF6-PBF, que contenia 720 bp de la regió C-terminal de ZmPBF així com la regió 3’ no traduïda, però no inclòia el domini Dof conservat, tal i com descriuen Vicente-Carbajosa i col. (1997). Pel que fa al gen γZ (que codifica per la γ-Zeïna) es va escollir una sonda de 936 bp, obtinguda per restricció amb XhoI-XbaI sobre pBS KSG2, que contenia tant la regió codificant com la regió 3’ no traduïda. Com a control de càrrega es van realitzar hibridacions amb una sonda de 1.200 bp corresponent a la subunitat 18S de l’RNA ribosomial de blat, obtinguda per restricció BamHI-HindIII sobre la construcció pW18S1.2 (Gerlach i Bedbrook, 1979).

ZmGAMYB s’expressa a l’endosperma de blat de moro de forma coordinada amb el desenvolupament del gra

L’anàlisi per Northern-blot va determinar que tant ZmPBF com ZmGAMYB s’expressen simultàniament a l’endosperma de blat de moro, de forma lligada al desenvolupament del gra de blat de moro i que la seva expressió està restringida a aquest teixit de la llavor. No es detecta expressió ni a embrió (en cap estadi del desenvolupament) ni a plàntula ni a arrel (figura 50).

L’expressió de ZmGAMYB començava a ser detectable per Northern-blot sobre RNA total d’endosperma a partir de 8 DAP, moment del desenvolupament de la llavor en que es dispara l’activitat transcripcional a l’endosperma. Els nivells de mRNA per ZmGAMYB augmenten suau però sostingudament cap a 12 DAP, amb un màxim cap a 15 DAP, i comencen a davallar a partir de 21 DAP, coincidint amb el procés de mort celular
programada que afecta l’endosperma de blat de moro quan la llavor entra a la fase de maduració.

Pel que fa a \textit{ZmPBF}, treballs anteriors havien mostrat la seva exclusiva expressió a endosperma (Vicente-Carbajosa i col., 1997), on es detecta a partir de 8 DAP, assoleix el seu pic màxim d’expressió a 12-15 DAP i comença a davallar a partir de 21 DAP. Aquest patró és consistent amb el descrit pel gen de la \(\gamma\)-Zeïna (Geetha i col., 1991), que comença a expressar-se a l’endosperma cap a 10-12 DAP, assolint el seu màxim entre 20 i 30 DAP, coincidint amb l’inici de la fase de maduració de la llavor.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{resultats.png}
\caption{Anàlisi del patró d’expressió de \textit{ZmGAMYB} per Northern-blot. Patró d’expressió de \textit{ZmGAMYB}, \textit{ZmPBF} i del gen de la \(\gamma\)-zeïna sobre diferents teixits de blat de moro en desenvolupament (8 a 30 DAP): gra sencer (ker), endospermes i embrions. Com a control negatiu s’utilitza plàntula (plant) i arrel de 7 dies. Com a control de càrrega es mostra la hibridació amb una sonda per la subunitat 18S de l’RNA ribosomal. A l’esquerra es mostren les mides (en pb) corresponents als marcadors de pes molecular per RNA (\textit{RNA Markers}, Promega).}
\end{figure}

En analitzar els resultats normalitzats respecte la subunitat 18S de l’RNA ribosomal, s’aprecia millor el perfil d’expressió coincident per \textit{ZmGAMYB} i \textit{ZmPBF} i la seva dependència del moment del desenvolupament del gra de blat de moro. S’observa, a més, com l’mRNA del gen \(\gamma\Z\) presenta un patró d’acumulació al llarg del desenvolupament decalat respecte el dels seus reguladors \textit{ZmGAMYB} i \textit{ZmPBF} (figura 51).
Figura 51. Nivells d’expressió relatius de ZmGAMYB, ZmPBF i del gen γZ respecte 18S rRNA. Valors d’expressió de ZmGAMYB (A), ZmPBF (B) i del gen de la γ-zeina (C) normalitzats respecte la subunitat 18S de l’RNA ribosomal a endosperma de blat de moro en desenvolupament (8 a 30 DAP). En D es mostra la superposició dels gràfics anteriors, on s’aprecia la coincidència dels patrons de ZmGAMYB i ZmPBF i el decalatge del patró d’expressió gènica de la γ-zeina respecte els seus reguladors.

El fet de que ambdós factors, ZmGAMYB i ZmPBF s’expressin en el mateix moment del desenvolupament i en el mateix teixit indica que codifiquen per factors proteics que poden ser reguladors del mateix procés (expressió de proteïnes de reserva) a l’endosperma, tenint en compte, a més, que el seu pic d’expressió és conseqüent amb el moment en que comença l’expressió del gen γZ.
2.4. Caracterització de mGAMYB com a regulador transcripcional del gen \(\gamma Z \)

Assaigs funcionals per transformació d’endospermes de blat de moro

Després dels resultats preliminars dels assaigs funcionals amb GAMYB d’ordi, volíem comprovar si el factor mGAMYB que havíem clonat a blat de moro era capaç d’activar la transcripció del gen \(\gamma Z \). Per fer-ho, es van realitzar assaigs funcionals d’activitat per transformació transitòria sobre endospermes de blat de moro.

mGAMYB es comporta com a activador del promotor del gen de la \(\gamma \)-zeïna

A partir de la seqüència del cDNA de \(ZmGAMYB \) que havíem clonat, vam generar una construcció que contenia \(ZmGAMYB \), formant un casset d’expressió amb el promotor constitutiu 35S, el primer intrò de l’AdhI i el terminador nos 3’ (figura 52.A). Així, es van realitzar experiments de co-transformació sobre endospermes joves de blat de moro (12-15 DAP) utilitzant la construcció informadora que conté el gen GUS sota control de la regió proximal del promotor \(\gamma Z \) (527\(\gamma \)Zp:GUS) a quantitat fixa (2 \(\mu \)g) i com a efectors del promotor \(\gamma Z \) es van provar \(ZmPBF \) i \(ZmGAMYB \), sota control del promotor constitutiu 35S. Tenint en compte els resultats previs obtinguts en els experiments de co-transformació amb bGAMYB, esperàvem que el factor mGAMYB actués com a activador sobre el promotor \(\gamma Z \). Així, donat que volíem analitzar la capacitat activadora de GAMYB, vam decidir provar \(ZmGAMYB \) a quantitat creixent (de 0,5 a 2 \(\mu \)g/experiment). Donada la variabilitat de la tècnica i l’efecte que lleugeres diferències en el grau de maduresa dels grans de blat de moro tenen en els resultats globals d’aquest tipus d’experiments ens va semblar apropiat usar \(ZmPBF \) també a quantitat creixent (de 0,5 a 2 \(\mu \)g/experiment) com a control dels nivells d’activació assolits.

Vam determinar l’activitat basal del promotor \(\gamma Z \) (representada pels valors relatius d’expressió GUS/LUC, quantificats per fluorimetria i luminometria) sobre els casquets d’endosperma transformats i en referència a ella vam analitzar l’activitat del mateix promotor en presència de mPBF i mGAMYB. Els resultats obtinguts indicaven que mGAMYB a 2 \(\mu \)g era capaç d’activar l’expressió del promotor \(\gamma Z \), tot i que a nivells inferiors a mPBF en les mateixes condicions: mGAMYB aconseguia activar el promotor \(\gamma Z \) entre 1,5 i 2,5 cops sobre els seus nivells basals, mentre que mPBF produïa activacions entre 2 i 3,5 cops (figura 52.B).
Figura 52. Capacitat d’activació de mGAMYB sobre el promotor γZ en experimentes de co-transformació sobre endospermes de blat de moro de 12-15 DAP. A. Esquema de les construccions utilitzades en els experimentes de co-bombardeig, amb els diferents efectors (formant un casset d’expressió amb el promotor constitutiu 35S, el primer intrò de l’AdhI i el terminador nos) sobre la construcció 527γZp:GUS i la construcció amb el gen LUC usada com a control de transformació (en un casset d’expressió amb el promotor 35S, el primer intrò del gen Shrunken i el terminador nos). B. Resultats obtinguts en els experimentes de co-bombardeig expressats com a relació GUS/LUC. Al nivell basal d’expressió del promotor γZ (sense efectors) se li ha assignat valor 1 (línia vermella). GAMYB és capaç d’activar l’expressió del promotor γZ 1.5-2.5 cops sobre els nivells basals mentre que PBF l’activa 2-3.5 cops.

Els resultats d’activitat GUS dels experimentes de co-transformació analitzats per fluorimetria van ser comparats amb el resultats obtinguts en analitzar l’activitat GUS per tinció histoquímica amb X-Gluc (figura 53). La relació entre el nombre de punts blaus que apareixen quan transformem només amb la construcció promotora i els nombre de punts obtinguts al co-transformar amb ZmPBF o ZmGAMYB segueix la mateixa tendència que en les anàlisis fluorimètriques.
Figura 53. Tinció histoquímica amb X-Gluc d’endospermes de blat de moro de 12 DAP co-transformats amb el promotor γZ i els efectors PBF i GAMYB. A i A’. Endospermes de 12 DAP sense transformar. B i B’. Endospermes transformats amb 2μg de la construcció 527γZp:GUS. C i C’. Endospermes transformats amb la construcció 527γZp:GUS i 2μg de la construcció que conté ZmPBF. D i D’. Endospermes transformats amb la construcció 527γZp:GUS i 2μg de la construcció que conté ZmGAMYB.

Tot i que els resultats obtinguts en els experiments d’expressió transitòria no són quantitativament concloents si que ens mostren una tendència activadora de GAMYB a nivell qualitatiu. En tots els experiments analitzats el factor GAMYB de blat de moro ha actuat, en major o menor grau, com a activador del promotor γZ entre 12 i 15 DAP, suggerint que pugui participar en el complex transcripcionalment actiu responsable de l’expressió del gen de la γ-zeïna a endosperma de blat de moro.

Resta encara per determinar si la funció activadora de mGAMYB pot ser sinèrgica a la de mPBF. Experiments preliminars per determinar l’existència de sinèrgia entre mGAMYB i mPBF per co-bombardeig sobre casquets d’endosperma de 12-15 DAP amb la construcció 527γZp:GUS i 1 μg de les construccions que contenen ZmGAMYB i ZmPBF, per separat i en combinació, no han resultat concloents (resultats no mostrats).
2.5. Interacció de GAMYB i PBF amb seqüències reguladores del promotor γZ

Assaigs de retard en gel (EMSA)

Mitjançant experiments de retard en gel es volia estudiar la capacitat d’interacció dels factors GAMYB i PBF de blat de moro amb les seves caixes corresponents presents a la regió proximal del promotor del gen γZ (regió compresa entre -460 i -62 respecte l’inici de transcripció). Amb aquest objectiu, es va testar la capacitat d’interacció d’aquests factors tant amb oligonucleòtids que contenien només la caixa corresponent a cadascun d’ells (AACA per GAMYB i Pb per PBF) com amb un oligonucleòtid que incloïa totes les caixes presents a la regió promotora estudiada. A més, es van realitzar assaigs d’interacció entre proteïnes presents en extractes nuclears d’endosperma de blat de moro a 12 DAP i les diferents caixes estudiades.

2.5.1. Obtenció dels factors GAMYB i PBF per a la realització dels assaigs de tipus EMSA

Per a la realització dels assaigs tipus EMSA es van obtenir les proteïnes recombinants corresponents als factors de transcripció GAMYB i PBF, tal i com es descriu a l’apartat 2 de material i mètodes.

