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Chapter 1

COMPLEX NETWORKS:
BETWEEN ORDER AND RANDOMNESS

The rise of the Internet is considered one of the keys that have led the tech-
nological revolution of the end of the last century, contributing to the glob-
alization phenomena. Collected data confirm this theory; the total number
of elements connected to the Internet has been increasing exponentially every
year since 1990, with more than one billion people using its services everyday
(see figure 1.1). The amount of traffic introduced by these users also grows be-
tween100% and1000% per year, moving thousands of Petabytes (250 bytes)
of information between computers around the world everyday.

Despite the common misconception that behind the Internet there is a highly
engineered design, the truth is that the technological part plays a very small
role in this exponential growth; its secret relies on a collection of protocols
and technical guidelines that describe how to communicate efficiently in a het-
erogeneous world of electronic devices. Using these guidelines, independent
entities (such as governments or Internet Service Providers) have imposed their
own regulations to attach new devices to the network, allowing the creation of
an extremely heterogeneous structure that has been continuously evolving dur-
ing the last 20 years.

Regardless of this lack of centralized control and design, the Internet dis-
plays two unexpected interesting properties. First, it is one of the most robust
networks that actually exist; regardless of the large number of attacks suffered
every day by its components (Gordon et al., 2007), very few incidents have
been able to produce a global breakdown of communication1. Second, the In-
ternet shows an unexpected efficiency at delivering information between users,
despite the huge amount of traffic that is distributed by routers worldwide.

1The Morris Worm on November 2, 1988 and the attack against the DNS Servers on October 22, 2002 are
two of the most relevant attacks against the Internet that have compromised the integrity of the network.

1
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Figure 1.1. Evolution of the number of hosts connected to Internet since the creation of the
network in 1969 in a logarithmic scale. Data has been reproduced from theHobbes’ Internet
Timeline, which is available for download at http://www.zakon.org/robert/internet/timeline/

From a statistical point of view, the latency or delays suffered by the traveling
elements is very low compared to other communication or transport networks
(such as highways).

For some of these reasons, Internet is considered as one of the paradigmatic
examples of a complex system, which are also present in many natural or arti-
ficial environments. Since there is not a standardized definition for complexity,
the scientific community usually describes these systems using some common
characteristics shared by a large number of them. Like the Internet, complex
systems usually display an optimal organization that has emerged without any
external control or design. But maybe the most relevant property that all com-
plex systems share is their non-linearity, which results in behavior that cannot
be expressed as the sum of the behaviors of their components. This is what sets
complex systems apart from complicated systems: in complicated systems,
the organization of the different elements is imposed or designed externally.
Complicated systems can have a very large number of components, but we are
always able to identify the role or function of each element, and using this mi-
croscopic information it is relatively easy to infer the macroscopic behaviorof
the whole system (Amaral and Ottino, 2004). However, the border between
complicated and complex is not as clear as it seems, mainly because the lack
of a concrete definition for complexity.

Networks are one of the most used representations to describe the underly-
ing connection structure that defines the interactions of the elements of a sys-
tem. Simple networks are typically represented using graphs, such as lattices
or random graphs, which exhibit a high degree of similarity no matter what
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part is examined, and some dynamical processes based on these structures can
be solved analytically. However, most real networks are very heterogeneous
and share non-trivial characteristics that cannot be modeled using traditional
approaches based on simple networks. These findings led to the development
of the “science of networks”, with the main goal of studying complex net-
works. That is, the group of networks that are “between perfect regularity and
total randomness” (Watts and Strogatz, 1998), because in the apparentchaos
there is a hidden optimal structure that supports the dynamical processes of a
complex system.

The emergence of the new science of networks has been boosted due to
three main reasons: the increase in availability of computing resources, the
large amount of available networks, and the introduction of tools, measure-
ments, and models that allowed a deep analysis of the networks. Thanks to the
computerization of datasets and the emergence of the Internet as a huge repos-
itory of information, the scientific community can access to very large amount
of network datasets. To understand all these networks, researchershave stud-
ied their structural and dynamical properties using three main tools: nonlinear
dynamics, statistical physics and network/graph theory. The most interesting
point is that the results obtained have been applied successfully in several dis-
ciplines, such as computer science, biology, economics or sociology.

In the last five years, some of the main research lines within the science of
networks have focused on the study of the interplay between the structureand
the collective dynamics of complex systems. Several approaches have proved
that there is a bidirectional influence between the topology and the dynamic
processes that take place over complex networks. For instance, in the particular
case of the Internet, understanding how the topology influences the dynamics
of traffic flow provides valuable information on how to design better topologies
and more efficient communication protocols.

1. Describing complex networks
Networks are usually described using graphs, composed of nodes (orver-

tices), that represent the components of the system, and links (or edges)that
represent some kind of relationship or interaction between the nodes. Thena-
ture of the links can be physical (when there are a real connections between
the elements, as in the Internet routers connections) or logical (when theyrefer
to abstract connections, like friendship or collaborations between people).

The study of graphs has its own well established theory in mathematics.
Graph theory was set up in 1736 by Euler in his famous problem about the
bridges of Königsberg2. This theory has solved a large number of problems re-

2The problem consists on deciding whether it is possible to walk a route that crosses each of the 7 bridges
of the city of Königsberg exactly once.
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lated to topological properties of graphs, like the description of their connectiv-
ity, Eulerian problems (such as the Eulerian walks), or problems of vertex/edge
coloring (Bollobas, 1998).

From a mathematical point of view, a graphG is defined as an ordered pair
G(V, E) whereV is a set of vertices andE is a set of edges between the
verticesE ⊆ V ∗ V , V ∗ V = {(i, j)|i, j ∈ V }. If the values on the vertices
are commutative(i, j) ∈ E ⇔ (j, i) ∈ E the graph is known as undirected.
Otherwise we define it as a directed graph (or digraph), and instead of edges
we call the links arcs or arrows.

Simultaneously, each edge (or arc) can have an associated a label or value
Ew. When the value is 0 or 1 (only informs about the existence or not of the
edge) the graph is called unweighted. Otherwise, ifEw ∈ R then the links
provide extra information about the structure of the graph, and it is called a
weighted graph. Other mathematical concepts related with graphs that we will
consider in this thesis are the following:

The order or size of a graph is the number of vertices|V |. When the number
of edges of the graph is relatively small|E| ∼ O(|V |), the graph is called
a sparse graph. Otherwise, if it is close to the maximal number of edges
|E| ∼ O(|V |2), we classify the graph as dense. When a graph has all the
possible edges|E| = |V |(|V | − 1)/2 it is called a complete graph.

A subgraphS(V ′, E′) of a graphG is a graph whose set of vertices and set
of edges are all subsets ofG, V ′ ⊆ V andE′ ⊆ E.

A path is a sequence of distinct verticesV , {x0, x1, x2..xn} where each
pair of the sequence is linked (∀i, i + 1, (xi, xi+1) ∈ E). The length of the
path is the number of edges that we have in the sequence.

A graph is connected if there is a path between any two of its vertices.
Otherwise, the graph is disconnected. Each one of the connected parts is
known as a component of the graph, and the largest component is usually
referred as the Giant Component (GC) of the graph.

The adjacency matrix is the most used representation of a graph. It is a
two dimensional matrix with rows and columns labeled as the graph nodes,
where each elementaij has a value of 1 (or the weight value) or 0 depending
on whether nodesi andj are adjacent or not. If the network is undirected the
adjacency matrix is symmetric. And if the network does not have self-loops
(i.e. nodes are not connected with themselves), the diagonal of the matrix has
only zeros.

However, if one wants to analyze a graph using computational resources, the
adjacency matrix is not the optimal representation. On one hand, the amount
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Figure 1.2. a) Example of an unweighted and undirected graph composed by nodes(points)
and links (lines). b) Representation of the graph using an adjacency matrix, where the value of
ai,j is 1 if there is a link between nodesi andj and 0 otherwise. c) Implementation of the graph
using linked lists. The first column are the nodes, and the list that follows each nodes contains
the destination of the links that each node has.

of memory needed to store the adjacency matrix delimits the maximum pos-
sible size of the graphs (the required space to store a few thousands of nodes
overflows the current capacity of computers). On the other hand, sincemost
real networks are sparse, a large portion of the memory is somehow wastedby
zeros that are never used in the analysis of the graph.

The development of efficient data structures and algorithms in the 1970’s
provided better implementations of graphs than storing the whole adjacency
matrix, reducing the necessary space and improving the efficiency of the algo-
rithms that deal with the data (Aho et al., 1983). The most used implementation
is a data structure known as a linked list, consisting of a vector of nodes that
only store the existent relationships between the elements. Using this repre-
sentation one can store networks of millions of nodes avoiding the capacity
problem and without degrading the performance of most algorithms. See fig-
ure 1.2 for an example of a linked list.

1.1 Statistical properties of complex networks
The initial goal of the science of networks has been to uncover and charac-

terize network’s topology. The first step was the observation of the structural
properties of a very heterogeneous group of real networks (biological, social
and technological), discovering that most of these networks share similar topo-
logical properties, which are not in concordance with the same propertiesof the
traditional regular or random graphs.

To characterize these statistical properties, the researchers developed a set
of tools that capture the most relevant topological features. Some of these
tools were imported from graph theory and social sciences (such as the degree
distribution or the distances between nodes), and they were complemented with
the introduction of new specific measurements, like the clustering coefficient
introduced in (Watts and Strogatz, 1998) or the assortative mixing introduced
in (Newman, 2002).
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Using this set of measurements, we can describe the structure of a network
at different levels. If we analyze the individual characteristics of each element
of the system, we will obtain a description of the microscopic level, and if
we consider the properties of the whole system, we will obtain a macroscopic
description of the network. For a more detailed description of all these prop-
erties see the following reviews (Barabási and Albert, 2002, Dorogovtsev and
Mendes, 2002, Newman, 2003b, Boccaletti et al., 2006, da Fontoura Costa
et al., 2007).

Degree distributions
The simplest and most studied property of networks is the degree of its nodes
kv, defined as the number of links that vertexv has. If the graph does not admit
more than one link between each pair of nodes and the node does not have
self-loops, the value corresponds to the number of adjacent neighbors. A first
statistical approach is obtained computing the average degree of a network,

〈k〉 =
1

|V |
∑

v∈V

kv (1.1)

However, if the network is not homogeneous, it is usually more interesting
to observe the probability degree distribution,pk, defined as the fraction of ver-
tices that have a certain degreek. This distribution describes how the degrees
are distributed among the nodes of the system, and can be plotted using the
following histogram,

pk =
1

|V |
∑

v∈V,deg(v)=k

1 (1.2)

And finally another alternative is to analyze the cumulative degree distribu-
tion Pk, which refers to the probability that the degree is greater than or equal
to k.

Pk =
∞
∑

k′=k

pk′ (1.3)

This plot has some advantages over the probability distribution. First, we
avoid losing information of data points that fall in the same bin when using a
conventional histogram. And second, in the case that the probability distribu-
tion has a heavy tail, the cumulative distribution reduces the noise that usually
appears in the tail (Newman, 2003b).
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Degree correlations
Newman proposed the assortativity as another statistical property of the node
degree, measuring the correlation between the degree of adjacent nodes (New-
man, 2002). He also pointed out that the models that do not take this property
into account will not correctly reproduce many of the behaviors of realsys-
tems. The assortative coefficientr is defined as the Pearson correlation coeffi-
cient between the degree of connected pairs of nodes. There are three different
behaviors that can be determined measuring the value ofr in real networks
(see table 1.1). Whenr ∼ 0, there is no relationship between the degrees of
adjacent nodes. This is the typical case of random networks where degree is
almost uniformly distributed. Social networks usually have a value ofr > 0,
meaning that highly connected nodes tend to be connected with other high de-
gree nodes. This tendency is referred as assortative mixing, also known as
assortativity. On the other hand, many technological and biological networks
typically show disassortative mixing (or dissortativity) withr < 0, as low de-
gree nodes tend to attach to high degree nodes.

If one wants to get more information about the correlations, another option
is to use the relation between the average degree of the nearest neighbors of a
node〈knn〉 and its degreek, suggested in (Pastor-Satorras et al., 2001),

〈knn〉 =
∑

k′

k′p(k′|k) (1.4)

network Size r

physics coauthorship 52, 909 0.363

biology coauthorship 1, 520, 251 0.127

mathematics coauthorship 253, 339 0.120

film actor collaborations 449, 913 0.208

company directors 7, 673 0.276

Internet 10, 697 −0.189

World-Wide Web 269, 504 −0.065

protein interactions 2, 115 −0.156

neural network 307 −0.163

food web 92 −0.276

Table 1.1. Assortative coefficient of some complex networks studied by Newman inhis article
(Newman, 2002). A network is said to show assortative mixing if the nodesin the network that
have many connections tend to be connected to other nodes with many connections. Social net-
works usually display assortative mixing (r > 0), while technological and biological networks
are usually disassortative (r < 0). For a detailed explanation of the coefficient and the origin of
the datasets see the referred article.
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wherep(k′|k) is the probability that a node with degreek is connected to a
node with connectivityk′.

Clustering coefficient
Another important feature that is observed in real complex networks is the
existence of a high number of triangles (loops of 3 different edges). This phe-
nomenon is very common in social networks, where reflects the fact that “My
friends are also likely to be friends”. To quantify this measure, Watts and Stro-
gatz introduced the clustering coefficient (Watts and Strogatz, 1998) which
measures for each nodev of the network the proportion of links between its
neighbors divided by the number of links that could possibly exist between
them:

Cv =
2 ∗ (links between neighbors of vertex v)

kv(kv − 1)
(1.5)

The clustering coefficient for the whole system is computed as the average
value of the clustering coefficient of the nodes.

C =
1

|V |
∑

v∈V

Cv (1.6)

An alternative definition of the clustering coefficient was introduced in (New-
man, 2001b) also taken from social network studies. In this case he proposes
to compare the total number of triangles that we can identify in the network
versus the total possible number of triangles that can exist. In other words,
the value of the clustering coefficient measures the transitivity of the links: if
node A is connected to B and C, what is the probability that B and C are also
connected?

C ′ =
3 ∗ number of triangles in the network

number of possible triangles in the network
(1.7)

Distances and diameters
Although graphs are not usually defined in an Euclidian space, there aresome
measures of distance that can be defined using the idea of the path introduced
previously, counting the number of intermediate steps between two nodes of
the network. The most used distance is the average path lengthL, which mea-
sures the average length of the shortest (or geodesic) path between allpairs of
nodes of a network:

L =
1

N(N − 1)

∑

∀{i,j}∈V,i6=j

dij (1.8)
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wheredij is the shortest distance (number of edges) between nodesi andj.
Along with L we can also define the diameter of a network as the maximal
shortest path length of the whole network,D = max{dij |{i, j} ∈ V }. If the
network has more than one connected component and there is no possible path
between some nodes, we consider both values as∞.

Centrality measures
Finally, centrality indices are used to measure the relevance of the nodes in the
network according to a certain characteristic. The idea also comes from social
network analysis, where researchers want to identify the most influential(or
central) vertices of a network. For instance, the centrality index of one node
can be measured according to its degree (Degree Centrality) or the distance to
the other nodes (Closeness Centrality).

Throughout the thesis we are going to work with the betweenness centrality
introduced in (Freeman, 1977). This measure plays an important role in the
dynamics of communication processes, since it represents how one vertexin-
fluences the traffic flow between the other vertices. In other words, it measures
the average amount of information that each node has to redistribute. It is de-
fined as the number of shortest paths between all possible pairs of nodesthat
go through a certain node of the network,

B(v) =
∑

s6=v 6=t∈V

σst(v)

σst
(1.9)

whereσst(v)/σst is the fraction of shortest paths between nodess andt that
go through nodev.

1.2 Network models
The first approaches to model the internal structure of natural systems were

mainly based on regular structures like lattices. The work of Erdös and Rényi
(Erdös and Rényi, 1959) combined the probability theory with the field of
graphs, opening the door for a large amount of alternative research lines and
new theories about the structure of real systems. But the recent interest into
modeling the structural properties of complex networks arose with the publi-
cation by physicists of two canonical works in the field: the small-world model
(Watts and Strogatz, 1998) and the scale-free model (Barabási and Albert,
1999). The enormous impact of both publications can be easily understood
for two main reasons: first, they provided an empirical demonstration that real
complex networks have these non-trivial features that cannot be explained us-
ing the previous regular and random approaches. And second, they proved that
simple statistical models are able to mimic the structural configuration of real
networks with a large degree of accuracy.
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Figure 1.3. Left: Example of a 1D lattice, represented as a ring with periodic boundaries,
where each node is connected to neighbors at distance 1 and 2. Right: Example of a 2D lattice
in a rectangular grid that also presents periodic boundary conditions.

After publication of these works, network science started to grow in im-
portance and popularity, and a large number of models have been published
obtaining different levels of acceptance. These models are mostly used asa
platform where mathematical and physical analysis can provide insights about
the origin of the structure, and more importantly, to understand the dynamics
of the supported complex systems.

Regular networks
Regular networks, and in particular lattices, have been quite popular in physics,
since they can describe the organization of the atoms in a crystal or they canbe
used to discretize some continuum models. Moreover, they are also appealing
since in some cases the models based on these structures are exactly solvable.
The Ising model or the Potts model are two examples of lattice based models.

The structure of a regular network consists of a set of nodes orderedin a
lattice (or other regular structures), all of them connected to all the neighbors
that are a fixed distance (see figure 1.3). For simplification purposes, in this
dissertation we will only consider regular networks with periodic boundary
conditions, where all the nodes share the same exact topological properties.
Due to this regularity, one can easily compute the quantities that we have dis-
cussed in the previous section, such as the degree distribution, the clustering
coefficient or the average path length.

Let us describe these three properties. First, since all nodes have the same
degreeki = 〈k〉,∀i, the probability degree distribution follows Kronecker
delta function wherepk is 1 fork = 〈k〉 and 0 otherwise. Second, the average
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Figure 1.4. Left: Example of a random network generated with the Erdös-Rényi method, with
N = 30 andp = 0.1. Right: Degree distribution of an ER network withN = 10000 and
p = 0.02, with a mean degree〈k〉 ∼ 200.

distance between two nodes in a periodic lattice is usually large,Lreg ∝ N1/D

whereD is the number of dimensions of the regular lattice, and increases when
we add new elements to the network. And finally, the expected clustering co-
efficient for this type of networks is almost constant as we increase the size
Creg ∼ constant due to the periodicity of links.

Random networks
In a classic article of 1959, Paul Erdös and Alfred Rényi proposed a model to
create random (or probabilistic) graphs with a fixed number of nodes andlinks
(Erdös and Rényi, 1959). The idea is very simple: select a certain probability p
to connect two vertices with one link. Apply the probability to all the possible
pairs of nodes of the network and then you obtain an Erdös-Rényi (ER)random
network withN nodes and2p/(N(N − 1) links (see figure 1.4 left). One of
the most interesting aspects of their random model is that as we increase the
value ofp from 0 to 1, we see how different structural properties emerge. For
instance, when the probabilityp is greater than a thresholdpc ∼ lnN/N ,
almost every graph created with the ER method is fully connected.

Let us again describe the same statistical properties that we have analyzed
for the regular graphs. The degree distribution of ER networks follows abino-
mial distributionpk = Ck

N−1p
k(1 − p)N−1−k. When the network has a large

number of nodes, the degree distribution can be approximated using a Poisson
distribution with an average degreeλ = 〈k〉 ∼ pN (see figure 1.4 right).

pk =
e−λλk

k!
(1.10)
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Network Size C Crand L Lrand

WWW, site level, undir. 153, 127 0.1078 0.00023 3.1 3.35

Internet, domain level 6209 0.3 0.001 3.76 6.18

Movie actors 225, 226 0.79 0.00027 3.65 2.99

LANL coauthorship 52, 909 0.43 1.8 × 10−4 5.9 4.79

MEDLINE coauthorship 1, 520, 251 0.066 1.1 × 10−5 4.6 4.91

SPIRES coauthorship 56, 627 0.726 0.003 4.0 2.12

NCSTRL coauthorship 11, 994 0.496 3 × 10−4 9.7 7.34

Math coauthorship 70, 975 0.59 5.4 × 10−5 9.5 8.2

Neurosci. coauthorship 209, 293 0.76 5.5 × 10−5 6 5.01

E. coli, substrate graph 282 0.32 0.026 2.9 3.04

E. coli, reaction graph 315 0.59 0.09 2.62 1.98

Ythan estuary food web 134 0.22 0.06 2.43 2.26

Silwood park food web 154 0.15 0.03 3.40 3.23

Words, cooccurence 460.902 0.437 0.0001 2.67 3.03

Words, synonyms 22, 311 0.7 0.0006 4.5 3.84

Power grid 4, 941 0.08 0.005 18.7 12.4

C. elegans 282 0.28 0.05 2.65 2.25

Table 1.2. Clustering coefficientC and average path lengthL of several real networks. To
observe the existence of the small-world phenomena, the values have been compared with a
randomized version of the network with the same number of nodes and links. It can be observed
that the average path length is similar to the randomized, but the clustering coefficient is orders
of magnitude higher in the real networks. This data has been reproduced from Albert and
Barabási review (Barabási and Albert, 2002), which also includes detailed analysis of other
topological properties and describes the origin of the network datasets.

The average path length of a random network isLrand ∝ lnN/ln〈k〉, which
for a fixed〈k〉 increases very slowly compared to the size of the network (and
also much slower than a regular network with the same number of nodes and
links). This value is in concordance with the distance observed in real networks
(see table 1.2).

When looking at the clustering coefficient, random networks also exhibit a
completely different behavior than regular networks. Since random networks
have no internal defined structure, they usually have a very low clustering co-
efficientCrand ∼ 〈k〉/N (tends to zero as the network is more sparse). This
value is also small when compared to the expected ones of real networks (see
table 1.2), proving that complex networks are far from randomness.

Small-World : “Six Degrees Of Separation”
S. Milgram, a social psychologist, performed an experiment in 1963 to study
the distance between two people living in the US (Milgram, 1963). The ex-
periment consisted basically in sending letters between two unknown people,
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with the instructions of passing the letter to personal acquaintances who they
thought might be able to reach the destination target. The average number of
intermediate people who received the letter and forwarded it to another was6,
which lead to the idea that between each two people in the US (and afterwards
in the entire world) there are the famous “Six Degrees of Separation”. 40 years
later the result was reproduced again by Watts and his team. They recreated
the same experiment but on a larger scale, using e-mail messages that needed
to be forwarded between users around the world. They found again that the
average number of intermediaries was around six (Dodds et al., 2003).

From a social network analyst point of view, perhaps the most interestingre-
sult of Milgram’s work was that he empirically proved how people were much
closely connected than expected. This phenomena was named the small-world
effect. Watts and Strogatz redefined the concept of small-world to include
those networks that, independently on their size, share two common character-
istics: a very short average path length and a high clustering coefficient(Watts
and Strogatz, 1998).

The most used technique to check if a network meets the small-world con-
dition is to compare it against a randomized version of the same network main-
taining the number of nodes and edges. As we can see in table 1.2, networks
that present the small-world characteristic will have a similar average path
length than the randomized ones, but its clustering coefficient is much larger.
The reason behind this phenomena can be explained in the framework of social
networks: usually people share a large number of friends, which givesus the
high clustering coefficient. Additionally, each person has a few friends who
are far away in distance (e.g. living in other countries), which are represented
by connections that reduce drastically the distance between any two people,
and therefore, the average shortest path length.

Beyond social networks, this characteristic has also been found in biological
(e.g. the neuronal network of the wormCaenorhabditis elegans) and artificial
networks (e.g. the power grid of the US or the Internet). In these cases,the
small-world appears as a consequence of maximizing the functionality of these
systems: the clustering provides high redundance (and therefore higher robust-
ness) and the shortcuts improve the efficiency to transmit any signal between
two points of the network.

In their 1998 Nature paper, Watts and Strogatz proposed a simple model
(from now on WS model) to create a small-world network. Starting from a
regular ring lattice, link each node with a fixed number of neighbors. With
a certain probabilityp, rewire some of the links to a random chosen node of
the network, without altering the number of vertices or edges in the graph (to
represent the long distance friends). For a value ofp = 0 we recover the
regular lattice and, as we increase the value ofp, the graph loses its regularity
until p = 1 where we recover an ER random graph (see figure 1.5 a). Between
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Figure 1.5. Left: Random rewiring procedure introduced by Watts and Strogatz to create a
network with high clustering coefficient and low average path length. Right:Normalized aver-
age path lengthL and clustering coefficientC as a function of the rewiring probabilityp. The
shadowed area correspond to a range of values ofp that have the small-world property, high
clustering and low average path length.

this two values, we can identify a certain a range ofp that provides a network
that fits into the description of small-world (see figure 1.5 b). Other models
have extended the method of Watts and Strogatz, most of them are covered in
(Newman, 2000).

Scale-Free :“The Rich Gets Richer”
A common feature that the WS small-world model shares with the ER model
is that their degree distribution is Poisson, with a well-defined average degree
that decays exponentially. After observing a large number or real system, some
scientists realized that many real networks does not display this type of connec-
tivity (Faloutsos et al., 1999, Barabási and Albert, 1999). Instead, thedegree
distribution of real complex networks displays an absence of a characteristic
degree, having a few number of highly connected nodes and a large number
with a very low degree. These type of networks are known as scale-free net-
works, and are characterized by a degree distribution with a power-law tail,

pk ∝ k−γ (1.11)

meaning that the probability to choose a node with degreek decays as a power
of the degree with a characteristic exponentγ. This exponent is usually in the
range2 < γ < 3 (see table 1.3 for exponents of some measured networks).
In other words, the networks with a scale-free degree distribution have alarge
number of nodes with a very low degree, and a few nodes with large degree,
usually having orders of magnitude between the maximum and minimum val-
ues.

But the main breakthrough of Barabási and Albert was the introduction of
the preferential attachment mechanism, which resembles the work by Herbert
Simon in 1955 about “cumulative advantages” (Ijiri and Simon, 1977). They
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Network Size 〈k〉 γout γin

WWW 325, 729 4.51 2.45 2.1

WWW 4 × 107 7 2.38 2.1

WWW 2 × 108 7.5 2.72 2.1

WWW, site 260, 000 1.94

Internet, domain 3, 015 - 4, 389 3.42 - 3.76 2.1 - 2.2 2.1 - 2.2

Internet, router 3, 888 2.57 2.48 2.48

Internet, router 150, 000 2.66 2.4 2.4

Movie actors 212, 250 28.78 2.3 2.3

Coauthors, SPIRES 56, 627 173 1.2 1.2

Coauthors, neuro. 209, 293 11.54 2.1 2.1

Coauthors, math 70, 975 3.9 2.5 2.5

Sexual contacts 2810 3.4 3.4

Metabolic,E. coli 778 7.4 2.2 2.2

Protein,S. cerev. 1870 2.39 2.4 2.4

Ythan estuary 134 8.7 1.05 1.05

Silwood park 154 4.75 1.13 1.13

Citation 783, 339 8.57 3

Phone-call 53 × 106 3.16 2.1 2.1

Words, cooccurence 460, 902 70.13 2.7 2.7

Words, synonyms 22, 311 13.48 2.8 2.8

Table 1.3. Average degree and exponents of the scale-free degree distribution for several real
networks. For the directed networks the table shows both the scaling exponent for the incoming
and outgoing degree distribution. It can be observed that almost all the exponents range between
2 and 3. This data has been reproduced from Albert and Barabási review (Barabási and Albert,
2002), which also includes detailed analysis of other topological properties of this networks and
the origin of the networks.

wisely used the same idea to explain one possible reason behind the scale-free
distribution of real networks, establishing some of the bases for the newly-
created science of networks.

The preferential attachment mechanism describes how the structure of a
complex network evolves using two basic rules: growth and preferential at-
tachment. Starting from a fully connected core of nodes, at each step new
nodes are added to the network. Each one of this nodes creates a fixed num-
ber of links with the existent nodes following the preferential attachment rule,
meaning that the probability to attach to an existent nodev is proportional to
its degreekv,

pv =
kv

∑

i∈V ki
(1.12)

As a direct consequence of the scientific impact obtained by the publication
of the preferential attachment mechanism, a large amount of new models have
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Figure 1.6. Left: Example of a network without a characteristic scale. In this type of networks
we usually observe a few high degree nodes that act as hubs, and a large number of peripheral
nodes with a low number of connections. Right: Degree distribution of a network generated
using the preferential attachment method of Barabási and Albert. The exponent of the power
law is∼ 2.8. The average degree of the network is∼ 6 and the maximum degree is∼ 1600.

been proposed to create networks with the same scale-free degree distribution
but changing the constraints and rules to add nodes to the network. In (Barabási
and Albert, 2002) the authors present an extensive review of these models and
the range ofγ exponents obtained by each.

Finally, it is interesting to remark that there are multiple ways to obtain the
desired degree distribution for a given network without using an evolutionary
model. The most used technique is the configuration model (Bender and Can-
field, 1978, Molloy and Reed, 1995, Molloy and Reed, 1998). The main idea
behind this method is to fix the degree for all the nodes at the beginning, and
then try to randomly attach them maintaining the assigned degrees. Using a
configuration model one obtains a network where its degree distribution fits
accurately the desired one. However, these type of models have been criticized
since they are not suitable to represent those systems where growth processes
play an important role in the structural evolution of the system (like the Internet
or the WWW).

2. Community structure of complex networks
The levels of topological description that have been presented in the previ-

ous sections range from the microscopic (degree, clustering coefficient, cen-
trality measures, etc., of individual nodes) to the macroscopic description in
terms of statistical properties of the whole network (degree distribution, total
clustering coefficient, degree-degree correlations, etc.). Between these two ex-
tremes there is a mesoscopic level of analysis of complex networks. In this
level we describe an inhomogeneous connecting structure composed by sub-
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Figure 1.7. Example of the community structure in a complex network. The nodes can be
classified into groups where the number of internal links (links between nodes of the same
group) is higher than the number of external links (links with the rest of thegraph).

sets of nodes which are more densely linked between them than with the rest
of the network (see figure 1.7).

The mesoscopic scale of organization is commonly referred as community
structure. This concept has been widely used in social sciences (Wasserman
and Faust, 1994), where people organize into communities that share common
interests, hobbies, or even because they live close to each other. Moreover,
this organization can be hierarchical, since for instance a scientist has usually
a close relationship with researchers of his group, and at higher levels he has
relationships with members of his department or even his university.

The organization of the nodes into communities does not occur only in so-
cial networks. Several studies have uncovered the existence of community
structures in many different contexts, including metabolic networks (Ravasz
et al., 2002, Holme et al., 2002a), banking networks (Boss et al., 2004) or the
worldwide flight transportation network(Guimerà et al., 2005). All these stud-
ies show that nodes belonging to a tight-knit community are more than likely
to have some properties in common. For instance, in the world wide web com-
munity analysis has uncovered thematic clusters (Flake et al., 2002, Eckmann
and Moses, 2002).

