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Chapter 1

Introduction

For centuries, scientific knowledge has been identified with the possibility to predict the future
evolution of all phenomena starting from the knowledge of the laws governing them, and the
objective of every scientific effort was considered to be the discovery of those laws. This
program has been deeply influenced by the great success that Physics has had since the 16th
century. Physics, an experimental discipline in which theoretical predictions are compared to
experiments, differs from other sciences of nature in the crucial role of mathematics. Physicists
describe the phenomena by using mathematical models and their predictions are obtained by
mathematical reasoning [7]. The trajectory of a bullet, the velocity of a free falling ball, the time
necessary to cover a given orbit, have been the first quantities that was possible to calculate with
arbitrary precision, by applying the laws of dynamics and universal gravitation formulated by
Newton. The empirical success of this method has progressively strengthen the belief that all
physical phenomena, despite their heterogeneous appearance, could be explained in terms of
simple and universal laws, that allow to predict, by means of calculations, the sequence of
events that are going to occur in a given system, whenever the initial conditions are known [8].

At the beginning of the 19th Century, Laplace was writing that an infinitely intelligent
mathematician would be able to predict with certainty the future by observing the state of the
universe now, and using its knowledge of the laws of motion [7]. According to this view, in
order to understand a system, it is necessary to decompose it into its minimal components. On
the contrary, a detailed representation is useless and misleading since accidents do not change
the nature of the phenomenon and, therefore, its evolution. Once performed this cleaning
process, everything becomes simple and predictable. This view, generally labelled as reduc-
tionist, ruled the scientific thought during the most part of the science history and it reached its
peak during the 20th century with the appearance of molecular biology and particle physics.
Its role in the development of modern science is undeniable. Thanks to this approach, mod-
ern Physics has achieved highest precision level in the mathematical description of the reality,
basing its description on an appropriate representation of the matter in terms of atomic and
sub-atomic structure. Moreover, the same method allowed to get to the structure of biological
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macromolecules and the logic of their functions. In those years, large part of the scientific
community shared the view of Francis Crick, who thought that knowing “in all their details all
the chemical steps that take place in the cell during the cellular cycle” was just a matter of time,
and then “there will be nothing more to know about the cell itself, and mechanism of its living
will be completely decoded”.

However, in the 1960s things started to change. Whereas among the great majority of active
scientists it was accepted that “the workings of our minds and bodies, and of all the animate or
inanimate matter of which we have any detailed knowledge, are [...] controlled by the same set
of fundamental laws” [9], it was also becoming clear that understanding phenomena at higher
scale starting from a lower one is often impossible. As stated by P. W. Anderson in 1972 [9],

“the reductionist hypothesis does not by any means imply a constructionist one: the ability
to reduce everything to simple fundamental laws does not imply the ability to start from
those laws and reconstruct the universe. [...] The constructionist hypothesis breaks down
when confronted with the twin difficulties of scale and complexity. The behavior of large
and complex aggregates of elementary particles, it turns out, is not to be understood in
terms of a simple extrapolation of the properties of a few particles. Instead, at each level
of complexity entirely new properties appear, and the understanding of the new behaviors
requires research which I think is as fundamental in its nature as any other [... and will
show] how the whole becomes not only more than the sum of but very different from the
sum of the parts.”

Systems displaying such features are generally known as complex systems, i.e. systems made
up by many interacting elements. While, traditionally, fundamental science explores the very
small and the very large, both of which lie beyond man’s everyday perception, the unique-
ness of complex systems is that they have to do with a class of phenomena of fundamental
importance in which the system and the observer may evolve on comparable time and space
scales [10]. Examples of complex systems for which complexity models have been devel-
oped include ant colonies, human economies and social structures, climate, nervous systems,
cells and living things, including human beings, as well as modern energy or telecommunica-
tion infrastructures. It is understood that such systems show emergent dynamical properties
which are inherently related to the topology of the underlying pattern of connections among
the constituent parts [11]. In the words of the biologist Brian Goodwin [12],

“The important properties of these complex systems are found less in what they are made
of than in the way the parts are related to one another and the dynamic organization of the
whole - their relational order [...] To understand these complex nonlinear dynamical sys-
tems it is necessary to study both the whole and its parts, and to be prepared for surprises
due to the emergence of unexpected behavior.”

Hence, on the one hand, it is not possible to explain an organizational level only in terms of
the lower ones. On the other hand, it seems clear that, more than details about the nature of
the components, what we need is a map of the interactions. Therefore, complex systems are in
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general suitably described through their networks of contacts, that is, in terms of nodes (repre-
senting the system’s components) and edges (standing for their interactions), which allows to
catch their essential features in a simple and general representation.

In 1998 Watts and Strogatz [13] presented the first evidence of what they called complex
networks. At the time, networks of coupled dynamical systems had already been used to model
biological oscillators, Josephson junction arrays, neural networks, genetic control networks
and many other self-organizing systems. But, whereas ordinarily the connection topology was
assumed to be either completely regular or completely random, they realized that “many bio-
logical, technological and social networks lie somewhere between these two extremes.” This
was the case, for instance, of the neural network of the worm Caenorhabditis elegans, the
power grid of the western United States, and the collaboration graph of film actors. All these
patterns of connections showed common features that could not be explained by simple mathe-
matical models. In particular, the presence of short-cuts made these networks extremely small
in terms of the mean distance between nodes, while at the same time kept track of their or-
dered origin through a larger than expected clustering coefficient (related to the existence of
triangles in the network) [11]. These two phenomena could not be explained simultaneously by
the models used until the time (completely ordered or completely disordered). Slightly later,
Barabasi and Albert [14], showed that the distribution in the number of connections coming
out from a given node (e.g. computers in the Internet, pages in the world-wide-web, or num-
ber of papers authored by scientists) is skewed, which means that, whereas the large majority
of the elements have very few connections, there exist some actors in the networks that are
highly connected [11]. Since then, complex networks [15, 16, 17, 18] have become an impor-
tant, largely used, framework for the understanding of both dynamical and topological aspects
of systems such as the brain [19], protein-protein interaction networks [20], Internet and the
WWW [21].

At the beginning, when complex networks was a new born scientific field, almost all the
research effort was directed to map new systems and to analyze topological features of the
resulting graphs. It was so possible to identify important characteristics shared by systems
belonging to the same class. Increasing interest on this approach, thanks also to a favorable
technological progress, led to the accumulation of an increasing amount of data. Usual net-
work datasets encode the information about which pairs of nodes are connected and which are
not, sometimes with some additional specification about the strength of the connections or the
importance of the units. Nowadays, there is a huge amount of such data available. This situa-
tion has allowed the arising of new questions and, therefore, the diversification of the scientific
work. Among them, we can point out three general issues that have been receiving a lot of
interest: (i) is the available information always reliable and complete? (ii) how does a complex
interaction pattern affect the emergence of collective behavior in complex systems? And (iii)
which is the role of mobility within the framework of complex networks?
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i) For what concerns question (i), nowadays it is well acknowledged that many of the men-
tioned networks are only partially known. Think, for instance, in artificial networks like
on-line social networks or Internet itself, which are made up of millions of heterogeneous
and non-identical nodes. In such large networks, a complete map is hardly available and
difficult to get [22]. Thereby, providing efficient tools for their exploration has become
a crucial challenge. On the other hand, in many situations, connections among elements
are not directly accessible, in the sense that they are not physical objects like a cable, a
hyper-link or an axon. Many natural networks, as genetic, brain or ecological networks,
have to be understood as representations of the relations existing between different parts
of the considered system. In all these cases, in order to map out a connectivity pattern,
edges have to be inferred by measuring correlations of quantities related to the behavior
of the units. Obviously, different methods and experiments can give rise to different re-
sults. This is the case, for instance, of gene regulatory networks. In order to construct
connection patterns more and more complete, it is usually necessary to combine data ob-
tained by means of different experimental procedures, not always coherent among them.
Therefore, in recent years, the problem of the inference of network topologies from dy-
namical measures has been subject of intense investigation, both from an experimental
and a theoretical perspective. Recently, it has also been presented a general mathemati-
cal and computational framework to deal with the problem of data reliability in complex
networks [23]. In particular, this approach claims to reliably identify both missing and
spurious interactions in noisy network observations.

ii) About question (ii) we have to say that the fact that the topology of the connection pat-
tern affects the dynamical evolution of the elements is precisely what allows the recon-
struction of many networks. Hence, it is straightforward that collective behaviors, that is,
behaviors which characterize the system as a whole and which exist thanks to the interac-
tions among the parts, may change depending on the features of the connection topology.
Currently, much scientific effort is devoted to understanding how global dynamical prop-
erties are related with the units dynamics and the interactions between them [24]. One of
the first studied examples of this relation was the transition between order and chaos that
Random Boolean networks [25] display when increasing the of inputs (connections) to
each node. More recently, the impact of the network topology has been object of much
scientific interest in connection with, just to mention one among many other phenom-
ena, the spreading of diseases [26]. However, many other important examples can be
provided.

iii) There are two types of mobility that can be considered in the framework of complex
networks. On the one hand, we can have different kinds of walkers that move through-
out the network performing a large number of possible tasks. Agent-based models have
been used to study phenomena such as epidemics spreading, opinion formation or Inter-
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net traffic. On the other hand, in some cases the network is generated by the interactions
between moving agents that are themselves the nodes of the connectivity pattern and the
network topology evolves as an effect of the mobility. This situation is particularly inter-
esting since it is common to many artificial as well as natural systems and applications
range from robotic [27, 28] to ecology [29].

This thesis has been developed along these three lines, which are strictly interrelated. We
expand on three case-studies, each one of which deals with two the above mentioned macro-
issues. We consider the issue of the incompleteness of the available information both in the
case of natural (Chapter 2) and artificial (Chapter 3) networks. As a paradigmatic emergent
behavior, we focus on the synchronization of coupled phase oscillators (Chapter 2 and Chapter
4), deeply investigating how different patterns of connections can affect the achievement of a
globally coherent state. Finally, we include moving agents in two different frameworks, using
them as explorers of unknown networks (Chapter 3) and considering them as interacting units
able to establish connections with their neighbors (Chapter 4).
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Figure 1.1: My thesis in a diagram.

If emergence refers to “the arising of novel and coherent structures, patterns and properties
during the process of self-organization in complex systems”, and “emergent phenomena are
conceptualized as occurring on the macro level, in contrast to the micro-level components
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and processes out of which they arise” [30], then synchronization can be regarded as one the
most interesting, abundant and well defined emergent behavior. First recognized in 1665 by
Christiaan Huygens, synchronization phenomena take place in nature, engineering and social
life. “Synchronous variation of cell nuclei, synchronous firing of neurons, adjustment of heart
rate with respiratory and/or locomotory rhythms, different forms of cooperative behavior of
insects, animals and even humans”, are universal phenomena and can be understood within the
common framework based on modern nonlinear dynamics [31]. Our surrounding are full of
oscillating objects. Systems as diverse as an applauding audience and a radio communication
equipment share the common feature of producing rhythms. Usually these systems are not
closed and interact with other objects. “This interaction can be very weak [...] but nevertheless
it often causes a qualitative transition: an object adjusts its rhythm in conformity with the
rhythms of other objects. [...] This adjustment of rhythms due to an interaction is the essence
of synchronization” [31].