PBF

En estudis previs de retard en gel s’havia determinat que PBF sencera no era capaç d’unir-se de forma específica a l’element Pb, al que sí s’uneix in planta per a activar l’expressió del gen de la γ-zeïna (Marzábal, 2002). Per això, els experiments de tipus EMSA que es presenten a continuació s’han realitzat amb el domini d’unió de PBF al DNA (bdPBF) aïllat. Es van obtenir les construccions corresponents a bdPBF fusionada a un His-tag i un T7 tag en N-terminal de la proteïna i també en fusió a GST en N-terminal, com s’esquematitza a la figura 54A. En ambdós casos, la sobreexpressió d’aquestes construccions a E.coli i la posterior purificació (tal i com es descriu a l’apartat 2.2 de materials i mètodes) va proporcionar quantitats suficients de proteïna recominant purificada (veure figura 54.B i 54.C) per a la realització dels assaigs de tipus EMSA.
Figura 54. Sobreexpressió de bdPBF a *E.coli*. A. Representació esquemàtica de les construccions utilitzades en la sobreexpressió: pET28A-bdPBF, en la que s’indica el tag d’hexa-Histidina (His tag) i l’epitop T7 tag, en N-terminal de la proteïna de fusió; i pGEX4T3-bdPBF, en la que s’indica la fusió a GST en N-terminal de la proteïna de fusió. B. Patró de proteïnes separades per SDS-PAGE (15% d’acrilamida) revelat per tinció amb blau de Coomassie dels extractes bacterians totals (S, fracció soluble i P, fracció insoluble) abans (T₀) i després (Tᵢ) d’induir l’expressió de la proteïna His-bdPBF. Proteïna purificada per columnes d’afinitat de níquel (eluïts (E) a 100, 200 i 1000 mM d’imidazole). Amb una punta de fletxa es marca la banda corresponent a His-bdPBF, per sobre del marcador de pes molecular de 20 KDa (pes teòric: 20 KDa). C. Patró de proteïnes separades per SDS-PAGE (12,5% d’acrilamida) revelat per tinció amb plata dels extractes bacterians totals (S, fracció soluble i P, fracció insoluble) abans (T₀) i després (Tᵢ) d’induir l’expressió de la proteïna GST-bdPBF. Proteïna purificada per columnes d’afinitat de glutatió (eluïts (E) a 10 mM de glutatió). Amb una punta de fletxa es marca la banda corresponent a GST-bdPBF, per sota del marcador de pes molecular de 45 KDa (pes teòric: 44 KDa).

GAMYB

Es van generar les construccions corresponents a GAMYB fusionat a un His-tag i un T7 tag en N-terminal de la proteïna i també en fusió a GST en N-terminal, tal i com s’esquematitza a la figura 55.A. En aquest cas, la sobreexpressió de la proteïna His-GAMYB a *E.coli* (com es descriu a l’apartat 2 de materials i mètodes) va proporcionar quantitats molt reduïdes de proteïna recombinant purificada, tal i com es mostra a la figura 55.B. En testar la capacitat d’aquesta proteïna per unir-se al DNA en assaigs d’unió *in vitro* de tipus EMSA, no vam aconseguir cap banda retardada (resultats no mostrats). En canvi, en el cas de la proteïna GST-GAMYB la sobreexpressió d’aquestes construccions en *E.coli* i la posterior purificació va
provisar quantitats suficients de proteïna recombinant purificada per realitzar els assaigs de tipus EMSA (veure figura 55.C.).

Figura 55. Sobreexpressió de GAMYB a *E.coli*. A. Representació esquemàtica de les construccions utilitzades en la sobreexpressió: pET28b-GAMYB, en la que s’indica el tag d’hexa-Histidina (His tag) i l’epitop T7 tag, en N-terminal de la proteïna de fusió; i pGEX4T3-GAMYB, en la que s’indica la fusió a GST en N-terminal de la proteïna de fusió. B. Patró de proteïnes separades per SDS-PAGE (12,5% d’acrilamida) revelat per tinció amb plata dels extractes bacterians totals (S, fracció soluble i P, fracció insoluble) abans (T₀) i després (T₁) d’induir l’expressió de la proteïna His-GAMYB. Proteïna purificada per columnes d’afinitat de níquel (proteïna sense purificar (Pr) i eluïts purificats (E) a 100, 200 i 1000 mM d’imidazol). La punta de fletxa marca la banda corresponent a His-GAMYB, al voltant del marcador de pes molecular de 66 KDa (pes teòric: 59 kDa). C. Patró de proteïnes separades per SDS-PAGE (12,5% d’acrilamida) revelat per tinció amb plata dels extractes bacterians totals (S, fracció soluble i P, fracció insoluble) abans (T₀) i després (T₁) d’induir l’expressió de la proteïna GST-GAMYB. Proteïna purificada per columnes d’afinitat de glutatí (proteïna sense purificar (Pr) i eluïts purificats (E) a 10 mM de glutatí). La punta de fletxa marca la banda corresponent a GST-GAMYB, per sobre del marcador de pes molecular de 66 KDa (pes teòric: 87 kDa).

A la vista d’aquests resultats, la major part d’assaigs de tipus EMSA amb el factor GAMYB han estat realitzats amb la proteïna de fusió GST-GAMYB. A més, estudis previs d’interacció d’aquest factor amb la seva caixa (AACA) a ordi, en un sistema homòleg al nostre (promotor del gen de la B-hordeïna d’ordi, Díaz i col., 2002) s’havien realitzat també amb el factor GAMYB fusionat a GST. Així, vam utilitzar la fusió GST-GAMYB de forma sistemàtica en els assaigs de tipus EMSA.
2.5.2. GAMYB interacciona amb la caixa AACA del promotor γZ de forma específica

Per estudiar la interacció del factor GAMYB amb la caixa AACA del promotor γZ es van realitzar assaigs d’interacció entre la proteïna recombinant GST-GAMYB purificada i un oligonucleòtid de doble cadena que contenia el motiu AACA tal i com es troba al promotor (wt) o mutat (gACA). A la figura 56.A es mostra la seqüència dels oligos utilitzats en aquests assaigs de tipus EMSA i en marquen en vermell els nucleòtids mutats. Es va triar una doble mutació (dues A per dues G) ja que s’havia demostrat prèviament en el sistema format pel promotor de la B-hordeïna i la proteïna GAMYB d’ordi que aquesta mutació abolia la interacció entre factor GAMYB i el DNA (Díaz i col., 2002).

En realitzar l’assaig, es va observar interacció entre GST-GAMYB i el motiu AACA però no amb la versió mutada gACA, demostrant una interacció específica entre el factor estudiat i la seva caixa. Es van realitzar assaigs de competició amb l’oligo que conté el motiu sense mutar i l’oligo que conté el motiu mutat, en un excés de 100 cops respecte la sonda marcada. En aquest cas, només l’addició de competitor wt fred era capaç d’eliminar la banda de retard produïda per GST-GAMYB (figura 56.B). Vam comprovar també com l’addició de GST recombinant no produïa cap banda retardada amb els oligos utilitzats. Així, podem assegurar que les bandes retardades causades per la proteïna de fusió GST-GAMYB són realment degudes a GAMYB.

Es van realitzar, a més, estudis d’interacció amb el motiu AACA i extractes nuclears de blat de moro de 12 DAP. En aquest cas s’obtenien diverses bandes retardades. La banda de menor mobilitat electroforètica és la més intensa de totes i, a més, es perd al canviar la sonda que conté la caixa AACA per la corresponent versió mutada (figura 56.B), suggerint que la proteïna present a l’extracte nuclear i causant de la banda retardada més intensa pugui ser GAMYB.
Figura 56. Assaig de retard en gel de GAMYB amb la caixa AACA. A. Oligos utilitzats en aquests assaigs de tipus EMSA. B. Assaig de retard en gel en el que s'aprecia l’aparició d’una banda retardada fruit de la unió específica de GST-GAMYB a la caixa AACA (carril 3) i com no hi ha unió a la caixa mutada (carril 9). GST sola no causa retard (carrils 2 i 8). S’observa com només l’oligo *wt* (carril 4) i no la corresponent versió mutada (carril 5) és capaç de competir la unió de GAMYB al DNA. L'extracte nuclear a 12 DAP causa una banda retardada específica amb la sonda *wt* (carril 6) i no amb la corresponent versió mutada (carril 12).
2.5.3. La unió de GAMYB a la caixa AACA s’altera per la presència d’anticossos específics (*supershift*)

Per confirmar l’especificitat d’unió de GAMYB al motiu AACA vam realitzar assaigs de *supershift* amb la proteïna de fusió GST-GAMYB i un anticòs específic contra mGAMYB (veure obtenció de l’anticòs a l’apartat 2.6.2, figura 61). Així, vam realitzar assaigs de reatard en gel amb la proteïna recombinant GST-GAMYB, extractes nuclears d’endosperma a 12 DAP (EN) i l’anticòs αmyb (assaig de *supershift*) sobre els mateixos oligos utilitzats anteriorment per la caixa AACA i la seva corresponent versió mutada (figura 57.A). L’anticòs αmyb no va ser capaç de modificar la interacció de GST-GAMYB amb el DNA (figura 57.B, carrils 2, 3, 4); en canvi, al realitzar l’estudi complementari amb la caixa AACA i extractes nuclears (EN) de blat de moro de 12 DAP, la interacció de les proteïnes presents a l’extracte nuclear sí que es veia afectada per l’anticòs específic obtingut contra la proteïna GAMYB (figura 57.B, carrils 5, 6 i 7). L’addició de sèrum immune a GST-GAMYB no provoca l’aparició de cap banda retardada per unió a la caixa mutada gACA (figura 57.B, carril 10).
Figura 57. Assaig de *supershift* de GAMYB per αmyb sobre la caixa AACA. A. Oligos utilitzats en aquests assaigs de tipus EMSA. B. Assaig de retard en gel amb GST-GAMYB i extractes nuclears a 12 DAP, amb el sèrum αmyb (IM, carrils 4 i 7) i el corresponent pre-imune (PI, carrils 3 i 6). No s’observa *supershift* per GAMYB recombinant per αmyb (carril 4), però s’aprecia desaparició de la banda retardada específica causada per l’extracte nuclear a 12 DAP (carril 7). L’addició de sèrum immure no provoca canvis en la unió de GAMYB a la caixa mutada (carril 10).

Aquest resultat suggereix que potser la banda retardada causada per GST-GAMYB sigui deguda, en realitat, a fragments de la fusió GST-GAMYB seleccions en el domini C-terminal (veure patró de bandes a la figura 55.C). En aquest cas, l’anticòs específic contra GAMYB (αmyb) no seria capaç d’interaccionar-hi, ja que reconeix només el C-terminal de la proteïna. Una altra explicació podria ser que estem utilitzant una quantitat molt elevada de proteïna recombinant purificada per a la relativament baixa quantitat d’anticòs. Aquesta situació permetria veure el *supershift* sobre l’extracte nuclear (que conté comparativament, menys quantitat de GAMYB que la proteïna purificada), i no veure el realitzat amb la proteïna recombinant purificada.

Donat que αmyb no era capaç de provocar un *supershift* en la interacció de GAMYB amb la caixa AACA, vam realitzar un assaig de retard en gel amb l’anticòs contra GST (αGST), la proteïna GST-GAMYB i la caixa AACA, utilitzant els mateixos oligos que en els assaigs
antitòpics (figura 58.A). En aquest cas, αGST va ser capaç de fer desaparèixer la banda de retard produïda per GST-GAMYB (figura 58.B), demostrant que la proteïna causant del retard és, efectivament, la fusió GST-GAMYB.

A
\[\begin{align*}
\alpha_{AACA} & : \text{tgGAATCA AACAATCTCTTC TGTGggt} \\
\alpha_{gAACA} & : \text{tgGAATCA GACAATCTCTTC TGTGggt}
\end{align*} \]

B

<table>
<thead>
<tr>
<th>Sonda</th>
<th>AACA</th>
<th>gAACA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteïna</td>
<td>GAMYB</td>
<td>GAMYB</td>
</tr>
<tr>
<td>Anticòs</td>
<td>1 2 3 4 GST 5 6 7 8</td>
<td></td>
</tr>
</tbody>
</table>

Figura 58. Assaig de supershift de GAMYB per αGST sobre la caixa AACA. A. Oligos utilitzats en aquest assaig EMSA. B Assaig de retard en gel amb GST-GAMYB i extractes nuclears a 12 DAP, amb el sérum αmyb (IM, carril 4), el corresponent pre-immune (PI, carril 3) i l'anticòs αGST (GST, carrils 5 i 8). No s'observa supershift de GST-GAMYB per αmyb (carril 4), però s'aprecia desaparició de la banda retardada amb l'anticòs αGST (carril 5). L'addició d'αGST no provoca canvis a la unió de GST-GAMYB a la caixa mutada (carril 8).

Podem dir, doncs, que GAMYB s'uneix de forma específica a la caixa AACA del promotor γZ, i que aquesta especificitat és corroborada pel fet que GAMYB no s'uneix a la versió mutada de la caixa AACA. La unió només és competida per sonda \textit{wt} freds i no amb la sonda mutada i que la banda retardada causada per GAMYB sobre la caixa AACA desapareix en incubar la proteïna de fusió GST-GAMYB amb un anticòs contra GST.

