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El PC resultdé en unos niveles de transaminasas y de grado 3 de necrosis
menores, respecto el grupo ROLT; el estudio histolégico mostr6 menos areas de
necrosis y mas pequefias en el grupo precondicionado. Por otro lado, el PC aument6

el indice de marcaje de PCNA y los niveles de HGF en plasma y en higado.

El PC no fue capaz de modificar el “pool” de nucledtidos de adenina al final del
periodo de isquemia fria y después de la reperfusién, por lo que la relacion ATP/ADP y
la carga energética fueron del mismo orden que en grupo trasplante.

En cuanto a los parametros de estrés oxidativo, el PC redujo todos ellos (MDA,
LPO y H,0,) después del ROLT, pero no fue a través de cambios en el sistema
xantina/XOD, ya que el PC no modificé la actividad XDH/XOD, ni la acumulacion de
hipoxantina y xantina. En cambio, la inhibicién de la células de kupffer en el grupo
trasplante redujo los parametros de estrés oxidativo, lesion hepatica y mejoro la
regeneracion hepatica (PCNA y HGF). Los niveles de IL-6 y TNF-a, que aumentaron
después del trasplante no fueron modificados con la aplicacion del PC.

La modulacién en la sintesis de NO en animales trasplantados con o sin PC
indicé la implicacion de este mediador en la proteccion del PC frente a la lesién por I/R

hepatica y regeneracion en ROLT.
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The shortage of available organs for liver transplan-
tation has motivated the development of new surgi-
cal techniques such as reduced-size liver transplanta-
tion. Ischemia-reperfusion (I/R) associated with liver
transplantation impairs liver regeneration. Ischemic
preconditioning is effective against I/R injury in clinical
practice of liver tumour resections. The present study
evaluated the effect of ischemic preconditioning on
reduced-size liver for transplantation and attempted to
identify the underlying protective mechanisms. Hep-
atic injury and regeneration (transaminases, prolifer-
ating cell nuclear antigen [PCNA] labeling index, and
hepatocyte growth factor [HGF]) were assessed after
reduced-size orthotopic liver transplantation (ROLT).
Energy metabolism, oxidative stress, tumor necrosis
factor-a (TNF) and interleukin-6 (IL-6) were examined
as possible mechanisms involved in liver regeneration.
Ischemic preconditioning reduced transaminase levels
and increased HGF levels and the percentage of PCNA-
positive hepatocytes after ROLT. This was associated
with a decrease in oxidative stress following ROLT,
whereas energy metabolism and hepatic IL-6 and TNF
release were unchanged. The benefits of ischemic pre-
conditioning on hepatic injury and liver regeneration
could be mediated, at least partially by nitric oxide.
These results suggest a new potential application of
ischemic preconditioning in reduced-size liver trans-
plantation.

Key words: Hepatic growth factor, interleukin-6, re-
section, regeneration, tumor necrosis factor

Received 3 February 2004, revised and accepted for
publication 26 April

Introduction

Shortage of donor organs remains a major obstacle to the
widespread application of liver transplantation in patients
'R. Franco-Gou and C. Peralta contributed equally to this work
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with end-stage liver disease (1-3). Living-related liver trans-
plantation (LRLT) has been developed to increase the num-
ber of donor livers (1,4,5). The benefits of LRLT are the
access to transplantation without registration on a waiting
list and transplantation of a graft of quality with a short is-
chemic time (6-8). On the other hand, the major concern
over application of LRLT for adults is graft-size disparity
(9-11). Liver hepatectomy needs posterior regeneration to
restore the liver/body ratio (9,12,13). The ability of the liver
to restore major tissue loss involves numerous interact-
ing cells and a complex network of mediators (2,13,14).
Hepatocyte growth factor (HGF) has been considered as
a potent mitogen and plays a crucial role in liver regener-
ation (13,15,16). Indeed, HGF concentrations increase in
several kinds of liver disease in which liver regeneration
occurs {16-18).

Ischemia-reperfusion (I/R), which is inevitable in liver trans-
plantation, significantly reduces the DNA synthesis rate
and liver regeneration after hepatectomy (12,19,20). Dur-
ing I/R the store of ATP, which is necessary for DNA
synthesis, is depleted (12,21). Reactive oxygen species
(ROS) originating after reperfusion induce DNA dam-
age and inhibit cell division (12,20,21). Experimental ev-
idence indicates that interleukin-6 (IL-6) exerts potent
anti-inflammatory actions in hepatic I/R processes and may
induce hepatocyte proliferation in vivo (2,19,22). Moreover,
poor regeneration in reduced-size liver grafts has been re-
lated to decreased production of IL-6 (2). On the other hand,
the mechanisms of action of IL-6 in promoting liver re-
generation appear to be different from those involved in
modulation of reperfusion injury (19,22). The modulation
of hepatic I/R injury by IL-6 was thought to be related to
down-regulation of tumor necrosis factor-a (TNF). The re-
generating capacity of IL-6 may be related with its effect
on hepatocytes (19,22).

Brief episodes of ischemia and reperfusion elicit organ
tolerance to longer subsequent periods of ischemia. This
phenomenon, known as ischemic preconditioning, first de-
scribed in the heart (23), has been documented in the liver
in warm and cold ischemia (24,25). The use of ischemic
preconditioning in reduced-size liver transplantation should
be considered, as Clavien et al. reported the first clinical
application of ischemic preconditioning during normother-
mic ischemia associated with hepatic resections (26). In
addition, results of experimental hepatic ischemia without
liver resection suggest that ischemic preconditioning could
modulate the negative effects of I/R on hepatic regenera-
tion (24,27-30). Thus, ischemic preconditioning protects
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Table 1: Flow chart of the interventions and measurements corresponding to protocols 1, 2, 3 and 4. Interventions: reduced-size orthotopic
liver transplantation (ROLT), PC + ROLT: ROLT with previous ischemic preconditioning, I: cold ischemia, PC + I: | with previous ischemic
preconditioning, ROLT + GdCl3: ROLT treated with GdClz, ROLT + NO: ROLT treated with NO donor, PC + ROLT + NAME: PC + ROLT
treated with L-NAME, | + NO: | treated with NO donor, PC + | + NAME: PC + | treated with L-NAME. HGF. hepatocyte growth factor;
MDA, malondialdehyde; LPO, lipid hydroperoxides; H,02, hydrogen peroxide; PCNA, proliferating cell nuclear antigen; IL-6, interleukin-6;
TNF-a, tumor necrosis factor-u; XDH/XOD, xanthine dehydrogenase/xanthine oxidase

INTERVENTIONS

- MEASUREMENTS

PROTOCOL 1. Effect of ischemic preconditioning on hepatic I/R injury and liver regeneration.

Group 1. Sham
Group 2. ROLT
Group 3. PC+ ROLT

Plasma:
Transaminases, HGF

Liver:
MDA, LPO, H,0,,PCNA, HGF, IL-8,
TNF-q, Histology

PROTOCOL 2. Effect of ischemic preconditionig on ROS-generating systems

2.1. Xanthine/XOD
Group 4. Control

Group 5. |
Group 6. PC+ |

Groups 1- 3 (ProTOCOL 1)

Liver:
XDH/XOD, Xanthine Hypoxanthine

2.2. Kupffer cells

Group 7. ROLT + GdCla

Plasma:
Transaminases, HGF

Liver:
MDA, LPO, H,0,,PCNA, HGF, IL-6,
TNF-a, Histology

PROTOCOL 3. Effect of ischemic preconditioning on energy metabolism

Groups 1-6 (PROTOCOL 1 and 2.1)

Liver:
ATP, Adenine nucleotides,
Energy balance, Energy charge

PROTOCOL 4. Role of NO in ischemic preconditioning

4.1. Hepatic injury and liver regeneration
Group 8. ROLT + NO

Group 9. PC+ ROLT + NAME

4.2, Xanthine/ XOD
Group 10. | + NO

Group 11. PC + | + NAME

Plasma:
Transaminases, HGF

Liver:

MDA, LPO, H,0,, PCNA, HGF, IL-6,
TNF-a, Histology, XDH/XOD, Xanthine
Hypoxanthine

Liver:
XDH/XOD, Xanthine. Hypoxanthine

American Journal of Transplantation 2004; 4: 1408-1420
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Figure 1: Transaminase (AST and ALT) (A) and percentage of
grade 3 necrosis (B) reduced-size orthotopic liver transplan-
tation (ROLT), PC + ROLT: ROLT with previous ischemic pre-
conditioning; ROLT + NO: ROLT treated with NO donor; PC +
ROLT + NAME: PC -+ ROLT treated with L-NAME. «p < 0.05
vs. sham, {p < 0.05 vs. ROLT; {p < 0.05 vs. PC + ROLT.
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against the deleterious effect of ischemia on ATP degra-
dation in experimental models of warm ischemia (24,27).
In addition, this surgical strategy, through nitric oxide (NO),
protects against the deleterious effects of both ROS and
TNF on hepatic IR injury (28-30).

We report the results of an experimental study aimed to
evaluate the effectiveness of ischemic preconditioning on
hepatic I/R injury and hepatic regeneration in reduced-size
liver transplantation.

Materials and Methods

Experimental animals

Male Sprague-Dawley rats weighing 200-250 g were used as donors and
recipients. All animals were anesthetized with isoflurane. This study re-
spected the European Union regulations for animal experiments (EC guide-
line 86/609/CEE).

Experimental design

Protocol 1. Effect of ischemic preconditioning on hepatic I/R injury and liver
regeneration

To evaluate the effect of preconditioning on hepatic IfR injury and liver regen-
eration, animals were distributed into the following experimental groups:

1. Sham (n = 6): Animals were subjected to anesthesia, transversal la-
parotomy, and silk ligatures in the right suprarenal vein, and hepatic artery.

2. Reduced-size orthotopic liver transplantation (ROLT) (n = 12, six trans-
plantations): Liver reduction was achieved by removing the left lateral lobe
and the two caudate lobes just before harvesting the liver, which resulted in
a40% reduction of the liver mass (1). The pedicle of the left lateral lobe was
ligated with 5-0 silk ligature, and the lobe was removed. Two caudate lobes
were separately removed with the ligation (31,32). The donors livers were
flushed and preserved with cold (4°C) University of Wisconsin (UW) for 1 h
(1). Reduced-size orthotopic liver transplantation was performed according
to the Kamada's cuff technique, without hepatic artery reconstruction (33).
The time of the anhepatic phase was 17-20 min (34).

3. Ischemic preconditioning + reduced-size orthotopic liver transplanta-
tion (PC + ROLT) (n = 12, six transplantations): To induce ischemic pre-
conditioning, the blood flow of the donor liver was interrupted by placing a
bulldog clamp at the portal vein and hepatic artery for 10 min, followed by
reflow for 10 min (35). Following the same surgical procedure as for group
2, liver lobes were resected and flushed and preserved with cold (4°C) UW
solution for 1 h.