In this thesis we have considered coupled oscillators with fixed amplitudes that interact via
mutual adjustment of their phases. In Chapter 2, we study the problem of the reconstruction of
an unknown interaction network, whose nodes are Kuramoto oscillators. The Kuramoto model,
first proposed by Yoshiki Kuramoto [32], provides a paradigmatic example of non-equilibrium
transitions between an incoherent and a synchronized state. Its formulation was motivated by
the behavior of systems of chemical and biological oscillators, and it has found widespread
applications such as in neuroscience. The model makes several assumptions, including that
there is weak coupling, that the oscillators are identical or nearly identical, and that interac-
tions depend sinusoidally on the phase difference between each pair of objects. We analyze
populations of almost identical oscillators in arbitrary interaction networks. Our aim is to ex-
tract topological features of the connectivity pattern from purely dynamical measures, based
on the fact that in a heterogeneous network the global dynamics is not only affected by the
distribution of the natural frequencies but also by the location of the different values. In order
to perform a quantitative study we focused on a very simple frequency distribution considering
that all the frequencies are equal but one, that of the pacemaker node. We then analyze the
dynamical behavior of the system at the transition point and slightly above it as well as very
far from the critical point, when it is in a highly incoherent state. The gathered topological
information ranges from local features, such as the single node connectivity, to the hierarchical
structure of functional clusters, and even to the entire adjacency matrix.

In Chapter 4, instead, we present a model of integrate and fire oscillators that are moving
agents, freely displacing on a plane. The phase of the oscillators evolves linearly in time and
when it reaches a threshold value they fire at their neighbors choosing them according to a
certain interaction range (Sec. 4.1) or simply selecting the one at the minimal distance (Sec. 4.2
and following ones). In this way, the interaction network is a dynamical object by itself since
it is re-created at each time step by the motion of the units. Depending on the velocity of
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the motion, the average number of neighbors, the coupling strength and the size of the agents
population, we identify different regimes. We characterize these regimes in terms of the time
the system needs in order to reach the coherent state, that in some cases we are able to predict,
also providing a detailed even if qualitative description of the mechanisms that enhance the
synchronization.

Moving agents are employed also in Chapter 3 where they play the role of explorers of
unknown artificial networks, having the mission to recover information about their structures.
Usually, the problem of network reconstruction has been address by means of algorithms based
on search and traffic routing [33, 34, 35], in many cases performed by moving “agents” which
explore the topological space. We propose a model in which random walkers with previously
assigned home nodes navigate through the network during a fixed amount of time. We consider
that the exploration is successful if the walker gets the information gathered back home, other-
wise, no data is retrieved. Consequently, at each time step, the walkers, with some probability,
have the choice to either go backward approaching their home or go farther away. We show
that there is an optimal solution to this problem in terms of the average information retrieved
and the degree of the home nodes and design an adaptive strategy based on the behavior of
the random walker. Finally, we compare different strategies that emerge from the model in the
context of network reconstruction.



Chapter 2

Extracting topological features from
dynamical measures in networks of
Kuramoto oscillators

Currently, it is widely acknowledged that complex patterns of interaction are as ubiquitous in
nature as in society [14]. Nonetheless, further research is required to completely understand
how the topology affects the system dynamics [15, 16], particularly how global dynamical
properties are related with the units dynamics and the interactions between them. A unique
answer cannot be provided since complex networks respond differently depending on the dy-
namical processes that take place within them [24].

One of the most interesting of these macroscopically defined dynamical processes is syn-
chronization, an emerging phenomenon in which populations of interacting units display a
common periodic behavior [31, 36].

Understanding the role of connectivity in synchronization has been the subject of intense
research in recent years [37]. On the one hand, much work has focused on the generic properties
of dynamical systems, mainly looking for necessary and sufficient conditions that would grant
that a population of units under a set of simple dynamical rules is able to synchronize [38]. On
the other hand, much progress has been made by studying precise models of phase oscillators,
one of the most paradigmatic being the model proposed by Kuramoto [32, 39], where the
interaction between the units is proportional to the sine of the phase difference.

Here, we will continue along this line and analyze a population of Kuramoto oscillators
with a precise distribution of frequencies. The original work by Kuramoto and many subse-
quent studies considered that the oscillators, each coupled equally to all the others, had natural
frequencies taken from a given distribution. The non-zero width of those distributions made the
units follow different trajectories, whereas the interaction term made their phases approach. In
fact, depending on the width of the frequency distribution, there is a critical value of the interac-
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tion strength above which the units tend to entrain their phases and hence leave the incoherent
regime. If the natural frequencies of the oscillators are identical, a unique outcome is possi-
ble as the only attractor of the dynamics is a completely synchronized state in which all the
oscillators end up in a common phase. And this occurs for any initial conditions and for any
(connected) topology 1.

In systems with regular patterns of connectivity (including all to all) the only complexity
comes from the frequency distribution, whereas in more realistic (non homogeneous) patterns,
not only the frequency values matter but also the precise location as well [41, 16].

We will focus on a particular frequency distribution, one that is just one step away from
the homogeneous case. Such a distribution has identical frequencies for all oscillators except
one. This singular oscillator, with a higher frequency than the rest, has received the name
pacemaker, and its effect in populations of Kuramoto oscillators has been analyzed[42, 43].
In [42], Kori and Mikhailov consider a special case where the pacemaker affects its neighbors
but is not affected by them; under these conditions they find numerically that the range of
frequencies of the pacemaker for which the system can attain global synchronization depends
on the “depth” of the network, where the depth is defined as the maximum distance from the
pacemaker to peripheral nodes. Radicchi and Meyer-Ortmanns [43] consider regular structures
for which the conditions to synchronize can be analytically computed.

We use several properties of the heterogeneity induced by the existence of the pacemaker to
find useful relations between topology and dynamics. On one hand, by knowing the topology
one should be able to infer the dynamical properties of the network. On the other hand, by
performing dynamical measures some structural properties can be inferred, and this will be our
purpose.

First, we use a similar procedure to the one used in [42] and [43], showing that there is
a critical value for the frequency of the pacemaker above which the (frequency) synchronized
state cannot exist. This is related with the existence of a synchronized solution (also exploited
in [44]) that applies to any subset of oscillators. We find, however, that from a practical point
of view the most restrictive condition is usually for the equation of the pacemaker that involves
its connectivity, and hence there is a clear relationship between the critical frequency and the
pacemaker connectivity that can be used as an experimental measure of the degree.

In order to get more details on the network structure we analyze the system above the
critical value where correlations between dynamical evolution of the nodes appear. Such corre-
lations enable us to reveal the hierarchical organization and to recover the network connectivity.

First, in Sec. 2.1 we characterize the coherent state and the transition to the incoherent
one by means of a proper definition of the order parameter. Then, in Sec. 2.2 we qualitatively
analyze the behavior of the system when it is not in the frequency-locked state. Sec. 2.3 is

1There are, however, some limitations to these results; for instance when the units are placed in regular
lattices, such as one-dimensional rings, where other attractors different form the synchronized (equal phases)
state, may arise [40].
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devoted to studying the relation between local connectivity and the ability of the system to reach
a synchronized (frequency-locked) state. In Sec. 2.4 we focus on the system slightly above the
transition toward the incoherent state. We show that it is possible to perform some hierarchical
analysis concerning the connectivity network. Finally, in Sec. 2.5 we study the system far above
the critical point, in a regime characterized by short range correlations where it becomes easy
to identify the nodes directly connected to the pacemaker. Thus the reconstruction of the whole
connectivity pattern is accurate and fast.

2.1 Synchronization and phase transition

In the original Kuramoto model [32, 39], the phases of the oscillators evolve according to the
following equation

ϕ̇i = ωi + σ
N∑

j=1

sin(ϕj − ϕi), (2.1.1)

where N is the total number of units of the system, ωi is the natural frequency of unit i, taken
from a distribution, and σ stands for the coupling strength. This case corresponds to a fully
connected topology; i.e., each unit interacts with all the other ones. The ability of the system
to reach a coherent state, for a given coupling strength, depends only on the width of the
distribution of natural frequencies.

Here we want to consider arbitrary connectivity patterns. In this situation, the behavior of
the system can no longer be understood in terms of the ratio between the distribution width and
the coupling strength only. Where the natural frequencies values are located is also relevant,
since on a generic interaction network nodes are no longer equivalent.

From now on we are using the two-level hierarchical network of nine nodes represented
in Fig. 2.1 as a benchmark, and, when not otherwise stated, all the figures refer to that con-
nection pattern. This network has been presented in [1] as a very simple example of the class
of deterministic scale-free hierarchical networks proposed by Ravasz and Barabasi in [3]. We
choose this small regular connectivity pattern as a simple paradigmatic example showing gen-
eral properties of the studied systems since it makes it easy to recognize the role of each node.

Let us rewrite the equation for the evolution of the phases including a symmetric connec-
tivity matrix aij that takes a value of 1(0) if node i and j are connected (disconnected):

ϕ̇i = ωi +
N∑

j=1

aij sin(ϕj − ϕi), (2.1.2)

where we have rescaled time by setting σ = 1. Now we consider all the oscillators to have
the same natural frequency (0, without loss of generality), except one of them, called the pace-
maker, whose frequency is ω �= 0. It is precisely this extremely simple choice of frequencies
that enables us to study the roles played by individual oscillators.
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Figure 2.1: Hierarchic network that will be used as a benchmark. In this particular setting the pace-
maker is located on a peripheral node (marked as P ) of degree kp = 3. The other nodes are grouped
into sets using different colors. The elements of each set are topologically equivalent if we look at the
network from the point of view of the pacemaker. Consequently their dynamical evolution is identical.