S'ha observat també que a l'extracte nuclear a 12 DAP hi ha una proteïna que s'uneix de forma específica a la caixa AACA. El retard observat desapareix en utilitzar la versió mutada de la caixa AACA. La incubació de l'extracte nuclear amb l'anticòs αmyb (assaig de supershift) fa desaparèixer la banda retardada específica, suggerint que la proteïna present a l'extracte nuclear i responsable de la banda retardada específica sigui GAMYB.
2.5.4. La unió de GAMYB al promotor γZ depèn d’altres elements en cis intactes propers a caixa AACA

Per estudiar les característiques de la unió de forma més propera a com ocorren a la pròpia planta es van realitzar també assaigs d’unió in vitro amb oligos que contenien totes les caixes que podrien estar implicades en la formació del complex transcripcionalment actiu responsable de l’expressió del gen de la γ-zeïna (AACA, Pb, GZM i RY) i les proteïnes recombinants purificades GAMYB i bdPBF.

Així, es va testar la capacitat d’unió tant de GAMYB com de bdPBF a un oligo de 56 bp al que se li van anar mutant seqüencialment les caixes corresponents a cadascun dels factors analitzats (AACA i Pb). S’havia demostrat prèviament que les mutacions escollides abolien la unió dels factors analitzats. Els nucleòtids mutats en cada cas es mostren en vermell (figura 59.A). Com hem realitzat els assaigs amb les proteïnes recombinants en fusió a GST, vam comprovar també que l’addició de GST recombinant no produïs cap banda retardada amb els oligos utilitzats. Així, podem assegurar que les bandes retardades causades per les proteïnes de fusió són realment degudes al factor analitzat en cada cas.

En aquests assaigs de retard en gel, GST-GAMYB va ser capaç d’unir-se de forma específica a la caixa AACA de l’oligo GZ (que conté totes les caixes del promotor γZ sense mutar), ja que la unió es perdia pràcticament del tot al substituir la seva caixa AACA per la versió mutada (oligo GZ gACA, figura 59.B), com ja esperàvem dels resultats previs amb els oligos restringits a aquesta caixa (veure figura 56).

En el cas de PBF, estudis previs havien demostrat la seva unió específica a la caixa Pb (Vicente-Carbajosa i col., 1997; Marzábal, 2002). En utilitzar els oligos amb totes les caixes del promotor γZ, GST-bdPBF va ser capaç d’unir-se de forma específica a la caixa Pb: en mutar aquesta caixa (oligo GZ Pb*), la unió del factor disminuïa sensiblement (figura 59.B), però no desapareixia totalment.

Curiosament, la mutació simple de la caixa Pb no afectava sensiblement la unió de GAMYB a la seva caixa (carril 7, gel 1). De forma similar, la mutació de la caixa AACA tampoc no afectava la unió de PBF a la seva caixa (carril 4, gel 2). En canvi, la unió residual de GAMYB que s’observa al mutar només la caixa AACA es perd totalment en utilitzar un oligo amb la caixa Pb també mutada (carrils 3 i 7 del gel 2). I, de forma encara més aparent, quan mutem la caixa Pb, no podem eliminar totalment la unió de PBF a la seva caixa; però en utilitzar l’oligo doble mutant per les caixes AACA i Pb perdem la unió residual de PBF al DNA (carril 8 dels gels 1 i 2). Així doncs, sembla que cal utilitzar els dobles mutants per abolir totalment la unió tant de GAMYB com de PBF a la regió proximal del promotor del gen γZ.
Figura 59. Assaig de retard en gel amb GAMYB i PBF sobre la regió compresa entre -457 i -404 bp del promotor \(\gamma Z \). A. Oligos utilitzats en aquests assaigs de tipus EMSA, emmarcat les caixes importants en l’expressió del gen de la \(\gamma \)-zeina: AACA en verd, Pb3 en groc, GZM en vermell i RY2 en blau. S’indiquen les mutacions realitzades en cada cas en vermell (gACA per a la caixa AACA, Pb* per a la caixa Pb3 i gACA-Pb* per al doble mutant). B Assaig de retard en gel amb GST-GAMYB i GST-bdPBF recombinants en el que es mostra com la mutació successiva de les caixes AACA i Pb provoca la pèrdua del retard causat per GAMYB (MYB, carrils 3 i 7 de cada gel) i per bdPBF (PBF, carrils 4 i 8 de cada gel). La presència de GST sola (carrils 2 i 6 de cada gel) no afecta la unió al DNA amb cap de les sondes utilitzades.

A la vista d’aquests resultats podem concloure que la unió dels factors GAMYB i PBF a les seves caixes depèn de la presència d’elements en cis intactes a les proximitats de les seves caixes, suggerint una interacció funcional entre els diferents elements que conformen la regió promotora proximal del gen \(\gamma Z \).
2.6. Determinació de la presència de mGAMYB en extractes proteics d’endosperma de blat de moro en desenvolupament

Atès que l’expressió de γZ està altament regulada durant el desenvolupament del gra de blat de moro (Larkins i col., 1984; Kodrzycki i col., 1989), es va considerar oportú obtenir anticossos que permetessin detectar la presència dels factors PBF i GAMYB tant sobre extractes de blat de moro (immunodetectació per Western-blot) com in situ sobre talls de grans de blat de moro en desenvolupament (immunohistoquímica). Paral·lelament, es va analitzar el patró de proteïnes presents en extractes proteics de blat de moro en desenvolupament i es va avaluat la presència de GAMYB en aquests extractes.

2.6.1. Perfils de proteïnes presents en extractes proteics de blat de moro

Per determinar la presència del nou factor GAMYB en grans de blat de moro en desenvolupament, es van realitzar 2 tipus d’extractes totals (tal com es descriu a l’apartat 5.3, Material i Mètodes): extractes post-eliminació de les zeïnes i extractes totals enriquit en nuclis. La pre-extracció permet carregar major quantitat de proteïna i facilita la detecció dels factors de transcripció analitzats.

Prèviament a la detecció dels diferents factors de transcripció per Western-blot, es va analitzar el perfil de zeïnes al llarg del desenvolupament de l’endosperma de blat de moro. Donada la baixa concentració al a que es troben els factors de transcripció a la cèl·lula, es van ajustar les quantitats totals de proteïna a carregar per poder immunodetectar GAMYB. El perfil de proteïnes presents en els extractes totals lliures de zeïnes es va comparar amb el que s’obtenia a partir dels extractes enriquit en nuclis per SDS-PAGE i posterior tinció amb plata (figura 60).

![Imatge 60](https://via.placeholder.com/150)

Figura 60. Patró de proteïnes d’endosperma al llarg del desenvolupament separades per SDS-PAGE. **A.** Extractes enriquit en nuclis en els que és visible el patró d’acumulació de zeïnes al llarg del desenvolupament del gra. **B.** Extractes totals sobre grans sencers a 8 DAP (K8), endospermes (d) a 10, 12, 15, 18, 20 i 30 DAP i embress a 15 DAP (e15). Les proteïnes es visualitzen per tinció amb plata i es marquen amb asteriscs la γ-zeïna (27kDa) i les α-zeïnes (22 i 19 kDa), respectivament.
En els extractes enriquis en nucli és visible el patró d’acumulació de zeïnes al llarg del desenvolupament del gra, ja que el mètode emprat per obtenir aquests extractes provoca un enriquiment en nucli, però no elimina les proteïnes no nuclears. En canvi, en els extractes totals als que prèviament s’ha eliminat les zeïnes es veu com la zona corresponent a les zeïnes majoritàries (α-zeïnes i γ-zeïna) es troba buida.

Un cop establerta la quantitat apropiada de proteïna d’endosperma de blat de moro que es pot resoldre en gels SDS-PAGE segons el moment del desenvolupament del gra, es va passar a detectar la presència del factor GAMYB en aquests extractes per Western-blot amb els anticossos específics corresponents.

2.6.2. Obtenció d’anticossos específics contra mGAMYB

GAMYB és un factor de tipus Myb, que pertany a la superfamília de MYBs R2R3 (Rabinowicz i col., 1999), que presenten 2 repeticions (R2 i R3) del domini Myb. Aquests dominis presenten una elevada homologia no només entre els diferents factors de transcripció d’una mateixa espècie sinó també entre espècies diferents, tal i com s’ha comentat a la introducció. Això ens va fer plantejar l’obtenció d’anticossos específics contra la regió més variable de GAMYB, a fi d’evitar reaccions creuades amb altres MYBs de blat de moro. Així, els anticossos es van produir contra el domini C-terminal de la proteïna GAMYB, que anomenem Ct-myb.

Per obtenir l’antigen es va sobreexpressar His-Ctmyb a E. coli BL21-DE3, tal i com es descriu a l’apartat 2.1 (material i mètodes). A la figura 61 es mostra el patró de proteïnes presents ens els extractes bacterians totals obtinguts abans (T₀) i després (Tᵢ) de la inducció de His-Ctmyb amb IPTG. La proteïna recombinant només s’expressa després d’induir durant 3 h amb 1 mM d’IPTG (figura 61.B), queda retinguda majoritàriament a la fracció insoluble (P, pellet) i migra per sota del marcador de pes molecular de 45 kDa, el que resulta compatible amb el seu pes molecular calculat (40 kDa). Es pot veure com la fracció soluble (S) conté prou quantitat de proteïna per ser purificada per columnes d’afinitat de níquel forçant l’elució a 200 mM d’imidazole (figura 61.C). En el procés de purificació apareixen dues bandes majoritàries, que corresponen a la proteïna de fusió sencera i a una versió truncada pel C-terminal, ja que ambdues són reconegudes per l’anticòs comercial αT7, que reconeix el T7tag present a l’extrem N-terminal de la proteïna de fusió (figura 61.D). En no poder separar les dues bandes per cromatografia d’afinitat a níquel, la proteïna així purificada es va quantificar per comparació front un patró de BSA amb el gel tenyt amb Coomassie i es va utilitzar directament en la immunització (figura 61.E). El sèrum (αmyb) que es va obtenir dels conills inoculats amb His-Ctmyb es va titular per dot-blots Aquest sèrum, a una dilució 1:2500 va ser capaç de reconèixer 50 ng de proteïna recombinant (figura 61.F).
Figura 61. Producció d’anticossos policlonals contra GAMYB de blat de moro. Sobreexpressió a E.coli i titulació del sérum α-Myb. A. Representació esquemàtica de la construcció pET28C-CTmyb, utilitzada en la sobreexpressió, on s’indiquen el tag d’hexa-Histidina (His tag) i l’epitop T7 tag, a N-terminal de la proteïna de fusió. B. Patró de proteïnes separades per SDS-PAGE (12,5% d’acrilamida) revelat per tinció amb plata dels extractes bacterians totals (S, fracció soluble i P, fracció insoluble) abans (T₀) i després (T₁) de la inducció de la proteïna recombinant. Amb una punta de fletxa es marca la banda corresponent a His-CTmyb (pes teòric: 40 kDa). C. Eluïció de la proteïna recombinant His-CTmyb purificada per columnes d’afinitat de níquel (E) a 200 mM d’imidazole (SDS-PAGE al 12,5% d’acrilamida revelat per tinció amb plata). Amb una punta de fletxa es marca la banda corresponent a His-CTmyb. D. Comprovació de la inducció i la purificació per Western-blot amb αT7, on s’observa com la proteïna de fusió (marcada amb un asterisc) comença a eluir a 100 mM d’imidazole. E. Quantificació de la proteïna de fusió purificada per comparació front un patró de BSA i tinció amb blau de Coomassie. Amb un asterisc es marca la banda corresponent a His-CTmyb. F. Determinació del títol del sérum de conill αmyb per dot-blot amb spots que contenen 10, 50, 100 i 500 ng respectivament de His-CTmyb incubat amb una dilució 1:2500 del sérum αmyb.
2.6.3. El patró d’acumulació de mGAMYB coincideix espacialment amb l’acumulació de la γ-zeïna

L’especificitat del sèrum αmyb es va testar per Western-blot en extractes d’endosperma i embrió de blat de moro en desenvolupament. Aquest sèrum reconeixia 2 proteïnes, d’uns 65 i 70 kDa respectivament, una de les quals (la de 70 kDa) era detectada de forma inespecífica (figura 62.A). Així, es va decidir purificar el sèrum αmyb per columnes d’afinitat a His-Ctmyb (veure apartat 5.2, material i mètodes) i això va permetre obtenir un anticòs (αpmyb) que reconeixia una sola proteïna d’aproximadament 65 kDa sobre els extractes proteics de blat de moro (figura 62.C). Aquesta banda correspon a GAMYB, ja que s’ajusta al pes molecular calculat per la proteïna sencera (61 kDa) i es detecta específicament a endosperma de forma lligada al seu desenvolupament. Aquestes característiques concorden amb les de la proteïna codificada per ZmGAMYB, ja que l’mRNA per aquest gen comença a ser detectable Northern-blot a 8 DAP, presenta el seu màxima 15 DAP i declina progressivament des de 21 fins a 30 DAP. Tenint en compte el lleuger retard entre l’aparició de transcrit i l’inici en l’acumulació del producte gènic, els resultats de la immunodetecció són coherents amb el patró d’expressió del gen ZmGAMYB. la immunodeteció amb αmyb permet detectar proteïna a endosperma a partir de 15 DAP, s’observa el màxim d’acumulació a 18 DAP i decau a partir de 21 DAP. No detectem proteïna als estadis iniciais del desenvolupament de l’endosperma (10-12 DAP), quan l’expressió per Northern-blot era encara baixa, ni tampoc a embrió en el mateix moment del desenvolupament.
Figura 62. Determinació del patró d’acumulació de GAMYB a blat de moro. Titulació de l’anticòs α-myb purificat. A. Determinació de l’especifitat del sèrum de conill αmyb per Western-blot en extractes totals de gra sencer de 8 DAP (K8), endospermes (d) de 10, 12 15, 18, 21 i 30 DAP i embrions (e) de 15, 18, 21 i 30 DAP de blat de moro amb una dilució 1:2000 del sèrum de conill. Amb una fletxa s’assenyala la banda corresponent a GAMYB. B. Titulació de l’anticòs αmyb purificat (αpmyb) per dot-blot amb spots que contenen 10, 50, 100 i 500 ng respectivament de His-Ctmyb incubat amb una dilució 1:500 del sèrum de conill i les fraccions purificades α2 i α3 respectivament. C. Determinació del patró d’acumulació de GAMYB amb l’anticòs purificat αpmyb per Western-blot en extractes totals de gra sencer de 8 DAP (K8), endospermes (d) de 10, 12 15, 18, 21 i 30 DAP i embrions (e) de 15, 18, 21 i 30 DAP de blat de moro amb una dilució 1:500 del sèrum de conill purificat per columnes d’afinitat. Una fletxa assenyala la banda corresponent a GAMYB.