Twenty-four hours after transplantation, plasma and liver samples were col-
lected. Hepatic injury was determined by analysis of transaminases (aspar-
tate aminotransferase, AST, and alanine aminotransferase, ALT) in plasma.
Lipid peroxidation (malondialdehyde, MDA, and lipid hydroperoxides, LPO)
and Hz0; levels were measured in the liver. To evaluate hepatic regenera-
tion, the proliferating cell nuclear antigen (PCMA)-abeling index was deter-
mined in liver and HGF levels were measured in plasma and liver samples.
IL-6 and TNF were evaluated in liver samples. Histological analyses in liver
were also performed.

Protocol 2. Effect of ischemic preconditioning on ROS-generating systems

Xanthine/xanthine oxidase (XOD). To evaluate the effect of ischemic pre-
conditioning on the accumulation of both hypoxanthine and xanthine, and
the conversion of xanthine dehydrogenase (XDH) to XOD in reduced-size

American Journal of Transplantation 2004; 4: 1408-1420
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Figure 2: Histological lesions in (A-D)
liver. (A} Reduced-size orthotopic liver
transplantation (ROLT), extensive and
multifocal areas of coagulative necrosis
of hepatocytes with disruption of hep-
atic cords, infiltration of neutrophils and
hemorrhage. (B) PC + ROLT (ROLT with
previous ischemic preconditioning), focal
and small areas of hepatocyte necrosis.
(C) ROLT + NO (ROLT treated with NO
donor) and (D) PC + ROLT + NAME (PC
+ ROLT treated with L-NAME): Histolog-
ical lesions similar to PC 4+ ROLT and
ROLT, respectively, (H&E, Original mag-
nification x240).

Figure 3: Immunocytochemical stain-
ing of PCNA-positive hepatocytes.
Reduced-size orthotopic liver transplan-
tation (ROLT) (A) showed lower posi-
tive cells number than PC + ROLT (B).
ROLT + NO (C} and PC + ROLT +
NAME (D) showed an amount of PCNA-
positive staining hepatocytes similar to
PC + ROLT and ROLT, respectively. PC 4+
ROLT: ROLT with previous ischemic pre-
conditioning; ROLT + NO: ROLT treated
with NO donor; PC + ROLT + NAME: PC
+ ROLT treated with L-NAME. (Original
magnification = 500).

liver grafts during cold ischemia, animals were distributed into the following
experimental groups:

4. Control n = 6): Reduced-size livers were flushed with cold UW solution.

5. Ischemia (I} in = 6): Reduced-size livers were flushed with cold UW
solution and then stared in UW solution for 1 hat 4°C.

6. Ischemic preconditioning + ischemia (PC + |} (n = 6): Same as group 5
but with previous preconditioning induced by 10 min of ischemia followed
by 10 min of reperfusion.

After cold ischemia, liver samples were processed to measure XDH/MXOD,
hypoxanthine, and xanthine. These biochemical parameters were also mea-
sured in liver samples corresponding to groups 1-3 from protocol 1 to eval-
uate the effect of ischemic preconditioning on xanthine/XOD after reperfu-
Sion.

American Journal of Transplantation 2004; 4: 1408-1420
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Kupffer cells
To evaluate the role of Kupffer cells in ROS generation the following group
was examined:

7. Reduced-size orthotopic liver transplantation + gadolinium chloride
(ROLT + GdCI3) (n = 12, six transplantations): Same as group 2,
but with previous administration of GdCi3 {10 mg/kg, iwv) in donor
rats to inactivate Kupffer cells, 48 h and 24 h before hepatectomy
(38).

24 h after transplantation, plasma and liver samples were collected. Bio-
chemical determinations and histological analyses were the same as those
described in protocaol 1.

Protocol 3. Effect of ischemic preconditioning on energy metabolism
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Figure 4: Percentage of proliferating cell nuclear antigen
(PCNA)-positive hepatocytes (A) and hepatocyte growth fac-
tor (HGF) levels (B): Reduced-size orthotopic liver transplan-
tation (ROLT), PC + ROLT: ROLT with previous ischemic pre-
conditioning; ROLT + NO: ROLT treated with NO donor; PC +
ROLT + NAME: PC -+ ROLT treated with L-NAME. =p < 0.05
vs. sham; {p < 0.05 vs. ROLT; {p < 0.05 vs. PC + ROLT.
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To evaluate whether the benefits of ischemic preconditioning could be ex-
plained by changes in nucleotide metabolism, ATF, adenine nucleotides (ATP
<+ ADP + AMP), energy balance (ATP/ADP ratio) and energy charge (ATP +
[1/2JADP/ATP + ADP + AMP) were evaluated in liver samples correspond-
ing to groups 1-6 mentioned earlier.

Protocol 4. Role of NO in ischemic preconditioning

Hepatic injury and liver regeneration. To study whether the benefits of is-
chemic preconditioning on hepatic I/R injury and liver regeneration could be
mediated by NO, the following experimental groups were established:

8. Reduced-size orthotopic liver transplantation + NO donor (ROLT + NO)
{n =12, six transplantations): Same as group 2, but with previous adminis-
tration of the NO donor, spermine NONQate (10 ma/kg i.v.) (27).

9. Ischemic preconditioning + reduced-size orthotopic liver transplanta-
tion + NAME (PC + ROLT + NAME) (n = 12, six transplantations): Same
as group 3, but with previous administration of a NO synthesis inhibitor,
Nw-nitro-L-arginine methyl ester (NAME). As previously reported, 10 mM
of L-NAME was administered through the portal vein when the liver grafts
were harvested, and 20 mg/kg was injected i.v. into the recipients just after
reperfusion (25).

Twenty-four hours after transplantation, plasma and liver samples were
collected. Biochemical determinations and histological analyses were the
same as those described in protocol 1.

Xanthine/XOD. To evaluate the effect of NO on xanthine/XOD, the follow-
ing groups were examined:

10. Ischemia + NO donor (I + NO) (n = 6): Same as group 5, but with
previous administration of the NO donor, spermine NONQate (10 mg/kg i.v)
127).

11.  Ischemic preconditioning + ischemia + NAME (PC + | + NAME) (n =
6): Same as group 6 but with previous administration of 10 mM of L-NAME
through the portal vein when the liver grafts were harvested (25).

After cold ischemia, hypoxanthine, xanthine and XDH/XOD were measured
in liver samples. These biochemical parameters were also measured in liver
samples corresponding to groups 8 and 9 mentioned earlier.

The interventions and measurements corresponding to protocols 1, 2, 3
and 4 are summarized in Table 1.

Biochemical determinations

Transaminase assay. Hepatic injury was evaluated by measurements of
transaminases in plasma using a commercial kit from Boehringer Mannheim
{Munich, Germany).

Lipid peroxidation assay. Lipid peroxidation was used as an indirect mea-
surement of the oxidative injury induced by ROS (28,37-39). Lipid peroxida-
tion was followed by the determination of malondialdehyde (MDA) and lipid
hydroperoxides (LPO). After protein precipitation, the formation of MDA
was measured by using the thiobarbiturate reaction (28). To analyze LPO,
liver homogenates were deproteinated and extracted in acidic conditions
(37.,38). Lipid hydroperoxide levels were determined using a commercial kit
(Oxis Research, Portland, OR).

H202 measurement. Liver tissues were homogenized in 0.033 M Na;HPO 4
and 0.9% KCI. After centrifugation, the supernatants were used for H20»

American Journal of Transplantation 2004; 4: 1408-1420
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analysis (40,41). H20; levels were measured using a commercial kit (Oxis
Research).

XDH and XOD. Liver tissues were homaogenized in 0.1 M Tris, containing
10 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, and 1 mM dithiothre-
itol, and 0.5 mg/L leupeptin. After centrifugation the supernatant was chro-
matographed on a Sephadex G-25 80 column in the same buffer. Liver
XDH/XOD activity was measured spectrophotometrically at 292 nm on the
basis of uric acid formation in the presence and absence of NAD*, respec-
tively. Xanthine was used as substrate (28).

Nucleotide analysis

Livers were freeze-clamped and immediately homogenized in 3.6% per-
chloric acid solution, and after centrifugation, 50 uL of the supernatant was
injected into Waters 717 Plus Autosampler liquid chromatographic equip-
ment. Nucleotide profiles were obtained using a reverse-phase Spherisob
ODS column (C g, 5-um particle size, 15 x 0.4 cm; Teknokroma, Sant Cugat,
Spain) coupled to a 600 HPLC system (Waters, Milford, MA) equipped with
a Waters 996 Photodiode Array Detector (Waters, Milford, MA, USA). The
absorbance was monitored at 254 nm. Nucleotide separation was allowed
to proceed in an isocratic fashion with 100 mmol/L ammonium phosphate,
until ATP, ADP, hypoxanthine/xanthine, and AMP were separated (27).

Interleukin assay

Liver samples were homogenized in 50 mM Tris, containing 150 mM NaCl,
triton X-100, and a protease inhibitor cocktail (Roche, Basel, Switzerland)
(42). Hepatic IL-6 levels were detected using a commercial enzyme-linked
immunosorbent assay kit (rat IL-6 ELISA kit, Biosource, Camarillo, CA}
(42).

American Journal of Transplantation 2004; 4: 1408-1420

TNF assay

Liver tissues were homogenized in 50 mM phosphate buffer. Hepatic TNF
levels were measured using a commercial immunoassay kit of rat TNF-a
from Biosource (43).

PCNA labeling index

Proliferating cell nuclear antigen is a stable cell-cycle nuclear protein which
is expressed in the late G1 and throughout the S-phase of the mitotic cycle.
Briefly, after fixation with formalin and paraffin embedding of the liver tis-
sue, the 3-um sections were incubated with the anti-PCNA antibody (clone
PC10; dilution 1 : 20; Dako GMbh, Hamburg, Germany). The immunohisto-
chemistry was performed using a commercial kit (DAKO Envision + System,
peroxidase |(DAB); Dako GMbh, Hamburg, Germany). The proliferation index
of PCNA-stained biopsy specimens was determined in 30 high-power fields.
Data were expressed as the percentage of PCNA-stained hepatocytes per
total number of hepatocytes (2,19).

Assay for HGF

Liver tissues were homogenized in 20 mh
Trislhydroxymethyllaminomethane-HCI solution, containing 2 M NaCl, 1
mM phenylmethylsulphonyl fluoride, 1 mM ethylenediaminetetraacetic
acid, and 0.1% polyoxyethylenesorbitan mono-cleate (17,44). Plasma and
hepatic HGF were measured by the ELISA technique, as provided by the
Institute of Immunology (Tokyo, Japan) (17).

Histology

Liver samples were processed and stained with hematoxylin-eosin accord-
ing to standard procedures. For the severity of hepatic injury, hematoxylin
and eosin-stained sections were evaluated by a point-counting method
using an ordinal scale as follows: grade 0, minimal or no evidence of in-
jury; grade 1, mild injury consisting in cytoplasmatic vacuolation and focal
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Figure 6: Malondialdehyde (MDA) (A), lipid hydroperoxides
(LPO) (B) and Hz02 (C) in liver. Reduced-size orthotopic liver
transplantation (ROLT), PC + ROLT: ROLT with previous ischemic
preconditioning; ROLT + NO: ROLT treated with NO donor; PC +
ROLT + NAME: PC + ROLT treated with L-NAME. #p < 0.05 vs,
sham; {p < 0.05 vs. ROLT; {p < 0.05 vs. PC + ROLT.
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nuclear pyknosis; grade 2, moderate to severe injury with extensive nuclear
pyknosis, cytoplasmatic hypereosinophilia, and loss of intercellular borders;
and grade 3, severe necrosis with disintegration of hepatic cords, hemor-
rhage, and neutrophil infiltration. Forty high-power fields were investigated
per slide to determine the percentage of necrotic cells (22,45).