If a stationary state exists, then all the effective frequencies will take constant values and
the following conditions have to be satisfied:

N∑
j=1

aij sin(ϕj − ϕi) = Ωi ∀i �= p (2.1.3)

ω +
N∑

j=1

apj sin(ϕj − ϕp) = Ωp (2.1.4)

where {Ωi} are the effective frequencies of the oscillators. Notice that summing up Eqs. (2.1.3)
and (2.1.4) the coupling terms cancel because of the symmetry of the interaction and it results
in

N∑
i=1

Ωi = ω. (2.1.5)

Looking at Eqs. (2.1.3) and (2.1.4) it is easy to recognize that there is an interplay between
two effects. On the one hand the width of the frequencies distribution (in our present case this
role is played by ω itself) tends to keep the evolution of the oscillators apart since each one
follows its natural frequency. On the other hand, the interaction term makes them approach
their phases as well as their effective frequencies. Then we conclude that if the pacemaker’s
natural frequency is small enough, the interaction term dominates and, after a transient time,
all effective frequencies Ωi will be identical:

Ωi = ω/N ∀i, (2.1.6)

including the pacemaker. In this case we can say that the system is in a frequency-locked state
since all oscillators have the same frequency, although the phases are not equal because there
is a coupling term (that of the pacemaker) that cannot vanish.
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When increasing the pacemaker frequency ω, some oscillators cannot keep the phase dif-
ference, and the frequency-locked state is broken. The left-hand side of Eq. (2.1.3) is indeed
bounded because of the sine terms, whereas the right side increases as the pacemaker frequency
is increased. A similar conclusion can be deduced from Eq. (2.1.4). Consequently, there will
be a transition from a synchronized to an incoherent state. Thus we can define the critical value
ωc

p as the maximum value of the natural frequency of the pacemaker for which the system can
attain global synchronization.

Such a transition for a population of phase oscillators is typically characterized by an order
parameter R, defined through the equation R eiΨ =

∑
j eiϕj , where Ψ is a global phase (not

constant) [45].
Here, following [41, 46], we adopt another order parameter that is a normalized measure

of the effective frequency dispersion (standard deviation):

rω =

√∑N
i=1 [ϕ̇i/〈ω〉 − 1]2

N − 1
, (2.1.7)

where 〈ω〉 is the average effective frequency of the oscillators population, a constant quantity
always equal to ω/N . According to its definition, rω takes values in the interval [0 , 1] (see
Fig. 2.2). It should be noticed that, since above the critical frequency the system is not able to
reach a steady state any longer, calculation of the order parameter (2.1.7) requires performing
averages over an appropriate time window. Anyway, the value of 〈ω〉 does not change because
what we found in (2.1.5) is a general result, even for instantaneous values of the effective
frequencies.

To find the precise value of the critical frequency we apply the Newton-Raphson method
(NR) and check, as a function of the frequency ω, whether the synchronized solution of
Eqs. (2.1.3) and (2.1.4) exists. To simulate the dynamics of the system in the incoherent state
(ω > ωc

p) we take as initial phases {ϕi(0)} the stationary values of the differences provided
by the NR solution for ω = ωc

p.The system of equations (2.1.2) is numerically integrated with
Euler’s method (first order), unless otherwise stated, at fixed time step δt = 10−2.
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Figure 2.2: Order parameter (2.1.7) as a function of the natural frequency of the pacemaker. Different
curves correspond to different settings: circles refer to the pacemaker located on node 1 in Fig. 2.1
(kp = 8), triangles refer to the pacemaker on node 2 (kp = 3). The average value 〈rω〉t for ω > ωc

p

was calculated on a time window Δt = 100.

2.2 Incoherent state

Above the critical frequency ωc
p the system is no longer in a stationary state, and hence the

effective frequencies are no longer constant.
Numerical simulations show that, after a transient time, the system enters into a “peri-

odic”state (see Fig 2.3). The features of this periodic state are not affected by the initial condi-
tions, and they only depend on the pacemaker frequency and location. It is precisely this fact
that enables us to infer topological properties from dynamical measurements.

Figure 2.4 summarizes what we have learned up to now, shedding light on some interesting
details. The time average of the effective frequency of the pacemaker 〈ϕ̇p〉t and that of one of
its neighbor 〈ϕ̇j〉t are plotted as functions of the pacemaker natural frequency. These quantities
are calculated from numerical simulations, taking into account appropriate time windows.

Starting from small values of ω, the picture shows how all the effective frequencies increase
together linearly, following the reference line Ωi = ω/N defined by Eq. (2.1.6). Then, when
ω reaches the critical value ωc

p, they do separate. Initially, the average effective frequency of
the pacemaker goes through a more than linear increasing, while the others start decreasing,
keeping their (average) values very close to each other. For even larger values, when ω � ωc

p ,
Fig. 2.4 shows how the average effective frequency 〈ϕ̇p〉t tends to ω, asymptotically increasing
along a new reference line with a slope equal to 1. At the same time, 〈ϕ̇i〉t for i �= p goes to
zero, as required by the conservation law (2.1.5).
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Figure 2.3: Effective frequencies above the critical point as functions of time. That of the pacemaker
(red top curve), in this particular setting located on node 3 in Fig. 2.1, is on average much larger than
the others (lower curves). The plots show a pacemaker natural frequency value that is (a) 1.01, (b)
1.05, (c) 1.2, and (d) 2 times its critical value. Time starts after a transient lag Ts = 10.

Figure 2.4: Average effective frequencies as a function of the natural frequency of the pacemaker
ω. The behavior of two oscillators is shown: node 1 (black circles) and node 2 (red triangles). On
the right side the pacemaker is node 1, and on the left one it is node 2. Initially the frequencies
are synchronized and they increase linearly with a slope of 1/N (dashed line), as expected from
Eq. (2.1.6). Then, when ω reaches the critical value, which is different for different location of the
pacemaker, they grow apart. Far above the critical values, the average frequency of the pacemakers
approach asymptotically a new reference line with a slope of 1 (solid line). The time averages were
performed on a time window Δt = 100.
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2.3 Critical frequency and local topology

In this section we explore the relation between the topology of the network and the value of the
critical natural frequency of the pacemaker depending on the node where it is located.

Let us begin by writing the equation for the pacemaker in the synchronized state. As a
consequence of Eq. (2.1.6), we have

ω +

N∑
j=1

ajp sin(ϕj − ϕp) = ω/N. (2.3.1)

This equation links the natural frequency of the pacemaker to the constant values of the phase
differences between it and its neighbors, when all the units are oscillating with the same effec-
tive frequency. Since the number of non-null terms ajp in the previous expression is given by
the number of nodes connected to the pacemaker and sin(ϕj − ϕi) ∈ [−1, 1], the degree (or
connectivity) of the pacemaker is a bound for the absolute value of the sum in Eq. (2.3.1).

Thus there is an upper bound for the critical frequency:

ωc
p ≤ kp

N

N − 1
, (2.3.2)

where kp is the degree of the pacemaker. Indeed, any value larger than the right-hand term in
inequality (2.3.2) is surely unable to satisfy Eq. (2.3.1), and hence the system is unable to be
frequency synchronized.

Notice that we have obtained this bound by taking into account a single equation, that of
the pacemaker. We can write for any oscillator the analog of Eq. (2.3.1) as follows

N∑
j=1

aji sin(ϕj − ϕi) = ω/N, ∀i �= p. (2.3.3)

It is easy to verify that no stricter condition can arise from any of these equations 2. However,
stronger bounds could exist due to the combination of Eq. (2.3.1) and some of Eqs. (2.3.3).

Let us consider a set of (n+1) connected nodes, among which the pacemaker is included 3

. Labeling them by an increasing index i = 1, 2, ..., n+1 = p and summing up their equations,
we obtain

(n + 1)
ω

N
= ω +

n+1∑
i=1

N∑
j=1

aij sin(ϕj − ϕi). (2.3.4)

If two nodes in the considered group are neighbors their respective interaction terms cancel

2Applying the same argument to the eq. of the i-th node, we obtain ω
c
p ≤ kiN , whose smallest possible

value is N , that is the largest possible value for the bound (2.3.2).
3It is not necessary to take into account the groups that do not include the pacemaker, since the bound we

obtain for ω
c
p summing up n + 1 equations including the pacemaker or the remaining N − n + 1 (not including

the pacemaker), is the same.
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each other. So the number of remaining terms of the sums in Eq. (2.3.4) is given by

Kout =

n+1∑
i=1

ki −
n+1∑
i,j=1

aij (2.3.5)

where ki is the degree of the ith node and Kout is equal to the number of links connecting the
nodes of the considered set to external ones.

Consequently, Eq. (2.3.4) can be rewritten as

(n + 1)
ω

N
= ω +

Kout∑
l=1

sin(φl), (2.3.6)

where φl = ϕj − ϕi, is the phase difference between two connected nodes i and j which are,
respectively, inside and outside the group.

We are now able to write the expression of the upper bound for the critical frequency ωc
p in

a generalized form:

ωc
p ≤ Kout

N

N − (n + 1)
= N

Kout

Nout
, (2.3.7)

where Nout stands for the number of nodes not belonging to the considered set. Eq. (2.3.7)
reduces to the previous upper bound if one chooses n = 0.

In this way we can write a very large number of conditions, that is the number of the
connected sets of nodes that include the pacemaker and whose size ranges from 1 to N −
1. Among these, the strongest one is that for which the ratio Kout/Nout takes its minimum
value. This is a combinatorial problem, which is in principle very simple, but is hard from a
computational point of view since the number of conditions grows at least exponentially with
the network size.

Minimizing the ratio Kout/Nout we find the strictest condition on ωp
c that can be ex-

pressed in the form of a single equation. No other equation obtained as a linear combination of
Eqs. (2.1.3) and (2.1.4) may provide a stronger bound. This condition is analogous to the nec-
essary condition for global synchronization concerning the surface (here Kout) of any subset
of nodes derived in [44] for randomly distributed natural frequencies and generic oscillators.
However, these conditions are not sufficient. In our case, it is not certain that the Kout remain-
ing sine terms of Eq. (2.3.6) are allowed to take their minimal values simultaneously. This kind
of problem directly involves the sine function arguments that may not be independent since
they are differences between pairs of phases and we are dealing with a system of N coupled
equations. It may happen that two or more phases are tied to each other by a certain set of equa-
tions of the kind fi(ϕi, {ϕij}) = 0 (where nodes {ij} are neighbors of node i). Consequently,
we cannot minimize the sum of sine terms on a hypercube [0; 2π]Kout, but we have to restrict
ourselves to a hypersurface of dimension Kout −m, where m is the number of constraints. A
system may experience this kind of difficulty (which we can regard as a kind of angle frustra-
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tion) only if cycles are present and there is some anisotropy and only when 1 < kp < N − 1.
Therefore, for a good number of regular connectivity patterns, such as those analyzed in [43],
there is not such a problem, and it is possible to analytically calculate the entire set of values
{ω(p)

c }, p = 1, . . . , N .
As a simple, analytically solvable network let us consider a Cayley tree with coordination

number z, made up of S shells. For each node it is indeed possible to single out a connected
“group”such that Kout = 1, taking in all the nodes on the branch starting from the considered
pacemaker. In this way we are minimizing the ratio Kout/Nout so that we can consider the
strictest equation among Eqs. (2.3.7). Moreover, since there is no cycle, there are no problems
of angle frustration either. Therefore, the obtained expressions give the correct values, not just
bounds. In this way we obtain for the critical frequency

ω(s)
c = N

1

N −∑S−s
i=0 (z − 1)i

,

where s is the shell of the pacemaker (see Application A for more analytical details about this
case).