Another group of publications have shown the influence that the community
structure has on the dynamical processes that take over the network. Different
approaches have been studying the effects on dynamical processes such as syn-
chronization (Arenas et al., 2006b, Arenas et al., 2006a) or emergence of coop-
eration (Lozano et al., 2007). In all of them the authors show that communities
play a key role in the different dynamical processes, explaining phenomena
that cannot be understood without the presence of the communities.

The identification and characterization of these clusters of nodes is not a
trivial task. A new group of statistical tools have been developed to unravel
the existence of community structure in complex networks, providing a large
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number of approaches that have compared the problem of community identi-
fication with some classical problems in physics and computer science. For a
more detailed introduction to the problem of detecting the community structure
we refer the reader to chapter 3 of this dissertation, since it presents a complete
review of the state-of-art of the community detection methods and algorithms,
including benchmarks and guidelines to decide which is most appropriate for
each problem.

3. Traffic dynamics
Recently, the theory of complex networks has started to cope with the prob-

lem of dynamics on networks. After much work devoted to the understanding
of the network topology, the physics community has begun to develop mod-
els that explain the characteristics of different types of dynamics on complex
networks. In this dissertation we will focus on the study of the traffic dynam-
ics of communication processes, trying to understand what are the dynamical
properties of the traffic flow between the elements of a complex network. This
understanding will help us to design better infrastructures and rules to cope
efficiently with the growing demands of traffic volume.

Communication networks provide a background infrastructure that allow a
continuous movement of elements, such as information packets in the Inter-
net, electricity in the power grid network, cars in a road, or passengers flying
around the world. From a physical point of view, all of these processes can
be described using an out-of-equilibrium system of particles that oscillate be-
tween different dynamical phases. The first physical approach to study traffic
flow dynamics is found in the works of J. Lighthill and G. Whitham who, us-
ing fluid mechanics to describe the interactions of the cars in a highway, tried
to uncover the reasons behind road congestion (Lighthill and Whitham, 1955).
Since then, a large number of different models have been proposed to describe
and study traffic flows, which can roughly be divided into macroscopic and
microscopic ones depending on the level of description used.

On one hand, microscopic models investigate the behavior of the elements
in a concrete part of the network (like cars in an intersection). Each element
is considered as an individual entity and usually has an associated differential
equation that describes its behavior. The most used microscopic models are
based on cellular automata (Maerivoet and de Moor, 2005), which discretize
the space of the system into cells and then study how the particles move be-
tween the cells. Cellular automata models are numerically very efficient and
they have the ability to reproduce a wide range of traffic phenomena, but they
lack the accuracy of the time-continuous car-following models.

On the other hand, macroscopic models examine the dependencies between
traffic volume, congestion and fluctuations, looking for patterns and otherlarge-
scale properties. In this case the system is reduced to a coarse-grainedview
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where the particles are considered equivalent and governed by the same rules
(there is not an individual treatment for each element). The difficulty of study-
ing this level is higher than the microscopic level, mainly due to the limitations
of storing long time series of data. But thanks to the increasing capacity of the
computational resources, we can access to larger time series from multiple el-
ements of the network simultaneously, allowing us to perform a more detailed
macroscopic analysis.

3.1 Traffic dynamics on complex networks

In the last decade two factors have increased the attention of scientific com-
munity into the study of traffic flows. First, the emergence of complex systems
theory has provided the necessary background to characterize the complex be-
havior of traffic dynamics. And second, the rise of Internet as a worldwide
communication network has attracted the attention of researchers that study
traffic flow, since they have a huge playground where they can test theirtheo-
ries.

The main goal of the study of traffic on complex networks is to understand
the interdependencies between the dynamical parameters and the relevanttopo-
logical properties. Some stylized models of traffic flow in complex networks
(Guimerà et al., 2002b, Tadic et al., 2004, Zhao et al., 2005, Singh and Gupte,
2005, Goh et al., 2005) can be used to gain intuition about dynamics on com-
plex networks, and to determine the leading parameters of the dynamic pro-
cesses related to the network topology. These models simplify the commu-
nication process to the basic elements, using three dynamical parameters to
model the traffic flow: the rate of which new packets enter the system, a rout-
ing protocol to describe how to distribute the traffic, and a queueing system
that represents the limited capacity of the nodes.

The main results obtained up to now concerning traffic flow in complex
networks are related to the determination of the bounds for this flow to become
congested as a function of the previous parameters. The phenomena of the
congestion usually appears in a network when a parameter exceeds a threshold
value, provoking a phase transition from the free flow regime to a congested
state (Fukuda et al., 1999).

Since the efficient performance of a communication process is a function
of the ability of the system to avoid congestion, a large amount of publica-
tions have studied the effects of the topology (scale-free degree distribution,
small-word, ...) on the onset of congestion (Moreno et al., 2003, Goh et al.,
2001). Some studies have proposed optimal network topologies to maximize
the amount of information that can be moved over the network without reach-
ing the congestion threshold (Guimerà et al., 2002b, Barthelemy and Flam-
mini, 2006). And another group of publications have proposed new dynamic
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routing protocols that redirect the traffic when the network reaches congestion
(Echenique et al., 2004, Sreenivasan et al., 2007).

A second aspect that has also received a lot of attention is the study of traf-
fic fluctuations. The analysis of the autocorrelations in long time series of
data reveals that traffic flows in general, and Internet in particular, display non-
stationary behaviors: burstiness across multiple time scales, long range depen-
dencies and self-similarity (Leland et al., 1995). At a macroscopic scale, the
fluctuations of the traffic of a system have been characterized as the variability
around the mean for all the nodes. Recent studies have confirmed that there is
a scaling relationship (de Menezes and Barabási, 2004a), and the exponent of
this scaling provides information about the internal and external nature ofthe
fluctuations of the traffic (de Menezes and Barabási, 2004b).

4. The Internet viewed as a complex system
The issue of uncovering and modeling the real structure of the Internet is

considered one of the most challenging and attractive open problems of com-
plex networks. Despite all the efforts done by network researchers and com-
puter engineers, we are still unable to see a fully detailed map of its topology.
The main reason behind this problem is the lack of a central authority that
controls the evolution of Internet. Most part of this infrastructure belongs to
private companies that do not share their connection maps, and the only option
for researchers is to try to infer them.

Behind Internet there is a multilayered structure, which is a consequence of
the different layers of the TCP/IP stack. This adds more complexity into the
task of mapping the network, since the meaning of network topology and traf-
fic depends on one’s choice of analysis. For instance, we can create network
maps of physically connected devices looking at the physical layer, a map of
logically connected devices looking at the Internet Protocol layer, or even cre-
ate a connectivity map of the applications that use this infrastructure, such as
the World Wide Web or the Peer-to-Peer (P2P) networks.

Throughout the rest of the thesis we will only focus on the analysis of the
structure at the network level. This level can also be subdivided into three
different sub-levels of description, obtaining three hierarchical coarse-grained
pictures of the network level map:

User level: here we consider as nodes all the electronic devices connected
to the network that can send and receive information. The creation of a
global map at this level is a very difficult task due to two reasons: the
large number of elements (which is estimated actually around 500 million)
and the continuous changes that the topology suffers (e.g. mobile devices
change their connection point continuously). Therefore, this level of anal-
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ysis is only used for statistic purposes like studies of the penetration of the
Internet in different geographical areas.

Internet Router (or IR) level: in this case the nodes represent routersand
the links indicate one-hop connectivity between routers (which do not nec-
essarily involve the existence of a physical link between them). In the last
measurements, it is estimated that this level is composed by around 200,000
nodes connected by more than 600,000 links.

Autonomous Systems (or AS) level: an AS is a group of routers and net-
works managed by a single organization. Usually they are controlled by
the Internet Service Providers and public organizations. At this level, the
links represent business agreements between two corresponding ASs toex-
change traffic between them. The size of the network is estimated around
25,000 nodes and 70,000 links.

4.1 Discovering Internet Topology at the AS level
One of the key properties of the Internet network topology is that it con-

tinuously grows in time. New connections are created constantly to maintain
the global efficiency of the network as new users join the network. At the
AS level, these new connections are mainly guided by economical and tech-
nical constraints, since the ASs tend to optimize the economic profit of the
infrastructure. On one hand, the growth of the internal structure of each ASs
is governed by their own rules. Usually they seem to be engineered to main-
tain their efficiency at a low cost. This results in small-world like networks,
with very short average path lengths and a high local clustering (Govindan
and Radoslavov, 2002). On the other hand, new connections between differ-
ent ASs are established in business relationships, creating what is knownas
the “Internet Ecosystem” (Norton, 2004). This connections can be peer-to-
peer relationships, when they agree to interchange traffic between them, or
customer-provider relationships, when one of the ASs provides accessto the
other one (Gao, 2000).

Due to the strong competition that there is in this market, many ASs do not
share the information about their internal structure and their business agree-
ments (e.g. to protect the privacy of their clients or for fear of loosing some
advantage), making difficult the task of obtaining a complete detailed map of
the complex structure of Internet. However, many important advances have
been achieved in the last ten years trying to figure out the AS structure using
reverse engineering techniques. The problem is that the techniques arenot
100% effective, and usually only provide a partial snapshot of the network.

The initial steps into discovering the topology were performed by computer
engineers, who developed a set of analysis and measurement tools to reverse
engineer the structure of the network at its different levels. The main source
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of Internet topology data comes from the Oregon Route-Views Project3. This
project has been collecting and storing a large number of BGP4 routing tables
since 1997. From this snapshots we can extract all links between the routers
and, after some filtering (Chang et al., 2001, Andersen et al., 2002), wecan
infer topological maps of the AS and IR level.

The topological maps obtained using this methodology have received a large
amount of criticism, since BGP data suffers from several limitations. The maps
are typically of different quality, sometimes containing errors and ambiguities
that depend on the collecting and inferring processes, and the period used to
get the data. Moreover, it is known that Internet has some ’dark matter’ which
is undetectable using this type of techniques. The number of missing links
estimated in the AS maps is between35% and50% in the known databases,
which mainly are ASs peer-to-peer links (Cohen and Raz, 2006). To solve
these problems, new projects propose to discover the Internet topology from
a more active point of view. The two most important are the skitter project
(Huffaker et al., 1998) developed by CAIDA5 and the DIMES project6. Both
projects rely on active sources which ask the network continuously usingsoft-
ware probes that are mainly based on traceroutes, a tool that discoversthe path
between two components of the network. The probes are able to obtain extra
routes that are not directly stored in the routing tables, thus obtaining a richer
model of the Internet topology than one based on BGP tables. Other tech-
niques, such as WHOIS or looking glasses also provide additional information
that can be added to the map, slightly increasing the final number of nodes and
links (Mahadevan et al., 2006). The best mapping results up to now have been
obtained merging data from different sources, providing progressively new AS
maps where we can perform more accurate statistical analysis.

A complementary effort that also receives attention is the visualization of
the resulting datasets. The process of drawing the AS resulting maps is a very
difficult task, mainly because presenting a network of thousands of nodes in
one single snapshot is usually confusing for the viewer. Some methods based
on coarse-graining have been used to reduce the visual complexity of thenet-
work. Figure 1.8 presents different snapshots of the Internet topology inferred
using the techniques described in this section.

3http://www.routeviews.org
4The BGP (Border Gateway Protocol) is the inter-domain routing protocol that is used in Internet actually.
It defines how to distribute the information between the routers belonging to different AS.
5http://www.caida.org
6http://www.netwdimes.org
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Figure 1.8. The figures present three different views of the Internet topology generated by
three different projects. Top: Geographical distribution of the ASs, represented as an arc map,
see http://mappa.mundi.net/maps/maps008/ for more information. The picture has been cre-
ated by visualization researchers at Bell Laboratories-Lucent Technologies, c©Stephen Eick,
Bell Labs. Bottom left: Detailed map of the Internet Router level from the Opte Project
http://www.opte.org/. Used under the Creative Commons License. Bottom right: Hierarchi-
cal structure of the Internet AS level introduced in (Carmi et al., 2007). The size of the nodes
represent their degree and the color their position in the nodes hierarchy.

4.2 Modeling the Internet
Internet models are used to obtain maps which reproduce the structural

properties observed in the inferred maps. The most simple models obviate
some physical characteristics (such as the bandwidth, router capacity, ...)and
represent Internet using undirected graphs. Additional information about the
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Figure 1.9. Example of an AS Internet topology map generated using the Transit-Stubmodel.
This topology generator creates an Autonomous Systems structure usingthe two main hierar-
chical elements of the Internet, the transit and the stub domains.

network can been added to the topological structure by associating information
with the nodes and links, and thus obtaining more detailed approximations to
the measured networks.

The maps obtained from these models have multiple applications. They
can be used as a playground where we can test the efficiency of new routing
protocols, to understand certain phenomena like Internet traffic storms (Hu-
berman and Lukose, 1997), or for efficient planning and long-term network
design (Yook et al., 2002). Their ability to accurately perform these tasksis
directly related to the level of approximation to the real network. Therefore,
these models have been continuously changing and evolving to capture the
most significant topological properties that are continuously published.

The earliest Internet models were basically stochastic models. The most
popular was the Waxman topology generator (Waxman, 1996), which is based
on the classical ER graphs with an Euclidean distance constraint to the link
probability. Several other models extended this idea, opening a researchline
focused on representing the local and hierarchical structure of the network.
Examples of this type of models are the Transit-Stub model (Zegura et al.,
1996) or the Tier model (Doar, 1996), which reproduce the Internet topology
as a three-level hierarchy (see figure 1.9 for more details).

However, the canonical work of Faloutsoset al. showed that the connec-
tivity of the different nodes on Internet follows a clear power-law distribution
(Faloutsos et al., 1999), contrary to the exponential distribution obtained on
previous models. The main breakthrough of their work was that they showed
the necessity of reproducing the statistical properties to obtain representative
maps, opening the door to a new group of ’degree-based’ models. The first
of them was proposed by Yooket al. based on the preferential attachment
mechanism (Yook et al., 2002).



Complex Networks: Between Order and Randomness 25

Several modifications on Yook’s model have been proposed to capture more
and more statistical properties observed in the AS and IR large scale topol-
ogy, such as the degree correlations, clustering, the maximum degree or the
number of loops (Bu and Towsley, 2002, Zhou and Mondragon, 2003). How-
ever, all of them have been also criticized since they are merely descriptive
and cannot explain the emergence of this properties in the Internet (Willinger
et al., 2002). Moreover, it has been proved that topologies with a very different
structure can share the same degree distribution and other statistical properties,
but when one analyzes the dynamics of Internet routing protocols, their effi-
ciency is completely different (Chang et al., 2006). And finally, a third critic
comes from the fact that the Internet is a growing network, and we do notknow
if the structural properties are enough stable to be reproduced in the models.
Therefore, one model that is capable of reproducing a concrete snapshot of the
network could not be valid a few months before. In appendix A we give a brief
overview of this problem.

The last efforts in this direction are trying to bring together the hierarchi-
cal structure while reproducing the statistical properties. An example of this
new trend is the “medusa model” (Carmi et al., 2007), where the Internet is
described as a nucleus of highly connected nodes surrounded by hierarchical
layers of less connected nodes (see figure 1.8).

The future of the Internet modeling still presents interesting challenges,
since actual models are imperfect and incomplete. One of the possible ways
to improve the models is the introduction into the models the key elements
that are behind the growing decisions, such as geographical constraints, user
traffic demands or business arrangements. And this must be done without al-
tering the simplicity of the model. A good example of a model based on this
ideas is the competition AS model introduced in (Serrano et al., 2005, Serrano
et al., 2006). In this case, the growth process of the Internet map is controlled
by user and geographical constraints, giving a meaning to the evolutionary
growing process. And without imposing any external restriction, the resulting
networks reproduce almost every statistical property analyzed in the Internet
(including the hierarchical structure), providing one of the best approximations
to the measured maps.

4.3 Internet Traffic modeling
The statistical characterization and modeling of Internet traffic has also re-

ceived a lot of attention from both computer engineers and physicists. The
understanding of the physical laws governing the nature of Internet traffic is
crucial because of its implications in design, control and speed of the whole
network.

The study of Internet traffic is performed both at macroscopical and micro-
scopical levels, measuring parameters such as the amount of traffic that goes
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through a node, the packet loss rate, or the Round-Trip Time (RTT, the time
necessary to travel between two nodes and return). The analysis are performed
using long time series of traffic data collected from network hosts and routers.

When modeling network traffic in general, packet and connection arrivals
are often assumed to be Poisson processes. However, Lelandet al. demon-
strated that Internet traffic exhibits self-similarity, uncovering the presence of
long range dependence in collected traces of packet traffic in local area net-
works and in wide area networks (Leland et al., 1995). The origins of this
self-similarity are still under discussion: on one hand, a group of theoriespro-
pose that is a consequence of the aggregation of traffic that comes fromdif-
ferent protocols, considering that the self similarity emerge as a consequence
of the user’s actions (Park et al., 1996, Willinger et al., 2002). On the other
hand, another group of theories propose a more physical explanation,describ-
ing the self-similarity as the consequence of the long-range dependenciesthat
appear when the system is near the phase transition between free and con-
gested regimes (Fukuda et al., 2000, Sole and Valverde, 2001, Valverde and
Solé, 2002, Guimerà et al., 2002a).

The characterization of Internet traffic from a large-scale point of view is
also a very difficult task, mainly due to the lack of empirical data to prove the
different theories combined with the huge complexity of the system dynam-
ics. For the same reasons explained in the previous sections, AS operators do
not publish traffic volume statistics or their traffic matrices7. The main results
up to now are focused on the study of Internet global efficiency, whichcan
be measured using RTT and packet loss rates. A first group of studies have
correlated the RTT with the geographical distance and have analyzed the dis-
tribution of the RTT, which seems to follow power-law tails (Huffaker et al.,
2000, Percacci and Vespignani, 2003). These works have been complemented
with the study of the packet loss rate, finding that the probability of having a
certain rate of packet loss also follows a power-law distribution (Percacci and
Vespignani, 2003).

The results obtained in Internet traffic analysis are in a very preliminary
stage. However, all these works devoted to Internet traffic are creating a solid
knowledge base about Internet’s dynamical behavior, providing the guidelines
on how to design the next generation of Internet traffic protocols.

5. Scope of the work
The aim of this thesis is to review and introduce new tools and methods to

measure topological and dynamical properties of complex networks. In partic-
ular we are interested in two problems, the study of the community structure

7Traffic matrices contain the amount of traffic exchanged between two ASs, and additional information such
as the delay time or the packet loss ratio
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of complex networks, and the analysis of the dynamical properties of a com-
munication process.

Chapters 2 and 3 are focused on the analysis of the community structure
of complex networks. In chapter 2 we present an exhaustive review ofthe
community structure identification problem. First we introduce the concept of
community structure, the measure of modularity and its limitations. After a
complete review of the methods and algorithms available to identify the com-
munities, we present a set of tools to measure the performance of the different
methods. Finally, we present a wide range of benchmarks where we compare
the efficiency and accuracy of the methods, which can be used to select the
best algorithm for a particular problem.

In chapter 3 we introduce the Extremal Optimization method as one of the
best alternatives to identify the communities. We explain the physical idea
behind the algorithm and how it has been implemented. We also include some
improvements that increase the efficiency and the accuracy of modularity based
community detection methods, by introducing algorithmic improvements to
recursive methods or by reducing the size of the network. Finally we present
an exhaustive benchmark of the results obtained by our method when analyzing
some of the most used complex networks in the community detection literature.

Chapters 4 and 5 focus on the study of some dynamical properties of com-
munication processes over complex networks. Using a simple traffic model,
we have analyzed the changes observed on some properties when we intro-
duce congestion into the network. In chapter 4 we present the scaling of the
fluctuations as one statistical measurement that characterizes the behaviorof
the traffic on a complex network. We analyze how different parameters can
explain transitions of the scaling exponent, proving that there is wide range
of exponents. We also analyze the particular case of the fluctuations of the
Internet.

Chapter 5 introduces the analysis of the dynamical robustness of traffic dy-
namics, defined as the capability of maintaining the efficiency of the commu-
nication when we remove a fraction of nodes of the network. We study how the
maximum capacity of one network to deliver traffic changes when we remove
a certain fraction of the nodes. We analyze the effect on different network
topologies, and using routing protocols that depend on the knowledge radius.
We also compare this dynamical robustness with the topological robustness of
complex networks.

Finally, the last chapter presents the final conclusions of all the work de-
scribed in the dissertation and gives some perspectives about how the work
can be extended with open questions and new research lines.





Chapter 2

DETECTING COMMUNITY STRUCTURE
IN COMPLEX NETWORKS

Numerous studies have tried to explain the relationship between the struc-
ture and the functionality of complex systems using the analysis of the struc-
tural properties presented in the previous chapter. However, due to thecom-
plexity of both the networks and the interactions, this relationship is usually
difficult to obtain by looking only at the macroscopic and microscopic levels.

One way to shed light onto this relationship is by studying the intermediate
scales of a complex system. It has been suggested that many physical andbio-
logical systems display different topological scales (Arenas et al., 2007, Sales-
Pardo et al., 2007), and that these intermediate scales affect the behavior of the
dynamical processes such as diffusion, communication or synchronization pro-
cesses (Arenas et al., 2006b, Arenas et al., 2006a, Lozano et al., 2007). There-
fore, it seems that the identification and analysis of the intermediate scales of
complex networks will enable us to increase our knowledge about complex
systems in general.

The main goal of community detection methods is to identify those groups
(or communities) of nodes that in real networks share common characteristics
or perform similar tasks, but using only information about the topology of the
network. The problem of detecting these structures is not trivial and hasbeen
the subject of discussion in various disciplines. In real complex networkswe
typically do not know how many communities there are, but in general there
are more than two, making the process more costly than typical bipartitioning
problems studied in computer science and statistical physics (Kernighan and
Lin, 1970, Fiedler, 1973, Banavar et al., 1987). What is more, communities
may also be hierarchical, that is communities may be further divided into sub-
communities and so on (Guimerà et al., 2003, Gleiser and Danon, 2003, Arenas
et al., 2004).

29
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Despite the difficulties in identifying the optimal division into communities,
several methods have been developed and employed with varying levels of
success. These methods tackle the problem of community identification from
different points of view, by analogy with classical problems such as finding
the ground state of a spin glass, the combinatorial optimization of a system
or even with a problem of optimal information coding (Mezard et al., 1987,
Papadimitriou and Steiglitz, 1997, Shannon and Weaver, 1963). Unfortunately,
the problem of having a large number of methods is that the results obtained
when analyzing the same network with some of them can provide completely
different structures, which raises the questions in the scientific community of
which one should they use for a specific problem.

The purpose of this chapter is to present the state of the art on community
structure detection methods, providing a set of tools to compare two partitions
into communities and also to compare which method performs better. First,
we present different definitions for the concept of community, introducing the
concept of modularity as one of the keystones of the community detection
problem. Next, we summarize the different methods that have been published
in the last five years to uncover communities. Then, we introduce a group of
benchmarks and measurements that can be used to compare the community
structure, and to evaluate the efficiency and the accuracy of the methods.And
finally, we give some guidelines that will help to decide which method is the
most appropriate for different types of networks.

1. Defining the community structure
Despite the large amount of study in this area, a consensus on what is the

definition of community has not been reached. The first approach into the
definition of the community structure has its roots in social sciences. This
approach is largely (though by no means exclusively) concerned with theeffect
an individual player has on the network surrounding it and vice versa.As a
result, the local properties of networks take a more prominent role in social
science research. Some definitions taken from (Wasserman and Faust, 1994)
have been used and developed by methods we shall describe later.

Conceptually, the definitions can be separated into two main categories, self-
referring and comparative definitions. Central to all such definitions is thecon-
cept of subgraph explained in chapter 1. In self referring definitions the basic
community definition isa clique, defined as a subgroup of a graph containing
more than two nodes where all the nodes are connected to each other by means
of links in both directions. In other words, this is a fully connected subgraph.
This is a particularly strong definition and rarely fulfilled in real sparse net-
works for larger groups.n-cliques, n-clansandn-clubsare similar definitions
designed to relax the above constraint, while retaining its basic premise. The
shortest path between all the nodes in a clique is unity. Allowing this distance
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to take higher values, one arrives at the definition ofn-cliques, which are de-
fined as a subgroups of the graph containing more than two nodes where the
largest shortest path distance between any two nodes in the group isn. n-clans
andn-clubsare subtle variations ofn-cliques.

A somewhat different approach to define communities is to compare the
number of internal links to the number of external links, coming from the in-
tuitive notion that a community will be denser in terms of links than its sur-
roundings. One such definition, anLS setis defined as a set of nodes in which
each of its components has more links to other components within the same
community. This is the same definition as thestrong definition of community
in (Radicchi et al., 2004). Again the above definition is quite restrictive, and
in order to relax the constraints even further, Raddichiet al. propose to use the
sumof links. So a community in theweaksense is defined as a set of nodes
whose total number of internal links is greater than the total number of links
to the outside. This is the most intuitive of all definitions and is the one that is
used most, although implicitly.

Self-referring definitions, while useful in characterizing communities which
are already known, are not the best choice while trying to find them. The
Bron-Kerbosch algorithm (Bron and Kerbosch, 1973) for finding cliques in
a network is very costly, running in worst case time that scales exponentially
with network size. Comparative definitions, on the other hand, lend themselves
much more easily to the search for communities in large complex networks. In
a way, comparing the internal structure of a community to the external structure
gives rise to a measure of how good a particular partition is, as described inthe
next section.

2. Detecting community structures

One of the first questions that has been raised in recent years, in the problem
of community detection, is how to evaluate a given partition of a network into
communities. Using the previous definitions, one can check if different parti-
tions fulfill the strong or weak constraints, but there is no more information to
decide if one community structure is better than the others.

A simple approach to quantify a given configuration into communities that
has become widely accepted was proposed in (Newman and Girvan, 2004). It
is based on the intuitive idea that random networks should not exhibit commu-
nity structure by definition. Let us imagine that we have an arbitrary network,
and an arbitrary partition of that network intoNc communities. It is then pos-
sible to define aNc × Nc size matrixe where the elementsers represent the
fraction of total links starting at a node in partitionr and ending at a node
in partition s. Then, the sum of the any row (or column) ofe, ar =

∑

s ers

corresponds to the fraction of links connected tor.
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If the network does not exhibit community structure, or if the partitions are
allocated without any regard to the underlying structure, the expected value
of the fraction of links within partitions can be estimated. It is simply the
probability that a link begins at a node inr, ar, multiplied by the fraction of
links that end at a node inr, ar. So the expected number of intra-community
links is justarar. On the other hand we know that thereal fraction of links
exclusively within a partition iserr. So, we can compare the two directly and
sum over all the partitions in the graph.

Q =
∑

r

(err − a2
r) (2.1)

This is a measure known asmodularity. Let us consider as an example a net-
work comprised of two disconnected components. If we have two partitions,
corresponding exactly to the two components, modularity will have a value of
1. For particularly “bad” partitions, for example, when all the nodes are ina
community of their own, the value of modularity can take negative values.

One might be tempted to think that if we search for the maximum modular-
ity in a random network we will found very small values ofQ. As Guimerà
et al. and Reichardtet al. show, this in general is not true (Guimerà et al.,
2004, Reichardt and Bornholdt, 2006). It is possible to find a partition which
not only has a nonzero value of modularity, but that this value can be quite
high. For instance, in a random network with128 nodes and1024 links we
can find a subdivision into communities with a maximum modularity around
∼ 0.21. This result raises a new question: how relevant is the partition given
by the maximum modularity? Guimeràet al. point out that the best way to
determine if a modularity is statistically significant is to compare it against a
null case, i.e. the randomized version of the same network keeping the degree
distribution invariant. The difference between our result and the average value
of the null case will help us decide if there is some mechanism behind the net-
work evolution that favors the creation of these clusters (and thereforewe can
give a meaning to our results) or if the clusters have been created by chance.

There is another issue to take care when considering the partition with high-
est modularity as the best possible (or the most meaningful) partition into com-
munities. In (Fortunato and Barthélemy, 2007) the authors show a limitation of
the modularity to find small communities, instead there is a tendency to com-
bine small communities into larger ones. They show that if a network hasL
links, it is impossible to identify communities with less than

√

L/2 links by
optimizing the modularity, even if these sub-communities are fully connected
subgraphs (See figure 2.1). Some new techniques have been proposed recently
to override the resolution limit, showing that there is a wide range of commu-
nity structures at different mesoscales that can lead us to different interpreta-
tions of the communities. The first approach has been proposed by Arenas et
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Figure 2.1. Example of the limited resolution of the modularity introduced in (Fortunato and
Barthélemy, 2007). The network is composed by identical cliques (complete graphs withm
nodes) connected by single links. The methods that optimize the modularity will group the
cliques (dotted lines) if there are more than

√
L cliques, instead of detecting the smaller but

highly dense connected groups.

al. and introduces a self-loop of weightr in all the nodes (Arenas et al., 2007).
We obtain a graph that maintains the same topological properties than the orig-
inal (in terms of connectivity), but now we can perform the community anal-
ysis at different topological scales adjusting the value ofr. This method also
allows the identification of the “topological stability” of a given configuration,
defined as the range of values ofr where we observe this partition; as wider is
the range ofr where we observe one community, more likely is that this group
could have a specific meaning. More recently, Kumpulaet al.(Kumpula et al.,
2007), presented a method to avoid the limitations of the Q-Potts model (see
Section 2.7) changing the value of itsγ parameter, and obtaining similar results
in the number of communities found at different mesoscales of the network.

From here on we will briefly overview the different methods of community
identification that have been presented recently, classified into five different
sections according to the methodology used to identify the communities. Note
that some methods can belong to two or more of this sections, in this case
we have chosen the one that we think is closer to the main idea behind the
method. First we consider divisive methods that are based on link removal.
Then we present agglomerative based methods. In third place we describe
methods that try to maximize the modularity. Next we present methods that
use the spectral analysis of the network. And finally we present the onesthat
cannot be classified under the ’other methods’ section.
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Figure 2.2. Shortest path centrality (betweenness) is the number of shortest paths that go
through a link or node. In this simple case, the link with the largest link centralityis that
joining nodes 4 and 5.

2.1 Link removal methods
Intuitively, the simplest way to partition a network is to cut some links until

the network is no longer connected. Divisive methods do just that. However,
cutting links haphazardly is unlikely to give useful results. So, several methods
have been proposed to find the most appropriate links to remove, so that the
disconnected components correspond to meaningful communities.

