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Chapter 1

COMPLEX NETWORKS:
BETWEEN ORDER AND RANDOMNESS

The rise of the Internet is considered one of the keys that have led the tec
nological revolution of the end of the last century, contributing to the glob-
alization phenomena. Collected data confirm this theory; the total number
of elements connected to the Internet has been increasing exponentily ev
year since 1990, with more than one billion people using its services eyeryda
(see figure 1.1). The amount of traffic introduced by these users i@ tpe-
tween100% and1000% per year, moving thousands of Petabytz¥ (ytes)
of information between computers around the world everyday.

Despite the common misconception that behind the Internet there is a highly
engineered design, the truth is that the technological part plays a velly sma
role in this exponential growth; its secret relies on a collection of protocols
and technical guidelines that describe how to communicate efficiently in a het-
erogeneous world of electronic devices. Using these guidelines, indepe
entities (such as governments or Internet Service Providers) haveeohiyesr
own regulations to attach new devices to the network, allowing the creation of
an extremely heterogeneous structure that has been continuously gwvin
ing the last 20 years.

Regardless of this lack of centralized control and design, the Intersiet d
plays two unexpected interesting properties. First, it is one of the mosstrobu
networks that actually exist; regardless of the large number of attadiesesiif
every day by its components (Gordon et al., 2007), very few inciderts ha
been able to produce a global breakdown of communichtiBecond, the In-
ternet shows an unexpected efficiency at delivering information betwsers,
despite the huge amount of traffic that is distributed by routers worldwide.

1The Morris Worm on November 2, 1988 and the attack against 8 Bervers on October 22, 2002 are
two of the most relevant attacks against the Internet that bampromised the integrity of the network.
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Figure 1.1. Evolution of the number of hosts connected to Internet since the credtitie o
network in 1969 in a logarithmic scale. Data has been reproduced froidbees’ Internet
Timeline, which is available for download at http://www.zakon.org/robertirggtimeline/

From a statistical point of view, the latency or delays suffered by thelingve
elements is very low compared to other communication or transport networks
(such as highways).

For some of these reasons, Internet is considered as one of thegpzaiid
examples of a complex system, which are also present in many natural or arti-
ficial environments. Since there is not a standardized definition for coimplex
the scientific community usually describes these systems using some common
characteristics shared by a large number of them. Like the Internet, complex
systems usually display an optimal organization that has emerged without any
external control or design. But maybe the most relevant property Hradira-
plex systems share is their non-linearity, which results in behavior thabtann
be expressed as the sum of the behaviors of their components. Thid isetda
complex systems apart from complicated systems: in complicated systems,
the organization of the different elements is imposed or designed externally.
Complicated systems can have a very large number of components, b we ar
always able to identify the role or function of each element, and using this mi-
croscopic information it is relatively easy to infer the macroscopic beha¥ior
the whole system (Amaral and Ottino, 2004). However, the border batwee
complicated and complex is not as clear as it seems, mainly because the lack
of a concrete definition for complexity.

Networks are one of the most used representations to describe théyunder
ing connection structure that defines the interactions of the elements of a sys
tem. Simple networks are typically represented using graphs, such as lattices
or random graphs, which exhibit a high degree of similarity no matter what
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part is examined, and some dynamical processes based on theseesraatur

be solved analytically. However, most real networks are very heteemgys

and share non-trivial characteristics that cannot be modeled usiniticnadi
approaches based on simple networks. These findings led to the devetopme
of the “science of networks”, with the main goal of studying complex net-
works. That is, the group of networks that are “between perfectiaeity and

total randomness” (Watts and Strogatz, 1998), because in the apphaerst
there is a hidden optimal structure that supports the dynamical procdsses o
complex system.

The emergence of the new science of networks has been boosted due to
three main reasons: the increase in availability of computing resources, the
large amount of available networks, and the introduction of tools, measure-
ments, and models that allowed a deep analysis of the networks. Thanks to the
computerization of datasets and the emergence of the Internet as a poge re
itory of information, the scientific community can access to very large amount
of network datasets. To understand all these networks, resealzwerstud-
ied their structural and dynamical properties using three main tools: nonlinea
dynamics, statistical physics and network/graph theory. The most intgrestin
point is that the results obtained have been applied successfully in lsdigera
ciplines, such as computer science, biology, economics or sociology.

In the last five years, some of the main research lines within the science of
networks have focused on the study of the interplay between the stractdre
the collective dynamics of complex systems. Several approaches ezl pr
that there is a bidirectional influence between the topology and the dynamic
processes that take place over complex networks. For instance, inticelpa
case of the Internet, understanding how the topology influences thenibga
of traffic flow provides valuable information on how to design better topofogie
and more efficient communication protocols.

1. Describing complex networks

Networks are usually described using graphs, composed of nodeerfor
tices), that represent the components of the system, and links (or ¢bges)
represent some kind of relationship or interaction between the nodesafrhe
ture of the links can be physical (when there are a real connectionge®etw
the elements, as in the Internet routers connections) or logical (whenreteey
to abstract connections, like friendship or collaborations between geople

The study of graphs has its own well established theory in mathematics.
Graph theory was set up in 1736 by Euler in his famous problem about the
bridges of Kénigsbery This theory has solved a large number of problems re-

2The problem consists on deciding whether it is possible tix @aoute that crosses each of the 7 bridges
of the city of Kdnigsberg exactly once.
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lated to topological properties of graphs, like the description of their atiivae
ity, Eulerian problems (such as the Eulerian walks), or problems of vediga/e
coloring (Bollobas, 1998).

From a mathematical point of view, a graphis defined as an ordered pair
G(V,E) whereV is a set of vertices and’ is a set of edges between the
verticesE C V«V,V«V = {(4,))|i,j € V}. If the values on the vertices
are commutativei, j) € F < (j,i) € E the graph is known as undirected.
Otherwise we define it as a directed graph (or digraph), and insteadtjete
we call the links arcs or arrows.

Simultaneously, each edge (or arc) can have an associated a labkler va
E,,. When the value is 0 or 1 (only informs about the existence or not of the
edge) the graph is called unweighted. Otherwisdyjf € R then the links
provide extra information about the structure of the graph, and it is called a
weighted graph. Other mathematical concepts related with graphs that we will
consider in this thesis are the following:

= The order or size of a graph is the number of verti¢&s When the number
of edges of the graph is relatively smaHt| ~ O(|V]), the graph is called
a sparse graph. Otherwise, if it is close to the maximal number of edges
|E| ~ O(|V|?), we classify the graph as dense. When a graph has all the
possible edge| = |V|(|]V| — 1)/2 itis called a complete graph.

= A subgraphS(V’, E’) of a graphG is a graph whose set of vertices and set
of edges are all subsets@f V' C V andE’ C E.

= A path is a sequence of distinct vertic€s {z¢, z1, x2..z,} Where each
pair of the sequence is linkedi( : + 1, (z;, z;+1) € E). The length of the
path is the number of edges that we have in the sequence.

= A graph is connected if there is a path between any two of its vertices.
Otherwise, the graph is disconnected. Each one of the connected parts is
known as a component of the graph, and the largest component is usually
referred as the Giant Component (GC) of the graph.

The adjacency matrix is the most used representation of a graph. Itis a
two dimensional matrix with rows and columns labeled as the graph nodes,
where each elemenf; has a value of 1 (or the weight value) or 0 depending
on whether nodesand; are adjacent or not. If the network is undirected the
adjacency matrix is symmetric. And if the network does not have self-loops
(i.e. nodes are not connected with themselves), the diagonal of the matrix ha
only zeros.

However, if one wants to analyze a graph using computational resotirees
adjacency matrix is not the optimal representation. On one hand, the amount
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Figure 1.2. a) Example of an unweighted and undirected graph composed by (ualats)
and links (lines). b) Representation of the graph using an adjacencixmatere the value of
ai,; is 1if there is a link between nodéand; and O otherwise. c) Implementation of the graph
using linked lists. The first column are the nodes, and the list that folloals mades contains
the destination of the links that each node has.

of memory needed to store the adjacency matrix delimits the maximum pos-
sible size of the graphs (the required space to store a few thousanddex n
overflows the current capacity of computers). On the other hand, sinse

real networks are sparse, a large portion of the memory is somehow vgsted
zeros that are never used in the analysis of the graph.

The development of efficient data structures and algorithms in the 1970’s
provided better implementations of graphs than storing the whole adjacency
matrix, reducing the necessary space and improving the efficiency olgthe a
rithms that deal with the data (Aho et al., 1983). The most used implementation
is a data structure known as a linked list, consisting of a vector of nodes that
only store the existent relationships between the elements. Using this repre-
sentation one can store networks of millions of nodes avoiding the capacity
problem and without degrading the performance of most algorithms. See fig
ure 1.2 for an example of a linked list.

1.1  Statistical properties of complex networks

The initial goal of the science of networks has been to uncover andchar
terize network’s topology. The first step was the observation of thetatalc
properties of a very heterogeneous group of real networks (bi@bgocial
and technological), discovering that most of these networks share sinitar to
logical properties, which are not in concordance with the same propefties
traditional regular or random graphs.

To characterize these statistical properties, the researchers delalepe
of tools that capture the most relevant topological features. Some of these
tools were imported from graph theory and social sciences (such asgdheed
distribution or the distances between nodes), and they were complemented with
the introduction of new specific measurements, like the clustering coefficient
introduced in (Watts and Strogatz, 1998) or the assortative mixing intrdduce
in (Newman, 2002).
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Using this set of measurements, we can describe the structure of a network
at different levels. If we analyze the individual characteristics ohedement
of the system, we will obtain a description of the microscopic level, and if
we consider the properties of the whole system, we will obtain a macroscopic
description of the network. For a more detailed description of all these prop
erties see the following reviews (Barabasi and Albert, 2002, Dorogowdsd
Mendes, 2002, Newman, 2003b, Boccaletti et al., 2006, da Fontowsta Co
et al., 2007).

Degree distributions

The simplest and most studied property of networks is the degree of its node
k., defined as the number of links that vertelxas. If the graph does not admit
more than one link between each pair of nodes and the node does not have
self-loops, the value corresponds to the number of adjacent neighbdirst
statistical approach is obtained computing the average degree of a network

(k) = |é| Sk (L.1)

veV

However, if the network is not homogeneous, it is usually more interesting
to observe the probability degree distributipp, defined as the fraction of ver-
tices that have a certain degreeThis distribution describes how the degrees
are distributed among the nodes of the system, and can be plotted using the
following histogram,

pk—Wl‘ ! (12)

veV,deg(v)=k

And finally another alternative is to analyze the cumulative degree distribu-
tion Py, which refers to the probability that the degree is greater than or equal
tok.

Pe=) pw (1.3)
K—k

This plot has some advantages over the probability distribution. First, we
avoid losing information of data points that fall in the same bin when using a
conventional histogram. And second, in the case that the probability distribu
tion has a heavy tail, the cumulative distribution reduces the noise that usually
appears in the tail (Newman, 2003b).
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Degree correlations

Newman proposed the assortativity as another statistical property of dee no
degree, measuring the correlation between the degree of adjacest(Nate
man, 2002). He also pointed out that the models that do not take this property
into account will not correctly reproduce many of the behaviors of sgat
tems. The assortative coefficienis defined as the Pearson correlation coeffi-
cient between the degree of connected pairs of nodes. There aaliffieeent
behaviors that can be determined measuring the valueifreal networks
(see table 1.1). When ~ 0, there is no relationship between the degrees of
adjacent nodes. This is the typical case of random networks whereedixy
almost uniformly distributed. Social networks usually have a value of0,
meaning that highly connected nodes tend to be connected with other high de-
gree nodes. This tendency is referred as assortative mixing, alsonkasw
assortativity. On the other hand, many technological and biological nletwor
typically show disassortative mixing (or dissortativity) with< 0, as low de-
gree nodes tend to attach to high degree nodes.

If one wants to get more information about the correlations, another option
is to use the relation between the average degree of the nearest neighaor
node(k,,) and its degreé, suggested in (Pastor-Satorras et al., 2001),

(knn) = > K'p(K|F) (1.4)
k./

[ network | Size [ r
physics coauthorship 52,909 0.363
biology coauthorship | 1,520,251 | 0.127

mathematics coauthorship 253,339 0.120

film actor collaborations | 449,913 0.208

company directors 7,673 0.276
Internet 10,697 —0.189
World-Wide Web 269, 504 —0.065
protein interactions 2,115 —0.156
neural network 307 —0.163
food web 92 —0.276

Table 1.1. Assortative coefficient of some complex networks studied by Newmhisiarticle
(Newman, 2002). A network is said to show assortative mixing if the nodée network that
have many connections tend to be connected to other nodes with margctions. Social net-
works usually display assortative mixing & 0), while technological and biological networks
are usually disassortative & 0). For a detailed explanation of the coefficient and the origin of
the datasets see the referred article.
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wherep(k’|k) is the probability that a node with degréds connected to a
node with connectivity:’.

Clustering coefficient

Another important feature that is observed in real complex networks is the
existence of a high number of triangles (loops of 3 different edgess}. gite-
nomenon is very common in social networks, where reflects the fact that “M
friends are also likely to be friends”. To quantify this measure, Watts amd Str
gatz introduced the clustering coefficient (Watts and Strogatz, 1998hwhic
measures for each nodeof the network the proportion of links between its
neighbors divided by the number of links that could possibly exist between
them:

C, = 2 x (links between neighbors of vertex v) (1.5)
ky(ky — 1)
The clustering coefficient for the whole system is computed as the average
value of the clustering coefficient of the nodes.

C= “1/‘ S, (1.6)

veV

An alternative definition of the clustering coefficient was introduced im(Ne
man, 2001b) also taken from social network studies. In this case heggsp
to compare the total number of triangles that we can identify in the network
versus the total possible number of triangles that can exist. In other words
the value of the clustering coefficient measures the transitivity of the links: if
node A is connected to B and C, what is the probability that B and C are also
connected?

, 3 xnumber of triangles in the network
~ number of possible triangles in the network

2.7)

Distances and diameters

Although graphs are not usually defined in an Euclidian space, thespare
measures of distance that can be defined using the idea of the path iettoduc
previously, counting the number of intermediate steps between two nodes of
the network. The most used distance is the average path I&ngthich mea-
sures the average length of the shortest (or geodesic) path betwepairabf
nodes of a network:

1
ERR O TPV ()
v{i,j}eVii#j
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whered;; is the shortest distance (number of edges) between noaled ;.
Along with L we can also define the diameter of a network as the maximal
shortest path length of the whole netwofk,= maxz{d;;|{i,j} € V}. If the
network has more than one connected component and there is no poatiible p
between some nodes, we consider both values as

Centrality measures

Finally, centrality indices are used to measure the relevance of the nodes in th
network according to a certain characteristic. The idea also comes frmat so
network analysis, where researchers want to identify the most influatial
central) vertices of a network. For instance, the centrality index of ode no
can be measured according to its degree (Degree Centrality) or the distanc
the other nodes (Closeness Centrality).

Throughout the thesis we are going to work with the betweenness centrality
introduced in (Freeman, 1977). This measure plays an important role in the
dynamics of communication processes, since it represents how one ivertex
fluences the traffic flow between the other vertices. In other words, isunea
the average amount of information that each node has to redistribute.ek is d
fined as the number of shortest paths between all possible pairs of thades
go through a certain node of the network,

Bv)= Y 75t(v) (1.9)

g
stvAtey St

whereog(v) /o4 is the fraction of shortest paths between nodesid¢ that
go through node.

1.2 Network models

The first approaches to model the internal structure of natural systenes w
mainly based on regular structures like lattices. The work of Erd6s angi Rén
(Erd6s and Rényi, 1959) combined the probability theory with the field of
graphs, opening the door for a large amount of alternative reseaeshdimd
new theories about the structure of real systems. But the recent intewes
modeling the structural properties of complex networks arose with the publi-
cation by physicists of two canonical works in the field: the small-world model
(Watts and Strogatz, 1998) and the scale-free model (Barabasi ardt,Alb
1999). The enormous impact of both publications can be easily understood
for two main reasons: first, they provided an empirical demonstration thkt re
complex networks have these non-trivial features that cannot beirsglas-
ing the previous regular and random approaches. And second,rihadhat
simple statistical models are able to mimic the structural configuration of real
networks with a large degree of accuracy.
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Figure 1.3. Left: Example of a 1D lattice, represented as a ring with periodic boursjarie
where each node is connected to neighbors at distance 1 and 2. Rightpexof a 2D lattice
in a rectangular grid that also presents periodic boundary conditions.

After publication of these works, network science started to grow in im-
portance and popularity, and a large number of models have been pdblishe
obtaining different levels of acceptance. These models are mostly used as
platform where mathematical and physical analysis can provide insights abo
the origin of the structure, and more importantly, to understand the dynamics
of the supported complex systems.

Regular networks

Regular networks, and in particular lattices, have been quite popular sigshy
since they can describe the organization of the atoms in a crystal or thégcan
used to discretize some continuum models. Moreover, they are also appealin
since in some cases the models based on these structures are exactlg.solvab
The Ising model or the Potts model are two examples of lattice based models.

The structure of a regular network consists of a set of nodes ordter@d
lattice (or other regular structures), all of them connected to all the neighb
that are a fixed distance (see figure 1.3). For simplification purposessin th
dissertation we will only consider regular networks with periodic boundary
conditions, where all the nodes share the same exact topological fiesper
Due to this regularity, one can easily compute the quantities that we have dis-
cussed in the previous section, such as the degree distribution, theinlyster
coefficient or the average path length.

Let us describe these three properties. First, since all nodes havantiee s
degreek; = (k),Vi, the probability degree distribution follows Kronecker
delta function wherey, is 1 for k = (k) and O otherwise. Second, the average
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Figure 1.4. Left: Example of a random network generated with the Erdds-Rényiadethith

N = 30 andp = 0.1. Right: Degree distribution of an ER network wifli = 10000 and
p = 0.02, with a mean degreg:) ~ 200.

distance between two nodes in a periodic lattice is usually ldrge,oc N1/D
whereD is the number of dimensions of the regular lattice, and increases when
we add new elements to the network. And finally, the expected clustering co-

efficient for this type of networks is almost constant as we increase the siz
Chreg ~ constant due to the periodicity of links.

Random networks

In a classic article of 1959, Paul Erdds and Alfred Rényi proposeddehto
create random (or probabilistic) graphs with a fixed number of nodebrdesd
(Erd6s and Rényi, 1959). The idea is very simple: select a certainpfitypa

to connect two vertices with one link. Apply the probability to all the possible
pairs of nodes of the network and then you obtain an Erdés-Rényir@EiRpm
network with NV nodes an®p/(N (N — 1) links (see figure 1.4 left). One of

the most interesting aspects of their random model is that as we increase the
value ofp from 0 to 1, we see how different structural properties emerge. For
instance, when the probability is greater than a threshojd ~ InN/N,
almost every graph created with the ER method is fully connected.

Let us again describe the same statistical properties that we have analyzed

for the regular graphs. The degree distribution of ER networks follobia@:

mial distributionp, = C%,_,p*(1 — p)¥~1=%. When the network has a large
number of nodes, the degree distribution can be approximated using arPoiss
distribution with an average degrge= (k) ~ pN (see figure 1.4 right).

e Mk
x (1.10)

Pk =



12

STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

Network [ Size | C | Crana | L [ Lrand |
WWW, site level, undir. | 153,127 0.1078 0.00023 3.1 3.35
Internet, domain level 6209 0.3 0.001 3.76 | 6.18
Movie actors 225,226 0.79 0.00027 3.65 2.99
LANL coauthorship 52,909 043 | 1.8x107* | 59 | 4.79
MEDLINE coauthorship| 1,520,251 | 0.066 | 1.1 x10°° | 4.6 4.91
SPIRES coauthorship| 56,627 0.726 0.003 4.0 2.12
NCSTRL coauthorship| 11,994 0.496 3x107% 9.7 7.34
Math coauthorship 70,975 0.59 54x107° | 9.5 8.2
Neurosci. coauthorship| 209,293 0.76 55x10°° 6 5.01
E. coli, substrate graph 282 0.32 0.026 2.9 3.04
E. coli, reaction graph 315 0.59 0.09 2.62 | 1.98
Ythan estuary food web| 134 0.22 0.06 2.43 | 2.26
Silwood park food web 154 0.15 0.03 3.40 | 3.23
Words, cooccurence | 460.902 0.437 0.0001 2.67 | 3.03
Words, synonyms 22,311 0.7 0.0006 4.5 3.84
Power grid 4,941 0.08 0.005 18.7 | 124
C. elegans 282 0.28 0.05 2.65 | 2.25

Table 1.2. Clustering coefficientC and average path length of several real networks. To
observe the existence of the small-world phenomena, the values henecbmpared with a
randomized version of the network with the same number of nodes arsd lirdan be observed
that the average path length is similar to the randomized, but the clustegffigiemt is orders

of magnitude higher in the real networks. This data has been repmdima Albert and

Barabasi review (Barabasi and Albert, 2002), which also includésiléé analysis of other
topological properties and describes the origin of the network datasets.

The average path length of a random network,ig,; « InN/In(k), which
for a fixed (k) increases very slowly compared to the size of the network (and
also much slower than a regular network with the same number of nodes and
links). This value is in concordance with the distance observed in reabrietw
(see table 1.2).

When looking at the clustering coefficient, random networks also exhibit a
completely different behavior than regular networks. Since randomankesw
have no internal defined structure, they usually have a very low clugteon
efficientC.q.nq ~ (k)/N (tends to zero as the network is more sparse). This
value is also small when compared to the expected ones of real netweeks (s
table 1.2), proving that complex networks are far from randomness.

Small-World : “Six Degrees Of Separation”

S. Milgram, a social psychologist, performed an experiment in 1963 to study
the distance between two people living in the US (Milgram, 1963). The ex-
periment consisted basically in sending letters between two unknown people,
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with the instructions of passing the letter to personal acquaintances who they
thought might be able to reach the destination target. The average number of
intermediate people who received the letter and forwarded it to anothes,was
which lead to the idea that between each two people in the US (and afterwards
in the entire world) there are the famous “Six Degrees of Separation’edy

later the result was reproduced again by Watts and his team. They recreate
the same experiment but on a larger scale, using e-mail messages tred need
to be forwarded between users around the world. They found agaiththa
average number of intermediaries was around six (Dodds et al., 2003).

From a social network analyst point of view, perhaps the most interasting
sult of Milgram'’s work was that he empirically proved how people were much
closely connected than expected. This phenomena was named the small-world
effect. Watts and Strogatz redefined the concept of small-world to include
those networks that, independently on their size, share two common claracte
istics: a very short average path length and a high clustering coeff{tiatts
and Strogatz, 1998).

The most used technique to check if a network meets the small-world con-
dition is to compare it against a randomized version of the same network main-
taining the number of nodes and edges. As we can see in table 1.2, networks
that present the small-world characteristic will have a similar average path
length than the randomized ones, but its clustering coefficient is much.larger
The reason behind this phenomena can be explained in the framewodiaf so
networks: usually people share a large number of friends, which givéise
high clustering coefficient. Additionally, each person has a few frienldis w
are far away in distance (e.g. living in other countries), which are septed
by connections that reduce drastically the distance between any two people
and therefore, the average shortest path length.

Beyond social networks, this characteristic has also been found in lwalog
(e.g. the neuronal network of the woiG@aenorhabditis elegafhsnd artificial
networks (e.g. the power grid of the US or the Internet). In these ctses,
small-world appears as a consequence of maximizing the functionality of these
systems: the clustering provides high redundance (and therefore hidpust-
ness) and the shortcuts improve the efficiency to transmit any signal bretwee
two points of the network.

In their 1998 Nature paper, Watts and Strogatz proposed a simple model
(from now on WS model) to create a small-world network. Starting from a
regular ring lattice, link each node with a fixed number of neighbors. With
a certain probabilityp, rewire some of the links to a random chosen node of
the network, without altering the number of vertices or edges in the graph (to
represent the long distance friends). For a valug et 0 we recover the
regular lattice and, as we increase the valug,dhe graph loses its regularity
until p = 1 where we recover an ER random graph (see figure 1.5 a). Between
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Figure 1.5. Left: Random rewiring procedure introduced by Watts and Strogatz aiecie
network with high clustering coefficient and low average path length. Rigbtmalized aver-
age path lengtlL and clustering coefficien®’ as a function of the rewiring probability. The
shadowed area correspond to a range of valugstbat have the small-world property, high
clustering and low average path length.

this two values, we can identify a certain a range tiiat provides a network

that fits into the description of small-world (see figure 1.5 b). Other models
have extended the method of Watts and Strogatz, most of them are covered in
(Newman, 2000).

Scale-Free :“The Rich Gets Richer”

A common feature that the WS small-world model shares with the ER model
is that their degree distribution is Poisson, with a well-defined average&egr
that decays exponentially. After observing a large number or realsystame
scientists realized that many real networks does not display this typemécon
tivity (Faloutsos et al., 1999, Barabdasi and Albert, 1999). Insteadjebgece
distribution of real complex networks displays an absence of a chasdicter
degree, having a few number of highly connected nodes and a largeenumb
with a very low degree. These type of networks are known as scaeée
works, and are characterized by a degree distribution with a power-llaw ta

pp o k7 (1.11)

meaning that the probability to choose a node with degréecays as a power
of the degree with a characteristic exponenihis exponent is usually in the
range2 < v < 3 (see table 1.3 for exponents of some measured networks).
In other words, the networks with a scale-free degree distribution hiarge
number of nodes with a very low degree, and a few nodes with largealegre
usually having orders of magnitude between the maximum and minimum val-
ues.

But the main breakthrough of Barabasi and Albert was the introduction of
the preferential attachment mechanism, which resembles the work by Herber
Simon in 1955 about “cumulative advantages” (ljiri and Simon, 1977)yThe
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| Network [ Size [ (k) | You Yin |

WWWwW 325,729 4.51 2.45 2.1
WwWwW 4 %107 7 2.38 2.1
WWW 2 x 108 7.5 2.72 2.1
WWW, site 260, 000 1.94

Internet, domain 3,015-4,389 | 3.42-3.76 | 2.1-2.2 | 2.1-2.2
Internet, router 3, 888 2.57 2.48 2.48
Internet, router 150, 000 2.66 2.4 2.4
Movie actors 212,250 28.78 2.3 2.3
Coauthors, SPIRES 56,627 173 1.2 1.2
Coauthors, neuro. 209, 293 11.54 2.1 2.1
Coauthors, math 70,975 3.9 2.5 2.5
Sexual contacts 2810 3.4 3.4
Metabolic,E. coli 778 7.4 2.2 2.2
Protein,S. cerev. 1870 2.39 2.4 2.4
Ythan estuary 134 8.7 1.05 1.05
Silwood park 154 4.75 1.13 1.13

Citation 783,339 8.57 3

Phone-call 53 x 10° 3.16 2.1 2.1
Words, cooccurence 460,902 70.13 2.7 2.7
Words, synonyms 22,311 13.48 2.8 2.8

Table 1.3. Average degree and exponents of the scale-free degree distribotiseveral real
networks. For the directed networks the table shows both the scalingenfonthe incoming
and outgoing degree distribution. It can be observed that almost akkpleaents range between
2 and 3. This data has been reproduced from Albert and Barab&siréBarabasi and Albert,
2002), which also includes detailed analysis of other topological prop@ttihis networks and
the origin of the networks.

wisely used the same idea to explain one possible reason behind the seale-fr
distribution of real networks, establishing some of the bases for the newly-
created science of networks.

The preferential attachment mechanism describes how the structure of a
complex network evolves using two basic rules: growth and prefererttial a
tachment. Starting from a fully connected core of nodes, at each step new
nodes are added to the network. Each one of this nodes creates aufired n
ber of links with the existent nodes following the preferential attachment rule
meaning that the probability to attach to an existent nodeproportional to
its degreek,,

Ky
Pbv ==~
° Ziev ki
As a direct consequence of the scientific impact obtained by the publication
of the preferential attachment mechanism, a large amount of new models have

(1.12)
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Figure 1.6. Left: Example of a network without a characteristic scale. In this type oiorks
we usually observe a few high degree nodes that act as hubs, ag@ alember of peripheral
nodes with a low number of connections. Right: Degree distribution of aarktgenerated
using the preferential attachment method of Barabasi and Albert. dgenent of the power
law is ~ 2.8. The average degree of the network-i$ and the maximum degree-s 1600.

been proposed to create networks with the same scale-free degreatiisirib
but changing the constraints and rules to add nodes to the network.rab@a
and Albert, 2002) the authors present an extensive review of theselsraott
the range ofy exponents obtained by each.

Finally, it is interesting to remark that there are multiple ways to obtain the
desired degree distribution for a given network without using an evolaryon
model. The most used technique is the configuration model (Bender and Can
field, 1978, Molloy and Reed, 1995, Molloy and Reed, 1998). The ma ide
behind this method is to fix the degree for all the nodes at the beginning, and
then try to randomly attach them maintaining the assigned degrees. Using a
configuration model one obtains a network where its degree distribution fits
accurately the desired one. However, these type of models have lite@pect
since they are not suitable to represent those systems where growtisgesec
play an important role in the structural evolution of the system (like the Interne
or the WWW).

2.  Community structure of complex networks

The levels of topological description that have been presented in thie prev
ous sections range from the microscopic (degree, clustering coeffficem
trality measures, etc., of individual nodes) to the macroscopic description in
terms of statistical properties of the whole network (degree distribution, total
clustering coefficient, degree-degree correlations, etc.). Betwesa tive ex-
tremes there is a mesoscopic level of analysis of complex networks. In this
level we describe an inhomogeneous connecting structure composetb-by s
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Figure 1.7. Example of the community structure in a complex network. The nodes ean b
classified into groups where the number of internal links (links betweeleshof the same
group) is higher than the number of external links (links with the rest ofthph).

sets of nodes which are more densely linked between them than with the rest
of the network (see figure 1.7).

The mesoscopic scale of organization is commonly referred as community
structure. This concept has been widely used in social sciencesdivess
and Faust, 1994), where people organize into communities that share common
interests, hobbies, or even because they live close to each otherowdnre
this organization can be hierarchical, since for instance a scientist hakyus
a close relationship with researchers of his group, and at higher lexdiash
relationships with members of his department or even his university.

The organization of the nodes into communities does not occur only in so-
cial networks. Several studies have uncovered the existence of cdtymun
structures in many different contexts, including metabolic networks (Ravas
et al., 2002, Holme et al., 2002a), banking networks (Boss et al., 20Q4¢ 0
worldwide flight transportation network(Guimera et al., 2005). All thesd-stu
ies show that nodes belonging to a tight-knit community are more than likely
to have some properties in common. For instance, in the world wide web com-
munity analysis has uncovered thematic clusters (Flake et al., 2002, Eckmann
and Moses, 2002).

Another group of publications have shown the influence that the community
structure has on the dynamical processes that take over the netwddceDif
approaches have been studying the effects on dynamical proceskessyn-
chronization (Arenas et al., 2006b, Arenas et al., 2006a) or emexg@éizoop-
eration (Lozano et al., 2007). In all of them the authors show that commanitie
play a key role in the different dynamical processes, explaining phemame
that cannot be understood without the presence of the communities.

The identification and characterization of these clusters of nodes is not a
trivial task. A new group of statistical tools have been developed to ghrav
the existence of community structure in complex networks, providing a large
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number of approaches that have compared the problem of community identi-
fication with some classical problems in physics and computer science. For a
more detailed introduction to the problem of detecting the community structure
we refer the reader to chapter 3 of this dissertation, since it presents@ate
review of the state-of-art of the community detection methods and algorithms,
including benchmarks and guidelines to decide which is most appropriate for
each problem.

3.  Traffic dynamics

Recently, the theory of complex networks has started to cope with the prob-
lem of dynamics on networks. After much work devoted to the understanding
of the network topology, the physics community has begun to develop mod-
els that explain the characteristics of different types of dynamics on cample
networks. In this dissertation we will focus on the study of the traffic dynam-
ics of communication processes, trying to understand what are the dyhamica
properties of the traffic flow between the elements of a complex network. This
understanding will help us to design better infrastructures and rules ® cop
efficiently with the growing demands of traffic volume.

Communication networks provide a background infrastructure that allow a
continuous movement of elements, such as information packets in the Inter-
net, electricity in the power grid network, cars in a road, or passengyang fl
around the world. From a physical point of view, all of these processa
be described using an out-of-equilibrium system of particles that oscikate b
tween different dynamical phases. The first physical approach dy staffic
flow dynamics is found in the works of J. Lighthill and G. Whitham who, us-
ing fluid mechanics to describe the interactions of the cars in a highway, tried
to uncover the reasons behind road congestion (Lighthill and Whithar)195
Since then, a large number of different models have been proposescibge
and study traffic flows, which can roughly be divided into macroscopét an
microscopic ones depending on the level of description used.

On one hand, microscopic models investigate the behavior of the elements
in a concrete part of the network (like cars in an intersection). Each etemen
is considered as an individual entity and usually has an associateaatfédr
equation that describes its behavior. The most used microscopic models are
based on cellular automata (Maerivoet and de Moor, 2005), whichetizer
the space of the system into cells and then study how the particles move be-
tween the cells. Cellular automata models are numerically very efficient and
they have the ability to reproduce a wide range of traffic phenomena, dyut th
lack the accuracy of the time-continuous car-following models.

On the other hand, macroscopic models examine the dependencies between
traffic volume, congestion and fluctuations, looking for patterns and tztggs-
scale properties. In this case the system is reduced to a coarse-grigvwed
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where the particles are considered equivalent and governed byrtteeraées
(there is not an individual treatment for each element). The difficulty afystu

ing this level is higher than the microscopic level, mainly due to the limitations
of storing long time series of data. But thanks to the increasing capacity of the
computational resources, we can access to larger time series from multiple el-
ements of the network simultaneously, allowing us to perform a more detailed
macroscopic analysis.

3.1 Traffic dynamics on complex networks

In the last decade two factors have increased the attention of scientific com-
munity into the study of traffic flows. First, the emergence of complex systems
theory has provided the necessary background to characterizenipbexdoe-
havior of traffic dynamics. And second, the rise of Internet as a wadielw
communication network has attracted the attention of researchers that study
traffic flow, since they have a huge playground where they can testttieeir
ries.

The main goal of the study of traffic on complex networks is to understand
the interdependencies between the dynamical parameters and the relpoant
logical properties. Some stylized models of traffic flow in complex networks
(Guimera et al., 2002b, Tadic et al., 2004, Zhao et al., 2005, Singh apgtGu
2005, Goh et al., 2005) can be used to gain intuition about dynamics on com-
plex networks, and to determine the leading parameters of the dynamic pro-
cesses related to the network topology. These models simplify the commu-
nication process to the basic elements, using three dynamical parameters to
model the traffic flow: the rate of which new packets enter the system, a rout-
ing protocol to describe how to distribute the traffic, and a queueing system
that represents the limited capacity of the nodes.

The main results obtained up to now concerning traffic flow in complex
networks are related to the determination of the bounds for this flow to become
congested as a function of the previous parameters. The phenomer&a of th
congestion usually appears in a network when a parameter exceedshmitire
value, provoking a phase transition from the free flow regime to a corjeste
state (Fukuda et al., 1999).

Since the efficient performance of a communication process is a function
of the ability of the system to avoid congestion, a large amount of publica-
tions have studied the effects of the topology (scale-free degree disinpu
small-word, ...) on the onset of congestion (Moreno et al., 2003, Goh et al.,
2001). Some studies have proposed optimal network topologies to maximize
the amount of information that can be moved over the network without reach-
ing the congestion threshold (Guimera et al., 2002b, Barthelemy and Flam-
mini, 2006). And another group of publications have proposed newndigna



20 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

routing protocols that redirect the traffic when the network reachegastion
(Echenique et al., 2004, Sreenivasan et al., 2007).