Aquest patró d’acumulació de mGAMYB mostra com l’expressió del gen ZmGAMYB està lligada al desenvolupament de l’endosperma a blat de moro, de forma similar a com ho està la de PBF. La presència de la proteïna mGAMYB a endosperma concorda amb les dades prèvies obtingudes per Northern-blot i el pic de màxima acumulació de GAMYB coincideix amb l’inici de l’acumulació de les zeïnes en aquest teixit.
2.7. Immunolocalització de GAMYB i PBF sobre grans de blat de moro al llarg del desenvolupament

L’endosperma de blat de moro és un teixit heterogeni, format per diversos tipus cel·lulars i per cél·lules en diferents graus de diferenciació (veure introducció), que evoluciona durant el desenvolupament de la llavor. El destí final del teixit és la mort cel·lular programada, quan la llavor arriba a la fase de maduració. Entre 8 i 12 DAP l’endosperma augmenta significativament de mida, en estar sotmès a un procés d’intensa divisió cel·lular entre els 6 i 10 DAP. Cap a 12 DAP l’activitat mitòtica al centre de l’endosperma s’atura i es comença a establir un patró radial d’edat cel·lular: així, les cél·lules més velles del teixit es troben al centre, mentre que les més joves es troben a la perifèria. D’aquesta manera, a mida que es generen noves cél·lules a la perifèria del gra, les cél·lules més velles són desplaçades cap a l’interior, formant el domini central, conegut també com domini ric en midó.

Resultats previs del nostre grup havien mostrat que l’activador transcripcional PBF es localitzava de forma exclusiva a endosperma. La presència de PBF començava a ser detectable a 10 DAP, amb una localització dispersa per totes les cél·lules de l’endosperma. Cap a 15 DAP, s’observava un patró d’expressió radial, sent PBF més abundant a les cél·lules de les capes superficials de l’endosperma (teixit transcripcionalment actiu) i menys abundant a mida que ens endinsem cap a l’interior del gra (el teixit va morint en omplir-se de productes de reserva i esdevé, lògicament, inactiu a nivell transcripcional). Paral·lelament, s’havia correlacionat el patró d’expressió de PBF amb el patró d’acumulació de γ-zeïna al llarg del desenvolupament del gra de blat de moro tant en assaigs funcionals (Marzábal, 2002) com per assaigs d’hibridació in situ de la γ-zeïna de 27 kDa (Woo i col., 2001). En conjunt, totes aquestes dades reforçaven la relació entre presència d’activador transcripcional (PBF) i inici de l’acúmul de productes gènic (γ-zeïna). Era, doncs, especialment interessant determinar la localització del nou factor GAMYB sobre talls histològics d’endosperma mitjançant tècniques d’immunohistoquímica.

El gradient d’activitat transcripcional (de fora cap a dintre) de l’endosperma de blat de moro es pot seguir analitzant el nombre de nuclis intactes que trobem al teixit per marcatge amb DAPI. El DAPI és un colorant fluorescent que marca el DNA i permet visualitzar la integritat dels nuclis en un cert teixit. A la figura 63 es mostren 3 talls transversals d’endosperma a 10, 15 i 20 DAP. A 10 DAP s’aprecia una gran densitat de nuclis, de mida gran i distribuïts per tot l’endosperma. Cap a 15 DAP, la densitat de nuclis així com la integritat dels mateixos es va perdent a mida que l’endosperma madura. A 20 DAP es detecten ja molt pocs nuclis,
poc definits (indicant una pobra integritat del DNA) i amb distribució encara més restringida cap als marges del teixit que a 15 DAP.

![Figura 63. Densitat nuclear en seccions d'endosperma en desenvolupament per marcatge amb DAPI. A i A’. Secció transversal d'endosperma a 10 DAP, en la que s'aprecia una gran densitat de nuclis (en blau). B i B’. Secció transversal d'endosperma a 15 DAP, on es detecten menys nuclis i més petits que a 10 DAP. Cap a l'interior del teixit els nuclis es fan més dispersos i augmenten de mida. C i C’. Secció transversal d'endosperma a 20 DAP, en la que es detecten molt pocs nuclis i amb distribució encara més restringida cap als marges del teixit que a 15 DAP. A les imatges de la dreta es mostren les ampliacions de les regions emmarcades en les corresponents imatges de l'esquerra.](image)

L'acúmuls de certs productes de reserva es pot visualitzar mitjançant una simple tinció amb lugol, que posa de manifest la presència de grànuls de midó (figura 64).
Figura 64. Tinció de grànuls de midó sobre talls d’endosperma en desenvolupament amb lugol.

Figura 64. Tinció de grànuls de midó sobre talls d’endosperma en desenvolupament amb lugol.

A. Secció transversal d’endosperma de 10 DAP on no s’observa presència de midó. **B.** Secció transversal d’endosperma de 15 DAP on comencen a ser visibles els agregats foscos de midó. S’evidencia el canvi de morfologia del teixit, que passa a ser granulós, fruit de l’acúmul de midó, lípids i proteïnes de reserva. **C.** Secció transversal d’endosperma de 20 DAP on es pot apreciar com el centre del teixit acumula grans quantitats de midó i va perdent l’estructura cel·lular.

Immunolocalització sobre grans de blat de moro en desenvolupament

La immunolocalització de GAMYB es va realitzar sobre talls de grans de blat de moro de 10, 15 i 20 DAP de 8 μm, fixats amb aldehids i inclosos en parafina (veure apartat 5.4, material i mètodes) amb l’anticòs purificat αpmyb. Paral·lelament es va immunodetectar la ja descrita PBF amb l’anticòs αpPBF, sobre el mateix tipus de talls, per estudiar si GAMYB compartia el seu patró d’acumulació.

Atès que els experiments d’immunohistoquímica s’han realitzat utilitzant anticossos purificats per columnes d’afinitat a l’antigen, la quantitat de proteïnes del sèrum és tan baixa que com a control negatiu hem realitzat sistemàticament incubacions amb l’anticòs secundaris fluorescent, després de comprovar que els sèrums pre-immunes purificats de la mateixa manera que els corresponents sèrums immunes generaven un senyal tant baix com el provocat per l’anticòs secundari sol (resultats no mostrats).

Els resultats de l’anàlisi per microscòpia de fluorescència dels experiments d’immunohistoquímica per GAMYB amb αpmyb sobre talls de 10, 15 i 20 DAP es van comparar amb els resultats obtinguts per PBF amb αpPBF (figura 65). Es mostren també les imatges corresponents als controls. Per analitzar el patró d’expressió dels factors estudiats a 20 DAP es va optar per disseccionar prèviament el pericarp i la nucl·la per a minimitzar l’autofluorescència procedent d’aquests dos teixits.

A 10 DAP, resulta molt difícil apreciar marcatge específic a endosperma tant per GAMYB com per PBF, degut, en part, a l’autofluorescència del teixit (sober tout les paret cel·lulars del pericarp i la nucl·la) i a la baixa presència d’ambdós factors en aquest moment del
Resultats
desenvolupament (segons els resultats previs d’expressió per *Northern-blot* i *Western-blot*
sobre grans de blat de moro en desenvolupament).

A partir de 15 DAP l’expressió de GAMYB i PBF es fa més aparent a l’endosperma i en tots
dos casos s’observa un major acúmul de proteïna als nuclis (figures 65 i 66), el que
suggereix que siguin factors de transcripció.

A 20 DAP, l’acumulació d’ambdós factors és evident a les capes més superficials de
l’endosperma, però l’expressió es perd a mida que ens endinsem en el teixit.

**Figura 65. Detecció immunohistoquímica de GAMYB i PBF sobre talls d’endosperma en
desenvolupament.** *A, A’ i A”*. Control per a la immunodetecció sobre seccions transversals d’endosperma
de 10, 15 i 20 DAP. *B, B’ i B”*. Immunodetecció de GAMYB amb αpmyb sobre seccions transversals
d’endosperma de 10, 15 i 20 DAP. *C, C’ i C”*. Immunodetecció de PBF amb αpPBF sobre seccions
transversals d’endosperma de 10, 15 i 20 DAP. Barra 200 μm.
A l’observar les seccions de grans de 15 DAP a major augment s’evidencia com la localització de PBF és preferentment nuclear mentre que GAMYB es localitza de forma similar a nucli i a citoplasma (figura 66).

Figura 66. Localització cellular de GAMYB i PBF sobre talls d’endosperma a 15 DAP per immunodetecció i marcatge amb DAPI. Control negatiu d’immunodetecció (A) i marcatge amb DAPI (A’), de seccions transversals d’endosperma de 15 DAP. B, Immunodetecció de GAMYB amb αpmyb, on s’observa la colocalització de GAMYB amb el marcatge nuclear (flèxua blanca, marcatge amb DAPI, B’). C, Immunodetecció de PBF amb αpPBF. S’observa la colocalització de PBF amb el marcatge nuclear (flèxua blanca, marcatge amb DAPI, C’). Barra 50 μm.

Al observar les seccions de grans de 20 DAP a major augment s’evidencia l’acúmul tant de GAMYB com de PBF a les capes més superficials de l’endosperma. Aquest patró és conseqüent amb el fet que, a mida que la llavor madura, l’endosperma transcripcionalment actiu queda restringit als marges d’aquest teixit. De fet, la regió marginal de l’endosperma a
20 DAP és l’única que presenta una densitat de nuclis encara important en aquest moment del desenvolupament, com es pot observar al marcar amb DAPI (figura 67).

Figura 67. Localització cel·lular de GAMYB i PBF sobre talls d’endosperma a 20 DAP per immunodetecció i marcatge amb DAPI. Control negatiu d’immunodetecció (A) i marcatge amb DAPI (A’) de seccions transversals d’endosperma de 20 DAP. B. Immunodetecció de GAMYB amb αpmyb. S’observa la colocalització de GAMYB amb el marcatge nuclear (flecha blanca) i també es veu marcatge intens a citoplasma. L’acumulació de GAMYB es concentra majoritàriament a les capes superficials de l’endosperma, que és on encara queden nuclis actius (marcatge amb DAPI, B’). C. Immunodetecció de PBF amb αpPBF. S’observa la colocalització de PBF amb el marcatge nuclear (flecha blanca) i l’acumulació concentrada principalment a les capes superficials de l’endosperma, on encara queden nuclis actius (marcatge amb DAPI, C’). Barra 50 μm.