Shortest path centrality

One of the first methods to detect communities removes the links depending
on their shortest path centrality (Girvan and Newman, 2002). Shortest path
centrality measures how central the node or link is in the network, and is com-
puted as the number of shortest paths between pairs of nodes that pass through
a certain node or link. Intuitively, links which are most central are also the most
“between”, and as such, will act as bridges joining communities together in a
connected whole. Removing recursively these bridges should split the network
into more densely connected communities, see figure 2.2.

This algorithm is quite sensitive and is one of the few able to detect com-
munity structure at all levels. Its major drawback is the computational cost,
since calculation of link betweenness requires a computer intensive analysis. It
scales with the number of nodesn and number of linksm asO(m2n), which
limits the size of the graph one can treat with this method to around 10000
nodes (with current desktop computer technology and some patience).

Current-flow and random walk centrality

In (Newman and Girvan, 2004) the same authors present two other means
to detect community structure where the basic method remains the same, with
the difference being the way in which the link centrality is calculated. The first
approach considers the network to be studied as an electrical circuit, where
links are assigned a unit resistance and a particular pair of nodes act asunit
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Figure 2.3. Resistor networks and current flow centrality. The links in the network arecon-
sidered as unit resistances. By choosing a pair of nodes to be a sourceof unit voltages and sink
t, one can can calculate the current flow through any link using Kirchoff’s laws. Summing this
value for every pair of nodes gives the total current flow betweenness of a link. In this case the
biggest current flow is through link joining nodes4 and5.

voltage source and sink. The current flows from source to sink along anumber
of paths, those with the lowest resistance (shortest path) carry the most current.
So thecurrent-flowbetweenness of an link can be calculated using Kirchoff’s
laws by summing the value of the current flowing through that link over all
pairs of nodes 2.3. In the second approach the network is thought of asa
substrate for signals that perform a random walk from a source vertexto a sink
vertex. The link betweenness in this case is simply the rate of flow of random
walkers through a particular link summed over all pairs of vertices. The authors
show that this measure of betweenness is numerically identical to current flow
betweenness, but the derivation is different.

Although conceptually interesting, these approaches are computationally
costly. As the authors themselves note, and we can see in Sec. 3, the shortest
path betweenness outperforms these approaches in both speed and accuracy.
Both the resistor network approach and the random walk approach ideashave
been developed further by other authors (see posterior sections).

Information centrality

A different divisive algorithm approach was presented in (Fortunato et al.,
2004). In this paper they employ thenetwork efficiencymeasure, previously
proposed in (Latora and Marchiori, 2004) to quantify how efficient a particular
networkG is in the context of information exchange. Once a particular link
is removed fromG, its efficiency is reduced by a measurable amountCI , or
information centrality. The idea behind the algorithm is that the links respon-
sible for the largest drop in network efficiency are those that act as bridges
between communities. The algorithm is somewhat slower than other divisive
algorithms running at (O(n4)), but what it loses in speed it gains in accuracy.



36 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

Link clustering

This algorithm, proposed in (Radicchi et al., 2004) is based on the idea that
linked nodes belonging to the same community should have a larger number of
’common friends’. In other words links inside communities should be part of
a large proportion of possible loops, and links pointing to outside of the com-
munity should be included in few or no loops. The algorithm proceeds as in
(Girvan and Newman, 2002), but this works removing the links with the low-
est ’link-clustering coefficient’C(g), which represents the fraction of possible
loops of orderg that pass through a certain link. The algorithm is very fast,
since calculating the clustering coefficient can be done with local information
only. It is also interesting because it was the first algorithm which contained
a definition of community to stop the analysis when a certain condition is ful-
filled.

2.2 Agglomerative methods
Instead of starting with the network as a whole and looking for a way to split

it into meaningful communities, one can look at the problem from a different
perspective. One can start with all the nodes in the network being separate, and
use some method to join up, or agglomerate, nodes which are likely to be in
the same community.

Hierarchical clustering

Traditional methods for detecting communities in social networks have been
based on “hierarchical clustering” (see for example (Scott, 2000) and(Jain and
Dubes, 1988)). In general they proceed by calculating a similarity metric for
each pair of vertices, representing how close the vertices are according to some
property of the network. Such methods have previously been very successful
in small scale case studies, particularly when the complexity of the network
under study is not great. Recently however, since this method is very fastand
scales well with system size, it has been employed to study the temporal evolu-
tion of communities in large networks (Hopcroft et al., 2004). Hopcroftet al.
have studied the CiteSeer citation network (around 250,000 papers) whichis
intractable with most other methods, demonstrating the ability of hierarchical
clustering methods to deal with large data sets.

L-shell method

The algorithm proposed in (Bagrow and Bollt, 2005) consists of creating a
shell of nodes of sizel. The shell is a subset of nodes, all within a shortest
path distance ofd ≤ l (L-shell) spreading outward from a starting nodei. As
the shell expands thetotal emerging degree, K l

i , is measured which is simply
the number of links pointing to vertices outside the expanding shell. When the
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ratio of the emerging degree at stepl to that at stepl − i, Kl
i

Kl−1

i

, is lower than a

cut-off value, the algorithm is stopped, grouping all the nodes within a distance
l of the starting vertex within one community, and all other nodes are said to
be outside.

This algorithm is specially useful when one is concerned with a single com-
munity and not the entire community structure, and for this purpose the al-
gorithm is computationally inexpensive scaling linearly with the size of the
community under scrutiny.

K-clique method

Another approach proposed by Pallaet al. (Palla et al., 2005) introduces the
idea that communities can overlap. In their definition of community, one node
can belong to various “tematic” communities (i.e. one can belong to a scientific
group, a family, a sports team, ... ), which usually share a certain amount of
nodes (see figure 2.4 a). The idea behind this overlapped communities is based
on the concept ofk-clique communities. Ak-clique is a group ofk nodes
that is a complete subgraph, and ak-clique community is the union of allk-
clique that are adjacent (twok-cliques are adjacent if they sharek − 1 nodes).
Searching all the possible k-cliques of the network will provide a result similar
to figure 2.4 b.

In terms of accuracy, this method is not comparable with the others pre-
sented, since it uses a different definition of community structure. However, it
has other interesting applications, i.e. it can be used to observe the relationship
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Figure 2.4. a) Overlapping communities around a given node. We can observe thatone node
can belong to more than community at the same time. The communities can overlap and share
more than one node between them b) An example of overlapping k-clique communities at with
k = 4. The red nodes belong to more than one community. For more informationabout the
method see (Palla et al., 2005)
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between the different communities or to determine the communities where a
certain node belongs.

2.3 Methods based on maximizing modularity
As described previously, the modularity measure is one way to evaluate

quantitatively a network partition. So, as many authors have asked themselves,
why not optimize this value directly? The main problem is that the parti-
tion space of any graph (even relatively small ones) is huge, and one needs
a guide to navigate this space and find maximum values. Here we outline the
approaches that have tackled this problem.

Greedy algorithm

In the first attempt at optimizingQ directly Newman takes a greedy opti-
mization (hill climbing) approach (Newman, 2004b). At the start of the al-
gorithm, each node is placed into its own partition. One can then calculate
the change inQ should any two partitions be joined. The algorithm proceeds
by choosing the pair of partitions producing the largest change, and joining
them. This process is repeated until a maximum value ofQ is obtained. The
algorithm is one of the fastest available, especially when applied using the
data structure for sparse networks described in (Clauset et al., 2004). How-
ever, while also pretty good at identifying community structure, more recent
approaches have achieved even more accuracy (see Sec. 3).

The main drawback of this method is that it tends to favor the creation of
large communities at the expense of smaller ones. With a simple modifica-
tion of the algorithm, Danonet al. presented a method capable of identify-
ing heterogeneous communities ensuring that communities of differing sizes
are treated equally (Danon et al., 2006), improving the efficiency Newman’s
method without increasing the temporal cost. Another interesting upgrade of
this method has been proposed in (Pujol et al., 2006). Instead of placing the
nodes individually at the beginning, they perform a random walk process to re-
duce the dimensionality of the network. In this initial process, they group the
nodes according the number of times that a certain walker have visited them.
After this they use the greedy algorithm to optimize the modularity. This mod-
ification increases the accuracy while reduces the temporal cost compared with
Newman’s original version.

Simulated annealing methods

Another approach to optimize the modularity measure is to employ simu-
lated annealing methods. It was first proposed by Guimeràet al. to study
modularity in random networks (Guimerà et al., 2004). The process begins
with any initial partition of the nodes into communities. At each step, a node
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is chosen at random and moved to a different community, also chosen at ran-
dom. If the change improves the modularity it is always accepted, otherwise it
is accepted with a given probability. The process is repeated until we cannot
improve the modularity anymore. The algorithm is slower than some of the
other methods, but as we present in sec. 3 is the most accurate option up to
date.

In (Massen and Doye, 2005) the authors present two modifications of the
Monte Carlo sampling method with simulated annealing. Firstly, the algo-
rithm is stopped periodically, or quenched. Then they analyze all the possible
node movements and accept the move corresponding to the largest increase of
the modularity. The second way to improve the efficiency is using a Basin-
Hopping approach, where in each step a series of nodes are moved from one
community to another, not just one. In this case, the acceptance criterion is
calculated directly from the partition that results at the end of the move. The
authors report that this method is slower to run, but is able to find high val-
ues of modularity quickly. In case of large networks it requires less computer
memory than the other presented, since it doesn’t need extra data structures.

2.4 Spectral analysis methods
An alternative representation of a graph other than the adjacency matrix

is the Laplacian matrix. If a link exists between nodesi andj, the element
Lij = −1. The diagonal of the matrixLii contains the degree of nodei, so
that the sum of each row and column is equal to zero. Methods which take
advantage of algebraic properties of these matrices have been proposed over
several decades in many physical and mathematical problems.

Multi dimensional spectral analysis

Taking advantage of the properties of the Laplacian matrix, Donetti and
Muñoz present a very nice approach in (Donetti and Muñoz, 2004). The first
few non-trivial eigenvectors can be extracted sequentially at minimum costus-
ing the Lanczos method, which can be applied to sparse matrices at minimum
computational cost (Golub and van Loan, 1996). The individual eigenvector
components, which represent nodes in the graph, can be thought of ascoordi-
nates inM -dimensional space, whereM is the number of non-trivial eigenvec-
tors considered. The idea is that if two nodes belong to the same community,
they are close in thisM -space. Once separated in this space, the nodes can
be clustered using hierarchical agglomerative methods (i.e. “single linkage”
or “multiple linkage”), using both simple Euclidean distance and angular dis-
tance. The clustering is stopped at the highest value of modularity obtained,
thus detecting the optimal configuration.

This algorithm is reasonably fast but needsa priori information on how
many vectors need to be extracted to separate the communities properly. In
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Figure 2.5. a) Components of the first non-trivial eigenvector for aad hocnetwork with 4
communities (see Sec. 3). b) All communities can be clearly identified whenthe components
of more than one eigenvector are used as coordinates inM -dimensional space whereM is the
number of eigenvectors used. HereM = 2.

terms of sensitivity, the algorithm performs well (see Sec. 3). In the compar-
ison section, we use the aliases DMCS and DMCA for Single Angular and
Complete Angular analysis respectively.

Constrained optimization

This method, described in (Capocci et al., 2004) is based on the spectral
properties of the simple adjacency matrix as opposed to the Laplacian. The au-
thors recast the costly problem of extracting eigenvectors of anN × N matrix
into a constrained optimization problem. In this way they are able to extract
the eigenvectors much faster. As in the previous method this gives informa-
tion about the location of the different nodes ordered in different groups in an
M -space (whereM is once again, the number of eigenvectors extracted). To
detect the groups that appear, they use a correlation of the average values of
the eigenvectors to measure how close two nodes are in this space. Insteadof
providing a clear cut community structure, this method gives us an idea of how
close any pair of nodes is in the context of communities.

Spectral optimization of the modularity

A different approach to detect communities using the matrix spectra has
recently been introduced in (Newman, 2006b). The idea is to rewrite the mod-
ularity function in matrix terms, and then detect the communities using spectral
partitioning methods. The modularity matrix is defined asBij = Aij − Pij ,
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Figure 2.6. How clustering is related to curvature according to (Eckmann and Moses,2002).
For a nodei, the shortest path distance between any of its neighbors will be either1, if the
neighbors are linked, or2, if they are not. The average distance between the neighbors can give
a measure of curvature. Positive curvature is depicted in (a) and negative curvature is depicted
in (b). Both triangles have sides of length unity, and the angle between the twois the same, but
the distances are different.

beingA the adjacency matrix andPij the probability that, maintaining their de-
grees, nodesi andj are connected in a randomized version of the network.The
idea is the following. First we need to compute the leading eigenvector of
the modularity matrix. And then, depending on the sign of the values of this
eigenvector, the nodes are classified on different communities. The division
into communities is performed by recursive divisions into two communities
while we optimize the modularity. The total cost of the algorithm scales with
O(n2 log n), and the modularity values achieved in some test networks are
among the highest.

2.5 Other methods
This section is dedicated to those methods that do not belong clearly to any

of the previous classes.

Clustering and curvature

This is one of the first attempts at detecting thematic and functional com-
munities based on clustering (Eckmann and Moses, 2002). The authors use
the concept ofcurvatureof a node and relate it to clustering. Consider a node
i; its neighbors will be separated by a geodesic distance of at most2. If links
exist between neighbors of nodei, this distance is unity. The average distance
between neighbors of any node, therefore, lies between 1 and 2. This value
is directly related to clustering (see (Eckmann and Moses, 2002)). If oneas-
sumes that the distance from nodei to any of its neighbors is unity, and take
the distance between any of the neighbors to be the average, one can indeed
think of the node to be in “curved” space, with the amount of curvature depend-
ing on the average distance between the nodes, see figure 2.6. The methodis
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based on the intuition that high curvature region of a network will belong to
the same community. The authors show that finding connected components of
high curvature give a good idea of community structure.

Random walk based methods

In a set of papers, Zhou and collaborators develop a methodology for com-
munity detection based on random walks (Zhou, 2003a, Zhou, 2003b, Zhou
and Lipowsky, 2004). The authors show that instead of actually performing
the random walk on the network, it is possible to calculate the average distance
between two nodes algebraically using with the adjacency matrix. From the
information contained in the average distances, the authors define which nodes
act as global and local attractors1, and then agglomerate the nodes according a
set of rules based on the hierarchy of the attractors.

The authors have proposed some interesting modifications to their original
method. First, in a more refined effort, the authors use the average distance
measure to define adissimilarity indexof any two nodes2 (Zhou, 2003a). Us-
ing the dissimilarity index, the author describes an elaborate method of hierar-
chical agglomeration of nodes into communities. And more recently they have
presented another method based onbiased random walks(Zhou and Lipowsky,
2004, Zhou and Lipowsky, 2005). Instead of having the walkers performing
purely random walks, the walker has a higher probability to jump from a node
i to a node which shares the highest number of neighbors withi (essentially
biasing the random walker to go down the link with the highest link clustering).

In a similar approach Latapy and Pons (Latapy and Pons, 2004) also employ
the intuitive idea that a random walker will get trapped for a longer time in a
a densely connected community. They calculate a distance measure between
two nodes, and apply an agglomerative method (Ward, 1063), starting with all
nodes in their own community, and joining them two by two. The main differ-
ence between this approach and the above is that at each step, the distances are
recalculated. The two methods have very similar sensitivities, suggesting that
recalculating the distances in each step is not crucial, see Sec. 3.

Approximate resistance networks

In a development of the resistor network approach in (Newman and Girvan,
2004) Wuet al. present an approximate method, in order to reduce the compu-
tational time needed (Wu and Huberman, 2004). The authors select two nodes
as source and sink, assign them a fixed voltage, and then approximate the volt-

1The local attractor of nodei is the closest node (smallest average distance) of its nearest neighbors, and
the global attractor, the node closest to all other nodes in the network
2For nodesi andj the dissimilarity index is simply the square of the differencebetween the distance from
another nodek to i and the distance fromk to j summed over all nodesk.
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Figure 2.7. The q-Potts model as applied to a small network with communities. Each nodeis
assigned one ofq spins. As the Hamiltonian of the system is minimized, the spins in a tightly
connected community take equal values, which are different to those ofspins located in other
communities.

age of the rest of the nodes. The process is performed iteratively, avoiding
the costly matrix inversion used in (Newman and Girvan, 2004). Identifying
the gaps in voltage values they can split the graph at a particular voltage gap,
separating a number of nodes (within a tolerance limit), which must be previ-
ously known, from the rest of the network. This process is repeated, randomly
choosing pairs of nodes to be voltage sources and sinks. Finally nodes are
then bundled together into a community of the expected size using a simple
majority rule over the realizations of the algorithm.

This method when employed to identify all communities in a graph is de-
pendent on having a good idea of the sizes of communities one is looking for.
In networks of larger size and complexity, this is generally not known, andthe
algorithm becomes more difficult to apply. However, the method can be em-
ployed to identify in linear time the community that any one nodes belongs to,
similar to the approach of the L-shell method.

Q-potts model

Another interesting approach (Reichardt and Bornholdt, 2004) detectscom-
munities by mapping it to a spin system (Blatt et al., 1996). Here, each node
is assigned a spin state between1 andq, at random. The energy of the spin
system is determined using a q-Potts Hamiltonian3. The idea is that in the
ground state of the system, communities are identified as groups with equal
spin values, see figure 2.7. One useful characteristic of this is that it permits

3The q-Potts model is essentially an Ising model withq states instead of just two
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the detection of communities which are “fuzzy”, or clearly separate from the
rest of the network. The method should be fast since one only needs onlylocal
information to calculate the Hamiltonian and update the spins. The sensitivity
of the algorithm is also good, as we can see in the next section.

Information theoretic approach

One of the most recent approaches to the community detection problem has
been proposed in (Rosvall and Bergstrom, 2007). It is based on an information-
theoretic framework, where the community detection problem is now treated
as an information compression problem. The idea is to reduce the link connec-
tivity of the network (the adjacency matrix) into a more simple description (a
module assignment vector and a module matrix). To discover the configuration
that provides the best “compression” of the network structure, they maximize
the mutual information between the encoded and the global descriptions.

The results presented in their paper show that this method performs better
than the others when detecting asymmetric communities. Another advantage
is that changing the encoding function we can detect other types of cluster-
ing beyond the classical community structure. Similar to the mixture models
presented in (Newman and Leicht, 2007), the method is also able to identify
partitions where the nodes have similar patterns of connection to other nodes.

3. Comparative evaluation
Thus far we have described several methods to identify the optimal commu-

nity structure from a wide range of points of view. In this section we would like
to present a qualitative comparison for all the methods, but this is not possible
as they are very varied, both conceptually and in their applications. Therefore,
our main goal is to compare the efficiency and accuracy of as many as possi-
ble methods, which will help us write some guidelines on what methods are
recommended to analyze different types of networks.

3.1 Accuracy of the methods
One way that has been employed to test sensitivity in many cases is to see

how well a particular method performs when applied toad hocnetworks with
a well known, fixed community structure (Newman and Girvan, 2004). Such
networks are typically generated withn = 128 nodes, split into four communi-
ties containing 32 nodes each. Pairs of nodes belonging to the same community
are linked with probabilitypin whereas pairs belonging to different communi-
ties are joined with probabilitypout. The value ofpout is taken so that the
average number of links a node has to members of any other community,zout,
can be controlled. Whilepout (and thereforezout) is varied freely, the value
of pin is chosen to keep the total average node degree,k constant, and set to
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Figure 2.8. Algorithm sensitivity as applied to ad hoc networks withn = 128, the network
divided into four communities of32 nodes each and total average degreezout fixed to16. For
low zout/k the communities are easily distinguished. For higherzout/k this becomes more
complicated. Both measures of comparing original communities to ones found by the detection
method are shown. The normalized mutual information measure is more discriminatory and
appears more sensitive to errors in the community identification procedure. The results are
shown for Newman’s fast algorithm (Newman, 2004b).

16. Aszout is increased from zero, the communities become more and more
diffuse and harder to identify, (figure 2.8). Since the “real” community struc-
ture is well known in this case, it is possible to measure the number of nodes
correctly classified by the method of community identification.

In (Newman, 2004b), the author describes a method to calculate this value.
The largest group found within each of the four “real” communities is con-
sidered correctly classified. If more than one original community is clustered
together by the algorithm, all nodes in that cluster are considered incorrectly
classified. For example, for the case whenzout/k is small, if a method finds
three communities, two of which correspond exactly to two original communi-
ties, and a third, which corresponds to the other two clustered together, this
measure would consider half the nodes correctly classified. As the author
notes, this measure is quite harsh, and some nodes which one may consider
to be correctly clustered are not counted. On the other end of the spectrum, as
zout/k becomes large, and the networks become essentially random networks,
this method rewards the identification of smaller clusters found within each of
the original communities, which could be misleading.
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We suggest that a more discriminatory measure is more appropriate, and
propose the use of thenormalized mutual informationmeasure, as described in
(Kuncheva and Hadjitodorov, 2004, Fred and Jain, 2003). It is based on defin-
ing a confusion matrixN, where the rows correspond to the “real” commu-
nities, and the columns correspond to the “found” communities. The element
of N, Nij is the number of nodes in the real communityi that appear in the
found communityj. A measure of similarity between the partitions, based on
information theory, is then:

I(A, B) =
−2
∑cA

i=1

∑cB

j=1 Nij log
(

NijN
Ni.N.j

)

∑cA

i=1 Ni. log
(

Ni.

N

)

+
∑cB

j=1 N.j log
(

N.j

N

) (2.2)

where the number of real communities is denotedcA and the number of
found communities is denotedcB, the sum over rowi of matrixNij is denoted
Ni. and the sum over columnj is denotedN.j

If the found partitions are identical to the real communities, thenI(A, B)
takes its maximum value of 1. If the partition found by the algorithm is totally
independent of the real partition, for example when the entire network is found
to be one community,I(A, B) = 0.

Both measures of accuracy give a good idea of how a method performs.
However, the measure we propose for use here is more representativeof sensi-
tivity if the performance is dubious, since it measures the amount of informa-
tion correctly extracted by the algorithm explicitly. As an example, for small
zout, where two original communities are clustered together by the algorithm,
this measure does not punish the algorithm as severely, taking into accountthe
ability to extract at least some information about the community structure. On
the other hand, for largezout, this method is able to detect that the clusters
found by the algorithm have little to do with the original communities, and
I(A, B) → 0.

In figure 2.9 we show the sensitivity of all methods we have been able to
gather. The percentage of correctly identified nodes is calculated using the
method described in (Newman, 2004b), since this is the method employed by
the various authors. We can see that accuracy varies in a similar way across the
different methods aszout increases and the communities become more diffuse.
So, it remains difficult to compare the performance by looking at the methods
separately, even with a reference performance.

To summarize the large amount of information, in figure 2.10 we plot the
fraction of correctly identified nodes for only three values ofzout (6, 7 and
8), corresponding tozout/k = 0.375, 0.4375 and 0.5 respectively, for each
method. From this we can see that most of the methods perform very well for
zout = 6 (zout/k = 0.375), and even forzout = 7 (zout/k = 0.4375) most can
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Figure 2.9. Comparing algorithm sensitivity using ad hoc networks with predetermined com-
munity structure. Thex-axis is the proportion of connections to outside communitieszout/k
and they-axis is the fraction of nodes correctly identified by the method measure asdescribed
in (Newman, 2004b). The labels here correspond to the different methods and are listed in table
2.1.

identify more than half the nodes correctly. Forzout = 8 (zout/k = 0.5) the
SA method is still able to identify more than 80% of the nodes correctly.

Although these are the most used reference networks to compare the ac-
curacy of the methods up to date, they have been criticized because they do
not reproduce the community structure observed in real networks. In order to
expand the scope of these comparisons, some new benchmarks have been pro-
posed that explore the accuracy of the methods when confronted against other
artificially controlled networks. Here we present two methods based on small
modifications of Newman’s networks. The first modification, introduced in
(Danon et al., 2006), describes how to create networks to test the effect of size
heterogeneity, reproducing the fact that in real networks usually the distribu-
tion of community sizes is highly skewed. To generate such networks we need
to chose the size of all the communities and a factor that helps us to control
their internal and external cohesion (see figure 2.11 left). A second modifi-
cation provides computer generated networks with a well-defined hierarchical
substructure (Arenas et al., 2006b). Now we define the sizes of the hierarchi-
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Figure 2.10. The fraction of correctly identified nodes at three specific values ofzout, 6, 7
and8 for all available methods and for networks with fixedk = 16. Note that for the FLM
method, the data forzout = 8 were not available. Here we can see that most of the methods are
very good at finding the “correct” community structure for values ofzout up to6. At zout = 7
some methods begin to falter but most still identify more than half of the nodes correctly. At
zout = 8, when on average half the links are external, the SA method is still able to identify
over 80 % of the nodes correctly.

cal subgroups and the probabilities to connect two nodes depending on their
relation in the hierarchical structure (see figure 2.11 right). These networks
provide a good benchmark to test if a method is able to unravel the different
mesoscales of the community structure.

3.2 Efficiency of the methods
While accuracy is an essential consideration when choosing a method, it

is just as important to consider the computational effort needed to perform
the analysis. For some of the approaches described in the literature, we have
collected estimates of how the cost scales with the size and/or density of the
network. For networks withn nodes andm links, the methods scale between
O(m + n) for the fastest, andO(exp(n)) for the slowest as it is shown in
table 2.1. Such diversity is due to the heterogeneous approaches taken by the
authors. The faster methods tend to be approximate and less accurate, while
the slower methods have other advantages. Differences in speed only become
important when dealing with larger networks, and for smaller networks we can
choose between the more accurate ones.
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Figure 2.11. Left: Example of a computer generated network with communities of different
sizes. In this case we can control the size, the internal cohesion and the external cohesion of
each community, see (Danon et al., 2006) for more details. Right: Example of a computer
generated network with hierarchical community structure. Each node has a high probability to
create a link to nodes of the same internal cluster (zin1), a lower probability to be linked to
nodes of the external cluster (zin2) and almost no probability to be linked with nodes of the rest
of the network (zout). See (Arenas et al., 2006b) for more details.

Ref. Label Order

(Eckmann and Moses, 2002) EM O(m〈k2〉)
(Zhou and Lipowsky, 2005) ZL O(n3)

(Latapy and Pons, 2004) LP O(n3)
(Newman, 2004b) NF O(n log2 n)

(Newman and Girvan, 2004) NG O(m2n)
(Girvan and Newman, 2002) GN O(n2m)

(Guimerà et al., 2004) SA parameter dependent
(Fortunato et al., 2004) FLM O(n4)
(Radicchi et al., 2004) RCCLP O(n2)

(Donetti and Muñoz, 2004, Donetti and Muñoz, 2005)DM/DMN O(n3)
(Bagrow and Bollt, 2005) BB O(n3)

(Capocci et al., 2004) CSCC O(n2)
(Wu and Huberman, 2004) WH O(n + m)

(Palla et al., 2005) PK O(exp(n))
(Reichardt and Bornholdt, 2004) RB parameter dependent

(Newman and Leicht, 2007) NS O(n2 log n)
(Danon et al., 2006) DDA O(n log2 n)
(Pujol et al., 2006) PBD O(n log2 n)

Table 2.1. Table summarizing how the computational cost of different approaches scales with
number of nodesn, number of linksm and average degree〈k〉. The labels shown here are used
in figures 2.9.

3.3 Which algorithm should we use?
One has to take many factors into account when choosing an algorithm to

use. The above comparison ought to give the reader an idea as to which algo-
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rithm is most appropriate for a given problem. In many cases, a compromise
must be reached between accuracy and running time, especially for larger net-
works. To clarify this further, here are a few examples of real networks, and
our suggestion for the appropriate community identification algorithm.

Say we want to analyze a relatively small network, for example the metabolic
network of the wormCaenorhabditis elegans, which has 453 nodes. Since the
network is small, and current desktop computer technology is reasonably fast,
the speed of the algorithm should pose no restriction, and one is free to chose
the slower, more accurate methods. In this case the Simulated Annealing (SA)
method would be the most appropriate choice, since it gives the most accu-
rate partitions, especially if the system is allowed to cool slowly (see (Guimerà
et al., 2004, Massen and Doye, 2005, Guimerà and Amaral, 2005a) for more
details).

Larger networks, with the number of nodes in the order of105 become in-
tractable with the most accurate methods. For example, when attempting to
study the community structure of the actor collaboration network with 374511
nodes, we estimate that the SA would take a few months of uninterrupted com-
putation. However, a reasonable implementation of the fast algorithm would
be able to perform this analysis in just a few hours (Clauset et al., 2004, Pujol
et al., 2006), making it the appropriate choice, even if their accuracy is not the
best.

Finally, let us consider an intermediate sized network such as the Pretty
Good Privacy (PGP) web of trust social network (Guardiola et al., 2002), con-
taining 10680 nodes. Although the SA algorithm would run in a reasonable
time, it may be a better choice to compromise and employ a faster running
algorithm. We leave this choice to the preferences of the researcher, since all
the methods presented in this chapter can perform reasonably well (with more
or less accuracy).

4. Summary
In this chapter we have presented the problem of community identification

in complex networks, and we have given a brief overview and comparisonof
the modern approaches to detect the communities. A large amount of knowl-
edge has been collected in the field, and real progress has been made, both in
the identification of communities and their characterization. However, some
questions do remain open in the community detection problem, and it is these
that we would suggest for further study.

One of the main problems that is actually being discussed is the valid-
ity of the modularity as the appropriate measure for quantifying the commu-
nity structure (Arenas and Díaz-Guilera, 2007). The work of Fortunatoand
Barthelemy showed the limitations of this measure to uncover certain well-
defined communities, opening the door for other possible structure measure-
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ments. This work is also related with the problem of the detection of commu-
nity structure at different mesoscales. As introduced previously, it hasbeen
observed that the community structure can be analyzed at different levels, ob-
taining different coarse-grained views of the same network. The structures
obtained at different scales do not necessarily need to be hierarchical. The
methodology and the definition of this scales are still an open question.

An additional issue that is actually discussed is the computational cost needed
to uncover some community structures with the presented methods. The fastest
algorithm runs in linear time, but this particular method needs a priori knowl-
edge of the number of expected communities, and assumes that all communi-
ties are of similar size (Wu and Huberman, 2004). And if we do not know
the number of communities a priori, the cost of the best method scales as
O(n log2 n) with network size. While this makes the analysis of extremely
large networks feasible, this algorithm does not guarantee that the partition
found is the best possible one. Other algorithms which are more computation-
ally expensive have other merits, such as accuracy or the ability to identify
overlapping communities. So, when choosing a method one must consider
carefully the context of its use. Ideally, one would like to have a method which
guarantees accuracy and is fast at the same time, but finding such a methodis
still a challenging problem.