A second aspect that has also received a lot of attention is the study-of tra
fic fluctuations. The analysis of the autocorrelations in long time series of
data reveals that traffic flows in general, and Internet in particuladadisyon-
stationary behaviors: burstiness across multiple time scales, long rargye dep
dencies and self-similarity (Leland et al., 1995). At a macroscopic scale, th
fluctuations of the traffic of a system have been characterized as thbiirgr
around the mean for all the nodes. Recent studies have confirmed tteaisthe
a scaling relationship (de Menezes and Barabasi, 2004a), and theeexud
this scaling provides information about the internal and external natutresof
fluctuations of the traffic (de Menezes and Barabési, 2004b).

4. The Internet viewed as a complex system

The issue of uncovering and modeling the real structure of the Internet is
considered one of the most challenging and attractive open problemsnef co
plex networks. Despite all the efforts done by network researchers@m-
puter engineers, we are still unable to see a fully detailed map of its topology.
The main reason behind this problem is the lack of a central authority that
controls the evolution of Internet. Most part of this infrastructure bedciog
private companies that do not share their connection maps, and the ¢ioly op
for researchers is to try to infer them.

Behind Internet there is a multilayered structure, which is a consequénce o
the different layers of the TCP/IP stack. This adds more complexity into the
task of mapping the network, since the meaning of network topology and traf-
fic depends on one’s choice of analysis. For instance, we can creaierk
maps of physically connected devices looking at the physical layer, a map o
logically connected devices looking at the Internet Protocol layer, em eve-
ate a connectivity map of the applications that use this infrastructure, such a
the World Wide Web or the Peer-to-Peer (P2P) networks.

Throughout the rest of the thesis we will only focus on the analysis of the
structure at the network level. This level can also be subdivided into three
different sub-levels of description, obtaining three hierarchicalssgrained
pictures of the network level map:

= User level: here we consider as nodes all the electronic devices ¢ednec
to the network that can send and receive information. The creation of a
global map at this level is a very difficult task due to two reasons: the
large number of elements (which is estimated actually around 500 million)
and the continuous changes that the topology suffers (e.g. mobile devices
change their connection point continuously). Therefore, this levehaF a
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ysis is only used for statistic purposes like studies of the penetration of the
Internet in different geographical areas.

= Internet Router (or IR) level: in this case the nodes represent roamers
the links indicate one-hop connectivity between routers (which do net nec
essarily involve the existence of a physical link between them). In the last
measurements, it is estimated that this level is composed by around 200,000
nodes connected by more than 600,000 links.

= Autonomous Systems (or AS) level: an AS is a group of routers and net-
works managed by a single organization. Usually they are controlled by
the Internet Service Providers and public organizations. At this level, the
links represent business agreements between two corresponding &8s to
change traffic between them. The size of the network is estimated around
25,000 nodes and 70,000 links.

4.1 Discovering Internet Topology at the AS level

One of the key properties of the Internet network topology is that it con-
tinuously grows in time. New connections are created constantly to maintain
the global efficiency of the network as new users join the network. At the
AS level, these new connections are mainly guided by economical and tech-
nical constraints, since the ASs tend to optimize the economic profit of the
infrastructure. On one hand, the growth of the internal structure df ASs
is governed by their own rules. Usually they seem to be engineered to main-
tain their efficiency at a low cost. This results in small-world like networks,
with very short average path lengths and a high local clustering (Gavinda
and Radoslavov, 2002). On the other hand, new connections betifesn d
ent ASs are established in business relationships, creating what is kasown
the “Internet Ecosystem” (Norton, 2004). This connections can betpee
peer relationships, when they agree to interchange traffic between tmem, o
customer-provider relationships, when one of the ASs provides atwdiss
other one (Gao, 2000).

Due to the strong competition that there is in this market, many ASs do not
share the information about their internal structure and their business-agr
ments (e.g. to protect the privacy of their clients or for fear of loosing some
advantage), making difficult the task of obtaining a complete detailed map of
the complex structure of Internet. However, many important advances hav
been achieved in the last ten years trying to figure out the AS structurg usin
reverse engineering techniques. The problem is that the techniquestare
100% effective, and usually only provide a partial shapshot of thearktw

The initial steps into discovering the topology were performed by computer
engineers, who developed a set of analysis and measurement toolsrserev
engineer the structure of the network at its different levels. The maircgour
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of Internet topology data comes from the Oregon Route-Views Pfoj&bis
project has been collecting and storing a large number of BGiiting tables
since 1997. From this snapshots we can extract all links between thesroute
and, after some filtering (Chang et al., 2001, Andersen et al., 2002awe
infer topological maps of the AS and IR level.

The topological maps obtained using this methodology have received a large
amount of criticism, since BGP data suffers from several limitations. The maps
are typically of different quality, sometimes containing errors and ambiguities
that depend on the collecting and inferring processes, and the pegddas
get the data. Moreover, it is known that Internet has some 'dark mattechw
is undetectable using this type of techniques. The number of missing links
estimated in the AS maps is betwe&s?o and50% in the known databases,
which mainly are ASs peer-to-peer links (Cohen and Raz, 2006). Te solv
these problems, new projects propose to discover the Internet topotogy f
a more active point of view. The two most important are the skitter project
(Huffaker et al., 1998) developed by CAIDANd the DIMES projeét Both
projects rely on active sources which ask the network continuously ssiitg
ware probes that are mainly based on traceroutes, a tool that distiweh
between two components of the network. The probes are able to obtain extra
routes that are not directly stored in the routing tables, thus obtaining a riche
model of the Internet topology than one based on BGP tables. Other tech-
nigues, such as WHOIS or looking glasses also provide additional infanma
that can be added to the map, slightly increasing the final number of nodes an
links (Mahadevan et al., 2006). The best mapping results up to now leave b
obtained merging data from different sources, providing progrelysiew AS
maps where we can perform more accurate statistical analysis.

A complementary effort that also receives attention is the visualization of
the resulting datasets. The process of drawing the AS resulting maps i a ver
difficult task, mainly because presenting a network of thousands ofsriade
one single snapshot is usually confusing for the viewer. Some methoed bas
on coarse-graining have been used to reduce the visual complexity wéthe
work. Figure 1.8 presents different snapshots of the Internet topatégrred
using the techniques described in this section.

Shitp://www.routeviews.org

4The BGP (Border Gateway Protocol) is the inter-domain raufirotocol that is used in Internet actually.
It defines how to distribute the information between the naubelonging to different AS.
Shitp://www.caida.org

Shttp://www.netwdimes.org
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Figure 1.8. The figures present three different views of the Internet topologyeigeed by
three different projects. Top: Geographical distribution of the ASsesented as an arc map,
see http://mappa.mundi.net/maps/maps/ for more information. The picture has been cre-
ated by visualization researchers at Bell Laboratories-Lucent téoties, ©Stephen Eick,
Bell Labs. Bottom left: Detailed map of the Internet Router level from théeCRroject
http://www.opte.org/. Used under the Creative Commons License. Bofgith Hierarchi-
cal structure of the Internet AS level introduced in (Carmi et al., 200%e size of the nodes
represent their degree and the color their position in the nodes hierarchy

4.2  Modeling the Internet

Internet models are used to obtain maps which reproduce the structural
properties observed in the inferred maps. The most simple models obviate
some physical characteristics (such as the bandwidth, router capaciyd..)
represent Internet using undirected graphs. Additional informationtaibe
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Figure 1.9. Example of an AS Internet topology map generated using the Transit8idbl.
This topology generator creates an Autonomous Systems structuretisibgo main hierar-
chical elements of the Internet, the transit and the stub domains.

network can been added to the topological structure by associating infonrma
with the nodes and links, and thus obtaining more detailed approximations to
the measured networks.

The maps obtained from these models have multiple applications. They
can be used as a playground where we can test the efficiency of néwgro
protocols, to understand certain phenomena like Internet traffic storms (H
berman and Lukose, 1997), or for efficient planning and long-tertwar&
design (Yook et al., 2002). Their ability to accurately perform these tasks
directly related to the level of approximation to the real network. Thergfore
these models have been continuously changing and evolving to capture the
most significant topological properties that are continuously published.

The earliest Internet models were basically stochastic models. The most
popular was the Waxman topology generator (Waxman, 1996), whicheslbas
on the classical ER graphs with an Euclidean distance constraint to the link
probability. Several other models extended this idea, opening a redewrch
focused on representing the local and hierarchical structure of there
Examples of this type of models are the Transit-Stub model (Zegura et al.,
1996) or the Tier model (Doar, 1996), which reproduce the Intermetiogy
as a three-level hierarchy (see figure 1.9 for more details).

However, the canonical work of Faloutsesal. showed that the connec-
tivity of the different nodes on Internet follows a clear power-law disitiin
(Faloutsos et al., 1999), contrary to the exponential distribution obtained o
previous models. The main breakthrough of their work was that they showe
the necessity of reproducing the statistical properties to obtain reprégenta
maps, opening the door to a new group of 'degree-based’ models. rBhe fi
of them was proposed by Yoodt al. based on the preferential attachment
mechanism (Yook et al., 2002).
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Several modifications on Yook’s model have been proposed to captuee mo
and more statistical properties observed in the AS and IR large scale topol-
ogy, such as the degree correlations, clustering, the maximum degree or th
number of loops (Bu and Towsley, 2002, Zhou and Mondragon, 2008)-
ever, all of them have been also criticized since they are merely deseriptiv
and cannot explain the emergence of this properties in the Internet (Willinge
etal., 2002). Moreover, it has been proved that topologies with a vieyaht
structure can share the same degree distribution and other statisticatipspe
but when one analyzes the dynamics of Internet routing protocols, tifieir e
ciency is completely different (Chang et al., 2006). And finally, a third critic
comes from the fact that the Internet is a growing network, and we dcrost
if the structural properties are enough stable to be reproduced in thdsnode
Therefore, one model that is capable of reproducing a concretshsotagf the
network could not be valid a few months before. In appendix A we givéed b
overview of this problem.

The last efforts in this direction are trying to bring together the hierarchi-
cal structure while reproducing the statistical properties. An example of this
new trend is the “medusa model” (Carmi et al., 2007), where the Internet is
described as a nucleus of highly connected nodes surrounded bychieal
layers of less connected nodes (see figure 1.8).

The future of the Internet modeling still presents interesting challenges,
since actual models are imperfect and incomplete. One of the possible ways
to improve the models is the introduction into the models the key elements
that are behind the growing decisions, such as geographical cotstizser
traffic demands or business arrangements. And this must be done without a
tering the simplicity of the model. A good example of a model based on this
ideas is the competition AS model introduced in (Serrano et al., 2005, Serran
et al., 2006). In this case, the growth process of the Internet map itedtr
by user and geographical constraints, giving a meaning to the evolutionar
growing process. And without imposing any external restriction, thdtiegu
networks reproduce almost every statistical property analyzed in thedhte
(including the hierarchical structure), providing one of the best agpprations
to the measured maps.

4.3 Internet Traffic modeling

The statistical characterization and modeling of Internet traffic has also re
ceived a lot of attention from both computer engineers and physicists. The
understanding of the physical laws governing the nature of Interrfét tis
crucial because of its implications in design, control and speed of the whole
network.

The study of Internet traffic is performed both at macroscopical ancomicr
scopical levels, measuring parameters such as the amount of traffiotsat g
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through a node, the packet loss rate, or the Round-Trip Time (RTT, the time
necessary to travel between two nodes and return). The analysisréoaped
using long time series of traffic data collected from network hosts and suter

When modeling network traffic in general, packet and connection &riva
are often assumed to be Poisson processes. However, Le@atddemon-
strated that Internet traffic exhibits self-similarity, uncovering the prese
long range dependence in collected traces of packet traffic in localrete
works and in wide area networks (Leland et al., 1995). The origins of this
self-similarity are still under discussion: on one hand, a group of thepraes
pose that is a consequence of the aggregation of traffic that comedlifom
ferent protocols, considering that the self similarity emerge as a consegue
of the user’s actions (Park et al., 1996, Willinger et al., 2002). On ther othe
hand, another group of theories propose a more physical explandgiscr;b-
ing the self-similarity as the consequence of the long-range dependémaies
appear when the system is near the phase transition between free and con
gested regimes (Fukuda et al., 2000, Sole and Valverde, 2001, \alaed
Solé, 2002, Guimera et al., 2002a).

The characterization of Internet traffic from a large-scale point ofrvge
also a very difficult task, mainly due to the lack of empirical data to prove the
different theories combined with the huge complexity of the system dynam-
ics. For the same reasons explained in the previous sections, AS opeatator
not publish traffic volume statistics or their traffic matriteShe main results
up to now are focused on the study of Internet global efficiency, wbarh
be measured using RTT and packet loss rates. A first group of stualies h
correlated the RTT with the geographical distance and have analyzedthe d
tribution of the RTT, which seems to follow power-law tails (Huffaker et al.,
2000, Percacci and Vespignani, 2003). These works have begpewmented
with the study of the packet loss rate, finding that the probability of having a
certain rate of packet loss also follows a power-law distribution (Pereact
Vespignani, 2003).

The results obtained in Internet traffic analysis are in a very preliminary
stage. However, all these works devoted to Internet traffic are cgeatiolid
knowledge base about Internet’s dynamical behavior, providing tlieljes
on how to design the next generation of Internet traffic protocols.

5.  Scope of the work

The aim of this thesis is to review and introduce new tools and methods to
measure topological and dynamical properties of complex networksriinpa
ular we are interested in two problems, the study of the community structure

"Traffic matrices contain the amount of traffic exchanged betviiwe ASs, and additional information such
as the delay time or the packet loss ratio
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of complex networks, and the analysis of the dynamical properties of a com-
munication process.

Chapters 2 and 3 are focused on the analysis of the community structure
of complex networks. In chapter 2 we present an exhaustive revieiwveof
community structure identification problem. First we introduce the concept of
community structure, the measure of modularity and its limitations. After a
complete review of the methods and algorithms available to identify the com-
munities, we present a set of tools to measure the performance of thewliffer
methods. Finally, we present a wide range of benchmarks where we oompa
the efficiency and accuracy of the methods, which can be used to sedect th
best algorithm for a particular problem.

In chapter 3 we introduce the Extremal Optimization method as one of the
best alternatives to identify the communities. We explain the physical idea
behind the algorithm and how it has been implemented. We also include some
improvements that increase the efficiency and the accuracy of modulaséy ba
community detection methods, by introducing algorithmic improvements to
recursive methods or by reducing the size of the network. Finally wesptes
an exhaustive benchmark of the results obtained by our method wheziagaly
some of the most used complex networks in the community detection literature.

Chapters 4 and 5 focus on the study of some dynamical properties of com-
munication processes over complex networks. Using a simple traffic model,
we have analyzed the changes observed on some properties whenawe intr
duce congestion into the network. In chapter 4 we present the scaling of th
fluctuations as one statistical measurement that characterizes the betiavior
the traffic on a complex network. We analyze how different parameters ca
explain transitions of the scaling exponent, proving that there is wide range
of exponents. We also analyze the particular case of the fluctuations of the
Internet.

Chapter 5 introduces the analysis of the dynamical robustness of tnaffic d
namics, defined as the capability of maintaining the efficiency of the commu-
nication when we remove a fraction of nodes of the network. We study tew th
maximum capacity of one network to deliver traffic changes when we remove
a certain fraction of the nodes. We analyze the effect on differentamnktw
topologies, and using routing protocols that depend on the knowledgesrad
We also compare this dynamical robustness with the topological robustness o
complex networks.

Finally, the last chapter presents the final conclusions of all the work de-
scribed in the dissertation and gives some perspectives about how tke wo
can be extended with open questions and new research lines.






Chapter 2

DETECTING COMMUNITY STRUCTURE
IN COMPLEX NETWORKS

Numerous studies have tried to explain the relationship between the struc-
ture and the functionality of complex systems using the analysis of the struc-
tural properties presented in the previous chapter. However, due tmihe
plexity of both the networks and the interactions, this relationship is usually
difficult to obtain by looking only at the macroscopic and microscopic levels.

One way to shed light onto this relationship is by studying the intermediate
scales of a complex system. It has been suggested that many physiba-and
logical systems display different topological scales (Arenas et al.,, Z¥l&s-
Pardo et al., 2007), and that these intermediate scales affect the batfdlim
dynamical processes such as diffusion, communication or synchromipatie
cesses (Arenas et al., 2006b, Arenas et al., 2006a, Lozano ettd), Zbere-
fore, it seems that the identification and analysis of the intermediate scales of
complex networks will enable us to increase our knowledge about complex
systems in general.

The main goal of community detection methods is to identify those groups
(or communities) of nodes that in real networks share common characteristic
or perform similar tasks, but using only information about the topology of the
network. The problem of detecting these structures is not trivial antvéers
the subject of discussion in various disciplines. In real complex netweeks
typically do not know how many communities there are, but in general there
are more than two, making the process more costly than typical bipartitioning
problems studied in computer science and statistical physics (Kernighan and
Lin, 1970, Fiedler, 1973, Banavar et al., 1987). What is more, communities
may also be hierarchical, that is communities may be further divided into sub-
communities and so on (Guimera et al., 2003, Gleiser and Danon, 200&sAren
et al., 2004).

29
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Despite the difficulties in identifying the optimal division into communities,
several methods have been developed and employed with varying levels of
success. These methods tackle the problem of community identification from
different points of view, by analogy with classical problems such as findin
the ground state of a spin glass, the combinatorial optimization of a system
or even with a problem of optimal information coding (Mezard et al., 1987,
Papadimitriou and Steiglitz, 1997, Shannon and Weaver, 1963). Uné&betyn
the problem of having a large number of methods is that the results obtained
when analyzing the same network with some of them can provide completely
different structures, which raises the questions in the scientific community of
which one should they use for a specific problem.

The purpose of this chapter is to present the state of the art on community
structure detection methods, providing a set of tools to compare two partitions
into communities and also to compare which method performs better. First,
we present different definitions for the concept of community, introdytie
concept of modularity as one of the keystones of the community detection
problem. Next, we summarize the different methods that have been published
in the last five years to uncover communities. Then, we introduce a group of
benchmarks and measurements that can be used to compare the community
structure, and to evaluate the efficiency and the accuracy of the metods.
finally, we give some guidelines that will help to decide which method is the
most appropriate for different types of networks.

1. Defining the community structure

Despite the large amount of study in this area, a consensus on what is the
definition of community has not been reached. The first approach into the
definition of the community structure has its roots in social sciences. This
approach is largely (though by no means exclusively) concerned witferet
an individual player has on the network surrounding it and vice vefAsaa
result, the local properties of networks take a more prominent role in social
science research. Some definitions taken from (Wasserman and Fdusst, 1
have been used and developed by methods we shall describe later.

Conceptually, the definitions can be separated into two main categories, self-
referring and comparative definitions. Central to all such definitions isdhe
cept of subgraph explained in chapter 1. In self referring definitioad#sic
community definition isa clique defined as a subgroup of a graph containing
more than two nodes where all the nodes are connected to each otherryy mea
of links in both directions. In other words, this is a fully connected subdgrap
This is a particularly strong definition and rarely fulfilled in real sparse net-
works for larger groupsn-cliques, n-clangndn-clubsare similar definitions
designed to relax the above constraint, while retaining its basic premise. The
shortest path between all the nodes in a clique is unity. Allowing this distance
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to take higher values, one arrives at the definitiom-afiques which are de-
fined as a subgroups of the graph containing more than two nodes wkere th
largest shortest path distance between any two nodes in the greup-idans
andn-clubsare subtle variations af-cliques

A somewhat different approach to define communities is to compare the
number of internal links to the number of external links, coming from the in-
tuitive notion that a community will be denser in terms of links than its sur-
roundings. One such definition, &% sets defined as a set of nodes in which
each of its components has more links to other components within the same
community. This is the same definition as #teong definition of community
in (Radicchi et al., 2004). Again the above definition is quite restrictivd, an
in order to relax the constraints even further, Raddattal. propose to use the
sumof links. So a community in theveaksense is defined as a set of nodes
whose total number of internal links is greater than the total number of links
to the outside. This is the most intuitive of all definitions and is the one that is
used most, although implicitly.

Self-referring definitions, while useful in characterizing communities which
are already known, are not the best choice while trying to find them. The
Bron-Kerbosch algorithm (Bron and Kerbosch, 1973) for findingug) in
a network is very costly, running in worst case time that scales exponentially
with network size. Comparative definitions, on the other hand, lend thensselve
much more easily to the search for communities in large complex networks. In
away, comparing the internal structure of a community to the external steuctur
gives rise to a measure of how good a particular partition is, as describieel in
next section.

2.  Detecting community structures

One of the first questions that has been raised in recent years, irothlerpr
of community detection, is how to evaluate a given partition of a network into
communities. Using the previous definitions, one can check if differenit par
tions fulfill the strong or weak constraints, but there is no more information to
decide if one community structure is better than the others.

A simple approach to quantify a given configuration into communities that
has become widely accepted was proposed in (Newman and Girvan, 2004)
is based on the intuitive idea that random networks should not exhibit commu-
nity structure by definition. Let us imagine that we have an arbitrary network
and an arbitrary partition of that network infg. communities. It is then pos-
sible to define av, x N, size matrixe where the elements.; represent the
fraction of total links starting at a node in partitienand ending at a node
in partition s. Then, the sum of the any row (or column)@fa, = > e,
corresponds to the fraction of links connecteda to
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If the network does not exhibit community structure, or if the partitions are
allocated without any regard to the underlying structure, the expected valu
of the fraction of links within partitions can be estimated. It is simply the
probability that a link begins at a node i a,.,, multiplied by the fraction of
links that end at a node in a,. So the expected number of intra-community
links is justa,a,. On the other hand we know that theal fraction of links
exclusively within a partition ig,... So, we can compare the two directly and
sum over all the partitions in the graph.

Q = Z(err’ - a,%) (21)

This is a measure known asodularity. Let us consider as an example a net-
work comprised of two disconnected components. If we have two partitions,
corresponding exactly to the two components, modularity will have a value of
1. For particularly “bad” partitions, for example, when all the nodes ae in
community of their own, the value of modularity can take negative values.

One might be tempted to think that if we search for the maximum modular-
ity in a random network we will found very small values @ As Guimera
et al. and Reichardet al. show, this in general is not true (Guimera et al.,
2004, Reichardt and Bornholdt, 2006). It is possible to find a partiticichwh
not only has a nonzero value of modularity, but that this value can be quite
high. For instance, in a random network witB8 nodes and 024 links we
can find a subdivision into communities with a maximum modularity around
~ 0.21. This result raises a new question: how relevant is the partition given
by the maximum modularity? Guimegt al. point out that the best way to
determine if a modularity is statistically significant is to compare it against a
null case, i.e. the randomized version of the same network keeping theedegr
distribution invariant. The difference between our result and the agerge
of the null case will help us decide if there is some mechanism behind the net-
work evolution that favors the creation of these clusters (and therei@iEan
give a meaning to our results) or if the clusters have been created bgechan

There is another issue to take care when considering the partition with high-
est modularity as the best possible (or the most meaningful) partition into com-
munities. In (Fortunato and Barthélemy, 2007) the authors show a limitation of
the modularity to find small communities, instead there is a tendency to com-
bine small communities into larger ones. They show that if a networklhas
links, it is impossible to identify communities with less thghL/2 links by
optimizing the modularity, even if these sub-communities are fully connected
subgraphs (See figure 2.1). Some new techniques have been mfopometly
to override the resolution limit, showing that there is a wide range of commu-
nity structures at different mesoscales that can lead us to differenprietar
tions of the communities. The first approach has been proposed bysfeena
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Figure 2.1. Example of the limited resolution of the modularity introduced in (Fortunato and
Barthélemy, 2007). The network is composed by identical cliques (lgengraphs withn
nodes) connected by single links. The methods that optimize the modulallitgraup the
cliques (dotted lines) if there are more thefL cliques, instead of detecting the smaller but
highly dense connected groups.

al. and introduces a self-loop of weightn all the nodes (Arenas et al., 2007).
We obtain a graph that maintains the same topological properties than the orig-
inal (in terms of connectivity), but now we can perform the community anal-
ysis at different topological scales adjusting the value.of his method also
allows the identification of the “topological stability” of a given configuration,
defined as the range of valuesrofvhere we observe this partition; as wider is
the range of- where we observe one community, more likely is that this group
could have a specific meaning. More recently, Kummilal (Kumpula et al.,
2007), presented a method to avoid the limitations of the Q-Potts model (see
Section 2.7) changing the value of itparameter, and obtaining similar results
in the number of communities found at different mesoscales of the network.
From here on we will briefly overview the different methods of community
identification that have been presented recently, classified into five adiffer
sections according to the methodology used to identify the communities. Note
that some methods can belong to two or more of this sections, in this case
we have chosen the one that we think is closer to the main idea behind the
method. First we consider divisive methods that are based on link removal.
Then we present agglomerative based methods. In third place we @escrib
methods that try to maximize the modularity. Next we present methods that
use the spectral analysis of the network. And finally we present thetbats
cannot be classified under the 'other methods’ section.
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Figure 2.2. Shortest path centrality (betweenness) is the number of shortest pathgoth
through a link or node. In this simple case, the link with the largest link centrialithat
joining nodes 4 and 5.

2.1  Link removal methods

Intuitively, the simplest way to partition a network is to cut some links until
the network is no longer connected. Divisive methods do just that. Haweve
cutting links haphazardly is unlikely to give useful results. So, severtiods
have been proposed to find the most appropriate links to remove, so that the
disconnected components correspond to meaningful communities.

Shortest path centrality

One of the first methods to detect communities removes the links depending
on their shortest path centrality (Girvan and Newman, 2002). Shortést pa
centrality measures how central the node or link is in the network, and is com-
puted as the number of shortest paths between pairs of nodes thatrpaghth
a certain node or link. Intuitively, links which are most central are also the& mo
“between”, and as such, will act as bridges joining communities together in a
connected whole. Removing recursively these bridges should split tiverke
into more densely connected communities, see figure 2.2.

This algorithm is quite sensitive and is one of the few able to detect com-
munity structure at all levels. Its major drawback is the computational cost,
since calculation of link betweenness requires a computer intensive isndtlys
scales with the number of nodesand number of linksn asO(m?n), which
limits the size of the graph one can treat with this method to around 10000
nodes (with current desktop computer technology and some patience).

Current-flow and random walk centrality

In (Newman and Girvan, 2004) the same authors present two other means
to detect community structure where the basic method remains the same, with
the difference being the way in which the link centrality is calculated. The first
approach considers the network to be studied as an electrical circuite whe
links are assigned a unit resistance and a particular pair of nodes anitas
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Figure 2.3. Resistor networks and current flow centrality. The links in the networlcanre
sidered as unit resistances. By choosing a pair of nodes to be a séurdgevoltages and sink
t, one can can calculate the current flow through any link using Kirchtdfvs. Summing this
value for every pair of nodes gives the total current flow betweenoka link. In this case the
biggest current flow is through link joining nodésand5.

voltage source and sink. The current flows from source to sink alowgrdoer

of paths, those with the lowest resistance (shortest path) carry the uncesitc

So thecurrent-flowbetweenness of an link can be calculated using Kirchoff’s
laws by summing the value of the current flowing through that link over all
pairs of nodes 2.3. In the second approach the network is thought &f as
substrate for signals that perform a random walk from a source vergesink
vertex. The link betweenness in this case is simply the rate of flow of random
walkers through a particular link summed over all pairs of vertices. Theeith
show that this measure of betweenness is numerically identical to curnent flo
betweenness, but the derivation is different.

Although conceptually interesting, these approaches are computationally
costly. As the authors themselves note, and we can see in Sec. 3, thatshorte
path betweenness outperforms these approaches in both speed aratyacc
Both the resistor network approach and the random walk approachhdeas
been developed further by other authors (see posterior sections).

Information centrality

A different divisive algorithm approach was presented in (Fortunttd. e
2004). In this paper they employ timetwork efficiencyneasure, previously
proposed in (Latora and Marchiori, 2004) to quantify how efficientréigaar
network GG is in the context of information exchange. Once a particular link
is removed fromG, its efficiency is reduced by a measurable amatiftor
information centrality The idea behind the algorithm is that the links respon-
sible for the largest drop in network efficiency are those that act agédsid
between communities. The algorithm is somewhat slower than other divisive
algorithms running at@(n*)), but what it loses in speed it gains in accuracy.
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Link clustering

This algorithm, proposed in (Radicchi et al., 2004) is based on the idea that
linked nodes belonging to the same community should have a larger number of
‘common friends’. In other words links inside communities should be part of
a large proportion of possible loops, and links pointing to outside of the com-
munity should be included in few or no loops. The algorithm proceeds as in
(Girvan and Newman, 2002), but this works removing the links with the low-
est 'link-clustering coefficientC'9), which represents the fraction of possible
loops of orderg that pass through a certain link. The algorithm is very fast,
since calculating the clustering coefficient can be done with local information
only. Itis also interesting because it was the first algorithm which contained
a definition of community to stop the analysis when a certain condition is ful-
filled.

2.2  Agglomerative methods

Instead of starting with the network as a whole and looking for a way to split
it into meaningful communities, one can look at the problem from a different
perspective. One can start with all the nodes in the network being $epand
use some method to join up, or agglomerate, nodes which are likely to be in
the same community.

Hierarchical clustering

Traditional methods for detecting communities in social networks have been
based on “hierarchical clustering” (see for example (Scott, 2000]Jaid and
Dubes, 1988)). In general they proceed by calculating a similarity metric fo
each pair of vertices, representing how close the vertices are aagtodiome
property of the network. Such methods have previously been vergssftt
in small scale case studies, particularly when the complexity of the network
under study is not great. Recently however, since this method is vergrfest
scales well with system size, it has been employed to study the temporal evolu-
tion of communities in large networks (Hopcroft et al., 2004). Hopozsofil.
have studied the CiteSeer citation network (around 250,000 papers) ishich
intractable with most other methods, demonstrating the ability of hierarchical
clustering methods to deal with large data sets.

L-shell method

The algorithm proposed in (Bagrow and Bollt, 2005) consists of creating a
shell of nodes of sizé. The shell is a subset of nodes, all within a shortest
path distance off < [ (L-shell) spreading outward from a starting nadé\s
the shell expands thetal emerging degreek’!, is measured which is simply
the number of links pointing to vertices outside the expanding shell. When the
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l
ratio of the emerging degree at stejp that at step — ¢, % is lower than a

cut-off value, the algorithm is stopped, grouping all the nodes within a distan
[ of the starting vertex within one community, and all other nodes are said to
be outside.

This algorithm is specially useful when one is concerned with a single com-
munity and not the entire community structure, and for this purpose the al-
gorithm is computationally inexpensive scaling linearly with the size of the
community under scrutiny.

K-cligue method

Another approach proposed by Pallal. (Palla et al., 2005) introduces the
idea that communities can overlap. In their definition of community, one node
can belong to various “tematic” communities (i.e. one can belong to a scientific
group, a family, a sports team, ... ), which usually share a certain amount of
nodes (see figure 2.4 a). The idea behind this overlapped communitiegds bas
on the concept ok-clique communities. Ak-clique is a group ofc nodes
that is a complete subgraph, an&-&ligue community is the union of alt-
clique that are adjacent (twecliques are adjacent if they shdre- 1 nodes).
Searching all the possible k-cliques of the network will provide a result simila
to figure 2.4 b.

In terms of accuracy, this method is not comparable with the others pre-
sented, since it uses a different definition of community structure. Hawiéve
has other interesting applications, i.e. it can be used to observe the reigiions

Physicists
\ Department of
Biological Physics

\%oom" "zoom/“’

Hobb
Scientific,
Community .
Family

Figure 2.4. a) Overlapping communities around a given node. We can observertbatode
can belong to more than community at the same time. The communities cdaposed share
more than one node between them b) An example of overlapping k-clajoeanities at with
k = 4. The red nodes belong to more than one community. For more informaitiont the
method see (Palla et al., 2005)
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between the different communities or to determine the communities where a
certain node belongs.

2.3  Methods based on maximizing modularity

As described previously, the modularity measure is one way to evaluate
guantitatively a network partition. So, as many authors have asked thes)selve
why not optimize this value directly? The main problem is that the parti-
tion space of any graph (even relatively small ones) is huge, and @us ne
a guide to navigate this space and find maximum values. Here we outline the
approaches that have tackled this problem.

Greedy algorithm

In the first attempt at optimizing) directly Newman takes a greedy opti-
mization (hill climbing) approach (Newman, 2004b). At the start of the al-
gorithm, each node is placed into its own partition. One can then calculate
the change ir) should any two partitions be joined. The algorithm proceeds
by choosing the pair of partitions producing the largest change, and goinin
them. This process is repeated until a maximum valu@ o obtained. The
algorithm is one of the fastest available, especially when applied using the
data structure for sparse networks described in (Clauset et al.,.26@%)-
ever, while also pretty good at identifying community structure, more recent
approaches have achieved even more accuracy (see Sec. 3).

The main drawback of this method is that it tends to favor the creation of
large communities at the expense of smaller ones. With a simple modifica-
tion of the algorithm, Danomt al. presented a method capable of identify-
ing heterogeneous communities ensuring that communities of differing sizes
are treated equally (Danon et al., 2006), improving the efficiency Newsman’
method without increasing the temporal cost. Another interesting upgrade of
this method has been proposed in (Pujol et al., 2006). Instead of pla@ng th
nodes individually at the beginning, they perform a random walk psotcerse-
duce the dimensionality of the network. In this initial process, they group the
nodes according the number of times that a certain walker have visited them.
After this they use the greedy algorithm to optimize the modularity. This mod-
ification increases the accuracy while reduces the temporal cost cahpigiie
Newman'’s original version.

Simulated annealing methods

Another approach to optimize the modularity measure is to employ simu-
lated annealing methods. It was first proposed by Guine¢ral. to study
modularity in random networks (Guimera et al., 2004). The process begins
with any initial partition of the nodes into communities. At each step, a node
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is chosen at random and moved to a different community, also chosem-at ra
dom. If the change improves the modularity it is always accepted, otherwise it
is accepted with a given probability. The process is repeated until weotann
improve the modularity anymore. The algorithm is slower than some of the
other methods, but as we present in sec. 3 is the most accurate option up to
date.

In (Massen and Doye, 2005) the authors present two modifications of the
Monte Carlo sampling method with simulated annealing. Firstly, the algo-
rithm is stopped periodically, or quenched. Then they analyze all théy®ss
node movements and accept the move corresponding to the largesténafeas
the modularity. The second way to improve the efficiency is using a Basin-
Hopping approach, where in each step a series of nodes are movedrie
community to another, not just one. In this case, the acceptance criterion is
calculated directly from the partition that results at the end of the move. The
authors report that this method is slower to run, but is able to find high val-
ues of modularity quickly. In case of large networks it requires less ctenpu
memory than the other presented, since it doesn’t need extra data gsuctur

2.4  Spectral analysis methods

An alternative representation of a graph other than the adjacency matrix
is the Laplacian matrix. If a link exists between nodeand j, the element
L;; = —1. The diagonal of the matriX;; contains the degree of nodeso
that the sum of each row and column is equal to zero. Methods which take
advantage of algebraic properties of these matrices have been mapase
several decades in many physical and mathematical problems.