Com una primera aproximació per intentar determinar la localització subcel·lular de GAMYB es van analitzar els experimentes d’immunodetecció sobre talls de 20 DAP (on s’observa major acúmul de proteïna) per microscòpia confocal i va resultar, com era d’esperar, que tant GAMYB com PBF s’acumulaven a citoplasma i a nuclis però de forma rellevant a nuclis. La presència a nuclí de PBF és, però, més evident que la de GAMYB (figura 68).
Figura 68. Localització subcel·lular de GAMYB i PBF sobre talls d’endosperma a 20 DAP. A i A’.
Immunodetecció de GAMYB amb αGAMYB per microscòpia confocal i transmissió, respectivament, sobre seccions transversals d’endosperma de 20 DAP. S’observa la localització de GAMYB tant a nucli (flecha blanca) com a citoplasma. B i B’.
Immunodetecció de PBF amb αPBF per microscòpia confocal i transmissió, respectivament, sobre seccions transversals d’endosperma de 20 DAP. S’observa la localització de PBF a nucli (flecha blanca) i també a citoplasma. Barra 20 μm.

Sobre les mateixes seccions transversals de grans a blat de moro a 15 i 20 DAP vam analitzar també la presència de GAMYB i PBF a embrió. Resultats anteriors del nostre grup havien mostrat que PBF s’expressava de forma específica a endosperma en desenvolupament. Així, esperàvem que GAMYB, com a possible regulador transcripcional dels mateixos processos que PBF, presentés un patró similar. A més, no havíem estat capaços de detectar expressió de GAMYB a embrió ni per Northern-blot ni per Western-blot.
En analitzar els resultats per microscòpia de fluorescència, tampoc no vam ser capaços de detectar ni GAMYB ni PBF a embrió ni a 15 (figura 69) ni a 20 DAP (figura 70).
Figura 69. Immunolocalització de GAMYB i PBF sobre talls d’embríol a 15 DAP. A. Control negatiu d’immunodetecció sobre seccions transversals d’embrió de 15 DAP. B. Immunodetecció de GAMYB amb αpmyb, on no s’observa marcatge específic. C. Immunodetecció de PBF amb αpPBF, on tampoc no s’observa marcatge. D. Marcatge amb DAPI d’embríol a 15 DAP. Barra 500 μm.

Figura 70. Immunolocalització de GAMYB i PBF sobre talls d’embríol a 20 DAP. A. Control negatiu d’immunodetecció sobre seccions transversals d’embrió de 20 DAP. B. Immunodetecció de GAMYB amb αpmyb, on no s’observa marcatge específic. C. Immunodetecció de PBF amb αpPBF, on tampoc no s’observa marcatge específic. D. Marcatge amb DAPI d’embríol a 20 DAP. Barra 500 μm.

Aquests resultats ens mostren que GAMYB es troba de forma restringida a endosperma en desenvolupament. La seva presència comença a ser visible a 15 DAP i es manté a 20 DAP, coincidint temporal i espacialment amb la de PBF. El patró d’acumulació cel·lular d’ambdós factors no coincideix totalment, ja que GAMYB, tot i localitzar-se a nuclis, s’acumula també a citoplasma, mentre que PBF s’acumula preferentment a nuclis i molt lleugerament a citoplasma. No hem estat capaços de detectar presència ni de GAMYB ni de PBF a embríol.
CAPÍTOL 3
3. ZmFUSCA3, un nou factor B3 lligat al desenvolupament del gra de blat de moro

3.1. Introducció a FUSCA3

A la regió proximal del promotor de la γ-zeïna, trobem dos elements RY, un d’ells solapat amb la caixa GZM i un altre a 23 pb a 3’ del primer, tal i com s’esquematitza a la figura 37 (pàgina 85). Aquest element es troba àmpliament distribuït en promotors de gens específics de llavor tant de dicotiledònies com de monocotiledònies (revisat per Wohlfarth (1998)). La seva interacció amb altres elements en cis és bàsica per aconseguir elevats nivells d’expressió i la seva selecció aboleix l’activitat específica del promotor.

Els factors candidats a unir-se als elements RY són aquells que contenen dominis B3 en la seva seqüència. Aquest domini va ser definit per primer cop com un domini bàsic conservat entre els gens ortòlegs VP1 (McCarty i col., 1991) de blat de moro i ABI3 (Giraudat i col., 1992) d’arabidopsis (veure introducció, figura 20). Els gens ZmVP1 i ABI3 s’expressen de forma abundant durant l’embriogènesi i deïxen d’expressar-se després de la germinació (McCarty i col., 1991; Parcy i col., 1994). Els factors mVP1 i ABI3 són reguladors de la fase de maduració de la llavor i actuen, a més, com a repressors d’una activació prematura del programa de germinació (Hoecker i col., 1995). mVP1 dirigeix la síntesi d’antocianins a través del gen CI (Hattori i col., 1992) i és co-activador de l’expressió de gens regulats per ABA implicats en la maduració de la llavor (Vasil i col., 1995) i de l’acumulació de proteïnes de reserva a embrió de blat de moro (Kriz i col., 1990). El fenotip del mutants vp1 de blat de moro és similar al dels mutants abi3, i donen lloc a llavors intoleraus a dessecació i insensibles a ABA (McCarty i col., 1991). Estudis genètics amb nous mutants amb fenotips similars als causats per la manca d’ABI3 a Arabidopsis thaliana han permès identificar nous factors de transcripció amb dominis B3 com FUSCA3 (Luerksen i col., 1998) i LEC2 (Stone i col., 2001). Ambdós factors conten un domini B3 conservat, però els hi manca la regió N-terminal present en els gens ortòlegs ABI3 i VP1.

3.1.1. Factors B3 a blat de moro

A blat de moro l’únic factor de transcripció de tipus B3 descrit fins al moment ha estat VP1. S’ha descrit que VP1 actua sobre els promotors dels gens Em (que codifiquen per proteïnes de tipus LEA) i CI (implicat en la biosíntesi d’antocianins) de blat de moro a través de 3 tipus d’elements en cis: G-Boxes (reconegudes per factors de tipus bZip i bHLH i de forma dependent a ABA), l’element Sph (que conté motius RY) i seqüències riques en AT (de forma indirecta). Encara que s’ha demostrat la unió del domini B3 de VP1 a motius tipus RY (Suzuki
i col., 1997a), només s’ha pogut descriure la funcionalitat de la interacció entre motius RY i factors B3 a dicotiledònies, concretament en la regulació de l’expressió de gens que codifiquen per proteïnes de reserva específics de llavor a través dels factors FUSCA3 i ABI3 (Wohlfarth i col., 1998; Reidt i col., 2000).

Donat doncs que podem considerar VP1 i ABI3 com a gens ortòlegs, ens varem plantear que a blat de moro, així com a altres cereals, podrien existir altres factors B3 homòlegs a FUSCA3, que poguessin regular l’acumulació de proteïnes de reserva al gra de cereals. Així, ens varem proposar clonar el factor B3 de blat de moro homòleg a FUSCA3 i analitzar si era capaç d’unir-se als elements RY trobats en el promotor del gen γZ.

3.1.2. Anàlisi in silico dels gens FUSCA3 a monocotiledònies i dicotiledònies

Com a pas previ al clonatge de FUSCA3 a blat de moro, vam realitzar una cerca a les bases de dades per trobar les seqüències dels gens FUSCA3 descrites fins al moment. Aquesta cerca va proporcionar només una seqüència descrita per FUSCA3, que era la corresponent a Arabidopsis thaliana. En buscar un possible homòleg de FUSCA3 d’arabidopsis a arròs va aparèixer un gen que putativament codificava per a l’homòleg a FUSCA3 en aquesta espècie. Paral·lelament i fruit d’una col·laboració amb el grup del Dr. Jesús Vicente-Carbajosa (Laboratorio de Bioquímica y Biología Molecular, Departamento de Biotecnología, ETS Ingenieros Agrónomos, UPM, Madrid), disposàvem de la seqüència del cDNA del que podia ser l’homòleg a FUSCA3 de blat de moro. Al realitzar la cerca a les bases de dades amb aquesta seqüència, van obtenir la seqüència d’una EST (Expressed Sequence Tag) coincident a blat de moro, indicant que efectivament, la seqüència de que disposàvem corresponia a un gen transcripcionalment actiu a blat de moro. La llista de seqüències obtingudes, així com els corresponents números d’accés al GeneBank i la referència corresponent (en els casos en que hagi estat publicat) es detallen a la taula següent:

Taula V. Seqüències pel gen FUSCA3 descrites a diferents espècies

<table>
<thead>
<tr>
<th>Nom</th>
<th>Espècie</th>
<th>GeneBanK</th>
<th>Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUSCA3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002-150-E10</td>
<td>Oryza sativa</td>
<td>AK109920</td>
<td>(Kikuchi i col., 2003)</td>
</tr>
<tr>
<td>AtFUSCA3</td>
<td>Arabidopsis thaliana</td>
<td>AF016265</td>
<td>(Luerksen i col., 1998)</td>
</tr>
<tr>
<td>PCO069306</td>
<td>Zea mays</td>
<td>AY107817</td>
<td>Unpublished maize mapping project</td>
</tr>
</tbody>
</table>

138
3.2. Clonatge del gen *ZmFUSCA3* de blat de moro

A partir de la seqüència de la EST **PCO069306** de blat de moro es va dissenyar la parella d’encebadors amb la que es va abordar el clonatge de FUSCA3 de blat de moro. La seqüència sencera de la regió codificant per FUSCA3 es va obtenir per RT-PCR sobre RNA total d’endosperma de 12 DAP, usant com a primers específics la parella ofus for/ofus rev (veure taula I, apartat 2.2, material i mètodes). La RT-PCR va proporcionar una banda única a 1100bp (figura 71), que corresponia a la mida calculada pel fragment amplificat per la parella d’oligos ofus for/ofus rev sobre la seqüència teòrica de FUSCA3 de la EST PCO060306 de blat de moro.

![Figura 71. RT-PCR pel gen *ZmFUSCA3* sobre RNA total de blat de moro.](image)

La RT-PCR es va realitzar amb els oligos ofus for i ofus rev sobre RNA total d’endosperma de 15 DAP, d’embrió a 20 DAP i d’aleurona a 14 DAP, proporcionant una banda intensa a 1100 bp a embrió i bandes difoses a endosperma i aleurona (marcades amb una fletxa).

Posteriorment, aquesta banda es va retallar, purificar i clonar en el vector pTZR-TA (AmpR, Fermentas). La seqüència completa del cDNA per *ZmFUSCA3* es va obtenir per 3’ RACE. La seqüència nucleotídica completa per a *ZmFUSCA3* així com la seqüència aminoacídica deduïda es mostren a la taula VIII (apèndix, pàgina 219).

El cDNA aïllat pel gen *ZmFUSCA3* codificava per un marc obert de lectura que va donar lloc a una proteïna de 293 aminoàcids i 32,5 kDa de pes molecular calculat. Aquesta proteïna contenia el domini B3 conservat dels factors de transcripció de tipus B3. La seva seqüència aminoacídica, així com la localització del domini B3 es presenten a la figura 72.

```
1 MAGITKRRTS PASTSSSSGD VLPPQVRTRKRSARRGPRSTOPPSAPPMPM
51 NELDLNTAAL DPDPHYATGLEVRVLLKQELRNSDVSQLGRIVLPKKKAEQSYLP
101 ILMAKGDKGLCMEHDLNNSQLWTFKRYRWFNKSRSMYVLNTGDDYVKAHDL
151 QQGDFIVIYKDDENRFVIGAKKAGDEQTATVPQVHEHMISHAALPAPQA
201 FDHYAPVAAEAGMLAIVPQGDEIFDGILNSLPEIPVANVRYSDFFDPFG
251 DSMDMANPLSSSNPSVNLATFHDERIGCSFYPKSGPQM
```

Figura 72. Seqüència aminoacídica deduïda pel factor FUSCA3 de blat de moro. En blau s’indica la seqüència corresponent al domini B3.
Resultats

Posteriorment, vam alinear la seqüència aminoacídica de ZmFUSCA3 amb la seqüència de Fusca3 descrita per Arabidopsis i la seqüència aminoacídica deduïda a partir del gen putatiu Fusca3 d’arròs. L’alineament resultant mostra una elevada identitat de seqüència a nivell del domini B3 entre elles (figura 73), però fora d’aquest domini la identitat de les proteïnes deduïdes de blat de moro i arròs respecte la proteïna d’Arabidopsis és limitada (27%). La identitat entre Fusca3 de blat de moro i arròs és, en canvi, molt elevada a nivell de proteïna sencera (63%).

Figura 73. Alineament de seqüències de les proteïnes Fusca3 d’Arabidopsis, blat de moro i arròs.

Es mostra l’alineament de les seqüències aminoacídiques pel factors Fusca3 de blat de moro (ZmFUS3), el putatiu factor d’arròs (OsFUS3) i el factor Fusca3 d’Arabidopsis (AtFUS3). S’emmarca en blau el domini B3 conservat en aquest tipus de factors de transcriptió. L’alineament s’ha generat amb el programa GeneDoc.