Even though in real complex networks it is not so easy to calculate {ωp
c}, we have empiri-

cally verified that only in a few cases is the critical frequency much smaller than its first upper
bound (2.3.2). This can be clearly observed in Fig. 2.5, where we plotted the ratios between
the real critical values and the corresponding upper bound for every choice of the pacemaker
in several networks.

The accuracy of this estimation enables us to use it in the opposite direction, i.e., to get
an estimation of the pacemaker degree from an experimental measure of the critical frequency.
We can invert Eq. (2.3.2) obtaining

kp ≥ ωc
p

N − 1

N
, (2.3.8)

but, since the right term is not an integer, the smallest allowed value for kp is

k∗p =

[
ωc

p

N − 1

N
+ 1

]
, (2.3.9)

where [x] stands for the integer part of x. We can conclude that Eq. (2.3.9) gives the correct
value of kp whenever

ωc
p ∈

[
(kp − 1)

N

N − 1
, kp

N

N − 1

]
.

This fact implies that the estimator (2.3.9) for the degree of the pacemaker is very reliable.
Indeed, it only fails when the critical frequency is really smaller than its bound (2.3.2).
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Figure 2.5: Critical frequency of a pacemaker as a function of its degree for a set of networks. We
have divided the critical frequency by the degree and by N/(N − 1) such that the bound given by
Eq. (2.3.2) is 1. We have shifted the data for the different networks and the horizontal lines are the
reference (equal to 1) for each case. From bottom to top the networks are (1) the Zachary club social
network [4] used in community detection applications, (2) a hierarchical network of 125 nodes and
3 levels [3], (3) a network of 4 communities of 32 nodes each used as benchmark in community
detection algorithms [4] where all the nodes have the same degree, (4) a network of jazz bands [47],
(5-7) three networks of three levels of community structure used to relate topological and temporal
scales in synchronization [6], and (8) the Caenorhabditis elegans neural network [48].

2.4 Slightly above the critical point

In this and in the next section we translate the rich dynamical information that the system
provides in the incoherent state into useful topological information. Here we focus on the
behavior of the system slightly above the critical point, while in Sec. 2.5 we will analyze the
system when the natural frequency of the pacemaker is many time larger than its critical value.

We are interested in estimating how similar two nodes are from a global topological per-
spective. For this purpose we need to define an appropriate correlation function, able to relate
the dynamical responses of pairs of oscillators.

Looking for the expression of a good correlation function, we get no help from the average
values 〈ϕ̇i〉t =

∫∞
0 ϕi(t)dt. Indeed, in this regime, all the oscillators, except the pacemaker,

have the same average effective frequency. On the contrary, it can be useful to look at the
difference between instantaneous values. We measure the frequency of every oscillator at each
time, inside a suitable interval. In order to define a correlation, that is, a quantity that has to
be non-negative and symmetric with respect to nodes indexes i and j, it is reasonable to start
from a power of the absolute value of the difference |ϕ̇(p)

i (t) − ϕ̇
(p)
j (t)|, where (p) stands for



2.4. Slightly above the critical point 19

the pacemaker that induces the considered dynamical evolution. Therefore, we propose

cp
ij(t) = 1−

√
|ϕ̇(p)

i (t)− ϕ̇
(p)
j (t)|

ω
.

Dividing by ω makes the argument of the root less than 1 because, even if the frequency’s may
take negative values (see Fig. 2.3), the condition |ϕ̇i(t)| � ω always holds.

The period of the effective frequencies oscillation depends on which node is the pacemaker.
Then, in order to compute averages in time that are really independent from the considered in-
terval, we have to choose a time window many times larger than the oscillation period. Further-
more, since |ϕ̇i − ϕ̇p| � |ϕ̇i − ϕ̇j | for any i, j �= p, we decide to exclude these contributions,
taking into account only terms of the kind cp

i,j where i �= p and j �= p.
Finally, in order to remove the dependence from the index p we have to average all the

possible pacemakers. Summarizing in a compact expression, our correlation function can be
written as follows:

cij = 1− 1

N − 2

N∑
p=1 p �=i,j

1

t1 − t0

∫ t1

t0

√
|ϕ̇(p)

i (t)− ϕ̇
(p)
j (t)|

ω
dt (2.4.1)

2.4.1 Hierarchical organization

Once we have obtained the correlation matrix we can proceed to some hierarchical analysis. In
the present work we use the standard unweighted pair group method average (UPGMA) [49]
algorithm to compute such diagrams. What we find out is a hierarchy of dynamical communi-
ties, whose meaning is immediately understandable in the case of small networks, such as our
benchmark in Fig. 2.1 (see Fig. 2.6).

Figure 2.6: The network of Fig. 2.1 and its corresponding dendrogram. Correlations are calculated
by averaging over a time window Δt = 60, after a transient lag Ts = 10, for ω = 1.1ωc

p.
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Obviously, this simple network does not need any analysis to obtain its hierarchical or-
ganization, but this methodology can be very useful when applied to functional hierarchical
network.

As a paradigmatic example, let us consider the corticocortical network of a cat at the macro-
scopic level. We look at each cortical area as a basic unit, modeling it as a Kuramoto oscillator,
finding similar results as in [50, 51].

Figure 2.7: Dendrogram of the cortical brain network of a cat. Different colors correspond to different
sub-systems: the fronto-limbic (FL), the somatosensory-motor (SM), the auditory (A), and the visual
(V). The rich club is labeled with HUBS, while the branch indicated with the label hp is the area that
belongs to the hippocampus and it is out of place. Correlations are calculated by averaging over a
time window Δt=100, after a transient lag Ts=10, for ω=1.1ωc

p.

In Fig. 2.7 we show that, going down along our dendogram starting from the root, it is
possible to recognize two communities clearly separated. Then, the right branch splits into two
parts, and the left one undergoes two subsequent bifurcations, so that it is possible to identify
three groups of nodes on it. At this level we have five communities. Four of them correspond to
well known physiological subsystems: the fronto-limbic (FL), the somatosensory-motor (SM),
the auditory (A) and the visual (V). The fifth one (HUBS) is composed, except for a single
area4, by super-hubs, sometimes considered as a metacommunity (rich club) [50, 51].

The most relevant aspect of our hierarchical analysis is that there is no way to recognize
this meta-community if the dendrogram is constructed by means of static methods. It cannot

4The cortical area that is not a super-hub is a border area that can be seen as a hub only joined with another
one very similar to it, but anyway regarded as a super-hub in itself.
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be obtained throughout correlation matrices generated from the adjacency matrix using, for
instance, Pearson’s coefficient [52] either. Nor these nodes emerge as a community when the
modularity function is maximized. Indeed, maximizing the modularity we obtain as an optimal
partition the same four groups corresponding to the four physiological sub-systems.

In general, complex networks can be organized, and thus analyzed, at different hierarchical
levels. For social networks it is very important that a group is tight, so that the multiple con-
nections within the group give rise to the concept of community. On the contrary, in biological
networks the most crucial concept is function rather than connectivity per se. Therefore, meth-
ods that rely on the connections within groups and maximize modularity will not be enough to
identify biological units based primarily on function [53, 54]. In this case, our method, which
analyzes the dynamical correlation between units, provides a better approach to inferring func-
tional relationships.

One of the known problems of the methods commonly used for detecting community struc-
tures in complex networks is the existence of the so called resolution limit, found by Fortunato
and Barthelemy [2]. This issue is related to the impossibility for the methods based on modu-
larity optimization to go beyond a certain resolution which is related to the community size and
to the number of links between communities. The paradigmatic example of the problem is a
network formed by “cliques” (small groups of totally connected nodes) which are very sparsely
connected. We have checked such structures and found that, dynamically, the correlations are
very strong within the cliques and not among nodes belonging to different modules, showing
that our method for detecting the hierarchical organization is not affected by the resolution
limit problem.

2.4.2 Recovering network topology

Let us now take a step backward and recover something we had previously discarded. In
the sum of Eq. (2.4.1) we had excluded terms in which one of the indexes was equal to p

since they were heterogeneous. So cij = 1
N−2

∑
p �=i,j cp

ij . However, the set of elements cp
pj ,

p = 1, . . . , N , also contains information. We may ask ourselves which oscillators are most
strongly correlated to the pacemaker and if they share some topological property. The simplest
hypothesis is that the set of kp largest cp

pj identifies the neighbors of the pacemaker. This is
reasonable since, even if the pacemaker is very weakly correlated to the rest of the oscillators,
coefficients cp

pj are not uniform and the topological distance is the most immediate quantity
that we may suppose this variability is related to. In Sec 2.3 we showed how to find out an
estimator of the degree of each node from the critical frequencies. Thus if we are able to select
the possible neighbors we would be, in principle, able to reconstruct the entire network.

The first problem we face in the attempt to validate this hypothesis is that our list of likely
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neighbors gives us an asymmetric and weighted adjacency matrix, whose elements are

a′pji
= cp

pji
for i = 1, . . . , k∗p,

a′pji
= 0 for i = k∗p + 1, . . . , N,

where k∗p is the estimator for the degree of the pacemaker given by (2.3.9) and cp
pji

> cp
pjl

whenever i ≤ k∗p and l > k∗p .
Moreover a′mn �= a′nm since, generally speaking, cm

mn �= cn
mn. Therefore we have to

remove the weights and to symmetrize this matrix. Here we propose an algorithm to perform
this task that is at the same time simple and efficient. It consists of four steps.

(1) Symmetrize the matrix in the usual way: as
mn = (a′mn + a′nm)/2.

(2) Compute a list of temporary degree k′n ≥ k∗n as the number of non-null elements as
nm.

(3) Order all the non-zero values as
nm in a list, from the smaller to the larger.

(4) Check which ones among the corresponding likely links have to be removed, starting
from the weakest one.

We proceed as follows: given a pair of nodes m and n whose link is the weakest one, if
and only if k′m > k∗m and k′n > k∗n, we remove that link, setting as

mn = as
nm = 0. In this case

both k′m and k′n are reduce by one unit. Otherwise we go to the next link, going on along the
entire list until reaching the strongest link.

This method is rooted in the hypothesis, empirically very well verified, that the matrix as
mn

contains all the links of the real network, plus a number of false positive ones, i.e., that there is
no false negative link. Thus we need just remove, never add, edges.

Moreover it works properly only if our estimators {k∗n} of the actual degrees {kn} are
correct; otherwise, we may make additional errors. Fortunately it is a very infrequent prob-
lem. The sole hypothesis we make is that the probability for a link to be a “false”one is a
monotonously decreasing function of the correlation between the nodes it joins.

Finally, the method does not ensure that in the final estimated network k′n = k∗n ∀n because
it is possible that even if k′n > k∗n, the nth oscillator has no possible neighbor whose temporary
degree is larger than its estimated one. Sometimes this fact may cause new errors; other times
it acts as a compensation of the underestimation of the real degrees.