Multi dimensional spectral analysis

Taking advantage of the properties of the Laplacian matrix, Donetti and
Mufioz present a very nice approach in (Donetti and Mufioz, 2004¢. fifst
few non-trivial eigenvectors can be extracted sequentially at minimunusest
ing the Lanczos method, which can be applied to sparse matrices at minimum
computational cost (Golub and van Loan, 1996). The individual egsoy
components, which represent nodes in the graph, can be thought adas-
nates in}M -dimensional space, whefd is the number of non-trivial eigenvec-
tors considered. The idea is that if two nodes belong to the same community,
they are close in thig/-space. Once separated in this space, the nodes can
be clustered using hierarchical agglomerative methods (i.e. “single lihkage
or “multiple linkage”), using both simple Euclidean distance and angular dis-
tance. The clustering is stopped at the highest value of modularity obtained,
thus detecting the optimal configuration.

This algorithm is reasonably fast but neeagriori information on how
many vectors need to be extracted to separate the communities properly. In
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Figure 2.5. a) Components of the first non-trivial eigenvector foac hocnetwork with 4
communities (see Sec. 3). b) All communities can be clearly identified Wreenomponents
of more than one eigenvector are used as coordinatég-dimensional space wherd is the
number of eigenvectors used. Héve = 2.

terms of sensitivity, the algorithm performs well (see Sec. 3). In the compar
ison section, we use the aliases DMCS and DMCA for Single Angular and
Complete Angular analysis respectively.

Constrained optimization

This method, described in (Capocci et al., 2004) is based on the spectral
properties of the simple adjacency matrix as opposed to the Laplacian. The au
thors recast the costly problem of extracting eigenvectors &f an N matrix
into a constrained optimization problem. In this way they are able to extract
the eigenvectors much faster. As in the previous method this gives informa-
tion about the location of the different nodes ordered in differentggon an
M-space (wheré/ is once again, the number of eigenvectors extracted). To
detect the groups that appear, they use a correlation of the avelags vh
the eigenvectors to measure how close two nodes are in this space. listead
providing a clear cut community structure, this method gives us an idea of how
close any pair of nodes is in the context of communities.

Spectral optimization of the modularity

A different approach to detect communities using the matrix spectra has
recently been introduced in (Newman, 2006b). The idea is to rewrite the mod-
ularity function in matrix terms, and then detect the communities using spectral
partitioning methods. The modularity matrix is definedias = A;; — Pjj,
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Figure 2.6. How clustering is related to curvature according to (Eckmann and M266g).

For a nodei, the shortest path distance between any of its neighbors will be dithethe
neighbors are linked, &, if they are not. The average distance between the neighbors can give
a measure of curvature. Positive curvature is depicted in (a) andiveegarvature is depicted

in (b). Both triangles have sides of length unity, and the angle between ths thesame, but

the distances are different.

being A the adjacency matrix ankl;; the probability that, maintaining their de-
grees, nodesand; are connected in a randomized version of the network.The
idea is the following. First we need to compute the leading eigenvector of
the modularity matrix. And then, depending on the sign of the values of this
eigenvector, the nodes are classified on different communities. Theodivis
into communities is performed by recursive divisions into two communities
while we optimize the modularity. The total cost of the algorithm scales with
O(n?logn), and the modularity values achieved in some test networks are
among the highest.

2.5 Other methods

This section is dedicated to those methods that do not belong clearly to any
of the previous classes.

Clustering and curvature

This is one of the first attempts at detecting thematic and functional com-
munities based on clustering (Eckmann and Moses, 2002). The autheors us
the concept oturvatureof a node and relate it to clustering. Consider a node
1; its neighbors will be separated by a geodesic distance of at Indklinks
exist between neighbors of nodehis distance is unity. The average distance
between neighbors of any node, therefore, lies between 1 and 2. dlhis v
is directly related to clustering (see (Eckmann and Moses, 2002)). lasnhe
sumes that the distance from nod® any of its neighbors is unity, and take
the distance between any of the neighbors to be the average, one cad inde
think of the node to be in “curved” space, with the amount of curvaturetigp
ing on the average distance between the nodes, see figure 2.6. The isethod
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based on the intuition that high curvature region of a network will belong to
the same community. The authors show that finding connected components of
high curvature give a good idea of community structure.

Random walk based methods

In a set of papers, Zhou and collaborators develop a methodologgiior ¢
munity detection based on random walks (Zhou, 2003a, Zhou, 2003y Zh
and Lipowsky, 2004). The authors show that instead of actually peifor
the random walk on the network, it is possible to calculate the average distanc
between two nodes algebraically using with the adjacency matrix. From the
information contained in the average distances, the authors define whiek no
act as global and local attractérsind then agglomerate the nodes according a
set of rules based on the hierarchy of the attractors.

The authors have proposed some interesting modifications to their original
method. First, in a more refined effort, the authors use the average distanc
measure to define dissimilarity indexof any two nodes(Zhou, 2003a). Us-
ing the dissimilarity index, the author describes an elaborate method of hierar-
chical agglomeration of nodes into communities. And more recently they have
presented another method based@sed random walk&hou and Lipowsky,
2004, Zhou and Lipowsky, 2005). Instead of having the walkersopmihg
purely random walks, the walker has a higher probability to jump from a node
i to a node which shares the highest number of neighborsiwilsentially
biasing the random walker to go down the link with the highest link clustering).

In a similar approach Latapy and Pons (Latapy and Pons, 2004) alsoyemplo
the intuitive idea that a random walker will get trapped for a longer time in a
a densely connected community. They calculate a distance measure between
two nodes, and apply an agglomerative method (Ward, 1063), startinglith a
nodes in their own community, and joining them two by two. The main differ-
ence between this approach and the above is that at each step, theedist@nc
recalculated. The two methods have very similar sensitivities, suggesting that
recalculating the distances in each step is not crucial, see Sec. 3.

Approximate resistance networks

In a development of the resistor network approach in (Newman and Girvan
2004) Wuet al. present an approximate method, in order to reduce the compu-
tational time needed (Wu and Huberman, 2004). The authors select tws nod
as source and sink, assign them a fixed voltage, and then approximatdtthe v

1The local attractor of nodeis the closest node (smallest average distance) of its namiggbors, and
the global attractor, the node closest to all other nodelsametwork

2For nodes and; the dissimilarity index is simply the square of the differebetween the distance from
another nodé: to < and the distance frorka to ; summed over all nodds
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Figure 2.7. The g-Potts model as applied to a small network with communities. Eachisiode
assigned one af spins. As the Hamiltonian of the system is minimized, the spins in a tightly
connected community take equal values, which are different to thosgirs located in other
communities.

age of the rest of the nodes. The process is performed iterativeligirgo

the costly matrix inversion used in (Newman and Girvan, 2004). Identifying
the gaps in voltage values they can split the graph at a particular voltage gap
separating a number of nodes (within a tolerance limit), which must be previ-
ously known, from the rest of the network. This process is repeaadpmly
choosing pairs of nodes to be voltage sources and sinks. Finally nogles a
then bundled together into a community of the expected size using a simple
majority rule over the realizations of the algorithm.

This method when employed to identify all communities in a graph is de-
pendent on having a good idea of the sizes of communities one is looking for.
In networks of larger size and complexity, this is generally not known tlaad
algorithm becomes more difficult to apply. However, the method can be em-
ployed to identify in linear time the community that any one nodes belongs to,
similar to the approach of the L-shell method.

Q-potts model

Another interesting approach (Reichardt and Bornholdt, 2004) detects
munities by mapping it to a spin system (Blatt et al., 1996). Here, each node
is assigned a spin state betweeandg, at random. The energy of the spin
system is determined using a g-Potts Hamiltohiaffhe idea is that in the
ground state of the system, communities are identified as groups with equal
spin values, see figure 2.7. One useful characteristic of this is thatnititger

3The g-Potts model is essentially an Ising model witstates instead of just two
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the detection of communities which are “fuzzy”, or clearly separate from the
rest of the network. The method should be fast since one only needoaly
information to calculate the Hamiltonian and update the spins. The sensitivity
of the algorithm is also good, as we can see in the next section.

Information theoretic approach

One of the most recent approaches to the community detection problem has
been proposed in (Rosvall and Bergstrom, 2007). Itis based on@miafion-
theoretic framework, where the community detection problem is now treated
as an information compression problem. The idea is to reduce the link connec-
tivity of the network (the adjacency matrix) into a more simple description (a
module assignment vector and a module matrix). To discover the configuration
that provides the best “compression” of the network structure, they maximiz
the mutual information between the encoded and the global descriptions.

The results presented in their paper show that this method performs better
than the others when detecting asymmetric communities. Another advantage
is that changing the encoding function we can detect other types of eluster
ing beyond the classical community structure. Similar to the mixture models
presented in (Newman and Leicht, 2007), the method is also able to identify
partitions where the nodes have similar patterns of connection to other.nodes

3. Comparative evaluation

Thus far we have described several methods to identify the optimal commu-
nity structure from a wide range of points of view. In this section we would like
to present a qualitative comparison for all the methods, but this is not fmssib
as they are very varied, both conceptually and in their applications. fbinere
our main goal is to compare the efficiency and accuracy of as many as poss
ble methods, which will help us write some guidelines on what methods are
recommended to analyze different types of networks.

3.1  Accuracy of the methods

One way that has been employed to test sensitivity in many cases is to see
how well a particular method performs when applieétbhocnetworks with
a well known, fixed community structure (Newman and Girvan, 2004). Such
networks are typically generated with= 128 nodes, split into four communi-
ties containing 32 nodes each. Pairs of nodes belonging to the same community
are linked with probability;,, whereas pairs belonging to different communi-
ties are joined with probability,,;. The value ofp,,; is taken so that the
average number of links a node has to members of any other commupity,
can be controlled. While,,; (and thereforez,,;) is varied freely, the value
of p;, is chosen to keep the total average node dedr@mnstant, and set to
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Figure 2.8. Algorithm sensitivity as applied to ad hoc networks with= 128, the network
divided into four communities 032 nodes each and total average degrgg fixed to16. For
low z,.:/k the communities are easily distinguished. For highgr /k this becomes more
complicated. Both measures of comparing original communities to onesl foy the detection
method are shown. The normalized mutual information measure is nmmenginatory and
appears more sensitive to errors in the community identification proeedline results are
shown for Newman’s fast algorithm (Newman, 2004b).

16. Asz,,: IS increased from zero, the communities become more and more
diffuse and harder to identify, (figure 2.8). Since the “real” communitycstru
ture is well known in this case, it is possible to measure the number of nodes
correctly classified by the method of community identification.

In (Newman, 2004b), the author describes a method to calculate this value.
The largest group found within each of the four “real” communities is con-
sidered correctly classified. If more than one original community is clustered
together by the algorithm, all nodes in that cluster are considered intdgrrec
classified. For example, for the case whegpy/k is small, if a method finds
three communities, two of which correspond exactly to two original communi-
ties, and a third, which corresponds to the other two clustered together, this
measure would consider half the nodes correctly classified. As the author
notes, this measure is quite harsh, and some nodes which one may consider
to be correctly clustered are not counted. On the other end of the speetsu
zout/k DECOMeS large, and the networks become essentially random networks,
this method rewards the identification of smaller clusters found within each of
the original communities, which could be misleading.
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We suggest that a more discriminatory measure is more appropriate, and
propose the use of trmalized mutual informatiomeasure, as described in
(Kuncheva and Hadjitodorov, 2004, Fred and Jain, 2003). It istcbasalefin-
ing a confusion matrixXN, where the rows correspond to the “real” commu-
nities, and the columns correspond to the “found” communities. The element
of N, N;; is the number of nodes in the real communitihat appear in the
found communityj. A measure of similarity between the partitions, based on
information theory, is then:

Ni; N
2374 Z?L Nijlog (NZJNJ)

I(A’ B) - CcA Nz’ CB NA7'
>_i2q Nilog ( N‘) + 2521 Njlog (T)

2.2)

where the number of real communities is denatgdand the number of
found communities is denotegk, the sum over row of matrix V;; is denoted
N;. and the sum over columpis denotedV ;

If the found partitions are identical to the real communities, the#, B)
takes its maximum value of 1. If the partition found by the algorithm is totally
independent of the real partition, for example when the entire networkinifo
to be one community; (A, B) = 0.

Both measures of accuracy give a good idea of how a method performs.
However, the measure we propose for use here is more represenfa@resi-
tivity if the performance is dubious, since it measures the amount of informa-
tion correctly extracted by the algorithm explicitly. As an example, for small
Zout, Where two original communities are clustered together by the algorithm,
this measure does not punish the algorithm as severely, taking into atlceunt
ability to extract at least some information about the community structure. On
the other hand, for large,.:, this method is able to detect that the clusters
found by the algorithm have little to do with the original communities, and
I(A,B) — 0.

In figure 2.9 we show the sensitivity of all methods we have been able to
gather. The percentage of correctly identified nodes is calculated usng th
method described in (Newman, 2004b), since this is the method employed by
the various authors. We can see that accuracy varies in a similar wag dloeo
different methods as,,,; increases and the communities become more diffuse.
So, it remains difficult to compare the performance by looking at the methods
separately, even with a reference performance.

To summarize the large amount of information, in figure 2.10 we plot the
fraction of correctly identified nodes for only three valueszgf; (6, 7 and
8), corresponding ta,,:/k = 0.375, 0.4375 and 0.5 respectively, for each
method. From this we can see that most of the methods perform very well for
Zout = 6 (zout/k = 0.375), and even fok,,; = 7 (zout/k = 0.4375) most can
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Figure 2.9. Comparing algorithm sensitivity using ad hoc networks with predetermioed c
munity structure. The-axis is the proportion of connections to outside communitigs/k
and they-axis is the fraction of nodes correctly identified by the method measwteszsibed
in (Newman, 2004b). The labels here correspond to the differentadstind are listed in table
2.1.

identify more than half the nodes correctly. EQr; = 8 (zout/k = 0.5) the
SA method is still able to identify more than 80of the nodes correctly.

Although these are the most used reference networks to compare the ac-
curacy of the methods up to date, they have been criticized because they do
not reproduce the community structure observed in real networks dbr tw
expand the scope of these comparisons, some new benchmarks haypedee
posed that explore the accuracy of the methods when confronted tagihias
artificially controlled networks. Here we present two methods based on small
modifications of Newman’s networks. The first modification, introduced in
(Danon et al., 2006), describes how to create networks to test thé effféize
heterogeneity, reproducing the fact that in real networks usually ttebdis
tion of community sizes is highly skewed. To generate such networks we need
to chose the size of all the communities and a factor that helps us to control
their internal and external cohesion (see figure 2.11 left). A secondfimod
cation provides computer generated networks with a well-defined hiératch
substructure (Arenas et al., 2006b). Now we define the sizes of thardtier
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Figure 2.10. The fraction of correctly identified nodes at three specific values,gf, 6, 7

and38 for all available methods and for networks with fixkd= 16. Note that for the FLM
method, the data fot,.,. = 8 were not available. Here we can see that most of the methods are
very good at finding the “correct” community structure for valuesQf up to6. At zou: = 7
some methods begin to falter but most still identify more than half of thesiodeectly. At

Zout = 8, when on average half the links are external, the SA method is still able tbfijden
over 80 % of the nodes correctly.

cal subgroups and the probabilities to connect two nodes dependingion th
relation in the hierarchical structure (see figure 2.11 right). These netwo
provide a good benchmark to test if a method is able to unravel the different
mesoscales of the community structure.

3.2 Efficiency of the methods

While accuracy is an essential consideration when choosing a method, it
is just as important to consider the computational effort needed to perform
the analysis. For some of the approaches described in the literatureyere ha
collected estimates of how the cost scales with the size and/or density of the
network. For networks witl nodes andn links, the methods scale between
O(m + n) for the fastest, and(exp(n)) for the slowest as it is shown in
table 2.1. Such diversity is due to the heterogeneous approaches tatten b
authors. The faster methods tend to be approximate and less accurate, while
the slower methods have other advantages. Differences in speed oolypéde
important when dealing with larger networks, and for smaller networks we ca
choose between the more accurate ones.
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Figure 2.11. Left: Example of a computer generated network with communities of diffier
sizes. In this case we can control the size, the internal cohesion angténead cohesion of
each community, see (Danon et al., 2006) for more details. Right: pbeaof a computer
generated network with hierarchical community structure. Each nagla high probability to
create a link to nodes of the same internal cluster:(), a lower probability to be linked to
nodes of the external cluster;{2) and almost no probability to be linked with nodes of the rest
of the network £,.:). See (Arenas et al., 2006b) for more details.

[ Ref. | Label | Order |
(Eckmann and Moses, 2002) EM Oo(m(k%)
(Zhou and Lipowsky, 2005) ZL O(n?)
(Latapy and Pons, 2004) LP O(n?)
(Newman, 2004b) NF O(nlog®n)
(Newman and Girvan, 2004) NG O(m?®n)
(Girvan and Newman, 2002) GN O(n*m)
(Guimera et al., 2004) SA parameter dependent
(Fortunato et al., 2004) FLM O(n*)
(Radicchi et al., 2004) RCCLP O(n?)
(Donetti and Mufioz, 2004, Donetti and Mufioz, 2005pM/DMN O(n3)
(Bagrow and Bollt, 2005) BB O(n®)
(Capocci et al., 2004) CsccC O(n?)
(Wu and Huberman, 2004) WH O(n+m)
(Palla et al., 2005) PK O(exp(n))
(Reichardt and Bornholdt, 2004) RB parameter dependent
(Newman and Leicht, 2007) NS O(n?logn)
(Danon et al., 2006) DDA O(nlog®n)
(Pujol et al., 2006) PBD O(nlog®n)

Table 2.1. Table summarizing how the computational cost of different appreastees with
number of nodes, number of linksn and average degrég). The labels shown here are used
in figures 2.9.

3.3 Which algorithm should we use?

One has to take many factors into account when choosing an algorithm to
use. The above comparison ought to give the reader an idea as to Wjoeh a
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rithm is most appropriate for a given problem. In many cases, a compromise
must be reached between accuracy and running time, especially farnatge
works. To clarify this further, here are a few examples of real netsjcakd

our suggestion for the appropriate community identification algorithm.

Say we want to analyze a relatively small network, for example the metabolic
network of the wornmCaenorhabditis elegansvhich has 453 nodes. Since the
network is small, and current desktop computer technology is reasorzes)y f
the speed of the algorithm should pose no restriction, and one is freege cho
the slower, more accurate methods. In this case the Simulated Annealing (SA)
method would be the most appropriate choice, since it gives the most accu-
rate partitions, especially if the system is allowed to cool slowly (see (Guimera
et al., 2004, Massen and Doye, 2005, Guimera and Amaral, 2005a) fer mo
details).

Larger networks, with the number of nodes in the order@fbecome in-
tractable with the most accurate methods. For example, when attempting to
study the community structure of the actor collaboration network with 374511
nodes, we estimate that the SA would take a few months of uninterrupted com-
putation. However, a reasonable implementation of the fast algorithm would
be able to perform this analysis in just a few hours (Clauset et al., 2004, P
et al., 2006), making it the appropriate choice, even if their accuracyt ihao
best.

Finally, let us consider an intermediate sized network such as the Pretty
Good Privacy (PGP) web of trust social network (Guardiola et al.220fbn-
taining 10680 nodes. Although the SA algorithm would run in a reasonable
time, it may be a better choice to compromise and employ a faster running
algorithm. We leave this choice to the preferences of the researcher,ainc
the methods presented in this chapter can perform reasonably well (wigh mor
or less accuracy).

4, Summary

In this chapter we have presented the problem of community identification
in complex networks, and we have given a brief overview and compaoison
the modern approaches to detect the communities. A large amount of knowl-
edge has been collected in the field, and real progress has been otida, b
the identification of communities and their characterization. However, some
guestions do remain open in the community detection problem, and it is these
that we would suggest for further study.

One of the main problems that is actually being discussed is the valid-
ity of the modularity as the appropriate measure for quantifying the commu-
nity structure (Arenas and Diaz-Guilera, 2007). The work of Fortunatb
Barthelemy showed the limitations of this measure to uncover certain well-
defined communities, opening the door for other possible structure measure
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ments. This work is also related with the problem of the detection of commu-
nity structure at different mesoscales. As introduced previously, ibbas
observed that the community structure can be analyzed at different,lebels
taining different coarse-grained views of the same network. The stasctu
obtained at different scales do not necessarily need to be hierdrchica
methodology and the definition of this scales are still an open question.

An additional issue that is actually discussed is the computational costtheede
to uncover some community structures with the presented methods. The fastest
algorithm runs in linear time, but this particular method needs a priori knowl-
edge of the number of expected communities, and assumes that all communi-
ties are of similar size (Wu and Huberman, 2004). And if we do not know
the number of communities a priori, the cost of the best method scales as
O(nlog?®n) with network size. While this makes the analysis of extremely
large networks feasible, this algorithm does not guarantee that the partition
found is the best possible one. Other algorithms which are more computation-
ally expensive have other merits, such as accuracy or the ability to identify
overlapping communities. So, when choosing a method one must consider
carefully the context of its use. Ideally, one would like to have a method which
guarantees accuracy and is fast at the same time, but finding such a nsethod
still a challenging problem.






Chapter 3

DETECTING COMMUNITY STRUCTURE
USING EXTREMAL OPTIMIZATION

In the previous chapter we have introduced the problem of detecting the
community structure as one of the most challenging open problems within the
subject of complex networks. As we have seen, the problem has bédedtac
from several perspectives, but the results are still far to be optimal: tis¢ mo
accurate methods are usually not scalable, and the fastest methods deually
not find the expected communities. The purpose of this chapter is to introduce
a novel method to detect the communities based on the maximization of the
modularity Q measure. We propose a fast, scalable algorithm that searches
highest possible value @ using local information.

It has been proved that the search for the optimal (largest) modularitg valu
is a NP-hard problem due to the fact that the space of possible partitions gr
faster than any power of the system size (Brandes et al., 2007). Fogdisizn,

a heuristic search strategy is mandatory to restrict the space of cotibgsra
while preserving the optimization goal. Indeed, it is possible to relate the cur-
rent optimization problem fo) with classical problems in statistical physics,
e.g. the spin glass problem of finding the ground state energy (Sheringto
and Kirkpatrick, 1975), where algorithms inspired in natural optimization pro
cesses as simulated annealing (Kirkpatrick et al., 1983) and genetic atg®rith
(Goldberg, 1989) have been successfully used.

The heuristic search proposed in this chapter is based on the Extremal Op-
timization (EO) algorithm introduced by Boettcher and Percus (Boettcher and
Percus, 2001a, Boettcher and Percus, 2001b). This algorithm isadspir
turn in the evolution model of Bak-Sneppen (Bak and Sneppen, 19a8), a
basically operates optimizing a global variable by improving extremal local
variables that involve co-evolutionary avalanches. The performane® al-
gorithms have been shown to overcome the efficiency of classical simutated a

53
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nealing and genetic algorithms providing competitive accuracy but using less
computational time (Boettcher and Percus, 2000).

The chapter is organized as follows. In the first section we describedhe id
behind the extremal optimization heuristics, and how we have applied it to
identify communities. Next, we introduce different theoretical and algorithmic
improvements that can be applied to increase the accuracy and efficiency o
community detection methods based in general. In particular, we show how
to apply this refinements to the EO, obtaining even higher valu€s. ofhe
last part of the chapter presents a detailed benchmark realized with the EO
method. We analyze a large subset of real networks and we show the maximu
modularity obtained for each, providing a reference where other algwitian
compare their accuracy.

1. Extremal Optimization Algorithm

The problem of finding an optimal solution for NP-hard problems has re-
ceived a lot of attention from computational complexity theory. A paradig-
matic case of an NP-hard problem is the traveling salesman problem (TSP),
which can be formulated as “Given a number of cities and the costs of travel-
ing from any city to any other city, what is the cheapest round-trip route tha
visits each city exactly once and then returns to the starting city?” (Lawler
et al., 1985). Exact solutions can be found for small TSP sizes usirapsxh
tive analysis of the different combinatorial possibilities, but as the sysism s
grows, the number of possibilities to explore is too large to face with the ac-
tual computational resources. In this case one should use algorithmsihat ¢
provide very good solutions, but which could not be proved to be optimal.

The TSP has received a large number of heuristic algorithms that hawe bee
specifically designed to find an optimal solution for this problem. However,
many physical problems do not have a specialized heuristic proceduralto fi
the solution. For this group of generic problems, the scientific community has
developed some general-purpose optimization approaches basedlasttoc
procedures. Probably the most famous is the Simulated Annealing (SA) algo-
rithm introduced by Kirkpatrick (Kirkpatrick et al., 1983), which is inspitiad
the behavior of physical systems in thermal equilibrium. Simulated annealing
works by taking an initial state of the system, and then trying to improve the
system performing small changes, accepting them if they improve the overall
status. These changes can drive the system sometimes to better and sometimes
to worse optimal states, which are governed by the laws of equilibrium statis-
tical physics. If the energy differences between this local optimum age lar
(i.e. they are surrounded by high energy barriers), the searchthlgaran get
trapped in this local optimum without the possibility of continue improving.
Therefore, this type of local search methods usually need some kind of mec
anism that can help the system to hop between local optimum (see figure 3.1).



Detecting Community Structure using Extremal Optimizatio 55

Warming

Energy

Configurations

Figure 3.1. Example of the simulated annealing heuristic search process in a onasitma!
configuration space. Each configuration has associated a givagyeméuwe. With the simulated
annealing we look for the configuration that minimizes the energy of thersys The red
ball represents one run of the simulated annealing that is trapped in antdtata. When
we increase the temperature of the system, we allow the ball to jump betwednrimima,
potentially making any configuration accessible.

In Simulated Annealing this is done with a temperature parameter that allows
to heating or cooling the system. Therefore, we can explore a wider rEnge
possibilities which can be closer to the best optimal result.

Other examples of generic purpose heuristic algorithms that have bekn use
in statistical physics are the Genetic Algorithms (Holland, 1975) or the Tabu
Search (Glover, 1986). Within this context, Boettcher and Percus irteada
new local heuristics known as Extremal Optimization that is based on the ob-
servation of optimization processes in natural systems (Boettcher anasPerc
2000). The inspiration comes from the natural selection process: thigadur
of one species depends on the overall adaptation of their populatiortpand
maintain or improve this overall status, the less adapted elements should be
discarded. Bak and Sneppen modeled this evolution in an ecological model
of interacting species that co-evolve through chain reaction called avedan
(Bak and Sneppen, 1993). The idea is very intuitive. Each speciesiiach
terized by a fitness value which measures its adaptation to the environment.
The species with the worst fithess (i.e. the less adapted) is selected and it is
assigned with a new random fitness value. But the changes on the fitioegs o
species impacts the fitness of the interrelated species, provoking anchelan
of changes that rearrange the fitness of a large number of elementsa Aéte
tain number of steps, the system reaches a punctuated equilibrium (Edredg
and Gould, 1972), with states that remain stable for long time, broken by pe-
riods of burstiness where the system evolves very quickly into another meta
stable state. The most interesting point is that the evolutionary process is per
formed without any external forces governing the dynamics (like the teamper
ture in SA). This type of behavior resembles de phenomenon of Selfviargh
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criticality (SOC) in statistical physics (Bak et al., 1987), and is considened o
of the causes of the emergence of complexity in natural systems (Bak). 1996

The Extremal Optimization can be considered as a generalization of the
Bak-Sneppen model. Using EO we can try to find a near-optimal solution to
any NP-problem in a reasonable time. The analyzed problem should bte able
be decomposed in terms of an space of possible configurations, andagach
figuration should be assigned with a global magnitude (the value that we want
to optimize). Like in the BS model, each element of the system is assigned with
a fitness value that reflects its participation to this global magnitude. Then, the
dynamic process works selecting the worst value and replaces its fitness b
randomly new value. After a certain number of changes, the system svolve
into a critical state that gives an optimal configuration possible of its elements
that maximizes the global value.

In contrast with the thermal equilibrium dynamics of the SA, behind the EO
algorithm there is a mechanism that “drives the system far from equilibrium”
(Boettcher and Percus, 2002). In SA we analyze each small modificdtioa o
configuration and we accept it according to the Metropolis criteria. Hewev
since in EO the system self-organizes, there is no need to decide if wat acce
given change. Instead we accept all the changes of the system, vehiatyu
are in form of avalanches, and we measure the configuration whendtesrsy
has stabilized. This could seem an ineffective random search but gdtsBer
and Percus proved, the persistent elimination of the worst fitness vahdss le
the system into meta-stable sub-optimal solutions that can be better than the
ones found by SA. To illustrate the performance of the EO, they applied it to
the well-known problem of graph bi-partitioning also introduced in chapter 2
Their results showed that the EO outperforms other heuristic methods such a
simulated annealing or genetic algorithms, obtaining better results and con-
suming less time and computational resources (Boettcher and Percu}, 2000

1.1  Optimizing the modularity

The community detection problem can be viewed as a graph multi-partitioning
problem where, instead of minimizing the cut size, the main goal is to find the
configuration that maximizes the modularity. Remember that modularity is
considered the 'de facto’ quantitative measurement for the community struc-
ture, which was originally formulated by Newman as:

Q=> (er—ap) (3.1)

wheree, refers to the fraction of internal links in communityanda,. refers to
the total number of links that have at least one node inside commuriitince
we are interested in applying the EO algorithm to maximize the valdg ofe
need to reformulate equation 3.1 to reflect the individual contribution of the
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nodes, while maintaining Newman’s original idea: the comparison between
the internal link connectivity against the expected connectivity in a random
network:

1 k;k;
Q:2L22<kij_ 2Lj>5(0i70j)> (3.2)
i

wherek;; is 1 if there is a link between and ; and O otherwiseg; is the
degree of node, the Kronecker delta functiof(C;, C;) takes the values, 1 if
nodesi andj are into the same community, O otherwise, and the number of
links L = % > k;. From this equation we can easily extract the contribution of
individual nodes to the summation,

1
Q= by Z 4i (3.3)
being
kik;
q; = Z <k‘ij - 2Lj> 5(01,03) (34)
J

For simplification purposes, we rewrite equation 3.4 as the modularity of
the node belonging to the community.

¢ = kint; — kia, (i) (3.5)

wherekint; is the number of links that a nodehas with the nodes belong-
ing to the same community where: belongskint; = >, k;;6(C;, Cj), and
a,-(i) is the fraction of links that have one node in communitya, (i) =
5, 918(Cym).

Equation 3.5 provides a measure that depends on the node degree, and its
normalization involve all the links in the network after summation. Re-scaling
the local variabley] by the degree of nodewe obtain a proper definition for
the contribution of nodeé to the community- relative to its own degree, and
normalized in the interval [-1,1].

e a0 (3.6)
keeping in mind this definition ok} we can compare the relative contribution
of individual nodes to the community structure. We will considéras the
local variable involved in the extremal optimization process that characterize
an individual node, from now on we will refer & as the fithess of node
using the common jargon in extremal optimization problems.

a= i
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Figure 3.2. Left: Random initialization of the Zachary network into two partitions, red and
green. Right: Here we identify five different communities by looking atdbenected compo-
nents in each partition. Each color defines a different community.

Once we have determined the metric that we will use to measure each con-
figuration of the partition space, the next step towards the adaptation o@the E
algorithm is the definition of the dynamic process that should self-orgaréze th
nodes into communities. The heuristic search we propose to find the optimal
modaularity evolves as follows:

= [nitially, we split the nodes of the whole graph in two random partitions
having the same number of nodes each one. This splitting creates an ini-
tial communities division, where communities are understood as connected
components in each partition.

= At each time step, the system self-organizes by moving the node with the
lowest fitness (extremal) from one partition to the other. In principle, each
movement implies the recalculation of the fitness of many nodes because
the right hand side of equation 3.6 involves the pseudo-global magnitude

ar (7).

= The process is repeated until an “optimal state” with a maximum value of
Q is reached. After that, we delete all the links between both partitions
and proceed recursively with every resultant connected compondm. T
process finishes when the modular@ycan not be improved

Note that this process is not a bi-partitioning of the graph because: the num-
ber of nodes in each patrtition is dependent on the evolution processoand n
restricted to be the same at the end of the process; and more importantly,
each partition could contain different connected components (communities)
that when the partitions are disconnected result in several subgraphs.

1The value ofQ always refers to the whole network i.e. is the sum over allctrmunities. At a certain
moment more subdivisions into communities will necessarily eese() because the limit of decomposi-
tion is a community per node whose value(@fs negative.
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Figure 3.3. Top: Network after edge removal at each recursive cut. BottomliuEea of the
Q value in the at each step of the adaptation process. Separation baasamelaursive divisions
of the graph performed at maximum Q.

Let us illustrate the above mentioned heuristics in a simple case. We will
apply it to the well-know Zachary karate club network (Zachary, 197).
tially we split the nodes in two random partitions (see figure 3.2 left). Note that
the number of initial communities (connected components in each partition) in
this case is five (see figure 3.2 right). After that, the self-organizatiocegso
starts: the node with the “worst fitness” is selected and moved from its parti-
tion to the other partition, this movement provokes an avalanche of changes in
the fitness of the rest of nodes. We calculate the new value for the modularity
@, and again repeat the process until no changes could improve it (see fig
3.3).

The application of the algorithm to the Zachary network provides the opti-
mal modularity value after three recursive iterations. The network is decom-
posed in four communities and the value for the modularity.4488, greater
than the valu#).381 reported by Newman (Newman, 2004b), the valu#6
reported by Reichardt et al. (Reichardt and Bornholdt, 2004) andahe
0.412 reported by Donetti et al. (Donetti and Mufioz, 2004) using different
optimization methods presented in the previous chapter.
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Random network Mail network

Figure 3.4. Fraction of nodes classified in the same partition over 100 realizations af-the
gorithm. The color of the position (i,j) corresponds to the fraction of times tlodes i and j
belong to the same partition.

1.2 Implementation details

The EO approach presented has several technical implementation details
that are relevant for our purposes. In the first place, as we inteablprevi-
ously the main drawback of this type of local heuristics is that the changes
produced at each step are usually small and can lead the system tatisndlop
configurations. In the original EO algorithm, the node selected is always the
node with the worsh; value. This is a deterministic and fast way to solve the
problem, but the final result strongly depends on the initialization and there
is no possibility to escape from local maxima. Instead, we use a probabilistic
selection called-EO (Boettcher and Percus, 2001b), in which the nodes are
ranked according to their fithess values, and then the node of-rigrdelected
according to the following probability distribution:

P(r)yocr 7 (3.7

This solution is less sensitive to different initializations and allows to es-
cape from local maxima. The exponenthas been tuned around the opti-
mal values obtained for random networks of si¥ehat approach the scaling
7 ~ 1+ 1/In(N) (Boettcher and Percus, 2001b). The use of this technique
also implies the determination of the number of self-organization stéyps
needed to decide that the maximum value has little chance to be improved. In
practice, we keep track at each step of the last maximum value obtain@d for
if this maximum is not improved inV steps we stop the search. Usuallys
empirically determined balancing accuracy and efficiency in the algorithm, we
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usea = 1 allowing as many steps as nodes to improve the current maximum
value of().

A second technical detail to consider is the speed of the algorithm. Since one
of the objectives is to provide an algorithm as fast as possible, it is important
to reduce as maximum as possible how the cost scales with the system size.
The computational cost involved in the whole proces®{V2inN) where
the NinN term is the cost associate to the ranking process, however it can
be substantially reduced using heap data structures (Aho et al., 198Rgfo
ranking selection process up@(N). The total cost of the algorithm can then
be improved up t@(N?). The analysis of a network df)® nodes only takes
a few minutes in a standard computer, and network0Sfnodes can take up
to a day.

And finally, another interesting technical detail that one should caretabou
is the robustness of the algorithm, defined as the capability of finding the same
configuration in different runs. Note that since the core of the predexgm-
rithm is stochastic, different runs could yield in principle different partgion
We have performed 100 runs of the algorithm for the e-mail network and fo
a random network with the same number of links and nodes to check the con-
sistency of the proposed method. In figure 3.4 we present the resulte of th
fraction of times a couple of nodes are classified in the same partition. The
same community structure is clearly revealed for the e-mail network while for
the random network this structure is inexistent.