Statistics

Data are expressed as means + standard error. Statistical comparison was
performed with analysis of variance, followed by the Student Newman-
Keuls test. p < 0.05 was considered significant.

Results

Effect of ischemic preconditioning on hepatic I/R
injury and liver regeneration

Ischemic preconditioning conferred protection against hep-
atic injury. Transaminase levels and the percentage of grade
3 necrosis were significantly lower in the preconditioned
group than in the un-preconditioned group (see Figure 1).
The histological study of the liver after ROLT revealed multi-
focal and extensive areas of coagulative necrosis randomly
distributed throughout the hepatic parenchyma (Figure 2A).
In contrast, fewer and smaller areas of hepatocyte necro-
sis were observed when ischemic preconditioning was car-
ried out (PC + ROLT, 2B). In regards to the parameters of
liver regeneration, ischemic preconditioning (PC + ROLT,
Figure 3B) increased the number of PCNA-positive hepa-
tocytes compared with the results obtained in the ROLT
group (Figure 3A). The proliferation index after ROLT was
30.3% £ 10.2% vs. 75.1% = 4.4% when ischemic precon-
ditioning was carried out (Figure 4). In addition, this surgical
strategy increased hepatic HGF levels and similar results
were observed for plasma HGF release (see Figure 4).

Effect of ischemic preconditioning on energy
metabolism

As shown in Figure 5, ATP and adenine nucleotides de-
creased in reduced-size liver grafts as a consequence of
cold ischemia. The effect of cold ischemia on adenine nu-
cleotide pool was not modified by previous ischemic pre-
conditioning. ATP/ADP ratio and energy charge were simi-
lar in the preconditioned and un-preconditioned livers. The
pattern of nucleotide metabolism found in all groups after
cold ischemia was similar to that observed after reperfu-
sion (data non shown).

Effect of ischemic preconditioning on ROS,

IL-6 and TNF

Ischemic preconditioning reduced the increases in hepatic
MDA, LPO and H,0; levels after ROLT (Figure 6). The ef-
fect of ischemic preconditioning on ROS-generating sys-
tems including xanthine/XOD and Kupffer cells was evalu-
ated. As shown in Figure 7 (A), in reduced-size liver grafts
XDH was converted to the oxygen radical-producing form
XOD, as a consequence of cold ischemia (I). XOD was ac-
tivated after reperfusion (ROLT) (Figure 7B). Hypoxanthine
was highly accumulated during ischemia, but decreased
after reperfusion. Xanthine levels increased after cold

American Journal of Transplantation 2004; 4: 1408-1420
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Figure 7: XDH/XOD, hypoxanthine and xanthine in liver after cold ischemia (A) and after reperfusion (B). |: cold ischemia, PC +
I: | with previous ischemic preconditioning; | + NO: | treated with NO donor; PC + | + NAME: PC + | treated with L-NAME; reduced-size
orthotopic liver transplantation (ROLT), PC + ROLT: ROLT with previous ischemic preconditioning; ROLT 4+ NO: ROLT treated with NO
donor; PC + ROLT + NAME: PC + ROLT treated with L-NAME. #p < 0.05 vs. control/sham.
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ischemia and remained high after reperfusion. Ischemic
preconditioning did not modify XDH/XOD activity nor the
accumulation of hypoxanthine and xanthine. The inhibition
of Kupffer cells reduced the increases in all the biochemical
parameters of oxidative stress after ROLT. This was associ-
ated with a reduction in hepatic injury and improvement in
liver regeneration (Figure 8). Figure 8 reports MDA levels as
a parameter of oxidative stress, ALT levels as a parameter
of hepatic injury and a percentage of PCNA-positive hepa-
tocytes and hepatic HGF levels as parameters of liver re-
generation. The other parameters of oxidative stress (LPO
and H;03), showed the same pattern as MDA. Similarly,
the parameters of hepatic injury (ALT, and histology) and
regeneration (plasma HGF) followed the same pattern as
AST and hepatic HGF, respectively.

Both IL-6 and TNF increased after ROLT (Figure 9). Is-
chemic preconditioning did not modify the IL-6 and TNF
levels.

Role of NO in the benefits of ischemic

preconditioning on hepatic I/R and liver regeneration
The parameters of hepatic injury (Figures 1 and 2) and liver
regeneration (Figures 3 and 4) in ROLT + NO and PC +
ROLT + NAME groups were comparable to those observed
in PC + ROLT and ROLT, respectively. The effect of NO
on ROS and the ROS-generating system, xanthine/XOD,
was investigated. Nitric oxide reduced the MDA, LPO, and
H,0; levels following ROLT (Figure 6). However, NO syn-
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ROLT treated with GdCl3. #p < 0.05 vs.
sham, tp < 0.05 vs. ROLT.

ROLT+GACly

thesis inhibition did not completely revert the benefits of
ischemic preconditioning on oxidative stress. Nitric oxide
donor pretreatment and L-NAME did not modify xanthine/
XOD (Figure 7). Similar results were observed for nucleo-
tide metabolism and cytokine levels (see Figures 5and 9).

Discussion

Numerous investigations have demonstrated that HGF pro-
motes hepatic growth and regeneration (1,13,15,16,46-
48). In the context of liver transplantation, exogenous HGF
administration to recipients of reduced-size liver graft en-
hances early restoration of liver volume, stimulates hepatic
regeneration, and provides protection from rejection injury
(1,46-48). The results of the present study indicate that
both ischemic preconditioning and NO donor treatments
protect against hepatic I/R injury and improve hepatic re-
generation in ROLT. These surgical and pharmacological
treatments promote the release of the growth factors re-
sponsible for liver regeneration such as HGF. However,
there is no significant overlap between ischemic precondi-
tioning and NO. The results of the present study indicate
that NO contributes to some but not all the benefits of
ischemic preconditioning. In fact, the inhibition of NO did
not completely revert the effect of ischemic precondition-
ing on oxidative stress.

Results obtained from experimental models of nor-
mothermic ischemia combined with partial hepatectomy
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Figure 9: IL-6 (A) and TNF (B) in liver. Reduced-size orthotopic
liver transplantation (ROLT), PC + ROLT: ROLT with previous is-
chemic preconditioning; ROLT + NO: ROLT treated with NO donor:
PC 4 ROLT + NAME: PC + ROLT treated with L-NAME . p < 0.05
vs. sham.

indicated that ROS damage lipoproteins and peptides,
cause lipid peroxidation, and inhibit DNA synthesis (12,20).
It has been suggested that ROS may damage membrane
receptors for growth factors and inhibit metabolic path-
ways of liver regeneration (20). Thus, it could be expected
that ischemic preconditioning, by reducing ROS genera-

American Journal of Transplantation 2004; 4: 1408-1420

tion in ROLT, could improve the regenerative response
of livers. The involvement of XOD in stress oxidative and
hepatic injury associated with liver transplantation is well
known (35,49,50). High levels of either hypoxanthine or
xanthine have been considered as markers of low survival
rates in liver transplantation (51-53). The benefits of is-
chemic preconditioning on xanthine/XOD have been previ-
ously reported (35,54). In this line, ischemic precondition-
ing reduced the conversion of XDH to XOD and limited the
accumulation of xanthine in nonreduced liver grafts dur-
ing 6 h of cold ischemia, and the authors suggested that
the inhibition of XOD activity caused by ischemic precon-
ditioning could be mediated by NO (54). In fact, NO has
been reported to inhibit XOD activity in vivo in endothe-
lial cells {55,56) and activated macrophages (57). Results
obtained by Ichimori et al. (58) indicates that NO reacts
with XOD/XDH and converts the enzyme to the inactive
desulfo-form in anaerobic conditions. It has also been re-
ported by other authors that XOD converts NO to nitroxyl
in the presence of hypoxanthine in anaerobic conditions. In
these conditions, XOD lost its activity (59). However, in our
hands, the reduction in ROS caused by ischemic precondi-
tioning in reduced-size liver grafts could not be explained
either by differences in XDH/XOD activity or by differences
in hypoxanthine or xanthine accumulation. The different re-
sults concerning the effect of ischemic preconditioning and
NO on xanthine/XOD could be explained by differences in
the experimental models evaluated, including the duration
of cold ischemia. There is evidence that ischemic precon-
ditioning reduces oxidative stress via Kupffer cells (60,61).
The results of the present study indicate that the inhibi-
tion of Kupffer cells reduced the oxidative stress follow-
ing ROLT. This resulted in beneficial effects on liver injury
and regeneration, as previously reported in experimental
models of partial hepatectomy (62,63). However, the pos-
sibility that ischemic preconditioning could modulate other
ROS-generating systems including mitochondria (64) and
antioxidant systems such as glutathione (28) should not be
discounted.

Results obtained from an experimental model of 70%
of hepatectomy indicated that hepatic regeneration was
closely correlated to the ATP levels of the remaining liver
(65). In contrast to normothermic conditions (24,27), our
results suggest that ischemic preconditioning neither af-
fects the adenine nucleotide pool of liver cells during cold
ischemia nor modifies the ability of hepatocytes to regener-
ate ATP following reperfusion. Thus, the protective effect
of ischemic preconditioning on liver regeneration could not
be explained on the basis of the preservation of adenine
nucleotides.

Next, we investigated whether ischemic preconditioning
could protect against hepatic I/R injury and improve hep-
atic regeneration by stimulating IL-6 release. This could
prevent the deleterious effects of TNF on the liver and
promote liver regeneration following ROLT. Indeed, the re-
duction in TNF release following hepatic I/R induced by
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ischemic preconditioning has been previously reported in
normothermic and cold ischemia conditions without hepa-
tectomy (28-30). However, in our hands, ischemic precon-
ditioning did not modify the levels of either IL-6 or TNF in
reduced-size liver grafts after transplantation. In addition to
the injurious effects of TNF in hepatic I/R, results obtained
in partial hepatectomy models suggest that this cytokine
may play a critical role in liver regeneration (66-68). The
results of the present study suggest that neither IL-6 nor
TNF is crucial in hepatic I/R injury and liver regeneration
in ROLT, as the differences in hepatic injury and liver re-
generation observed in all groups of the study were not
reflected in changes in these two cytokines. This is con-
sistent with the observations reported by other authors,
indicating that hepatocyte proliferation can be induced by
at least two different pathways (69,70): compensatory re-
generation which is TNF and IL-6-dependent, and mitogen-
induced direct proliferation which does not require TNF or
IL-6. When knockout TNF and IL-6 mice were treated with
primary mitogens, hepatocyte proliferation was the same
as in wild-type mice (69).