Chapter 3

DETECTING COMMUNITY STRUCTURE
USING EXTREMAL OPTIMIZATION

In the previous chapter we have introduced the problem of detecting the
community structure as one of the most challenging open problems within the
subject of complex networks. As we have seen, the problem has been tackled
from several perspectives, but the results are still far to be optimal: the most
accurate methods are usually not scalable, and the fastest methods usuallydo
not find the expected communities. The purpose of this chapter is to introduce
a novel method to detect the communities based on the maximization of the
modularityQ measure. We propose a fast, scalable algorithm that searches
highest possible value ofQ using local information.

It has been proved that the search for the optimal (largest) modularity value
is a NP-hard problem due to the fact that the space of possible partitions grows
faster than any power of the system size (Brandes et al., 2007). For thisreason,
a heuristic search strategy is mandatory to restrict the space of configurations
while preserving the optimization goal. Indeed, it is possible to relate the cur-
rent optimization problem forQ with classical problems in statistical physics,
e.g. the spin glass problem of finding the ground state energy (Sherrington
and Kirkpatrick, 1975), where algorithms inspired in natural optimization pro-
cesses as simulated annealing (Kirkpatrick et al., 1983) and genetic algorithms
(Goldberg, 1989) have been successfully used.

The heuristic search proposed in this chapter is based on the Extremal Op-
timization (EO) algorithm introduced by Boettcher and Percus (Boettcher and
Percus, 2001a, Boettcher and Percus, 2001b). This algorithm is inspired in
turn in the evolution model of Bak-Sneppen (Bak and Sneppen, 1993), and
basically operates optimizing a global variable by improving extremal local
variables that involve co-evolutionary avalanches. The performance of EO al-
gorithms have been shown to overcome the efficiency of classical simulated an-
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nealing and genetic algorithms providing competitive accuracy but using less
computational time (Boettcher and Percus, 2000).

The chapter is organized as follows. In the first section we describe the idea
behind the extremal optimization heuristics, and how we have applied it to
identify communities. Next, we introduce different theoretical and algorithmic
improvements that can be applied to increase the accuracy and efficiency of
community detection methods based in general. In particular, we show how
to apply this refinements to the EO, obtaining even higher values ofQ. The
last part of the chapter presents a detailed benchmark realized with the EO
method. We analyze a large subset of real networks and we show the maximum
modularity obtained for each, providing a reference where other algorithms can
compare their accuracy.

1. Extremal Optimization Algorithm
The problem of finding an optimal solution for NP-hard problems has re-

ceived a lot of attention from computational complexity theory. A paradig-
matic case of an NP-hard problem is the traveling salesman problem (TSP),
which can be formulated as “Given a number of cities and the costs of travel-
ing from any city to any other city, what is the cheapest round-trip route that
visits each city exactly once and then returns to the starting city?” (Lawler
et al., 1985). Exact solutions can be found for small TSP sizes using exhaus-
tive analysis of the different combinatorial possibilities, but as the system size
grows, the number of possibilities to explore is too large to face with the ac-
tual computational resources. In this case one should use algorithms that can
provide very good solutions, but which could not be proved to be optimal.

The TSP has received a large number of heuristic algorithms that have been
specifically designed to find an optimal solution for this problem. However,
many physical problems do not have a specialized heuristic procedure to find
the solution. For this group of generic problems, the scientific community has
developed some general-purpose optimization approaches based on stochastic
procedures. Probably the most famous is the Simulated Annealing (SA) algo-
rithm introduced by Kirkpatrick (Kirkpatrick et al., 1983), which is inspiredin
the behavior of physical systems in thermal equilibrium. Simulated annealing
works by taking an initial state of the system, and then trying to improve the
system performing small changes, accepting them if they improve the overall
status. These changes can drive the system sometimes to better and sometimes
to worse optimal states, which are governed by the laws of equilibrium statis-
tical physics. If the energy differences between this local optimum are large
(i.e. they are surrounded by high energy barriers), the search algorithm can get
trapped in this local optimum without the possibility of continue improving.
Therefore, this type of local search methods usually need some kind of mech-
anism that can help the system to hop between local optimum (see figure 3.1).
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Figure 3.1. Example of the simulated annealing heuristic search process in a one-dimensional
configuration space. Each configuration has associated a given energy value. With the simulated
annealing we look for the configuration that minimizes the energy of the system. The red
ball represents one run of the simulated annealing that is trapped in a localminima. When
we increase the temperature of the system, we allow the ball to jump between local minima,
potentially making any configuration accessible.

In Simulated Annealing this is done with a temperature parameter that allows
to heating or cooling the system. Therefore, we can explore a wider rangeof
possibilities which can be closer to the best optimal result.

Other examples of generic purpose heuristic algorithms that have been used
in statistical physics are the Genetic Algorithms (Holland, 1975) or the Tabu
Search (Glover, 1986). Within this context, Boettcher and Percus introduced a
new local heuristics known as Extremal Optimization that is based on the ob-
servation of optimization processes in natural systems (Boettcher and Percus,
2000). The inspiration comes from the natural selection process: the survival
of one species depends on the overall adaptation of their population, andto
maintain or improve this overall status, the less adapted elements should be
discarded. Bak and Sneppen modeled this evolution in an ecological model
of interacting species that co-evolve through chain reaction called avalanches
(Bak and Sneppen, 1993). The idea is very intuitive. Each species is charac-
terized by a fitness value which measures its adaptation to the environment.
The species with the worst fitness (i.e. the less adapted) is selected and it is
assigned with a new random fitness value. But the changes on the fitness of one
species impacts the fitness of the interrelated species, provoking an avalanche
of changes that rearrange the fitness of a large number of elements. After a cer-
tain number of steps, the system reaches a punctuated equilibrium (Eldredge
and Gould, 1972), with states that remain stable for long time, broken by pe-
riods of burstiness where the system evolves very quickly into another meta-
stable state. The most interesting point is that the evolutionary process is per-
formed without any external forces governing the dynamics (like the tempera-
ture in SA). This type of behavior resembles de phenomenon of Self-organized
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criticality (SOC) in statistical physics (Bak et al., 1987), and is considered one
of the causes of the emergence of complexity in natural systems (Bak, 1996).

The Extremal Optimization can be considered as a generalization of the
Bak-Sneppen model. Using EO we can try to find a near-optimal solution to
any NP-problem in a reasonable time. The analyzed problem should be ableto
be decomposed in terms of an space of possible configurations, and eachcon-
figuration should be assigned with a global magnitude (the value that we want
to optimize). Like in the BS model, each element of the system is assigned with
a fitness value that reflects its participation to this global magnitude. Then, the
dynamic process works selecting the worst value and replaces its fitness by a
randomly new value. After a certain number of changes, the system evolves
into a critical state that gives an optimal configuration possible of its elements
that maximizes the global value.

In contrast with the thermal equilibrium dynamics of the SA, behind the EO
algorithm there is a mechanism that “drives the system far from equilibrium”
(Boettcher and Percus, 2002). In SA we analyze each small modification of the
configuration and we accept it according to the Metropolis criteria. However,
since in EO the system self-organizes, there is no need to decide if we accept a
given change. Instead we accept all the changes of the system, which usually
are in form of avalanches, and we measure the configuration when the system
has stabilized. This could seem an ineffective random search but, as Boettcher
and Percus proved, the persistent elimination of the worst fitness values leads
the system into meta-stable sub-optimal solutions that can be better than the
ones found by SA. To illustrate the performance of the EO, they applied it to
the well-known problem of graph bi-partitioning also introduced in chapter 2.
Their results showed that the EO outperforms other heuristic methods such as
simulated annealing or genetic algorithms, obtaining better results and con-
suming less time and computational resources (Boettcher and Percus, 2000).

1.1 Optimizing the modularity
The community detection problem can be viewed as a graph multi-partitioning

problem where, instead of minimizing the cut size, the main goal is to find the
configuration that maximizes the modularity. Remember that modularity is
considered the ’de facto’ quantitative measurement for the community struc-
ture, which was originally formulated by Newman as:

Q =
∑

r

(er − a2
r) (3.1)

whereer refers to the fraction of internal links in communityr andar refers to
the total number of links that have at least one node inside communityr. Since
we are interested in applying the EO algorithm to maximize the value ofQ, we
need to reformulate equation 3.1 to reflect the individual contribution of the
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nodes, while maintaining Newman’s original idea: the comparison between
the internal link connectivity against the expected connectivity in a random
network:

Q =
1

2L

∑

i

∑

j

(

kij −
kikj

2L

)

δ(Ci, Cj) , (3.2)

wherekij is 1 if there is a link betweeni and j and 0 otherwise,ki is the
degree of nodei, the Kronecker delta functionδ(Ci, Cj) takes the values, 1 if
nodesi andj are into the same community, 0 otherwise, and the number of
links L = 1

2

∑

ki. From this equation we can easily extract the contribution of
individual nodesi to the summation,

Q =
1

2L

∑

i

qi (3.3)

being

qi =
∑

j

(

kij −
kikj

2L

)

δ(Ci, Cj) (3.4)

For simplification purposes, we rewrite equation 3.4 as the modularity of
the nodei belonging to the communityr:

qr
i = kinti − kiar(i) (3.5)

wherekinti is the number of links that a nodei has with the nodes belong-
ing to the same communityr wherei belongs,kinti =

∑

j kijδ(Ci, Cj), and
ar(i) is the fraction of links that have one node in communityr, ar(i) =
∑

j
kj

2Lδ(Cj , r).
Equation 3.5 provides a measure that depends on the node degree, and its

normalization involve all the links in the network after summation. Re-scaling
the local variableqr

i by the degree of nodei we obtain a proper definition for
the contribution of nodei to the communityr relative to its own degree, and
normalized in the interval [-1,1].

λr
i =

qr
i

ki
=

kinti
ki

− ar(i) (3.6)

keeping in mind this definition ofλr
i we can compare the relative contribution

of individual nodes to the community structure. We will considerλr
i as the

local variable involved in the extremal optimization process that characterize
an individual node, from now on we will refer toλr

i as the fitness of nodei
using the common jargon in extremal optimization problems.
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Figure 3.2. Left: Random initialization of the Zachary network into two partitions, red and
green. Right: Here we identify five different communities by looking at theconnected compo-
nents in each partition. Each color defines a different community.

Once we have determined the metric that we will use to measure each con-
figuration of the partition space, the next step towards the adaptation of the EO
algorithm is the definition of the dynamic process that should self-organize the
nodes into communities. The heuristic search we propose to find the optimal
modularity evolves as follows:

Initially, we split the nodes of the whole graph in two random partitions
having the same number of nodes each one. This splitting creates an ini-
tial communities division, where communities are understood as connected
components in each partition.

At each time step, the system self-organizes by moving the node with the
lowest fitness (extremal) from one partition to the other. In principle, each
movement implies the recalculation of the fitness of many nodes because
the right hand side of equation 3.6 involves the pseudo-global magnitude
ar(i).

The process is repeated until an “optimal state” with a maximum value of
Q is reached. After that, we delete all the links between both partitions
and proceed recursively with every resultant connected component. The
process finishes when the modularityQ can not be improved1.

Note that this process is not a bi-partitioning of the graph because: the num-
ber of nodes in each partition is dependent on the evolution process and not
restricted to be the same at the end of the process; and more importantly,
each partition could contain different connected components (communities)
that when the partitions are disconnected result in several subgraphs.

1The value ofQ always refers to the whole network i.e. is the sum over all thecommunities. At a certain
moment more subdivisions into communities will necessarily decreaseQ because the limit of decomposi-
tion is a community per node whose value ofQ is negative.
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Figure 3.3. Top: Network after edge removal at each recursive cut. Bottom: Evolution of the
Q value in the at each step of the adaptation process. Separation bars indicate recursive divisions
of the graph performed at maximum Q.

Let us illustrate the above mentioned heuristics in a simple case. We will
apply it to the well-know Zachary karate club network (Zachary, 1977).Ini-
tially we split the nodes in two random partitions (see figure 3.2 left). Note that
the number of initial communities (connected components in each partition) in
this case is five (see figure 3.2 right). After that, the self-organization process
starts: the node with the “worst fitness” is selected and moved from its parti-
tion to the other partition, this movement provokes an avalanche of changes in
the fitness of the rest of nodes. We calculate the new value for the modularity
Q, and again repeat the process until no changes could improve it (see figure
3.3).

The application of the algorithm to the Zachary network provides the opti-
mal modularity value after three recursive iterations. The network is decom-
posed in four communities and the value for the modularity is0.4188, greater
than the value0.381 reported by Newman (Newman, 2004b), the value0.406
reported by Reichardt et al. (Reichardt and Bornholdt, 2004) and thevalue
0.412 reported by Donetti et al. (Donetti and Muñoz, 2004) using different
optimization methods presented in the previous chapter.
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Figure 3.4. Fraction of nodes classified in the same partition over 100 realizations of theal-
gorithm. The color of the position (i,j) corresponds to the fraction of times that nodes i and j
belong to the same partition.

1.2 Implementation details
The EO approach presented has several technical implementation details

that are relevant for our purposes. In the first place, as we introduced previ-
ously the main drawback of this type of local heuristics is that the changes
produced at each step are usually small and can lead the system to sub-optimal
configurations. In the original EO algorithm, the node selected is always the
node with the worstλi value. This is a deterministic and fast way to solve the
problem, but the final result strongly depends on the initialization and there
is no possibility to escape from local maxima. Instead, we use a probabilistic
selection calledτ -EO (Boettcher and Percus, 2001b), in which the nodes are
ranked according to their fitness values, and then the node of rankr is selected
according to the following probability distribution:

P (r) ∝ r−τ (3.7)

This solution is less sensitive to different initializations and allows to es-
cape from local maxima. The exponentτ has been tuned around the opti-
mal values obtained for random networks of sizeN that approach the scaling
τ ∼ 1 + 1/ln(N) (Boettcher and Percus, 2001b). The use of this technique
also implies the determination of the number of self-organization stepsαN
needed to decide that the maximum value has little chance to be improved. In
practice, we keep track at each step of the last maximum value obtained forQ,
if this maximum is not improved inαN steps we stop the search. Usuallyα is
empirically determined balancing accuracy and efficiency in the algorithm, we
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useα = 1 allowing as many steps as nodes to improve the current maximum
value ofQ.

A second technical detail to consider is the speed of the algorithm. Since one
of the objectives is to provide an algorithm as fast as possible, it is important
to reduce as maximum as possible how the cost scales with the system size.
The computational cost involved in the whole process isO(N2lnN) where
the NlnN term is the cost associate to the ranking process, however it can
be substantially reduced using heap data structures (Aho et al., 1983) for the
ranking selection process up toO(N). The total cost of the algorithm can then
be improved up toO(N2). The analysis of a network of105 nodes only takes
a few minutes in a standard computer, and network of106 nodes can take up
to a day.

And finally, another interesting technical detail that one should care about
is the robustness of the algorithm, defined as the capability of finding the same
configuration in different runs. Note that since the core of the presented algo-
rithm is stochastic, different runs could yield in principle different partitions.
We have performed 100 runs of the algorithm for the e-mail network and for
a random network with the same number of links and nodes to check the con-
sistency of the proposed method. In figure 3.4 we present the results of the
fraction of times a couple of nodes are classified in the same partition. The
same community structure is clearly revealed for the e-mail network while for
the random network this structure is inexistent.

1.3 Testing the EO algorithm performance
To test the performance of the algorithm we have used the computer-ge-

nerated graphs with a known community structure presented in the previous
chapter: a network of 128 nodes with 4 communities of 32 nodes, where the
nodes have an average degree of 16 and we control the number of internal and
external links (Girvan and Newman, 2002). We generate several graphs using
zout values between 0 and 10, and we compare the results of our algorithm with
those obtained using the heuristics proposed in (Girvan and Newman, 2002)
and in (Guimerà et al., 2004). This comparative shows the capabilities of each
algorithm identifying the communities when these are more fuzzy inside the
whole network.

Using the Girvan-Newman algorithm, which has been the reference algo-
rithm for community identification, the communities are well detected until
values ofzout = 6. In contrast, our algorithm detects the communities up to
zout = 8, where the community structure still persist but is much more diffi-
cult to reveal, see figure 3.5. In this particular case50% of the links are within
the community and50% are links with nodes outside the community. This
result that could seem contradictory is not. Note that the50% of links with
nodes outside the community are equally distributed among the rest of com-
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Figure 3.5. Fraction of nodes correctly classified using computer-generated graphs described
in text. Each point is an average over 100 different networks. Inset: Average of the maximum
modularity obtained in each case.

munities, and then its contribution to the definition of community is deprived
by the number of communities in the rest of the network, in our case three.
For this reason it is expected to find community structure even in these cases.
However, for values higher than 8, the average maximum modularity rapidly
approach the limitQ = 0.208 (see inset figure 3.5), the expected modularity
for a random network with the same number of links and nodes, as it has been
shown in (Guimerà et al., 2004).

We also compare the accuracy of the EO algorithm against the simulated
annealing algorithm of by Guimeraet al., since in the previous chapter we
have shown that it is the most accurate algorithm that has been published in the
literature. In this case we observe that the EO finds similar values of modularity
than the SA. It seems that the SA still performs a little bit better, probably
because it can explore a wider space of configurations. But the EO canfind
these values in less computational time, achieving the two goals that we have
presented at the beginning of the chapter, speed and accuracy, and therefore
providing a very good alternative to detect community structure to the existent
methods.

2. Detecting weighted and directed communities
A large number of real networks are originally weighted and directed. How-

ever, the initial complex networks theories have been centered only in the anal-
ysis and modeling of unweighted and undirected versions. So when we want



Detecting Community Structure using Extremal Optimization 63

to perform a detailed analysis of many real networks, we need first to convert
them into their undirected and unweighted versions, usually throwing away
useful information which may help us understand the network structure more
accurately.

To solve this problem, some authors have started to cope with the statis-
tical analysis of weighted and directed networks, establishing the bases for
these scenarios. The first important publications have shown that the inclusion
of weights can change substantially the description of real networks (Barrat
et al., 2004a, Barrat et al., 2004b). A few attempts have also been proposed to
uncover the community structure using the weight information of the links in
(Newman, 2004a, Palla et al., 2007) or the directional information in (Farkas
et al., 2007).

The original version of the Extremal Optimization algorithm is only capable
of detecting communities in undirected and unweighted networks. Here we
present a generalized method that takes into account the link directions and
weights. The adaptation process is very simple; we maintain the core of the
EO algorithm and we need only to redefine the modularity measurement to
include the extra information of the links. Preserving its semantics in terms of
probability, the definition of modularity can be rewritten as:

Q′ =
1

2W

∑

i

∑

j

(

wij −
wout

i win
j

2W

)

δ(Ci, Cj) , (3.8)

wherewout
i andwin

j are respectively the output and input strengths of nodes
i andj

wout
i =

∑

j

wij , (3.9)

win
j =

∑

i

wij , (3.10)

and the total strength can be computed now as the sum of outlinks or the
sum of inlinks

2W =
∑

i

wout
i =

∑

j

win
j =

∑

i

∑

j

wij . (3.11)

Note that when the network is undirected, the input and output strengths are
equal (wi = wi

out = wi
in), and we obtain the modularity as a function only

of the strength. Furthermore, if the network is unweighted and undirected,wi

represents the degree of thei-th node, i.e. the number of edges attached to it,
andW is the total number of links of the network.
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Once we have redefined the modularity in terms of weighted and directed
links, now we can define the value of the local contribution of the nodes to the
weighted modularity as before,

Q′ =
1

2W

∑

i

q′i (3.12)

being

q′i =
∑

j

(

wij −
wout

i win
j

2W

)

δ(Ci, Cj) (3.13)

However, the final step to obtain the fitness of each node is not straightfor-
ward. In this case, due to the fact that we are using the directed modularity,
we have two choices as the fitness of the nodes: we can use the information
of the inlinks or the information of the outlinks. For instance, if we choose
the contribution of the nodes to the modularity in form of incoming links, the
definition of the fitness for nodei belonging to communityr is

λr
i =

wintout
i

wout
i

− ain
r (i) (3.14)

wherewintout
i is the sum of the weights of the outgoing links from nodei to

other nodes belonging to communityr, wintout
i =

∑

j wijδ(Ci, Cj), andain
r (i)

is the fraction of the weights of the links that have its destination in community

r, ain
r (i) =

∑

j

win
j

2W δ(Cj , r). And if we exchangeout by in and viceversa in
equation 3.14, we obtain a second definition of fitness according to the outgo-
ing links.

λr
i =

wintini
win

i

− aout
r (i) (3.15)

Which one should we choose as the fitness? The answer is that both are
equally valid since when we sum the local contribution of the nodes we obtain
the same global value for the modularity. The only difference between using
this two fitness is that we could obtain a distinct node ranking, provoking that
the heuristic search paths through the configuration space will also be different.

To analyze the performance of this extension of the original EO, we have
tested it on a set of computer generated networks that include links with weight
and direction. These networks are created using the same methodology de-
scribed in the previous chapter (128 nodes network, divided into four groups
of 32 nodes with an average degree of 16), but now each link is assigned ran-
domly with one direction. Since we want to study the effect of weights, we fix
the average number of internal/external links and we assign a weightw >= 1
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Figure 3.6. Fraction of nodes correctly classified using computer-generated graphs with di-
rected and weighted links. We fix the number of links, the weight of the external links to 1, and
we increase the weight of the internal links. Dotted lines represent the accuracy of the detection
process when we remove the direction of the links.

to the edges inside each community while we keep a fixed weight 1 for those
edges that lie between communities. Then we evaluate the fraction of vertices
classified correctly as a function of the internal weight,w. As figure 3.6 shows,
introducing weight into the links provides extra information that allows the al-
gorithm to discover the 4 communities again, even if there are more links to
outside than to inside the community. We also observe that values ofw needed
to recover the communities are very small, when the weight of the internal
links is twice the weight of the internal, the algorithm classifies essentially all
vertices correctly in the three presented cases.

We also compare the results against undirected version of the same net-
works. Note that, for lower values ofw the undirected detection seems to find
better configurations, but when the communities are well-defined there is al-
most no difference between them. This is also an expected result since, as
we explain in appendix A, the differences between the directed and undirected
versions of modularity of the same network are usually very small.

3. Increasing the efficiency and accuracy
of community detection algorithms

After the design of the EO, we have focused on the design of alternative
methods to increase the values of the maximum modularity and to reduce even
more the time need to find these values. The methods are not specific for the
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Figure 3.7. Left: Hierarchical tree that represents the recursive process behind the EO algo-
rithm. The final partitions are defined by the leaves of the tree. Right: Combining the EO with
Newman’s fast algorithm we can explore other possible configurations that can still increase the
modularity.

presented algorithm, and can be applied to any algorithms based on modularity
optimization.

3.1 Improving recursive algorithms
We begin presenting two different ways to improve the accuracy of the re-

cursive algorithms without incrementing their computational cost. These im-
provements try to solve two typical problems associated with the recursive
heuristic searches, independently if the method is divisive or agglomerative.
Other methods that identify all the communities at once, such as Simulated
Annealing, explore a larger space of configurations and therefore donot not
suffer from this two problems.

The first problem is in terms of the space of configurations that is visited dur-
ing the recursive analysis. Every time we separate (or group) the network into
two or more partitions, we eliminate the possibility of going backwards and
explore other configurations. In the particular case of the Extremal Optimiza-
tion algorithm, this problem is reflected in the large number of communities
that we find in comparison with other algorithms that obtain similar modular-
ities but a smaller number of communities (Pujol et al., 2006). This is due to
the fact that border nodes of small communities usually have higher values of
local modularity than the border nodes of larger communities, and therefore
these nodes are rarely selected to change from one partition to another. When
the system cuts the two partitions into several groups a large number of small
communities are isolated, losing the chance to integrate with the larger ones.
As the system size growths, the probability of having small communities also
increases.

One easy way to solve this problem is to use a combination of an agglomer-
ative and a divisive algorithm. This combination provides a deeper exploration
of the configuration space, since allows the analysis of a new group of potential
partitions. Figure 3.7 illustrates how the solution works. First we let the re-
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cursive algorithm to divide the network into several groups. Then we perform
an agglomerative process to try to re-join some communities that have been
separated during the recursive process. Since we work with the outputof the
first algorithm, there are only a few communities that we can try to merge, so
the second algorithm is extremely fast.

In our particular case, we have combined the EO algorithm with Newman’s
fast algorithm proposed in (Newman, 2004b). The idea of the fast algorithm
has been described in the previous chapter: we compute the increment of the
modularity obtained by joining each possible pair of communities detected by
the EO, we select the highest increment and, if the increment is positive, we
merge the two communities. We repeat this process recursively until we can
not increase the modularity anymore. As we have explained the process is
very fast, since the algorithm runs in almost linear time for sparse networks,
O(n log n), and the number of communities to agglomerate is very small.
When we apply this method to the communities found by the EO, we observe
that we almost do not increase the final value of the modularity, but instead the
number of communities detected is reduced drastically (see table 4.1 in the last
section).

The second problem is also an artifact of the recursive mechanism. It can
happen that during the initial splits (joins) of the network we obtain an interme-
diate configuration that temporarily has the best modularity possible. However,
after performing recursive splits (joins) it turns out that the intermediate cut
that we have performed does not let us to reach the final maximum modularity.
We will illustrate this problem using the already mentioned Zachary network.

Figure 3.8. Example of a node misclassification problem related with recursive algorithms that
optimize the modularity. First we analyze the network and we obtain the two partition depicted
in the right picture. The circled node is classified in the red partition since it provides higher
modularity than if it is classified in the green. We cut the network into this two groups and we
perform recursively the analysis of the two partitions, obtaining the final four partitions shown
in the left figure. In this case we cannot obtain the maximum modularity, since the circled node
should be in the green partition to obtain the maximum, but we cannot explorethis configuration
due to the limitations of the recursive process.
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When performing the initial analysis, we observe that the circled node is clas-
sified in the red partition, as seen in figure 3.8 left. This configuration gives
the maximum possible modularity, since if we change the marked node to the
other side the modularity decreases from 0.371794 to 0.371466. Therefore, we
consider this as the best split, we cut the network and then we apply the re-
cursive procedure, obtaining the four partitions observed in figure 3.8right. In
this case the final modularity is 0.418803. However, this is not the maximum
possible modularity that we can obtain with four communities. If we move the
marked node to the green partition we can increase the modularity to 0.419790,
obtaining the configuration with the highest modularity known for the Zachary
network.

In our case we have solved this problem using a final bootstrapping of the
modularity, similar to the refinement mechanism introduced by Newman in
(Newman, 2006a). In this final step, we let all the nodes to move to other
partitions and observe the changes in the modularity, similar to the process ex-
plained before in the fast algorithm. When we detect that one change improves
the final modularity, we accept the movement of the node. The process is re-
peated once for all the nodes, so we are able to correct some node positions
and obtain configurations with even higher modularity values.

The increase of the modularity obtained in this two refinements is usually
very small, usually in the order of10−2. For instance, moving one node that is
isolated into a group will only increase the modularity value inmini{wi}/2w.
Therefore, we must take into account that in the search for the best modularity
we need to work with high precision. A difference in the second (or even
greater) decimal can carry some important structural difference between two
configurations.

3.2 Size reduction of the network

Up to now we have presented two different techniques that can improve the
results of community detection algorithms. In this case we present a differ-
ent approach, proposing a method to reduce of the size of the network instead
of improving the problems related with the algorithms. Our goal here is to
demonstrate that it is possible to reduce the size of complex networks while
preserving the value of modularity, independently on the partition under con-
sideration. The systematic use of this reduction allows for a more exhaustive
search of the partitions’ space that usually ends in improved values of modu-
larity compared to those obtained without using this size reduction. Therefore,
we can obtain even more accurate results in less computational time.

One of the most interesting points of this method is that is also independent
of the algorithm that is going to be used a posteriori, being specially useful for
the algorithms that look for the configuration with the highest modularity. The
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only imposed constraint to the algorithm is that it should be able to detect the
communities of weighted graphs which include self-loop links.

Reducing a graph preserving modularity

Before explaining the different types of reductions that we can carry out,
we will introduce the concept of reduced graph. LetG be a weighted complex
network of sizeN , with weightswij ≥ 0, i, j ∈ {1, . . . , N}. If the network
is unweighted, the weights matrix becomes the usual connectivity matrix, with
values1 for connected pairs of nodes, zero otherwise. We will assume that the
network may be directed, i.e. represented by a non symmetric weights’ matrix.

Any grouping of theN nodes of the complex networkG in N ′ parts may be
represented by a surjective functionR : {1, . . . , N} −→ {1, . . . , N ′} which
assigns a group indexRi ≡ R(i) to everyi-th node inG. Thereduced network
G′ in which each of these groups is replaced by a single node may be easily
defined in the following way: the weightw′

rs between the nodes which repre-
sent groupsr ands is the sum of all the weights connecting vertices in these
groups,

w′
rs =

∑

i

∑

j

wijδ(Ri, r)δ(Rj , s) , r, s ∈ {1, . . . , N ′} (3.16)

where the sums run over all theN nodes ofG. For unweighted networks the
value ofw′

rs is just the number of arcs from the first to the second group of
nodes. It must be emphasized that a noder of the reduced networkG′ acquires
aself-loopif w′

rr 6= 0, which summarizes the internal connectivity of the nodes
of G forming this group.

The input and output strengths of the reduced networkG′ are

w′
r

out
=
∑

s

w′
rs =

∑

i

∑

j

wijδ(Ri, r)
∑

s

δ(Rj , s) =
∑

i

wi
outδ(Ri, r) ,

(3.17)

w′
s

in
=
∑

r

w′
rs =

∑

j

∑

i

wijδ(Rj , s)
∑

r

δ(Ri, r) =
∑

j

wj
inδ(Rj , s) ,

(3.18)
and its total strength2w′ is equal to the total strength2w of the original net-
work

2w′ =
∑

r

w′
r

out
=
∑

s

w′
s

in
=
∑

i

wi
out =

∑

j

wj
in = 2w . (3.19)

One of the properties of the reduced network is the preservation of modu-
larity, i.e. the modularity of any partition of the reduced graph is equal to the
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modularity of its corresponding partition of the original network. Each node
in the reduced network summarizes the information necessary for the calcu-
lation of modularity in its self-loop (that accounts for the intraconnectivity of
the community) and its arcs (that account for the total strengths with the rest
of the network). The proof of this property is available in the Appendix B of
this dissertation.