1.3 Testing the EO algorithm performance

To test the performance of the algorithm we have used the computer-ge-
nerated graphs with a known community structure presented in the previous
chapter: a network of 128 nodes with 4 communities of 32 nodes, where the
nodes have an average degree of 16 and we control the number nalraad
external links (Girvan and Newman, 2002). We generate severahgagpng
Zout Values between 0 and 10, and we compare the results of our algorithm with
those obtained using the heuristics proposed in (Girvan and Newman) 2002
and in (Guimera et al., 2004). This comparative shows the capabilities lof eac
algorithm identifying the communities when these are more fuzzy inside the
whole network.

Using the Girvan-Newman algorithm, which has been the reference algo-
rithm for community identification, the communities are well detected until
values ofz,,; = 6. In contrast, our algorithm detects the communities up to
Zouwt = 8, Where the community structure still persist but is much more diffi-
cult to reveal, see figure 3.5. In this particular ca8% of the links are within
the community and0% are links with nodes outside the community. This
result that could seem contradictory is not. Note thatih#& of links with
nodes outside the community are equally distributed among the rest of com-



62 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

> lssssssssssaS88SS ’\A\.\
S e—e Girvan-Newman
E 0.9 | e Simmulated Annealing
g 5 Extremal Optimization
2 0.8
0(7)) [ >
i £
S 0.7 B 0.60%
>

g 1 3
Q 1S
206 04
o 3
Z  E \
5 £ >
= 0.5~ &02 \\
o 2 4 6 8 10 ¥
I 0.4+ Av. number inter-community edges

2 L | L | L | L i L

0% 2 4 6 8 10

Average number of inter-community edges per vertex

Figure 3.5. Fraction of nodes correctly classified using computer-generatetiggscribed
in text. Each point is an average over 100 different networks. Insetrafje of the maximum
modularity obtained in each case.

munities, and then its contribution to the definition of community is deprived
by the number of communities in the rest of the network, in our case three.
For this reason it is expected to find community structure even in these cases.
However, for values higher than 8, the average maximum modularity rapidly
approach the limit) = 0.208 (see inset figure 3.5), the expected modularity
for a random network with the same number of links and nodes, as it has bee
shown in (Guimera et al., 2004).

We also compare the accuracy of the EO algorithm against the simulated
annealing algorithm of by Guimerat al, since in the previous chapter we
have shown that it is the most accurate algorithm that has been published in th
literature. In this case we observe that the EO finds similar values of modularity
than the SA. It seems that the SA still performs a little bit better, probably
because it can explore a wider space of configurations. But the E@nchn
these values in less computational time, achieving the two goals that we have
presented at the beginning of the chapter, speed and accuracy,eaefbitb
providing a very good alternative to detect community structure to the existent
methods.

2. Detecting weighted and directed communities

A large number of real networks are originally weighted and directed.-How
ever, the initial complex networks theories have been centered only indhe an
ysis and modeling of unweighted and undirected versions. So when we wan
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to perform a detailed analysis of many real networks, we need first teedon
them into their undirected and unweighted versions, usually throwing away
useful information which may help us understand the network structure more
accurately.

To solve this problem, some authors have started to cope with the statis-
tical analysis of weighted and directed networks, establishing the bases fo
these scenarios. The first important publications have shown that theiorciu
of weights can change substantially the description of real networksatBar
et al., 2004a, Barrat et al., 2004b). A few attempts have also beengedpo
uncover the community structure using the weight information of the links in
(Newman, 2004a, Palla et al., 2007) or the directional information in (Barka
etal., 2007).

The original version of the Extremal Optimization algorithm is only capable
of detecting communities in undirected and unweighted networks. Here we
present a generalized method that takes into account the link directions and
weights. The adaptation process is very simple; we maintain the core of the
EO algorithm and we need only to redefine the modularity measurement to
include the extra information of the links. Preserving its semantics in terms of
probability, the definition of modularity can be rewritten as:

wput in

Q = % ;; (wij - ;WJ ) 8(C;i, Cj) (3-8)

wherew{"! andwi;‘ are respectively the output and input strengths of nodes
i andj

wit = (3.9)
J
wi =) wij, (3.10)

and the total strength can be computed now as the sum of outlinks or the
sum of inlinks

oW = wi = wl =D wy;. (3.11)
( J J

%
Note that when the network is undirected, the input and output strengths ar
equal (v; = w;*"" = w;"M), and we obtain the modularity as a function only
of the strength. Furthermore, if the network is unweighted and undirected,

represents the degree of th#h node, i.e. the number of edges attached to it,
andWV is the total number of links of the network.



64 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

Once we have redefined the modularity in terms of weighted and directed
links, now we can define the value of the local contribution of the nodes to the
weighted modularity as before,

I i /
Q=5 Zq (3.12)
being
w?utwin
q; = ZJ: (wz‘j - 2W] ) 5(Ci, Cy) (3.13)

However, the final step to obtain the fitness of each node is not straightfor
ward. In this case, due to the fact that we are using the directed modularity,
we have two choices as the fithess of the nodes: we can use the information
of the inlinks or the information of the outlinks. For instance, if we choose
the contribution of the nodes to the modularity in form of incoming links, the
definition of the fitness for nodiebelonging to community is

wint"!

wherewint" is the sum of the weights of the outgoing links from nade

other nodes belonging to communitywint" = > wi0(Cy, Cy), anda" (i)

is the fraction of the weights of the links that have its destination in community
. in

ryoap(i) =, ;U—I;,é(cj,r). And if we exchangeut by in and viceversa in

equation 3.14, we obtain a second definition of fitness according to the-outgo

ing links.

int"
A= wilui‘nl — a®(5) (3.15)

Which one should we choose as the fitness? The answer is that both are
equally valid since when we sum the local contribution of the nodes we obtain
the same global value for the modularity. The only difference between using
this two fitness is that we could obtain a distinct node ranking, provoking that
the heuristic search paths through the configuration space will also beediff

To analyze the performance of this extension of the original EO, we have
tested it on a set of computer generated networks that include links withtweigh
and direction. These networks are created using the same methodology de-
scribed in the previous chapter (128 nodes network, divided into fiooups
of 32 nodes with an average degree of 16), but now each link is aslsigne
domly with one direction. Since we want to study the effect of weights, we fix
the average number of internal/external links and we assign a weight 1
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Figure 3.6. Fraction of nodes correctly classified using computer-generatethgraiph di-
rected and weighted links. We fix the number of links, the weight of the eatéinks to 1, and
we increase the weight of the internal links. Dotted lines represent tiuesaycof the detection
process when we remove the direction of the links.

to the edges inside each community while we keep a fixed weight 1 for those
edges that lie between communities. Then we evaluate the fraction of vertices
classified correctly as a function of the internal weightAs figure 3.6 shows,
introducing weight into the links provides extra information that allows the al-
gorithm to discover the 4 communities again, even if there are more links to
outside than to inside the community. We also observe that valuesieéded

to recover the communities are very small, when the weight of the internal
links is twice the weight of the internal, the algorithm classifies essentially all
vertices correctly in the three presented cases.

We also compare the results against undirected version of the same net-
works. Note that, for lower values af the undirected detection seems to find
better configurations, but when the communities are well-defined there is al-
most no difference between them. This is also an expected result since, as
we explain in appendix A, the differences between the directed and otetire
versions of modularity of the same network are usually very small.

3. Increasing the efficiency and accuracy
of community detection algorithms
After the design of the EO, we have focused on the design of alternative

methods to increase the values of the maximum modularity and to reduce even
more the time need to find these values. The methods are not specific for the
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Figure 3.7. Left: Hierarchical tree that represents the recursive processd#enEO algo-
rithm. The final partitions are defined by the leaves of the tree. Right: Comgathe EO with
Newman'’s fast algorithm we can explore other possible configuratians#m still increase the
modularity.

presented algorithm, and can be applied to any algorithms based on modularity
optimization.

3.1 Improving recursive algorithms

We begin presenting two different ways to improve the accuracy of the re-
cursive algorithms without incrementing their computational cost. These im-
provements try to solve two typical problems associated with the recursive
heuristic searches, independently if the method is divisive or agglomerativ
Other methods that identify all the communities at once, such as Simulated
Annealing, explore a larger space of configurations and thereforetnot
suffer from this two problems.

The first problem is in terms of the space of configurations that is visited dur
ing the recursive analysis. Every time we separate (or group) the rieimtor
two or more partitions, we eliminate the possibility of going backwards and
explore other configurations. In the particular case of the Extremal Optimiza
tion algorithm, this problem is reflected in the large number of communities
that we find in comparison with other algorithms that obtain similar modular-
ities but a smaller number of communities (Pujol et al., 2006). This is due to
the fact that border nodes of small communities usually have higher values o
local modularity than the border nodes of larger communities, and therefore
these nodes are rarely selected to change from one partition to anothen W
the system cuts the two partitions into several groups a large number of small
communities are isolated, losing the chance to integrate with the larger ones.
As the system size growths, the probability of having small communities also
increases.

One easy way to solve this problem is to use a combination of an agglomer-
ative and a divisive algorithm. This combination provides a deeper exjora
of the configuration space, since allows the analysis of a new groupteritied
partitions. Figure 3.7 illustrates how the solution works. First we let the re-
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cursive algorithm to divide the network into several groups. Then wiope

an agglomerative process to try to re-join some communities that have been
separated during the recursive process. Since we work with the aftthe

first algorithm, there are only a few communities that we can try to merge, so
the second algorithm is extremely fast.

In our particular case, we have combined the EO algorithm with Newman'’s
fast algorithm proposed in (Newman, 2004b). The idea of the fastitigor
has been described in the previous chapter: we compute the incremeat of th
modularity obtained by joining each possible pair of communities detected by
the EO, we select the highest increment and, if the increment is positive, we
merge the two communities. We repeat this process recursively until we can
not increase the modularity anymore. As we have explained the process is
very fast, since the algorithm runs in almost linear time for sparse networks,
O(nlogn), and the number of communities to agglomerate is very small.
When we apply this method to the communities found by the EO, we observe
that we almost do not increase the final value of the modularity, but instead th
number of communities detected is reduced drastically (see table 4.1 in the last
section).

The second problem is also an artifact of the recursive mechanismn It ca
happen that during the initial splits (joins) of the network we obtain an interme-
diate configuration that temporarily has the best modularity possible. Howeve
after performing recursive splits (joins) it turns out that the intermediate cu
that we have performed does not let us to reach the final maximum modularity.
We will illustrate this problem using the already mentioned Zachary network.

Figure 3.8. Example of a node misclassification problem related with recursive algwithat
optimize the modularity. First we analyze the network and we obtain the twitigauidepicted
in the right picture. The circled node is classified in the red partition sinceitigies higher
modularity than if it is classified in the green. We cut the network into this twags@nd we
perform recursively the analysis of the two partitions, obtaining the fmad partitions shown
in the left figure. In this case we cannot obtain the maximum modularitye sivecircled node
should be in the green partition to obtain the maximum, but we cannot expls@nfiguration
due to the limitations of the recursive process.
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When performing the initial analysis, we observe that the circled node is clas
sified in the red partition, as seen in figure 3.8 left. This configuration gives
the maximum possible modularity, since if we change the marked node to the
other side the modularity decreases from 0.371794 to 0.371466. Trenet®
consider this as the best split, we cut the network and then we apply the re-
cursive procedure, obtaining the four partitions observed in figuragh@ In

this case the final modularity is 0.418803. However, this is not the maximum
possible modularity that we can obtain with four communities. If we move the
marked node to the green partition we can increase the modularity to 0.419790,
obtaining the configuration with the highest modularity known for the Zachary
network.

In our case we have solved this problem using a final bootstrapping of the
modularity, similar to the refinement mechanism introduced by Newman in
(Newman, 2006a). In this final step, we let all the nodes to move to other
partitions and observe the changes in the modularity, similar to the process ex-
plained before in the fast algorithm. When we detect that one change iegprov
the final modularity, we accept the movement of the node. The process is re
peated once for all the nodes, so we are able to correct some nodernmositio
and obtain configurations with even higher modularity values.

The increase of the modularity obtained in this two refinements is usually
very small, usually in the order ab—2. For instance, moving one node that is
isolated into a group will only increase the modularity valuenim;{w; } /2w.
Therefore, we must take into account that in the search for the bestianibgu
we need to work with high precision. A difference in the second (or even
greater) decimal can carry some important structural difference betmee
configurations.

3.2 Size reduction of the network

Up to now we have presented two different techniques that can improve the
results of community detection algorithms. In this case we present a differ-
ent approach, proposing a method to reduce of the size of the netwtekdns
of improving the problems related with the algorithms. Our goal here is to
demonstrate that it is possible to reduce the size of complex networks while
preserving the value of modularity, independently on the partition under con
sideration. The systematic use of this reduction allows for a more exhaustive
search of the partitions’ space that usually ends in improved values of-modu
larity compared to those obtained without using this size reduction. Therefor
we can obtain even more accurate results in less computational time.

One of the most interesting points of this method is that is also independent
of the algorithm that is going to be used a posteriori, being specially usaful f
the algorithms that look for the configuration with the highest modularity. The
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only imposed constraint to the algorithm is that it should be able to detect the
communities of weighted graphs which include self-loop links.

Reducing a graph preserving modularity

Before explaining the different types of reductions that we can caity o
we will introduce the concept of reduced graph. Gebe a weighted complex
network of sizeN, with weightsw;; > 0, 4,5 € {1,..., N}. If the network
is unweighted, the weights matrix becomes the usual connectivity matrix, with
valuesl for connected pairs of nodes, zero otherwise. We will assume that the
network may be directed, i.e. represented by a non symmetric weights’ matrix.

Any grouping of thelVnodes of the complex netwotRk in N’ parts may be
represented by a surjective functigh: {1,..., N} — {1,..., N’} which
assigns a group indelk; = R(7) to everyi-th node inG. Thereduced network
G’ in which each of these groups is replaced by a single node may be easily
defined in the following way: the weighi... between the nodes which repre-
sent groups ands is the sum of all the weights connecting vertices in these
groups,

wh, = Z Zwijé(Ri,r)(S(Rj, s), r,se{l,...,N'} (3.16)
? J
where the sums run over all thé nodes ofG. For unweighted networks the
value ofwy., is just the number of arcs from the first to the second group of
nodes. It must be emphasized that a nodéthe reduced networ&’ acquires
aself-loopif w!.,,. # 0, which summarizes the internal connectivity of the nodes
of G forming this group.
The input and output strengths of the reduced netwigrare

Wl = Zw;S _ Zzwij(;(fgi’r) Z&(Rj, s) = ZinUt(S(Ri,T)a
s j . ‘

i (3.17)

w;in = Zw;s = ZZM@](S(R], S) Z(S(R“T) = ijin(s(RﬁS)’
- — 4 p j

(3.18)
and its total strengtBw’ is equal to the total strengthw of the original net-
work

2w’ = Zw;om = Zw;in = Zwi"”t = iji“ =2w. (3.19)
r s i i

One of the properties of the reduced network is the preservation of modu-
larity, i.e. the modularity of any partition of the reduced graph is equal to the
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modularity of its corresponding partition of the original network. Each node
in the reduced network summarizes the information necessary for the calcu-
lation of modularity in its self-loop (that accounts for the intraconnectivity of
the community) and its arcs (that account for the total strengths with the rest
of the network). The proof of this property is available in the Appendix B of
this dissertation.

Undirected and directed reductions

The guestion now is: how can we determine which nodes will belong to
the same community in the optimal partition, before this partition is obtained?
To answer this questions we need to be able to determine the acquaintance
(nodej) of node: in its optimal community, in order to group themR{= R;)
in a single equivalent node with a self-loop, as explained above. If we/kn
that nodesi andj share the same community at maximum modularity, the
reduced network will be equivalent to the original one as regards midigula
no information lost, and a smaller size. Taking into account that the sign of
the local modularity when a single nodés connected to community can
only be positive if there is a link betweérand another node in community
the only candidates to be the right acquaintance of any node are its neighbo
in the network. Here we present two reductions for undirected and two fo
directed networks based on this idea that does not alter the final modularity.
The analytical proof of these reductions has also been included in AjppBn

In undirected networks, the simplest particular caseshaies, i.e. nodes
connected to the network with only one link. Hence, a hair can be analytically
grouped with its neighbaot if

2

wy < i (3.20)
2w’

producing a self-loop for node of value

Wi = Wi + 2Wig - (3.21)

When node has no self-loop«(;; = 0) this condition is always fulfilled, see
figure 3.9a.

Another solvable structure in undirected networks is what we dathagu-
lar hair, in which two nodeg and; have only one link connecting them, two
more links fromi and; to a third node, and possibly self-loops. In this case,
if

Wi < ﬁ andwjj < % (3.22)



Detecting Community Structure using Extremal Optimizatio 71

= Wi,

(b)

Figure 3.9. Analytic reductions for undirected networks. In (a) example baa reduction,

(b) example of ariangular hair reduction (see text for details). The widespread case of un-
weighted networks, all weights equal to 1, implies that in the reduction(a) = 2, and in the
reduction (b)w},, = 2 andwy,;, = 2.

nodesi and;j share the same community in the optimal partition and therefore
may be grouped as a single nddeMoreover, the resulting structure becomes
a simple hair, which can be grouped with nddié

2

w
why < 28 (3.23)
where
Why, = Wi + 2wi5 4 wyy
w;Lk = Wi + Wik,
wy, = w; + wj = Wy, + Wy, - (3.24)

In the particular case of nodésand j without self-loops {;; = w;; =
O) the triangular hair can always be reduced to a single hair with a self-loop
wy,, = 2w;j, see figure 3.9b.
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= Wi,

~
AN

(b)

Figure 3.10. Analytic reductions for directed networks. In (a) example baa reduction, (b)
example of ariangular hair reduction (see text for details)

In directed networks we can also apply the same reductions. In the case
of directed hairs, we can reduce nodes connected only to anotheeitbde
through an input, an output, or both links. Therefore, it is safe to groaimth
in the same way as undirected hairs if

out, .in
w; Wy

wi; < (3.25)

2w

This condition is always fulfilled if the hair has no self-loap;{ = 0), see
figure 3.10a. Whenever the self-loop is present, both input and outgstdie
needed to counterbalance it. The resulting self-lagp of the grouped node
has value

’w;{k = Wi; + Wik + Wk - (326)

The case of the triangular hair is more complicated. First we need to define
sink nodes as nodesvhich are characterized by null output strength® =
0, and source nodes, which are defined as nodes with null input stsgngth
w" = 0. Note that sinks and sources cannot have self-loops, since this would

)

be in contradiction with their null output and input strengths respectivedy. A



Detecting Community Structure using Extremal Optimizatio 73

proved in Appendix C, a triangular hair formed by a source no@ad a
sink nodej behaves exactly as the undirected triangular hair, being possible
to group them in a single nodewith a self-loop, see figure 3.10b, where

/

Whp, = Wij s
/

Whp = Wik,
/

How much can we reduce a network?

Since the presented reductions can be only applied to very particular, case
a logical question is the amount of reduction that we can obtain applying this
method to real networks. Here we provide some rough estimates for the most
widespread degree distributions in natural and artificial networks: -fesde
and exponential.

For scale-free networks it is usually assume®(@&) = ak™7, with v €
[2, 3] for most of the real scale-free complex networks, as seen in Chapter 1.
The normalization condition provides with the valuecofAs a first approxi-
mation, neglecting the structural cut-off of the network, we can write

ai E7 =al(y) =1 (3.28)
k=1

where((v) is the Dirichlet series representation of the Riemman zeta function.
For values ofy € [2, 3] we obtaina € [1/({(2),1/¢(3)] ~ [0.61,0.83]. That
means that, roughly speaking, the number of hairs that correspoitig Ydas
about 83% of nodes in a scale-free network with- 3 and 61% when, = 2,
although this value is slightly reduced when considering the cut-offs ottie r
distributions.

An equivalent estimate can be conducted for exponential degree distribu
tions of typeP (k) = ae~"*, with 3 > 0. In this case, normalization implies
that

o0 -8
R 2
a;e = (3.29)

and them = e® — 1. The percentage of hairs in this caseéPigl) = 1 — e,
that, for example, for plausible values 6f< [0.5,1.5] provides a reduction
between 40% and 77% respectively.

To complement this analytical study, we have also studied the effect of the
size reduction applied to real networks. In the following section we will show
how the size reduction increases substantially the maximum modularity and
the speed of the Extremal Optimization algorithm.
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Figure 3.11. Community structure of the FP6 analysis represented as a networks Noxe-

spond to communities and links represent collaboration between meaofikestwo connected
communities. Diameter of nodes and width of links symbolize community sidenamber of
crossed collaboration.

At the light of these estimates, the size reduction process provides with an
interesting technique to confront the analysis of community structure in net-
works by maximizing modularity. Since the method to detect the single nodes
(or even the triangles) can be implemented in O(n), we can obtain with a sub-
stantial advantage in computational cost without sacrificing any information.
We think that the idea of the exact reduction could be extended to othefispec
motifs (building blocks) in the network, although its analytical treatment can
be further difficult.

4. Uncovering the community structure of real networks

The artificial benchmarks presented before are useful to compardeastto
the efficiency of a given algorithm under certain circumstances, buttiay
ble purpose of the EO algorithm (and the other community detection methods)
is to uncover the community structure of real networks, without knowing a
priory neither the number nor the size of the communities.

Therefore, since we can not check the results like in the artificial nesyork
the validity of the obtained configuration depends only on the interpretation
that we can perform from the resultant communities. For instance, in social
networks the division into communities can be checked by crossing relational
data (who is preferably linked to whom) with particular information about each
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Community 19
Centre Suisse d’ectronique et Microtechnique
EADS Deutschland Corporate Research Cente
Lunds Universitet
Skoda Auto AS
Volkswagen Ag
Robert Bosch Gmbh
Technische Universitat Darmstadt
System Design and Research Association SRL
European Road Transport Telematics Organisatipn
Audi Aktiengesellschaft
Bayrische Motoren Werke Aktingesellschaft
Bmw Forschung und Technik Gmbh
Seat Centro Tecnico
Volvo Car Corporation
Blaupunkt Gmbh
Delphi Delco Electronics Europe Gmbh
Faurecia Sieges D’Automobile SA
Ibeo Automobile Sensor Gmbh
Siemens Vdo Automotive Sas
Fcs Simulator Systems
Federal Highway Research Institute
Essex County Council
Landeshaupstadt Hannover
Ministry Economics and Transport of Lower Saxomny
Laboratory of Lighting Technology. Darmstadt Uniy.

Table 3.1. Nodes belonging to one of the resultant communitiess obtained when aptigin
EO method to the FP6 network. Note that all organizations are related, ie sense, with
automobiles. See (Lozano et al., 2006) for a complete analysis of thvere

node. As an illustrative example, we built up a network from a database of
research projects of the European 6th Framework Programme, calciifated
community structure and analyzed the resulting data by crossing it with infor-
mation about nationality and organization’s type of activity. The community
structure obtained is presented in figure 3.11. When analyzing in detail the
member of one obtained communities (see table 3.1), we observe that all of
them belong to the same activity sector, in this case the automobile market.
This social interpretation have also given successful results in otbiet set-

work community analysis, such as the departmental structure in the communi-
ties of the e-mail network of the Universitat Rovira i Virgili (Guimera et al.,
2003) or the racial segregation observed in the community structure ofzthe ja
bands (Gleiser and Danon, 2003).
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4.1 Community detection benchmark

In this section we present an exhaustive analysis of the maximum modu-
larity that the extremal optimization method is capable to find. We have per-
formed this analysis in the most used networks in community literature. For
each network we have analyzed the maximum modularity and the number of
communities found before and after applying the different upgradespred
in this paper. Then we have applied the size reduction to all the presented,
networks, and we have repeated the same analysis, but now includiranthe ¢
parison between the percentage of size reduction and the speed-ingdlita
the extremal optimization.

The networks analyzed are: the Zachary's karate club network é&fgch
1977), the Jazz musicians network and the Jazz bands network (Gledser a
Danon, 2003), the e-mail network of the University Rovira i Virgili (Guier
et al., 2003), the worldwide airports network with data about passengjetsfl
operating in the time period November 1, 2000, to October 31, 2001 compiled
by OAG Worldwide (Downers Grove, IL) and analyzed in (Guimera et al.,
2005), the network of users of the PGP algorithm for secure informatois-ir
actions (Bogufia et al., 2004), the Internet network at the autonomstensy
(AS) level as it was in 2001 and 2006 reconstructed from BGP tabldegos
by the University of Oregon Route Views Project, the network of projeets in
volved in the European Union Sixth Framework Programme (also known as
FP6) (Lozano et al., 2006), the US airport network collected in 1997adhe
jacency network of common adjectives and nouns in the novel David Goppe
field by Charles Dickens (Newman, 2006a), the dolphins associationstiketw
of the Doubtful Sound community, New Zealand (Lusseau et al., 2003), the
network of American football games between Division IA colleges durigg re
ular season Fall 2000 (Girvan and Newman, 2002), the collaboratiororietw
of contributors to the Spanish statistical physics conference (Fisesh&ar
et al., 2004), the co-appearance network of characters in the negeMis-
erables, (Knuth, 1993), the Western States power grid network of titedJn
States (Watts and Strogatz, 1998), the C. Elegans metabolic network (Jeong
et al., 2000), and finally the relations between authors that shared aipape
cond-mat (Newman, 2001a). The results obtained are reported in table 4.1

We present in table 4.1 the values of modularity for the different networks
analyzed up to order0—%. As we have introduced previously, the numerical
resolution of modularity is up to ordeiin;{w; } /2w, that represents the min-
imal possible change in the structure of the partitions. It means that evétry dig
in our value of modularity is significant for comparison purposes.
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l Network ‘ N ‘ Q1 ‘ t#er ‘ QQ ‘ Heo ‘ %r ‘ SuU ‘
Zachary 34 0.418803| 4 0.419790| 4
Zachary-red 33 0.418803| 4 0.419790| 4 2,94 1
Zachary-W 34 0.444904 4 0.444904| 4
Zachary-W-red 33 0.444904| 4 0.444904| 4 2,94 1
Dolphins 62 0.526799| 4 0.528519| 5
Dolphins-red 53 0.528519| 5 0.528519| 5 | 14,51 | 1,30
Les Miserables 77 0.551762| 7 0.560008| 6
Les Miserables-red 59 0.551762| 7 0.560008| 6 | 23,37| 1
Word Adjacencies 112 | 0.303651| 6 0.308396| 7
Word Adjacencies-red 102 0.306533 7 0.309154| 6 8,92 | 1,05
Football 115 | 0.604570| 10 | 0.604570| 10
Football-red 115 | 0.604570| 10 | 0.604570| 10 0 1
Jazz Bands 198 | 0.444469| 3 0.445144| 4
Jazz Bands-red 193 | 0.444469| 3 0.445144| 4 2,52 1
US Airports 332 | 0.360089| 9 0.368244| 6
US Airports-red 270 | 0.359568| 9 0.368244| 6 | 18,67 | 1,17
Celegans Metabolic 453 | 0.437907| 14 | 0.452021| 10
Celegans Metabolic-red 447 | 0.437390| 11 | 0.451288| 10 | 1,32 1
Fises 840 | 0.804918| 38 | 0.827127| 22
Fises-red 722 | 0.806328| 37 | 0.827352| 23 | 14,04 | 1,12
E-Mail 1133 | 0.572024| 21 | 0.580070| 10
E-Mail-red 981 | 0.574372| 16 | 0.581425| 10 | 13,41| 1
Jazz Musics 1265 | 0.594876| 25 | 0.600561| 18
Jazz Musics-red 1263 | 0.597452| 27 | 0.600716| 18 | 0,15 | 1,01
Worldwide Airports-WU 3618 | 0.642288| 146 | 0.649268| 29
Worldwide Airports-WU-red| 2763 | 0.644834| 99 | 0.649337| 29 | 23,63 | 1,58
Worldwide Airports-WD 3618 | 0.643562| 116 | 0.649189| 34
Worldwide Airports-WD-red| 2880 | 0.641834| 159 | 0.649286| 30 | 20,39 | 1,63
Worldwide Airports-U 3618 | 0.681868| 108 | 0.706704| 25
Worldwide Airports-U-red 2763 | 0.682552| 89 | 0.707076| 24 | 23,63 | 1,68
FP6 3030 | 0.851265| 168 | 0.877809| 48
FP6-red 3008 | 0.852480| 169 | 0.878325| 47 | 0,72 | 1,01
Power Grid 4941 | 0.896651| 132 | 0.931571| 36
Power Grid-red 3695 | 0.906516| 121 | 0.933613| 39 | 25,21 | 2,46
PGP 10680 | 0.817271| 930 | 0.876883| 118
PGP-red 6277 | 0.837389| 532 | 0.880244| 101 | 41,22 | 4,27
AS2001 11174 | 0.567733| 338 | 0.619048| 25
AS2001-red 7386 | 0.594702| 231 | 0.628004| 31 | 33,90| 2,41
AS2006 22963 | 0.575363| 833 | 0.645942| 49
AS2006-red 15118 | 0.611360| 428 | 0.658198| 45 | 34,16 | 2,38
Condmat 27519 | 0.617801| 2107 | 0.698032| 131
Condmat-red 24757 | 0.627627| 1632 | 0.707443| 126 | 10,03 | 1,12

Table 3.2. Results for the optimal partition obtained using the upgraded EO algorithse¥er
eral real networks before and after applying the size reduction. &¢ept the number of nodes,
modularity, number of communities (#c), percentage of size reducdopdnd speed-up (SU)
of the algorithm after reduction. We also compare the modularities and theeruf com-
munities obtained before using the two presented improvements of thenaktoptimization
algorithm (1) and after adding those improvements (2).
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The first thing that we can notice is that the reduction process allows for a
more exhaustive search of the partitions’ space as expected. Theioadu
vary between 20% and 40% in larger networks, which is lower than the pre-
dicted in the previous section. The speed-up of the algorithm after reductio
gives an indication of the effectiveness of the process. This is alsobmwrated
by an improvement in modularity. Note the special case of the FP6 network,
with a reduction of only 0.7%. The lack of reduction is because this network
comes from a projection of a highly connected bipartite network, and threref
is mainly composed by groups of highly connected nodes and does ret hav
isolated nodes that can be simplified.

Particularly illustrative is also the analysis of the worldwide airport network.
We have constructed different networks from the raw data, the uneitemn-
weighted network previously used in (Guimera et al., 2005), the undirected
weighted network (where the weights reflects the number of passengers u
ing the connection in the period of study), and the most realistic case corre-
sponding to the weighted directed network of the airports connectionseThe
networks allowed us to check our techniques (reduction and optimization al-
gorithm) in all the possible scenarios. Note that the results obtained for the
weighted directed and undirected networks in terms of modularity are very
close, an explanation about this fact that is ubiquitous in the analysis of di-
rected networks can be found in the Appendix A.

Additionally, if we compare the results of table 4.1 with some of the results
in the literature of community detection, we observe that we improve those
obtained using Spectral optimization (Newman, 2006b) and simulated anneal-
ing (Guimera and Amaral, 2005b), which have been considered the fbést u
date. The differences in maximum modularity is up to 15% depending on the
network considered.

5.  Summary

In this chapter we have presented an extremal optimization based algorithm
that optimizes the modularity and allows an accurate identification of commu-
nity structure in complex networks. The results outperform almost all algo-
rithms existent in the literature. We also have proved that the heuristic groces
of the EO is very flexible, an for instance can be easily extended to detect
community structures in directed and weighted versions.

In second place we have introduced some techniques that can help us to ob
tain higher modularity values. On one hand, with some algorithmic improve-
ments we can avoid some drawbacks of the recursive process andeeaplo
wider part of the space of possible configurations. On the other hambave
presented a method to detect the nodes that will be grouped in the maximum
modularity configuration, and therefore we can reduce the size of the@retw
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preserving the modularity. This reductions are reflected in both incredsng
efficiency and the accuracy of the algorithms.

Finally, we have presented an extensive benchmark of the maximum mod-
ularity values that the EO method finds in some of the most used networks by
the research community. We expect that this benchmark can be used to com-
pare the accuracy of the other modularity based methods that try to utivavel
community structure of complex networks.






Chapter 4

SCALING OF FLUCTUATIONS IN
TRAFFIC ON COMPLEX NETWORKS

In previous chapters we have introduced a wide group of tools that help
us characterize and model the complex topology of many real networks. Th
study of the topology itself is only the first step towards the understanding of
the function of the systems built on networks.

The interest into understanding the dynamical processes that take place o
complex networks have emerged recently, and are not as developedststh
ies of the structure. The main research lines are trying to uncover thegnterd
pendency between the underlying topology and the dynamical processes
swering to questions like: does the dynamical processes affect the &rap
the evolution) of the structure? how does a change on the topology modify the
behavior of the functionality?

In this dissertation we are interested in understanding two dynamical prop-
erties of a traffic flow, and its relationship with the underlying topology. Tra-
ditional approaches to study the traffic have been focused on the dttigly o
long time behavior of a few variables, characterizing phenomena sucle as th
self-similarity (Park and Willinger, 2000). In complex networks, most of the
work has been focused in determining the bounds for this flow to become con
gested (Zhao et al., 2005, Moreno et al., 2003), and how to avoid the con
gestion to maintain the maximum efficiency of the system (Guimera et al.,
2002b, Echenigue et al., 2004, Barthelemy and Flammini, 2006).

A less studied property of the traffic flow in complex networks are the scal-
ing properties of the fluctuations on different nodes of the system. Ainglyz
how does the standard deviation of each time series change with the value of
the mean, we can infer a scaling relationship that gives us more information
about the dynamical behavior of the system, answering to questions like: will
those elements with larger mean have larger fluctuations as well? what are the
reasons behind the differences in the size of the fluctuations?

81
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The study of the existence of this scaling relationship in several time series
was first pointed out in the ecology field by Taylor, when he was analyzing
the relation between the fluctuations and the average population of a group o
species (Taylor, 1961). Since then, several other studies haveralsuvened
this relationship in a very wide range of systems, such as highways, éhtarn
the stock market, discovering that each system has a specific relatioelipst h
us to characterize and classify their traffic dynamics (Eisler et al., 2007).

The purpose of this chapter is to show that simple considerations regard-
ing the persistence of packets flowing the network, the limitation of nodes to
handle information, and the time window where statistics are performed, ac-
count for different scalings of the fluctuations in traffic on complex néetao
The chapter is organized as follows: First we introduce the scaling dtifieic
tions as a large-scale metric to characterize the behavior of the traffic flow in
a complex network. Then we introduce our traffic model, which is based on
the simple communication models on complex networks used in the literature.
We perform a group of experiments to analyze the changes on the vahe of
scaling exponent when we modify the sampling process and the dynamical pa
rameters of the model. Finally, we prove that many real networks do not fit in
the two universal classes by analyzing the traffic of the Internet 2dwanek

1.  Scaling of fluctuations on complex networks

In a couple of recent articles, Menezes and Barabasi proposed el tood
understand the origin of fluctuations in traffic processes in a numberbf re
world systems, including the Internet, the world wide web, and highway net-
works (de Menezes and Barabasi, 2004a, de Menezes and Bag(fith).

All of these systems can be represented at an abstract level as retwork
which packets travel from one node to another, packets being reghackats

or bits in the Internet, files in the world wide web, and vehicles in road net-
works. With the available resources nowadays, the movements of thistpacke
can be measured simultaneously in all the nodes, obtaining a multiple time
series description of the traffic flow (as presented in figure 4.1).