In order to quantify how good a reconstruction is, we introduce the following error defini-
tion:

err(%) =
Fp + Fn

L
× 100,

where Fp and Fn are respectively the number of false positive (spurious) and false negative
(missing) links in the reconstructed network, and L is the number of edges in the original con-
nectivity pattern. Globally speaking, we can state that our method allows for a reconstruction
of an arbitrary connectivity pattern with a good precision. Taking into account the networks in
Table 2.1, on average we have err(%) = 6.5.
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Among these networks there are artificial as well as real connectivity patterns. They were
selected to be representative of several classes of networks, including hierarchical as well as
nonhierarchical, with and without community structure, regular and irregular. For this reason,
the average error calculated on this set of benchmarks can be considered to be a good estima-
tor of the accuracy of the proposed reconstruction method when applied on a given unknown
connectivity pattern.

N L Kerr L′ Fp/Fn L′

r Fp/Fn err(%)

9 15 0 15 0/0 15 0/0 0
18 24 0 24 0/0 24 0/0 0
25 66 0 82 16/0 66 0/0 0
34 78 7 99 27/6 75 7/10 21.8
48 64 0 64 0/0 64 0/0 0
53 391 0 445 53/0 392 5/4 2.3
125 394 33 475 81/0 383 1/12 3.3
128 1024 0 1060 57/21 1026 36/34 6.8
256 2311 0 3223 1040/128 2324 259/246 21.8
256 2301 0 2851 607/57 2312 116/105 9.6

Table 2.1: Results of the reconstruction on several networks. The columns give the size of the
system N , the total number of links in the original network L, the total error in the estimation of the
degrees Kerr =

∑N
i=1 |ki − k∗

i |, the total number of links in the reconstructed network before the
removal of exceeding links L′, the number of false positive Fp and false negative Fn links in this
network, the same for the final reduced network L′

r, Fp/Fn and the final total error err(%). From the
first row, the networks are our usual benchmark [1], a ring of 6 cliques of 3 nodes [2], a hierarchical
network of 25 nodes and 2 levels [3], Zachary club social network [4], ring of 16 cliques of 3 nodes
[2], the cortical brain network of a cat [5], a hierarchical network of 125 nodes and 3 levels [3], a
network of 4 communities of 32 nodes each [4], and two networks of 3 levels of community structure
[6].

2.5 Far from the critical point

Far above the critical point the system behaves quite differently. As clearly shown in Fig. 2.8
(left panels) all units are characterized by effective frequencies that, after a transient time, os-
cillate around precise values that are equal to their own natural frequency. From this point of
view, by increasing the natural frequency of the pacemaker the coupling is less and less impor-
tant. But, in any case, there are still remnants of the interactions since the amplitudes of the
oscillations decay very quickly with the distance from the pacemaker. Indeed, the frequencies
of the neighbors of the pacemaker oscillate with an amplitude that is roughly Aneigh � 2, while
all the other oscillators are almost at rest compared with them. These conditions allow us to
recognize the neighbors of a given pacemaker even if we do not know how many there are.
Therefore, we may define a simplified correlation function that better suits this situation and
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Figure 2.8: Effective frequencies as function of time far above the critical point (ω = 20ωc
p). Plots

refer to the same network used for the previous pictures, in the case of two different choices of the
pacemaker: node 1 (k1 = 8) above and node 2 (k2 = 3) below. On the left hand side we plotted
the frequency of all the nodes in the network. On the right side the scale has been changed and the
pacemakers are left out. Notice how above, where all the nodes are neighbors of the pacemaker,
we may observe a unique curve. On the contrary, below there are two different kinds of oscillations.
The largest ones are those of the neighbors of the pacemaker; the others belong to the oscillator not
directly connected to it. Time starts after a transient lag Ts = 1. The integration time step used is
δt = 10−4.

that only connects each pacemaker with its neighbors:

cF
pi =

maxt[ϕ̇i(t)]−mint[ϕ̇i(t)]

maxt[ϕ̇p(t)]−mint[ϕ̇p(t)]
=

Ai

Ap
. (2.5.1)

The above expression is the ratio between two positive terms (amplitudes) and it is equal to 1

for i = p.
On any connectivity pattern, the values cF

pi are distributed along a set of stairs whose highest
step is easy to identify even if we consider short time windows. The transient time, indeed,
is always very short in this regime. We no longer need to completely reconstruct the entire
connection topology.

All we have to do is to compute the values cF
pi for each pacemaker. After finding out the

maximum values maxi�=p cF
pi ∀p, we choose an appropriate threshold, say 0.5. A node j will

be a neighbor of the pacemaker p if cF
pj/(maxi�=p cF

pi) ≥ 0.5. Now we are able to construct a
connectivity matrix.

Let us notice that in this case there is no need for symmetrization since the adjacency matrix
constructed in this way is already symmetric because this method is based on a reliable general
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property that holds for any connectivity pattern. The use of a threshold is therefore, in principle,
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Figure 2.9: Normalized correlations of the cortical brain network of the cat for pacemaker on node
1 (kp = 10). The circles are the correlation values calculated through Eq. (2.4.1) for ω = 1.2ωc

p

(Δt = 100, Ts = 20). The triangles correspond to the correlations given by expression (2.5.1) when
ω = 20ωc

p, calculated on a time window Δt = 1 and waiting a transient time Ts = 0.1. All the values
have been divided by the maximum on each set (excluding the autocorrelation). Notice that while
in the first case there is an almost continuous spectrum of values, in the second one it is easy to
identify a group of points (red triangles) above the line at 0.5 clearly separated from the rest. Those
are the 10 neighbors of node 1.

unnecessary since all the neighbors have the same amplitude of the frequency oscillation, when
the pacemaker natural frequency is above a certain value. But since this value is not known a
priori and it may be very large if the distribution of the degrees among the neighbors of the
pacemaker is very wide, it is useful from an empirical point of view. It is important to stress
that, even if we are still in a regime where some degree of heterogeneity among the neighbors
is conserved, there is no chance to make any errors in the recovered topology. Indeed, the
amplitude of the frequency oscillations of the pacemakers neighbors is at least one order of
magnitude larger than that of any other oscillator (see Figs. 2.8 and 2.9). By means of this
method all the topologies considered in Table 2.1 are properly reconstructed, without errors.

In addition, not all nodes need to be considered as pacemakers. While the method discussed
in Sec. 2.4.2 requires us to perform dynamical measures for every possible location of the pace-
maker, for the current description this is not necessary. Indeed, we can look for the neighbors of
a number N ′ < N of pacemakers in order to get all the connections in the considered network.
From an experimental point of view, adopting the conceptual framework proposed in [55], we
may consider the choice of a certain pacemaker as the application of a drift on a given unit in a
system of identical coupled oscillators. This means that it is possible to solve the problem with
less than N experiments.

The criterion for choosing the ordered sequence of nodes on which we locate the pacemaker
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can vary. We may operate a random extraction, or we may start from a randomly chosen node
and then move to one of its neighbors along a random walk. Another option, which is much
more convenient, especially in the case of scale-free networks, can be adopted if the critical
frequencies associated with each oscillator are known. We can order the nodes according to
decreasing critical frequency, starting from the highest one. In this way we proceed from larger
to smaller (estimated) degrees, taking an important advantage if the degree distribution is not
uniform and there are hubs. The hubs, indeed, provide information about a large number of
links by means of very few experiments (Fig.2.10).
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Figure 2.10: Average number of reconstructed links as a function of the number of nodes we consid-
ered as pacemakers (number of trials). From the top to the bottom, the considered networks are a
pair of Barabasi-Albert networks, with parameter k = 3 (left) and k = 10 (right); a pair of Erdos-Reyni
graphs with average degree equal to 15 (left) and 60 (right); and a pair of random regular graphs
with degree 5 (left) and 100 (right). The size is N = 1000 for all of them. Different lines corresponds
to different selection algorithms. Blue dashed lines stand for the ordered sequence on the basis of
the critical frequency values; the red solid lines are for the random walk; the green dotted lines are
for random extractions. Both the random walk and the random extractions are averaged over 1000
samples. The horizontal black line marks 90% of links: notice how in any case we never need more
than 70% of the nodes in order to reconstruct 90% of the links, decreasing to 30% − 40% in the
case of the ordered sequence for scale-free networks. Correlations are computed under the same
conditions as those in Fig. 2.9.
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2.6 Conclusions

Systems of non-identical Kuramoto oscillators have been recently shown to display a degree
of synchronization that depends strongly on the topology of the underlying complex network.
Here, these dynamical properties, particularly by setting different types of correlations between
the dynamical evolution of the oscillators, have been used to gather information on the connec-
tivity patterns. Remarkably, this is the case for most experimental situations, where the a priori
unknown connectivity of a particular network is inferred from purely dynamical measurements.

When the oscillators are identical (all of them having the same natural frequency) any
topological configuration has a unique attractor, which is the complete synchronized state,
meaning that the oscillators end up in such a state that all effective frequencies and phases
are identical. This state does not offer any information about the topology. We perturb this
setting by allowing one of the oscillators to have a different natural frequency than the rest.
This unit is called the pacemaker of the network. Such a perturbation causes the final state
to no longer be phase synchronized. But if the natural frequency of the pacemaker is not
very different from the value of the rest of the population, the system still will retain a certain
degree of synchronization since the whole system can evolve with the same effective frequency.
However, if the frequency difference becomes larger, the system will be unable to find any kind
of synchronization. The threshold between the former case and this latter case is a well defined
value, which is strictly dependent on the location of the pacemaker in the network. In this
context, we can use the correlations between the effective frequencies of the oscillators in such
an incoherent state to reproduce the network connectivity.

Moreover, we show that the dynamical correlations in different situations, whether close to
or far from the critical point, provide complementary information on the network.

1. Working around the critical point we are able to estimate the degree of each pacemaker
merely by its critical frequency.

2. Slightly above the transition point the hierarchical structure of the whole network (re-
lated to functional modules) can be obtained from the correlations between effective
frequencies. A further refinement enables us to recover the whole connection network
with a good degree of accuracy.

3. Far above the critical point it is possible to recognize which oscillators are directly con-
nected to an individual pacemaker from a very short measurement of the time evolution
of the effective frequencies. In this way we can recover the connectivity pattern, and this
method turns out to be much more precise and more efficient than the previous one.

In summary, this chapter deals with different approaches relating dynamical properties of
individual nodes to the topology of the network. The topological properties inferred from dy-
namics can be local (the existence of a link between two nodes) as well as global (hierarchical
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organization of the nodes in the functional network). In particular, for a scale-free network
and if the node degrees are known (or have been estimated from the critical frequencies), con-
sidering 30% of the possible pacemakers, always selecting the most connected nodes, will be
enough to reconstruct approximately 90% of the links.