A partir de la seqüència del cDNA de ZmFUSCA3, es van realitzar diferents construccions per a la sobreexpressió a E.coli (per a l’obtenció d’anticossos específics i per a la realització d’assaigs d’interacció amb el DNA in vitro (EMSA)), així com per a la realització d’assaigs funcionals.
3.3. Patró d’expressió del gen ZmFUSCA3 durant el desenvolupament de la llavor

L’expressió de ZmFUSCA3 es va determinar per Northern-blot en diferents teixits de blat de moro i a diferents moments dels desenvolupament. La hibridació es va realitzar amb una sonda de 514 bp obtinguda per restricció amb SacI sobre la construcció pCRII-3’ end fus (veure figura 33, material i mètodes). El fragment escollit com a sonda comprenia part de l’extrem C-terminal i la regió 3’ no traduïda del gen FUSCA3 de blat de moro.

Vam comparar el patró d’expressió de ZmFUSCA3 amb els patrons ja coneguts de PBF i del gen de la γ-Zeïna, sobre els mateixos teixits i en el mateix moment del desenvolupament, per hibridació subsegüent de les membranes utilitzades en l’anàlisi de l’expressió del gen ZmGAMYB (veure figura 50). Com a control de càrrega es van realitzar hibridacions amb una sonda de 1.200 bp corresponent a la subunitat 18S d’lRNA ribosomal de blat, obtinguda per restricció BamHI-HindIII sobre la construcció pW18S1.2 (Gerlach i Bedbrook, 1979).

ZmFUSCA3 s’expressa majoritàriament a embrió de blat de moro durant el desenvolupament de la llavor

L’anàlisi per Northern-blot va indicar que ZmFUSCA3 s’expressa lleugerament a l’endosperma de blat de moro, de forma aparentment lligada al desenvolupament de la llavor, però l’expressió és majoritària a embrió durant el desenvolupament. No es detecta expressió a plàntula ni a arrel (figura 74).

La presència de transcript pel gen ZmFUSCA3 a embrió es detecta per Northern-blot en tots els estadis del desenvolupament analitzats, amb un pic màxim de màxima expressió a 18 DAP i una ràpida davallada a partir de 21 DAP. A endosperma, l’expressió de ZmFUSCA3 comença a ser detectable per Northern-blot a partir de 12 DAP, arriba al seu pic màxim a 15 DAP i davalla ràpidament a 18 DAP, deixant de ser detectable més enllà de 21 DAP. Aquest patró coincideix només parcialment amb el de PBF, que s’expressa de forma restringida a endosperma i de forma coordinada amb el desenvolupament d’aquest teixit (com es descriu a la figura 50). El patró d’expressió de ZmFUSCA3, tot i no estar en contradicció amb el patró d’expressió del gen de la γ-zeïna, no permet establir un paral·lelisme entre l’expressió del factor de transcripció i el producte gènic.

La marcada diferència en el nivell d’expressió de ZmFUSCA3 a endosperma i a embrió ens fa pensar que potser la presència de transcrit a endosperma sigui fruit d’una contaminació de l’endosperma amb teixits procedent d’altres parts de la llavor (embrió o aleurona).
Figura 74. Anàlisi del patró d’expressió del gen *ZmFUSCA3* a blat de moro per *Northern-blot*. Patró d’expressió de *ZmFUSCA3* sobre diferents teixits: plàntula (plant) de 7 dies i arrel de 7 dies i sobre gra de blat de moro en desenvolupament (8 a 30 DAP): gra sencer (ker), endospermes i embrions. Com a control de càrrega es mostra la hibridació amb sonda per la subunitat 18S de l’RNA ribosomal.

En analitzar els resultats normalitzats respecte la subunitat 18S de l’RNA ribosomal, s’aprecia un perfil d’expressió coincident dels factors FUSCA3 i PBF (figura 75.B) i lligat al desenvolupament de l’endosperma de blat de moro. S’observa, a més, com el gen γZ presenta un patró d’expressió al llarg del desenvolupament, decalat respecte dels seus possibles reguladors (figura 75.B). S’observa, però, que la expressió de *ZmFUSCA3* és molt dèbil a endosperma i, en canvi, molt elevada a embrió (figura 75.C). Es pot observar a més com els nivells d’expressió a l’embrió estan lligats a l’estadi de desenvolupament.

Figura 75. Nivells d’expressió gènica relatius de FUSCA3, PBF i γ-zeïna respecte 18S rRNA. Nivells d’expressió del transcrit per *ZmFUSCA3* (A) normalitzats respecte la subunitat 18S de l’RNA ribosomal a endosperma (d) i a embrió (e) de blat de moro en desenvolupament (8 a 30 DAP). En B es mostra la superposició dels nivells de transcrit pels gens *ZmFUSCA3*, *ZmPBF* i γZ, segons els resultats mostrats a la figura 51.

El fet que FUSCA3 s’expressi de forma tant lleugera a endosperma suggereix que els gens diana d’aquest factor no siguin els gens de proteïnes de reserva d’endosperma. Probablement, actúi més aviat com a regulador de gens relacionats amb l’acumulació de productes de reserva a l’embrió.
3.4. Estudi de la capacitat d’activació de ZmFUSCA3 sobre el promotor \(\gamma Z\)

Assaigs funcionals per transformació d’endospermes de blat de moro

Els resultats obtinguts fins al moment indicaven que ZmFUSCA3 probablement no estava implicat en la regulació de l’expressió de \(\gamma\)-Zeina. Tot i així, volíem demostrar-ho amb assaigs funcionals. Així, vam realitzar assaigs d’activitat per transformació transitòria sobre endospermes de blat de moro amb ZmFUSCA3.

ZmFUSCA3 no és capaç de trans-activar el promotor \(\gamma Z\)

Vam generar una construcció que contenia el gen ZmFUSCA3 en un casset d’expressió format pel promotor constitutiu 35S, el primer intrò de l’AdhI i el terminador nos 3’ (figura 76.A). Així, vam realitzar experiments de co-transformació d’endospermes joves de blat de moro (12-15 DAP) utilitzant la construcció 527\(\gamma\)Zp:GUS i com a efectors, els factors mPBF i ZmFUSCA3. Com a control de transformació vam utilitzar el gen Luc sota control del promotor constitutiu 35S.

Donat que ZmFUSCA3 s’expressa dèbilment a endosperma, esperàvem que ZmFUSCA3 fos un feble regulador del gen \(\gamma Z\); és per això que vam provar la capacitat d’activació de ZmFUSCA3 a la quantitat màxima establerta prèviament (2\(\mu g/experiment\)). Com a control dels nivells d’activació assolits vam realitzar co-transformació amb mPBF també a quantitat fixa (2 \(\mu g/experiment\)).

En referència a l’activitat basal del promotor \(\gamma Z\) (representada pels valors relatius d’expressió GUS/LUC, quantificats per fluorimetria i luminometria) vam analitzar l’activitat del promotor \(\gamma Z\) en presència de ZmFUSCA3 i mPBF. Els resultats obtinguts indicaven que ZmFUSCA3 no era capaç d’activar l’expressió del promotor \(\gamma Z\), mentre que PBF es comportava com a activador transcripcional (figura 76.B).
Resultats

<table>
<thead>
<tr>
<th>INFORMADOR</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>527 γZp:GUS</td>
<td>!</td>
</tr>
<tr>
<td>EFECTOR</td>
<td>!</td>
</tr>
<tr>
<td>35S:PDF</td>
<td>!</td>
</tr>
<tr>
<td>35S:FUS3</td>
<td>!</td>
</tr>
<tr>
<td>CONTROL de TRANSFORMACIÓ</td>
<td>!</td>
</tr>
<tr>
<td>νLUC</td>
<td>!</td>
</tr>
</tbody>
</table>

Figura 76. Capacitat d’activació de FUSCA3 de blat de moro sobre el promotor γZ en experiments de co-transformació sobre endospermes de blat de moro de 12-15 DAP. A. Esquema de les construccions utilitzades en els experiments de co-bombardeig, amb els diferents efectors (formant un cassette d’expressió amb el promotor constituït 35S, el primer intró de l’AdhI i el terminator nos) sobre la construcció 527 γZp:GUS i la construcció amb el gen LUC usada com a control de transformació (en un cassette d’expressió amb el promotor 35S, el primer intró del gen Shrunken i el terminator nos). B. Resultats obtinguts en els experimentes de co-bombardeig expressats com a relació GUS/LUC. Al nivell basal d’expressió del promotor γZ (sense efectors) se li ha assignat valor 1 (línia vermella). FUSCA3 no és capaç d’activar l’expressió del promotor γZ, mentre que PBF es comporta com activador, augmentant l’expressió del promotor γZ entre 3 i 4 cops.
3.5. Interacció de ZmFUSCA3 amb motius de tipus RY

Assaigs de retard en gel (EMSA)

Tot i que ZmFUSCA3 no era capaç d’activar el promotor γZ, volíem determinar si aquest factor era capaç d’unir-se al motiu RY present a la regió proximal del promotor del gen de la γ-Zeïna. Aquesta unió, si existís, tindria una limitada rellevància funcional pel promotor γZ, però ens permetria establir si FUSCA3 podia regular altres gens de blat de moro amb motius RY. Amb aquest objecti, es va testar la capacitat d’interacció de ZmFUSCA3 amb oligonucleòtids que contenien la caixa RY.

3.5.1. Obtenció del factor ZmFUSCA3 recombinant per a la realització dels assaigs de tipus EMSA

Per a la realització dels assaigs tipus EMSA es va obtenir el factor ZmFUSCA3 recombinant a E.coli, tal i com es descriu a l’apartat 2.2 (material i mètodes).

Es van generar les construccions següents: ZmFUSCA3 fusionat a un His-tag i un T7 tag en N-terminal de la proteïna i també en fusió a GST en N-terminal, tal i com s’esquematitza a la figura 77.A.

La sobreexpressió de la proteïna His-FUSCA3 a E.coli va proporcionar quantitats elevades de proteïna recombinant purificada, tal i com es mostra a la figura 77.B. En canvi, en realitzar assaigs d’unió in vitro de tipus EMSA amb aquesta proteïna recombinant no es va observar cap banda retardada (resultats no mostrats).

La sobreexpressió de la proteïna recombinant GST-FUSCA3 a E.coli i la seva posterior purificació va proporcionar quantitats suficients de proteïna recombinant purificada (veure figura 77.C.). La realització d’assaigs d’unió in vitro de tipus EMSA amb aquesta proteïna recombinant sí que va generar bandes retardades, indicant que s’uneix al DNA in vitro.
Figura 77. Expressió de ZmFUSCA3 a *E. coli*.

A. Representació esquemàtica de les construccions utilitzades en la expressió: pET28α-FUS3, en la que s’indica l’His-tag i el T7 tag, en N-terminal de la proteïna de fusió; i pGEX4T3-FUS3, en la que s’indica la fusió a GST en N-terminal de la proteïna de fusió.

B. Patró de proteïnes separades per SDS-PAGE (12,5% d’acrilamida) revelat per tinció amb plata dels extractes bacterians totals (S, fracció soluble i P, fracció insoluble) abans (T₀) i després (T₇) d’induir l’expressió de la proteïna His-FUSCA3. Proteïna purificada per columnes d’afinitat de níquel (eluïts (E) a 100, 200 i 1000 mM d’imidazol). La punta de flecha marca la banda corresponent a His-FUSCA3, per sota del marcador de pes molecular de 36 KDa (pes teòric: 35 KDa).

C. Patró de proteïnes separades per SDS-PAGE (12,5% d’acrilamida) revelat per tinció amb plata dels extractes bacterians totals (S, fracció soluble i P, fracció insoluble) abans (T₀) i després (T₇) d’induir l’expressió de la proteïna GST-FUSCA3. Proteïna purificada per columnes d’afinitat de glutatí (eluïts (E) a 10 mM de glutatí). La punta de flecha marca la banda corresponent a GST-FUSCA3, per sota del marcador de pes molecular de 66 KDa (pes teòric: 60 KDa).

3.5.2. ZmFUSCA3 interaccion amb seqüències de tipus RY

Per estudiar la interacció de ZmFUSCA3 amb la caixa RY es van realitzar assaigs d’interacció entre la proteïna GST-FUSCA3 purificada i un oligonucleòtid de doble cadena que contenia el motiu RY present a la regió proximal del promotor γZ (RY) o una versió mutada del mateix (RY*), com es mostra a la figura 78.A. Es va triar una mutació que trencava totalment el consens CATG (a GTAC) ja que estudi previs d’interacció de AtFUSCA3 amb caixes RY de diferents promotores de gens específics de llavor havien mostrat unió del factor d’arabidopsis a motius amb una o dues mutacions puntuals (Monke i col., 2004).