Due to the large amount of data available and the complexity associated to
the dynamical process, an statistical analysis of this time series seems a good
choice to obtain a characterization of the global behavior of the systemardin p
ticular, Menezes and Barabasi considered the relationship betweeretaga
number of packetsf;) processed by nodes during a certain time interval, and
the standard deviatios; of this quantity. Plotting the value of the dispersion
as a function of the average traffic for all the nodes, they observedargaw
scaling relationship,

o~ {f)* (4.1)
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Figure 4.1. Left: Example of the traffic flow that goes through five routers that lptorthe
Internet2 network gathered from the Abilene project (see text for metails). On the right of
each time series we show its average flow and the dispersion.

whereq« refers to the scaling exponent. They find that there are two classes
of universality in this relationship for real systems. In the Interaedcales as
(f)1/2, whereas scales agf) for the world wide web and highway networks.
Based on a stylized model of random walkers throughout the network, the
conclude that this difference is due to the fact that the dynamics of theétter

is dominated by “internal noise” whereas the dynamics of the world wide web
and highway networks is dominated by the demands of users, that is “axtern
noise”.

One of the main critics to their work refers to the simplicity of the model
used to prove their theories. In the abstraction process proposed layithe
thors, they overlook what is probably one of the most important factorsin th
dynamics of traffic on networks, the limited capacity of nodes to handle pack-
ets simultaneously, which results in packet-packet interactions and, ailgntu
in large fluctuations or even network congestion (Guimera et al., 2002ix; Ta
et al., 2004).

2. A simple traffic model

To understand better the origin of the scaling relations for the fluctuations
in networks, let us consider the behavior of a single node (for exampddl, a
plaza in a highway) trying to satisfy demands from users (vehicles agrtein
the toll). As we learn from queueing theory (Allen, 1990), two stochaste pr
cesses fully determine the behavior of the node: (i) the arrival prageshich
new packets arrive to the node, and (ii) the service process by whictotte
satisfies the demands of the users, that is, forwards the packets. Theomes
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mon gqueue model corresponds to the M/M/1 queueing system, where the ran-
domness of the packets generation assumes a random (Poissotpaitesn

and the service distribution assumes a random (exponential) time. The com-
munication process in the case of a M/M/1 queuing system for each node in a
complex network is well described by the so-called Jackson networ&k-(Ja
son, 1957).

Taking into account these considerations, we propose to model the traffic
process in a complex network 8f nodes asV queue systems of type M/M/1,
and a random walk simulation for the movement of packets on the network.
The arrival process of packets to the network is controlled by a Poidisen
tribution with parametep, and each packet enters the network at a random
selected node. Once the packet arrives to the node enters a queriele-Th
livery of the packets in the queue is controlled by an exponential distribution
of service times with parameter In our model, the packets will perforrsi
random steps in the network before disappearing, being $hemmeasure of
the persistence of packets in the network. This dynamics is performed4n con
tinuous time, assuming that the time expended by packets traveling through a
link is negligible.

The system achieves a stationary state whenever the arrival ratekeftpac
at each node is lower than or equal to the delivery rate, otherwise ttensys
congests. The arrival rate at each nade dependent on the topology and
follows a distribution whose mean jﬁf = B;p whereJ; is the algorithmic
betweenness of node B; is defined as the relative number of paths in the
network that go through nodegiven a specific routing algorithm (Guimera
et al., 2002b). As a direct consequence, the node with maximum algorithmic
betweennesB,. determines the onset of congestion.

This traffic model is unable to reproduce the self-similarity of traffic in time
observed in some real systems, as for example the Internet. It hasiseen d
cussed that Poisson models aren't realistic (Leland et al., 1995) leedaus
not reproduce some characteristics of the real dynamics like 'burstinthes
Internet exhibit. However, there are some authors (Karagiannis et0éi) 2
that still defend that in certain cases Internet traffic can still be modelad us
Poisson models, mainly when we are near the edge of congestion.

3.  Effect of the dynamical parameters on the scaling
exponent

In the following experiments we will focus on the average number of pack-
ets(f;) processed by nodes during a certain time window of ledgtand the
standard deviation;. The simulation of the dynamical process has been per-
formed in a scale-free network with exponent for the degree distribytiers
of 1000 nodes. We have observed the same results for larger SF k&twor
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Figure 4.2. Value of the exponent versus the time window lengtR in which averages are
performed, for a fixedoif = 1/3 and different values of the persistence of packets in the
network S. The shadowed area highlights the regionfbfn which the exponentv = 1/2
always appears.

however the computational cost for the whole set of parameters used in the
experiments becomes prohibitive.

3.1 Effect of the time window
The first parameter that we have studied is the effect of the size of the sam-

pling window. Selecting a value d? < 1/pif = 1/(Bxp), we will always
observe the scaling ~ (f)!/2, regardless of other parameters.

The explanation for this phenomena is very intuitive: Due to the value of
selected, the nodes will deliver either one packet or none, at each timeinte
Suppose that during a number of intervals of lengthP the node deliver a
packet whereas it does not deliver during a number of interyals n — nq,
where n is the number of samples for the statistics. In this situation we also

haveng > n;. Therefore, the average and the standard deviation read

() =m/n (4.2
o= [ [m(1 = (1)) +no(2)]?

which can be simplified to

o=[(1—(fH{HIY? 4.3)
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Figure 4.3. Example of two packet injection rates with the same mean but differeiatoiity.
This has been done by varying the valueg @hd.S proportionally

But, in the current scenario, the average flowfis < 1 and then we recover
theo ~ (f)1/2 scaling law. Otherwise, this argument cannot be applied, and
the scaling value will be influenced by the rest of parameters of the model.

In figure 4.2 we show the behavior of the scaling exporeas a function
of the time window lengthP in which the averages were taken, for a fixed
pif = 1/3. We observe (shadowed area) that the exponent is ally@yshen
the interval length is small enough. Indeed, from the data used the expone
1/2 stands for values aP.

The effects of the time window have been revisited in (Eisler et al., 2005). In
this case, they observe that for larger time windows there is another transitio
between exponents, which is provoked by the existence of autocornslatio
the time series that only appear when the time window is large enough.

3.2  Effect of the traffic variability

Let us now assume that the sampling of the data is performed at intervals of
lengthP > 1/pif. In this case, we expect the scaling of fluctuations in the
system, beyond the effect of the sampling process, to be revealed.alyean
the behavior of the system varying the rate of injection of packets into the
systemp and the number of stegseach packet performs before it disappears.
We first consider that the service rgte— oc. In this case, the effect of
gueues is minimized and then no interaction between packets is accounted for.
The total traffic7, number of packets flowing through the network per unit
time, is determined by the Poisson process with m@an= pS. Keeping the
total traffic mean(7") fixed, we can control the variability of the local traffic
incoming to a node by varying the valuesgodindS proportionally. Figure 4.3
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Figure 4.4. Left: Ploto versus(f) for different realization op and.S maintaining its product
constant. Right: Plot of the: exponent forpS = 100. Other values opS have produced
equivalent results, shifted to a different region(#§.

shows the differences between a traffic with low variability (snS&lnd large
variability (large values ob) with the same mean average.

In figure 4.4 we show the scaling exponent transition between1/2 and
a = 1. This plot recovers the results depicted in (de Menezes and Barabasi,
2004a), although the explanation should be reconsidered in the nearigcen
The transition of exponent from = 1/2 to « = 1 is obtained here simply
by increasing the number of stef§she packet performs on the network while
maintaining the mean value of the total traffic (i.e. decreasing proportionally
the injection rati).

This results contradict the interpretation in (de Menezes and Barab84a0
because increasing the number of steps in the network increases thalintern
fluctuations of traffic because more packet-packet interaction oaghilg, de-
creasing the injection of packets (remember, Poisson distributed) dedsemen
the external fluctuations of traffic in this scenario. Nevertheless batltsese
coherent at this point concerning the scaling of fluctuations. Our irgtiion
of this transition is the following: for the same total traffic on the network, the
nature of fluctuations is related to the number of st€pke packets perform
on the network. When the number of steps is small enough the behavior of
fluctuations is akin a random deposition process independent of the ggpolo
of the networkpff ~ p. When the number of steps in the network grows, the
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Figure 4.5. Scaling exponent as a function of the time servige, for three different time
window lengths, and fope! = 1/3. Shadowed area highlights the region where congestion
starts at nodes withS’ = 1/3.

topology induces dynamical correlations that affect the scaling of fltiohs
via the algorithmic betweennesﬁ,f ~ pbB;.

3.3 Effect of the congestion

We extend the simple model where queues are neglected, to the more real-
istic situation when queues are persistent. The introduction of queues in the
system, in our model, is controlled by the parametdrate of service). The
possible values of: are constrained by the onset of congestion j.e> pif,
otherwise congestion appears at those nodes Bittbecause of the arrival
of more packets than those that can be delivered. We investigate thoss valu
of 1 near the onset of congestion to reveal the effect of queues in thegscalin
properties of the system.

When congestion occurs, the queues corresponding to those nodds, with
will have always more packets that those than can be delivered in a gériod
That means that the number of packets delivered by these nodes wilhbe co
trolled exclusively by the service ratg i.e. the variance scaling with respect
to the mean flow at these nodes will be again fittedvby 1/2 corresponding
to the exponential service distribution. Close to the onset of congestiop-we a
proach the situation where the scaling exponent 1/2 should be recovered,
however the possibility that in some periods of time the queues will be unoccu-
pied increases as we go away from the congested regime, thus a netioimans
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in the scaling exponent as a functigns expected. In figure 4.5 we plot the
scaling exponent transition as a functioniofor a fixed value ofpif =1/3.

In this situation the onset of congestion is determined by the critical value
e = 1/3. Note that for values below,. some nodes of the network collapse
and then gradually the rest of the nodes in the network. In this regiod; sha
owed area of figure 4.5 the system enters the congestion regime progisess
The transition on the scaling exponent depicted in figure 4.5 is also affiegted
the time window lengthP, we plotted the transition faP = 102, 103 and10?.

We observe that aB increases, the transition becomes sharper. Indeed in the
limit of P — oo we conjecture that the transition could be discontinuous, and
could reflect a first order phase transition as observed in other tnaffitels
(Echenique et al., 2004), although we can not claim that this discontinuity will
occur sharply from to 1/2.

4.  Scaling exponent of Internet traffic

Up to now, we have show that a simple traffic model where the injection of
packets to the system follows a Poisson distribution, can account forettiffe
scaling exponenta depending on the parametersu, S and the time period
P were the statistics are performed. These results lead us to suspect that the
scaling of fluctuations in real systems must be affected by these parameters
as well. This cast doubts on the universality predicted in (de Menezes and
Barabasi, 2004a). Indeed, this non-universality has been also clamntbe
exponent of fluctuations when studying the data flow between stocks ifENYS
market (Eisler et al., 2005), or in the e-mail activity of one user (Eislef.et a
2007).

To corroborate our doubts about universality on the scaling of fluctusiio
complex networks, we have studied the Internet traffic between routéns o
Abilene backbone network that are part of the data also used in (dezZelene
and Barabési, 2004a). The Abilene network is the U.S. high-perforenanc
backbone network created by the Internet2 community as a testing environmen
in 1999 (see figure 4.6). Since then it has been publishing a large amiount o
information about its performance, including the amount of traffic thatgzass
trough each router interfate

We collected data from the 112 available router interfaces (links). Wemgathe
information of the number of packets that exit through each router interfac
between September 15th and November 15th of 2005, at intervals of 5 minutes
The scalingr ~ (f)® shows exponents that range fram= 0.71 to o = 0.86,
significantly different from the exponent/2 presented in (de Menezes and
Barabasi, 2004a).

1This information is publicly available at http://abilengérnet2.edu.
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Figure 4.6. Map of the topological structure of the Abilene network. This network estha
backbone infrastructure of Internet 2, connecting a large numbadministrative, educative
and private corporations. Map downloaded from http://abilene.inteptifmaps-lists/.
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Figure 4.7. Scaling relations between and (f) for the 112 Abilene backbone router inter-
faces. Analysis performed during (a) two days, (b) one weeknneyeonth and (d) two months,
finishing all them in November 15th of 2005. The time window lenBtfs fixed to 5 minutes.

The interpretation of these exponents in the context of our stylized model is
that the Abilene backbone is far from the onset of congestion for thdaoter
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with maximum algorithmic betweenness, and seems compatible with the mean
rate of utilization of the interfaces in this backbone that is usually b&l&i.

5.  Summary

In this chapter we have presented a simple model of traffic in complex net-
works that capture the essential parameters governing the dynamicakpro
The model shows a scaling relationship betweeand (f) whose exponent
depends on the parameters considered as well as on the time window in which
the statistics are performed. Moreover we have shown that the congkspo
ing exponent for the scaling of fluctuations in the Internet Abilene baw&bo
network is different fromi /2 as stated in previous works, corroborating by ex-
clusion that the universality on the scaling of fluctuations in complex networks
should be questioned.

The next logical question should be then, if there is not universality to ex-
plain the origin of the fluctuations, what determines the exponent for eath r
system? Here we have presented that many factors can control thedsehav
of the fluctuations, but still we need to determine the specific reasons lof eac
exponent in real networks. Moreover, we will probably determine athases
that can provoke more other transitions betwéghand].

This work opened the door to another group of studies that have fdcuse
the influence of the topology on the fluctuations. There is still a large nunfiber o
experiments and theories that we can perform about the study of fluetsiatio
A possible extension of this work will be the use of a generation model that
reproduce the self-similarity expected, and then study the exponentseaabtain
by this new traffic model. We guess that the self-similarity will be reproduced
if the injection of packets into the system follows a heavy-tailed distribution
instead of a Poisson distribution, however we can still not prove this doingec
This will also open the door to the study of the relationship between the values
of the exponent with the self-similarity using the Hurst exponent.






Chapter 5

DYNAMICAL ROBUSTNESS OF A
COMMUNICATION PROCESS

In this final chapter we will focus our attention in another interesting prop-
erty of many complex networks, its resilience (or robustness) to the faifure o
some of their nodes. The robustness plays a key role maintaining the function
ality of the dynamic processes that take place in a complex network. In the
case of the Internet, the stability against node failures is a key factor to main-
tain the performance and the efficiency of the network (which is reflected in
low packet loss rates and short packet traveling times).

Traditional studies have analyzed the effects of topological percolation in
complex networks, proving differences between classes of complexretw
when they undergo attacks or random failures. Most of the studiesedbfn
robustness of a network as its capability of maintaining most of its nodes con-
nected, forming a giant component of the same size as the original network.
But in real complex networks, an interesting process happens befwa-a
nected network splits, namely that even though the underlying network is still
connected, the dynamical processes taking place on it can changecaigfihyfi
due, for example, to congestion effects. In this scenario we will introduce
the concept of dynamical robustness of a network, defined as theicicao
continue working when some of the nodes fail.

The purpose of this chapter is the analysis of the dynamical robustness of
a communication process. Using a similar traffic model to the presented on
the previous chapter, we will measure the effect of a random node ed¢miov
the onset of congestion. The chapter is organized as follows: Firsttvee in
duce the differences between the dynamical and the topological robsstihe
communication process. Then we perform some experiments to determine the
dynamical robustness by analyzing the changes on the maximum capacity of
the network. To perform this task, we have simulated random failures ia thre
different types of networks (regular, Erdés-Rényi and scale}frend using a

93
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range of protocols with different radius of knowledge (from shonpedghs to
random walks). Finally we focus on the relationship between topologieal ro
bustness and dynamical robustness by comparing if the network will Ibe firs
physically split or dynamically collapsed.

1. Robustness of Complex networks

Many real complex networks display a high robustness against raralbm f
ures (Albert et al., 2000). This phenomenon has been successfallgddo
their scale-free degree distribution (Cohen et al., 2002, Gallos et als);200
with a very high probability the random failures will affect the lowest con-
nected nodes, which have small influence in maintaining its structural prop-
erties (Cohen et al., 2000). However, the same degree distribution isealso r
sponsible of the vulnerability of scale-free networks against directedkatta
(removal of the most connected nodes) (Cohen et al., 2001).

Internet has been considered as a paradigmatic example of this “raiust y
fragile” structure (Doyle et al., 2005). On one hand, everyday a langeunt
of nodes suffer temporal failures without affecting the global behasgioce
the overall system is able to redistribute the traffic while there is a path cbnnec
ing the elements. On the other hand, this robustness coexists with a fragility
of its central elements to fail under a malicious activities. A directed attack
against a specific selected nodes can decrease the efficiency oftwwlkne
even disconnect it in two or more componeénts

Several studies have covered the incidence of a node removal ontts-sta
cal properties of complex networks, such as the diameter (Albert et 80)20
the average path length (Holme et al., 2002b, Gallos et al., 2005) or thefsize o
the giant component (Albert et al., 2000, Callaway et al., 2000). Singethe
properties play an important role in the interplay between the topology and dy-
namics of complex networks, the node removal will also change the dynamical
processes supported on the network (Tadic et al., 2007).

One of the properties that is affected by the removal of nodes igfthe
ciencyof nodes to distribute traffic in communication processes (Latora and
Marchiori, 2001, Crucitti et al., 2003, Lopez et al., 2007). The efficyelne-
tween nodeg andj is defined as the inverse of the shortest path connecting
them. This property, related to the information flow in networks, is interest-
ing because it allows to quantitatively compare the dynamical performance in
traffic of different network structures, however, it obviates one efrttost im-
portant aspects of any communication process: congestion. In reamketw
each node has a limited capability to deliver information, meaning that they
can serve a bounded number of “packets” of information per unit time.niWhe

IFor instance, some failures of the transatlantic communicatioters have temporary split the connection
between Europe and America, breaking the giant componenteafiet into two or more parts.
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the incoming traffic exceeds this capability, the system enters a congeséed sta
there is no balance between incoming and outcoming traffic, and the commu-
nication processes become inefficient (Guimera et al., 2002b).

A typical example of the effects of such a breakdown is found in powdr gr
networks. The removal of a certain fraction of nodes triggers a cadaildre
on the system (Motter, 2004, Crucitti et al., 2004). This failure is caugeie
redistribution of the traffic flow between the remaining nodes, surpasséng th
capability and therefore collapsing some of them. This cascade phenomenon
has also been observed in the Internet, where the failure of one rairter c
trigger additional failures due to the redistribution of the traffic, which may
generate a congestion collapse which will avoid the connection betweegea lar
group of elements (Holme and Kim, 2002, Moreno et al., 2003).

2. Determining the Robustness of a Communication
Process

At the light of this results, seems clear that the communication between two
nodes can be interrupted by two different causes: if the network pilsic
splits or if the traffic can not be delivered due to the existence of congestio
To model this two causes, from now on we will differentiate between the topo-
logical and the dynamical robustness of a network. The first is relateakto th
process of node removal and its topological effect. The second isdétatiee
changes on the onset of congestion for the traffic dynamics when theyakmo
of nodes is performed.

2.1  Topological robustness

A random breakdown of a network can be modeled as a percolation pro-
cess. The percolation thresheidin lattices is defined as the fraction of lattice
points that must be filled to create a continuous path of nearest neightwors f
one side to another, or equivalently destroyed to ensure that no suatha p
exists. In complex networks, the percolation threshold is usually chaimader
by the existence of a giant component with the same diameter as the original
network (Albert et al., 2000, Holme et al., 2002b). The diameter keeps con
stant while the size of the giant componentisO(.S), beingS the original
size of the network.

In this chapter we use a more restrictive approach to determine the percola-
tion threshold akin to that used in lattices. Instead of considering the size of th
giant component, we will look for the critical fraction of node removals that
avoids the existence of a physical path connecting every pair of the riexgain
nodes of the network.

The topological robustness of a network is defined then as the probability
of maintaining all nodes connected when increasing the fragtimiremoved
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Figure 5.1. Probability of network splitting in two or more connected components as@ fun
tion of the fraction of removed nodes Inset, relative average path length as a function of

p.

nodes. Fop < p., the probability of having more than one component is zero.
Forp > p. the probability shows a transition determined by the statistical prop-
erties of the network. We have studied this robustness on three diftgpes
of networks: regular lattices, ER and scale-free. For comparisoropespthe
three types of networks will have the same number of nétles 1000 and a
similar number of linksl, ~ 4000.

The first type of networks have been implemented as periodical two-dimen-
sional regular lattices with all nodes having the same defgree8. This type
of networks have a very high clustering coefficient and a high mearageer
path length. The random networks have been created using the ER nitidel w
an edge probability = 0.008. In this case, the networks display a Poisson
degree distribution with a mean value(@f) = 8, a very low clustering coeffi-
cient and also a low average path length. Finally, the scale-free netivavis
been created using the preferential attachment mechanism of Bardbédi-A
(BA) where each node adda = 4 new links, obtaining power-law degree
distribution P(k) ~ k7 with v ~ 3.

To calculate the topological robustness defined above, we have ipedor
a sequential random degradation process, removing sequentially (auks
their connections) until the network splits. We have repeated the breakdow
10° times to obtain a significant statistical approach.

Figure 5.1 shows the probability of splitting the network (topological ro-
bustness) when a fraction of nogekave been removed. The results are sim-
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ilar to the fragmentation processes exposed in previous articles (Albalf et
2000, Cohenetal., 2000) . The probability threshold is lower when theonketw
has a power-law distribution due to the existence of hubs that act asiv@hes
elements, hardly destroyed by a random process. As a conseqtlenoet-
work remains connected for larger valuegppafompared to ER networks. The
reason for the robustness of regular networks is different, the higlstoess
exhibited is a consequence of their high clustering coefficient whicligeea
high degree of redundancy. In the inset we plot the relative avedgngth

as a function of the number of removed nodes, as expected the avethge p
lengths remain almost constant in all networks, with a slight increment in the
ER networks case. These results in ER and BA networks are in agregittent
results of random percolation in complex networks (Albert et al., 2008e60
etal., 2000, Cohen et al., 2002), showing however a shift in the trangitiion
due to a more restrictive definition of robustness used here.

2.2  Dynamical robustness

In analogy of the topological robustness, the dynamical robustness is de
fined as the probability of a network to maintain the communication processes
between every pair of nodes nodes. When the network splits into two or more
components, the communication is also interrupted because the packets are
unable to reach the isolated nodes. However, there are some caseshéher
network is still physically connected but the overlay dynamics is unable to de-
liver information to certain nodes, provoking some sort of dynamical split o
the network. As we have introduced before, the cause of this phenoneno
the emergence of congestion. When a system is congested, a large mfimber
packets get stuck in nodes and, if there are delivering time restrictionst ne
reach their destination.

To study the congestion point we will use a similar traffic model to the
presented in the previous chapter: First, to model the receiving and limited
transmission of information of each node, we assign a queue to eachaae an
different from zero service time. The capability of the nodes of is cherized
then by the time needed to serve one packet. We assume this time to follow an
exponential distribution with meaty .. If a packet arrives when the node is
busy delivering another one, it gets stored in a FIFO (first in-first quue
until it gets dispatched. To simplify the experiments, we will use during the
rest of the work a value gi = 1.

Once we have mapped the queues into the nodes, we introduce the dynami-
cal rules: The packets are created in each node following a Poissabudistn
with meanp, and they are assigned with a random destination. These packets
travel through the network using a static routing protocol (the decisioms rule
are set at the beginning of the experiment). Once the packet arriiteslas-
tination, it is removed from the system.



98 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

Since congestion emerges when the incoming traffic to a node is higher than
its capability to dispatch it, and we have fixed the value of this capability by the
service time, the onset of congestion remains as a functipn ©he network
achieves its steady state when for a certain value thie number of packets
of the system at time, N(¢), fluctuates around an stationary value. When the
value ofp overcomes a critical valug., the number of packet¥ (¢) diverges
and the system enters in a congestion phase. Moreover, it has beead pro
(Guimera et al., 2002b) that the onset of congestion is driven by thewititle
the highest algorithmic betweenneBS$. The algorithmic betweenness of a
nodeB; is the number of paths that go through nadgven a certain routing
algorithm. When the incoming traffic that arrives to this node is higher than
its delivery capabilitypB*/(S — 1) > p, its queue starts to grow and induces
congestion in the network. Therefore, the congestion point of the system
is determined by the moment at which the node with maximum algorithmic
betweenness receives and delivers the same ratio of packets:

Pc = M(SB:D (51)

2.3 How to determine the dynamical robustness?

Our experiments to determine the dynamical robustness consist then in to
analyze the variation of the onset of congestion determinegd.byhen the
system experiments random failures, simulated as the sequential random elim-
ination of nodes, for those networks that after the random failure stillirema
connected. For each network, we perform a step of the sequentiavakofo
nodes, if the removal of the node does not produces a split on the ketveor
calculate its new,.

To determine numerically the value @f for a given configuration we simu-
late the traffic dynamics. Starting from a valuepdhat provides a steady state,
we gradually increase this value and determine whether or not the number of
packets floating on the system diverges. The difficulty of deciding if tise sy
tem is or not at the critical point, increasespeapproacheg.. To characterize
the transition we used an order parametéArenas et al., 2001):

77:N(t—i—T) N(t) (5.2)

pT
wherer is the observation time. When < p. the order parameter is zero
(There is no difference between the ratio of created packets and theofatio
removed). On the contrary, if > p., the value ofN (¢) grows linearly witht,
and the order parameter is a functiorpof

Before removing nodes, we determine the maximum load that the complete

network can handle.(0). Then we remove a fraction of nodgsand recal-
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Figure 5.2. Effects of the node removal on the normalized maximum capacity of -fese
and random networks when using a (a) routing protocol based in shpeths and (b) routing
protocol based in random walks. Dotted lines present the analyticabagpiusing equation
5.5 and experimental data from table 5.2.

culate the maximum congestion valpgp), repeating this process while the
network has more than one connected component. We petftsimulations
of each experiment to obtain an statistical approach. gf).

3. Effects of a node removal on the onset of congestion

We have performed three different experiments, trying to understand the
changes on the congestion point for different topologies and routotgqls.

3.1 ER and SF networks

In a first experiment we have analyzed the effects of the random dhweak
on congestion, when the movement of the packets is governed by a shortes
path (SP) routing protocol. The results obtained are shown in figure 5.2 (a
We observe different behaviors depending on the topology used:niBixé
mum load in a scale-free network increases with the number of removed,node
whereas in ER random networks decreases slowly with

To understand this results we have studied the changes on the between-
ness distribution of both network structures when a node is removeds It ha
been proved that there is a correlation between the degree and the metwee
ness distribution in random graphs and in scale-free networks (Holmle et a
2002a, Goh et al., 2001). Since the probability of deleting the node with the
highest degree is very small, we can consider as a first approximatiotinéhat
node withB* is the same during all the breakdown process.

Another important feature that we can extract from the betweennesis distr
bution is the importance of one node in the communication process (Barthelemy,
2004, Latora and Marchiori, 2004). We characterized the importanteeof
most important node using*, defined as the maximum algorithmic between-
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ness normalizedy* = B*/ > B;. We can see in table. 5.2 that the importance
of the most connected node* differs significantly in the random and scale-
free networks due to their different degree distributions: In the scai&%
of the packets travel through the most central node in contrast with the the
0, 52% of the random network.

Every time we remove a node we also remove the load it generates
(Motter, 2004), decreasing the value of tB& according to the importance of
this node in the communication process. The load generated by one node is
defined as

L= (Dij+1)=(D;i+1)(S - 1) (5.3)

i

where D; is the average path length between nodad the rest of nodes in
the network(S — 1) (beingS the original number of nodes of the network). In

a SP routing protocol, this distance measures the average shortest jgdth len
from nodei to the rest of the network, which can be easily determined using a
Dijkstra algorithm (Cormen et al., 1990) . Using equation (5.1) we express th
onset of congestion for a certain fraction of removed nqdés) for large .S

as:

_(5-1)-ps _ S1-p)
i — " L(p)  pr (1 L)

AN

(5.4)

wherepS is the number of removed nodes ahp) is the amount of load
that we have with_drawn of trle networg after deletptgynodes, which can be
approximated byL.(p) ~ pSL, whereL = % >, Li. equation 5.4 can be
approximated using a Taylor expansion, obtaining

[ Network | Protocol | Bj, | o | D | L | SLa*/B* —1 ]
BA Scale-free| Shortest Path| 1.5+ 10° | 0.07 3.3 3300 0.54
ER Random | Shortest Path| 1.3 %107 | 0.002 3.8 3800 —0.52
BA Scale-free| Random Walk| 2.2 107 | 0.029 | 1595 | 1.6 = 10° 1.1
ER Random | Random Walk| 2.9 % 10° | 0.0024 | 1380 | 1.4 % 10° 0.15

Table 5.1. Values of the maximum algorithmic betweenndss the importance of this be-
tweenness in the communication process the average path lengiB, and the average gen-
erated load by one nodg for the scale-free and random networks using SP and RW routing
protocols. The value of La*/B* — 1 determines the change of the congestion point when
removing a fraction of nodes
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Considering thapSLa*/Bj,;, << 1 whenp << 1, using equation 5.5
we can determine the expected initial behavior of the congestion point ana-
lytically. When SLa*/B* > 1 the maximum load supported by the system
starts to grow as the node suffers a random removal, and the initial sldipe of
congestion isSLa*/B* — 1. Otherwise, ifSLa*/B* < 1 the maximum load
decreases with the node removal. Introducing the values presented ib.@ble
in equation 5.5, we have represented in figure 5.2 the expected behévior o
pe(p)/pi™, obtaining a good agreement with the computational simulations.
We have also analyzed the rafig(p)/p.(0) when packets are delivered us-
ing a random walk (RW) routing protocol (Noh and Rieger, 2004). Thé R
betweenness distribution for a random walk process has been studideiin (
man, 2003a), showing that it shares the properties of the SP betweetaide
1 shows that when we use a RW routing protocol the statistical values sgcrea
significantly. The average path length of a packet to reach its destination is
much higher than the shortest path, since the packets do not have infarmatio
about how to reach their destination. This distance can be determined analyt-
ically using the mean first-passage time between two nodes (Noh and Rieger,
2004). Since the distance is much higher, the amount of load introduced by
the nodes is also higher, and therefore the valuBofncreases. The results
obtained (see figure 5.2(b)) show that using a RW routing protocol, thd initia
congestion behavior is also governed by the evolution ofBhalescribed in
equation 5.5, although a larger deviation is observed for larger valueof
agreement with the discussion above.

3.2 Regular lattice

We have performed a second experiment to investigate the behavior of the
congestion when the underlying topology is a regular lattice, see figure 5.3.
This type of network is interesting because the changes on the congestion ¢
not be described in the previous approximation.

The explanation for the behavior observed in figure 5.3 is the following. Be
fore removing any node of the regular network, all of them have the skyoe a
rithmic betweenness because the underlying symmetry. When a little fraction
of nodes has been removed, the shape of the betweenness distribatigesh
and some nodes become more relevant in the communication process. The
changes of this centrality are characterized by the changes of the prece-
dent analysis we have considered that the value*dk constant because the
failures does not modify significantly the structural properties. Howewer
the regular network this process change the structure breaking symanedry,
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Figure 5.3. Effects of the node removal on the normalized maximum capacity of &glar
lattice networks when using a routing protocol based in shortest pathaiagoim walks. In the
inset we plot the evolution of the relative importance of the node with maxitnetweenness
as a function op.

the value ofo* becomes now a function of the number of removed nodes. The
inset of figure 5.3 shows the evolution of this parameter when we remove a
certain fraction of nodes. Since the value of the maximum betweenness is a
function ofa*, when this value grow®* also grows and the onset of conges-
tion decreases.

3.3 Effect of the knowledge radius

Up to now we have observed different type of behaviors of the orfset o
congestion when we perform a random breakdown. Particular intetiesis
the observation of the ER network (figure 5.2 right), where the behagor d
pends on the routing protocol: when shortest path are applied, theilitgpab
decreases, however when random paths are followed the capabilépgss.
Therefore, seems interesting to analyze the transition between this twe differ
ent protocols, introducing a certain amount of neighboring information in the
routing decisions.

In the third experiment we have analyzed what happens when we use a ro
ing protocol with different values of the knowledge radiysrepresenting a
system whose nodes have a limited knowledge of network topology deter-
mined by the radius. The use of a knowledge radius is found in many real
systems, where due to space limitations the elements only know the exact lo-
cation of a few nodes, and otherwise they can only guess the position of the
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Figure 5.4. Example of a routing protocol with a certain knowledge radiusVhenr = 0,
node A does not know nothing about the location of other nodes and sdéride packets using

a randomly chosen link. When = 1, node A can send directly the packet to nodes in blue
(B-F), and otherwise it send the packet randomly. When2, know how to reach (B-I) and if

r = 3 the node know the position of the rest of the nodes, and can send thetpasing the
shortest path.

IC),

r=2 r=3

destination node. In figure 5.4 we present an example of a routing ptotoco
with a fixed knowledge of the network. When= 0, the nodes do not know
nothing about the topology, and the packets are always moved randbomady. |
increase the value afto 1, the nodes know who are its neighbors, and if the
packet destination is one neighbor, the packet is sent directly to the diestina
Otherwise the packet is sent randomly. For larger values tife probability

of knowing the location increases, decreasing the number of randomddtep
the packets. An finally, when is equal to the diameter of the network, all
the node know exactly how to reach the destination, and all the packetk trave
using the shortest available path.

In this experiment we have repeated the same random removal process on
the ER and the SF networks described previously, but now we use dddgmv
radius that ranges between= 0 andr = 4 (Which is approximately the aver-
age shortest path length of the networks). The results obtained aenfaé
figure 5.5. Afirst look at both plots shows an unexpected behavior afrtket
of congestion as we increase the radius. For the value-of) we observe the
same behavior described in the previous section. But as we increasauke v
of knowledge radius, we observe that the slope4p)/p.(0) first decays to
negative values (-1.14 for the ER network and -0.31 for the SF netwbdaw
r = 2), and then increases again until it reaches the same slope for the shortes
path presented in table 5.2.

To explain this unexpected results, we have studied how does the random
removal changes the parameters that control the changes onsegestion,
instead of considering this parameters constant like in the previous section.
Using the same methodology explained before for determipifig), we have
analyzed the effect of the random the average number of steps thpaoket
performs before exiting the networlD)(p) and the maximum algorithmic
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Figure 5.5. Effects of the node removal on the normalized maximum capacity of thgigR)
and SF (left) networks when using a routing protocol that depends dinthveledge radius of
the network. The values of range from 0 (Random Walk protocol) to the Diameter of the
network (Shortest path protocol).

betweenness normalized (p). Note that both values depend on the value of
T.

A first look at the evolution of the average path length in figure 5.6 left
gives the hint that it plays an important role in the changes on the value of
pc(p)/pc(0), since it repeats the same behavior of figure 5.5 but inverted. This
is not surprising, since the fact of reducing (increasing) the distaneasrtbat
the packets stay less (more) time in the network, and this increases (dsdreas
the maximum capacity of the network.

Let us analyze with detail the behavior of the changgddfp) normalized.

On one hand, we observe that in a purely random routing protocol drage

path length decreases. In this particular case, the average humbepsfsste
very high,0(n), and the effect of removing nodes reduces the average number
of nodes that we randomly explore before reaching our objective. ©ottier
hand, when we introduce routing knowledge into the system, the avertige pa
length increases with different slopes. As explained in (Albert et al.0R00
this is because we remove a part of the nodes that can act as a shatttest p
increasing the difficulty for the remaining nodes to communicate with each
other. The effect is less pronounced in the SF network, since the nbstfpa
the paths go through the central hubs which usually are not removed.