Ischemic preconditioning has been applied successfully in
humans in normothermic conditions associated with hep-
atic resections. The results of the present study suggest
a new potential application of ischemic preconditioning in
living-related liver transplantation.
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Los resultados obtenidos con antagonistas de los receptores de IL-1 y la
determinacion de los niveles de mRNA de IL-1 mostraron la participacién de la IL-1-a
en el sindrome de I/R asociado al ROLT, ademas establecieron una relacion entre la
IL-1o0 y los factores de crecimiento. Asi pues, la IL-1a redujo los niveles de HGF y
aumenté los niveles de TGF-B, influyendo negativamente en el proceso de la
regeneracion hepatica. El precondicionamiento isquémcio (PC) (a través del NO) y el
tratamiento con donadores de NO inhibieron la produccion hepatica de IL-1,
protegiendo asi frente a los efectos perjudiciales de esta interleuquina sobre la lesiéon y
regeneracion hepatica. Ademas, por otra via independiente del NO, el PC dio lugar a
una induccién de la expresion de HSP70 y de HO-1. La HO-1 protegi6 frente a la
lesion por I/R hepatica y por regeneracién y en cambio el papel protector de la HSP70
fue exclusivamente relacionado con la proliferacién hepatocitaria. La inhibicion de la
sintesis de NO en el grupo PC no modifico los efectos del PC sobre ambas HSPs.
Estos resultados explican los mecanismos protectores de PC y indican que, ademas
del PC, estrategias encaminadas a modular la accién de la IL-1 y/o las HSPs podrian
ser consideradas en situaciones clinicas que requieran regeneracion hepatica, como

es el caso del trasplante hepatico con injerto de tamafio reducido.
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Abstract

Interlenkin-1 (IL-1) amd transforming growth facter-§ (TGFH) are key inhibitors of
hepatocyte proliferation after hepatectomy. IL-1 inhibition by heat shock proteins (HSPs)
has been reported in inflammatory processes. A recent study indicated the benefits of
ischaemic preconditioning in reduced-size orthotopic liver transplantation (ROLT). The
present study examined: (a) the effect of ischaemic preconditioning on IL-1 and TGFE in
ROLT: (b) whether preconditioning protects small liver grafts through HSP induction; and
() whether the potential benefits of preconditioning on HSP is related to IL-1 inhibition. Our
results, abtained with an IL-1 receptor antagonist, indicated the injuricus effects of IL-1 in
ischaemia-reperfusion (IVR) injury and established a relationship between IL-1 and growth
factors. Thus, IL-1 reduced hepatocyte growth facter (HGF) and promoted TGF§ release,
thus contributing to the impaired liver regeneration associated with ROLT. Preconditioning
inhibited IL-1 through nitric oxide {NOV). thereby protecting against the injurious effects of
IL-1. In additien, by another pathway independent of NO, preconditioning induced HSFTO
and haem-oxygenase-1 (HO-10 HO-1 protected against R injury and lver regeneration,
whereas the henefits resulting from HSPTO were mainly related to hepatocyte proliferation.
These results suggest a mechanism that explains the effectiveness of preconditioning in
ROLT. They suggest, too, that other strategies, in addition to preconditioning, that modualate
IL-1 andfor HSPs could be considered in clinical situations requiring liver regeneration such
as small liver grafis.

Copyright © 2085 Patholegical Society of Great Britain and Ireland. Published by John
Wiley & Sons, Lid.

Keywords: reduced-size liver transplantation: ischaemia-reperfusion; liver regeneration;
IL-1; H5P: oxidative stress

Introduction

as HGF during liver regeneration [10.13]. However,
TGFg does not seem to be the sole or the most signif-

Living-related liver transplantation was developed to
alleviate the mortality resulting from the scarcity of
suitable cadaveric grafts [1.2]. The main problem
in using living-related liver transplantation for adulis
is graft size disparity [3.4]. In addition, ischaemia-
reperfusion (I/R), which iz inevitable in liver trans-
plantation, reduces liver regeneration after hepatec-
tomy [5.6].

Ischagmic preconditioning, ie. a short period of
ischaemia followed by a brief period of reperfusion
before a sustained ischagmic insult, improved hepatic
regeneration in an experimental model of redoced-
size liver transplantation [7]. This surgical strategy
promoted the release of hepatocyte growth factor
(HGF). However, hepatocyte growth is controlled by
both growth-promoting and growth-inhibiting factors
[2.5].

Transforming growth factor & (TGEE), a potent
inhibitor of hepatocyte DINA svnthesis [10-12] coun-
terbalances the stimulatory effects of mitogens such

icant negative regulator of hepatocvte replication. In
fact. interleukin-1 (IL-1}) is the main inhibitor of hep-
atocyie proliferation after partial hepatectonmy without
ischaemia [14].

IL-1 biosynthesis is down-regulated through a
mechanism related to the induction of heat shock pro-
teins (HSPs) [15-19]. The toxicity of IL-1 for pan-
creatic cells can be prevented by haem-oxygenase- |
(HO-1) activators [16,17]. Over-expression of HSF70
limits lipopolysaccharide (LPS)-induced production of
IL-1 [18]. In vitre and in vive stdies indicate the abil-
ity of H5Ps to inhibit IL-1 release in lung cells [15.19].

Previous results indicate that ischaemic precondi-
tioning induces HSPT0 over-expression in isolated
hepatocyvies [20] and reduces hepatic IL-1 production
under normothermic conditions [21]. However, to our
knowledge, the possibility that preconditioning pro-
tects in reduced-size liver transplantation by inducing
changes in HSP andfor IL-1 release has not been tested
previously.

Copyright @ 2005 Pathological Society of Great Britain and Ireland. Published by John Wilsy & Sons, Lid.
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We report the results of an experimental study
designed to evaluate: (a) the effect of ischasmic pre-
conditioning on TGFS and IL-1; (b} whether precon-
ditioning protects in reduced-size liver transplantation
through HSP induction; and (c) whether the poten-
tial benefit of preconditioning for HSPs is related to
IL-1 inhikition. Ischasmic preconditioning has been
successfully used clinically under normothermic con-
ditions for hepatic tumour resections [22-24]. In our
knowledge, there is only one study indicating the bene-
fits of ischaemic preconditioning in reduced-size liver
transplantation, but the wnderlving protective mech-
anisms were not investigated [7]. If preconditioning
could be understood at the molecular level, it might
be possible to develop new surgical andfor pharmaco-
logical treatments in reduced-size liver transplantation.

Materials and methods

Experimental anirmals

Male Sprague —Dawley rats (200-250 g} were anaess-
thetized with isoflurane. Research procedures com-
plied with European Union regulations for animal
experiments (EU Guideline S86/60%EEC).

Experimental design

Protocol |.1L-1 in the benefits of preconditioning for
hepatic VR injury and liver regeneration in ROLT 24 h
after transplantation

Effect of preconditioning on the infurious effects of IL-1

in ROLT

L. Sham {n = 6): silk ligatures in the right suprarenal
vein, and hepatic artery.

2. Reduced-size  orthotopic  liver  transplantation
(ROLT) (n = 12, six transplantations): liver was
reduced by removing the left lateral lobe and the
two caudate lobes and preserved with cold Univer-
sity of Wisconsin (UW) solution for | h [7]. ROLT
was performed according to the Kamada®cuff tech-
nique [25].

3 ROLT +1IL-lra (n = 12): like group Z. but with
interleukin-1 receptor antagonist {Amgen Biologi-
cals. Thousand Oaks, CA), 40 mg'kg iv. just after
reperfusion [21].

4. PC4+ROLT (n =121 like group 2 but with
ischaemic preconditioning (PC) induced by 10 min
of ischaemia followed by 10 min of reperfusion
before the livers were flushed with U'W solution
[71.

5 PC+ROLT 4+ IL-le (n = 12} like group 4. but
with recombinant IL-le (Prepotech EC, Rocky
Hill. NI, 5 pg'kg i.p. just after reperfusion [26.27].

Role of nitric oxide (NOJ in the benefiis of precondi-

tioning on IL-T release

6., ROLT + NO (n = 12} like group 2, but with sper-
mine NOMNOate (Cavman Chemical, Ann Arbor,

R Franco-Gou et al

M. 10 mgkg iv. 5 min before the livers were
flushed with TV solution [7].

7. PC+ ROLT + NAME (n = 12} like group 4, but
with a MO synthesis inhibitor, Me-nitro-L-arginine
methy] ester (NAME) (Sigma Chemical. St. Louis,
MOy, 10 mM when the liver grafts were harvested,
and 20 mgfkg i.v. just after reperfusion [7].

B. PC4+ROLT + NAME 4 IL-1ra  in = 12):  like
group 7. but with IL-1ra. 40 mgfkg iv. just after
reperfusion [7.21].

Twenty-four hours after transplantation, plasma and
liver samples were collected. Hepatic injury was
evaluated by determination of transaminases in the
plasma. IL-1, malondialdehyde (MDA), proliferating
cell muclear antigen (PCNA) labelling index. HGF
and TGFF levels were evaluated in liver. Tissue
accumulation of nitrite and nitrate was determined.
Histological analysis in the liver was also per-
formed.

Protecel 2. H5Ps in the benefits of preconditioning on
hepatic VR injury and liver regeneration in ROLT 24 h
after cransplantation

Effect of preconditioning on HSPs HSP90, HSPTO
and HO-1 levels were analysed by western blot in liver
from groups I, 2, 4 and 7 of Protocol 1.

Role of H5Ps To stdy whether the changes in
H5P= induced by preconditioning are reflected in
amelicration of 'R injury and liver regeneration., the
following experimental groups were stndied:

9. PC + ROLT + HSPT70inh {n = 12} like group 4,
but with a HSP inhibitor. quercetin {Sigma Chem-
ical), 100 mgke ip. 2 h before preconditioning
[22.29]. In addition to HSPF70, querncetin inhibits
the expression of HSP20 and HSP25 [30.31].

10, PC 4+ ROLT + HO-linh (n = 12x like group 4,
but with a HO inhibitor, Zinc(Il) Prowporphyrin
IX (Oxis Research, Portland, OR). 20 mg'kg ip.
24 h before preconditioning [32]. In addition to
HO-1, Zinc(Il) Protoporphyrin IX inhibits all HO
activity mediated by HO-2 and HO-3 [33.34].

The doses of quercetin and Zinc(Il) Protoporphyrin IX
used in the present study were effective in evaluating
the role of HSPTO and HO-1 in different experimental
models of TR [28,29.32]. Control experiments were
performed at a higher dose of these inhibitors, and
the results obtained were similar. Quercetin and the
other drugs were prepared in dimethylsulphoxide and
saline, respectively. as in previous reports [32,35-37]
and following the manufacturer’s instructions. Control
experiments were performed with the wvehicle used
for the different drugs. Under our conditions, the
vehicle wsed did not modify the posi-transplantation
o tComes,

Twenty-four hours after transplantation. plasma and
liver samples were collected. Biochemical determina-
tions and histological analyses were the same as those
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described in Protocol 1. The effect of quercetin on
HEP90, HSPT0, HO-1 and HSP23 was also evalu-
ated.

Protoool 3. H5Ps and IL-1 in ROLT & h after
transplantation

To evaluate whether the changes in IL-1 and HSPs
cansed by preconditioning 24 h after transplantation
(Protocols 1 oand 2) occurred at earlier time points,
a surgical procedure similar to that uwsed for groups
2,4, 5 and 10 was carried out, but the samples
were obtained at 6 and 12 h after transplantation and
processed to determine transaminases, IL-1, PCNA
labelling index, HGF and TGEFS levels, HSP levels
and grade 3 necrosis.