En realitzar l’assaig, es va observar que GST-FUSCA3 interaccionava tant amb el motiu RY com amb la corresponent versió mutada, generant dues bandes de retard, la més intensa de les quals era la de major mobilitat electroforètica (figura 78.B). Es va comprovar que la incubació de GST sola amb els oligos RY i RY* no causava l’aparició de bandes retardades.
Per determinar l’especificitat de la interacció de ZmFUSCA3 amb el motiu RY vam realitzar assaigs de *supershift* amb la proteïna de fusió GST-FUSCA3 i un anticòs específic contra FUSCA3 (veure obtenció de l’anticòs a l’apartat 3.6.2., figura 81). L’anticòs α fus provoca l’aparició d’un nou complex DNA-proteïna de menor mobilitat electroforetica, indicant que probablement es tracta d’un complex format per ZmFUSCA3 i el seu anticòs amb el DNA (figura 78.B). La formació d’aquest complex (fletxa vermella), però, no fa que desapareguin les bandes causades per la interacció entre ZmFUSCA3 i el DNA (fletxa negra).

A

\[
\text{oRY: tggACGGTGAGT CATGC CGAGATCggt} \\
\text{oRY*: tggACGGTGAGT GTACC CGAGATCggt}
\]

B

<table>
<thead>
<tr>
<th>Sonda</th>
<th>Proteïna</th>
<th>Anticòs</th>
<th>RY</th>
<th>RY*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GST</td>
<td>FUSCA3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>PI IM</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>PI IM</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>PI IM</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>PI IM</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>PI IM</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>PI IM</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Figura 78. Assaig de retard en gel de FUSCA3 sobre la caixa RY i *supershift* per αfus. A. Oligos utilitzats en aquests assaigs de tipus EMSA. B. Assaig de retard en gel en el que s’aprecia la unió de GST-FUSCA3 a la caixa RY (carril 3, fletxa negra) i també a la caixa mutada (carril 8). GST sola no causa retard (carrils 2 i 7). Assaig de *supershift* amb el sèrum αfus (IM, carrils 5 i 10) i el corresponent pre-immune (PI, carrils 4 i 9), en el que s’observa com només el sèrum immune fa aparèixer una banda retardada addicional (fletxa vermella).

Per establir millor l’especificitat de la interacció de FUSCA3 amb la caixa RY es van realitzar assaigs de competició amb un oligo RY sense marcar, la corresponent versió mutada (RY*)
(veure figura 79.A) i un competidor inespecífic (pBS linealitzat), tots ells en quantitats 25 cops superiors a la quantitat d’oligo marcat utilitzada en l’assaig. En utilitzar quantitats de competidor 50 cops superiors a la quantitat d’oligo marcat utilitzada en l’assaig, la interacció de ZmFUSCA3 amb l’oligo marcat s’aboleix totalment en tots els casos (resultats no mostrats). Es va observar que el millor competidor era l’oligo RY fred, mentre la versió mutada era capaç de competir la unió a nivells similars al competidor inespecífic (figura 79.B).

![Diagrama](image)

Figura 79. Assaig de competició de les sondes RY i RY* per la unió de FUSCA3 a la seva caixa. A. Oligos utilitzat en aquests assaigs de tipus EMSA. B. Assaig de retard en gel en el que s’aprecia la unió de GST-FUSCA3 a la caixa RY (carril 2) i també a la caixa mutada (carril 7). S’observa com el millor competidor és la sonda freda RY (carrils 3 i 9) i que la versió mutada RY* (carrils 4 i 8) és un competidor tan débil com un DNA inespecífic (carrils 5 i 10).

Aquests resultats ens indiquen que ZmFUSCA3 és capaç d’unir-se a la caixa RY present *in vitro*. Tanmateix, en les condicions assajades, també detectem unió a la caixa mutada, indicant que els límits d’especificitat d’aquesta interacció són estrets.
3.6. ZmFUSCA3 en extractes proteics d’endosperma i embrió de blat de moro en desenvolupament

Els resultats obtinguts per ZmFUSCA3 fins al moment ens indicaven una baixa expressió del factor a endosperma de blat de moro i una presència significativa a embrió. Per aquest motiu i a fi de caracteritzar millor el patró d’expressió de la proteïna durant el desenvolupament de la llavor, es va considerar oportú obtenir anticossos contra aquesta proteïna que ens permetessin detectar-la tant en extractes de blat de moro (immunodetecció per Western-blot) com sobre talls de grans de blat de moro en desenvolupament (immunohistoquímica). Paral·lelament, es va analitzar el patró de proteïnes presents en extractes proteics de blat de moro en desenvolupament i es va avaluar la presència del factor FUSCA3 sobre aquests mateixos extractes.

3.6.1. Perfil de proteïnes presents en extractes proteics de blat de moro

Per determinar la presència del nou factor ZmFUSCA3 es van realitzar extractes proteics totals enriquis en nuclis de gra de blat de moro en desenvolupament (tal i com es descriu a l’apartat 5.3 de Material i Mètodes). Les dades preliminars de que disposàvem pels factors GAMYB i PBF ens indicaven que aquest tipus d’extracte era el que millor permetia detectar la presència de factors de transcripció (veure resultats, apartat 2.6) Prèviament a la immunodetecció de FUSCA3 per Western-blot es va analitzar el perfil de proteïnes d’endosperma, embrió i aleurona al llarg del desenvolupament del gra de blat de moro. De forma similar a com havíem fet per GAMYB, es van ajustar les quantitats de proteïna a carregar per a realitzar la immunodetecció de FUSCA3. El perfil de proteïnes presents en els extractes totals enriquis en nuclis separades per SDS-PAGE i posterior tinció amb plata es mostra a la figura 80. En aquests extractes enriquis en nuclis és visible el patró d’acumulació de zeïnes al llarg del desenvolupament de l’endosperma, ja que el mètode emprat per obtenir aquests extractes provoca un enriquiment en nuclis, però no elimina les proteïnes no nuclears.
Resultats

Figura 80. Patró de proteïnes d’endosperma, embrió i aleurona separades per SDS-PAGE.
Extractes totals enriquits en nuclis sobre grans sencers a 8 DAP (K8), endospermes (d) a 10, 12, 15, 18, 20 i 30 DAP i embrions (e) a 15, 18, 20 i 30 DAP i aleurona a 12 DAP (al 12). Les proteïnes es visualitzen per tinció amb plata.

Un cop establerta la quantitat apropiada de proteïna dels diferents teixits del gra de blat de moro que es pot resoldre en gels SDS-PAGE segons el moment del desenvolupament de la llavor, es va passar a detectar la presència del factor FUSCA3 sobre aquests extractes per *Western-blot* amb anticossos específics.

3.6.2. Obtenció d’anticossos específics contra ZmFUSCA3

FUSCA3 és un dels representants més petits de la família de factors de transcripció que contenen dominis B3. Aquest fet unit a la baixa similitud a nivell de proteïna sencera amb altres factors de transcripció d’aquesta família van fer que ens decidissim a obtenir anticossos contra la proteïna sencera.

Per obtenir l’antígen, es va expressar His-FUSCA3 a *E. coli* BL21-DE3, tal i com es descriu a l’apartat 2.1 (material i mètodes). A la figura 81 es mostra el patró de proteïnes presents ens els extractes bacterians totals obtinguts abans (T₀) i després (Tₗ) d’indreu l’expressió de His-FUSCA3. La proteïna recombinant migra a 37 kDa, coincident amb el seu pes molecular teòric (36,5 kDa). His-FUSCA3 només s’expressa després d’indreu durant 3 h amb 1 mM d’IPTG (figura 81.B) i queda parcialment retinguda a la fracció insoluble (P, *pellet*). La fracció soluble (S) conté prou quantitat de proteïna per ser purificada per columnes d’afinitat de níquel forçant l’elució a 200 mM d’imidazol (figura 81.C). En el procés de purificació apareix una banda majoritària, que correspon a la proteïna de fusió sencera, i algunes bandes de menor mobilitat electroforètica. Aquestes últimes correspondrien a degradacions de la proteïna de fusió pel C-terminal o bé a cadenes inacabades, ja que són reconegudes per l’anticòs comercial αT7, que reconeix el T7 tag N-terminal de la proteïna de fusió (figura 81.D). Les diverses bandes no es van poder separar per cromatografia d’afinitat a níquel, ja
que tant la proteïna sencera com les versions truncades en el C-terminal contenen l’*His-tag*. La proteïna purificada es va quantificar per comparació front un patró de BSA amb el gel tènit amb blau de Coomassie i es va utilitzar directament en la immunització (figura 81.E). El sèrum (αfus) que es va obtenir dels conills inoculats amb His-FUSCA3 es va titular per *dot-blot* i va ser capaç de reconèixer 10 ng de proteïna recombinant a dilució 1:2500 (figura 81.F).

Figura 81. Producció d’anticossos policlonals contra ZmFUSCA3. Expressió a *E.coli*. **A.** Esquema de la construcció pET28A-FUSCA3, on s’indiquen l’*His-tag* i el *T7 tag*, a N-terminal de la proteïna de fusió. **B.** Patró de proteïnes separades per SDS-PAGE (12,5% d’acrilamida) revelat per tinció amb plata dels extractes bacterians totals (S, fracció soluble i P, fracció insoluble) abans (*T₀*) i després (*Tᵣ*) de la inducció de la proteïna recombinant. Amb una punta de fletxa es marca la banda corresponent a His-FUSCA3 (pes teòric: 36,5 kDa). **C.** Elució de la proteïna recombinant His-FUSCA3 purificada per columnes d’afinitat de níquel (E) a 200 mM d’imidazol (SDS-PAGE al 12,5% d’acrilamida revelat per tinció amb plata). Amb una punta de fletxa es marca la banda corresponent a His-FUSCA3. **D.** Comprovació de la inducció i la purificació per *Western-blot* amb αT7, on s’observa com la proteïna de fusió comença a eluir a 80 mM d’imidazol i s’obté pura a 200 mM d’imidazol. **E.** Quantificació de la proteïna de fusió purificada per comparació front un patró de BSA i tinció amb blau de Coomassie. Amb un asterisc es marca la banda corresponent a His-FUSCA3. **F.** Determinació del títol del sèrum de conill αfus per *dot-blot* amb *spots* que contenen 10, 50, 100 i 500 ng respectivament de His-FUSCA3 incubat amb una dilució 1:2500 del sèrum αfus.
3.6.3. El patró d’acumulació de ZmFUSCA3 no coincideix espacialment amb l’expressió de proteïnes de reserva de l’endosperma

Es va testar l’especificitat del sèrum α-fus per Western-blot sobre extractes d’endosperma i embrió de blat de moro en desenvolupament. Aquest sèrum reconeixia dues proteïnes a embrió (una a 45 kDa i l’altra a 36 kDa) i només una a endosperma (de 45 kDa), però aquesta última semblava inespecífica (figura 82.A). Així, es va decidir purificar el sèrum α-fus per columnes d’afinitat a His-FUSCA3 (apartat 5.2, material i mètodes) i això va permetre obtenir un anticòs (αfus) que reconeixia una sola proteïna d’aproximadament 36 kDa en els extractes proteics d’embrió de blat de moro, però que no era capaç de reconèixer cap proteïna en els extractes proteics d’endosperma (figura 82.C).

![Western-blot](attachment:image.png)

Figura 82. Determinació del patró d’acumulació de ZmFUSCA3 a blat de moro.

Titulació de l’anticòs α-fus purificat. A. Determinació de l’especificitat del sèrum de conill αfus per Western-blot en extractes totals de gra sencer de 8 DAP (KB), endospermes (d) de 10, 12 15, 18, 21 i 30 DAP i embrions (e) de 15, 18, 21 i 30 DAP de blat de moro amb una dilució 1:2000 del sèrum de conill. Amb una punta de fletxa s’assenyala la banda corresponent a FUSCA3. **B.** Titulació de l’anticòs αfus purificat (αfus) per dot-blot amb spots que contenen 10, 50, 100 i 500 ng respectivament de His-FUSCA3 incubat amb una dilució 1:500 del sèrum de conill i de les fraccions purificades α2 i α3 respectivament. **C.** Determinació del patró d’acumulació de FUSCA3 amb l’anticòs purificat αfus per Western-blot sobre extractes totals de gra sencer de 8 DAP (KB), endospermes (d) de 10, 12 15, 18, 21 i 30 DAP i embrions (e) de 15, 18, 21 i 30 DAP de blat de moro amb una dilució 1:500 del sèrum de conill purificat per columnes d’afinitat. Una punta de fletxa assenyala la banda corresponent a FUSCA3.