We also have analyzed the changes on the maximum algorithmic between-
ness of the network in figure 5.6 right, to check if the introduction of routing
protocols reproduced the same effect observed in the regular latticéhe In
scale-free network, the value of (p) normalized remains almost constant,
independently of the value af, proving the stability of the most connected
node to a random failure. In the random network there is a slight incadase
the value that is similar for all the routing protocols, which can probably have
some influence on the slope @f(p)/p.(0).
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Figure 5.6. Effects of the node removal on some dynamical properties of a caneation
process as a function of the number of removed nadéke average number of steps that one
packet performs before exiting the netwdiR) (p) and the maximum algorithmic betweenness
normalizeda™ (p). The top three figures refer to the Scale-Free network, and the botfem re
to the ER random network.

To confirm analytically all these observations we have computed a theo-
retical approach of the changes of the onset of congestion, using ifiedod
version of equation 5.4,

(1-p)

(1- a*(gli’(p))

ini

pe(p)/pe(0) ~ (5.6)

where now the values of*(p) and the average distance used to compute)

are the obtained in 5.6, instead of being constant like in the previous experi-
ments. Figure 5.7 shows the comparison between the valuégf/ p.(0) ob-
tained in the simulations versus the theoretical approach obtained using equa
tion 5.6. We observe a good agreement between the expected and the simulate
values ofp.(p)/p.(0), confirming that the changes on the onset of congestion
are governed by the changes on the distance and the centrality. Moneeve

can also observe that this approach acts as an upper bound for tigeshat

the onset of congestion.
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Figure 5.7. Comparison between the values®f(p)/p.(0) obtained using simulations and
the values obtained using equation 5.4 and the data of figure 5.6. Weelisat the numerical
approach provides a good fitting of the behavior of the onset of ctinges

4. Comparing topological and dynamical robustness

As we have introduced so far, when a network suffers random faithere
is the possibility that some nodes of the network get isolated from the commu-
nication process. The causes of this isolation can be topological, if the tketwo
splits, or dynamical, when congestion emerges and avoids the properudistrib
tion of information. To discover which one of this two causes will appear firs
given a certain topology and routing protocol, we have compared thalpiteb
ity of disconnecting the network physically versus the maximum congestion of
the network, when removing a fractignof nodes. We use the three network
topologies and the SP and RW routing protocols presented before, oftainin
the results presented in figure 5.8.

This comparison provides some insights about the robustness of the com-
munication process, defining regions of the parameters for which cimiges
is attained before splitting the network and vice versa. First we find that SF
networks show a very high dynamically robustness. This means that, even if
the system is functioning at his maximal capacity before removing any nodes,
the random failures will not introduce congestion into this system. In second
place, we find that regular networks are more topologically robust. Ifdhe c
munication process is based on a RW routing protocol and the initial system
works at the50% of the maximum capacity, a random breakdown will intro-
duce congestion in the network before splitting into two components. If the
routing protocol is based in SP, the maximum capacity to avoid the congestion
decreases to th20% of the total. With higher values of the initial load, the
system will fail dynamically before topologically. Finally, the robustness of
random networks depends on the routing protocol. Using a SP, the communi-
cation process can operate up to 8w, of its capacity avoiding congestion.
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Figure 5.8. Dynamical robustness versus topological robustness. The dasleedelimits
the probability of splitting the network. The crossing between the relativgexsiion ratio
pe(p)/pc(0) and the dashed line determine the change of the dominant effect beboten
processes. Before this point splitting dominates, beyond this point sbtogelominates the
communication process after random failures.

If we change the protocol to RW, we observe that the network improves its
dynamical robustness, being very difficult to congest it via randomré&slu

5.  Summary

In this last chapter we have studied the relationship between the random
breakdown of a complex network and the changes on the congestionopoint
a communication processes. We have proved that this relationship is mainly
governed by the algorithmic betweenness distribution. Moreover, wedfoun
that the centrality of the most important node in the communication process
(the node with the highest betweenness) plays a crucial role in the chahge
the onset of congestion. We presented an analytical expression foetibgior
of the onset on congestion which is based on the amount of traffic that we
remove from the node with maximum algorithmic betweenness, confirming its
validity using different topologies and routing protocols. We also obskthest
if the breakdown modifies structural properties, the centrality of the naldes
changes, obtaining a different behavior of the congestion point.

The results provide some insight of the dynamical response of a network
when there occur random failures. In other words, they give us anatlthe
load a system can handle if we want to avoid the congestion, in case the net-
work suffers random failures. These results highlight the necessityhadia
dynamical considerations in studies about resilience of complex netwewks.
instance, they can be used in the design of a dynamic communication process
to guarantee the efficiency when some of the nodes have been removed.

Some interesting issues remain open for future studies. We expect that
changing the topology or the routing protocols, we will be able to observe
different slopes fop.(p)/p.(0) which probably will be governed by the same
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constrains exposed in the work. Another appealing work derived trosn
problem is the analysis of the the congestion when the network undergoes a
intentional attack.



Chapter 6

CONCLUSIONS AND PERSPECTIVES

1. Conclusions

In a time when large amounts of data about social, economical, technolog-
ical, and biological systems are produced in a daily basis, complex networks
have become a powerful tool to represent the structure of complexvsyste
The advances in complex networks theory have been geared towastadie
of two main questions: what can we understand from a complex system by
looking at its structure, and more importantly, what is the interplay between the
topological and the dynamical properties of a complex system. The aim of this
dissertation has been an attempt to provide new insights on both questions by
analyzing two particular problem, the analysis of the community structure and
the characterization of the dynamical properties of a communication process
Besides the particular summaries that are located at the end of each chapter
here we present the main conclusions that can be extracted from theeabtain
results.

= |n the last few years, it has become clear that the detection of community
structure of a complex network is key to characterize their internal orga-
nization. The identification of this intermediate scales of the system has
enabled the scientific community to understand how the different compo-
nents of a complex system assemble into coarser units, obtaining better
insights about the dynamical behavior of these components.

The problem of detecting communities has attracted the attention from sci-
entists working in several fields, as the large number of efforts trying to
quantify and detect this structure in the last five years reflect. In chapter

we have made a comprehensive comparative study of community detection
methods in order to provide researchers with a guide on how to select the

109
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most appropriate method depending on the properties of the network or the
computational resources available to extract a relevant structure.

Despite the fact that the analyzed methods follow completely different ap-
proaches, the accuracies obtained by most of them are similar when de-
tecting well defined communities. Therefore, it seems that the problem of
community detection provides a paradigmatic example of how a complex
problem can be faced from a large number of points of view to reach the
same conclusion. As we increase the “fuzziness” of the communities, we
find that there is a trade-off between efficiency and accuracy. This is a
common problem that appears when we want handle large amounts of data.
In the particular case of community detection, the most accurate methods
usually are not scalable so its use is limited to medium sized networks (up
to 10,000 nodes). If we want to analyze larger networks, one nestis fa
alternatives, but their accuracy is lower.

= |n chapter three we have presented an extremal optimization (EO) based
method to detect community structure as an alternative to those available
in the literature. The aim of proposing a new method is two-fold: first,
to minimize the trade-off of efficiency or accuracy that we commented in
chapter two; and second, to provide a novel approach to the probkssd ba
on a different type of heuristics.

Even though the extremal optimization is not as popular as other classical
heuristics such as simulated annealing or genetic algorithms, it yields very
good results when applied to classical optimization problems. In addition,
since behind EO there is an evolutionary process where nodes seifizeg
until they reach a stable configuration that gives the community structure,
EO can also be used to understand the process behind the formation of the
communities. When comparing the results of our method with those pre-
sented in the benchmark of chapter two, we find that our method is among
the most accurate, and is also able to perform the community analysis in
a short amount of time. For these reasons, results obtained with our al-
gorithm have been used as a comparative reference in posterior detectio
methods.

In this chapter we have also performed a deeper analysis of the modularity
formulation. We redefined this measure in terms of weighted and directed
versions, and we have uncovered the contribution to the modularity equa-
tion of particular configurations of nodes. Using this knowledge and the
flexibility of the EO algorithm, we have been able to introduce small mod-
ifications that go a step further in the detection process. On one hand, with
few algorithmic details, we have improved the accuracy of recursive algo-
rithms up to a 20%. On the other hand, we have proposed a method on
how to reduce the size of a network up to a 40% without altering the max-
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imal modularity configuration, allowing for even faster and more accurate
community analysis.

= |n the last two chapters we have studied of some dynamical properties of
communication processes in complex networks. We believe that opening
or reinforcing research lines devoted to the study of global scale giepe
of dynamic process is mandatory. When scientists model the topology of
a specific complex network (e.g. the Internet), they measure the structural
properties (e.g. they find a scale-free degree distribution) and nepeod
them in the model, obtaining a simple but accurate description of reality.
However, we cannot follow the same steps to model the dynamics because
we lack the equivalent set of measurements that we use for the topology.

In this context, we have studied the fluctuations of the traffic on complex
networks in order to provide a large-scale dynamical characterization of
the traffic flow. The idea is that there are a large number of real complex
systems that show a scaling relation between the average flux and the vari-
ability of this flux. The understanding of this scaling relation will help us
design better traffic models.

It seems true that the values that the scaling exponentsl /2 anda = 1
proposed in (de Menezes and Barabasi, 2004a, de Menezes aith8ar
2004b) are important, since act as a bound of the scaling observed in rea
systems. However, in chapter four we show that these values are inot un
versal, and that between the two exponents there is a wide range oflpossib
values that appear by tuning the parameters that control the communication
process. The analysis of a simple traffic model based on a Poissonqueue
ing system reveals three mechanisms that give rise a transition: how we
perform the sampling process, the time that the packets stay on the net-
work, and the introduction of congestion into the networks.

We corroborate the existence of intermediate exponents in real systems by
looking at the fluctuations of Internet traffic, which can be characterize
by a a scaling exponent ~ 0.75. Our results are in agreement with other
studies of fluctuation scaling in complex systems that display different scal-
ings in the rangél /2, 1] (Eisler et al., 2007).

m The capability to maintain the communication between nodes when some
of them falil is another interesting property worthy analyzing. We believe
that it is more important to observe the incidence of the node failures on the
dynamical processes supported by the network than the effect ofliresa
on the topology. In chapter five, we have defined the dynamical rolssstne
of a communication process as the ability of the traffic to avoid conges-
tion when we remove a fraction of nodes. Using the same communication
model of chapter four, we have provided new insights on how the onset
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of congestion behaves when there is a random node removal forediffer
routing protocols over different network topologies.

We have performed a theoretical study of the problem and we have quanti-
fied the changes produced by the random breakdown by analyzingrhe c
trality of the most important node in the communication process, and the
average number of jumps that the packets perform before exiting the net-
work. Itis also worth noting that when we consider a protocol in which the
nodes do not have global knowledge of the structure, we find thagelsan

on the average path length of the system control the different beh#vairs
appear in the simulations.

2. Perspectives

Here we resume some research lines that provide a logical continuation of
the work presented in this thesis.

= There are still open questions regarding the internal organization of com-
plex networks. The first one is in the definition of what is a community. It
seems that the modularity has been accepted as the 'de facto’ measure to
qguantify a given structure. However, some studies have also pointéideout
weak points of this measure, particularly the limitation to identify certain
structures that can be relevant in the dynamical processes. This thygens
door to alternative quantitative measures more suitable to capture dynami-
cally relevant structures.

The second open question is the study of overlapping and hierarchioal ¢
munities. New methods have been proposed to identify all the mesoscopic
scales of the system and communities that share certain nodes, but again
we find the same problems of which is the method that we should use to
analyze one network. In this case an extension of the benchmarks dsd too
presented in chapter 2 should be developed to help the scientists decide.

Finally, the last —and perhaps the most interesting— open question refers
to the study of community dynamics. The analysis of the processes re-
sponsible of the formation and the evolution of the community structure
will provide new insights about social and/or economical dynamics. The
availability of data will unable us to track changes on the community struc-
ture with time, providing us with a clearer picture on how the nodes self-
organize into these groups.

= The extremal optimization algorithm to detect community structure presents
nowadays a stable solution. Apart from minor technical improvements, the
method can be extended in at least three directions that will increase the
number of problems where we could apply our method. First, we can take
advantage of the flexibility of the algorithm and change the cost function
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to look for groups with other properties (such as node similarity as sug-
gested in (Newman and Leicht, 2007)), obtaining partitions of nodes that
share these properties. This task is not trivial, since we first need to de-
fine the function that we want to optimize and then define the individual

contribution of the nodes to this function.

Second, we can extend the method by including the mesoscopic analysis
introduced in (Arenas et al., 2007). Combining the accuracy of our algo-
rithm with this method will provide a more comprehensive picture of the
different organizational levels in a complex network.

Third, we can use our method to solve the community detection problem
in a probabilistic fashion, that is, we can group the nodes considering the
probability of them belonging to the same community, instead of giving
only one configuration that corresponds to the maximum modularity. Since
our method is not deterministic, by repeating the analysis of a network
several times we usually obtain different configurations which have small
structural changes. By performing an statistical analysis of all the output
configurations, we can extract the probability that nodes belong to each
community. A similar approach has been already successfully applied in
(Sales-Pardo et al., 2007).

= The study of the scaling of fluctuations is in a preliminary stage, thus there
is a large number of questions unanswered. In order to improve our-unde
standing of the problem presented here, a possible alternative is the explo
ration of other possible transitions of the scaling exponent by using a a more
realistic traffic model. To increase the complexity of the model we can also
use other routing protocols (such as shortest-path based), or dinerge
havior of the queueing system. We expect that the introduction of these
changes will give rise to new transitions of the exponent that could help us
understand one of the key questions of the problem: what are the season
that determine the exponent for a particular real system?. The answer to th
guestion is not trivial since there are many explanations for the existénce o
a given value ofx. A good way to understand the exponent should be the
study of the different parameters of the system and, based on the model,
look for which ones can give a coherent explanation of the fluctuation.

The communication model used in the chapter is unable to reproduce the
self-similarity of traffic in time observed in some real systems like the Inter-
net. Therefore, a natural extension of the work is to introduce traffic with
long-range dependencies and burstiness, and look at the behavlo of
system. Moreover, the use of this type of traffic opens the door to another
research line: the study of the relationship between the scaling exponents
and the Hurst exponent that governs the self-similarity of the traffic.
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m The study of the dynamical robustness is also in its preliminary stages. The
first problem that we encountered by using this methodology relies in the
amount of computing resources needed to perform a simulation of the sys-
tem and obtain the values of the onset of congestion. An alternative way to
obtain the value op. is the use of the formulation proposed in (Guimera
et al., 2002b). However, the adaptation of the formulation is not trivial,
since it requires the inversion of a big matrix which also uses a large num-
ber of computational resources. Using techniques such as the LU decom-
position or the Cholesky decomposition (Golub and van Loan, 1996), we
expect to be able to reduce substantially the time needed to reduce the ma-
trices and as a result, the time needed to analyze the changes on the onset
of congestion.

Another possibility that would be extremely interesting is to test the dy-
namical robustness of real network topologies, to be able to corroborate
from an empirical point of view the results obtained in the simulations of
the work. And finally, another possible extension is the analysis of what
happens with the onset of congestion when the network suffers diraicted
tacks against the most important nodes, such as the most connected or the
most central in the communication process.



Appendix A
Evolution of the Internet
Autonomous System Topology

In the introduction of this work we have explained the reasons why the sci-
entific community is still looking for a detailed map of the Internet’s topology.
We also have explained how Internet mapping projects try to solve this prob-
lem, collecting information using passive (BGP tables) and active (tratserou
probes) mechanisms, filtering the gathered information and creating plunctua
snapshots of the Autonomous Systems (AS) and Internet Router (IR3.leve
These maps are published online and research groups are using thesn to te
new models, theories or protocols.

A first look to some of the available online maps shows a topology with a
large degree of heterogeneity, independently on the source used & tiah
data. This observation was confirmed empirically by Faloutsat when they
found that the degree distribution of the Internet obeys a power-laloyas
et al., 1999). Since then, scientists have used the set of the statisticalrtdols a
measurements described in the first chapter when they want to perforgea la
scale characterization of the Internet network (Vazquez et al., 2002a)

The evolution of the Internet modeling has been directly related to the ob-
servation of these statistical measurements. Every time that a new model is
developed, the authors take one or various topology datasets, measwe s
of their large-scale properties, and compare them against their moddi-to va
date it. This validation process has been criticized since the measures dbtaine
from the datasets used in the comparison between model and reality have some
potential flaws. First, some recent publications argue that the obtained statis
tical measurements can be biased by the method used to extract the topology
(Lakhina et al., 2002, Clauset and Moore, 2005), leading to an unctenple
view of the network that cannot reflect the real structure behind. Btarice,
it has been proved how a bad sampling of a homogeneous graph can make
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us believe that the inferred network has a scale-free distribution (D&dl’As
et al., 2005). Computer scientists are working hard to solve the sampling prob
lem, creating more efficient reverse engineering techniques or incgetdsn
number of nodes used in the active mechanisms that extract the topology in-
formation (Donnet et al., 2005). And second, another group of critggea
that the Internet is a network that has been continuously growing amgjictta

at all the three scales (users, routers and Autonomous Systems) in tB8 last
years. Every month new nodes appear and some of them disappedag then
evolution of the network into what is known as a “birth-death process’déuat
change some of the structural properties of the network. Therefoeenodel

that is capable of reproducing a concrete snapshot of the netwoldk motibe
valid a few months before.

In this appendix we present a brief analysis of the evolution of the statistical
properties of the Internet AS maps to measure the stability of internet measure
ments, extending the previous works of Vazquez et al. (Pastor-Satired.,
2001, Vazquez et al., 2002b, Vazquez et al., 2002a). The presestdis can
be used as a reference in future modeling of the Internet Autonomotensys
topology.

1. Mapping the Autonomous System topology

An Autonomous System refers to a set of routers that are under a single
technical administration, where communications between routers within the
AS are controlled by an interior protocol and communications to other ASs
by an exterior protocol (usually BGP). From a more restrictive pointi@ivy
the RFC documentatidrfixes as a condition to be an Autonomous System
that the entity should have a single and clearly defined internal routing policy
(Hawkinson and Bates, 1996).

An Autonomous System usually refers to administrations or Internet Ser-
vice Providers that comply with the previous conditions. When two ASs want
to exchange traffic with each other, they need to establish a physicaéconn
tion between them. But behind the creation of a new connection there are a
large number of issues that need to be negotiated by both parts, e.g. who is
going to pay for the infrastructure or how much traffic is allowed to travel in
each direction. Therefore, it is difficult to classify this network as tetdgio
cal, since each link involves some kind of agreement between the two involved
parties. This provides another point of view of the network, the social ne
work of agreements between all the entities that can give access to threetnter
around the world.

1The Request For Comments (RFCs) documentation is considexedfitial collection of all the designs
and guidelines realted with Internet
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Internet AS maps can not be directly obtained by simply looking at the net-
work infrastructure. Data collected from BGP tables or from tracerbkee-
techniques gives only the connectivity between router interfaces. Biaeai-
tonomous system represents a coarse-grained view of the netwouk igheer
necessary abstraction process before obtain the representationnefwurk
atthe AS level. The first step towards obtaining the AS map begins with the ex-
traction of the connectivity graph between routers. Then, routersratped
using the information regarding their ownership, creating a new netwogkevh
each node represents an AS. The links between two ASs are addeckifgher
at least one physical connection between the routers belonging to thean. Th
resulting new network goes through a filtering process to correct dipkra
tries and to validate the results (Dimitropoulos et al., 2007), and finally the
resulting map is published in the online repositories.

The AS topologies used in the analysis have been gathered from some of
the data sources most frequently used by the research community. Some topo
ogy mapping projects publish new datasets regularly (usually one or two times
a week) that contain already preprocessed information about the relzifion
between ASs. The three sources of information that we have used dot-the
lowing:

= The first group of data comes from the National Laboratory for Applied
Network Research (NLANR), who generated AS maps derived from the
BGP routing tables gathered by the Routeviews project from 8 November
1997 to 2 February 2000. The datasets are freely available for dosvatoa
http://moat.nlanr.net/Routing/rawdata/.

= The second group of data has been obtained from the CooperatigeiAss
ation for Internet Data Analysis (CAIDA), who since 2004 has been pub
lishing the adjacency matrix of the Internet AS-level graph. This data is
also inferred from the BGP tables of Routeviews project, but in this case
they also add extra information about the type of link between two ASs
(Customer-Provider, Peer-to-Peer, etc..). The datasets are fredyée
for download at http://as-rank.caida.org/data/.

= The third group of data is a combination of the data from the previous group
with the measurements of the Skitter project, which is also managed by
CAIDA. The Skitter project uses traceroute probes to discover hidd#rsp
between the ASs present in the BGP tables. Since it is a complementary
dataset to the previous one, we have combined the information of the links
of both sources to present a more detailed map of the Internet AS-level.
Skitter data is freely available for download at http://sk-aslinks.caida.org/.

We have downloaded their datasets and created monthly snapshots of the
AS maps by combining all the nodes and links that appear at least twice in the
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Figure A.1. Evolution of the number of nodes (a) and of links (b) of the Autonomagstedns
topology maps. The nodes and links are shown in a logarithmic scale.

networks published in a given month to discard instabilities of the data that
can give rise to false links. Note that there is a temporal gap between the two
datasets, since in this period there was no group publishing data aboel2AS r
tionships. Between 2001 and 2004 there are available BGP information in the
Routeviews project, but no project was creating the AS relationship mags. W
guess that one possible reason to explain this lack of information comes from
the “Dot-Com bubble” crash of 2001, which decreased momentarily the inter
est and funding for Internet related projects. The interest in Inteneasure-
ments (and the AS relationships mapping) raised again with the establishment
of CAIDA as a worldwide internet observatory, who has been releasioig
detailed datasets since the beginning of 2004.

2. Analyzing the evolution of the AS maps

To study the evolution of the structure of the AS network, we have ana-
lyzed the changes of some of the most common measurements used in com-
plex networks literature: the size of the system, degree based propsmiis,
worldliness, and the hierarchical organization of the network.

First, we have studied the change on the size of the Internet AS map. In
figure A.1, we observe that there is an exponential growth of the nunfber o
nodes and links in the three datasets. Keep in mind that this growth refers to
the number of organizations that provide access to the network, and thet to
number of people that uses its services.

To quantify the growth rates we have used the same formulation presented
in (Serrano et al.,, 2005). We characterize the exponential growing aate
E(t) ~ Eye for the number of links and’(t) ~ Vyeft for the number
of nodes, where is the number of months that have passed since the first
measurement of each dataset. The exponents found in the NLANR datasets
area ~ 0.03 and ~ 0.027, in concordance with those obtained in Serrano
et al. In the CAIDA datasets the exponents are~ 0.012 and3 ~ 0.011
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Figure A.2. Geographical distribution of the Internet AS nodes in the inferred maps b
NLANR in 1997 (c) and by CAIDA in 2007 (d). We see that the growth of & network
has been centered in the most developed countries.

without the Skitter data and ~ 0.005 and3 ~ 0.011 with the Skitter extra
information.

The number of nodes and links is still nowadays growing exponentially,
but it seems that the growing rate has decreased by half. One of the most
plausible explanations for this fact is that there is a saturation of the mdrket o
the Autonomous Systems in the most developed countries, which is decreasing
the probability that new ASs enter the market. To evaluate the plausibility of
this hypothesis we have plotted the geographical position of the Interret AS
at two different times. The results are presented in figure A.2. As exghecte
the growth of the system has been centered in two main areas: the United
States and Europe, where it covers almost all the high populated argas an
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therefore seems that there could be some saturation of the market in gese ar
The fractal distribution observed in this two plots has been compared with the
distribution of the world population (Yook et al., 2002), and it seems that it
plays an important role in the growth rules of the Internet topology (Serran
et al., 2005, Serrano et al., 2006).

Finally, also note the difference in the number of links between the two
CAIDA datasets in figure A.1 right. The extra information provided by Skitter
reveals the existence of the previously described Internet 'dark-rmattarge
number of links (between 10 and 15 thousand links) that are not deteeted if
create a map only using the BGP routing tables. The number of nodes in both
datasets are the same, since Skitter only uses the nodes that appear ifPthe BG
tables to test the existence of the hidden links between them.

Maximum degree, average degree, degree distribution and correlains

One of the most frequently used group of metrics that have been usedrto ch
acterize the Internet large-scale topology —which does not mean thaathey
the best ones, as explained in chapter one— have been based on thex ntimb
connections of a nodes. In particular, we have analyzed four integasit-
rics of the degree: the average node degree, the maximum degreegtbe de
distribution and the degree-degree correlations.

Looking at the average degree of the nodes in figure A.3.a we obsettve th
the AS level is a very sparse network, even if we add the extra links from
the Skitter. The value of the average degree has been almost constamt in th
last 10 years, fluctuating betwedrand4.5. Adding more links from Skitter
obviously increases the average value, but the difference is very smaihs
that the if we can discover all the links, the average of connections pkr no
will be around5 and6. On the contrary, looking at the maximum degree of the
AS network in figure A.3.b, we find that this metric was growing linearly in the
NLANR maps, but seems that in the last three years has reached an syationa
value around 3000 links (a little less if we do not add the Skitter ones).

The connectivity distribution of Internet is known to display a scale-free
distribution. We have measured the accumulated distribution of degrees for
both CAIDA datasets of May 2007 in figure A.3.c, and we find a value atoun
—1.1 in agreement with the values obtained in other analysis (Vazquez et al.,
2002b). In figure A.3.d we plot the evolution of the exponent in the differe
datasets. We observe that the value is almost stationary in time, and that is not
affected by the introduction of additional links from Skitter. The stability of
the exponent can be explained if the growing process behind the addition o
nodes is based in the preferential attachment mechanism (Barabadieng A
1999). As Barabast al. pointed out, when a network created with preferential
attachment reaches a steady state, the exponent of the degree distigution
invariant to changes on the size of the network.
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Figure A.3. Evolution of the maximum degree (a) and average degree (b) of tiyzadaAS
topology maps. Accumulated degree distribution of the two CAIDA snapsifdvay 2007 (c)
and evolution of the exponent of the accumulated degree distributioAd)age degree of the
nearest neighbors as a functionkodf the two CAIDA snapshots of May 2007 (e) and evolution
of the scaling exponent between the degree and the average detiremefrest neighbors (f).

Another measure related with the node degrees is the degree-degsda-cor
tion function. Figure A.3.e displays the average degree of the neaighboes
of a vertexk,,,, as a function of the node degregwhere we observe a scaling
relationship with an exponent —0.48. The interpretation of this observation
is that the AS-map display disassortative mixing, where high degree noeles a
on average mostly connected to nodes with a smaller degree. This is not a
surprising result, since many technological based networks (includinidrthe
map) also display a clear disassortative mixing.
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Figure A.4. Evolution average shortest path length (left) and of the clustering cieeffic
(right) of the AS topology maps.

On figure A.3.f we show the evolution of the scaling exponent okthg k)
distribution. This exponent proves a very stable metric with a value around
—0.47, that has not been affected by the evolution and by adding more links
into the network.

Small-world properties: clustering and average path length

Popular culture affirms that one of the most interesting advances of ttre Inte
netis that it has given us the feeling than the world is smaller than everbefor
However, does the internal structure of the network display the chasdicie

of a small-world network? A few studies have pointed out that the AS-level
topology is indeed a small-world, with a very short average path length be-
tween its nodes and a relatively high clustering coefficient (Bu and Tgwsle
2002). This is not surprising since the AS map is composed of many local
ASs highly connected between them (that gives rise to a high clusteriffg coe
cient), which are connected by large ASs that act as backbones ddtthierk,

as depicted in the Transit-Stub model (Zegura et al., 1996). The existénce
this small-worldliness is also important for dynamical processes, since seems
that plays a key role on the efficiency of the Internet on delivering médion
(Latora and Marchiori, 2001).

Figure A.4 shows the evolution of the average path length and the clustering
coefficient metrics of the analyzed maps. On one hand, we find that thegave
path length on the BGP maps has been almost constant in the last seven years
increasing only arountl% when the size of the network has increa$éad%.

The main reason behind this behavior is the scale-free nature of the AS maps
as pointed out by Cohen et al., scale-free networks are “Ultra-smalli€@o

and Havlin, 2003) because their diameter scales as the size of the system as
(D) ~ loglog N. Since the AS maps display a well-defined scale-free degree
distribution, we expect that adding new nodes will not change the distamce
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Figure A.5. Evolution of the value (left) and size (right) of the maximum k-core. Thettia-
tions are a consequence of the sampling process used to infer the yrtapamapping projects.

the network. The inclusion of the Skitter links decreases the averagedtstan
as we provide alternate paths to reach other nodes of the network while we d
not change the number of nodes.

On the other hand, we observe that the value of the clustering coefti@ent
been changing continuously. There was an increasing trend in the finghsno
of the NLANR, but seems that now the value is going to a stable value around
0.2. The inclusion of more links from Skitter while maintaining the number of
nodes increases the clustering coefficient of the network Wt since the
missing links are mostly redundant connections between the most connected
nodes (Cohen and Raz, 2006). This is one of the main reasons why tlss link
are not detected with traditional techniques that only look at the main paths.

Hierarchical structure of internet: k-cores

Another important feature of the Internet AS structure is that displaydla we
defined hierarchical structure. One possibility to measure this hierardnica
ganization is using the k-core decomposition. The k-core decompositien con
sists of a recursive pruning process of the least connected vertigisning
the most central core of one network and uncovering its hierarchigahara-
tion (Seidman, 1983, Bollobas, 1983).

The size and degree of the largest k-core gives information aboubthe r
bustness of the network and its potential efficiency. In first place, tistegice
of a big k-core means that in the center of the network there is a big number
of nodes interconnected, which decreases the probability of brealengeth
work. In second place, the redundancy of the links helps the redistribotio
the traffic flow among a greater number of paths, providing higher effigien
on delivering the information between pairs of nodes (Alvarez-Hamelih,et a
2007).

In the last two plots we analyze the evolution of this two metrics of the k-
core decomposition, the degree and the size of the largest k-core.ute fig
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A.5 we show that both values have been increasing slowly with the Internet
evolution. The addition of the Skitter links increases substantially the degree
of the k-core nodes, reinforcing the fact that the missing links of the BGP
tables correspond mainly to recursive connections between the mosdlcentr
nodes (Cohen and Raz, 2006).

The values observed in this two figures show that the Internet has a large
core of around 65 nodes that are highly connected between themnedelis
connected to half of the others). However, these values are not irragre
with the presented in the Internet medusa model (Carmi et al., 2007), where
they found a core of 100 nodes. The most probable reason is thatttiersau
of this model use the AS maps published by the DIMES project, which in-
clude different information about the missing links, and therefore thegrobs
a different snapshot of the AS maps.

3.  Summary

In this appendix we have shown how the internal structure of the Int&het
maps has been evolving in the last seven years. We have studied the tempora
changes of an extensive set of topological characteristics, includigrgge
properties and exponents of scale-free distributions. We have addahg@&S
maps published on two different time frames: the data collected from NLANR
between 1997 to 2000 displays how some properties are changingpproba
because since the core of Internet was still in formation; in both AS maps
collected from CAIDA between 2004 and 2007 we find that the evolution of
its structure is getting into a mature state, with an internal structure that is
insensitive against the addition and removal of nodes.

There is an important open question regarding these results: Are thgashan
in the AS maps reflecting the Internet evolution or they are a consequénce o
the increasing efficiency of Internet discovery tools? On one handlisicev-
ery tools are providing more detailed information about the topology, as we
have seen when we added the Skitter links to the BGP tables. On the other
hand, no one doubts that Internet is still growing at all its levels, and-there
fore there is more information to discover every month. Seems that to answer
this questions we will need to until we will have a complete topology map,
and then we will be able to identify exactly how much of the evolution is by
the improvement of the tools and how much is due to the real growth of the
Internet.



Appendix B
Relationship between directed and undirected
modularities

Let us suppose that;; are the weights of a directed weighted network, and
that we define its corresponding symmetrized (undirected) network bggdd
the weights matrix to its transpose:

Wij = wij +wji, Vi, J. (B.1)

The strengths of this undirected network are

w; = w + wl, (B.2)

%

and the total strength is

2w = 4w . (B.3)

The modularityQ p of the directed network is invariant under transposi-
tion of the weights matrix since the input (output) strengths of the transposed
network are equal to the output (input) strengths of the original one:

1 w?ut ijn
Qp = %0 ZZ wij — 5 3(Cs, Cy)
i
1 w?utw;n
= 5 ; Z (W S 5(Cy,Cy)

in, out

— % ZZ (wﬁ _ w;ZJ ) (5(01‘703’)- (B.4)
v
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The relationship between the modulari®y of the directed network and
the modularityQ) ¢ of its symmetrization is obtained by simple calculations:

Qs

ZZ ( Wﬁ) 3(C, C;)

(wput_|_ wi'n)(wqut_'_ win)

wZZ(w”erﬁ_ — )5(01',(1]‘)

wOUt’IUI]n w;nw?ut
Z Z Wi5 — + | wy — 2w (5(0@, C])
4w — Z Z out _ |n out wijn)é(ci’ C])

2 Z Z out __ |n out ']n)é(cz, C]) . (B.5)

This result can also be expressed as a communities sum:

2
22(2 - 2”)5(C¢,r)> . (B.6)

The contribution of the links to the input and output strengths cancel if they
fall within the communities. Therefore, if most links do not cross the bound-
aries of the communities, it follows th&)s ~ Qp even if the network is
highly asymmetric.



Appendix C
Analytic network reduction preserving modularity

As we have introduced in chapter three, one can reduce the size ofarketw
grouping nodes while preserving the modularity. In this appendix we give
the analytical proof of the modularity preservation, and its application to two
different size reductions of weighted networks. This two reductionsbean
applied in both undirected and directed networks.

1. Size reduction preserving modularity

The main property of the reduced network is the preservation of modular-
ity, i.e. the modularity of any partition of the reduced graph is equal to the
modularity of its corresponding partition of the original network.