Other works have considered the reconstruction of the network from dynamical informa-
tion. Similar to our proposal with specific targets, Tegner et al. [56] analyzed the dynamical
response of a gene-regulatory network by changing expression levels of particular genes. On
the other hand, di Bernardo et al. [57] considered the global effect of different types of pertur-
bations to infer the network topology. This approach has been followed recently also by Gorur
Shandilya and Timme [58], who assumed that there is some information about the dynamical
evolution of the isolated units and about the coupling. Our method, based on the change of
the frequency of a single unit and how it enhances correlations among the nodes, can be more
effective in oscillatory systems. In any case, for practical purposes the method chosen will
depend on the specific details of the experimental setup and even a combination of different
ones can be the most appropriate.



Chapter 3

Exploring complex networks by
means of adaptive walkers

Finding efficient algorithms to explore large networks with the aim of recovering information
about their structure is an open problem. In general, network features are discovered by means
of algorithms based on search and traffic routing [33, 34, 35]. In many cases, the latter can
be performed by means of moving “agents”, which explore the topological space and recover
information. Nonetheless, it is still a key issue the investigation and characterization of the
efficiency of different strategies [59, 60, 61] as far as the quality and quantity of information
gathered is concerned.

Here, we investigate this challenge by proposing a model in which random walkers with
previously assigned home nodes navigate through the network during a fixed amount of time.
We consider that the exploration is successful if the walker gets the information gathered back
home, otherwise, no data is retrieved. Consequently, at each time step, the walkers, with some
probability, have the choice to either go backward approaching their home or go farther away.
Our aim is to find out an optimal strategy to maximize both the number of visited nodes and
the chance to meet again the starting point, independently of which is the choice for the latter.
To this end, we consider an arbitrary (heterogeneous) network of N nodes and a single agent
(explorer or walker) initially located on a given node (home-node), and let it move during a time
frame T , the walker’s lifetime. Every time the agent comes back to the starting point, all the
nodes it has visited until that moment are marked as visited and the total information gathered
is updated. Obviously, it could also be possible to send several agents at once, but it has been
demonstrated for several similar situations [62] that increasing the number of walkers (and
reducing their lifetime proportionally) does not produce better results. Consequently, we focus
on the performance of single agents. The most important novelty of our proposal is that the
agents are not markovian random walkers, nor a modified version of random walks’ dynamics
in which additional rules (for instance, preferential or self-avoiding random walks [60, 63]) are
introduced. Indeed, we introduce a parameter q which governs how likely it is for a walker,

30
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at each time step, to go forward or backward (with respect to the walker’s home). Thus, by
changing the value of this parameter, the two probabilities can be tuned and hence different
strategies are defined. In one limiting case, the walkers will tend to move back home, whereas
in the other limiting setting, they will tend to move away from home. In between these two
asymptotic behaviors, we recover a classical random walk, for which all directions are equally
probable. We explore different strategies and their dependencies with both the degree of the
home nodes and the walkers’ lifetimes. Moreover, we show that it is possible to built up an
adaptive algorithm whose efficiency in terms of the information gathered and the quality of the
reconstructed network is, in general, the best.

The rest of the chapter is organized as follows. Section 3.1 introduces the model which is
characterized in Sections 3.2-3.3. Our proposal for an adaptive strategy is presented in Section
3.4. In Section 3.5 we present the application of the algorithms previously discussed to the
reconstruction of the degree distribution. Finally, the last section (Sec. 3.6) is devoted to briefly
discuss the potentialities and possible applications of our model.

3.1 Baseline model of walkers

Let us first discuss a baseline model in which a given set of walkers explore the network start-
ing from a home node. As previously discussed, in order to collect the results of walkers’
exploration, they should go back home. Therefore, we introduce two probabilities when the
walker is at a given node, provided it has tracked the information about the path followed from
the home-node to the current position. These two probabilities correspond to the forward (F)
and backwards (B) motion along the already tracked path and read, respectively, as

PF (ki) = q2(ki − 1)/[1 + q2(ki − 1)], (3.1.1)

PB(ki) = 1/[1 + q2(ki − 1)], (3.1.2)

where the label i indicates the node that the explorer is going to leave and ki is its degree.
These equations stand for every step whenever the agent is not in the starting node − the home,
h −. In the latter case, i.e., while at home, it can only go forward, thus at that position we have
P h

F = 1 and P h
B = 0.

From Eqs. (3.1.1)-(3.1.2), we recover the pure random walk (without any bias, i.e., all
possible directions are equally probable) for q = 1. For very large values of the parameter q,
no backward step is allowed. Consequently the explorers can get back to their starting node
only by chance, through a different path, not being aware that they are coming back, but being
able to recognize where they are (at home). Conversely, when q goes to 0, after the first move,
no more steps forward are allowed. Therefore, only the first neighbors of the starting node
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Figure 3.1: Example of the motion of an agent: 4 snapshots taken at 4 sequential time steps. The
red node labeled with “H” is the home-node and the nodes that have been visited are colored in blue.
Panel (a): T4. Grey arrows stand for previous steps forward, while the green arrow stands for the
last one. Panel (b): T5. The agent takes a step backward (red arrow) reverting and removing from its
”memory” the last step forward. Panel (c): T6. At this point it is the step taken at time instant T3 that
has to be regarded as the last step forward (green arrow); the walker takes another step backward
(red arrow) reverting it. Panel (d): T7. The walker takes a step forward toward a new node.

can be explored. We also consider that the walker’s lifetime is T steps, which represents the
time allowed for the network exploration before the dynamics stops. We define the information
gathered as the fraction of nodes marked as visited after T time steps: I = V/N , where V is
the number of visited nodes and N is the size of the network. Moreover, if the agent is not at
home at time T , the new nodes visited after its last return to the home node are not computed
in V (i.e., we consider that only the information brought counts).

We first discuss the expected behavior of I at the two limiting values of q (very high or very
small). On one hand, for very low q values only the nearest neighbors are visited and hence
I will be small independently of T . On the other hand, for very large values of q the walkers
only return to home by chance, being the search also inefficient provided the exploration time
is not very large (see next section). Then, if we fix the total number of steps we can expect
that the information collected will have a maximum as a function of q. Therefore, there should
exist, for any given network, a precise value q∗(T ) such that, if we average over all the possible
choices of the home-node and over many realizations of the dynamical exploration, the mean
information 〈I(q∗)〉 is maximal. In other words, there is no other value q′ for which 〈I(q′)〉 >

〈I(q∗)〉, where “ 〈 · 〉” stands for the mean performed over all the nodes in the network and “ · ”
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for the average over many realizations.
The previous analysis indicates that the best efficiency in terms of maximal recovery of

information can only be obtained for two values of q∗. In the next section, we explore the
dependency of I on the network properties (as given by the degree of the home node) and
walkers’ lifetime. Admittedly, when this time is very long (T � N ) we should expect to
recover most information by setting q∗ → ∞. However, even if this is the best choice on
average, it might not be the case when the home of the walker is at a low degree node. On
the other hand, for shorter searching times, a value of q = q∗ < 1 gives almost the same
performance for I , but this time the results are independent of the degree of the home node and
〈I(q∗)〉 is a global maximum − the caveat is that q∗ cannot be known a priori.

3.2 Characterizing the performance of the walkers

Hereafter we will use as a benchmark a scale free network of N = 104 nodes and mean degree
〈k〉 = 10 generated by the uncorrelated configuration model [64]. We however note that all
results reported are valid for any network with a power-law degree distribution provided that it
does not have a tree-like topology. Actually, the only relevant difference in the case of a tree-
like network is that we will observe a different behavior for large values of q. This is because
leaves would make very difficult for a walker to come back through a different path making
their performance very poor, even for very large values of T and for very large degrees of the
home nodes.

In Fig. 3.2 the information 〈I〉 is plotted as a function of q for several home-nodes and a
searching duration of T = N = 10000 steps. As it is clearly shown, starting from small values
of the parameter q, 〈I〉 initially increases but soon afterwards there is an abrupt decay to give
way to a new increase as q grows further. For very large values of q, the information gathered
saturates to an asymptotic value. Interestingly enough, as seen in the figure, the amount of
information gathered for both very small values of q and when q � 1, as well as the size of the
abrupt decay, depend on the degree of the node from which the walker started the exploration.
However, there exists a universal value of q = qp at which almost all curves corresponding to
different degrees of the home node collapse; i.e., there is a local maximum which is roughly
independent of the connectivity of the home node. Nevertheless, whether this point is also a
global maximum for I(q) or just a local one depends on the degree of the initial node. Indeed,
when the home-node is highly connected, for this searching duration, an agent performs better
for q →∞, but if this is not the case, qp gives the optimum efficiency.

In Fig. 3.3 we plot the same quantity as in Fig. 3.2 but averaged over all the possible home-
nodes (then the dependency with the degree washes out) and considering different lifetimes T .
The figure makes it more clear that at q = qp the value of 〈I 〉 is a global maximum unless T

is many times larger than the network size N . This definitively means that if we are interested
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Figure 3.2: Information I (averaged over 3000 realizations) gathered by a walker during a searching
time T = 10000 as a function of the q parameter. Each curve refers to a different home-node and
different colors refer to different degrees of the starting node: k = 100 (black), k = 54 (red), k = 30
(purple), k = 22 (yellow), k = 13 (green), k = 7 (light blue), k = 5 (blue). In the inset: the same
quantity in a linear scale.
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Figure 3.3: Mean Information 〈I〉 gathered by a walker performing its search starting from any home-
node during a time lag of T steps, as a function of the q parameter. The mean is performed over
all the nodes in the network, and for each of them averaging over 100 realizations. Different colors
refer to different durations of the searching. From the bottom to the top: T = 500, 1000, 2000, 3000,
5000, 10000, 20000 and 50000. In the inset: zoom of the peak. Notice that qp displays a small shift
increasing T , up to T = 10000 when it reaches an asymptotic value.
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in the information an agent may gather for a very long searching time, what we have to do
is to set q � 1. Otherwise, if we are interested in more realistic situations where there can
be limitations on the duration of the exploration (for instance, due to energy constraints), the
best choice would be to set q = qp. The latter option has a caveat, however: the precise
value of qp depends in an unknown way on the topological features of the underlying network.
Nevertheless, one can obtain useful insights into the problem by inspecting how the behavior
of a walker changes when q varies.

Looking more carefully to the results plotted in Fig. 3.3, one can distinguish three regions
that qualitatively correspond to the three distinct behaviors of the walker. In the first one, for
q < qp, 〈I 〉 monotonously increases as a function of q; in the second one, 〈I 〉 experiences an
abrupt decay; whereas the third region shows that 〈I 〉 starts to increase again, until it saturates
to a value that depends on T . It is easy to realize that the first increase corresponds to small
enough values of q. In this region, the walker moves just a few hops away home and conse-
quently it takes only a few steps to get back home. The larger the value of q is, the longer the
mean path covered by the walker will be. Since for very small values of q the exploration is
local, the relevance of the home-node degree is very high (see Fig. 3.2). Then, increasing q,
we are allowing the walker to explore farther nodes, that is to collect new information, and the
initial differences due to the degree of the home-node become progressively smaller. At q = qp

they have almost vanished.