Undirected and directed reductions

The question now is: how can we determine which nodes will belong to
the same community in the optimal partition, before this partition is obtained?
To answer this questions we need to be able to determine the acquaintance
(nodej) of nodei in its optimal community, in order to group them (Ri = Rj)
in a single equivalent node with a self-loop, as explained above. If we know
that nodesi and j share the same community at maximum modularity, the
reduced network will be equivalent to the original one as regards modularity:
no information lost, and a smaller size. Taking into account that the sign of
the local modularity when a single nodei is connected to communityr can
only be positive if there is a link betweeni and another node in communityr,
the only candidates to be the right acquaintance of any node are its neighbors
in the network. Here we present two reductions for undirected and two for
directed networks based on this idea that does not alter the final modularity.
The analytical proof of these reductions has also been included in Appendix B.

In undirected networks, the simplest particular cases arehairs, i.e. nodes
connected to the network with only one link. Hence, a hair can be analytically
grouped with its neighbork if

wii ≤
w2

i

2w
, (3.20)

producing a self-loop for nodek of value

w′
kk = wii + 2wik . (3.21)

When nodei has no self-loop (wii = 0) this condition is always fulfilled, see
figure 3.9a.

Another solvable structure in undirected networks is what we call atriangu-
lar hair, in which two nodesi andj have only one link connecting them, two
more links fromi andj to a third nodek, and possibly self-loops. In this case,
if

wii ≤
w2

i

2w
andwjj ≤

w2
j

2w
(3.22)



Detecting Community Structure using Extremal Optimization 71

(a)

i k
...

wik

=⇒ k
...w′

kk

(b)

i

j

k
...wij

wik

wjk

=⇒ h k
...

w′

hk

w′

hh

Figure 3.9. Analytic reductions for undirected networks. In (a) example of ahair reduction,
(b) example of atriangular hair reduction (see text for details). The widespread case of un-
weighted networks, all weights equal to 1, implies that in the reduction (a),w′

kk = 2, and in the
reduction (b),w′

hh = 2 andw′

hk = 2.

nodesi andj share the same community in the optimal partition and therefore
may be grouped as a single nodeh. Moreover, the resulting structure becomes
a simple hair, which can be grouped with nodek if

w′
hh ≤ w

′2
h

2w′
(3.23)

where

w′
hh = wii + 2wij + wjj ,

w′
hk = wik + wjk ,

w′
h = wi + wj = w′

hh + w′
hk . (3.24)

In the particular case of nodesi and j without self-loops (wii = wjj =
0), the triangular hair can always be reduced to a single hair with a self-loop
w′

hh = 2wij , see figure 3.9b.
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Figure 3.10. Analytic reductions for directed networks. In (a) example of ahair reduction, (b)
example of atriangular hair reduction (see text for details)

In directed networks we can also apply the same reductions. In the case
of directed hairs, we can reduce nodes connected only to another nodeeither
through an input, an output, or both links. Therefore, it is safe to group them
in the same way as undirected hairs if

wii ≤
wout

i win
i

2w
. (3.25)

This condition is always fulfilled if the hair has no self-loop (wii = 0), see
figure 3.10a. Whenever the self-loop is present, both input and output links are
needed to counterbalance it. The resulting self-loopw′

kk of the grouped node
has value

w′
kk = wii + wik + wki . (3.26)

The case of the triangular hair is more complicated. First we need to define
sink nodes as nodesi which are characterized by null output strengths,wout

i =
0, and source nodes, which are defined as nodes with null input strengths,
win

i = 0. Note that sinks and sources cannot have self-loops, since this would
be in contradiction with their null output and input strengths respectively. As
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proved in Appendix C, a triangular hair formed by a source nodei and a
sink nodej behaves exactly as the undirected triangular hair, being possible
to group them in a single nodeh with a self-loop, see figure 3.10b, where

w′
hh = wij ,

w′
hk = wik ,

w′
kh = wkj . (3.27)

How much can we reduce a network?

Since the presented reductions can be only applied to very particular cases,
a logical question is the amount of reduction that we can obtain applying this
method to real networks. Here we provide some rough estimates for the most
widespread degree distributions in natural and artificial networks: scale-free
and exponential.

For scale-free networks it is usually assumed aP (k) = αk−γ , with γ ∈
[2, 3] for most of the real scale-free complex networks, as seen in Chapter 1.
The normalization condition provides with the value ofα. As a first approxi-
mation, neglecting the structural cut-off of the network, we can write

α
∞
∑

k=1

k−γ = αζ(γ) = 1 (3.28)

whereζ(γ) is the Dirichlet series representation of the Riemman zeta function.
For values ofγ ∈ [2, 3] we obtainα ∈ [1/ζ(2), 1/ζ(3)] ≈ [0.61, 0.83]. That
means that, roughly speaking, the number of hairs that corresponds toP (1) is
about 83% of nodes in a scale-free network withγ = 3 and 61% whenγ = 2,
although this value is slightly reduced when considering the cut-offs of the real
distributions.

An equivalent estimate can be conducted for exponential degree distribu-
tions of typeP (k) = αe−βk, with β > 0. In this case, normalization implies
that

α

∞
∑

k=1

e−βk = α
e−β

1 − e−β
= 1 (3.29)

and thenα = eβ − 1. The percentage of hairs in this case isP (1) = 1 − e−β ,
that, for example, for plausible values ofβ ∈ [0.5, 1.5] provides a reduction
between 40% and 77% respectively.

To complement this analytical study, we have also studied the effect of the
size reduction applied to real networks. In the following section we will show
how the size reduction increases substantially the maximum modularity and
the speed of the Extremal Optimization algorithm.



74 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

Figure 3.11. Community structure of the FP6 analysis represented as a network. Nodes corre-
spond to communities and links represent collaboration between membersof the two connected
communities. Diameter of nodes and width of links symbolize community size and number of
crossed collaboration.

At the light of these estimates, the size reduction process provides with an
interesting technique to confront the analysis of community structure in net-
works by maximizing modularity. Since the method to detect the single nodes
(or even the triangles) can be implemented in O(n), we can obtain with a sub-
stantial advantage in computational cost without sacrificing any information.
We think that the idea of the exact reduction could be extended to other specific
motifs (building blocks) in the network, although its analytical treatment can
be further difficult.

4. Uncovering the community structure of real networks
The artificial benchmarks presented before are useful to compare or totest

the efficiency of a given algorithm under certain circumstances, but the verita-
ble purpose of the EO algorithm (and the other community detection methods)
is to uncover the community structure of real networks, without knowing a
priory neither the number nor the size of the communities.

Therefore, since we can not check the results like in the artificial networks,
the validity of the obtained configuration depends only on the interpretation
that we can perform from the resultant communities. For instance, in social
networks the division into communities can be checked by crossing relational
data (who is preferably linked to whom) with particular information about each
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Community 19
Centre Suisse d’ectronique et Microtechnique

EADS Deutschland Corporate Research Center
Lunds Universitet
Skoda Auto AS
Volkswagen Ag

Robert Bosch Gmbh
Technische Universitat Darmstadt

System Design and Research Association SRL
European Road Transport Telematics Organisation

Audi Aktiengesellschaft
Bayrische Motoren Werke Aktingesellschaft

Bmw Forschung und Technik Gmbh
Seat Centro Tecnico

Volvo Car Corporation
Blaupunkt Gmbh

Delphi Delco Electronics Europe Gmbh
Faurecia Sieges D’Automobile SA

Ibeo Automobile Sensor Gmbh
Siemens Vdo Automotive Sas

Fcs Simulator Systems
Federal Highway Research Institute

Essex County Council
Landeshaupstadt Hannover

Ministry Economics and Transport of Lower Saxony
Laboratory of Lighting Technology. Darmstadt Univ.

Table 3.1. Nodes belonging to one of the resultant communitiess obtained when applying the
EO method to the FP6 network. Note that all organizations are related, in some sense, with
automobiles. See (Lozano et al., 2006) for a complete analysis of this network.

node. As an illustrative example, we built up a network from a database of
research projects of the European 6th Framework Programme, calculatedits
community structure and analyzed the resulting data by crossing it with infor-
mation about nationality and organization’s type of activity. The community
structure obtained is presented in figure 3.11. When analyzing in detail the
member of one obtained communities (see table 3.1), we observe that all of
them belong to the same activity sector, in this case the automobile market.
This social interpretation have also given successful results in other social net-
work community analysis, such as the departmental structure in the communi-
ties of the e-mail network of the Universitat Rovira i Virgili (Guimerà et al.,
2003) or the racial segregation observed in the community structure of the jazz
bands (Gleiser and Danon, 2003).
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4.1 Community detection benchmark
In this section we present an exhaustive analysis of the maximum modu-

larity that the extremal optimization method is capable to find. We have per-
formed this analysis in the most used networks in community literature. For
each network we have analyzed the maximum modularity and the number of
communities found before and after applying the different upgrades presented
in this paper. Then we have applied the size reduction to all the presented,
networks, and we have repeated the same analysis, but now including the com-
parison between the percentage of size reduction and the speed-up obtained in
the extremal optimization.

The networks analyzed are: the Zachary’s karate club network (Zachary,
1977), the Jazz musicians network and the Jazz bands network (Gleiser and
Danon, 2003), the e-mail network of the University Rovira i Virgili (Guimerà
et al., 2003), the worldwide airports network with data about passenger flights
operating in the time period November 1, 2000, to October 31, 2001 compiled
by OAG Worldwide (Downers Grove, IL) and analyzed in (Guimerà et al.,
2005), the network of users of the PGP algorithm for secure information trans-
actions (Boguñá et al., 2004), the Internet network at the autonomous system
(AS) level as it was in 2001 and 2006 reconstructed from BGP tables posted
by the University of Oregon Route Views Project, the network of projects in-
volved in the European Union Sixth Framework Programme (also known as
FP6) (Lozano et al., 2006), the US airport network collected in 1997, thead-
jacency network of common adjectives and nouns in the novel David Copper-
field by Charles Dickens (Newman, 2006a), the dolphins associations network
of the Doubtful Sound community, New Zealand (Lusseau et al., 2003), the
network of American football games between Division IA colleges during reg-
ular season Fall 2000 (Girvan and Newman, 2002), the collaboration network
of contributors to the Spanish statistical physics conference (Fises) (Arenas
et al., 2004), the co-appearance network of characters in the novel Les Mis-
erables, (Knuth, 1993), the Western States power grid network of the United
States (Watts and Strogatz, 1998), the C. Elegans metabolic network (Jeong
et al., 2000), and finally the relations between authors that shared a paper in
cond-mat (Newman, 2001a). The results obtained are reported in table 4.1.

We present in table 4.1 the values of modularity for the different networks
analyzed up to order10−6. As we have introduced previously, the numerical
resolution of modularity is up to ordermini{wi}/2w, that represents the min-
imal possible change in the structure of the partitions. It means that every digit
in our value of modularity is significant for comparison purposes.
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Network N Q1 #c1 Q2 #c2 %r SU

Zachary 34 0.418803 4 0.419790 4
Zachary-red 33 0.418803 4 0.419790 4 2,94 1
Zachary-W 34 0.444904 4 0.444904 4
Zachary-W-red 33 0.444904 4 0.444904 4 2,94 1
Dolphins 62 0.526799 4 0.528519 5
Dolphins-red 53 0.528519 5 0.528519 5 14,51 1,30
Les Miserables 77 0.551762 7 0.560008 6
Les Miserables-red 59 0.551762 7 0.560008 6 23,37 1
Word Adjacencies 112 0.303651 6 0.308396 7
Word Adjacencies-red 102 0.306533 7 0.309154 6 8,92 1,05
Football 115 0.604570 10 0.604570 10
Football-red 115 0.604570 10 0.604570 10 0 1
Jazz Bands 198 0.444469 3 0.445144 4
Jazz Bands-red 193 0.444469 3 0.445144 4 2,52 1
US Airports 332 0.360089 9 0.368244 6
US Airports-red 270 0.359568 9 0.368244 6 18,67 1,17
Celegans Metabolic 453 0.437907 14 0.452021 10
Celegans Metabolic-red 447 0.437390 11 0.451288 10 1,32 1
Fises 840 0.804918 38 0.827127 22
Fises-red 722 0.806328 37 0.827352 23 14,04 1,12
E-Mail 1133 0.572024 21 0.580070 10
E-Mail-red 981 0.574372 16 0.581425 10 13,41 1
Jazz Musics 1265 0.594876 25 0.600561 18
Jazz Musics-red 1263 0.597452 27 0.600716 18 0,15 1,01
Worldwide Airports-WU 3618 0.642288 146 0.649268 29
Worldwide Airports-WU-red 2763 0.644834 99 0.649337 29 23,63 1,58
Worldwide Airports-WD 3618 0.643562 116 0.649189 34
Worldwide Airports-WD-red 2880 0.641834 159 0.649286 30 20,39 1,63
Worldwide Airports-U 3618 0.681868 108 0.706704 25
Worldwide Airports-U-red 2763 0.682552 89 0.707076 24 23,63 1,68
FP6 3030 0.851265 168 0.877809 48
FP6-red 3008 0.852480 169 0.878325 47 0,72 1,01
Power Grid 4941 0.896651 132 0.931571 36
Power Grid-red 3695 0.906516 121 0.933613 39 25,21 2,46
PGP 10680 0.817271 930 0.876883 118
PGP-red 6277 0.837389 532 0.880244 101 41,22 4,27
AS2001 11174 0.567733 338 0.619048 25
AS2001-red 7386 0.594702 231 0.628004 31 33,90 2,41
AS2006 22963 0.575363 833 0.645942 49
AS2006-red 15118 0.611360 428 0.658198 45 34,16 2,38
Condmat 27519 0.617801 2107 0.698032 131
Condmat-red 24757 0.627627 1632 0.707443 126 10,03 1,12

Table 3.2. Results for the optimal partition obtained using the upgraded EO algorithm forsev-
eral real networks before and after applying the size reduction. We present the number of nodes,
modularity, number of communities (#c), percentage of size reduction (%r) and speed-up (SU)
of the algorithm after reduction. We also compare the modularities and the number of com-
munities obtained before using the two presented improvements of the extremal optimization
algorithm (1) and after adding those improvements (2).
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The first thing that we can notice is that the reduction process allows for a
more exhaustive search of the partitions’ space as expected. The reductions
vary between 20% and 40% in larger networks, which is lower than the pre-
dicted in the previous section. The speed-up of the algorithm after reduction
gives an indication of the effectiveness of the process. This is also corroborated
by an improvement in modularity. Note the special case of the FP6 network,
with a reduction of only 0.7%. The lack of reduction is because this network
comes from a projection of a highly connected bipartite network, and therefore
is mainly composed by groups of highly connected nodes and does not have
isolated nodes that can be simplified.

Particularly illustrative is also the analysis of the worldwide airport network.
We have constructed different networks from the raw data, the undirected un-
weighted network previously used in (Guimerà et al., 2005), the undirected
weighted network (where the weights reflects the number of passengers us-
ing the connection in the period of study), and the most realistic case corre-
sponding to the weighted directed network of the airports connections. These
networks allowed us to check our techniques (reduction and optimization al-
gorithm) in all the possible scenarios. Note that the results obtained for the
weighted directed and undirected networks in terms of modularity are very
close, an explanation about this fact that is ubiquitous in the analysis of di-
rected networks can be found in the Appendix A.

Additionally, if we compare the results of table 4.1 with some of the results
in the literature of community detection, we observe that we improve those
obtained using Spectral optimization (Newman, 2006b) and simulated anneal-
ing (Guimerà and Amaral, 2005b), which have been considered the best up to
date. The differences in maximum modularity is up to 15% depending on the
network considered.

5. Summary

In this chapter we have presented an extremal optimization based algorithm
that optimizes the modularity and allows an accurate identification of commu-
nity structure in complex networks. The results outperform almost all algo-
rithms existent in the literature. We also have proved that the heuristic process
of the EO is very flexible, an for instance can be easily extended to detect
community structures in directed and weighted versions.

In second place we have introduced some techniques that can help us to ob-
tain higher modularity values. On one hand, with some algorithmic improve-
ments we can avoid some drawbacks of the recursive process and explore a
wider part of the space of possible configurations. On the other hand, we have
presented a method to detect the nodes that will be grouped in the maximum
modularity configuration, and therefore we can reduce the size of the network
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preserving the modularity. This reductions are reflected in both increasingthe
efficiency and the accuracy of the algorithms.

Finally, we have presented an extensive benchmark of the maximum mod-
ularity values that the EO method finds in some of the most used networks by
the research community. We expect that this benchmark can be used to com-
pare the accuracy of the other modularity based methods that try to unravelthe
community structure of complex networks.





Chapter 4

SCALING OF FLUCTUATIONS IN
TRAFFIC ON COMPLEX NETWORKS

In previous chapters we have introduced a wide group of tools that help
us characterize and model the complex topology of many real networks. The
study of the topology itself is only the first step towards the understanding of
the function of the systems built on networks.

The interest into understanding the dynamical processes that take place on
complex networks have emerged recently, and are not as developed as the stud-
ies of the structure. The main research lines are trying to uncover the interde-
pendency between the underlying topology and the dynamical processes, an-
swering to questions like: does the dynamical processes affect the shape (and
the evolution) of the structure? how does a change on the topology modify the
behavior of the functionality?

In this dissertation we are interested in understanding two dynamical prop-
erties of a traffic flow, and its relationship with the underlying topology. Tra-
ditional approaches to study the traffic have been focused on the study of the
long time behavior of a few variables, characterizing phenomena such as the
self-similarity (Park and Willinger, 2000). In complex networks, most of the
work has been focused in determining the bounds for this flow to become con-
gested (Zhao et al., 2005, Moreno et al., 2003), and how to avoid the con-
gestion to maintain the maximum efficiency of the system (Guimerà et al.,
2002b, Echenique et al., 2004, Barthelemy and Flammini, 2006).

A less studied property of the traffic flow in complex networks are the scal-
ing properties of the fluctuations on different nodes of the system. Analyzing
how does the standard deviation of each time series change with the value of
the mean, we can infer a scaling relationship that gives us more information
about the dynamical behavior of the system, answering to questions like: will
those elements with larger mean have larger fluctuations as well? what are the
reasons behind the differences in the size of the fluctuations?

81
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The study of the existence of this scaling relationship in several time series
was first pointed out in the ecology field by Taylor, when he was analyzing
the relation between the fluctuations and the average population of a group of
species (Taylor, 1961). Since then, several other studies have also uncovered
this relationship in a very wide range of systems, such as highways, Internet or
the stock market, discovering that each system has a specific relation that helps
us to characterize and classify their traffic dynamics (Eisler et al., 2007).

The purpose of this chapter is to show that simple considerations regard-
ing the persistence of packets flowing the network, the limitation of nodes to
handle information, and the time window where statistics are performed, ac-
count for different scalings of the fluctuations in traffic on complex networks.
The chapter is organized as follows: First we introduce the scaling of fluctua-
tions as a large-scale metric to characterize the behavior of the traffic flow in
a complex network. Then we introduce our traffic model, which is based on
the simple communication models on complex networks used in the literature.
We perform a group of experiments to analyze the changes on the value ofthe
scaling exponent when we modify the sampling process and the dynamical pa-
rameters of the model. Finally, we prove that many real networks do not fit in
the two universal classes by analyzing the traffic of the Internet 2 backbone.

1. Scaling of fluctuations on complex networks
In a couple of recent articles, Menezes and Barabasi proposed a model to

understand the origin of fluctuations in traffic processes in a number of real
world systems, including the Internet, the world wide web, and highway net-
works (de Menezes and Barabási, 2004a, de Menezes and Barabási, 2004b).
All of these systems can be represented at an abstract level as networks in
which packets travel from one node to another, packets being real datapackets
or bits in the Internet, files in the world wide web, and vehicles in road net-
works. With the available resources nowadays, the movements of this packets
can be measured simultaneously in all the nodes, obtaining a multiple time
series description of the traffic flow (as presented in figure 4.1).

Due to the large amount of data available and the complexity associated to
the dynamical process, an statistical analysis of this time series seems a good
choice to obtain a characterization of the global behavior of the system. In par-
ticular, Menezes and Barabasi considered the relationship between the average
number of packets〈fi〉 processed by nodes during a certain time interval, and
the standard deviationσi of this quantity. Plotting the value of the dispersion
as a function of the average traffic for all the nodes, they observed a power law
scaling relationship,

σ ∼ 〈f〉α (4.1)



Scaling of Fluctuations in Traffic on Complex Networks 83

0 500 1000 1500 2000 2500 3000
Time

10
0

10
2

10
4

10
6

N
um

be
r 

of
 p

ac
ke

ts
 s

en
d

3.1 x 10

1.9 x 10

1.2 x 10

2.0 x 10

1.7 x 10
5

4

3

1

0

<f> σ

3.8 x 10

5.5 x 10

6.9 x 10

8.7 x 10

0.7 x 10
0

0

2

3

4

Figure 4.1. Left: Example of the traffic flow that goes through five routers that belong to the
Internet2 network gathered from the Abilene project (see text for moredetails). On the right of
each time series we show its average flow and the dispersion.

whereα refers to the scaling exponent. They find that there are two classes
of universality in this relationship for real systems. In the Internet,σ scales as
〈f〉1/2, whereasσ scales as〈f〉 for the world wide web and highway networks.
Based on a stylized model of random walkers throughout the network, they
conclude that this difference is due to the fact that the dynamics of the Internet
is dominated by “internal noise” whereas the dynamics of the world wide web
and highway networks is dominated by the demands of users, that is “external
noise”.

One of the main critics to their work refers to the simplicity of the model
used to prove their theories. In the abstraction process proposed by theau-
thors, they overlook what is probably one of the most important factors in the
dynamics of traffic on networks, the limited capacity of nodes to handle pack-
ets simultaneously, which results in packet-packet interactions and, eventually,
in large fluctuations or even network congestion (Guimerà et al., 2002b, Tadic
et al., 2004).

2. A simple traffic model
To understand better the origin of the scaling relations for the fluctuations

in networks, let us consider the behavior of a single node (for example, atoll
plaza in a highway) trying to satisfy demands from users (vehicles arriving to
the toll). As we learn from queueing theory (Allen, 1990), two stochastic pro-
cesses fully determine the behavior of the node: (i) the arrival processby which
new packets arrive to the node, and (ii) the service process by which thenode
satisfies the demands of the users, that is, forwards the packets. The most com-
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mon queue model corresponds to the M/M/1 queueing system, where the ran-
domness of the packets generation assumes a random (Poisson) arrival pattern
and the service distribution assumes a random (exponential) time. The com-
munication process in the case of a M/M/1 queuing system for each node in a
complex network is well described by the so-called Jackson networks (Jack-
son, 1957).

Taking into account these considerations, we propose to model the traffic
process in a complex network ofN nodes asN queue systems of type M/M/1,
and a random walk simulation for the movement of packets on the network.
The arrival process of packets to the network is controlled by a Poissondis-
tribution with parameterρ, and each packet enters the network at a random
selected node. Once the packet arrives to the node enters a queue. The de-
livery of the packets in the queue is controlled by an exponential distribution
of service times with parameterµ. In our model, the packets will performS
random steps in the network before disappearing, being thenS a measure of
the persistence of packets in the network. This dynamics is performed in con-
tinuous time, assuming that the time expended by packets traveling through a
link is negligible.

The system achieves a stationary state whenever the arrival rate of packets
at each node is lower than or equal to the delivery rate, otherwise the system
congests. The arrival rate at each nodei is dependent on the topology and
follows a distribution whose mean isρef

i = Biρ whereBi is the algorithmic
betweenness of nodei. Bi is defined as the relative number of paths in the
network that go through nodei given a specific routing algorithm (Guimerà
et al., 2002b). As a direct consequence, the node with maximum algorithmic
betweennessB∗ determines the onset of congestion.

This traffic model is unable to reproduce the self-similarity of traffic in time
observed in some real systems, as for example the Internet. It has been dis-
cussed that Poisson models aren’t realistic (Leland et al., 1995) because do
not reproduce some characteristics of the real dynamics like ’burstinness’ that
Internet exhibit. However, there are some authors (Karagiannis et al., 2004)
that still defend that in certain cases Internet traffic can still be modeled using
Poisson models, mainly when we are near the edge of congestion.

3. Effect of the dynamical parameters on the scaling
exponent

In the following experiments we will focus on the average number of pack-
ets〈fi〉 processed by nodes during a certain time window of lengthP , and the
standard deviationσi. The simulation of the dynamical process has been per-
formed in a scale-free network with exponent for the degree distributionγ = 3
of 1000 nodes. We have observed the same results for larger SF networks,
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Figure 4.2. Value of the exponentα versus the time window lengthP in which averages are
performed, for a fixedρef

∗ = 1/3 and different values of the persistence of packets in the
networkS. The shadowed area highlights the region ofP in which the exponentα = 1/2
always appears.

however the computational cost for the whole set of parameters used in the
experiments becomes prohibitive.

3.1 Effect of the time window
The first parameter that we have studied is the effect of the size of the sam-

pling window. Selecting a value ofP ≪ 1/ρef
∗ = 1/(B∗ρ), we will always

observe the scalingσ ∼ 〈f〉1/2, regardless of other parameters.
The explanation for this phenomena is very intuitive: Due to the value ofP

selected, the nodes will deliver either one packet or none, at each time interval.
Suppose that during a numbern1 of intervals of lengthP the node deliver a
packet whereas it does not deliver during a number of intervalsn0 = n − n1,
where n is the number of samples for the statistics. In this situation we also
haven0 ≫ n1. Therefore, the average and the standard deviation read

〈f〉 = n1/n (4.2)

σ = [
1

n

[

n1(1 − 〈f〉)2 + n0〈f〉2
]

]1/2

which can be simplified to

σ = [(1 − 〈f〉)〈f〉]1/2 (4.3)
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Figure 4.3. Example of two packet injection rates with the same mean but different variability.
This has been done by varying the values ofρ andS proportionally

But, in the current scenario, the average flow is〈f〉 ≪ 1 and then we recover
theσ ∼ 〈f〉1/2 scaling law. Otherwise, this argument cannot be applied, and
the scaling value will be influenced by the rest of parameters of the model.

In figure 4.2 we show the behavior of the scaling exponentα as a function
of the time window lengthP in which the averages were taken, for a fixed
ρef
∗ = 1/3. We observe (shadowed area) that the exponent is always1/2 when

the interval length is small enough. Indeed, from the data used the exponent
1/2 stands for values ofP .

The effects of the time window have been revisited in (Eisler et al., 2005). In
this case, they observe that for larger time windows there is another transition
between exponents, which is provoked by the existence of autocorrelations in
the time series that only appear when the time window is large enough.

3.2 Effect of the traffic variability
Let us now assume that the sampling of the data is performed at intervals of

lengthP ≫ 1/ρef
∗ . In this case, we expect the scaling of fluctuations in the

system, beyond the effect of the sampling process, to be revealed. We analyze
the behavior of the system varying the rate of injection of packets into the
systemρ and the number of stepsS each packet performs before it disappears.
We first consider that the service rateµ → ∞. In this case, the effect of
queues is minimized and then no interaction between packets is accounted for.
The total trafficT , number of packets flowing through the network per unit
time, is determined by the Poisson process with mean〈T 〉 = ρS. Keeping the
total traffic mean〈T 〉 fixed, we can control the variability of the local traffic
incoming to a node by varying the values ofρ andS proportionally. Figure 4.3
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equivalent results, shifted to a different region of〈f〉.

shows the differences between a traffic with low variability (smallS) and large
variability (large values ofS) with the same mean average.

In figure 4.4 we show the scaling exponent transition betweenα = 1/2 and
α = 1. This plot recovers the results depicted in (de Menezes and Barabási,
2004a), although the explanation should be reconsidered in the new scenario.
The transition of exponent fromα = 1/2 to α = 1 is obtained here simply
by increasing the number of stepsS the packet performs on the network while
maintaining the mean value of the total traffic (i.e. decreasing proportionally
the injection ratioρ).

This results contradict the interpretation in (de Menezes and Barabási, 2004a)
because increasing the number of steps in the network increases the internal
fluctuations of traffic because more packet-packet interaction occurs,while de-
creasing the injection of packets (remember, Poisson distributed) decrements
the external fluctuations of traffic in this scenario. Nevertheless both results are
coherent at this point concerning the scaling of fluctuations. Our interpretation
of this transition is the following: for the same total traffic on the network, the
nature of fluctuations is related to the number of stepsS the packets perform
on the network. When the number of steps is small enough the behavior of
fluctuations is akin a random deposition process independent of the topology
of the network,ρef

i ≈ ρ. When the number of steps in the network grows, the



88 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

10
-2

10
-1

10
0

10
1

10
2

10
3

µ

0.5

0.6

0.7

0.8

0.9

1

α

P=100
P=1000
P=10000
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topology induces dynamical correlations that affect the scaling of fluctuations
via the algorithmic betweenness,ρef

i ≈ ρBi.

3.3 Effect of the congestion
We extend the simple model where queues are neglected, to the more real-

istic situation when queues are persistent. The introduction of queues in the
system, in our model, is controlled by the parameterµ (rate of service). The
possible values ofµ are constrained by the onset of congestion i.e.µ > ρef

∗ ,
otherwise congestion appears at those nodes withB∗, because of the arrival
of more packets than those that can be delivered. We investigate those values
of µ near the onset of congestion to reveal the effect of queues in the scaling
properties of the system.

When congestion occurs, the queues corresponding to those nodes withB∗

will have always more packets that those than can be delivered in a periodP .
That means that the number of packets delivered by these nodes will be con-
trolled exclusively by the service rateµ, i.e. the variance scaling with respect
to the mean flow at these nodes will be again fitted byα = 1/2 corresponding
to the exponential service distribution. Close to the onset of congestion we ap-
proach the situation where the scaling exponentα = 1/2 should be recovered,
however the possibility that in some periods of time the queues will be unoccu-
pied increases as we go away from the congested regime, thus a new transition
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in the scaling exponent as a functionµ is expected. In figure 4.5 we plot the
scaling exponent transition as a function ofµ for a fixed value ofρef

∗ = 1/3.
In this situation the onset of congestion is determined by the critical value
µc = 1/3. Note that for values belowµc some nodes of the network collapse
and then gradually the rest of the nodes in the network. In this region, shad-
owed area of figure 4.5 the system enters the congestion regime progressively.
The transition on the scaling exponent depicted in figure 4.5 is also affectedby
the time window lengthP , we plotted the transition forP = 102, 103 and104.
We observe that asP increases, the transition becomes sharper. Indeed in the
limit of P → ∞ we conjecture that the transition could be discontinuous, and
could reflect a first order phase transition as observed in other trafficmodels
(Echenique et al., 2004), although we can not claim that this discontinuity will
occur sharply from1 to 1/2.

4. Scaling exponent of Internet traffic
Up to now, we have show that a simple traffic model where the injection of

packets to the system follows a Poisson distribution, can account for different
scaling exponentsα depending on the parametersρ, µ, S and the time period
P were the statistics are performed. These results lead us to suspect that the
scaling of fluctuations in real systems must be affected by these parameters
as well. This cast doubts on the universality predicted in (de Menezes and
Barabási, 2004a). Indeed, this non-universality has been also claimedin the
exponent of fluctuations when studying the data flow between stocks in NYSE
market (Eisler et al., 2005), or in the e-mail activity of one user (Eisler et al.,
2007).