The interventions and measurements for Protocols
I. 2 and 3 are summarized in Table 1.

Biochemical determinations

# Transaminase assay. Transaminasas were measure
using a commercial kit from Boehringer-Mannhein
(Munich, Germany ).

o Lipid peroxidation assayv. Lipid peroxidation wa:
determined by measuring the formation of MDA
with the thicharbiturate reaction [7].

# [nierlenkin assayv. IL-1 levels were measured a:
previously reported [21]. Commercial kits fron
Amersham Life Sciences (Amersham., UK) wer
used.

# Determination of nitrite and nitrate. NO production
was determined by tissue accumulation of nitrite anc
nitrate [37.38].

o PCNA fabelling index. Immunohistochemistry wa:
performed using a commercial Kit [DAKO Envisio
+5System, peroxidase (DAB), Dako GMbh, Ger
many] [7].

Table |. Aow chare of the interventions and measuremeants corresponding to Protocals |, 2 and 3

PROTOCOL 1

Effect of preconditioning on 1L-1
I, Emam
I ROLT
A ROLT +1L-1rn

4. PC+ ROLT

B [l
8. PC 4 ROLT + MAME+IL-1ra [ PC+NAME

L= Transaminases, [L-1.
5.FC4+ ROLT +IL-a = MDA PCHA. HGF,
TGFE, nitrite and
Bole of NO mitrate, histology
& ROLT +HO
E
7. FC + ROLT + HARME

PROTOCOL £

Effect of preconditicning on HEPs

Groups 1,24 and T (FPROTOCOL 1)

Ecle of HSPs

10, PC+ ROLT + HO-1'mh

(T I e
9. FC + ROLT + HEFT0Inh

PC + ol

Same o= Prowcal 1
and HEP lavels

PROTOCOL 3

Groups 2, 4, 5, 10 {PROTCOLS 1 and 2)

Effact of preconditiening on [L-1 and HEPs at 6 and 12 h after ransplantation

Transarminases, 11L-1.
PCMA. HGF. TGFA,
HSF lewvels, histology
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& Assay for HGF. HGF levels were measured by the
enzyme-linked immunosorbent technique (Institute
of Immunology. Tokyo., Japan) [7].

o Asgay for TGFE. Total and active TGF# levels were
measured as previously reported [39.40]. Commer-
cial kits from R&D Systems (Minneapolis, MM}
were used.

Western blot analysis for HSP

Equal amounts of protein were separated by SDS—
PAGE and transferred to PVDF membranes. West-
ern blotting was performed with primary antibodies
against HSP20 and HSPF70 (BD Transduction Lab-
aratories, San José, CA), HO-1 and f-actin (Sigma
Chemical, St. Louis, MO and HSP25 (StressGen,
Vancouver, BC). Signals were detected by enhanced
chemiluminescence and quantified by scanning den-
sitometry. All signals were standardized to the corre-
sponding Poncean S5 [41].

Quantitative real-time PCR for IL-le messenger
RMA

Total EMA from liver samples was obtained using the
isolaticn kit Ultraspec (Biotecx Laboratories, Houston,
TX) and was reverse-transcribed using a Ready-To-
Go You-Prime First-Sirand Beads Kit and Random
Hexamer primers (Amersham, Uppsala, Sweden). /L-
T was specifically amplified by real-time PCE. using
the probe/primer set (Rn0O0S56700_ml) for rat fL-
foe (WM_017019) (Applied Biosystems, Foster City,
CA). Gene expression of JfL-foo relative o S-Actin
iprobefprimer : Rn00&GETEES_ml. Applied Bicsystems)
was calculated vsing the A ACy method [42].

Histology

To determing the severity of hepatic injury., hasma-
toxvlin and ecsin (H&E)-stained sections were evalu-
ated by a point-counting method on an ordinal scale
[7]-

Statistics

Data are expressed as means & standard error. Statis-
tical comparison was performed with analysis of vari-
ance, followed by the Student—Newman-Keuls test,
p o= 0,05 was considered significant.

Results

IL-1 in the benefits of preconditioning on hepartic
IR injury and liver regeneration in ROLT 24 h
after transplantation

Mo differences in hepatic IL-1 8 levels were observed
in any of the groups evaluated. Unlike IL-15, hep-
atic IL-loe levels did increase after ROLT over the
results obtained in the Sham group. (Figure LA).
IL-1 receptor antagonist attenuated the increases

R Franco-Gou et al

in transaminases (Figure 2A) and grade 3 necrosis
(Figure 2B). Preconditioning reduced IL-lo (Figure
1A) and protected against hepatic injury (Figure 2A.
B). These benefits were reverted when IL-loe was
administered (PC 4+ ROLT 4 IL- o).

Like preconditioning, NO pre-treatment reduced IL-
lee release and J[L-fo mRMNA expression (Figure 1A,
B, respectively) and protected against hepatic injury
(Figure 2). MO synthesis inhibition (PC 4 ROLT +
MAME) abolished the benefits of preconditioning on
IL-ler release and on the parameters of hepatic injury:
and IL-1 receptor antagonist supplementation (PC 4
MNAME +1IL-1ra) prevented the injurious effects of
WO synthesis inhibition. The amount of NO in the
liver was also checked. Thus, significantly more NO
{reflected in the values of tissue nitrites and nitrates)
was found after preconditioning and after NO  pre-
treatment than in the Sham group (Figure 3A). L-
MAME reduced the increased nitrite and nitrate levels
observed in the preconditioned group.

Histological study of the liver after ROLT revealed
multifocal and extensive areas of coagulative necrosis
randomly distributed throughout the hepatic paren-
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Figure 1. (A3 IL-1 {IL-1e and IL-18) and (B) -'o mRMA
exprassion levels (the data represent the fold change ve. Sham
group) in liver 24 h afrter tansplntation. “p < 0.05 vs. Sham;
*p = 0.05 ve, ROLT; *p = 0.05 vs, PC 4+ ROLT
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Figure 3. (&) Micrive and nitrate and (B) MDA levels in liver
24 h after transplantation. “p < 006 ve, Sham; Tp < 005 we.
ROLT; “p = 0.05 wa. PC 4 ROLT

MAME +1IL-1ra groups (Figure 4B, C and D,
respectively).

For the parameters of liver regeneration, IL-1 recep-
tor antagonist, preconditioning and NO pre-treatment
increased both PCHA-positive hepatocyies and HGF,
and reduced active TGFS levels (Figures 2, 5). Total
hepatic TGEE levels were similar in all groups (data
not shownj. NO  inhibition in the preconditioned
group (PC 4+ ROLT + NAME) and IL- 1o administra-
ticn (PC 4+ ROLT +1L-la) abolished the benefits of
preconditioning on liver regeneration, resulting in pro-
liferation index, HGF and TGFE levels similar to those
for the ROLT group. However, IL-1 receptor antag-
onist supplementation in the PC 4 ROLT 4+ NAME
group (PC 4+ ROLT + NAME + IL-1ra) returned the
parameters of liver regeneration to those for the PC 4
ROLT group {Figures 2. 5).

H5Ps in the benefits of precenditiening en hepatic
/R imjury and liver regeneration in ROLT 24 h
after transplantation

As shown in Figure 64, no differences in HSP20
levels as a consequence of ROLT were found.
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Figure 4. Histological lesions in liver 24 h after transplantation. (&) ROLT, extensive and multifocal areas of coagulative
necresis of hepatoeytes with disruption of hepatic cords, infiltration of neutraphils and haermarrhags. (B) ROLT 4+ IL-1ra, focal
and small areas of hepatocyte necrosis. (C) PC + ROLT and (D) PC 4+ ROLT 4+ L-MAME + IL-1ra: similar to ROLT 4+ IL-1ra.
(E) PC 4+ ROLT 4+ HEPTQinh and (F) PC 4+ ROLT + HO-linh: similar to ROLT 4 IL- Ira and ROLT, respectively (HEE, :<240)

Preconditioning increased both HSF70 and HO-1 lev-
els more than the ROLT group did. The effect of
preconditioning on HSP was not modified when NO
synthesis was inhibited (see Figure 6A). Under our
conditions, quercetin inhibited HSPTO (Figure 6B).
However, similar HSF20, HO-1 and HSFP23 levels
were observed in PC 4+ ROLT and PC 4+ ROLT 4+
HSP70inh groups.

In contrast to the results obtained with HSP70 inhi-
bition, HO inhibition reverted the benefits of pre-
conditioning on hepatic injury (Figures 2, 4). HSP
inhibiticn in the preconditioned group (PC + ROLT +
HSPT0, PC4+ ROLT 4+ HO-1) reduced HGF and
increased TGFE, resulting in HGF, TGF£ and prolifer-
ation values similar to those for the unpreconditioned
group (ROLT) (Figures 2, 5).

The effect of HSP induction cansed by precondition-
ing on IL-le levels was tested. HSP inhibition (PC 4
ROLT 4+ H5F70inh, PC 4+ ROLT 4+ HO-1inh) did not
modify the redoced IL-lee levels induced by pre-
conditioning (PC 4+ ROLT) (Figure 1A). The role of
IL-1 and HSPs in the benefits of preconditioning
on oxidative stress was also evaluated. IL-1 recepior
antagonist, preconditioning and NO protected against
oxidative stress (Figure 3B). NO synthesizs inhibi-
tion (PC 4+ ROLT + NAME) and IL-lo administra-
tion (PC + ROLT +11L-1o) abolished the benefits of
preconditioning on MDA levels; IL-1 receptor antag-
onist supplementation in the PC 4+ ROLT + NAME
group (PC 4+ ROLT + NAME 4 [L-1ra) resulted in
MDA levels comparable o those found in the
PC 4+ ROLT group. HSP inhibition (PC 4+ ROLT 4+
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Figure 5. Immunocyuechemical staining of PCHA-positive hepatocytes 24 h after transplantacion, ROLT (Al lower positive cell
numkbsr than ROLT + IL-1ra (B). PC + ROLT (C) and PC 4+ ROLT + L-MAME + IL1-ra (D) amount of PCHA-positive staining
hepatocytes similar o ROLT 4+ IL-1ra. PC 4+ ROLT + H5PT2inh (E) and PC 4 ROLT 4+ HO-linh (Fi: PCRA-positive staining

hepatacytes similar to ROLT (=500)

HSPT0inh, PC 4+ ROLT 4 HO-linh) did not  mod-
ify the benefits of preconditioning (PC + ROLT) on
oxidative siress (Figure 3B). Other parameiers of
oxidative stress (lipid hydroperoxides and HzOa)
showed the same pattern as MDA (data not shown ).