More precisely, leC” : {1,...,N'} — {1,..., M} be a partition inM
clusters of the reduced netwatX. Its corresponding partitiof' : {1,..., N} —
{1,..., M} of the original graph is given by the composition of the reducing
function R with the partitionC’, i.e.C = C’ o R. Therefore, the statement of
the previous paragraph becomes

Q'(C) =Q(C). (C.1)
The proof is straightforward:

yout sin

1 W, Wy
Q=522 (wés - 2w> 3(Cy,CY)
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Q/(Cl) = ZZ(ZZH}U RZ,T 973)
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= Q(0) (C.2)

2. Reductions for undirected networks
The modularity of an undirected network may be written as

Q= Zq (C.3)

where

1 W; W5
q; = % Z (wij — 2111}]) 5(CZ,CJ) (C4)
J
is the contribution to modularity of thith node. If we allow this node to
change of community, the value 6§ becomes a parameter, and therefore it is
useful to define

%0 Z (ww wzii?) 8(C5,1)s 4 =dqic (C.5)

which accounts for the contribution of théh node to modularity if it were
in communityr. The separation of the self-loop term, which does not depend
on which community nodébelongs to, yields to the definition of

G =5 3 (05— ) 6(Cpr), Gi=die, (€O
)

and
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QZZC}Z‘: %Z Z (wij— u;i;ljj>5(0j,7“), (C?)

i j(#4)
satisfying
~ 1 wi2
Gir = Qir + ﬂ <wu - 2w) (C8)
and
Q—Q-I-LZ _“ﬁ (C.9)
- 2w & Wi " 9w ) '
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The role of these individual node contributions to modularity becomes ev-
ident in the expression of the change of modularity when niogees from
communityr to communitys:

AQ = 2(qi,s — i) - (C.10)

As a particular case, a node that forms its own community, i.e. an isolated
nodei, which moves to any communityproduces a change in modularity
AQ = 2G; s - (C.11)

Therefore, if there exists a communityor whichg; ; > 0, node: cannot be
isolated in the partition of optimal modularity. This existence is easily proved
by considering the sum @f , for all communities:

i o 3 (e ) T

J(#) r
_ 1 L ww,
T 2w Z (w” 2w )
J(#1)
1 w?
- i — —= ) . 12
2w <w 2w> (€.12)

where we have made use of the definitions of stremgthnd total strength
2w for the simplification of the expression. Thus,

2
. w; _ -
if w;; < 7; = % Gir >0 = 3Js:Gs>0, (C.13)

completing the proof that there are no isolated nodes in the configuration
which maximizes modularity, unless they have a big enough self-loop.
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3. Reductions for directed networks

The treatment of directed networks requires the distinction between the
nodes’ output and input contributions to modularity. We have proved in the
previous appendix that the modularity is invariant under the transposition of
the weights matrix:

Q= Zq"“‘ Zq, (C.14)

where

outwln
=5 Z ( > 5(Cy,r), ¢ =P, (C.15)
J

out, ,,in

. w w . .
¢, =— Z ( ) 3(Cir), df =), - (C.16)

The process of separating the self-loop term follows the same pattern than
for undirected networks:

1 whp'n
W= 50 2 (“’@v’ ~ oy ) 5(Crr), @M=, (CA7)
J(#1)
. 1 wOUtypin
quljr = 2 (ww - 12’“} ! ) 5(07;,?”), Q] = qunc ) (C18)
i(#7)
and
= Z@"a (C.19)
satisfying
1 wqutwl'n
@iy =ar+ 2w (wn’ - z2w t > , (C.20)
1 wqutwm
=@ 4+ — |wj; — L c.21
QJ T qj T + 2'LU (wj] 2’(1) ) ) ( )

and
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2w

_ 1 woutwln
Q:Q+2wzi:<w”'_> : (C.22)

With these definitions at hand, the change of modularity when nggdes
from communityr to communitys becomes

AQ = (@5 +ars) — (@5 +diy) (C.23)
and the change when an isolated nodsoves to any community is

AQ =y + 47 (C.24)

The first difference between directed and undirected networks caomras f
the fact that we cannot prove this time the inexistence of isolated nodes in the
partition of optimal modularity. The previous argumentation was based on the
use of (C.12), which now splits in two relationships:

1 woutwln
g i y C.25
S g CE (C.25)
1 wgtut
- qj!jr = *% (wjj - Q0w . (026)

The next step is the same:

out, ,in

if wy; < 22711]’ = qu‘f >0 = 3s1:40%, >0, (C.27)
) qutwi‘n )
if wy; < 7’210 L= Zq'“ >0 = 3s2:G;s, 20. (C.28)

Since communities; andss need not be the same, the change of modularity
(C.24) is not warranted to be positive, and thus isolated nodes are lgossib
in the partition which maximizes modularity. Nevertheless, there exist three
kinds of nodes for which we can prove they cannot be isolated in the optimal
partition, provided their self-loops are not too large: hairs (nodes tat h
s1 = $2), sinks(nodes with only input links) andources(nodes with only
output links).






Resum de la Tesi

Introduccio

La consolidacié d’'Internet com a xarxa mundial de comunicaci6 esta con-
siderada una de les claus de la revolucio tecnologica de finals del seght,pa
contribuint al fenomen de la globalitzacié. Les dades confirmen aquest fe
el nombre total d’elements connectats a Internet ha crescut exponestia
any rera any des de 1990, amb més de mil milions d’usuaris utilitzant els seus
serveis diariament. A més, la quantitat de trafic generat per aquestssusuar
també creix entre un00% i un 1000% anualment, arribant a moure diaria-
ment al voltant de Petabyte®’{ bytes) d’informacio entre ordinadors de tot
el mon.

Malgrat que hi ha la idea generalitzada que al darrere del disserteitiét
hi existeix una gran planificacié i un important esfor¢ d’enginyeria, litate
€s gue la part tecnologica juga un paper molt petit en el seu desenvohtpame
el secret de I'éxit d’aquesta xarxa resideix en un conjunt de pristocpies
tecniques que descriuen com comunicar eficientment tot tipus de dispositius
electronics. A partir d’aquestes guies, entitats independents (com aya-els
verns o els proveidors d’'Internet) imposen les seves propies norsdévam
connectar nous dispositius a la xarxa, fomentant la creacié d’'unasirivae
tura extremadament heterogénia que ha anat evolucionant durant els2llitims
anys.

Internet presenta dues propietats interessants que en principi marésme
d’'un sistema amb un creixement tan descentralitzat i sense un disseny pre-
imposat. En primer lloc, és una de les xarxes meés robustes que existeixen; tot
i el gran nombre d’atacs que pateixen cada dia els seus componentspasolt p
atacs han provocat una interrupcié de les comunicacions a escala dwbal.
segon lloc, Internet mostra una inusitada eficiencia en el lliurament diafcio
entre usuaris, tot i 'enorme quantitat de trafic distribuit pels routersaiatel
mon. Per exemple, des d’un punt de vista estadistic, la latéencia o els retards
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soferts pels paquets d’informacié sén molt baixos en comparacié amb altres
xarxes tradicionals de comunicacié o de transport que tenen un compottame
dinamic similar (com per exemple la xarxa d’autopistes).

Per aquests motius, Internet es considera un dels exemples paradigeiatics d
gué entenem per sistema complex. Partint del fet que no existeix unaidefinic
estandaritzada de complexitat, la comunitat cientifica sol descriure agsests s
temes utilitzant algunes caracteristigues comuns que podem observar en tots
ells, independentment que l'origen dels sistemes sigui social, biologic o tec-
nologic. Per exemple, a I'igual que passa amb Internet, la majoria de sistemes
complexos mostren normalment una organitzacié optima que apareix sense
gue hi hagi cap mena de control o disseny extern. Per0 potser latatapies
destacada que comparteixen els sistemes complexos és la seva no-linealitat,
és a dir, que no podem entendre el comportament global del sistema a partir
de la suma dels comportaments individuals dels seus components, siné que
existeixen molts altres factors que hem de tenir en compte.

Les xarxes sOn una de les representacions més utilitzades per a @escriur
I'estructura de les interaccions entre els elements de qualsevol sistema. Les
xarxes més basiques es solen modelar utilitzant grafs regulars o alegltoris,
guals mostren un alt grau de similitud quan mesurem qualsevol de les seves
parts. Tanmateix, I'observacio de les interaccions en sistemes complai®s re
demostra que l'estructura de connexions és molt heterogénia, amb iaa sér
de caracteristiques no-trivials que no es tenen en compte en les aproxisnacio
anteriors. Aquest grup de xarxes es coneixen per xarxes compéxadir,
xarxes que es troben “entre la regularitat i I'aleatorietat”, perqué earmt
estructura caotica s’hi troba amagada una organitzacio optima que facilita el
funcionament global dels sistemes complexos.

Amb I'objectiu principal d’entendre i modelar les caracteristiques basiques
de les xarxes complexes, ha aparescut recentment una nova “ctntea
xarxes”. L'aparicio d’aquesta ciéncia s’ha vist potenciada per &e®iffs: en
primer lloc, 'augment de la poténcia i la major disponibilitat de recursos com-
putacionals han permes realitzar estudis més detallat i amb xarxes congposade
per milers (o milions) d’elements. En segon lloc, gracies a la informatitzacié
de les dades i I'aparicié d'Internet com un immens repositori d'informaaid
comunitat cientifica pot accedir a una gran quantitat de dades sobes xpr
cada dia es publiguen en tot tipus de camps. Finalment, el que més ha potenciat
l'interés en les xarxes ha estat el desenvolupament d’eines, measumels,
ja siguin noves o importades d’altres disciplines, tals com la sociologia, la
fisica estadistica o la teoria de grafs.

Paral.lelament a aquests treballs, en els darrers anys algunes de les linies
d’investigaci6 de la ciencia de les xarxes s’han redirigit cap a I'estudude
és la interrelacié existent entre I'estructura i els processos dinamicsigun
tema complex. Els primers estudis han demostrat que existeix una influéncia
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Figure C.1. Exemple de I'estructura de comunitats d’'una xarxa. Podem classiféceentexs
en grups on el nombre de links cap a membres del mateix grup es eréegug el nombre de
links amb la resta de nodes de la xarxa.

bidireccional entre ambdues parts; per exemple, en el cas particuiterdét,
entendre com I'estructura influencia la dinamica del flux de dades priopar
una informacié molt valuosa sobre com dissenyar millors topologies i proto-
cols de comunicacioé mes eficients.

Aquesta tesi té com a objectius revisar I'estat de I'art de les técniques e-
xistents per a descriure de les xarxes complexes, i proporcionas BOWS i
models que permetin una millor comprensid, tan a nivell topoldgic com a ni-
vell dinamic. En particular, hem tractat dos dels problemes que més interés
desperten en la literatura actual: el problema de la deteccié de I'estruetura d
comunitats en xarxes complexes (en els dos primer capitols) i el problema la
caracteritzacio de les propietats dinamiques d'un procés de comunicacio (e
els dos darrers capitols).

La mesoscala de les xarxes complexes

Els nivells de descripcié topologica d’una xarxa complexa obtinguts amb les
eines que hem comentat permeten la caracteritzacié del nivell microsadpic (
nivell d'un node individual) o bé del macroscopic (a nivell de tota lxaarAl
mig d’aquests dos extrems podem, alhora, efectuar una descripcio Gyisasc
per a identificar i estudiar les propietats d’aquells grups de nodes dquuen
densament connectats, és a dir, grups de nodes on el nombre d&icpane
amb membres del mateix grup es més gran que el nombre de conexions amb
la resta de nodes de la xarxa. El conjunt de tots els grups de nodesmue ¢
pleixen aguesta condicié és el que es coneix com a estructura de comunitats
i ens permet oferir una descripcio de les escales intermitjes d’una xamxa ¢
plexa.

El concepte de comunitat ha estat ampliament utilitzat en les ciéncies so-
cials, i reflexa el fet que els individus tendeixen a establir més conreainb
grups de gent amb qui comparteixen aficions, amistat o simplement perque vi-
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uen a prop. No obstant, aquesta organitzacié en comunitats no és exclusiv
de les xarxes socials, ja que també es pot observar quan analitzem athb deta
diferents sistemes, com ara xarxes metaboliquédipidd Wide Welo la xarxa
mundial d’aeroports (Ravasz et al., 2002, Guimera et al., 2005). Akgtodis
cientifics han demostrat que els nodes que pertanyen a la mateixa comunitat
acostumen a compartir una série de propietats comuns (Flake et al., 2R02, Ec
mann and Moses, 2002) i també han demostrat com I'existéncia d’una-estru
tura de comunitats ben definida influencia els processos dinamics com ara
la sincronitzacié entre els nodes, la difusio de la informacid, o 'emergencia
d’actituts de cooperacié entre agents (Arenas et al., 2006b, Arealas2806a,
Lozano et al., 2007).

La identificaci6 i caracteritzacié d’aquestes comunitats de nodes no és una
feina trivial. Un dels problemes principals és que la propia definicié de comu-
nitat esta en termes qualitatius, i la determinacié de la mesura quantitavia més
adecuada es troba encara sota debat. Fins ara, la mesura més aqoeptada
la comunitat fisica rep el nom de modularitat (Newman and Girvan, 2004), i
mesura quina és la probabilitat de que les conexions internes del grimp sigu
fruit o no d’'un procés aleatori. L'éxit d'aquesta mesura radica erpojeor-
ciona una forma de determinar si una descripcié mesoscopica es més 0 menys
precisa, és a dir, permet mirar dues particions i afirmar quina és millor mirant
la que proporciona un valor més alt de modularitat.

Un altre problema que presenta la detecci6é de comunitats és la gran quantitat
de configuracions possibles en que es pot organitzar els nodes. cBeraa
dins d’aquestes configuracions quina és la millor, s’ha desenvolupabwn
conjunt de metodes capacos de descobrir I'existencia de les comunitatis a pa
de la informaci6 topologica de les xarxes (com es connecten els nodes entr
ells). En el capitol dos de la tesi es presenta una extensa comparatava de
literatura actual sobre métodes de deteccié de comunitats, intentat oferir a la
comunitat cientifica un punt de referéncia en el camp de la detecci6. Per a
poder comparar aquests métodes s’han recollit tres conjunts d’einemngue
permeten analitzar la precisi6 i la velocitat dels mateixos. En primer lloc,
utilitzant una serie de xarxes generades artificilament (on es contraizll n
de definicié de les comunitats), es pot analitzar quin és el nivell de precisio
gue assoleix un algorisme a l'intentar detectar les comunitats pregendtades.
segon lloc, per a poder decidir la similitud entre dues particions es proposa u
meétode basat en la teoria de la informacié, conegut camtaal information
gue mesura quina és la dependencia muatua existent entre dues coidiggirac
en tercer lloc, es proposa un métode per a comparar la velocitat delsmlgeris
observant el seu ordre de complexitat, és a dir, com escala el tempsuadax
amb el tamany de la xarxa.

A partir dels resultats obtinguts a I'aplicar aquestes eines de comparacié als
algorismes existents, es pot decidir quin és el metode que més s’'ajusta a la
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| Label | Order |
. ZL o)
- LP O(n?)
% o8 NF O(nlog®n)
g NG O(m?n)
?0 ] GN O(n’*m)
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> PK O(exp(n))
0.2 RB par. dep.
, NS O(n?logn)
=g R F DDA O(n 1ogz n)
Vethod PBD O(nlog®n)

Figure C.2. Dreta: Estudi de la precisi6 dels algorismes quan els sometem a xargasmam
estructura de comunitats prefixada. Com més gran es el valay,déz:.» més dificil resulta
trobar les comunitats. Esquerra: Taula on es resumeix com el coputacional d’alguns dels
algorismes descrits en la tesi escala amb el nombre de nodes del sistehmambre de links
m i el grau mig(k). La correspondéncia entre etiquetes i algorismes esta explicaddtal 2ap
de la tesi.

xarxa que vulguem estudiar. El que resulta més sorprenent és qtebenis
compromis entre el temps que tarda I'algorisme i la qualitat dels resultats. Per a
analitzar xarxa petites i mitjanes (fins a alguns milers de nodes) és recdenanab
utilitzar els algorismes que proporcionen una deteccié més precisa. Bp canv
si volem analitzar xarxes més grans, és necessari utilitzar un algorisme més
escalable que no podra garantir que la particié trobada sigui semblant a la mé
optima.

Deteccio de comunitats utilitzant Extremal Optimization

Al tercer capitol, s’introdueix un métode alternatiu per a trobar la particié
amb la millor modularitat, que intenta superar les limitacions existents en els
algorismes descrits anteriorment. Com han demostrat alguns autors, la op-
timizacio de la modularitat és un problerde-hard (Brandes et al., 2007),
degut a que I'espai de particions possibles creix més rapidament gsevpla
poténcia del tamany del sistema, per la cual cosa I'unica opcié disponible pe
a aproparnos a la particié 6ptima és utilitzar una cerca heuristica que permeti
reduir I'espai de les particions possibles a analitzar.

L'algorisme que es proposa en aquest capitol es un métode divisiu tijue op
mitza la modularitat utilitzant una cerca heuristica conegud&ypieemal Op-
timization(EO) (Boettcher and Percus, 2001a, Boettcher and Percus, 2001b)
El funcionament basic de I'EO consisteix en optimitzar una variable global
del sistema (en el nostre cas la modularitat) a partir de millorar la contribucio
local dels pitjors elements del sistema, mitjangant un procés que implica al-
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laus coevolucionaries. Leficiencia de I'heuristica EO s’ha posat défesaa
I'aplicar-se a alguns problemes classics (com ara els spin glasseslenpesb
de coloracio de grafs), millorant els resultats obtinguts per altres heuéstiqu
més consolidades tals coms#nulated annealing els algorismes genétics.

Internament, el nostre algorisme EO esta dissenyat com una versio meés
complexa delGraph Bipartitioning un problema classic de la teoria de grafs
gue consisteix en separar una xarxa en dos grups de nodes intentamit-min
zar el nombre de links entre els dos grups. Al principi els nodes siassig
aleatoriament a un dels dos grups, i després es deixa evolucionateeiasis
movent els nodes que tenen pitjor contribucié a la modularitat total d’'un grup
al'altre. En cada pas es mira si el sistema ha assolit una modularitat més alta o
no. Un cop es detecta que ens trobem en un punt en que no es pot abtenir
configuracio millor, s’eliminen tots els links intermitjos de la xarxa i es torna
a comencgar de nou amb tots els subgrups que hagin quedat. Aquestgsocé
repeteix recursivament fins que no es pot incrementar més la modulariat de
xarxa.

Després de desenvolupar I'algorisme EO, hem dirigit els esfor¢os-en de
senvolupar algunes modificacions que ens permeten millorar alguns aspecte
puntuals del mateix i alhora poder-lo aplicar en un grup de xarxes mes ampli.
En primer lloc, redefinint la formulacié de modularitat i fent uns canvis nenor
en el codi hem creat un dels primers métodes capac de poder analitass xa
dirigides i pesades. En segon lloc, hem aplicat petits canvis a nivelistgjor
per a solucionar alguns problemes relacionats amb la recursivitat, petaeten
sistema assolir valors més alts de modularitat. | en tercer lloc, hem proposat
un metode que permet reduir el tamany de la xarxa preservant la modularitat
de la millor particié. Aquesta reduccié permet que qualsevol algorisme basat
en optimitzar la modularitat pugui analitzar amb més detall I'espai de config-
uracions possibles, i per tant poder obtenir millors configuracions utilizan
menor temps d'analisi.

Els resultats presentats al final del capitol mostren que el nostre algorisme
esdevé una de les millors alternatives per a identificar I'estructura de éomun
tats d'una xarxa complexa. Els valors de la modularitat obtinguts a I'analitzar
les principals xarxes de referéncia se situen entre els més alts publicats en la
literatura sobre comunitats. Per altra banda, tot i no ser un dels algorismes mé
rapids, el temps d’analisi escala c@min?log(n)) amb el tamany de la xarxa,
permetent realitzar la deteccidé de comunitats de forma acurada en xarxes mit-
janes i grans.

Finalment, s’ha aplicat I'algorisme per a estudiar una xarxa real, la xarxa
de projectes FP6 de la comunitat eruopea. L'analisi detallat de les comunitats
trobades demostra que identifiquem clarament grups de companyies i institu-
cions amb un perfil similar com, per exemple, empreses relacionades amb el
sector automobilistic.
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Figure C.3. Exemple del funcionament del nostre algorisme de detecci6 de comsumiian
analitzem la xarxa Zachary, una de les més utilitzades per a comprovacisip de la majoria
de métodes. Grafic superior: Estat dels nodes de la xarxa desgeeméalitzacio aleatoria
en dos grups i després en cadascun dels moments en que I'algoaisailant la xarxa recursi-
vament. Grafic inferior: Evolucio6 del valor de la modularitat en cadasiels passos del procés
evolutiu. Les barres de separaci6 signifiquen que hem arribat a urestteionari i per tant
procedim a subdividir el graf en els talls que observem a la part superio

Estudi de les fluctuacions del trafic en una xarxa complexa

Recentment, els estudis sobre xarxes complexes han comencat a estudiar
les propietats dels processos dinamics que tenen lloc sobre aquests xarx
En el nostre cas ens hem centrat Gnicament en els processos de @midynic
amb l'intencié d’entendre els parametres que governen el fluxe de tsaque
gue es mouen utilitzant la xarxa complexa, esbrinant quina és la relacié en-
tre I'estructura de la xarxa i el comportament d’aquests paquets.

Els principals resultats obtinguts fins ara al voltant de I'estudi del fluxe de
trafic es referéixen a quines son les causes que introdueixen la torges
el sistema. No obstant, I'observacié del comportament del trafic en agune
xarxes reals (com per exemple Internet) mostra que el trafic no estengbve
pels processos de congestid, sind que és un trafic amb un comportanneait no
i que es troba sotmés a grans fluctuacions que el poden portar atiomaesn
moments puntuals. Aixo ha obert la porta a un nou grup d’estudis que han in-
tentat caracteritzar les fluctuacions del trafic en varis sistemes complexos,
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ara la xarxa d’autopistes, la xarxa fluvial o la mateixa Internet (de Mesread
Barabasi, 2004a, de Menezes and Barabasi, 2004b). Tots agetstes es
poden representar a un nivell abstracte com xarxes on una serRekitpvi-
atgen entre els seus nodes. En particular, els autors relacionen qutréfis e

mig (f) en cadascun dels nodes amb la seva variabititatiescobreixen que
existeix una relacio d’escala entre els dos valgh$, ~ 0. A més, proposen
gue I'exponenty és capac de caracteritzar les fluctuacions del sistema, i que
aquest valor pot ser inicameint2 o bel.

El principal problema d’aquests treballs és que els autors no tenen etecomp
la possibilitat que els paquets interactuin entre si, evitant justament I'aparicié
de la congesti6 en el sistema. Per a entendre millor les fluctuacions, en el
capitol quatre de la tesi es proposa un nou model per a estudiar afflestes
tuacions i per a comprovar si existeixen unicament dos possibles valoes p
'exponent d’escala. El model esta basat en un procés dinamic de @amoidn
on cada node té una capacitat limitada per a enviar i rebre paquets. Quan e
node esta ocupat, els paquets s’esperen en una cua fins a podeviser Ber
a simplificar I'estudi s'utilitzen cues del tipus M/M/1 que es troben govermade
per distribucions Poisson (Allen, 1990).

L'analisi dels resultats obtinguts en el nostre model mostra que modificant
alguns dels parametres podem provocar una transicio de I'exporient £
1. En primer lloc, es pot comprovar que si la mida de la finestra de mostreig és
més petit que el temps mitja que transcorre entre que un node rep dos paquets
consecutius, I'exponent sempre serd /2, independentment de les fluctua-
cions reals del trafic. En canvi, si la mida de la finestra és suficientmamt gra
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Figure C.4. Dreta: Exemple de dos sistemes que tenen el mateix trafic mitja pero diferen
variabiliat. Esquerra: Transicio que es produeix en I'exponent dlasca mesura que anem
introduint més variabilitat en el sistema.
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el valor de I'exponent sera funci6 de les fluctuacions reals del sistémna.
segon lloc, s’observa que si mantenim el nombre de paquets que hidla en
sistema en un moment donat, perd es canvia el temps que esta un paquet actiu
i la ratio de creacid de nous paquets, es pot introduir un altre cop ursitran

ci6 entre els dos exponents. Finalment, quan s’afegeix la possibilitat de que
existeixi congestio en el sistema, torna a aparéixer una transicio lef2tie

1. Quan ens apropem al punt critic de la congestié observem una tramsicié
fase cap ax = 1/2. Lexplicacié és que un cop el sistema es troba conges-
tionat, el valor de I'exponent passa a ser Unicament funcio de la varinia
distribuci6 Poisson.

Per tant, utilitzant aquest model es pot afirmar que els dos exponengs-univ
sals predits pel treball de Menezes i Barabasi no es corresponeel gun el
nostre model prediu. Per a corroborar aquesta afirmacié hem reakztatdi
de les fluctuacions d’una xarxa real, la xarxa Abilene que composaiebiel
gue es coneix com a Internet 2. Al caracteritzar les fluctuacions détsdra
els 112 nodes de la xarxa s’observen exponents que varienOeritre0.86,
demostrant que els sistemes reals poden tenir exponents diferdntside

Robustesa dinamica d’'un proces de comunicacio

En el darrer capitol de la tesi hem centrat I'atencié en una altra propietat
molt interessant de les xarxes complexes: la seva robustesa davdtitida fa
d’alguns dels seus components. La robustesa d’un sistema és un eltament ¢
per a mantenir el funcionament dels processos dinamics que hi tenendloc. P
exemple, en el cas d’'Internet, I'estabilitat dels sistema és un factor clau per
a garantir la maxima eficiéncia de la xarxa, és a dir, poder mantenir el temps
mitja que es triga en enviar la informacid i evitar la pérdua de paquets de dades

Els estudis tradicionals han analitzat quins sén els efectes que comporta
eliminar alguns dels components de la xarxa, ja sigui de forma intencionada
o aleatoria, en les propietats estructurals de la xarxa. La majoria d’'aquests
estudis defineixen la robustesa d’'una xarxa com la capacitat de marmianir u
component connexa del mateix ordre que el tamany del sistema. No obstant,
en les xarxes complexes es pot donar el cas que tinguem una xareatigue
connectada pero el funcionament dels processos dinamics hagitGaosizsa
de que s’hagin eliminat alguns components clau. En el cas concretxdioxe
de comunicacié, podria ser que els nodes estiguin connectats, peldrguesa
nodes apareixi congestié en el sistema i, per tant, que el rendimenttdeiais
disminueixi.

En aquest escenari, en el capitol 5 hem introduit el concepte deesaus
dinamica d’'una xarxa complexa, definida com la capacitat de mantenir el sis-
tema funcionant quan alguns dels nodes fallen. Per estudiar la robdstasa
mica d’'un procés de comunicacié hem utilitzat un model de trafic semblant al
presentat en el capitol previ. A partir d'aguest model hem analitzatfefjue
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provoca I'eliminacié aleatoria de nodes de la xarxa en la capacitat maxima del
sistema per a distribuir la informacié, mesurant els canvis que sofreix £l pun
critic de la congesti6. Hem analitzat qué passa quan realitzem I'experiment
en diferents tipus de xarxes (xarxes aleatories i xarxes amb una digird®!

grau scale-free) i utilizant un protocol d’enrutament amb diferentasgde
coneixement de la xarxa, des d’un protocol aleatori (amb coneixeramjta

un protocol basat en camins minims (amb coneixement total).

Els resultats de I'estudi mostren que en les xarxes scale-free I'eliminacié de
nodes sempre augmenta la capacitat maxima del sistema, en les xarxes regu-
lars la capacitat decreix considerablement i finalment en les xarxesraeato
el canvi en la capacitat es troba en funcié del radi de coneixemeprate-
col. També hem realitzat una aproximacio teorica utilitzant la descripcio del
punt critic de la congestié presentada en (Guimera et al., 2002b). Tadisia
experimental com I'aproximacio teorica ens han permés determinar quins son
els principals parametres que controlen aquests canvis en la congeséin: la c
tralitat del node més important (aquell pel qual hi passa la major quantitat de
paquets) i sobretot I'efecte que suposa I'eliminacié de nodes en la déstanc
mitjana que recorre un paguet per la xarxa.

Conclusions

L'ls de les xarxes complexes per a representar les interaccionsidun s
tema complex ha estat una peca clau per a poder treballar amb el gran nombre
de sistemes biologics, tecnologics, economics o socials que continuament es
publiquen. Els avencos en el que coneixem per “ciéncia de les xanags”
estat encaminats des d’un bon principi a contestar dues grans pieggnée
podem aprendre d'un sistema si ens mirem la seva estructura internai quin
és la relaci6 que existeix entre una determinada estructura i el comportament
dinamic del sistema suportat. En aguesta tesi hem treballat en alguns dels pro
lemes principals d’ambdues glestions, intentant proporcionar un comgsike
més profund de les xarxes complexes que permetra a la comunitat cientifica
entendre millor quin és el funcionament d’un sistema complex.

Durant els darrers anys s’ha posat de manifest la importancia de Izidetec
de comunitats com un element clau per a caracteritzar I'organitzacié interna
d'una xarxa. La identificacié d'aquestes escales intermedies ha perlaés a
comunitat cientifica entendre com els elements d’'un sistema s’agrupen per a
formar comunitats funcionals i alhora analitzar la influéncia d’aquestes-comu
nitats en el comportament global.

El problema de la deteccié de comunitats ha atret I'atencio de cientifics
provinents de camps molt diversos, com es demostra en el gran nombre de
treballs per intentar detectar i quantificar aguesta estructura que sibhcap
en els darrers cinc anys. Tot i que els métodes que hem analitzat eyoel se
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capitol fan servir aproximacions completament diferents, la precisi6 ol@ngu
guan detecten una estructura de comunitats ben definida és bastant senilar. P
aguesta rad es pot afirmar que el problema de la deteccié de comunitats és un
exemple paradigmatic d’un problema que es pot enfocar des de molts punts de
vista diferents i, a la vegada, arribar a les mateixes conclusions. S

la dificultat de trobar les comunitats, s’observa I'existéncia d’una limitacio en-
tre el temps d’execucié i la precisio dels algorismes. Aquest és un problema
comu que apareix cada cop que volem treballar amb quantitats de dades molt
grans. En el cas de la deteccié de comunitats, els métodes més precisos nor-
malment no poden treballar amb xarxes mes grans de 10000 nodes. IBgper a
banda es vol analitzar una xarxa més gran, es necessita utilitzar unaatle les
ternatives més rapides perdent, aleshores, la precisié que ens iyaraets
metodes meés acurats.

Al tercer capitol hem presentat un métode de deteccié de comunitats basat
en I'heuristica extremal optimization. Tot i que aquesta heuristica no és tan
popular com d'altres (p. ex. simulated annealing), s’ha demostrat quee dé
molts bons resultats quan I'apliquem a problemes classics d'optimitzacié. Ad-
dicionalment, entés que darrera d’aquesta heuristica hi existex urs eradé-
cionari on els nodes s'autoagrupen entre ells fins que arriben a ureststa
cionari, I'extremal optimization es pot fer servir, alhora, per a entenldre e
processos que existeixen darrere la creacié de les comunitats. Al @refsar
resultats del nostre métode amb els analitzats en el segon capitol, es pot obse
var que el nostre es troba entre els més precisos, amb 'avantatge lijua rea
la cerca en un temps menor. Per aguestes raons, els resultats obtinguts amb
el nostre algorisme han estat un punt de referéncia a I'hora de cangisira
métodes de deteccio publicats a posteriori.

En aquest capitol també hem realitzat una analisi més profunda de la for-
mulacié de la modularitat. Hem redefinit la mesura per a poder tractar xarxes
dirigides i pesades i hem estudiat quina es la contribucié que tenen slgune
subestructures concretes al valor global de la modularitat. A partir e&qu
coneixement, hem proposat algunes millores per als metodes de deteccio. Pe
una banda, hem proposat un seguit de modificacions algorismiquesgue p
meten optimitzar la precisié dels algorismes recursius fins a un 20%. Per altra
banda, hem proposat un méetode que ens permet reduir la mida d’'ura xarx
fins a un 40% sense alterar la modularitat de les configuracions, pernmeten u
analisi molt més rapid i precis.

En els capitols quatre i cinc hem estudiat algunes propietats dinamiques
dels processos de comunicacié basats en xarxes complexes. Crei@s que
necessari obrir i reforgar les linies de recerca dedicades a I'etguds pro-
pietats globals dels processos dinamics. Quan els cientifics volen modelar la
topologia d’'una xarxa complexa particular (per exemple Internet), fairse
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les eines descrites als primers capitols per a mesurar quines son les [gopieta
estructurals que presenta la xarxa (p.ex. distribucio de grau scajafes/ors
reprodueixen aquestes propietats en els models obtenint un model sindple per
acurat de la realitat. En canvi, quan es vol modelar un proces dinamiaieo po
seguir aguestes mateixes passes, ja que manca un conjunt d’einedesdailv
gue disposem per a la topologia.

En aquest context, al quart capitol hem estudiat les fluctuacions fiel tra
en una xarxa complexa per a proporcionar una caracteritzacié glebséd
flux. Al'article de Menezes i Barabasi, els autors proposen l'existé@lectues
classes universals que permeten caracteritzar la relacié entre mitja iai@svia
tipica amb uns exponents = 1/2 anda = 1. Tot i que creiem que aquests
dos valors sén importants, ja que sembla que actuen com a limits dels valors
observats en sistemes reals, pensem que aquestes valors no sodamidisi
d’'un model de trafic molt simple basat en un sistema de cues Poisson revela
tres mecanismes que provoquen una transicio entre els dos exponemas. Pe
corroborar I'existéncia d’exponents intermedis en sistemes reals hediag¢stu
les fluctuacions que hi ha en el trafic d’'Internet de la xarxa Abilenestudi
mostra que el trafic d’aquesta xarxa es pot caracteritzar a partir gpament
d’escalax ~ 0.75. Aquests resultats estan en concordancia amb altres estudis
de les fluctuacions dels sistemes complexos presentats en el review d’Eisler
et al,, on els autors troben una gran varietat d’exponents en diferents sisteme
complexos.

La capacitat de mantenir la comunicacié entre dos nodes de la xarxa quan
alguns d’ells fallen és una altra de les caracteristiques rellevants de xes xar
complexes. A diferéncia de la majoria d’estudis realitzats, creiem que és més
important estudiar la incidéncia de les fallides dels nodes en els processos
dinamics suportats per la xarxa que centrar-se en |'efecte sobre erola-top
gia. Al capitol cinque hem definit la robustesa dinamica d’un procés de co
municacio com la capacitat del trafic per a evitar la congestié quan eliminem
una fraccié dels nodes de la xarxa. Fent servir un model de trafic senabla
I'utilitzat en el capitol quatre, hem proporcionat un nou punt de vistaode ¢
es comporta el punt critic de la congestio quan eliminem nodes aleatdriament,
analitzant diferents topologies i protocols d’enrutament. Finalment, a partir
d’'un estudi teoric del problema hem analitzat quines sén les causesedals
canvis en la capacitat maxima.



Publication list

Community Structure in complex networks

= Duch, J., and Arenas, A. (2005), Community Detection in complex net-
works using extremal optimizatiolRhys. Rev. E72, 027104. Also in
Virtual Journal of Biological Physics Research, September 2005.

= Danon, L., Duch, J., Diaz-Guilera, A., and Arenas, A. (2005), Coingar
community structure identificatiodSTAT PO9008.

= Danon, L., Duch, J., Diaz-Guilera, A., and Arenas, A., Community struc-
ture identification in “Large Scale Structure and Dynamics of Complex
Networks: From Information Technology to Finance and Natural Scfence
World Scientific, June 2007

= Lozano, S., Duch, J., and Arenas, A., (2006) Community detection in
a large social dataset of European projedterkshop on Link Analysis,
Counterterrorism and Security (SIAM on Data mining 2Q0&ashington
USA, 2006.

= Lozano, S., Duch, J., and Arenas, A., (2007) Analysis of large sdatakets
by community detectioruropean Physical Journal $Vol. 143, 257-259

= Arenas, A., Duch, J., Fernandez, A., and Gomez, S., (2007) Sizeti@au
of complex networks preserving modularityew Journal of Physi¢d/ol.
9, 176.

145



146 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

Traffic in complex networks

= Duch, J., and Arenas, A. (2006), Scaling of Fluctuations in Traffic omC
plex NetworksPhys. Rev. Let96, 218702.

= Duch, J., and Arenas, A. (2007), A model to study the scaling of traffic fl
tuations on complex networkg&uropean Physical Journal $SVol. 143,
253-255

= Duch, J., and Arenas, A. (2007), Effect of random failures orfitraf
complex networksProceedings of SPIB/lume 6601, 660100.

= Duch, J., Diaz-Guilera, A., and Arenas, A. (2007), Congestion indraffi
complex networks under random failures, in preparation.



References

[Aho et al., 1983] Aho, D. V., Uliman, J. D., and Hopcroft, J. E. §B3. Data Structures and
Algorithms Addison-Wesley.

[Albert et al., 2000] Albert, R., Jeong, H., and Barabasi, A. LO@0 Error and attack toler-
ance of complex networkdature 406:376.

[Allen, 1990] Allen, O. (1990). Probability, Statistics and Queueing Theory with Computer
Science ApplicatianAcademic Press.