To corroborate our doubts about universality on the scaling of fluctuations in
complex networks, we have studied the Internet traffic between routers of the
Abilene backbone network that are part of the data also used in (de Menezes
and Barabási, 2004a). The Abilene network is the U.S. high-performance
backbone network created by the Internet2 community as a testing environment
in 1999 (see figure 4.6). Since then it has been publishing a large amount of
information about its performance, including the amount of traffic that passes
trough each router interface1.

We collected data from the 112 available router interfaces (links). We gather
information of the number of packets that exit through each router interface
between September 15th and November 15th of 2005, at intervals of 5 minutes.
The scalingσ ∼ 〈f〉α shows exponents that range fromα = 0.71 to α = 0.86,
significantly different from the exponent1/2 presented in (de Menezes and
Barabási, 2004a).

1This information is publicly available at http://abilene.internet2.edu.
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Figure 4.6. Map of the topological structure of the Abilene network. This network acts as the
backbone infrastructure of Internet 2, connecting a large number ofadministrative, educative
and private corporations. Map downloaded from http://abilene.internet2.edu/maps-lists/.
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Figure 4.7. Scaling relations betweenσ and〈f〉 for the 112 Abilene backbone router inter-
faces. Analysis performed during (a) two days, (b) one week, (c) one month and (d) two months,
finishing all them in November 15th of 2005. The time window lengthP is fixed to 5 minutes.

The interpretation of these exponents in the context of our stylized model is
that the Abilene backbone is far from the onset of congestion for the interface
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with maximum algorithmic betweenness, and seems compatible with the mean
rate of utilization of the interfaces in this backbone that is usually below30%.

5. Summary
In this chapter we have presented a simple model of traffic in complex net-

works that capture the essential parameters governing the dynamical process.
The model shows a scaling relationship betweenσ and〈f〉 whose exponent
depends on the parameters considered as well as on the time window in which
the statistics are performed. Moreover we have shown that the correspond-
ing exponent for the scaling of fluctuations in the Internet Abilene backbone
network is different from1/2 as stated in previous works, corroborating by ex-
clusion that the universality on the scaling of fluctuations in complex networks
should be questioned.

The next logical question should be then, if there is not universality to ex-
plain the origin of the fluctuations, what determines the exponent for each real
system? Here we have presented that many factors can control the behavior
of the fluctuations, but still we need to determine the specific reasons of each
exponent in real networks. Moreover, we will probably determine othercauses
that can provoke more other transitions between1/2 and1.

This work opened the door to another group of studies that have focused on
the influence of the topology on the fluctuations. There is still a large number of
experiments and theories that we can perform about the study of fluctuations.
A possible extension of this work will be the use of a generation model that
reproduce the self-similarity expected, and then study the exponents obtained
by this new traffic model. We guess that the self-similarity will be reproduced
if the injection of packets into the system follows a heavy-tailed distribution
instead of a Poisson distribution, however we can still not prove this conjecture.
This will also open the door to the study of the relationship between the values
of the exponent with the self-similarity using the Hurst exponent.





Chapter 5

DYNAMICAL ROBUSTNESS OF A
COMMUNICATION PROCESS

In this final chapter we will focus our attention in another interesting prop-
erty of many complex networks, its resilience (or robustness) to the failure of
some of their nodes. The robustness plays a key role maintaining the function-
ality of the dynamic processes that take place in a complex network. In the
case of the Internet, the stability against node failures is a key factor to main-
tain the performance and the efficiency of the network (which is reflected in
low packet loss rates and short packet traveling times).

Traditional studies have analyzed the effects of topological percolation in
complex networks, proving differences between classes of complex networks
when they undergo attacks or random failures. Most of the studies define the
robustness of a network as its capability of maintaining most of its nodes con-
nected, forming a giant component of the same size as the original network.
But in real complex networks, an interesting process happens before acon-
nected network splits, namely that even though the underlying network is still
connected, the dynamical processes taking place on it can change significantly
due, for example, to congestion effects. In this scenario we will introduce
the concept of dynamical robustness of a network, defined as their capacity to
continue working when some of the nodes fail.

The purpose of this chapter is the analysis of the dynamical robustness of
a communication process. Using a similar traffic model to the presented on
the previous chapter, we will measure the effect of a random node removal on
the onset of congestion. The chapter is organized as follows: First we intro-
duce the differences between the dynamical and the topological robustness of a
communication process. Then we perform some experiments to determine the
dynamical robustness by analyzing the changes on the maximum capacity of
the network. To perform this task, we have simulated random failures in three
different types of networks (regular, Erdös-Rényi and scale-free), and using a

93



94 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

range of protocols with different radius of knowledge (from shortestpaths to
random walks). Finally we focus on the relationship between topological ro-
bustness and dynamical robustness by comparing if the network will be first
physically split or dynamically collapsed.

1. Robustness of Complex networks
Many real complex networks display a high robustness against random fail-

ures (Albert et al., 2000). This phenomenon has been successfully related to
their scale-free degree distribution (Cohen et al., 2002, Gallos et al., 2005);
with a very high probability the random failures will affect the lowest con-
nected nodes, which have small influence in maintaining its structural prop-
erties (Cohen et al., 2000). However, the same degree distribution is also re-
sponsible of the vulnerability of scale-free networks against directed attacks
(removal of the most connected nodes) (Cohen et al., 2001).

Internet has been considered as a paradigmatic example of this “robust yet
fragile” structure (Doyle et al., 2005). On one hand, everyday a largeamount
of nodes suffer temporal failures without affecting the global behavior, since
the overall system is able to redistribute the traffic while there is a path connect-
ing the elements. On the other hand, this robustness coexists with a fragility
of its central elements to fail under a malicious activities. A directed attack
against a specific selected nodes can decrease the efficiency of the network,
even disconnect it in two or more components1.

Several studies have covered the incidence of a node removal on the statisti-
cal properties of complex networks, such as the diameter (Albert et al., 2000),
the average path length (Holme et al., 2002b, Gallos et al., 2005) or the size of
the giant component (Albert et al., 2000, Callaway et al., 2000). Since these
properties play an important role in the interplay between the topology and dy-
namics of complex networks, the node removal will also change the dynamical
processes supported on the network (Tadic et al., 2007).

One of the properties that is affected by the removal of nodes is theeffi-
ciencyof nodes to distribute traffic in communication processes (Latora and
Marchiori, 2001, Crucitti et al., 2003, Lopez et al., 2007). The efficiency be-
tween nodesi andj is defined as the inverse of the shortest path connecting
them. This property, related to the information flow in networks, is interest-
ing because it allows to quantitatively compare the dynamical performance in
traffic of different network structures, however, it obviates one of the most im-
portant aspects of any communication process: congestion. In real networks,
each node has a limited capability to deliver information, meaning that they
can serve a bounded number of “packets” of information per unit time. When

1For instance, some failures of the transatlantic communication routers have temporary split the connection
between Europe and America, breaking the giant component of Internet into two or more parts.
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the incoming traffic exceeds this capability, the system enters a congested state,
there is no balance between incoming and outcoming traffic, and the commu-
nication processes become inefficient (Guimerà et al., 2002b).

A typical example of the effects of such a breakdown is found in power grid
networks. The removal of a certain fraction of nodes triggers a cascade failure
on the system (Motter, 2004, Crucitti et al., 2004). This failure is caused by the
redistribution of the traffic flow between the remaining nodes, surpassing their
capability and therefore collapsing some of them. This cascade phenomenon
has also been observed in the Internet, where the failure of one router can
trigger additional failures due to the redistribution of the traffic, which may
generate a congestion collapse which will avoid the connection between a large
group of elements (Holme and Kim, 2002, Moreno et al., 2003).

2. Determining the Robustness of a Communication
Process

At the light of this results, seems clear that the communication between two
nodes can be interrupted by two different causes: if the network physically
splits or if the traffic can not be delivered due to the existence of congestion.
To model this two causes, from now on we will differentiate between the topo-
logical and the dynamical robustness of a network. The first is related to the
process of node removal and its topological effect. The second is related to the
changes on the onset of congestion for the traffic dynamics when the removal
of nodes is performed.

2.1 Topological robustness
A random breakdown of a network can be modeled as a percolation pro-

cess. The percolation thresholdpc in lattices is defined as the fraction of lattice
points that must be filled to create a continuous path of nearest neighbors from
one side to another, or equivalently destroyed to ensure that no such a path
exists. In complex networks, the percolation threshold is usually characterized
by the existence of a giant component with the same diameter as the original
network (Albert et al., 2000, Holme et al., 2002b). The diameter keeps con-
stant while the size of the giant component is∼ O(S), beingS the original
size of the network.

In this chapter we use a more restrictive approach to determine the percola-
tion threshold akin to that used in lattices. Instead of considering the size of the
giant component, we will look for the critical fraction of node removals that
avoids the existence of a physical path connecting every pair of the remaining
nodes of the network.

The topological robustness of a network is defined then as the probability
of maintaining all nodes connected when increasing the fractionp of removed



96 STRUCTURE AND TRAFFIC ON COMPLEX NETWORKS

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 N

et
w

or
k 

S
pl

itt
in

g ER Random Network
BA Scale-Free Network
2D Regular Lattice

0 0.1 0.2 0.3
p

0.9

1

1.1

1.2

D
 / 

D
0

Figure 5.1. Probability of network splitting in two or more connected components as a func-
tion of the fraction of removed nodesp. Inset, relative average path length as a function of
p.

nodes. Forp < pc, the probability of having more than one component is zero.
Forp > pc the probability shows a transition determined by the statistical prop-
erties of the network. We have studied this robustness on three differenttypes
of networks: regular lattices, ER and scale-free. For comparison purposes, the
three types of networks will have the same number of nodesS = 1000 and a
similar number of linksL ∼ 4000.

The first type of networks have been implemented as periodical two-dimen-
sional regular lattices with all nodes having the same degreek = 8. This type
of networks have a very high clustering coefficient and a high mean average
path length. The random networks have been created using the ER model with
an edge probabilityp = 0.008. In this case, the networks display a Poisson
degree distribution with a mean value of〈k〉 = 8, a very low clustering coeffi-
cient and also a low average path length. Finally, the scale-free networkshave
been created using the preferential attachment mechanism of Barabási-Albert
(BA) where each node addsm = 4 new links, obtaining power-law degree
distributionP (k) ∼ kγ with γ ∼ 3.

To calculate the topological robustness defined above, we have performed
a sequential random degradation process, removing sequentially nodes(and
their connections) until the network splits. We have repeated the breakdown
106 times to obtain a significant statistical approach.

Figure 5.1 shows the probability of splitting the network (topological ro-
bustness) when a fraction of nodesp have been removed. The results are sim-
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ilar to the fragmentation processes exposed in previous articles (Albert etal.,
2000, Cohen et al., 2000) . The probability threshold is lower when the network
has a power-law distribution due to the existence of hubs that act as cohesive
elements, hardly destroyed by a random process. As a consequence,the net-
work remains connected for larger values ofp compared to ER networks. The
reason for the robustness of regular networks is different, the high robustness
exhibited is a consequence of their high clustering coefficient which provides a
high degree of redundancy. In the inset we plot the relative average path length
as a function of the number of removed nodes, as expected the average path
lengths remain almost constant in all networks, with a slight increment in the
ER networks case. These results in ER and BA networks are in agreementwith
results of random percolation in complex networks (Albert et al., 2000, Cohen
et al., 2000, Cohen et al., 2002), showing however a shift in the transitionpoint
due to a more restrictive definition of robustness used here.

2.2 Dynamical robustness
In analogy of the topological robustness, the dynamical robustness is de-

fined as the probability of a network to maintain the communication processes
between every pair of nodes nodes. When the network splits into two or more
components, the communication is also interrupted because the packets are
unable to reach the isolated nodes. However, there are some cases where the
network is still physically connected but the overlay dynamics is unable to de-
liver information to certain nodes, provoking some sort of dynamical split of
the network. As we have introduced before, the cause of this phenomenon is
the emergence of congestion. When a system is congested, a large numberof
packets get stuck in nodes and, if there are delivering time restrictions, never
reach their destination.

To study the congestion point we will use a similar traffic model to the
presented in the previous chapter: First, to model the receiving and limited
transmission of information of each node, we assign a queue to each one and a
different from zero service time. The capability of the nodes of is characterized
then by the time needed to serve one packet. We assume this time to follow an
exponential distribution with mean1/µ. If a packet arrives when the node is
busy delivering another one, it gets stored in a FIFO (first in-first out)queue
until it gets dispatched. To simplify the experiments, we will use during the
rest of the work a value ofµ = 1.

Once we have mapped the queues into the nodes, we introduce the dynami-
cal rules: The packets are created in each node following a Poisson distribution
with meanρ, and they are assigned with a random destination. These packets
travel through the network using a static routing protocol (the decision rules
are set at the beginning of the experiment). Once the packet arrives atits des-
tination, it is removed from the system.
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Since congestion emerges when the incoming traffic to a node is higher than
its capability to dispatch it, and we have fixed the value of this capability by the
service time, the onset of congestion remains as a function ofρ. The network
achieves its steady state when for a certain value ofρ the number of packets
of the system at timet, N(t), fluctuates around an stationary value. When the
value ofρ overcomes a critical valueρc, the number of packetsN(t) diverges
and the system enters in a congestion phase. Moreover, it has been proved
(Guimerà et al., 2002b) that the onset of congestion is driven by the nodewith
the highest algorithmic betweennessB∗. The algorithmic betweenness of a
nodeBi is the number of paths that go through nodei given a certain routing
algorithm. When the incoming traffic that arrives to this node is higher than
its delivery capability,ρB∗/(S − 1) > µ, its queue starts to grow and induces
congestion in the network. Therefore, the congestion point of the systemρc

is determined by the moment at which the node with maximum algorithmic
betweenness receives and delivers the same ratio of packets:

ρc =
µ(S − 1)

B∗
(5.1)

2.3 How to determine the dynamical robustness?
Our experiments to determine the dynamical robustness consist then in to

analyze the variation of the onset of congestion determined byρc when the
system experiments random failures, simulated as the sequential random elim-
ination of nodes, for those networks that after the random failure still remain
connected. For each network, we perform a step of the sequential removal of
nodes, if the removal of the node does not produces a split on the network we
calculate its newρc.

To determine numerically the value ofρc for a given configuration we simu-
late the traffic dynamics. Starting from a value ofρ that provides a steady state,
we gradually increase this value and determine whether or not the number of
packets floating on the system diverges. The difficulty of deciding if the sys-
tem is or not at the critical point, increases asρ approachesρc. To characterize
the transition we used an order parameterη (Arenas et al., 2001):

η =
N(t + τ) − N(t)

ρτ
(5.2)

whereτ is the observation time. Whenρ < ρc the order parameter is zero
(There is no difference between the ratio of created packets and the ratioof
removed). On the contrary, ifρ > ρc, the value ofN(t) grows linearly witht,
and the order parameter is a function ofρ.

Before removing nodes, we determine the maximum load that the complete
network can handleρc(0). Then we remove a fraction of nodesp and recal-
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Figure 5.2. Effects of the node removal on the normalized maximum capacity of scale-free
and random networks when using a (a) routing protocol based in shortest paths and (b) routing
protocol based in random walks. Dotted lines present the analytical approach using equation
5.5 and experimental data from table 5.2.

culate the maximum congestion valueρc(p), repeating this process while the
network has more than one connected component. We perform104 simulations
of each experiment to obtain an statistical approach ofρc(p).

3. Effects of a node removal on the onset of congestion
We have performed three different experiments, trying to understand the

changes on the congestion point for different topologies and routing protocols.

3.1 ER and SF networks
In a first experiment we have analyzed the effects of the random breakdown

on congestion, when the movement of the packets is governed by a shortest
path (SP) routing protocol. The results obtained are shown in figure 5.2 (a).
We observe different behaviors depending on the topology used: Themaxi-
mum load in a scale-free network increases with the number of removed nodes,
whereas in ER random networks decreases slowly withp.

To understand this results we have studied the changes on the between-
ness distribution of both network structures when a node is removed. It has
been proved that there is a correlation between the degree and the between-
ness distribution in random graphs and in scale-free networks (Holme et al.,
2002a, Goh et al., 2001). Since the probability of deleting the node with the
highest degree is very small, we can consider as a first approximation thatthe
node withB∗ is the same during all the breakdown process.

Another important feature that we can extract from the betweenness distri-
bution is the importance of one node in the communication process (Barthelemy,
2004, Latora and Marchiori, 2004). We characterized the importance ofthe
most important node usingα∗, defined as the maximum algorithmic between-
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ness normalized,α∗ = B∗/
∑

Bi. We can see in table. 5.2 that the importance
of the most connected nodeα∗ differs significantly in the random and scale-
free networks due to their different degree distributions: In the scale-free,7%
of the packets travel through the most central node in contrast with the the
0, 52% of the random network.

Every time we remove a nodei, we also remove the load it generatesLi

(Motter, 2004), decreasing the value of theB∗ according to the importance of
this node in the communication process. The load generated by one node is
defined as

Li =
∑

i

(Di,j + 1) = (D̄i + 1)(S − 1) (5.3)

whereD̄i is the average path length between nodei and the rest of nodes in
the network(S − 1) (beingS the original number of nodes of the network). In
a SP routing protocol, this distance measures the average shortest path length
from nodei to the rest of the network, which can be easily determined using a
Dijkstra algorithm (Cormen et al., 1990) . Using equation (5.1) we express the
onset of congestion for a certain fraction of removed nodesρc(p) for largeS
as:

ρc(p) =
(S − 1) − pS

B∗
ini − α∗L̄(p)

∼ S(1 − p)

B∗
ini(1 − α∗L̄(p)

B∗

ini
)

(5.4)

wherepS is the number of removed nodes andL̄(p) is the amount of load
that we have withdrawn of the network after deletingpS nodes, which can be
approximated bȳL(p) ∼ pSL̄, whereL̄ = 1

N

∑

i Li. equation 5.4 can be
approximated using a Taylor expansion, obtaining

Network Protocol B∗

ini α∗ D̄ L̄ SL̄α∗/B∗ − 1

BA Scale-free Shortest Path 1.5 ∗ 105 0.07 3.3 3300 0.54

ER Random Shortest Path 1.3 ∗ 104 0.002 3.8 3800 −0.52

BA Scale-free Random Walk 2.2 ∗ 107 0.029 1595 1.6 ∗ 106 1.1

ER Random Random Walk 2.9 ∗ 106 0.0024 1380 1.4 ∗ 106 0.15

Table 5.1. Values of the maximum algorithmic betweennessB∗, the importance of this be-
tweenness in the communication processα∗, the average path length̄D, and the average gen-
erated load by one nodēL for the scale-free and random networks using SP and RW routing
protocols. The value ofSL̄α∗/B∗ − 1 determines the change of the congestion point when
removing a fraction of nodesp.
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ρc(p) ∼ S

B∗
ini

+ p
S

B∗
ini

(

SL̄α∗

B∗
ini

− 1

)

+ O

[

(

pSL̄α∗

B∗
ini

)2
]

(5.5)

Considering thatpSL̄α∗/B∗
ini << 1 whenp << 1, using equation 5.5

we can determine the expected initial behavior of the congestion point ana-
lytically. WhenSL̄α∗/B∗ > 1 the maximum load supported by the system
starts to grow as the node suffers a random removal, and the initial slope ofthe
congestion isSL̄α∗/B∗ − 1. Otherwise, ifSL̄α∗/B∗ < 1 the maximum load
decreases with the node removal. Introducing the values presented in table5.2
in equation 5.5, we have represented in figure 5.2 the expected behavior of
ρc(p)/ρini

c , obtaining a good agreement with the computational simulations.
We have also analyzed the ratioρc(p)/ρc(0) when packets are delivered us-

ing a random walk (RW) routing protocol (Noh and Rieger, 2004). The RW
betweenness distribution for a random walk process has been studied in (New-
man, 2003a), showing that it shares the properties of the SP betweenness. table
1 shows that when we use a RW routing protocol the statistical values increase
significantly. The average path length of a packet to reach its destination is
much higher than the shortest path, since the packets do not have information
about how to reach their destination. This distance can be determined analyt-
ically using the mean first-passage time between two nodes (Noh and Rieger,
2004). Since the distance is much higher, the amount of load introduced by
the nodes is also higher, and therefore the value ofB∗ increases. The results
obtained (see figure 5.2(b)) show that using a RW routing protocol, the initial
congestion behavior is also governed by the evolution of theB∗ described in
equation 5.5, although a larger deviation is observed for larger values ofp in
agreement with the discussion above.

3.2 Regular lattice
We have performed a second experiment to investigate the behavior of the

congestion when the underlying topology is a regular lattice, see figure 5.3.
This type of network is interesting because the changes on the congestion can
not be described in the previous approximation.

The explanation for the behavior observed in figure 5.3 is the following. Be-
fore removing any node of the regular network, all of them have the same algo-
rithmic betweenness because the underlying symmetry. When a little fraction
of nodes has been removed, the shape of the betweenness distribution changes,
and some nodes become more relevant in the communication process. The
changes of this centrality are characterized by the changes ofα∗. In the prece-
dent analysis we have considered that the value ofα∗ is constant because the
failures does not modify significantly the structural properties. However, in
the regular network this process change the structure breaking symmetry,and
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Figure 5.3. Effects of the node removal on the normalized maximum capacity of a 2D regular
lattice networks when using a routing protocol based in shortest paths andrandom walks. In the
inset we plot the evolution of the relative importance of the node with maximumbetweenness
as a function ofp.

the value ofα∗ becomes now a function of the number of removed nodes. The
inset of figure 5.3 shows the evolution of this parameter when we remove a
certain fraction of nodes. Since the value of the maximum betweenness is a
function ofα∗, when this value growsB∗ also grows and the onset of conges-
tion decreases.

3.3 Effect of the knowledge radius
Up to now we have observed different type of behaviors of the onset of

congestion when we perform a random breakdown. Particular interestraises
the observation of the ER network (figure 5.2 right), where the behavior de-
pends on the routing protocol: when shortest path are applied, the capability
decreases, however when random paths are followed the capability increases.
Therefore, seems interesting to analyze the transition between this two differ-
ent protocols, introducing a certain amount of neighboring information in the
routing decisions.

In the third experiment we have analyzed what happens when we use a rout-
ing protocol with different values of the knowledge radiusr, representing a
system whose nodes have a limited knowledge of network topology deter-
mined by the radius. The use of a knowledge radius is found in many real
systems, where due to space limitations the elements only know the exact lo-
cation of a few nodes, and otherwise they can only guess the position of the
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Figure 5.4. Example of a routing protocol with a certain knowledge radiusr. Whenr = 0,
node A does not know nothing about the location of other nodes and sends all the packets using
a randomly chosen link. Whenr = 1, node A can send directly the packet to nodes in blue
(B-F), and otherwise it send the packet randomly. Whenr = 2, know how to reach (B-I) and if
r = 3 the node know the position of the rest of the nodes, and can send the packets using the
shortest path.

destination node. In figure 5.4 we present an example of a routing protocol
with a fixed knowledge of the network. Whenr = 0, the nodes do not know
nothing about the topology, and the packets are always moved randomly. If we
increase the value ofr to 1, the nodes know who are its neighbors, and if the
packet destination is one neighbor, the packet is sent directly to the destination.
Otherwise the packet is sent randomly. For larger values ofr, the probability
of knowing the location increases, decreasing the number of random steps of
the packets. An finally, whenr is equal to the diameter of the network, all
the node know exactly how to reach the destination, and all the packets travel
using the shortest available path.

In this experiment we have repeated the same random removal process on
the ER and the SF networks described previously, but now we use a knowledge
radius that ranges betweenr = 0 andr = 4 (Which is approximately the aver-
age shortest path length of the networks). The results obtained are presented in
figure 5.5. A first look at both plots shows an unexpected behavior of theonset
of congestion as we increase the radius. For the value ofr = 0 we observe the
same behavior described in the previous section. But as we increase the value
of knowledge radius, we observe that the slope ofρc(p)/ρc(0) first decays to
negative values (-1.14 for the ER network and -0.31 for the SF network when
r = 2), and then increases again until it reaches the same slope for the shortest
path presented in table 5.2.

To explain this unexpected results, we have studied how does the random
removal changes the parameters that control the changes onset of congestion,
instead of considering this parameters constant like in the previous section.
Using the same methodology explained before for determiningρc(p), we have
analyzed the effect of the random the average number of steps that onepacket
performs before exiting the network〈D〉(p) and the maximum algorithmic
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Figure 5.5. Effects of the node removal on the normalized maximum capacity of the ER(right)
and SF (left) networks when using a routing protocol that depends on theknowledge radius of
the network. The values ofr range from 0 (Random Walk protocol) to the Diameter of the
network (Shortest path protocol).

betweenness normalizedα∗(p). Note that both values depend on the value of
r.

A first look at the evolution of the average path length in figure 5.6 left
gives the hint that it plays an important role in the changes on the value of
ρc(p)/ρc(0), since it repeats the same behavior of figure 5.5 but inverted. This
is not surprising, since the fact of reducing (increasing) the distance means that
the packets stay less (more) time in the network, and this increases (decreases)
the maximum capacity of the network.

Let us analyze with detail the behavior of the changes of〈D〉(p) normalized.
On one hand, we observe that in a purely random routing protocol the average
path length decreases. In this particular case, the average number of steps is
very high,O(n), and the effect of removing nodes reduces the average number
of nodes that we randomly explore before reaching our objective. On the other
hand, when we introduce routing knowledge into the system, the average path
length increases with different slopes. As explained in (Albert et al., 2000),
this is because we remove a part of the nodes that can act as a shortest path,
increasing the difficulty for the remaining nodes to communicate with each
other. The effect is less pronounced in the SF network, since the most part of
the paths go through the central hubs which usually are not removed.

We also have analyzed the changes on the maximum algorithmic between-
ness of the network in figure 5.6 right, to check if the introduction of routing
protocols reproduced the same effect observed in the regular lattice. Inthe
scale-free network, the value ofα∗(p) normalized remains almost constant,
independently of the value ofr, proving the stability of the most connected
node to a random failure. In the random network there is a slight increaseof
the value that is similar for all the routing protocols, which can probably have
some influence on the slope ofρc(p)/ρc(0).
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Figure 5.6. Effects of the node removal on some dynamical properties of a communication
process as a function of the number of removed nodesp: the average number of steps that one
packet performs before exiting the network〈D〉(p) and the maximum algorithmic betweenness
normalizedα∗(p). The top three figures refer to the Scale-Free network, and the bottom refer
to the ER random network.

To confirm analytically all these observations we have computed a theo-
retical approach of the changes of the onset of congestion, using a modified
version of equation 5.4,

ρc(p)/ρc(0) ∼ (1 − p)

(1 − α∗(p)L̄′(p)
B∗

ini
)

(5.6)

where now the values ofα∗(p) and the average distance used to computeL̄′(p)
are the obtained in 5.6, instead of being constant like in the previous experi-
ments. Figure 5.7 shows the comparison between the value ofρc(p)/ρc(0) ob-
tained in the simulations versus the theoretical approach obtained using equa-
tion 5.6. We observe a good agreement between the expected and the simulated
values ofρc(p)/ρc(0), confirming that the changes on the onset of congestion
are governed by the changes on the distance and the centrality. Moreover, we
can also observe that this approach acts as an upper bound for the changes of
the onset of congestion.
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Figure 5.7. Comparison between the values ofρc(p)/ρc(0) obtained using simulations and
the values obtained using equation 5.4 and the data of figure 5.6. We observe that the numerical
approach provides a good fitting of the behavior of the onset of congestion.

4. Comparing topological and dynamical robustness
As we have introduced so far, when a network suffers random failures there

is the possibility that some nodes of the network get isolated from the commu-
nication process. The causes of this isolation can be topological, if the network
splits, or dynamical, when congestion emerges and avoids the proper distribu-
tion of information. To discover which one of this two causes will appear first
given a certain topology and routing protocol, we have compared the probabil-
ity of disconnecting the network physically versus the maximum congestion of
the network, when removing a fractionp of nodes. We use the three network
topologies and the SP and RW routing protocols presented before, obtaining
the results presented in figure 5.8.

This comparison provides some insights about the robustness of the com-
munication process, defining regions of the parameters for which congestion
is attained before splitting the network and vice versa. First we find that SF
networks show a very high dynamically robustness. This means that, even if
the system is functioning at his maximal capacity before removing any nodes,
the random failures will not introduce congestion into this system. In second
place, we find that regular networks are more topologically robust. If the com-
munication process is based on a RW routing protocol and the initial system
works at the50% of the maximum capacity, a random breakdown will intro-
duce congestion in the network before splitting into two components. If the
routing protocol is based in SP, the maximum capacity to avoid the congestion
decreases to the20% of the total. With higher values of the initial load, the
system will fail dynamically before topologically. Finally, the robustness of
random networks depends on the routing protocol. Using a SP, the communi-
cation process can operate up to the80% of its capacity avoiding congestion.
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If we change the protocol to RW, we observe that the network improves its
dynamical robustness, being very difficult to congest it via random failures.

5. Summary
In this last chapter we have studied the relationship between the random

breakdown of a complex network and the changes on the congestion pointof
a communication processes. We have proved that this relationship is mainly
governed by the algorithmic betweenness distribution. Moreover, we found
that the centrality of the most important node in the communication process
(the node with the highest betweenness) plays a crucial role in the changes of
the onset of congestion. We presented an analytical expression for thebehavior
of the onset on congestion which is based on the amount of traffic that we
remove from the node with maximum algorithmic betweenness, confirming its
validity using different topologies and routing protocols. We also observed that
if the breakdown modifies structural properties, the centrality of the nodesalso
changes, obtaining a different behavior of the congestion point.

The results provide some insight of the dynamical response of a network
when there occur random failures. In other words, they give us an idea of the
load a system can handle if we want to avoid the congestion, in case the net-
work suffers random failures. These results highlight the necessity to include
dynamical considerations in studies about resilience of complex networks.For
instance, they can be used in the design of a dynamic communication process
to guarantee the efficiency when some of the nodes have been removed.

Some interesting issues remain open for future studies. We expect that
changing the topology or the routing protocols, we will be able to observe
different slopes forρc(p)/ρc(0) which probably will be governed by the same
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constrains exposed in the work. Another appealing work derived fromthis
problem is the analysis of the the congestion when the network undergoes an
intentional attack.