HS5Ps and IL-1 in ROLT & h after transplancation

The benefits of preconditioning on hepatic I'E. injury
and liver regeneration observed 24 h after transplanta-
tion were also found at & h. Preconditioning reduced
transaminase levels and grade 3 necrosis. This surgi-
cal strategy reduced TGFS and increased HGF and the

percentage of PCNA-positive hepatocytes (Figure 7).
At 6 h after transplantation, no differences in HSP70

levels were observed in any of the groups evaluated
(Figure 8A). As at 24 h, preconditioning reduced IL-
lee and increased HO-1 levels & h after transplantation
(Figure 8). IL-1a administration and HC inhibition in
the preconditioned group abolished the benefits of pre-
conditioning on the parameters of hepatic injury and
liver regeneration (Figure 7). HO inhibition did not
affect the benefits of preconditioning on IL-1o release
& h after transplantation (Figure 8B). Similar results
were ohserved 12 h after transplantation.

Discussion

Higher TGFE and lower HGF after portal branch
ligation may suppress hepatocyte proliferation, thus

108



Resultados

(A} Effect of ischacmic preconditioning on
HSP90, HSPF0and HO-1
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(B} Effect of quercetin on HSPQU,
HSPT0, HO=1 and HSP25
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Figure &. (A) Effect of preconditioning on HSP20 (A 1), HSPTO (A2) and HO- 1 (A3) and (B} effect of quarcetin on H5P2O (B.1),
HEP70 (B.2}, HO-1 and HSP2E (B.3) in liver 24 h after transplantation. The upper pands show ane representative blot of thres
independent experiments and the lower pansls show densivometric evaluation of the independent western blot "p = QU085 e,

Sham; Tp < QLO5 ve. ROLT, "p = QLO5 ve. PC 4+ ROLT

delaying liver regeneration [43]. Our results suggest
that the benefits of preconditioning and NO donors
on liver regeneration in ROLT were due o a balance
between TGFE and HGF. Both strategies reduced
TGFE levels after ROLT, which was associated with
increased HGF levels,

In addition to growth factors, partial hepatectomy
induces activation of cytokines [44—46]. IL-18 has
been put forward as a possible down-regulator of
hepatocyte proliferation in én vitre and experimental
models of hepatectomy without ischaemia, as has

TGFF [11.14.47]. Our results indicate that IL-1 8 does
not seem to play a role in mediating 'R injury and
liver regeneration associated with ROLT. However,
this was not the case for IL- la. Interestingly, strategies
such as the use of IL-1 receptor antagonist, aimed at
modulating the action of IL-le, may be important for
attenuation of hepatic 'R injury and amelioration of
liver regeneration associated with ROLT. In addition
to ascertaining the function of IL-1 in ROLT, the
results gave information on the availability of IL-1
in modulating the growth factors HGE and TGES.
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Like IL-1 receptor antagonist pre-treatment, precon-
ditioning can be considered a strategy for moduolating
the injurious effects of IL-1 on hepatic I'R injury and
liver regeneration associated with ROLT. Given the
role of N in preconditioning [7.48] and its possible
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role on IL-1 release [49-51], we studied whether the
benefits of preconditioning on the injurious role of IL-
I'in ROLT are mediated by NO. Experimental results
seem to confirm this hvpothesis. MO synthesis inhi-
bition in the preconditioned group increased IL-lew
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release after ROLT, abolishing the benefits of precon-
ditioning on hepatic injury, oxidative stress and liver
regeneration. However, if we inhibited IL-1 action
with IL-1 receptor antagonist, the injurious effect of
MO inhibition disappeared. In addition, NO donor
administration to ROLT simulated the benefits of pre-
conditicning on hepatic injury and liver regeneration.
Altogether, our results indicate that preconditioning,
through MO, inhibits IL-1 release, therehy protecting
against hepatic 'R and ameliorating liver regeneration
associated with ROLT. This results in the regulation of
both growth factors and oxidative stress. Although fur-
ther studies will be required to establish a relationship
between growth factors and oxidative siress in ROLT,
this possibility should not be ruled out. In fact, in
experimental models of hypoxiafrecxygenation in hep-
atocyies [52] and hepatic I'E. [53]. HGF pre-treatment
inhibited reactive oxvgen species production. Con-
versely, TGFE induced an oxidative stress process in
hepatocytes [54,55]. The injurious effects of oxidative
siress on liver regeneration are well known [6.56].
Data obtained in pancreatic [16.17] and lung cells
[19]. and resultz obtained in experimental models of
toxicity induced by LPS [15.18], indicate that the
induction of HSP is responsible for IL-1 biosynthe-
sis inhibition. In addition. the role of NO in regulat-
ing HSF expression in different experimental models
of 'R has been reported previously [57-59]. Thus,
taking all of these findings into account, we hypoth-
esize that preconditioning through NO induces HSP
aver-expression. This would reduce IL-1 releasze, thus
improving hepatic 'R injury and liver regeneration
following ROLT. Our results in ROLT seem not to
confirm this hypothesis. In our hands, the benefits of
preconditioning on IL-le seem not to be dependent
on HSPs. Thus, we suggest a mechanism to explain
the protection offered by preconditioning. as summa-
rized in Figure 9. Preconditioning through NO inhibits
IL-lz release. The benefits of IL-loe inhibition on
IR injury and liver regeneration can be explained,
at least partially, by the regulation of growth factors
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Figure 9. Diagram of suggestad mechanisms by which
preconditicning modulates hepatic injury and liver regeneration
in ROLT 24 h after transplantation
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andfor oxidative stress. In addition, preconditioning by
another pathway independent of MO protects against
hepatic /R injury and ameliorates liver regeneration
associated with ROLT. This second pathway seems
likely tobe HO-1 and HSPTO induction. HO-1 protects
against hepatic 'R and ameliorates liver regenera-
ticn associated with ROLT. Given the results obtained
6. 12 and 24 h after ransplantation. HO-1 induction
seems key to maintaining the protection of liver grafts
throughout reperfusion. The protection conferred by
HSP70 in preconditioning is mainly related to cellular
proliferation processes and was only seen at prolonged
reperfusion periods. It should be noted that, in addition
to HEF70, other protective mechanisms of precondi-
ticning should not be discarded. The HSPTD inhibitor
used in the present smdy, quercetin, also inhibits pro-
tein kinase C [80.61]. It is known that protein kinase C
modulates intracellular signals in preconditioned 1iv-
ers and liver after transplantation [62.63]. Similarly,
due to the properties of Zinc(Il) Protoporphyrin TX,
the involvement of HO-2 and HO-3 in the benefits of
preconditioning should not be roled out. The results
of the present study may open the way to new surgi-
cal andfor pharmacological strategies to protect small
liver grafts effectively from the deleterious effects of
'R on hepatic injury and liver regeneration.
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4.3. TERCER ESTUDIO

PROTECTION AGAINST LUNG DAMAGE IN REDUCED-SIZE LIVER
TRANSPLANTATION

Franco-Gou R, Rosell6-Catafau J, Peralta C

Critical Care Medicine, En prensa

En el higado, la inhibicién de las células de kupffer, el PC y el NO disminuyeron
los niveles de IL-1a tras un trasplante hepatico con injerto de tamarno reducido (ROLT).
El PC, a través del NO, redujo la liberacién de IL-1 y ejercid un papel protector frente a
la lesion pulmonar asociada al ROLT. La inhibicién de la sintesis de NO en el grupo
con PC llevd a un aumento en los niveles de IL-1 y aumenté el dafio pulmonar
después del ROLT, mientras que el tratamiento con el antagonista del receptor de IL-1
(IL-1ra) protegi6 frente a los efectos adversos resultantes de la inhibicidn de la sintesis
de NO. Ademas, la administracion de un donador de NO resulté en unos parametros
similares a aquellos encontrados en el grupo PC por lo que respecta a los niveles de
IL-1 y lesién pulmonar. Los beneficios observados en pulmén como consecuencia de
la inhibicién de la IL-1 parecen estar ligados al efecto que presenta esta citoquina
sobre un mecanismo endégeno que neutraliza la accién del TNF-a, como son los
receptores solubles del TNF-a. Asi pues, estrategias que inhiben la accion de la IL-1,
como son el tratamiento con IL-1ra, el PC vy el tratamiento con el donador de NO,
provocan un aumento en los niveles plasmaticos de sTNFR2 y disminuyen los niveles
sistémicos de TNF-a libre, después del ROLT. De igual manera, la inhibicion de la
sintesis de NO en el grupo con PC, que provoco un aumento en los niveles de IL-1y
en el dafio pulmonar, redujo los niveles de sTNFR2 en plasma y aumento los niveles
de TNF-a libre. Estos efectos adversos desparecieron cuando se inhibié la accion de
la IL-1.
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ABSTRACT

Objective: This study examined the effect of ischemic preconditioning on
pulmonary damage associated with reduced-size orthotopic liver transplantation
(ROLT) and attempted to identify the underlying protective mechanisms. Design:
Randomized and controlled animals study. Setting: Experimental laboratory. Subjects:
Male Sprague-Dawley rats. Interventions: Lung damage was evaluated in ROLT with or
without preconditioning. Nitric oxide (NO) and interleukin-1 (IL-1) actions were altered
pharmacologically. Measurements and Main Results. IL-1, tumor necrosis factor-a
(TNF), soluble TNF receptors (sTNFR) and inflammatory response in lung were
measured after ROLT. Our results indicate the involvement of IL-1 in the lung damage
following ROLT. Ischemic preconditioning, mediated by NO, reduced IL-1 release and
protected against lung damage. NO synthesis inhibition in the preconditioned group led
to increased IL-1 levels and increased lung damage following ROLT, while the addition
of IL-1 receptor antagonist protected against the injurious effects of NO inhibition. In
addition, NO pre-treatment gave similar results in terms of IL-1-a, and lung protection
to those found in preconditioning. The benefits to the lung attributable to IL-1 inhibition
might be linked to the effect of this cytokine on sTNFR, an endogenous mechanism
that modulates systemic TNF actions. In fact, strategies aimed at inhibiting IL-1 action,
including IL-1 receptor antagonist, ischemic preconditioning, and NO donor, increased
systemic STNFR2 and decreased free TNF, following ROLT. Similarly, NO synthesis
inhibition in the preconditioned group, which increased IL-1ac and lung damage,
reduced systemic sTNFR2, and increased free TNF levels. These injurious effects
were avoided when IL-1 action was inhibited. Conclusion: Ischemic preconditioning and
pharmacological strategies that simulate its benefits protected against lung damage in
an experimental model of ROLT. Our results also suggest a potential relationship
between NO, IL-1 and TNF/sTNF in the benefits of preconditioning on the lung damage

associated with ROLT.
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INTRODUCTION

Ischemic preconditioning, induced by brief ischemia and reperfusion periods,
protects the liver and the lung against a subsequent sustained hepatic I/R in warm
ischemia associated with tumor hepatic resections and in liver transplantation from
non-reduced size liver graft (1-5). Preconditioning by inhibition of endothelin (ET)
production reduced the systemic release of Kupffer cell-associated tumor necrosis
factor-a (TNF), thus preventing lung P-selectin up-regulation and subsequent
pulmonary damage (3-5). Moreover, preconditioning modulates other systems involved
in both local and systemic disorders including xanthine-xanthine oxidase (XOD) (1,2).
Preconditioning was more effective than the addition of XOD inhibitors to the
preservation solutions or anti-selectin, anti-ET or anti-TNF therapies in preventing
hepatic I/R injury (1,2,5). There is evidence that the benefits of preconditioning on
these mechanisms responsible for local and systemic disorders associated with hepatic
I/R depend on the release of nitric oxide (NO) (1-5). A recent experimental study from
our group showed the benefits of ischemic preconditioning on hepatic injury associated
with reduced-size liver transplantation (6). However, it is not known whether ischemic
preconditioning is effective only locally (liver) or if it would also modulate the potential
lung damage associated with reduced-size liver transplantation.