Aquests resultats suggereixen que ZmFUSCA3 és un factor de transcripció bàsicament d’embrió i no pas d’endosperma.
3.7. Immunolocalització de ZmFUSCA3 en grans de blat de moro al llarg del desenvolupament

La immunolocalització de FUSCA3 es va realitzar sobre talls grans de blat de moro de 10, 15 i 20 DAP de 8 μm, fixats amb aldehídis i inclosos en parafina (veure apartat 5.4, material i mètodes) amb l’anticòs αpfus.

De forma similar a com s’ha comentat per a les immunodeteccions de GAMYB, hem realitzat sistemàticament incubacions amb l’anticòs secundari fluorescent com a control negatiu, ja que aquests experiments d’immunocitoquímica s’han realitzat també utilitzant anticossos purificats per columnes d’afinitat a l’antígen, després de comprovar que els sèrums pre-immunes purificats de la mateixa manera que els corresponents sèrums immunes generaven un senyal tant baix com el provocat per l’anticòs secundari sol (resultats no mostrats).

Els resultats de l’anàlisi per microscòpia de fluorescència dels experiment s’immunohistoquímica per FUSCA3 amb αpfus sobre talls de 10, 15 i 20 DAP es mostren a la figura 83, comparats amb els corresponents controls. Com ja haviem observat en GAMYB, resulta molt difícil apreciar marcatge específic de FUSCA3 a 10 DAP, degut, en part, a l’autofluorescència del teixit (sobretot les parets cel·lulars del pericarp i la nuclè-la) i a la baixa acumulació d’ambdós factors en aquest moment del desenvolupament (segons els resultats previs d’expressió per Northern-blot i Western-blot sobre endosperma en desenvolupament).

A partir de 15 DAP la presència de FUSCA3 es fa visible a les capes superiors de l’endosperma: és molt aparent a l’aleuroma i queda pràcticament restringida a aquesta zona de l’endosperma, ja que l’expressió d’aquest factor més enllà de la regió subaleuroma és molt dèbil.

Per analitzar el perfil de localització de FUSCA3 a 20 DAP es va disseccionar prèviament el pericarp i la nuclè-la per a minimitzar l’autofluorescència procedent d’aquests dos teixits. Així, es va observar com en aquest moment del desenvolupament, l’expressió de FUSCA3 es concentra sobretot a la capa aleuroma i la regió subaleuroma.
Figura 83. Immunolocalització de FUSCA3 sobre seccions transversals d’endosperma en desenvolupament. A, A’ i A”. Control negatiu d’immunodetecció sobre endospermes de 10, 15 i 20 DAP. B, B’ i B”. Immunodetecció de FUSCA3 amb α-fus sobre endospermes de 10, 15 i 20 DAP. Barra 200 μm.

A major augment, s’aprecia localització de FUSCA3 tant al citoplasma com al nucli. Tot i l’acúmull de proteïna als nuclis de la subaleurona és menys evident que en el cas GAMYB (figura 66), és visible en comparar la immunodetecció amb el marcatge nuclear (figura 84).

Figura 84. Immunolocalització de FUSCA3 sobre seccions transversals d’endosperma a 15 DAP i marcatge amb DAPI. A. Control negatiu d’immunodetecció sobre endosperma a 15 DAP. B. Immunodetecció de FUSCA3 amb α-fus. S’observa una forta expressió de FUSCA3 a aleurona (fletxa vermella) i les capes adjacents (subaleurona). S’observa també la colocalització de FUSCA3 amb el marcatge nuclear a la subaleurona (fletxa blanca, marcatge amb DAPI, B’). Barra 50 μm.
En observar les seccions de grans de 20 DAP a major augment s’evidencia com FUSCA3 s’acumula principalment a l’aleurona i que la seva expressió a l’endosperma està restringida a aquesta capa i a la subaleurona. Aquest patró suggereix que la forta expressió a aleurona (on la seva funció encara resta per determinar) podria ser la responsable de la presència d’expressió residual a la regió subaleurona (figura 85).

![Immunodetecció i DAPI](image.png)

Figura 85. Immunolocalització de FUSCA3 sobre seccions transversals d’endosperma a 20 DAP i marcatge amb DAPI. A. Control negatiu d’immunodetecció sobre endosperma a 20 DAP. B. Immunodetecció de FUSCA3 amb α-pufus. S’observa l’intens marcatge de FUSCA3 a l’aleurona i la colocalització de FUSCA3 amb el marcatge nuclear (B’) a la regió subaleurona (fletxa blanca). La presència de FUSCA3 al citoplasma de la regió subaleurona és molt limitada. Barra 50 μm.

Com una primera aproximació per intentar determinar la localització subcel·lular de FUSCA3 es van analitzar els experimentos d’immunodetecció en talls de 15 i 20 DAP per microscòpia confocal. FUSCA3 s’acumula molt a la capa d’aleurona per tot el citoplasma però queda exclosa del nucli. En canvi, a la regió subaleurona la proteïna s’acumula preferentment als nuclis, tot i que al citoplasma es detecta una certa presència de la proteïna (figura 86). La rellevància d’aquesta dualitat de localització en el mateix moment del desenvolupament i en teixits físicament tan propers, però funcionalment diferents, serà discutida més endavant.
Figura 86. Localització subcel·lular de FUSCA3 sobre talls d’endosperma a 15 i 20 DAP. A i A’. Immunodetecció de FUSCA3 amb α-fus per microscòpia confocal i transmissió, respectivament, sobre seccions transversals d’endosperma de 15 DAP. S’aprecia l’intens marcatge a aleurona, on sembla que es localitza a tota la cèl·lula excepte al nucli (fletxes blanques i negres). Es veu molt poc marcatge a la regió subaleurona. B i B’. Immunodetecció de FUSCA3 amb α-fus per microscòpia confocal i transmissió, respectivament, sobre seccions transversals d’endosperma de 20 DAP. S’observa un menor marcatge a aleurona, on es torna a localitzar per tota la cèl·lula a excepció del nucli (fletxes blanques i negres). Es veu marcatge a la regió subaleurona, on sembla que FUSCA3 es localitza a nucli i lleugerament a citoplasma. No s’observa senyal fora de la regió subaleurona. Barra = 100 μm.

Sobre les mateixes seccions transversals de grans a blat de moro a 15 i 20 DAP vam analitzar també l’expressió de FUSCA3 a embrió, ja que els resultats previs d’expressió per Northern-blot i Western-blot suggerien una intensa presència de la proteïna en aquest teixit. En analitzar els resultats per microscòpia de fluorescència, efectivament, vam detectar la presència de FUSCA3 a partir de 15 DAP a la majoria de teixits de l’embrió (figura 87), però sobretot a l’escutel (teixit de reserva de l’embrió).

Les seccions d’embrions de 15 DAP anteriors es van analitzar per microscòpia confocal, com una primera aproximació per intentar determinar la localització subcel·lular de FUSCA3 a l’embrió. S’evidencia l’especificitat del marcatge per FUSCA3 (figura 88), que a 15 DAP es localitza de forma estesa per tot l’escutel i en molt menor grau a l’eix embrionari.
Figura 88. Immunolocalització de FUSCA3 amb òxidus sobre seccions transversals d’embrió a 15 DAP per microscòpia confocal. S’aprecia l’especificitat del marcatge amb òxidus (C i D), molt intens a l’escutel (C) i menys intens a la zona de l’eix embrionari (D), en comparar-lo amb el control negatiu (senyal produïda per l’anticòs secundari sol, A i B). A la dreta es mostren les imatges corresponents per microscòpia de transmissió (A’, B’, C’ i D’). Barra = 100 μm.
A major augment i en comparar-ho amb el marcatge nuclear resulta que la proteïna s’acumula sobretot a citoplasma (figura 89). S’evidencia una forta expressió de FUSCA3 a la capa cel·lular més externa de l’escutel, on les cèl·lules estan millor definides que a l’interior d’aquest teixit i resulta molt evident l’exclusió nuclear. A l’eix embrionari s’observa un marcatge més débil que a l’escutel i alguns agregats localitzats, que no coincideixen amb les regions nuclears. En aquesta zona, el marcatge es concentra de forma discreta al voltant del nucli i no per tot el citoplasma, com a l’escutel.

![Image](image_url)

Figura 89. Immunolocalització de FUSCA3 amb αpfus i marcatge amb DAPI sobre seccions transversals d’embrí a 15 DAP per microscòpia confocal. S’aprecia l’intens marcatge a la primera capa de l’escutel (A) i com el marcatge es perd a mida que ens endinsem en el teixit, de la mateixa manera que la densitat nuclear va disminuint (A'). La superposició d’ambdues imatges posa de manifest l’exclusió de FUSCA3 del nucli (A''', flexes blanques). A l’eix embrionari el marcatge és també citoplasmàtic (B) i s’observen agregats, que en cap cas coincideixen amb el marcatge nuclear (B'''). El marcatge nuclear (B) és més intens en aquest teixit, posant de manifest l’elevada activitat transcripcional de l’eix embrionari. Barra = 25 μm.

A 20 DAP l’expressió de FUSCA3 és més intensa i menys estesa que a 15 DAP (figura 90) i el marcatge es va perdent cap a l’interior de l’escutel, coincidint amb la disminució del marcatge nuclear amb DAPI. En aquest moment del desenvolupament s’observa una major expressió a l’eix embrionari.

En analitzar les mateixes seccions per microscòpia confocal, s’observa com la proteïna s’acumula sobretot als marges de l’escutel, distribuïda per tot el citoplasma cel·lular i essent molt aparent l’exclusió nuclear. L’expressió a embrió, és però, menor que a l’aleurona (figura 91). A l’eix embrionari, la proteïna s’acumula a la regió central de l’eix embrionari format agregats. El marcatge és, però, menys intens que a l’escutel.
Figura 91. Immunolocalització de FUSCA3 amb gpfus sobre seccions transversals d’embrió a 20 DAP per microscòpia confocal. S’aprecia l’especificitat del marcatge amb gpfus (C i D), molt intens als marges de l’escutel, en comparar-lo amb el control negatiu (senyal produïda per l’anticòs secundari sol, A i B). A l’eix embrionari la proteïna forma agregats (D), que no s’observen al control negatiu (B). A la dreta es mostren les imatges corresponents per microscòpia de transmissió (A’, B’, C’ i D’). Barra = 100 μm.
A major augment i en comparar-ho amb el marcatge nuclear resulta evident l’acúmuls de la proteïna sobre tot el citoplasma (figura 92). S’evidencia de nou el marcatge més intens als marges externs de l’escutel i resulta molt evident l’exclusió nuclear. El senyal és, però menys intens que a l’aleurona (també visible en aquestes imatges). A l’eix embrionari s’observa un marcatge més dèbil que a l’escutel i es concentra de forma discreta a la regió perinuclear.

Figura 92. Immunolocalització de FUSCA3 amb αpfus i marcatge amb DAPI sobre seccions transversals d’embrí de 20 DAP per microscòpia confocal. S’aprecia l’intens marcatge als marges de l’escutel (A) i com el marcatge es perd a mida que ens endinsem en el teixit, de la mateixa manera que la densitat nuclear va disminuint (A’). La superposiciò d’ambdues imatges posa de manifest l’exclusió de FUSCA3 del nucli (A’’), tant a escutel (fetxes blanques), com a aleurona (fetxes vermelles). A l’eix embrionari el marcatge és també citoplasmàtic (B) i s’observen dèbil acúmuls a la regió perinuclear (B’’). El marcatge nuclear a l’eix embrionari en aquest moment del desenvolupament de l’embrió és menor que a 15 DAP (B’’). (Barra = 25 μm).

En conjunt, aquests resultats mostren com l’acumulació de ZmFUSCA3 és molt aparent a l’aleurona de l’endosperma i a l’escutel de l’embrí en 15 DAP, mentre que la resta del gra no mostra expressió important en aquest moment del desenvolupament. A 20 DAP l’absència de la proteïna a l’aleurona és encara ben visible, localitzant-se per tota la cèl·lula i quedant exclosa del nucli. S’observa expressió a la regió subaleurona, on la proteïna es concentra a nucli, però es troba també a citoplasma. L’expressió a embrí s’estén als teixits amb més activitat transcripcional en aquest moment del desenvolupament (capes superficiales de l’escutel i eix embrionari). L’expressió residual a la regió subaleurona concorda amb els resultats del Northern-blot i Western-blot, ja que, en ser una expressió molt localitzada, ens podem trobar per sota del límit de detecció del Western-blot.