Chapter 6

CONCLUSIONS AND PERSPECTIVES

1. Conclusions
In a time when large amounts of data about social, economical, technolog-

ical, and biological systems are produced in a daily basis, complex networks
have become a powerful tool to represent the structure of complex systems.
The advances in complex networks theory have been geared towards thestudy
of two main questions: what can we understand from a complex system by
looking at its structure, and more importantly, what is the interplay between the
topological and the dynamical properties of a complex system. The aim of this
dissertation has been an attempt to provide new insights on both questions by
analyzing two particular problem, the analysis of the community structure and
the characterization of the dynamical properties of a communication process.
Besides the particular summaries that are located at the end of each chapter,
here we present the main conclusions that can be extracted from the obtained
results.

In the last few years, it has become clear that the detection of community
structure of a complex network is key to characterize their internal orga-
nization. The identification of this intermediate scales of the system has
enabled the scientific community to understand how the different compo-
nents of a complex system assemble into coarser units, obtaining better
insights about the dynamical behavior of these components.

The problem of detecting communities has attracted the attention from sci-
entists working in several fields, as the large number of efforts trying to
quantify and detect this structure in the last five years reflect. In chaptertwo
we have made a comprehensive comparative study of community detection
methods in order to provide researchers with a guide on how to select the

109
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most appropriate method depending on the properties of the network or the
computational resources available to extract a relevant structure.

Despite the fact that the analyzed methods follow completely different ap-
proaches, the accuracies obtained by most of them are similar when de-
tecting well defined communities. Therefore, it seems that the problem of
community detection provides a paradigmatic example of how a complex
problem can be faced from a large number of points of view to reach the
same conclusion. As we increase the “fuzziness” of the communities, we
find that there is a trade-off between efficiency and accuracy. This is a
common problem that appears when we want handle large amounts of data.
In the particular case of community detection, the most accurate methods
usually are not scalable so its use is limited to medium sized networks (up
to 10,000 nodes). If we want to analyze larger networks, one needs faster
alternatives, but their accuracy is lower.

In chapter three we have presented an extremal optimization (EO) based
method to detect community structure as an alternative to those available
in the literature. The aim of proposing a new method is two-fold: first,
to minimize the trade-off of efficiency or accuracy that we commented in
chapter two; and second, to provide a novel approach to the problem based
on a different type of heuristics.

Even though the extremal optimization is not as popular as other classical
heuristics such as simulated annealing or genetic algorithms, it yields very
good results when applied to classical optimization problems. In addition,
since behind EO there is an evolutionary process where nodes self-organize
until they reach a stable configuration that gives the community structure,
EO can also be used to understand the process behind the formation of the
communities. When comparing the results of our method with those pre-
sented in the benchmark of chapter two, we find that our method is among
the most accurate, and is also able to perform the community analysis in
a short amount of time. For these reasons, results obtained with our al-
gorithm have been used as a comparative reference in posterior detection
methods.

In this chapter we have also performed a deeper analysis of the modularity
formulation. We redefined this measure in terms of weighted and directed
versions, and we have uncovered the contribution to the modularity equa-
tion of particular configurations of nodes. Using this knowledge and the
flexibility of the EO algorithm, we have been able to introduce small mod-
ifications that go a step further in the detection process. On one hand, with
few algorithmic details, we have improved the accuracy of recursive algo-
rithms up to a 20%. On the other hand, we have proposed a method on
how to reduce the size of a network up to a 40% without altering the max-
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imal modularity configuration, allowing for even faster and more accurate
community analysis.

In the last two chapters we have studied of some dynamical properties of
communication processes in complex networks. We believe that opening
or reinforcing research lines devoted to the study of global scale properties
of dynamic process is mandatory. When scientists model the topology of
a specific complex network (e.g. the Internet), they measure the structural
properties (e.g. they find a scale-free degree distribution) and reproduce
them in the model, obtaining a simple but accurate description of reality.
However, we cannot follow the same steps to model the dynamics because
we lack the equivalent set of measurements that we use for the topology.

In this context, we have studied the fluctuations of the traffic on complex
networks in order to provide a large-scale dynamical characterization of
the traffic flow. The idea is that there are a large number of real complex
systems that show a scaling relation between the average flux and the vari-
ability of this flux. The understanding of this scaling relation will help us
design better traffic models.

It seems true that the values that the scaling exponentsα = 1/2 andα = 1
proposed in (de Menezes and Barabási, 2004a, de Menezes and Barabási,
2004b) are important, since act as a bound of the scaling observed in real
systems. However, in chapter four we show that these values are not uni-
versal, and that between the two exponents there is a wide range of possible
values that appear by tuning the parameters that control the communication
process. The analysis of a simple traffic model based on a Poisson queue-
ing system reveals three mechanisms that give rise a transition: how we
perform the sampling process, the time that the packets stay on the net-
work, and the introduction of congestion into the networks.

We corroborate the existence of intermediate exponents in real systems by
looking at the fluctuations of Internet traffic, which can be characterized
by a a scaling exponentα ∼ 0.75. Our results are in agreement with other
studies of fluctuation scaling in complex systems that display different scal-
ings in the range[1/2, 1] (Eisler et al., 2007).

The capability to maintain the communication between nodes when some
of them fail is another interesting property worthy analyzing. We believe
that it is more important to observe the incidence of the node failures on the
dynamical processes supported by the network than the effect of the failures
on the topology. In chapter five, we have defined the dynamical robustness
of a communication process as the ability of the traffic to avoid conges-
tion when we remove a fraction of nodes. Using the same communication
model of chapter four, we have provided new insights on how the onset
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of congestion behaves when there is a random node removal for different
routing protocols over different network topologies.

We have performed a theoretical study of the problem and we have quanti-
fied the changes produced by the random breakdown by analyzing the cen-
trality of the most important node in the communication process, and the
average number of jumps that the packets perform before exiting the net-
work. It is also worth noting that when we consider a protocol in which the
nodes do not have global knowledge of the structure, we find that changes
on the average path length of the system control the different behaviorsthat
appear in the simulations.

2. Perspectives
Here we resume some research lines that provide a logical continuation of

the work presented in this thesis.

There are still open questions regarding the internal organization of com-
plex networks. The first one is in the definition of what is a community. It
seems that the modularity has been accepted as the ’de facto’ measure to
quantify a given structure. However, some studies have also pointed outthe
weak points of this measure, particularly the limitation to identify certain
structures that can be relevant in the dynamical processes. This opensthe
door to alternative quantitative measures more suitable to capture dynami-
cally relevant structures.

The second open question is the study of overlapping and hierarchical com-
munities. New methods have been proposed to identify all the mesoscopic
scales of the system and communities that share certain nodes, but again
we find the same problems of which is the method that we should use to
analyze one network. In this case an extension of the benchmarks and tools
presented in chapter 2 should be developed to help the scientists decide.

Finally, the last —and perhaps the most interesting— open question refers
to the study of community dynamics. The analysis of the processes re-
sponsible of the formation and the evolution of the community structure
will provide new insights about social and/or economical dynamics. The
availability of data will unable us to track changes on the community struc-
ture with time, providing us with a clearer picture on how the nodes self-
organize into these groups.

The extremal optimization algorithm to detect community structure presents
nowadays a stable solution. Apart from minor technical improvements, the
method can be extended in at least three directions that will increase the
number of problems where we could apply our method. First, we can take
advantage of the flexibility of the algorithm and change the cost function
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to look for groups with other properties (such as node similarity as sug-
gested in (Newman and Leicht, 2007)), obtaining partitions of nodes that
share these properties. This task is not trivial, since we first need to de-
fine the function that we want to optimize and then define the individual
contribution of the nodes to this function.

Second, we can extend the method by including the mesoscopic analysis
introduced in (Arenas et al., 2007). Combining the accuracy of our algo-
rithm with this method will provide a more comprehensive picture of the
different organizational levels in a complex network.

Third, we can use our method to solve the community detection problem
in a probabilistic fashion, that is, we can group the nodes considering the
probability of them belonging to the same community, instead of giving
only one configuration that corresponds to the maximum modularity. Since
our method is not deterministic, by repeating the analysis of a network
several times we usually obtain different configurations which have small
structural changes. By performing an statistical analysis of all the output
configurations, we can extract the probability that nodes belong to each
community. A similar approach has been already successfully applied in
(Sales-Pardo et al., 2007).

The study of the scaling of fluctuations is in a preliminary stage, thus there
is a large number of questions unanswered. In order to improve our under-
standing of the problem presented here, a possible alternative is the explo-
ration of other possible transitions of the scaling exponent by using a a more
realistic traffic model. To increase the complexity of the model we can also
use other routing protocols (such as shortest-path based), or changethe be-
havior of the queueing system. We expect that the introduction of these
changes will give rise to new transitions of the exponent that could help us
understand one of the key questions of the problem: what are the reasons
that determine the exponent for a particular real system?. The answer to the
question is not trivial since there are many explanations for the existence of
a given value ofα. A good way to understand the exponent should be the
study of the different parameters of the system and, based on the model,
look for which ones can give a coherent explanation of the fluctuation.

The communication model used in the chapter is unable to reproduce the
self-similarity of traffic in time observed in some real systems like the Inter-
net. Therefore, a natural extension of the work is to introduce traffic with
long-range dependencies and burstiness, and look at the behavior ofthe
system. Moreover, the use of this type of traffic opens the door to another
research line: the study of the relationship between the scaling exponents
and the Hurst exponent that governs the self-similarity of the traffic.
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The study of the dynamical robustness is also in its preliminary stages. The
first problem that we encountered by using this methodology relies in the
amount of computing resources needed to perform a simulation of the sys-
tem and obtain the values of the onset of congestion. An alternative way to
obtain the value ofρc is the use of the formulation proposed in (Guimerà
et al., 2002b). However, the adaptation of the formulation is not trivial,
since it requires the inversion of a big matrix which also uses a large num-
ber of computational resources. Using techniques such as the LU decom-
position or the Cholesky decomposition (Golub and van Loan, 1996), we
expect to be able to reduce substantially the time needed to reduce the ma-
trices and as a result, the time needed to analyze the changes on the onset
of congestion.

Another possibility that would be extremely interesting is to test the dy-
namical robustness of real network topologies, to be able to corroborate
from an empirical point of view the results obtained in the simulations of
the work. And finally, another possible extension is the analysis of what
happens with the onset of congestion when the network suffers directedat-
tacks against the most important nodes, such as the most connected or the
most central in the communication process.



Appendix A
Evolution of the Internet
Autonomous System Topology

In the introduction of this work we have explained the reasons why the sci-
entific community is still looking for a detailed map of the Internet’s topology.
We also have explained how Internet mapping projects try to solve this prob-
lem, collecting information using passive (BGP tables) and active (traceroute
probes) mechanisms, filtering the gathered information and creating punctual
snapshots of the Autonomous Systems (AS) and Internet Router (IR) levels.
These maps are published online and research groups are using them to test
new models, theories or protocols.

A first look to some of the available online maps shows a topology with a
large degree of heterogeneity, independently on the source used to gather the
data. This observation was confirmed empirically by Faloutsoset al. when they
found that the degree distribution of the Internet obeys a power-law (Faloutsos
et al., 1999). Since then, scientists have used the set of the statistical tools and
measurements described in the first chapter when they want to perform a large
scale characterization of the Internet network (Vázquez et al., 2002a).

The evolution of the Internet modeling has been directly related to the ob-
servation of these statistical measurements. Every time that a new model is
developed, the authors take one or various topology datasets, measure some
of their large-scale properties, and compare them against their model to vali-
date it. This validation process has been criticized since the measures obtained
from the datasets used in the comparison between model and reality have some
potential flaws. First, some recent publications argue that the obtained statis-
tical measurements can be biased by the method used to extract the topology
(Lakhina et al., 2002, Clauset and Moore, 2005), leading to an uncomplete
view of the network that cannot reflect the real structure behind. For instance,
it has been proved how a bad sampling of a homogeneous graph can make
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us believe that the inferred network has a scale-free distribution (Dall’Asta
et al., 2005). Computer scientists are working hard to solve the sampling prob-
lem, creating more efficient reverse engineering techniques or increasing the
number of nodes used in the active mechanisms that extract the topology in-
formation (Donnet et al., 2005). And second, another group of critics argue
that the Internet is a network that has been continuously growing and changing
at all the three scales (users, routers and Autonomous Systems) in the last20
years. Every month new nodes appear and some of them disappear, turning the
evolution of the network into what is known as a “birth-death process” thatcan
change some of the structural properties of the network. Therefore, one model
that is capable of reproducing a concrete snapshot of the network could not be
valid a few months before.

In this appendix we present a brief analysis of the evolution of the statistical
properties of the Internet AS maps to measure the stability of internet measure-
ments, extending the previous works of Vázquez et al. (Pastor-Satorras et al.,
2001, Vázquez et al., 2002b, Vázquez et al., 2002a). The presentedresults can
be used as a reference in future modeling of the Internet Autonomous System
topology.

1. Mapping the Autonomous System topology
An Autonomous System refers to a set of routers that are under a single

technical administration, where communications between routers within the
AS are controlled by an interior protocol and communications to other ASs
by an exterior protocol (usually BGP). From a more restrictive point of view,
the RFC documentation1 fixes as a condition to be an Autonomous System
that the entity should have a single and clearly defined internal routing policy
(Hawkinson and Bates, 1996).

An Autonomous System usually refers to administrations or Internet Ser-
vice Providers that comply with the previous conditions. When two ASs want
to exchange traffic with each other, they need to establish a physical connec-
tion between them. But behind the creation of a new connection there are a
large number of issues that need to be negotiated by both parts, e.g. who is
going to pay for the infrastructure or how much traffic is allowed to travel in
each direction. Therefore, it is difficult to classify this network as technologi-
cal, since each link involves some kind of agreement between the two involved
parties. This provides another point of view of the network, the social net-
work of agreements between all the entities that can give access to the Internet
around the world.

1The Request For Comments (RFCs) documentation is considered the official collection of all the designs
and guidelines realted with Internet
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Internet AS maps can not be directly obtained by simply looking at the net-
work infrastructure. Data collected from BGP tables or from traceroute-like
techniques gives only the connectivity between router interfaces. Sincethe au-
tonomous system represents a coarse-grained view of the network, there is a
necessary abstraction process before obtain the representation of thenetwork
at the AS level. The first step towards obtaining the AS map begins with the ex-
traction of the connectivity graph between routers. Then, routers are grouped
using the information regarding their ownership, creating a new network where
each node represents an AS. The links between two ASs are added if there is
at least one physical connection between the routers belonging to them. The
resulting new network goes through a filtering process to correct duplicate en-
tries and to validate the results (Dimitropoulos et al., 2007), and finally the
resulting map is published in the online repositories.

The AS topologies used in the analysis have been gathered from some of
the data sources most frequently used by the research community. Some topol-
ogy mapping projects publish new datasets regularly (usually one or two times
a week) that contain already preprocessed information about the relationship
between ASs. The three sources of information that we have used are thefol-
lowing:

The first group of data comes from the National Laboratory for Applied
Network Research (NLANR), who generated AS maps derived from the
BGP routing tables gathered by the Routeviews project from 8 November
1997 to 2 February 2000. The datasets are freely available for download at
http://moat.nlanr.net/Routing/rawdata/.

The second group of data has been obtained from the Cooperative Associ-
ation for Internet Data Analysis (CAIDA), who since 2004 has been pub-
lishing the adjacency matrix of the Internet AS-level graph. This data is
also inferred from the BGP tables of Routeviews project, but in this case
they also add extra information about the type of link between two ASs
(Customer-Provider, Peer-to-Peer, etc..). The datasets are freely available
for download at http://as-rank.caida.org/data/.

The third group of data is a combination of the data from the previous group
with the measurements of the Skitter project, which is also managed by
CAIDA. The Skitter project uses traceroute probes to discover hidden paths
between the ASs present in the BGP tables. Since it is a complementary
dataset to the previous one, we have combined the information of the links
of both sources to present a more detailed map of the Internet AS-level.
Skitter data is freely available for download at http://sk-aslinks.caida.org/.

We have downloaded their datasets and created monthly snapshots of the
AS maps by combining all the nodes and links that appear at least twice in the
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Figure A.1. Evolution of the number of nodes (a) and of links (b) of the Autonomous Systems
topology maps. The nodes and links are shown in a logarithmic scale.

networks published in a given month to discard instabilities of the data that
can give rise to false links. Note that there is a temporal gap between the two
datasets, since in this period there was no group publishing data about AS rela-
tionships. Between 2001 and 2004 there are available BGP information in the
Routeviews project, but no project was creating the AS relationship maps. We
guess that one possible reason to explain this lack of information comes from
the “Dot-Com bubble” crash of 2001, which decreased momentarily the inter-
est and funding for Internet related projects. The interest in Internetmeasure-
ments (and the AS relationships mapping) raised again with the establishment
of CAIDA as a worldwide internet observatory, who has been releasingmore
detailed datasets since the beginning of 2004.

2. Analyzing the evolution of the AS maps
To study the evolution of the structure of the AS network, we have ana-

lyzed the changes of some of the most common measurements used in com-
plex networks literature: the size of the system, degree based properties,small-
worldliness, and the hierarchical organization of the network.

First, we have studied the change on the size of the Internet AS map. In
figure A.1, we observe that there is an exponential growth of the number of
nodes and links in the three datasets. Keep in mind that this growth refers to
the number of organizations that provide access to the network, and not tothe
number of people that uses its services.

To quantify the growth rates we have used the same formulation presented
in (Serrano et al., 2005). We characterize the exponential growing rates as
E(t) ∼ E0e

αt for the number of links andV (t) ∼ V0e
βt for the number

of nodes, wheret is the number of months that have passed since the first
measurement of each dataset. The exponents found in the NLANR datasets
areα ∼ 0.03 andβ ∼ 0.027, in concordance with those obtained in Serrano
et al.. In the CAIDA datasets the exponents areα ∼ 0.012 andβ ∼ 0.011
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Figure A.2. Geographical distribution of the Internet AS nodes in the inferred maps by
NLANR in 1997 (c) and by CAIDA in 2007 (d). We see that the growth of theAS network
has been centered in the most developed countries.

without the Skitter data andα ∼ 0.005 andβ ∼ 0.011 with the Skitter extra
information.

The number of nodes and links is still nowadays growing exponentially,
but it seems that the growing rate has decreased by half. One of the most
plausible explanations for this fact is that there is a saturation of the market of
the Autonomous Systems in the most developed countries, which is decreasing
the probability that new ASs enter the market. To evaluate the plausibility of
this hypothesis we have plotted the geographical position of the Internet ASs
at two different times. The results are presented in figure A.2. As expected,
the growth of the system has been centered in two main areas: the United
States and Europe, where it covers almost all the high populated areas and
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therefore seems that there could be some saturation of the market in these areas.
The fractal distribution observed in this two plots has been compared with the
distribution of the world population (Yook et al., 2002), and it seems that it
plays an important role in the growth rules of the Internet topology (Serrano
et al., 2005, Serrano et al., 2006).

Finally, also note the difference in the number of links between the two
CAIDA datasets in figure A.1 right. The extra information provided by Skitter
reveals the existence of the previously described Internet ’dark-matter’, a large
number of links (between 10 and 15 thousand links) that are not detected ifwe
create a map only using the BGP routing tables. The number of nodes in both
datasets are the same, since Skitter only uses the nodes that appear in the BGP
tables to test the existence of the hidden links between them.

Maximum degree, average degree, degree distribution and correlations

One of the most frequently used group of metrics that have been used to char-
acterize the Internet large-scale topology —which does not mean that theyare
the best ones, as explained in chapter one— have been based on the number of
connections of a nodes. In particular, we have analyzed four interesting met-
rics of the degree: the average node degree, the maximum degree, the degree
distribution and the degree-degree correlations.

Looking at the average degree of the nodes in figure A.3.a we observe that
the AS level is a very sparse network, even if we add the extra links from
the Skitter. The value of the average degree has been almost constant in the
last 10 years, fluctuating between4 and4.5. Adding more links from Skitter
obviously increases the average value, but the difference is very small;seems
that the if we can discover all the links, the average of connections per node
will be around5 and6. On the contrary, looking at the maximum degree of the
AS network in figure A.3.b, we find that this metric was growing linearly in the
NLANR maps, but seems that in the last three years has reached an stationary
value around 3000 links (a little less if we do not add the Skitter ones).

The connectivity distribution of Internet is known to display a scale-free
distribution. We have measured the accumulated distribution of degrees for
both CAIDA datasets of May 2007 in figure A.3.c, and we find a value around
−1.1 in agreement with the values obtained in other analysis (Vázquez et al.,
2002b). In figure A.3.d we plot the evolution of the exponent in the different
datasets. We observe that the value is almost stationary in time, and that is not
affected by the introduction of additional links from Skitter. The stability of
the exponent can be explained if the growing process behind the addition of
nodes is based in the preferential attachment mechanism (Barabási and Albert,
1999). As Barabásiet al. pointed out, when a network created with preferential
attachment reaches a steady state, the exponent of the degree distributionis
invariant to changes on the size of the network.
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Figure A.3. Evolution of the maximum degree (a) and average degree (b) of the analyzed AS
topology maps. Accumulated degree distribution of the two CAIDA snapshots of May 2007 (c)
and evolution of the exponent of the accumulated degree distribution (d).Average degree of the
nearest neighbors as a function ofk of the two CAIDA snapshots of May 2007 (e) and evolution
of the scaling exponent between the degree and the average degree ofthe nearest neighbors (f).

Another measure related with the node degrees is the degree-degree correla-
tion function. Figure A.3.e displays the average degree of the nearest neighbors
of a vertexknn as a function of the node degreek, where we observe a scaling
relationship with an exponent∼ −0.48. The interpretation of this observation
is that the AS-map display disassortative mixing, where high degree nodes are
on average mostly connected to nodes with a smaller degree. This is not a
surprising result, since many technological based networks (including theIR
map) also display a clear disassortative mixing.
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Figure A.4. Evolution average shortest path length (left) and of the clustering coefficient
(right) of the AS topology maps.

On figure A.3.f we show the evolution of the scaling exponent of theknn(k)
distribution. This exponent proves a very stable metric with a value around
−0.47, that has not been affected by the evolution and by adding more links
into the network.

Small-world properties: clustering and average path length

Popular culture affirms that one of the most interesting advances of the Inter-
net is that it has given us the feeling than the world is smaller than ever before.
However, does the internal structure of the network display the characteristics
of a small-world network? A few studies have pointed out that the AS-level
topology is indeed a small-world, with a very short average path length be-
tween its nodes and a relatively high clustering coefficient (Bu and Towsley,
2002). This is not surprising since the AS map is composed of many local
ASs highly connected between them (that gives rise to a high clustering coeffi-
cient), which are connected by large ASs that act as backbones of the network,
as depicted in the Transit-Stub model (Zegura et al., 1996). The existenceof
this small-worldliness is also important for dynamical processes, since seems
that plays a key role on the efficiency of the Internet on delivering information
(Latora and Marchiori, 2001).

Figure A.4 shows the evolution of the average path length and the clustering
coefficient metrics of the analyzed maps. On one hand, we find that the average
path length on the BGP maps has been almost constant in the last seven years,
increasing only around1% when the size of the network has increased150%.
The main reason behind this behavior is the scale-free nature of the AS maps;
as pointed out by Cohen et al., scale-free networks are “Ultra-small” (Cohen
and Havlin, 2003) because their diameter scales as the size of the system as
〈D〉 ∼ log log N . Since the AS maps display a well-defined scale-free degree
distribution, we expect that adding new nodes will not change the distances on
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Figure A.5. Evolution of the value (left) and size (right) of the maximum k-core. The fluctua-
tions are a consequence of the sampling process used to infer the maps by the mapping projects.

the network. The inclusion of the Skitter links decreases the average distance,
as we provide alternate paths to reach other nodes of the network while we do
not change the number of nodes.

On the other hand, we observe that the value of the clustering coefficienthas
been changing continuously. There was an increasing trend in the first months
of the NLANR, but seems that now the value is going to a stable value around
0.2. The inclusion of more links from Skitter while maintaining the number of
nodes increases the clustering coefficient of the network up to0.35, since the
missing links are mostly redundant connections between the most connected
nodes (Cohen and Raz, 2006). This is one of the main reasons why this links
are not detected with traditional techniques that only look at the main paths.

Hierarchical structure of internet: k-cores

Another important feature of the Internet AS structure is that displays a well-
defined hierarchical structure. One possibility to measure this hierarchical or-
ganization is using the k-core decomposition. The k-core decomposition con-
sists of a recursive pruning process of the least connected vertices,obtaining
the most central core of one network and uncovering its hierarchical organiza-
tion (Seidman, 1983, Bollobas, 1983).

The size and degree of the largest k-core gives information about the ro-
bustness of the network and its potential efficiency. In first place, the existence
of a big k-core means that in the center of the network there is a big number
of nodes interconnected, which decreases the probability of breaking the net-
work. In second place, the redundancy of the links helps the redistribution of
the traffic flow among a greater number of paths, providing higher efficiency
on delivering the information between pairs of nodes (Alvarez-Hamelin et al.,
2007).

In the last two plots we analyze the evolution of this two metrics of the k-
core decomposition, the degree and the size of the largest k-core. In figure
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A.5 we show that both values have been increasing slowly with the Internet
evolution. The addition of the Skitter links increases substantially the degree
of the k-core nodes, reinforcing the fact that the missing links of the BGP
tables correspond mainly to recursive connections between the most central
nodes (Cohen and Raz, 2006).

The values observed in this two figures show that the Internet has a large
core of around 65 nodes that are highly connected between them (eachnode is
connected to half of the others). However, these values are not in agreement
with the presented in the Internet medusa model (Carmi et al., 2007), where
they found a core of 100 nodes. The most probable reason is that the authors
of this model use the AS maps published by the DIMES project, which in-
clude different information about the missing links, and therefore they observe
a different snapshot of the AS maps.

3. Summary
In this appendix we have shown how the internal structure of the InternetAS

maps has been evolving in the last seven years. We have studied the temporal
changes of an extensive set of topological characteristics, including average
properties and exponents of scale-free distributions. We have analyzed the AS
maps published on two different time frames: the data collected from NLANR
between 1997 to 2000 displays how some properties are changing, probably
because since the core of Internet was still in formation; in both AS maps
collected from CAIDA between 2004 and 2007 we find that the evolution of
its structure is getting into a mature state, with an internal structure that is
insensitive against the addition and removal of nodes.

There is an important open question regarding these results: Are the changes
in the AS maps reflecting the Internet evolution or they are a consequence of
the increasing efficiency of Internet discovery tools? On one hand, thediscov-
ery tools are providing more detailed information about the topology, as we
have seen when we added the Skitter links to the BGP tables. On the other
hand, no one doubts that Internet is still growing at all its levels, and there-
fore there is more information to discover every month. Seems that to answer
this questions we will need to until we will have a complete topology map,
and then we will be able to identify exactly how much of the evolution is by
the improvement of the tools and how much is due to the real growth of the
Internet.



Appendix B
Relationship between directed and undirected
modularities

Let us suppose thatwij are the weights of a directed weighted network, and
that we define its corresponding symmetrized (undirected) network by adding
the weights matrix to its transpose:

w̄ij = wij + wji , ∀i, j . (B.1)

The strengths of this undirected network are

w̄i = wout
i + win

i , (B.2)

and the total strength is

2w̄ = 4w . (B.3)

The modularityQD of the directed network is invariant under transposi-
tion of the weights matrix since the input (output) strengths of the transposed
network are equal to the output (input) strengths of the original one:
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The relationship between the modularityQD of the directed network and
the modularityQS of its symmetrization is obtained by simple calculations:
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This result can also be expressed as a communities sum:

QS = QD − 1

(4w)2

∑

r

(

∑

i

(wout
i − win

i )δ(Ci, r)

)2

. (B.6)

The contribution of the links to the input and output strengths cancel if they
fall within the communities. Therefore, if most links do not cross the bound-
aries of the communities, it follows thatQS ≈ QD even if the network is
highly asymmetric.



Appendix C
Analytic network reduction preserving modularity

As we have introduced in chapter three, one can reduce the size of a network
grouping nodes while preserving the modularity. In this appendix we give
the analytical proof of the modularity preservation, and its application to two
different size reductions of weighted networks. This two reductions canbe
applied in both undirected and directed networks.

1. Size reduction preserving modularity
The main property of the reduced network is the preservation of modular-

ity, i.e. the modularity of any partition of the reduced graph is equal to the
modularity of its corresponding partition of the original network.

More precisely, letC ′ : {1, . . . , N ′} −→ {1, . . . , M} be a partition inM
clusters of the reduced networkG′. Its corresponding partitionC : {1, . . . , N} −→
{1, . . . , M} of the original graph is given by the composition of the reducing
functionR with the partitionC ′, i.e.C = C ′ ◦ R. Therefore, the statement of
the previous paragraph becomes

Q′(C ′) = Q(C) . (C.1)

The proof is straightforward:
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2. Reductions for undirected networks
The modularity of an undirected network may be written as

Q =
∑

i

qi , (C.3)

where
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1

2w

∑

j
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)

δ(Ci, Cj) (C.4)

is the contribution to modularity of thei-th node. If we allow this node to
change of community, the value ofCi becomes a parameter, and therefore it is
useful to define

qi,r =
1
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)

δ(Cj , r) , qi = qi,Ci
, (C.5)

which accounts for the contribution of thei-th node to modularity if it were
in communityr. The separation of the self-loop term, which does not depend
on which community nodei belongs to, yields to the definition of
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and
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satisfying
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The role of these individual node contributions to modularity becomes ev-
ident in the expression of the change of modularity when nodei goes from
communityr to communitys:

∆Q = 2(q̃i,s − q̃i,r) . (C.10)

As a particular case, a node that forms its own community, i.e. an isolated
nodei, which moves to any communitys produces a change in modularity

∆Q = 2q̃i,s . (C.11)

Therefore, if there exists a communitys for which q̃i,s > 0, nodei cannot be
isolated in the partition of optimal modularity. This existence is easily proved
by considering the sum of̃qi,r for all communities:
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where we have made use of the definitions of strengthwi and total strength
2w for the simplification of the expression. Thus,

if wii ≤
w2

i

2w
⇒

∑

r

q̃i,r ≥ 0 ⇒ ∃s : q̃i,s ≥ 0 , (C.13)

completing the proof that there are no isolated nodes in the configuration
which maximizes modularity, unless they have a big enough self-loop.
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3. Reductions for directed networks
The treatment of directed networks requires the distinction between the

nodes’ output and input contributions to modularity. We have proved in the
previous appendix that the modularity is invariant under the transposition of
the weights matrix:

Q =
∑
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j , (C.14)
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The process of separating the self-loop term follows the same pattern than
for undirected networks:
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and
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With these definitions at hand, the change of modularity when nodei goes
from communityr to communitys becomes

∆Q = (q̃out
i,s + q̃in

i,s) − (q̃out
i,r + q̃in

i,r) , (C.23)

and the change when an isolated nodei moves to any communitys is

∆Q = q̃out
i,s + q̃in

i,s . (C.24)

The first difference between directed and undirected networks comes from
the fact that we cannot prove this time the inexistence of isolated nodes in the
partition of optimal modularity. The previous argumentation was based on the
use of (C.12), which now splits in two relationships:
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The next step is the same:
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i,s2
≥ 0 . (C.28)

Since communitiess1 ands2 need not be the same, the change of modularity
(C.24) is not warranted to be positive, and thus isolated nodes are possible
in the partition which maximizes modularity. Nevertheless, there exist three
kinds of nodes for which we can prove they cannot be isolated in the optimal
partition, provided their self-loops are not too large: hairs (nodes that have
s1 = s2) , sinks(nodes with only input links) andsources(nodes with only
output links).