In addition to TNF, ET, and xanthine/XOD, the injurious role of interleukin-1 (IL-1)
in the lung damage associated with hepatic I/R is well established (7-10). The data
obtained in experimental models of hepatic I/R that mimic the warm ischemia
associated with tumor hepatic resections indicate that IL-1 action inhibition ameliorated
pulmonary injury (8), and IL-1 produced in the liver appears to stimulate the alveolar
macrophages of the lung and induce pulmonary injury (10). On the basis of these
reports, there would seem to be a real possibility that IL-1 is responsible for the lung

damage associated with reduced-size liver transplantation.
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The relationship between NO generation and hepatic IL-1 production has been
demonstrated in various inflammatory processes (11-14). Thus, the inhibition of NO
synthesis increased IL-1 generation in experimental models of hepatic I/R that mimic
the warm ischemia associated with tumor hepatic resections (11-13), and inducible NO
synthase-deficient animals showed high IL-1 levels in response to lipopolysaccharide
(14). However, the hypothesis that the NO released during preconditioning might
modulate the lung damage associated with reduced-size liver transplantation through

its action on hepatic IL-1 release remains unconfirmed.

Several analyses of systemic disorders associated with inflammatory processes
indicate that increases in IL-1 occur in parallel with high TNF levels (10,15,16). It has
been widely demonstrated that TNF mediates inflammation by two distinct cell-surface
receptors (TNFR1 and TNFR2), as observed during rejection episodes and impaired
graft function after liver transplantation (17-20). These two receptors can also be
present in soluble form (sTNFR: sTNFR1 and sTNFR2), since the extracellular part of
both receptors is shed by proteolytic cleavage and circulates as sTNFR (natural
inhibitors of TNF). This then binds the TNF in plasma, thus preventing its deleterious
effects (21-24). In fact, treatment with sTNFR stems plasma TNF increase and
prevents acute lung injury following cardiopulmonary bypass (25) and after intestinal
ischemia (26). The injurious effects of IL-1 on systemic disorders associated with
hepatic I/R might be explained by the effect of this cytokine on systemic TNF/sTNFR
levels following I/R. Thus, IL-1 receptor antagonist treatment reduced plasma TNF
release in experimental model of hepatic I/R that mimic the warm ischemia associated
with tumor hepatic resections (15). In addition, IL-1 down-regulated the expression of
receptors for TNF in cell lines from human fibroblastoid and cervical carcinoma, which
may reduce sTNFR release (27-29). Thus, it would appear that strategies aimed at
modulating IL-1 action might be useful to regulate TNF/sTNFR levels and to reduce the

systemic diseases associated with hepatic I/R processes.
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Accordingly, we report the results of an experimental study aimed at evaluating
1) the role of IL-1 in the lung damage associated with reduced-size liver
transplantation; 2) the potential benefits of ischemic preconditioning for the lung; 3)
whether such protection is related to the IL-1 inhibition by NO; and 4) whether the

modulation of IL-1 action by NO results in changes in systemic TNF/sTNR levels.
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MATERIAL AND METHODS

Experimental animals

Male Sprague-Dawley rats weighing 200 to 250 g were used as donors and
recipients. All animals were anesthetized with isoflurane. This study respected the
European Union regulations for animal experiments (EC guideline 86/609/CEE).

Experimental design

Role of IL-1 in lung damage associated with ROLT
1) Sham (n=6): Animals were subjected to anesthesia, transversal laparotomy, and silk
ligatures in the right suprarenal vein, and hepatic artery.
2) Reduced-size orthotopic liver transplantation (ROLT) (n=12, 6 transplantations):
Liver reduction was achieved by removing the left lateral lobe and the two caudate
lobes just before harvesting the liver, which resulted in a 40% reduction in liver mass.
The pedicle of the left lateral lobe was ligated with 5-0 silk ligature, and the lobe was
removed. Two caudate lobes were separately removed with the ligation. The donors’
livers were flushed and preserved with cold (4°C) University of Wisconsin (UW)
solution for 1 h (6). ROLT was performed according to the Kamada’s cuff technique
(30). The time of the anhepatic phase was 17-20 min (6), which practically coincided
with the times of warm ischemia suffered by the graft between extraction from the
preservation solution and the restoration of portal flow.
3) Reduced-size orthotopic liver transplantation+gadolinium chloride (ROLT+GdCl;)
(n=12, 6 transplantations): As in group 2, but with previous administration of GdCls
(Sigma Chemical, St. Louis, MO) (10 mg/kg, i.v.) in donor rats to inactivate Kupffer
cells, 48 hours and 24 hours before hepatectomy (6).
4) Reduced-size orthotopic liver transplantation+Interleukin-1 receptor antagonist
(ROLT+IL-1ra) (n= 12, 6 transplantations): As in group 2, but treated with IL-1ra

(Amgen Biologicals, Thousand Oaks, CA) (40 mg/kg, i.v.) just after reperfusion (13).
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Role of NO involved in ischemic preconditioning on IL-1 release following ROLT
5) Ischemic Preconditioning+Reduced-size orthotopic liver transplantation (PC+ROLT)
(n=12, 6 transplantations): To induce ischemic preconditioning, the blood flow of the
donor liver was interrupted by placing a bulldog clamp at the portal vein and hepatic
artery for 10 min, followed by reflow for 10 min (13). Following the same surgical
procedure as for group 2, liver lobes were resected and flushed and preserved with
cold (4°C) UW solution for 1 h.

6) Reduced-size orthotopic liver transplantation + NO donor (ROLT+NO) (n=12, 6
transplantations): As in group 2, but with previous administration of the nitric oxide
(NO) donor, spermine NONOate (Cayman Chemical, Ann Arbor, MI) (10mg/kg i.v.)
(10). In contrast with other NO donors, spermine NONOate is a spontaneous NO donor
that releases NO independently of enzymatic catalysis, and it does not require
activation in the tissue (31,32).

7) Ischemic Preconditioning+ Reduced-size orthotopic liver transplantation + NAME
(PC+ROLT+NAME) (n=12, 6 ftransplantations): As in group 5, but with previous
administration of an NO synthesis inhibitor, Nw-nitro-L-arginine methyl ester (NAME)
(Sigma Chemical, St. Louis, MO). As previously reported, 10mM of L-NAME was
administered through the portal vein when the liver grafts were harvested, and 20mg/kg
was injected i.v. into the recipients just after reperfusion (6).

8) Preconditioning+Reduced-size orthotopic liver transplantation+NAME+IL-1ra
(PC+ROLT+NAME+IL-1ra) (n=12, 6 transplantations): As in group 7, but treated with
IL-1ra (40 mg/kg, i.v.) just after reperfusion (6,13).

Twenty-four hours after transplantation, plasma and lung samples were collected.
Malondialdehyde (MDA) levels and myelopreroxidase (MPQO) activity were measured in
the lung. IL-1a and IL-1p levels were measured in liver samples. Total (bound and free)
TNF-a, free TNF-a, and sTNFR (sTNFR1 and sTNFR2) were determined in plasma.

Histological analyses in lung were also performed.
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Biochemical determinations

Lipid peroxidation assay. Lipid peroxidation in the lung was used as an indirect

measurement of the oxidative injury induced by reactive oxygen species (33). After
protein precipitation, the formation of malondialdehyde (MDA) was measured by using
the thiobarbiturate reaction (13,34).

Myeloperoxidase assay. Lung MPO has been used as a marker of pulmonary

neutrophil infiltration and activation (35,36). MPO levels were determined
photometrically using 3,3’,5,5'-tetramethylbenzidine as substrate (37).

Interleukin assay. Liver samples were processed as previously reported (13) and

IL-1oc and IL-1B levels were measured using Enzyme-linked immunosorbent assay
(ELISA) kits from Amersham Life Sciences (Amersham, UK).

TNF assay. Free TNF-a levels in plasma were measured using a commercial
ELISA kit from Biosource (Camarillo, CA, USA). To measure the total (bound and free)
TNF-a levels in plasma, a commercial competitive enzyme immunoassay kit from
Chemicon International (Temecula, CA) was used.

sTNFR1 and sTNFR2 assay. The soluble TNF-a receptors (sTNFR1 and

sTNFR2) levels in plasma were measured using commercial ELISA kits from R&D
systems (Minneapolis, MN,USA) .

Histology

For the histological studies the lung was first perfused with a fixative solution
(10% neutral-buffered formalin) at a pressure of 25 cmH,0. Lung samples were fixed in
10% formalin for at least 18 h before being processed and stained with hematoxylin-
eosin according to standard procedures (38,39).

Statistics

Data are expressed as means + standard deviations, and compared statistically by
analysis of variance, followed by Student-Newman-Keuls. p<0.05 was considered

significant.

122



Resultados

RESULTS

No differences in hepatic IL-1p levels were observed in any of the groups evaluated
(Fig. 1A). Unlike IL-1B, hepatic IL-1a levels after ROLT were found to increase to a
higher level than those recorded in the Sham group (Fig. 1B). Given the evidence
indicating that these cells are one of the main sources of IL-1 (40), this study evaluated
whether IL-1a levels observed after ROLT may be dependent on Kupffer cells. As
shown in Fig. 1B, GdCl; pre-treatment reduced this significant increase in IL-1a levels
observed after ROLT.

Pulmonary neutrophil accumulation and oxidative stress, as estimated by
pulmonary MPO and MDA levels increased significantly after ROLT compared with the
results obtained in the Sham group (Fig. 2). Lung damage after ROLT is multifactorial.
In addition to the consequences on lung damage derived from hepatic I/R, atelectasis,
diaphragm injury, surgical procedures and other factors could injure the lungs. In order
to minimize the potential effects of the surgical manipulation and the lung damage
caused by the sample collection we compared the data obtained in the ROLT group
with those obtained in the Sham group (these animals were subjected to a fictitious
operation. The anesthesia and surgical times were not statistically different between
the Sham and the other groups). In addition, the lung (corresponding to all groups,
including Sham) was first perfused with a fixative solution before being processed for
histological examinations.

The involvement of IL-1a in the inflammatory response and in the lung damage
associated with ROLT was evaluated. IL-1 receptor antagonist treatment (ROLT+IL-
1ra) attenuated the increases in lung MPO and MDA after ROLT. Ischemic
preconditioning (PC+ROLT) reduced IL-1a (Fig. 1B) and protected against lung injury
associated with ROLT (Fig. 2). NO donor treatment (ROLT+NO) kept IL-1a, MPO and
MDA levels at the same levels as in ischemic preconditioning. NO synthesis inhibition

(PC+ROLT+NAME) abolished the benefits of ischemic preconditioning on IL-1a
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release and on the parameters of lung damage. This is shown by the increases in IL-
1o, MPO and MDA levels, which are of the same order as those observed after ROLT;
and IL-1 receptor antagonist supplementation (PC+NAME+IL1ra) prevented the
injurious effects of NO synthesis inhibition, giving biochemical parameters of lung
damage similar to those observed in PC+ROLT group.