[Alvarez-Hamelin et al., 2007] Alvarez-Hamelin, J. I., Dall’'Asta, Barrat, A., and Vespig-
nani, A. (2007). k-core decomposition: a tool for the analysis of lamgde internet graphs.
arXiv.org:cs/0511007

[Amaral and Ottino, 2004] Amaral, L. A. N. and Ottino, J. (2004). Céemmetworks: Aug-
menting the framework for the study of complex systefst. Phys. J. B38:147-162.

[Andersen et al., 2002] Andersen, D. G., Feamster, N., Bauean8 Balakrishnan, H. (2002).
Topology inference from bgp routing dynamics.2nd Internet Measurement Workshop

[Arenas et al., 2004] Arenas, A., Danon, L., Diaz-Guilera, A.,i§&e P. M., and Guimera, R.
(2004). Community analysis in social networlgur. Phys. J. B38:373-380.

[Arenas and Diaz-Guilera, 2007] Arenas, A. and Diaz-Guilera, 8072. Synchronization
and modularity in complex network&ur. Phys. J. B143:19-25.

[Arenas et al., 2001] Arenas, A., Diaz-Guilera, A., and Guimera2B01). Communication
in networks with hierarchical branchin@hys. Rev. Lett86(14):3196-3199.

[Arenas et al., 2006a] Arenas, A., Diaz-Guilera, A., and Péreeite, C. (2006a). Synchro-
nization processes in complex networkhysica ) 224:27-34.

[Arenas et al., 2006b] Arenas, A., Diaz-Guilera, A., and Périeeite, C. J. (2006b). Syn-
chronization reveals topological scales in complex netwdpkg/s. Rev. Lett96:114102.

[Arenas et al., 2007] Arenas, A., Fernandez, A., and Gomeg2087). Multiple resolution of
the modular structure of complex networkghysics/0703218v1

147



148 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

[Bagrow and Bollt, 2005] Bagrow, J. P. and Bollt, E. M. (2005). Loc®dthod for detecting
communities.Phys. Rev. E72:046108.

[Bak, 1996] Bak, P. (1996)How Nature WorksCopernicus.

[Bak and Sneppen, 1993] Bak, P. and Sneppen, K. (1993). Ratedtequilibrium and criti-
cality in a simple model of evolutiorPhys. Rev. Lett71:4083-4086.

[Bak et al., 1987] Bak, P., Tang, C., and Wiesenfeld, K. (198 8lf-&ganized criticality: an
explanation of 1 / f noisePhys. Rev. Lett59:381-384.

[Banavar et al., 1987] Banavar, J. R., Sherrington, D., andI&uX. (1987). Graph biparti-
tioning and statistical mechanic3. Phys. A: Math. Gen20:L1-L8.

[Barabési and Albert, 1999] Barabasi, A. L. and Albert, R. (1998nergenge of scaling in
random networsScience286:509-512.

[Barabési and Albert, 2002] Barabasi, A. L. and Albert, R. (2008jatistical mechanics of
complex networksRev. Mod. Phys74:47-97.

[Barrat et al., 2004a] Barrat, A., Barthélemy, M., Pastor-SasorRR., and Vespignani, A.
(2004a). The architecture of complex weighted netwoRsc. Natl. Acad. S¢il01:3747—
3752.

[Barrat et al., 2004b] Barrat, A., Barthélemy, M., and Vespignani(2004b). Modeling the
evolution of weighted network$2hys. Rev. E70:066149.

[Barthelemy, 2004] Barthelemy, M. (2004). Betweenness centralitygieleomplex networks.
Eur. Phys. J. B38:163.

[Barthelemy and Flammini, 2006] Barthelemy, M. and Flammini, A. (200Bptimal traffic
networks.J. Stat. Mech.: Theor. Exp07:L07002.

[Bender and Canfield, 1978] Bender, E. A. and Canfield, E. R.§L97he asymptotic number
of labeled graphs with given degree sequende€omb. Theory A24:296—-307.

[Blatt et al., 1996] Blatt, M., Wiseman, S., and Domany, E. (1996)peBparamagnetic clus-
tering of data.Phys. Rev. Lett76:3251-3254.

[Boccaletti et al., 2006] Boccaletti, S., Latora, V., Moreno, Y., GigW., and Hwang, D.-U.
(2006). Complex networks: Structure and dynamRBysics Reportgt24:175-308.

[Boettcher and Percus, 2000] Boettcher, S. and Percus, A. Q) 2R@ature’s way of optimiz-
ing. Artificial Intelligence 119(1-2):275-286.

[Boettcher and Percus, 2001a] Boettcher, S. and Percus, A. GLER0Extremal optimization
for graph partitioningPhys. Rev. E64:026114.

[Boettcher and Percus, 2001b] Boettcher, S. and Percus, A. G120 Optimization with
extremal dynamicsPhys. Rev. Lett86(23):5211-5214.

[Boettcher and Percus, 2002] Boettcher, S. and Percus, A. G2)2@&xtremal optimization:
an evolutionary local-search agorithes/0209030v1



REFERENCES 149

[Bogufia et al., 2004] Boguiia, M., Pastor-Satorras, R., Diaz-ila., and Arenas, A.
(2004). Models of social networks based on social distance attachnftrys. Rev. E
70:056122.

[Bollobas, 1983] Bollobas, B. (1983). The evolution of sparse gsaph Graph Theory and
Combinatorics, conference in honor of Paul Erdos

[Bollobas, 1998] Bollobas, B. (1998Modern Graph TheorySpringer, New York.

[Boss et al., 2004] Boss, M., Elsinger, H., Summer, M., and Téuyrd. (2004). The network
topology of the interbank markeEinancial Stability Report7.

[Brandes et al., 2007] Brandes, U., Delling, D., Gaertler, M., ®@pR, Hoefer, M., Nikoloski,
Z.,and Wagner, D. (2007). On finding graph clusterings with maximwdutarity. InProc.
33rd Intl. Workshop Graph-Theoretic Concepts in Computer Scijerateme 4769, pages
121-132.

[Bron and Kerbosch, 1973] Bron, C. and Kerbosch, J. (1978)diRg all cliques in an undi-
rected graphCommunications of the ACNdages 575-577.

[Bu and Towsley, 2002] Bu, T. and Towsley, D. (2002). On distinguigtbetween internet
power law topology generators. Rroceedings of INFOCOM 2002

[Callaway et al., 2000] Callaway, D. S., Newman, M. E. J., Strogat#.Sand Watts, D. J.
(2000). Network robustness and fragility: percolation in random grapihys. Rev. Lett.
85:5468-5471.

[Capocci et al., 2004] Capocci, A., Domenico, V., Servedio, Rld@relli, G., and Colaiori,
F. (2004). Communities detection in large networks. Algorithms and Models for the
Web-Graph: Third International Workshop, WAW 2004, Rome, Itatioker 16, 2004, Pro-
ceeedingsvolume 3243 of ecture Notes in Computer Scienpages 181-188.

[Carmi et al., 2007] Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt,ahd Shir, E. (2007). A
model of internet topology using k-shell decompositi@noc. Natl. Acad. S¢il04:11150-
11154,

[Chang et al., 2001] Chang, H., Jamin, S., and Willinger, W. (200&rring as-level internet
topology from router-level path traceBroc. SPIE 4526:196—-207.

[Chang et al., 2006] Chang, H., Roughan, M., Uhlig, S., Alderdon,and Willinger, W.
(2006). The many facets of internet topology and traffidetworks and Heterogeneus
Media, 1:596-600.

[Clauset and Moore, 2005] Clauset, A. and Moore, C. (2005). fecguand scaling phenom-
ena in internet mapping?hys. Rev. Lett94:018701.

[Clauset et al., 2004] Clauset, A., Newman, M. E. J., and Moorg¢2@4). Finding commu-
nity structure in very large network®hys. Rev. E70:066111.

[Cohen et al., 2002] Cohen, R., ben Avraham, D., and Havlin, @2 Percolation critical
exponents in scale-free networkhys. Rev. F66:036113.

[Cohen et al., 2000] Cohen, R., Erez, K., ben Avraham, D., aadihl, S. (2000). Resilience
of the internet to random breakdowrihys. Rev. Lett85:4626—-4629.



150 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

[Cohen et al., 2001] Cohen, R., Erez, K., ben Avraham, D., aamihl, S. (2001). Breakdown
of the internet under intentional attadRhys. Rev. Lett86:3682—3685.

[Cohen and Havlin, 2003] Cohen, R. and Havlin, S. (2003). Scalefetworks are ultrasmall.
Phys. Rev. Lett90:058701.

[Cohen and Raz, 2006] Cohen, R. and Raz, D. (2006). The intganematter - on the missing
links in the as connectivity map. INFOCOM 2006. 25th IEEE International Conference
on Computer Communications

[Cormen et al., 1990] Cormen, T., Leiserson, C., Rivest, R. S&rih, C. (1990)Introduction
to Algorithms, Second EditioMIT Press and McGraw-Hill.

[Crucitti et al., 2003] Crucitti, P., Latora, V., Marchiori, M., and Rapida, A. (2003). Effi-
ciency of scale-free networks: error and attack tolerafts/sica A 320:622—642.

[Crucitti et al., 2004] Crucitti, P., V.Latora, and Marchiori, M. (2004Model for cascading
failures in complex networks$?hys. Rev. F69:045104.

[da Fontoura Costa et al., 2007] da Fontoura Costa, L., Rodrigues,, Hravieso, G., and
Boas, P. R. V. (2007). Characterization of complex networks: Aesunf measurements.
Advances in Physic&6:167-242.

[Dall’Asta et al., 2005] Dall’Asta, L., Alvarez-Hamelin, I., Barrat, AVazquez, A., and
Vespignani, A. (2005). Statistical theory of internet exploratiBhys. Rev. E71:036135.

[Danon et al., 2006] Danon, L., Diaz-Guilera, A., and Arenas,2006). The effect of size
heterogeneity on community identification in complex networlkdks.Stat. Mech.: Theor.
Exp, page P11010.

[de Menezes and Barabasi, 2004a] de Menezes, M. A. A. and &sirdb L. (2004a). Fluctu-
ations in network dynamic$?hys. Rev. Let92:028701.

[de Menezes and Barabasi, 2004b] de Menezes, M. A. A. and Bsirak. L. (2004b). Sepa-
rating internal and external dynamics of complex systeig/s. Rev. Lett93:068701.

[Dimitropoulos et al., 2007] Dimitropoulos, X., Krioukov, D., Fomenkd., Huffaker, B.,
Hyun, Y., k. claffy, and Riley, G. (2007). As relationships: Infererand validation ACM
SIGCOMM Computer Communication Review (CC3}29-40.

[Doar, 1996] Doar, M. B. (1996). A better model for generating testvorks. InProceedings
of the IEEE Global Telecommunications Conference

[Dodds et al., 2003] Dodds, P. S., Muhamad, R., and Watts, D.3j20@n experiment study
of search in global social networkScience301:827-829.

[Donetti and Mufioz, 2004] Donetti, L. and Mufioz, M. A. (2004). D¢iteg network commu-
nities: a new systematic and efficient algorithinStat. Mech.: Theor. Exppage P10012.

[Donetti and Mufioz, 2005] Donetti, L. and Mufioz, M. A. (2005). lroyped spectral algorithm
for the detection of network communities. KIP Conference Proceedinggolume 779,
pages 104-107.

[Donnet et al., 2005] Donnet, B., Friedman, T., and Crovella, MI08&). Improved algorithms
for network topology discovenyjecture Notes in Computer Scien8431:149-162.



REFERENCES 151

[Dorogovtsev and Mendes, 2002] Dorogovtsev, S. and Mendés,R.(2002). Evolution of
networks.Adv. Phys.51:1079-1187.

[Doyle et al., 2005] Doyle, J. C., Alderson, D. L., Li, L., Low, S.o&ghan, M., Shalunov, S.,
Tanaka, R., and Willinger, W. (2005). The "robust yet fragile" natoirthe internetProc.
Natl. Acad. SGi102:14497-14502.

[Echenique et al., 2004] Echenique, P., Gomez-GardefiesdMameno, Y. (2004). Improved
routing strategies for internet traffic delivefyhys. Rev. E70:056105.

[Eckmann and Moses, 2002] Eckmann, J.-P. and Moses, E. Y2@22vature of co-links un-
covers hidden thematic layers in the world wide wélvoc. Natl. Acad. Sci.99(9):5825—
5829.

[Eisler et al., 2007] Eisler, Z., Bartos, ., and Kertesz, J. (20Bl)ctuation scaling in complex
systems: Taylor’s law and beyondrXiv:0708.2053

[Eisler et al., 2005] Eisler, Z., Kertesz, J., Yook, S.-H., and Basi A.-L. (2005). Multi-
scaling and non-universality in fluctuations of driven complex systefsrophys. Lett.
69:664—670.

[Eldredge and Gould, 1972] Eldredge, N. and Gould, S. J. (197@hctBated equilibria: an
alternative to phyletic gradualism. In Schopf, T., editdiodels in Paleobiologypages
82-11. San Francisco: Freeman Cooper.

[Erd6s and Rényi, 1959] Erdos, P. and Rényi, A. (1959). On randmaphs. Publicationes
Mathemticae (Debrecen$:290-297.

[Faloutsos et al., 1999] Faloutsos, M., Faloutsos, P., and Falo@s¢$999). On power-law
relationships of the internet topolog@omputer Communications Revie2®:251-262.

[Farkas et al., 2007] Farkas, I., Abel, D., Palla, G., and Vicsek2007). Weighted network
modules.New Journal of Physi¢®9:180.

[Fiedler, 1973] Fiedler, M. (1973). Algebraic connectivity of grapt@zechoslovak Mathe-
matical Journa) 23(3):298-305.

[Flake et al., 2002] Flake, G. W., Lawrence, S., Giles, C. L., andt@ze, F. M. (2002). Self-
organization and identification of communitidEEE Computer

[Fortunato and Barthélemy, 2007] Fortunato, S. and Barthélemy, 0072 Resolution limit
in community detectionProc. Natl. Acad. Sci104:36-41.

[Fortunato et al., 2004] Fortunato, S., Latora, V., and Marchiori,(2004). Method to find
community structures based on information centraftirys. Rev. E70:056104.

[Fred and Jain, 2003] Fred, A. L. N. and Jain, A. K. (2003). Roblasa clustering. IfProc.
IEEE Computer Society Conference on Computer Vision and Pattern Réoog CVPR,
USA pages 11-128-133.

[Freeman, 1977] Freeman, L. C. (1977). A set of measureswfality based on betweenness.
Sociometry40:35-41.

[Fukuda et al., 1999] Fukuda, K., Takayasu, H., and Takaysbku,1999). Observation of
phase transition phenomen in internet trafficlvances in Perfomance Analys2s21-44.



152 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

[Fukuda et al., 2000] Fukuda, K., Takayasu, H., and Takayslsif2000). Origin of critical
behavior in ethernet traffid®hysica A297:289-301.

[Gallos et al., 2005] Gallos, L., Cohen, R., Argyrakis, P., Bundg,akd Havlin, S. (2005).
Stability and topology of scale-free networks under attack and defénasegies Phys. Rev.
Lett, 94:188701.

[Gao, 2000] Gao, L. (2000). On inferring autonomous system relsttips in the internet. In
Proc. IEEE Global Internet Symposium,2002

[Girvan and Newman, 2002] Girvan, M. and Newman, M. E. J. (20@)mmunity structure
in social and biological network$roc. Natl. Acad. Sci99(12):7821-7826.

[Gleiser and Danon, 2003] Gleiser, P. and Danon, L. (2003). Camtynstructure in jazz.
Advances in Complex Syster6@t):565-573.

[Glover, 1986] Glover, F. (1986). Future paths for integer prognamg and links to artificial
intelligence.Computers and Operations ReseartB:533 — 549.

[Goh et al., 2001] Goh, K., Kahng, B., and Kim, D. (2001). Ungedrbehavior of load distri-
bution in scale-free network®hys Rev Lett87:278701.

[Goh et al., 2005] Goh, K., Noh, J., Kahng, B., and Kim, D. (2003)oad distribution in
weighted complex network$®hys. Rev. E72:017102.

[Goldberg, 1989] Goldberg, D. E. (1989enetic Algorithms in Search, Optimization, and
Machine Learning Addison-Wesley Professional.

[Golub and van Loan, 1996] Golub, G. H. and van Loan, C. F. (198&trix Computation
Johns Hopkins University Press.

[Gordon et al., 2007] Gordon, L. A., Loeb, M. P., Lucyshyn, hd Richardson, R. (2007).
Csif/fbi computer crime and security survey. Technical report, Caem@&ecurity Institute.

[Govindan and Radoslavov, 2002] Govindan, R. and Radoslav{®082). An analysis of the
internal structure of large autonomous systems. Technical repatinital Report 02-777,
Computer Science Department, University of Southern California.

[Guardiola et al., 2002] Guardiola, X., Guimera, R., Arenas, A.zBRaiilera, A., and Amaral,
L. A. N. (2002). Micro- and macro-structure of trust networkend-mat/0206240

[Guimera and Amaral, 2005a] Guimera, R. and Amaral, L. A. N. (2005Cartography of
complex networks: modules and universal rolésStat. Mech.: Theor. ExpP02001.

[Guimera and Amaral, 2005b] Guimera, R. and Amaral, L. A. N. (2)0%unctional cartog-
raphy of complex metabolic networkblature 433:895-900.

[Guimera et al., 2002a] Guimera, R., Arenas, A., Diaz-GuileraaAd, Giralt, F. (2002a). Dy-
namical properties of model communication networRbys. Rev. F56:026704.

[Guimera et al., 2003] Guimera, R., Danon, L., Diaz-Guilera, A.algiF., and Arenas, A.
(2003). Self-similar community structure in a network of human interastiBhys. Rev. E
68:065103(R).



REFERENCES 153

[Guimera et al., 2002b] Guimera, R., Diaz-Guilera, A., Vega-Rddoift., Cabrales, A., and
Arenas, A. (2002b). Optimal network topologies for local search wathgestion. Phys.
Rev. Lett.89(24):248701.

[Guimera et al., 2005] Guimera, R., Mossa, S., Turtschi, A., ancarai L. A. N. (2005).
The worldwide air transportation network: Anomalous centrality, commustitycture, and
cities’ global roles.Proc. Natl. Acad. Sci102:7794—7799.

[Guimera et al., 2004] Guimera, R., Sales-Pardo, M., and Amard|, N. (2004). Modularity
from fluctuations in random graphs and complex netwoRsys. Rev. E70(025101).

[Hawkinson and Bates, 1996] Hawkinson, J. and Bates, T. (1996)1980: Guidelines for
creation, selection, and registration of an autonomous system (ashidakreport, IETF.

[Holland, 1975] Holland, J. H. (1975)Adaptation in Natural and Atrtificial Systemniver-
sity of Michigan Press, Ann Arbor.

[Holme et al., 2002a] Holme, P., Huss, M., and Jeong, H. (2002apnetwork hierarchies of
biochemical pathwayBioinformatics 19(4):532J538.

[Holme et al., 2002b] Holme, P., Kim, B., Yoon, C., and Han, S. @§)0 Attack vulnerability
of complex networksPhys. Rev. E65:056109.

[Holme and Kim, 2002] Holme, P. and Kim, B. J. (2002). Vertex ovetllbeeakdown in evolv-
ing networks.Phys. Rev. F65:066109.

[Hopcroft et al., 2004] Hopcroft, J., Khan, O., Kulis, B., and SaimB. (2004). Tracking
evolving communities in large linked networkBroc. Natl. Acad. Sci.101:5249-5253.

[Huberman and Lukose, 1997] Huberman, B. A. and Lukose, R1807). Social dilemmas
and internet congestiorscience25:535.

[Huffaker et al., 2000] Huffaker, B., Fomenkov, M., Moore,, DNemeth, E., and Claffy, K.
(2000). Measurements of the internet topology in the asia-pacific reginiNET’00,
Yokohama, Japan, The Internet Society

[Huffaker et al., 1998] Huffaker, B., Plummer, D., Moore, Dndsk. claffy (1998). Topology
discovery by active probing. Technical report, Cooperative Aission for Internet Data
Analysis - CAIDA.

[ljiri and Simon, 1977] ljiri, Y. and Simon, H. A. (1977)Skew distributions and the sizes of
business firmsNorth-Holland.

[Jackson, 1957] Jackson, J. (1957). Networks of waiting ligzer. Res.5:518-251.

[Jain and Dubes, 1988] Jain, A. K. and Dubes, R. C. (1988yorithms for clustering data
Prentice Hall.

[Jeong et al., 2000] Jeong, H., Tombor, B., Albert, R., Oltvai, Zaxd Barabasi, A. L. (2000).
The large-scale organization of metabolic netwofkature 407:651-654.

[Karagiannis et al., 2004] Karagiannis, T., Molle, M., Faloutsos,avid Broido, A. (2004). A
nonstationary poisson view of internet traffic. IEEE Conference on Computer Communi-
cations (INFOCOM)



154 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

[Kernighan and Lin, 1970] Kernighan, B. W. and Lin, S. (1970). Aficeent heuristic proce-
dure for partitioning graphsthe Bell System Tech 49:291-307.

[Kirkpatrick et al., 1983] Kirkpatrick, S., Gilatt, C., and Vecchi, M. @%. Optimization by
simulated annealingScience220.

[Knuth, 1993] Knuth, D. E. (1993)The Stanford GraphBase: A Platform for Combinatorial
Computing Addison-Wesley, Reading, MA.

[Kumpula et al., 2007] Kumpula, J. M., Saramaki, J., Kaski, K., Kedtész, J. (2007). Lim-
ited resolution in complex network community detection with potts model appramnd-
mat/0610370v2

[Kuncheva and Hadjitodorov, 2004] Kuncheva, L. |. and Hadjitostp®. T. (2004). Using
diversity in cluster ensembles. 8ystems, Man and Cybernetics, 2004 IEEE International
Conferencevolume 2, pages 1214-1219.

[Lakhina et al., 2002] Lakhina, A., Byers, J., Crovella, M., and,Xg2002). Sampling biases
in ip topology measurements. Technical report, Boston University @oenf®cience, Tech.
Rep. BUCS-TR-2002-021.

[Latapy and Pons, 2004] Latapy, M. and Pons, P. (2004). Compugatngnunities in large
networks using random walksond-mat/0412568

[Latora and Marchiori, 2001] Latora, V. and Marchiori, M. (2001jfiéent behavior of small-
world networks.Phys. Rev. Lett87:198701.

[Latora and Marchiori, 2004] Latora, V. and Marchiori, M. (2004). mfeasure of centrality
based on the network efficienoyond-mat/0402050

[Lawler et al., 1985] Lawler, E. L., Lenstra, J. K., Khan, A. H. G, Rhd Shmoys, D. B.
(1985). The Traveling Salesman Problem: A Guided Tour of Combinatorial Opttiniza
Wiley.

[Leland et al., 1995] Leland, W., Taqqu, M., Willinger, W., and Wils@n, (1995). On the
selfsimilar nature of ethernet traffitEEE/ACM Transactions on Networking(1):1-15.

[Lighthill and Whitham, 1955] Lighthill, M. J. and Whitham, G. B. (1955). @imematic
waves. ii. a theory of traffic flow on long crowded road&oceedings of the Royal Society
A, 229:317.

[Lopez et al., 2007] Lopez, E., Parshani, R., Cohen, R., Carmarfal Havlin, S. (2007). Lim-
ited path percolation in complex networksnd-mat/070269

[Lozano et al., 2007] Lozano, S., Arenas, A., and Sanchez2@07). Mesoscopic structure
conditions the emergence of cooperation on social netwgtikgsics/0612124v2

[Lozano et al., 2006] Lozano, S., Duch, J., and Arenas, A.§20Community detection in a
large social dataset of european projectsSikkth SIAM - International Conference on Data
Mining.

[Lusseau et al., 2003] Lusseau, D., Schneider, K., Boisseail,, Glaase, P., Slooten, E., and
Dawson, S. M. (2003). The bottlenose dolphin community of doubtfuhddfeatures a



REFERENCES 155

large proportion of long-lasting associations. can geographic isolatiglaiaxthis unique
trait? Behavioral Ecology and Sociobiology4:396—40.

[Maerivoet and de Moor, 2005] Maerivoet, S. and de Moor, BO&O0 Cellular automata mod-
els of road traffic.Physics Report419:1-64.

[Mahadevan et al., 2006] Mahadevan, P., Krioukov, D., Fomenkh, Huffaker, B., Dim-
itropoulos, X., kc claffy, and Vahdat, A. (2006). The internet agleéopology: Three data
sources and one definitive metridCM SIGCOMM Computer Communications Reyiew
36:17-26.

[Massen and Doye, 2005] Massen, C. P. and Doye, J. P. K. (2068jhtifying communities
within energy landscape®hys. Rev. E71:046101.

[Mezard et al., 1987] Mezard, M., Parisi, G., and Virasoro, M8@P Spin Glass Theory and
Beyond World Scientific Publishing Company.

[Milgram, 1963] Milgram, S. (1963). Behavioral study of obediendeurnal of Abnormal
and Social Psycholog7:371-378.

[Molloy and Reed, 1995] Molloy, M. and Reed, B. (1995). A critical gdior random graphs
with a given degree sequendgombinatorics, Probability and Computing:161-179.

[Molloy and Reed, 1998] Molloy, M. and Reed, B. (1998). The size efglant component of
a random graph with a given degree seque@manbinatorics, Probability and Computing
7:295-305.

[Moreno et al., 2003] Moreno, Y., Pastor-Satorras, R., Vazgeand Vespignani, A. (2003).
Critical load and congestion instabilities in scale-free netwokgophys. Letf.62:292.

[Motter, 2004] Motter, A. (2004). Cascade control and defense mptex networks.Phys.
Rev. Lett.93:098701.

[Newman, 2003a] Newman, M. (2003a). A measure of betweeroedsality based on ran-
dom walks.Social Networks27:39-54.

[Newman, 2000] Newman, M. E. J. (2000). Models of the small watl&tat. Phy$101:819—
841.

[Newman, 2001a] Newman, M. E. J. (2001a). Scientific collaboratetmaorks. i. network
construction and fundamental resul®hys. Rev. F64(016131).

[Newman, 2001b] Newman, M. E. J. (2001b). Scientific collaboratietworks. ii. shortest
paths, weighted networks, and centrali®ys. Rev. F64(016132).

[Newman, 2002] Newman, M. E. J. (2002). Assortative mixing in neksoPhys. Rev. Lett.
89:208701.

[Newman, 2003b] Newman, M. E. J. (2003b). The structure anctiomof complex networks.
SIAM Review45(2):167-256.

[Newman, 2004a] Newman, M. E. J. (2004a). Analysis of weightad:oiks. Phys. Rev. E
70:056131.



156 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

[Newman, 2004b] Newman, M. E. J. (2004b). Fast algorithm foralztg community struc-
ture in networksPhys. Rev. E69:066133.

[Newman, 2006a] Newman, M. E. J. (2006a). Finding community &iredn networks using
the eigenvectors of matriceBhys. Rev. E74:036104.

[Newman, 2006b] Newman, M. E. J. (2006b). Modularity and comityustructure in net-
works. Proc. Natl. Acad. Scj103:8577-8582.

[Newman and Girvan, 2004] Newman, M. E. J. and Girvan, M. (20B#)ding and evaluating
community structure in network®hys. Rev. F569:026113.

[Newman and Leicht, 2007] Newman, M. E. J. and Leicht, E. A. (200fixture models and
exploratory analysis in network®roc. Natl. Acad. Sci.104:9564—9569.

[Noh and Rieger, 2004] Noh, J. and Rieger, H. (2004). Randomsaatkcomplex networks.
Phys. Rev. Lett92:118701.

[Norton, 2004] Norton, W. B. (2004). The evolution of the u.s. inténeering ecosystem.
Technical report, Equinix White Papers.

[Palla et al., 2005] Palla, G., Derenyi, |., Farkas, I., and Vicsei005). Uncovering the over-
lapping community structure of complex networks in nature and sodisjure 435:814—
818.

[Palla et al., 2007] Palla, G., Farkas, I. J., Pollner, P., Derényanid Vicsek, T. (2007). Di-
rected network module®New Journal of Physic®:186.

[Papadimitriou and Steiglitz, 1997] Papadimitriou, C. H. and Steiglitz, K. 71.9Gombinato-
rial Optimization: Algorithms and Complexitfpover Publications.

[Park etal., 1996] Park, K., Kim, G. T., and Crovella, M. E. (1996)n the relationship be-
tween file sizes, transport protocols, and self-similar network traffi@rbceedings of the
Fourth International Conference on Network Protocols (ICNP;9ges 171-180.

[Park and Willinger, 2000] Park, K. and Willinger, W. (200@gelf-Similar Network Traffic and
Performance Evaluatianwiley-Interscience.

[Pastor-Satorras et al., 2001] Pastor-Satorras, R., VazqueamdVespignani, A. (2001). Dy-
namical and correlation properties of the interriéhlys. Rev. Lett87:258701.

[Percacci and Vespignani, 2003] Percacci, R. and VespignanR083). Scale-free behavior
of the internet global performancEur. Phys. J. B32:411-414.

[Pujol et al., 2006] Pujol, J. M., Béjar, J., and Delgado, J. (2006)ustering algorithm for
determining community structure in large networkRhys. Rev. E74:016107.

[Radicchi et al., 2004] Radicchi, F., Castellano, C., Cecconi, Fetog V., and Parisi, D.
(2004). Defining and identifying communities in networksProc. Natl. Acad. Sgj.
101(9):2658-2663.

[Ravasz et al., 2002] Ravasz, E., Somera, A. L., Mongru, DOlvai, Z. N., and Barabasi,
A.-L. (2002). Hierarchical organization of modularity in metabolic natgo Science
297:1551-1555.



REFERENCES 157

[Reichardt and Bornholdt, 2004] Reichardt, J. and Bornholdt, SO4R0 Detecting fuzzy
community structures in complex networks with a g-state potts moéélys. Rev. Lett
93:218701.

[Reichardt and Bornholdt, 2006] Reichardt, J. and Bornholdt, D§R0When are networks
truly modular?cond-mat/0606220 v1

[Rosvall and Bergstrom, 2007] Rosvall, M. and Bergstrom, C. TO{20 An information-
theoretic framework for resolving community structure in complex neta/oProc. Natl.
Acad. Sci.104:7327-7331.

[Sales-Pardo et al., 2007] Sales-Pardo, M., Guimera, R., Mo#eira., and Amaral, L. A. N.
(2007). Extracting the hierarchical organization of complex systétec. Natl. Acad. S¢i
104:15224-15229.

[Scott, 2000] Scott, J. (200050cial Network Analysis, a handboodAGE publications.

[Seidman, 1983] Seidman, S. B. (1983). Network structure and mimiahegree Social Net-
works 5:269-287.

[Serrano et al., 2005] Serrano, M., Bogufia, M., and Diaz-Guyikeré2005). Competition and
adaptation in an internet evolution modEhys. Rev. Lett94:038701.

[Serrano et al., 2006] Serrano, M., Bogufia, M., and Diaz-Gyilkrg2006). Modeling the
internet.Eur. Phys. J. B50:249-254.

[Shannon and Weaver, 1963] Shannon, C. and Weaver, W. (198@) Mathematical Theory
of CommunicationUniversity of lllinois Press.

[Sherrington and Kirkpatrick, 1975] Sherrington, D. and Kirkpatri&k, (1975). Solvable
model of a spin-glashys. Rev. Lett35(26):1792-1796.

[Singh and Gupte, 2005] Singh, B. and Gupte, N. (2005). Congestidrdacongestion in a
communication networkPhys. Rev. E71:055103(R).

[Sole and Valverde, 2001] Sole, R. and Valverde, S. (2001). mmédion transfer and phase
transitions in a model of internet traffi@hysica A289:595-695.

[Sreenivasan et al., 2007] Sreenivasan, S., Cohen, R., L&peZoroczkai, Z., and Stanley,
H. E. (2007). Communication bottlenecks in scale-free netwdrkys. Rev. E75:036105.

[Tadic et al., 2007] Tadic, B., Rodgers, G., and Thurner, S. 7200ransport on complex net-
works: Flow, jamming and optimizationinternational Journal of Bifurcation and Chaps
17.

[Tadic et al., 2004] Tadic, B., Thurner, S., and Rodgers, G.4200raffic on complex net-
works: Towards understanding global statistical properties from stoquic density fluctu-
ations.Phys. Rev. F69:036102.

[Taylor, 1961] Taylor, L. (1961). Aggregation, variance and theamélaturg 189:732-735.

[Valverde and Solé, 2002] Valverde, S. and Solé, R. (2002). SgHrized critical traffic in
parallel computer network$2hysica A312:636—648.



158 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

[Vazquez et al., 2002a] Vazquez, A., Pastor-Satorras, R., asgighani, A. (2002a). Internet
topology at the router and autonomous system lexahd-mat/0206084

[Vazquez et al., 2002b] Véazquez, A., Pastor-Satorras, R., asgiyhani, A. (2002b). Large-
scale topological and dynamical properties of the interRas. Rev. E65:066130.

[Ward, 1063] Ward, J. H. (1063). Hierarchical grouping to optiminechjective function.
Journal of the American Statistical Associati@3(301):263—244.

[Wasserman and Faust, 1994] Wasserman, S. and Faust, K. (198dial network analysis,
methods and application€ambridge University Press.

[Watts and Strogatz, 1998] Watts, D. J. and Strogatz, S. H. (1998). dilefledynamics of
'small-world’ networks.Nature 393:440-442.

[Waxman, 1996] Waxman, B. (1996). Routing of multipoint connectiohSEE J. Select.
Areas Commuyb:1617-1622.

[Willinger et al., 2002] Willinger, W., Govindan, R., Jamin, S., Paxsdn,and Shenker, S.
(2002). Scaling phenomena in the internet: Critically examining criticalRyoc. Natl.
Acad. Sci99:2573-2580.

[Wu and Huberman, 2004] Wu, F. and Huberman, B. (2004). Findormgmunities in linear
time: a physics approaclEur. Phys. J. B38:331-338.

[Yook et al., 2002] Yook, S.-H., Jeong, H., and Barabasi, A2002). Modeling the internet’s
large-scale topologyProc. Natl. Acad. S¢i99:13382-13386.

[Zachary, 1977] Zachary, W. W. (1977). An information flow moftelconflict and fission in
small groups.Journal of Anthropological ResearcB3.

[Zegura et al., 1996] Zegura, E., Calvert, K., and Bhattacharje€,996). How to model an
internetwork.|IEEE Infocom 2:594-602.

[Zhao et al., 2005] Zhao, L., La, Y., Park, K., and Ye, N. (2008hset of traffic congestion in
complex networksPhys. Rev. E71:026125.

[Zhou, 2003a] Zhou, H. (2003a). Distance, dissimilarity index, andiagk community struc-
ture. Phys. Rev. E67:061901.

[Zhou, 2003b] Zhou, H. (2003b). Network landsape from a browgarticle’s perspective.
Phys. Rev. E67:041908.

[Zhou and Lipowsky, 2004] Zhou, H. and Lipowsky, R. (2004). Netkvbrownian motion: A
new method to measure vertex-vertex proximity and to identify communitiesabcom-
munities. Lecture Notes in Computer Science

[Zhou and Lipowsky, 2005] Zhou, H. and Lipowsky, R. (2005). Meast protein-protein in-
teraction map is a highly modular network with a staircase community strugiteprint

[Zhou and Mondragon, 2003] Zhou, S. and Mondragon, R. J.3R00owards modelling the
internet topology - the interactive growth model Rroc. of the 18th International Teletraffic
Congress