In the second region, for q slightly larger than qp, the walker often gets lost and its perfor-
mance is, on average, less efficient. In other words, the explorer wastes an important fraction
of the lifetime T gathering information that it will not be able to bring back home before the
time is over. The precise value at which this start to occurs is slightly affected by the duration
of the exploration, as shown in the inset of Fig. 3.3. This can be explained as a combination of
two factors. On the one hand, to increase q means to increase the number of nodes visited, but
also the risk to get “lost”. Indeed, if an agent is performing a long trip and it is going to bring a
lot of information back home, when the searching time is suddenly over, the loss is big. On the
other hand, the very first trips are those that provides the largest fraction of new information
since the majority of nodes are being visited for the first time. Thus, getting lost after a couples
of returns causes a much worse loss than if the same happens after a few round trips. Again
it is a matter of balance and the optimum value qp is smaller when the lifetime is shorter. The
second region ends at a value of q for which the previous balance is the worst possible one,
thus giving raise to another increase, which marks the start of the third region. Here, for even
larger values of q, it begins to be quite frequent that, wandering across the network almost ran-
domly, the explorer returns to its home-node through a different path just by chance. This new
behavior entails a new increasing of 〈I 〉 due to the fact that this kind of random returns start
to balance the inefficiency of the walkers that get lost. The likelihood of these events increases
with q and it is maximum when q →∞, that is, when PB = 0 at each time step.
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The previous dependency of 〈I 〉 on the walker’s lifetime T defines two optimal values for
q, either 〈I(q)〉 takes its maximum value at q∗ = qp or at q∗ = ∞. However, we stress again
that for q � 1, the walker gets back home by chance (recall that for these values of q the
backward probability PB = 0). Consequently the asymptotic values of 〈I 〉 in the q = ∞ limit
strongly depends on the degree of the home nodes (see Fig. 3.2). Therefore, setting q∗ = qp

could be a better choice even when T is large enough. In order to be able to take advantage
of the agents’ behavior at qp, we need to characterize deeper the transition that occurs for that
value of the parameter. To this end, in the next section we focus on the behavior of some
dynamical quantities which display a relevant change around qp.

3.3 Sequential steps and return time

In Fig. 3.4 we plot the average maximum number of sequential steps backward ( 〈SB〉 ) and
forward ( 〈SF 〉 ) that a walker takes in a time lag T = 10000 as a function of q. These two
quantities, estimated by averaging over many realizations and over all the possible home-nodes,
give a useful picture of the transition between the first and the second regimes previously
described. They initially increase together, then 〈SB〉 start increasing slower than 〈SF 〉, it
reaches a maximum and start decreasing, asymptotically going to zero. Notice that for small
q the value of 〈SF 〉 is small. Consequently, 〈SB〉 is bounded (even if PB(k) ∼ 1 ∀k) since,
when an agent is back to its home, no more steps backward can be taken. The value of q

for which 〈SB〉 and 〈SF 〉 take the maximum value before getting apart roughly corresponds
to qp. It is when the walker goes as far as possible from its starting point, being still able
to come back on its own steps. Increasing q a little bit further provokes that the number of
steps forward exceeds that of steps backward and the home-node is not recovered any more,
so that the searching efficiency rapidly decreases. This phenomenology helps us to find out an
heuristic definition for the peak. It is indeed possible to state that qp is the precise value of q for
which a walker is allowed to take enough steps forward to be able to visit a large region of the
network, but at the same time it is also allowed to take enough steps backward so as to return
to its home not by chance.

Admittedly, it is possible to translate this heuristic statement into a quantitative condition
starting from one simple observation. There exists, for any k, a value of q such that PF (k) =

PB(k) and from Eqs. (3.1.1)-(3.1.2) we know that this value is q(k) = 1/
√

k − 1. If q =

q(kmax) it is guaranteed that PF ≤ PB ∀k, so the mean path is short and the explorer will
come back to home very often. If q = q(kmin), the situation is the opposite, PF ≥ PB ∀k,
so for the agent it is very difficult to recover its home. Therefore, the conclusion is that the
peak lies between these two extremal values. A reasonable estimation could be obtained using
the mean degree 〈k〉. However, this actually results in an overestimation of the actual value.
Indeed, if the walker reaches a highly connected node and q = q(kmax), due to the fact that in
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Figure 3.4: Mean maximum number of consecutive steps forward 〈SF 〉 (black line) and backward
〈SB〉 (red line) taken by a walker during a time lag of T = 10000 steps. The mean is performed
over all the nodes and averaging over 2000 realizations for each of them. In the first inset (above):
zoom around the value of q at which the two curves get apart. In the second one (below): the
ratio 〈SB〉/〈SF 〉 in the same range. According to the arguments discussed in this section, the peak
should lie between the to values indicated with the dashed lines (qp ∈ [0.220 ; 0.237]) and this is in a
good agreement with what we can observe in Fig. 3.3.

a scale-free network kmax � 〈k〉, it has a very small probability to take a step backward and
consequently the walker will likely get lost. Moreover, the probability to meet any of the nodes
with a high degree is larger than their relative frequency (it is proportional to kP (k)). Hence,
an improvement of the first estimation consists of replacing 〈k〉 with the quadratic mean degree
〈k2〉. Although, this value is still too large and also overestimates qp, it does constitute a better
upper bound for qp, that is

qp ≤ 1√
( 〈k2〉 )1/2 − 1

. (3.3.1)

In order to complete this phenomenological picture it can be useful to look at another quantity
strictly related with what we have said in the previous paragraphs. In Fig. 3.5 we plot the
mean time that a walker needs to come back to its home-node ( 〈TR〉 ) as a function of q.
In this case we did not set a lifetime. We then let Nw walkers wander through the network
starting from a given node. Each time an agent recovers its home it is not allowed to leave it
anymore and the duration of the trip is recorded. We wait until every walker has come back and
calculate the average return time T

(i)
R , where i ∈ [1, N ] stands for the considered home-node.

Finally we average over all the possible starting nodes. What we obtain is a curve that closely
resembles that of the order parameter in a second order phase transition , but with the critical
point located slightly above qp. Furthermore, if we look at the dispersion of the values of T

(i)
R

we recover a behavior quite similar to that of the susceptibility, i.e., a divergence at the critical
point [65]. Actually, the divergence takes place very close to qp, but even closer to the value
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of q for which the average number of consecutive backward steps is maximum (see the inset in
Fig. 3.4). Again, this scenario corroborates the intuition that qp is the maximum value of q able
to guarantee that the walker will not get lost.
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3.4 The adaptive strategy

With the information gained up to this point, one can set up an adaptive algorithm aimed at
optimizing the performance of an agent exploring a heterogeneous network in a number of
steps T that is equal to (or less than) the number of nodes N . The basic idea is simple. We
have a walker and a value of q associated to it. We let it wander and when it is at home
again we evaluate the contribution of this last round trip to the information gathered until that
moment and, if necessary, the value of q is modified. In order to build up such an algorithm,
three main elements are needed. The first one is an appropriate quantitative way to evaluate
the performance of the agents. The second one is a criterion to decide whether or not q would
be modified. Finally, the adaptive rule applies whenever the choice is to change the value of
q. This third element is an algorithm able to connect what the agent has learned about the
network until its last return, the efficiency of its performance and the current value of q in order
to provide a new, more suitable, value for the parameter.

Let us start with the first element. Since the aim of the exploration is to collect the maxi-
mum amount of information in a fixed time frame, to be efficient means to visit as many new
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nodes as possible per unit of time (step). The final efficiency of a searching process can thus
be defined as E = I/T . This definition can be expressed as a function of the number of round
trips. If we indicate with tr the time of the r-th return of the explorer (0 < t1 < t2 < · · · < T ),
we have E(tr) = V (tr)/tr , where V (tr) stands for the number of visited nodes after tr

steps (V (tr)N = I(tr)). It is also possible to measure the efficiency of a single trip as
er = [V (tr) − V (tr−1)]/(tr − tr−1)], but this is not a very useful procedure as er is very
noisy. Therefore, in order to compare the performance at time tr with that at time tr−1 it is
better to consider the efficiency variation ΔE(tr) = E(tr)−E(tr−1). Hence, a good criterion
to decide whether a change of q is needed is ΔE(tr) < 0.

Notice that if we start with a small value of q, the number of steps forward and backward
will be the same (see Fig. 3.4) and the explorer will pass on each visited node at least two
times. Therefore the first return time t1 will be twice the number of steps ahead that the
walker was allowed to take. The maximum number of different nodes that the agent may have
visited during its trip is therefore equal to the number of steps it took forward. This happens
whenever the walker does not cross each link more than twice (forward and backward). Thus,
the efficiency has an upper bound, E ≤ 1/2, that can be easily reached for any small value of
q when the explorer performs its first trip. In particular, for q = 0 we surely have E(t1) = 1/2

since only one step forward is allowed and the agent will visit one node in two time steps.
Consequently, we expect E(tr) to start from a value very close to 1/2 and then necessarily
decreases. Hence, changing q has the effect of decelerating the decay of E(t), or at most, to
make E(t) reach a stationary value.

When q is varied, we should also take special care in not letting the agent to get lost. With
this aim, one needs to fix an upper bound for q. This bound can be provided by Eq. (3.3.1) if we
use the degrees of the visited nodes to evaluate the effective value of 〈k2〉. Actually, when the
expression (3.3.1) is computed using the information collected empirically, a better estimation
of qp can be obtained. This is because the value of 〈k2〉 is overestimated, being easier for an
agent to explore highly connected nodes than peripheral ones during early trips. With all the
previous remarks, the adaptive algorithm can be formulated as follows (see Fig. 3.6):

1) Set q ∼ 0.1 and let the agent perform its first round trip.

2) Calculate E(t1) = V (t1)/t1 and let the agent perform another trip.

3) Calculate the new value of the efficiency and check if ΔE(t2) = E(t1)− E(t2) < 0. If
it is not the case, let the agent explore again, until the condition ΔE(tr) < 0 is satisfied.

4) Calculate

〈k2〉(tr) =

√ ∑
i∈V (tr)

k2
i /V (tr),

and then
qUB = 1/

√
〈k2〉(tr)− 1.
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Figure 3.6: The figure represents, in a flowchart a possible implementation of the algorithm de-
scribed in the main text for the adaptive strategy. Here the efficiency E takes the initial value E0 = 1.
The notation is simplified in order to make the diagram easier to read: E(tr) is indicated as Er and
V (tr) just as V .

5) Check if q + dq < qUB, where dq is a small positive quantity (in general dq = 0.01 is a
good choice).

6) If the condition (5) is satisfied, update the value of q adding dq: q → q + dq.