Resum de la Tesi

Introducció
La consolidació d’Internet com a xarxa mundial de comunicació està con-

siderada una de les claus de la revolució tecnològica de finals del segle passat,
contribuïnt al fenòmen de la globalització. Les dades confirmen aquest fet;
el nombre total d’elements connectats a Internet ha crescut exponencialment
any rera any des de 1990, amb més de mil milions d’usuaris utilitzant els seus
serveis diàriament. A més, la quantitat de tràfic generat per aquests usuaris
també creix entre un100% i un 1000% anualment, arribant a moure diària-
ment al voltant de Petabytes (250 bytes) d’informació entre ordinadors de tot
el món.

Malgrat que hi ha la idea generalitzada que al darrere del disseny d’Internet
hi existeix una gran planificació i un important esforç d’enginyeria, la veritat
és que la part tecnològica juga un paper molt petit en el seu desenvolupament;
el secret de l’èxit d’aquesta xarxa resideix en un conjunt de protocols i guies
tècniques que descriuen com comunicar eficientment tot tipus de dispositius
electrònics. A partir d’aquestes guies, entitats independents (com ara elsgo-
verns o els proveïdors d’Internet) imposen les seves pròpies normatives de com
connectar nous dispositius a la xarxa, fomentant la creació d’una infraestruc-
tura extremadament heterogènia que ha anat evolucionant durant els últims20
anys.

Internet presenta dues propietats interessants que en principi no esperaríem
d’un sistema amb un creixement tan descentralitzat i sense un disseny pre-
imposat. En primer lloc, és una de les xarxes més robustes que existeixen; tot
i el gran nombre d’atacs que pateixen cada dia els seus components, molt pocs
atacs han provocat una interrupció de les comunicacions a escala global.En
segon lloc, Internet mostra una inusitada eficiència en el lliurament d’informació
entre usuaris, tot i l’enorme quantitat de tràfic distribuït pels routers d’arreu del
món. Per exemple, des d’un punt de vista estadístic, la latència o els retards
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soferts pels paquets d’informació són molt baixos en comparació amb altres
xarxes tradicionals de comunicació o de transport que tenen un comportament
dinàmic similar (com per exemple la xarxa d’autopistes).

Per aquests motius, Internet es considera un dels exemples paradigmàtics del
què entenem per sistema complex. Partint del fet que no existeix una definició
estandaritzada de complexitat, la comunitat científica sol descriure aquests sis-
temes utilitzant algunes característiques comuns que podem observar en tots
ells, independentment que l’origen dels sistemes sigui social, biològic o tec-
nològic. Per exemple, a l’igual que passa amb Internet, la majoria de sistemes
complexos mostren normalment una organització òptima que apareix sense
que hi hagi cap mena de control o disseny extern. Però potser la propietat més
destacada que comparteixen els sistemes complexos és la seva no-linealitat,
és a dir, que no podem entendre el comportament global del sistema a partir
de la suma dels comportaments individuals dels seus components, sinó que
existeixen molts altres factors que hem de tenir en compte.

Les xarxes són una de les representacions més utilitzades per a descriure
l’estructura de les interaccions entre els elements de qualsevol sistema. Les
xarxes més bàsiques es solen modelar utilitzant grafs regulars o aleatoris,els
quals mostren un alt grau de similitud quan mesurem qualsevol de les seves
parts. Tanmateix, l’observació de les interaccions en sistemes complexos reals
demostra que l’estructura de connexions és molt heterogènia, amb una sèrie
de característiques no-trivials que no es tenen en compte en les aproximacions
anteriors. Aquest grup de xarxes es coneixen per xarxes complexes, és a dir,
xarxes que es troben “entre la regularitat i l’aleatorietat”, perquè en l’aparent
estructura caòtica s’hi troba amagada una organització òptima que facilita el
funcionament global dels sistemes complexos.

Amb l’objectiu principal d’entendre i modelar les característiques bàsiques
de les xarxes complexes, ha aparescut recentment una nova “‘ciènciade les
xarxes”. L’aparició d’aquesta ciència s’ha vist potenciada per tres factors: en
primer lloc, l’augment de la potència i la major disponibilitat de recursos com-
putacionals han permès realitzar estudis més detallat i amb xarxes composades
per milers (o milions) d’elements. En segon lloc, gràcies a la informatització
de les dades i l’aparició d’Internet com un immens repositori d’informació, la
comunitat científica pot accedir a una gran quantitat de dades sobre xarxes que
cada dia es publiquen en tot tipus de camps. Finalment, el que més ha potenciat
l’interès en les xarxes ha estat el desenvolupament d’eines, mesures,i models,
ja siguin noves o importades d’altres disciplines, tals com la sociologia, la
física estadística o la teoria de grafs.

Paral.lelament a aquests treballs, en els darrers anys algunes de les línies
d’investigació de la ciència de les xarxes s’han redirigit cap a l’estudi dequina
és la interrelació existent entre l’estructura i els processos dinàmics d’unsis-
tema complex. Els primers estudis han demostrat que existeix una influència
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Figure C.1. Exemple de l’estructura de comunitats d’una xarxa. Podem classificar els vertexs
en grups on el nombre de links cap a membres del mateix grup es més gran que el nombre de
links amb la resta de nodes de la xarxa.

bidireccional entre ambdues parts; per exemple, en el cas particular d’Internet,
entendre com l’estructura influencia la dinàmica del flux de dades proporciona
una informació molt valuosa sobre com dissenyar millors topologies i proto-
cols de comunicació mes eficients.

Aquesta tesi té com a objectius revisar l’estat de l’art de les tècniques e-
xistents per a descriure de les xarxes complexes, i proporcionar noves eines i
models que permetin una millor comprensió, tan a nivell topològic com a ni-
vell dinàmic. En particular, hem tractat dos dels problemes que més interès
desperten en la literatura actual: el problema de la detecció de l’estructura de
comunitats en xarxes complexes (en els dos primer capítols) i el problema la
caracterització de les propietats dinàmiques d’un procés de comunicació (en
els dos darrers capítols).

La mesoscala de les xarxes complexes
Els nivells de descripció topològica d’una xarxa complexa obtinguts amb les

eines que hem comentat permeten la caracterització del nivell microscòpic (a
nivell d’un node individual) o bé del macroscòpic (a nivell de tota la xarxa). Al
mig d’aquests dos extrems podem, alhora, efectuar una descripció mesoscòpica
per a identificar i estudiar les propietats d’aquells grups de nodes que estroben
densament connectats, és a dir, grups de nodes on el nombre de connexions
amb membres del mateix grup es més gran que el nombre de conexions amb
la resta de nodes de la xarxa. El conjunt de tots els grups de nodes que com-
pleixen aquesta condició és el que es coneix com a estructura de comunitats
i ens permet oferir una descripció de les escales intermitjes d’una xarxa com-
plexa.

El concepte de comunitat ha estat àmpliament utilitzat en les ciències so-
cials, i reflexa el fet que els individus tendeixen a establir més connexions amb
grups de gent amb qui comparteixen aficions, amistat o simplement perquè vi-
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uen a prop. No obstant, aquesta organització en comunitats no és exclusiva
de les xarxes socials, ja que també es pot observar quan analitzem amb detall
diferents sistemes, com ara xarxes metabòliques, laWorld Wide Webo la xarxa
mundial d’aeroports (Ravasz et al., 2002, Guimerà et al., 2005). Algunsestudis
científics han demostrat que els nodes que pertanyen a la mateixa comunitat
acostumen a compartir una sèrie de propietats comuns (Flake et al., 2002, Eck-
mann and Moses, 2002) i també han demostrat com l’existència d’una estruc-
tura de comunitats ben definida influencia els processos dinàmics com ara
la sincronització entre els nodes, la difusió de la informació, o l’emergència
d’actituts de cooperació entre agents (Arenas et al., 2006b, Arenas etal., 2006a,
Lozano et al., 2007).

La identificació i caracterització d’aquestes comunitats de nodes no és una
feina trivial. Un dels problemes principals és que la pròpia definició de comu-
nitat està en termes qualitatius, i la determinació de la mesura quantitavia més
adecuada es troba encara sota debat. Fins ara, la mesura més acceptadaper
la comunitat física rep el nom de modularitat (Newman and Girvan, 2004), i
mesura quina és la probabilitat de que les conexions internes del grup siguin
fruït o no d’un procés aleatòri. L’èxit d’aquesta mesura radica en quepropor-
ciona una forma de determinar si una descripció mesoscòpica es més o menys
precisa, és a dir, permet mirar dues particions i afirmar quina és millor mirant
la que proporciona un valor més alt de modularitat.

Un altre problema que presenta la detecció de comunitats és la gran quantitat
de configuracions possibles en que es pot organitzar els nodes. Per acercar
dins d’aquestes configuracions quina és la millor, s’ha desenvolupat unnou
conjunt de mètodes capaços de descobrir l’existència de les comunitats a partir
de la informació topològica de les xarxes (com es connecten els nodes entre
ells). En el capítol dos de la tesi es presenta una extensa comparativa dela
literatura actual sobre mètodes de detecció de comunitats, intentat oferir a la
comunitat científica un punt de referència en el camp de la detecció. Per a
poder comparar aquests mètodes s’han recollit tres conjunts d’eines queens
permeten analitzar la precisió i la velocitat dels mateixos. En primer lloc,
utilitzant una sèrie de xarxes generades artificilament (on es controla el nivell
de definició de les comunitats), es pot analitzar quin és el nivell de precisió
que assoleix un algorisme a l’intentar detectar les comunitats pregenerades.En
segon lloc, per a poder decidir la similitud entre dues particions es proposa un
mètode basat en la teoria de la informació, conegut com amutual information,
que mesura quina és la dependencia mútua existent entre dues configuracions. I
en tercer lloc, es proposa un mètode per a comparar la velocitat dels algorismes
observant el seu ordre de complexitat, és a dir, com escala el temps d’execució
amb el tamany de la xarxa.

A partir dels resultats obtinguts a l’aplicar aquestes eines de comparació als
algorismes existents, es pot decidir quin és el mètode que més s’ajusta a la
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Figure C.2. Dreta: Estudi de la precisió dels algorismes quan els sometem a xarxes amb una
estructura de comunitats prefixada. Com més gran es el valor dezout/ztot més difícil resulta
trobar les comunitats. Esquerra: Taula on es resumeix com el cost computacional d’alguns dels
algorismes descrits en la tesi escala amb el nombre de nodes del sisteman, el nombre de links
m i el grau mig〈k〉. La correspondència entre etiquetes i algorismes està explicada al capítol 2
de la tesi.

xarxa que vulguem estudiar. El que resulta més sorprenent és que existeix un
compromís entre el temps que tarda l’algorisme i la qualitat dels resultats. Per a
analitzar xarxa petites i mitjanes (fins a alguns milers de nodes) és recomanable
utilitzar els algorismes que proporcionen una detecció més precisa. En canvi,
si volem analitzar xarxes més grans, és necessari utilitzar un algorisme més
escalable que no podrà garantir que la partició trobada sigui semblant a la més
òptima.

Detecció de comunitats utilitzant Extremal Optimization
Al tercer capítol, s’introdueix un mètode alternatiu per a trobar la partició

amb la millor modularitat, que intenta superar les limitacions existents en els
algorismes descrits anteriorment. Com han demostrat alguns autors, la op-
timizació de la modularitat és un problemaNP-hard (Brandes et al., 2007),
degut a que l’espai de particions possibles creix més ràpidament que qualsevol
potència del tamany del sistema, per la cual cosa l’unica opció disponible per
a aproparnos a la partició óptima és utilitzar una cerca heurística que permeti
reduir l’espai de les particions possibles a analitzar.

L’algorisme que es proposa en aquest capítol es un mètode divisiu que opti-
mitza la modularitat utilitzant una cerca heurística coneguda perExtremal Op-
timization(EO) (Boettcher and Percus, 2001a, Boettcher and Percus, 2001b).
El funcionament bàsic de l’EO consisteix en optimitzar una variable global
del sistema (en el nostre cas la modularitat) a partir de millorar la contribució
local dels pitjors elements del sistema, mitjançant un procés que implica al-
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laus coevolucionàries. L’eficiència de l’heurística EO s’ha posat de manifest a
l’aplicar-se a alguns problemes clàssics (com ara els spin glasses o problemes
de coloracio de grafs), millorant els resultats obtinguts per altres heurístiques
més consolidades tals com elsimulated annealingo els algorismes genètics.

Internament, el nostre algorisme EO està dissenyat com una versió més
complexa delGraph Bipartitioning, un problema clàssic de la teoria de grafs
que consisteix en separar una xarxa en dos grups de nodes intentant minimit-
zar el nombre de links entre els dos grups. Al principi els nodes s’assignen
aleatòriament a un dels dos grups, i després es deixa evolucionar el sistema
movent els nodes que tenen pitjor contribució a la modularitat total d’un grup
a l’altre. En cada pas es mira si el sistema ha assolit una modularitat més alta o
no. Un cop es detecta que ens trobem en un punt en que no es pot obteniruna
configuració millor, s’eliminen tots els links intermitjos de la xarxa i es torna
a començar de nou amb tots els subgrups que hagin quedat. Aquest procés es
repeteix recursivament fins que no es pot incrementar més la modularitat dela
xarxa.

Després de desenvolupar l’algorisme EO, hem dirigit els esforços en de-
senvolupar algunes modificacions que ens permeten millorar alguns aspectes
puntuals del mateix i alhora poder-lo aplicar en un grup de xarxes mes ampli.
En primer lloc, redefinint la formulació de modularitat i fent uns canvis menors
en el codi hem creat un dels primers mètodes capaç de poder analitzar xarxes
dirigides i pesades. En segon lloc, hem aplicat petits canvis a nivell algorísmic
per a solucionar alguns problemes relacionats amb la recursivitat, permetent al
sistema assolir valors més alts de modularitat. I en tercer lloc, hem proposat
un mètode que permet reduir el tamany de la xarxa preservant la modularitat
de la millor partició. Aquesta reducció permet que qualsevol algorisme basat
en optimitzar la modularitat pugui analitzar amb més detall l’espai de config-
uracions possibles, i per tant poder obtenir millors configuracions utilizant un
menor temps d’anàlisi.

Els resultats presentats al final del capítol mostren que el nostre algorisme
esdevé una de les millors alternatives per a identificar l’estructura de comuni-
tats d’una xarxa complexa. Els valors de la modularitat obtinguts a l’analitzar
les principals xarxes de referència se situen entre els més alts publicats en la
literatura sobre comunitats. Per altra banda, tot i no ser un dels algorismes més
ràpids, el temps d’anàlisi escala comO(n2log(n)) amb el tamany de la xarxa,
permetent realitzar la detecció de comunitats de forma acurada en xarxes mit-
janes i grans.

Finalment, s’ha aplicat l’algorisme per a estudiar una xarxa real, la xarxa
de projectes FP6 de la comunitat eruopea. L’anàlisi detallat de les comunitats
trobades demostra que identifiquem clarament grups de companyies i institu-
cions amb un perfil similar com, per exemple, empreses relacionades amb el
sector automobilístic.
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Figure C.3. Exemple del funcionament del nostre algorisme de detecció de comunitats quan
analitzem la xarxa Zachary, una de les més utilitzades per a comprovar la precisió de la majoria
de mètodes. Gràfic superior: Estat dels nodes de la xarxa despres dela inicialització aleatoria
en dos grups i després en cadascun dels moments en que l’algorisme va tallant la xarxa recursi-
vament. Gràfic inferior: Evolució del valor de la modularitat en cadascun dels passos del procés
evolutiu. Les barres de separació signifiquen que hem arribat a un estat estacionari i per tant
procedim a subdividir el graf en els talls que observem a la part superior.

Estudi de les fluctuacions del tràfic en una xarxa complexa
Recentment, els estudis sobre xarxes complexes han començat a estudiar

les propietats dels processos dinàmics que tenen lloc sobre aquestes xarxes.
En el nostre cas ens hem centrat únicament en els processos de comunicació,
amb l’intenció d’entendre els paràmetres que governen el fluxe de paquets
que es mouen utilitzant la xarxa complexa, esbrinant quina és la relació en-
tre l’estructura de la xarxa i el comportament d’aquests paquets.

Els principals resultats obtinguts fins ara al voltant de l’estudi del fluxe de
tràfic es referèixen a quines son les causes que introdueixen la congestió en
el sistema. No obstant, l’observació del comportament del tràfic en algunes
xarxes reals (com per exemple Internet) mostra que el tràfic no està governat
pels processos de congestió, sinó que és un tràfic amb un comportament normal
i que es troba sotmès a grans fluctuacions que el poden portar a congestionar en
moments puntuals. Això ha obert la porta a un nou grup d’estudis que han in-
tentat caracteritzar les fluctuacions del tràfic en varis sistemes complexos,com
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ara la xarxa d’autopistes, la xarxa fluvial o la mateixa Internet (de Menezes and
Barabási, 2004a, de Menezes and Barabási, 2004b). Tots aquests sistemes es
poden representar a un nivell abstracte com xarxes on una serie de packets vi-
atgen entre els seus nodes. En particular, els autors relacionen quin és el tràfic
mig 〈f〉 en cadascun dels nodes amb la seva variabilitatσ, i descobreixen que
existeix una relació d’escala entre els dos valors,〈f〉α ∼ σ. A més, proposen
que l’exponentα és capaç de caracteritzar les fluctuacions del sistema, i que
aquest valor pot ser únicament1/2 o be1.

El principal problema d’aquests treballs és que els autors no tenen en compte
la possibilitat que els paquets interactuin entre sí, evitant justament l’aparició
de la congestió en el sistema. Per a entendre millor les fluctuacions, en el
capítol quatre de la tesi es proposa un nou model per a estudiar aquestesfluc-
tuacions i per a comprovar si existeixen unicament dos possibles valors per a
l’exponent d’escala. El model està basat en un procés dinàmic de comunicació
on cada node té una capacitat limitada per a enviar i rebre paquets. Quan el
node està ocupat, els paquets s’esperen en una cua fins a poder ser servits. Per
a simplificar l’estudi s’utilitzen cues del tipus M/M/1 que es troben governades
per distribucions Poisson (Allen, 1990).

L’anàlisi dels resultats obtinguts en el nostre model mostra que modificant
alguns dels paràmetres podem provocar una transició de l’exponent entre1/2 i
1. En primer lloc, es pot comprovar que si la mida de la finestra de mostreig és
més petit que el temps mitjà que transcorre entre que un node rep dos paquets
consecutius, l’exponentα sempre serà1/2, independentment de les fluctua-
cions reals del tràfic. En canvi, si la mida de la finestra és suficientment gran,
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Figure C.4. Dreta: Exemple de dos sistemes que tenen el mateix tràfic mitjà però diferent
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el valor de l’exponent serà funció de les fluctuacions reals del sistema.En
segon lloc, s’observa que si mantenim el nombre de paquets que hi ha enel
sistema en un moment donat, però es canvia el temps que esta un paquet actiu
i la ràtio de creació de nous paquets, es pot introduir un altre cop una transi-
ció entre els dos exponents. Finalment, quan s’afegeix la possibilitat de que
existeixi congestió en el sistema, torna a aparèixer una transició entre1/2 i
1. Quan ens apropem al punt crític de la congestió observem una transicióde
fase cap aα = 1/2. L’explicació és que un cop el sistema es troba conges-
tionat, el valor de l’exponent passa a ser únicament funció de la variança de la
distribució Poisson.

Per tant, utilitzant aquest model es pot afirmar que els dos exponents univer-
sals predits pel treball de Menezes i Barabasi no es corresponen ambel que el
nostre model prediu. Per a corroborar aquesta afirmació hem realitzat l’estudi
de les fluctuacions d’una xarxa real, la xarxa Abilene que composa el nucli del
que es coneix com a Internet 2. Al caracteritzar les fluctuacions dels tràfic en
els 112 nodes de la xarxa s’observen exponents que varien entre0.71 i 0.86,
demostrant que els sistemes reals poden tenir exponents diferents de1/2 i 1.

Robustesa dinàmica d’un proces de comunicacio
En el darrer capítol de la tesi hem centrat l’atenció en una altra propietat

molt interessant de les xarxes complexes: la seva robustesa davant la fallida
d’alguns dels seus components. La robustesa d’un sistema és un element clau
per a mantenir el funcionament dels processos dinàmics que hi tenen lloc. Per
exemple, en el cas d’Internet, l’estabilitat dels sistema és un factor clau per
a garantir la màxima eficiència de la xarxa, és a dir, poder mantenir el temps
mitjà que es triga en enviar la informació i evitar la pèrdua de paquets de dades.

Els estudis tradicionals han analitzat quins són els efectes que comporta
eliminar alguns dels components de la xarxa, ja sigui de forma intencionada
o aleatòria, en les propietats estructurals de la xarxa. La majoria d’aquests
estudis defineixen la robustesa d’una xarxa com la capacitat de mantenir una
component connexa del mateix ordre que el tamany del sistema. No obstant,
en les xarxes complexes es pot donar el cas que tinguem una xarxa queestigui
connectada però el funcionament dels processos dinàmics hagi canviat a causa
de que s’hagin eliminat alguns components clau. En el cas concret d’unaxarxa
de comunicació, podria ser que els nodes estiguin connectats, però que al treure
nodes apareixi congestió en el sistema i, per tant, que el rendiment del sistema
disminueixi.

En aquest escenari, en el capítol 5 hem introduït el concepte de robustesa
dinàmica d’una xarxa complexa, definida com la capacitat de mantenir el sis-
tema funcionant quan alguns dels nodes fallen. Per estudiar la robustesadinà-
mica d’un procés de comunicació hem utilitzat un model de tràfic semblant al
presentat en el capítol previ. A partir d’aquest model hem analitzat l’efecte que
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provoca l’eliminació aleatòria de nodes de la xarxa en la capacitat màxima del
sistema per a distribuïr la informació, mesurant els canvis que sofreix el punt
crític de la congestió. Hem analitzat què passa quan realitzem l’experiment
en diferents tipus de xarxes (xarxes aleatòries i xarxes amb una distribució de
grau scale-free) i utilizant un protocol d’enrutament amb diferents graus de
coneixement de la xarxa, des d’un protocol aleatori (amb coneixement zero) a
un protocol basat en camins mínims (amb coneixement total).

Els resultats de l’estudi mostren que en les xarxes scale-free l’eliminació de
nodes sempre augmenta la capacitat màxima del sistema, en les xarxes regu-
lars la capacitat decreix considerablement i finalment en les xarxes aleatòries
el canvi en la capacitat es troba en funció del radi de coneixement delproto-
col. També hem realitzat una aproximació teòrica utilitzant la descripció del
punt crític de la congestió presentada en (Guimerà et al., 2002b). Tant l’anàlisi
experimental com l’aproximació teòrica ens han permès determinar quins són
els principals paràmetres que controlen aquests canvis en la congestió: la cen-
tralitat del node més important (aquell pel qual hi passa la major quantitat de
paquets) i sobretot l’efecte que suposa l’eliminació de nodes en la distància
mitjana que recorre un paquet per la xarxa.

Conclusions
L’ús de les xarxes complexes per a representar les interaccions d’un sis-

tema complex ha estat una peça clau per a poder treballar amb el gran nombre
de sistemes biològics, tecnològics, econòmics o socials que contínuament es
publiquen. Els avenços en el que coneixem per “ciència de les xarxes”han
estat encaminats des d’un bon principi a contestar dues grans preguntes: què
podem aprendre d’un sistema si ens mirem la seva estructura interna i quina
és la relació que existeix entre una determinada estructura i el comportament
dinàmic del sistema suportat. En aquesta tesi hem treballat en alguns dels prob-
lemes principals d’ambdues qüestions, intentant proporcionar un coneixement
més profund de les xarxes complexes que permetrà a la comunitat científica
entendre millor quin és el funcionament d’un sistema complex.

Durant els darrers anys s’ha posat de manifest la importància de la detecció
de comunitats com un element clau per a caracteritzar l’organització interna
d’una xarxa. La identificació d’aquestes escales intermedies ha permès ala
comunitat científica entendre com els elements d’un sistema s’agrupen per a
formar comunitats funcionals i alhora analitzar la influència d’aquestes comu-
nitats en el comportament global.

El problema de la detecció de comunitats ha atret l’atenció de científics
provinents de camps molt diversos, com es demostra en el gran nombre de
treballs per intentar detectar i quantificar aquesta estructura que s’han publicat
en els darrers cinc anys. Tot i que els mètodes que hem analitzat en el segon
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capítol fan servir aproximacions completament diferents, la precisió obtinguda
quan detecten una estructura de comunitats ben definida és bastant similar. Per
aquesta raó es pot afirmar que el problema de la detecció de comunitats és un
exemple paradigmàtic d’un problema que es pot enfocar des de molts punts de
vista diferents i, a la vegada, arribar a les mateixes conclusions. Si s’augmenta
la dificultat de trobar les comunitats, s’observa l’existència d’una limitació en-
tre el temps d’execució i la precisió dels algorismes. Aquest és un problema
comú que apareix cada cop que volem treballar amb quantitats de dades molt
grans. En el cas de la detecció de comunitats, els mètodes més precisos nor-
malment no poden treballar amb xarxes mes grans de 10000 nodes. Si per altra
banda es vol analitzar una xarxa més gran, es necessita utilitzar una de lesal-
ternatives més ràpides perdent, aleshores, la precisió que ens garanteixen els
mètodes més acurats.

Al tercer capítol hem presentat un mètode de detecció de comunitats basat
en l’heurística extremal optimization. Tot i que aquesta heurística no és tan
popular com d’altres (p. ex. simulated annealing), s’ha demostrat que dóna
molts bons resultats quan l’apliquem a problemes clàssics d’optimització. Ad-
dicionalment, entès que darrera d’aquesta heurística hi existex un procés evolu-
cionari on els nodes s’autoagrupen entre ells fins que arriben a un estat esta-
cionari, l’extremal optimization es pot fer servir, alhora, per a entendre els
processos que existeixen darrere la creació de les comunitats. Al comparar els
resultats del nostre mètode amb els analitzats en el segon capítol, es pot obser-
var que el nostre es troba entre els més precísos, amb l’avantatge que realitza
la cerca en un temps menor. Per aquestes raons, els resultats obtinguts amb
el nostre algorisme han estat un punt de referència a l’hora de comparar els
mètodes de detecció publicats a posteriori.

En aquest capítol també hem realitzat una anàlisi més profunda de la for-
mulació de la modularitat. Hem redefinit la mesura per a poder tractar xarxes
dirigides i pesades i hem estudiat quina es la contribució que tenen algunes
subestructures concretes al valor global de la modularitat. A partir d’aquest
coneixement, hem proposat algunes millores per als mètodes de detecció. Per
una banda, hem proposat un seguit de modificacions algorismiques que per-
meten optimitzar la precisió dels algorismes recursius fins a un 20%. Per altra
banda, hem proposat un mètode que ens permet reduïr la mida d’una xarxa
fins a un 40% sense alterar la modularitat de les configuracions, permeten un
anàlisi molt més ràpid i precís.

En els capítols quatre i cinc hem estudiat algunes propietats dinàmiques
dels processos de comunicació basats en xarxes complexes. Creiem quees
necessari obrir i reforçar les línies de recerca dedicades a l’estudide les pro-
pietats globals dels processos dinàmics. Quan els científics volen modelar la
topologia d’una xarxa complexa particular (per exemple Internet), fan servir
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les eines descrites als primers capítols per a mesurar quines són les propietats
estructurals que presenta la xarxa (p.ex. distribucio de grau scale-free) i llavors
reprodueixen aquestes propietats en els models obtenint un model simple però
acurat de la realitat. En canvi, quan es vol modelar un proces dinàmic no poden
seguir aquestes mateixes passes, ja que manca un conjunt d’eines equivalent al
que disposem per a la topologia.

En aquest context, al quart capítol hem estudiat les fluctuacions del tràfic
en una xarxa complexa per a proporcionar una caracterització global del seu
flux. A l’article de Menezes i Barabasi, els autors proposen l’existènciade dues
classes universals que permeten caracteritzar la relació entre mitja i desviació
típica amb uns exponentsα = 1/2 andα = 1. Tot i que creiem que aquests
dos valors són importants, ja que sembla que actuen com a límits dels valors
observats en sistemes reals, pensem que aquestes valors no són únics.L’anàlisi
d’un model de tràfic molt simple basat en un sistema de cues Poisson revela
tres mecanismes que provoquen una transició entre els dos exponents. Per a
corroborar l’existència d’exponents intermedis en sistemes reals hem estudiat
les fluctuacions que hi ha en el tràfic d’Internet de la xarxa Abilene. L’estudi
mostra que el tràfic d’aquesta xarxa es pot caracteritzar a partir d’un exponent
d’escalaα ∼ 0.75. Aquests resultats estan en concordància amb altres estudis
de les fluctuacions dels sistemes complexos presentats en el review d’Eisler
et al., on els autors troben una gran varietat d’exponents en diferents sistemes
complexos.

La capacitat de mantenir la comunicació entre dos nodes de la xarxa quan
alguns d’ells fallen és una altra de les caracteristiques rellevants de les xarxes
complexes. A diferència de la majoria d’estudis realitzats, creiem que és més
important estudiar la incidència de les fallides dels nodes en els processos
dinàmics suportats per la xarxa que centrar-se en l’efecte sobre en la topolo-
gia. Al capítol cinquè hem definit la robustesa dinàmica d’un procés de co-
municació com la capacitat del tràfic per a evitar la congestió quan eliminem
una fracció dels nodes de la xarxa. Fent servir un model de tràfic semblant a
l’utilitzat en el capítol quatre, hem proporcionat un nou punt de vista de com
es comporta el punt crític de la congestió quan eliminem nodes aleatòriament,
analitzant diferents topologies i protocols d’enrutament. Finalment, a partir
d’un estudi teòric del problema hem analitzat quines són les causes darrere els
canvis en la capacitat màxima.
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