Histological changes in the lung following ROLT were in keeping with the
biochemical study. The lung integrity in the Sham group was preserved (Fig. 3A). The
ROLT and PC+ROLT+NAME groups showed margination and adhesion of neutrophils
to the endothelium, a diffuse augmentation of the cellularity in the alveolar walls, and a
marked or moderate thickening of the alveolar walls (Fig. 3B and 3C). By contrast, no
apparent vascular margination of neutrophils and only a slight and non-diffuse
thickening of alveolar walls was observed in the ROLT+IL-1ra, PC+ROLT, ROLT+NO
and PC+NAME+IL-1ra groups (Figs. 3D and 3E).

The effect of ischemic preconditioning on TNF and sTNFR following ROLT was
investigated. Total TNF (free and bound) was similar in all groups (Fig. 4). However, a
significant increase in plasma free TNF levels was found after ROLT. This was reduced
when ischemic preconditioning (PC+ROLT) or NO donor pre-treatment (ROLT+NO)
were carried out (see Fig. 4). NO synthesis inhibition (PC+ROLT+NAME) eliminated
the benefits of ischemic preconditioning on plasma TNF release, leading to free TNF
values comparable to those observed in the ROLT group. Next, we considered the
possibility that the beneficial effects of preconditioning on systemic free TNF might be
related to changes in sTNFR. The increases in sTNFR1 levels after ROLT were not
modified by ischemic preconditioning, NO donor (NO+ROLT) o L-NAME treatment
(PC+ROLT+NAME) (Fig. 5A). However, this was not the case of sTNFR2 (Fig. 5B).
Ischemic preconditioning and NO donor treatment increased the sTNFR2 levels more
than the ROLT group did. NO synthesis inhibition (PC+ROLT+NAME) abolished the
benefits of ischemic preconditioning on sTNFR2, leading to sTNFR2 values similar to

those observed in the ROLT group. Interestingly, an association between free TNF and
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sTNFR2 levels was observed. Thus, reduced systemic free TNF levels (Fig. 4B) were
associated with high sTNFR2 levels (Fig. 5B), and inversely, increased systemic free
TNF levels were associated with low sTNF2 levels. As shown in Fig. 6, the ratio of TNF
to sTNFR2 (TNF/sTNFR2) fell in the groups in which lung protection was observed
(PC+ROLT, ROLT+NO, ROLT+IL-1ra and PC+NAME+IL-1ra), whereas TNF/sTNFR2
ratio increased in the groups in which pulmonary damage was observed (ROLT and
PC+ROLT+NAME).

These results indicate that ischemic preconditioning, mediated by NO 1) reduced
IL-1 release and thus protected against the lung damage associated with ROLT and 2)
regulated systemic TNF/sTNFR2 levels. Given these results and the data in the
literature indicating that IL-1 might modulate TNF/sTNFR (15,27-29), we assessed
whether the inhibition of IL-1 release by ischemic preconditioning protected against the
lung damage associated with ROLT through the regulation of TNF/STNFR2. Our results
indicate that IL-1 action inhibition by IL-1 receptor antagonist (ROLT+IL-1ra), which
protected against lung damage (Fig. 2), reduced systemic free TNF and increased
sTNFR2 (Figs. 4 and 5), suggesting a relationship between IL-1, TNF/sSTNFR2 and
pulmonary damage. Because NO generated by preconditioning reduced IL-1,
TNF/sTNFR2 and pulmonary damage, NO synthesis inhibition (PC+NAME+ROLT)
increased IL-1, TNF/sTNFR2 and lung damage, as the same manner as in ROLT
group. However, IL-1 action inhibition in PC+NAME group (PC+NAME+ROLT+IL1ra)
prevented the injurious effects of L-NAME on TNF/sTNFR2 and pulmonary damage,

resulting in similar values to those found in the PC+ROLT group.

All the results described above were recorded 24h after transplantation. Control
experiments to assess whether the consequences of ROLT on lung damage are
transitory, indicate that the parameters of lung damage seen 24h after transplantation
(MPO, oxidative stress, and the alterations in the pulmonary integrity seen by

histological study) were exacerbated 48h later. In addition, the benefits of ischemic
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preconditioning on lung damage observed 24h after transplantation were maintained

days later.
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DISCUSSION

Experimental data indicate that pulmonary damage associated with hepatic I/R is
mediated by neutrophil infiltration and the release of inflammatory mediators including
reactive oxygen species (41,42). The fall in the oxidative stress and neutrophil
infiltration observed in lung tissue after IL-1 receptor antagonist treatment points to the
involvement of IL-1a- which seems to be dependent on Kupffer cells- in the lung
damage associated with ROLT. Ischemic preconditioning reduced hepatic IL-1a
release and protected against lung damage associated with ROLT. NO synthesis
inhibition in the preconditioned group, which increased IL-1a, abolished the benefits of
ischemic preconditioning on the lung damage associated with ROLT. However, when
we inhibited IL-1 action with IL-1 receptor antagonist, the injurious effects of NO
inhibition on lung damage disappeared. In addition, NO donor administration to ROLT
resulted in reduced hepatic IL-1a, and biochemical and histological parameters of lung
damage similar to those in the preconditioned group. The results of the present study
indicate that ischemic preconditioning, through NO, inhibited hepatic IL-1a release,
thus protecting against the lung damage associated with ROLT. In an experimental
model of I/R that mimics the warm ischemia associated with tumour hepatic resections,
IL-1 produced in liver following reperfusion was implicated in systemic TNF release
(15). Furthermore, lung damage associated with liver transplantation from non-reduced
size liver graft appears to be linked to systemic TNF release (43). We therefore
examined whether the benefits as regards lung damage resulting from IL-1 action
inhibition could be explained by changes in systemic TNF/sTNF levels. To this end, we
assessed the effect of ischemic preconditioning on systemic TNF/sTNF levels following

ROLT.

In most studies based on inflammatory processes (17,44,45), increases in TNF
are paralleled by similar increases in sTNFR. Ischemic preconditioning is associated

with a down-regulation of systemic free TNF levels; therefore, a similar down-regulation
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of sTNFR release may be expected. However, an equally plausible hypothesis is that
the processes which led to the enhanced release of sSTNFR are stimulated by ischemic
preconditioning. In fact STNFR supplementation, in situations where there is insufficient
production of endogenous sTNFR, would reduce the free TNF levels, thus inhibiting the
deleterious effects of TNF (21-24). Our results are in line with this second hypothesis
since following preconditioning, sTNFR2 release was up-regulated and free TNF
release was down-regulated, thereby reducing the ratio of TNF/sTNFR2 and
suggesting a decrease in the bioavailability of TNF. This could contribute to the
ischemic preconditioning tolerance against lung damage associated with ROLT.
Furthermore, we established a relation between IL-1, lung damage and sTNFR in
ROLT. In fact, IL-1-ra pre-treatment, ischemic preconditioning and NO donor treatment
(which inhibited IL-1 action and protected against lung damage) increased systemic
SsTNFR2 and decreased TNF, resulting in low systemic TNF/STNFR2 levels following
ROLT. Similarly, any treatment that increases IL-1, should increase TNF/sTNFR2 and
lung damage. In fact, NO synthesis inhibition in the preconditioned group, which
resulted in high IL-1a levels, increased both TNF/sTNFR2 and the biochemical
parameters of lung damage at levels of the same order as those observed in the ROLT
group. However, when we inhibited IL-1 action with IL-1 receptor antagonist, the
injurious effects on lung damage disappeared and this was associated with systemic
sTNFR, TNF and TNF/sTNFR2 levels as in preconditioned group.

Based on the findings reported here, we suggest a mechanism that might explain
the benefits of ischemic preconditioning in preventing the lung damage associated with
ROLT. This surgical strategy, through NO, can inhibit IL-1 release, which in turn would
regulate the systemic TNF/sTNFR2 release and protect against lung damage
associated with ROLT. Further studies based on the use of TNFR2-deficient rat,
antibodies to neutralize sTNFR2, and the blockade of shedding of TNFR2, are required
to determine whether the up-regulation of sTNFR2 is needed for the tolerance of

ischemic preconditioning against the lung damage associated with ROLT. However,
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such studies would be difficult to interpret. Thus, if we used TNFR-deficient rat, it would
not be possible to determine the relative contribution of sTNF release blockade versus
the absent membrane-bound TNFR. A further possibility would involve the design of
antibodies that neutralize sTNFR, though not the membrane-bound TNFR, as this
would present numerous difficulties. Alternatively, TNFR shedding might be prevented,
although this might result in an exaggerated response to TNF, not only from the
decrease in sTNFR2, but also because of the enhanced cellular responsiveness to
TNF (secondary to the increase in membrane-bound TNFR).

The results of the present study indicate: 1) the involvement of IL-1 in the lung
damage associated with ROLT; 2) the underlying protective mechanisms of ischemic
preconditioning on lung damage associated with ROLT, based on the inhibition of IL-1
action by NO; 3) The capacity of ischemic preconditioning to regulate systemic
TNF/sTNF following ROLT; 4) a potential relationship between NO, IL-1 and TNF/sTNF
in the benefits of ischemic preconditioning on the lung damage associated with ROLT.
These results suggest that surgical strategies, including ischemic preconditioning
aimed at regulating IL-1 action, could modulate systemic TNF/sTNFR levels and
protect against the pulmonary damage in an experimental model of reduced-size liver
transplantation. The benefits of ischemic preconditioning on lung damage could also be
simulated by pharmacological strategies including NO donor and IL-1 receptor

antagonist treatment.
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Figure legends

Figure 1. IL-1p (A) and IL-1a. (B) levels in liver. 'P<0.05 vs. Sham; *P<0.05 vs. ROLT;
°P<0.05 vs. PC+ROLT.

Figure 2. MPO and MDA levels in lung. P<0.05 vs. Sham; "P<0.05 vs. ROLT; °P<0.05
vs. PC+ROLT.

Figure 3. Histological lesions in lung. A) Sham: No pulmonary lesions. B) ROLT:
Marked thickening of alveolar walls and vascular margination of neutrophils. C)
PC+ROLT+NAME: Moderate thickening of alveolar walls with margination of
neutrophils to the endothelium. D) PC+ROLT: Slight thickening of alveolar walls. E)
PC+NAME+ROLT+IL-1ra: Histological lesions comparable to PC+ROLT. (H&E,
Original magnification).

Figure 4. Total (bound and free) TNF-a and free TNF-a levels in plasma. 'P<0.05 vs.
Sham; "P<0.05 vs. ROLT; °P<0.05 vs. PC+ROLT.

Figure 5. Soluble TNF-a receptors (sSTNFR1 and sTNFR2) in plasma. 'P<0.05 vs.
Sham; "P<0.05 vs. ROLT; °P<0.05 vs. PC+ROLT.

Figure 6. TNF/sTNFR2 ratio. This parameter is expressed as the relation between
plasma TNF-a levels and plasma sTNR2 x1000. 'P<0.05 vs. Sham; "P<0.05 vs. ROLT;

°P<0.05 vs. PC+ROLT.
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Fig 3
Franco-Gou et al
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