7) If the condition (5) is not satisfied, but q < qUB < q + dq, update the value of q so that
q → qUB.

8) If q > qUB then:

8a) if q − dq < qUB then q → qUB,

8b) if q − dq > qUB then q → q − dq.
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Figure 3.7: Left panel: the total efficiency 〈E 〉=〈V 〉/T as a function of the searching time T in the
case of three searching strategies (averaged over all the nodes and 100 realizations for each of
them): q � 1 (blue), q = qp (red) and the adaptive strategy (black). Right panel: mean information
〈I 〉 as a function of T , again for the three best searching strategies (represented with the same colors
as above). Error bars represent the dispersion (standard deviation) among the values obtained for
different home-nodes.

Figure 3.7 shows results for the final efficiency E(T ) and the information gathered I(T )

for the three best strategies: the adaptive one, q → ∞ and q = qp (although this is not really
a strategy since we need to know the precise value of qp). Both quantities confirm that, unless
T is more than twice the network size N = 10000, the best performance is obtained for
q = qp. Nevertheless, our adaptive strategy gives results that are very close to those obtained
for q = qp and always better than those obtained for q � 1 (at least for T ≤ 2N ) both in terms
of efficiency and in terms of the total amount of information recovered.

All these results are coherent with the description of the walkers’ behavior commented on
in the previous section. In particular, it is reasonable that when q � 1 the efficiency initially
increases with T since in this case the shorter the searching duration, the larger the probability
that an agent gets lost. On the contrary, for qp and the adaptive strategy, which precisely aims
at capturing the behavior of the agents at qp, the information is mainly collected by means
of quite short round trips. Consequently, increasing the searching time reduces the efficiency
because it increases the chance to visit many times the same nodes. In any case, when T � N

and I ∼ 1, the problem of visiting already visited nodes becomes relevant also for the strategy
q � 1. Finally, it is worth stressing that while for q � 1, the dispersion among the values E(i)

and I(i) for different home-nodes is very high, in the case of the other two strategies, the same
does not happen. This is a clear indication of the fact that the adaptive strategy recovers one
of the most interesting features of the agents’ behavior at qp, namely, the homogeneity of the
performance starting from different home-nodes. We next discuss one potential application of
the searching strategies previously discussed. This would also allow for a better distinction of
what strategy is the best.
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3.5 Recovering the degree distribution.

An important global descriptor of every network is its degree distribution P (k). However, this
information is not always at hand. For instance, suppose you belong to a network of which you
only know your local neighborhood (like an online social network or a city map). The problem
is then to know what is your position in the network as far as the degree is concerned or to
make an exploration that allow you to gather information about the entire map. In other words,
we want to study if the sample of nodes visited by an agent is more or less representative of the
global system, at least with regard to its P (k).
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Figure 3.8: Number of nodes of degree k as measured by a walker searching during T = 2000 (void
circles) or T = 10000 (filled circles) time steps, in a single realization of the process. Red color
refers to a home-node of degree k = 5, blue to a home-node with degree k = 22 and green to the
node with the largest degree in the network (k = 100). The searching strategies are, respectively:
q = 1 in panel (a), q � 1 in (b), q = qp in (c) and the adaptive strategy in (d). The black line is the
real degree distribution.

In Fig. 3.8 we plot the number of nodes of degree k, N(k), found in a typical realization of
the different strategies, for two different values of T and for different choices of home-nodes.
As we expected, the usual random walker and the agent with q � 1 are very bad when the
home-node has a small degree (red curves). On the contrary, the performance of the adaptive
protocol and that of the walker when q = qp are almost not affected by the walkers’ lifetimes
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(at least for the considered values) and by the degree of the home-node. Note that panels (a)
and (b) represent the common situation in which a random walker starting at a lowly connected
home node gets lost. Indeed, for such cases, the only information brought back is the degree
of the node from which the walker started the exploration of the network. However, as it is
also appreciated in the figure, when the home node has a relative high degree, setting q � 1

constitutes the best strategy for an accurate estimation of N(k). Nevertheless, as the walker
”does not know” what is the connectivity of its home node in relation to the rest of the network,
the latter strategy seems to be, as a rule of thumb, a bad choice. Additionally, the figure also
shows that in general what is difficult for an agent to recover are the most peripheral nodes of
the network. Consequently, the nodes with a small degree are usually under represented while
the heavy tail of the degree distribution is reconstructed with high accuracy.
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Figure 3.9: Kullback Divergence (DKL) of the measured (normalized) degree distribution with re-
spect to the real one. Different colors refer to different searching strategies: blue for q � 1, green for
q = 1 (pure random walk), red for q = qp and black for the adaptive strategy. In panels (a)-(b) DKL

is plotted as a function of the searching duration T , averaged over 104 realizations. The considered
home-node are, in panel (a), the node with the largest degree (k = 100) and, in panel (b), a node
with degree k = 5. In panels (c)-(d), DKL is plotted as a function of the degree of the home-node,
averaged over [1/p(kH)] realizations for each starting node of degree kH . The searching time is
T = 2000. In panel (d) the adaptive strategy is plotted on a smaller scale together with the strategy
q = qp.

In order to quantify the accuracy of the reconstructed networks, we calculate the Kullback-
Leibler Divergence or relative entropy [66], a non-symmetric measure of the difference be-
tween two probability distributions. This is a standard method to evaluate how different an
experimentally estimated distribution is from the real one. For the probability distributions P
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and Q of a discrete random variable their K L divergence is defined to be

DKL(P‖Q) =
∑

k

P (k) log
P (k)

Q(k)
, (3.5.1)

where P (k) is the real distribution and Q(k) the estimated one. Using this measure, we explore
how the accuracy of the reconstruction depends on the searching strategy, the walkers’ lifetimes
and the degree of the home node. In what follows, we report results for the mean values,
averaged over many realizations, and for the deviations around the means.

In Fig. 3.9, panels (a)-(b), we plot DKL as a function of T for four different strategies
(including the standard random walk) and two different starting nodes (corresponding to, re-
spectively, maximum and minimum degree,). As expected, DKL → 0 when T →∞, in all the
considered cases. The q = qp strategy and the adaptive protocol perform much better than the
other two settings, with less dispersion and a very much weaker dependence on the degree of
the home node. Hence, these last two strategies are more suited if we aim at recovering P (k),
especially when T is not too long. Moreover, even if they both are good, the adaptive strategy
is better than q = qp, with a very small dispersion. Thus, although it is not possible to perform
better that q = qp in terms of nodes visited, the adaptive strategy does better in terms of the
accuracy of Q(k), that is, when it comes to reconstruct P (k).

We have also analyzed the dependency of DKL on the degree of the home nodes for fixed
values of T . Figure 3.9, panels (c)-(d), displays DKL as a function of k for all the strategies,
in the case of a short lifetime (T = 2000). Differences among strategies are really noteworthy,
while for the larger lifetime (T = 10000) we verified that they persist just in the case of quite
small degrees of the home nodes. Finally, the adaptive strategy is in general the best option,
being q = qp slightly better only in the case of home nodes with degree k < 〈k〉.

3.6 Conclusions

In this chapter, we have presented a model for network search and exploration in which walkers
evaluate at each time step whether to go farther from a home node or get back with the infor-
mation retrieved up to that moment. These probabilities depend on a single parameter q, that
has been shown to exhibit an optimal value, q = qp < 1 (q = 1 corresponds to the markovian
random walk limit) for exploration times comparable to the system size. When the walkers are
allowed to explore the network indefinitely or during long times, the optimal value turns out to
be q = ∞. However, although the amount of information recovered for the latter choice could
be maximal, the results are highly dependent on the degree of the home node: the smaller the
degree of the node assigned to the walker, the less information the walker can get back home.
As a matter of fact, for most of the nodes (recall that in a scale-free network most of the nodes
are poorly connected), q = ∞ is not the best strategy.
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Capitalizing on the behavior of the walkers as a function of q, we have also proposed an
alternative algorithm in which the agents are allowed to tune the value of the parameter q to
optimize the information retrieved. Through numerical simulations, we have shown that this
mechanism allows an exploration as efficient as that performed setting q = qp. Nevertheless,
the adaptive scheme has the advantage that the value of q is changed dynamically, and therefore
it overcomes the problem of fixing an a priori unknown optimal value qp. We believe that this
adaptive search protocol could be a valuable addition to the current literature as it performs
optimally with a minimum (local) information about the network structure.

As a demonstration of the potentialities of the algorithms explored in this work, we have
made use of the different searching strategies to address the problem of network discovery. As
expected, the adaptive mechanism is the one whose performance, in terms of the quality and
quantity of the information retrieved, is the best. Whether or not these kinds of strategies can
be further developed and applied to the exploration of real networks is out of the scope of the
present work, but we identify at least two scenarios in which they can be useful: the discovery
of new connections in communication networks and the exploration of planar networks (i.e.,
city networks) using minimal local information. Notice that the network we used as a bench-
mark has a very strong cut-off and the largest hub is connected with just 1% of the nodes,
something that is possible also in planar networks, which cannot be scale-free, strictly speak-
ing. The results obtained in this chapter are quite general, holding whenever the maximum
degree kmax is (at least) one order of magnitude larger than 〈k〉.

We hope that our work guide future research along these lines.



Chapter 4

Synchronization of moving integrate
and fire oscillators

Among the many emerging phenomena we observe in nature, synchronization is one of the
most paradigmatic examples. It can be roughly understood as the collective dynamics of units
whose internal state evolves periodically in time and when they interact tend to synchronize
their internal variables [31]. The achievement of the final synchronized state (if any) strongly
depends on the interaction pattern of the system [16, 37]. Up to now, synchronization has
been mainly analyzed in fixed topologies but we are witnessing the first evidences that links
between agents can evolve in time [67, 68, 69]. The case in which this evolution of the network
topology is an effect of the agents mobility is a particularly interesting case [27, 28, 29]. The
effect of this changing patterns of interaction on synchronization features has been analyzed
in different settings, for instance in chemotaxis [70], mobile ad hoc networks [71], wireless
sensor networks [72], and the expression of segmentation clock genes [73].

In the recent literature, studies on synchronization in dynamically evolving complex net-
works have been mainly concentrated in the case when the topology changes very fast. This is
the so-called fast-switching approximation (FSA) [74, 75, 76, 77], which replaces the real inter-
action between agents by the “mean field assumption” that all agents interact with an effective
strength that corresponds to the probability that any pair of agents are connected.

Recently, it has been proposed a general framework of mobile oscillator networks where
agents perform random walks in a two-dimensional (2D) plane [78]. It has been shown that
FSA fails when the time scale of local synchronization is shorter than the time scale of the
topology change due to the agent motion. New behaviors arise due to the interplay between
instantaneous network topology, agent motion, and interaction rules. This framework, that
reduces to FSA when velocity is high enough, is valid for models whose evolution can be
well approximated by linear dynamics. This actually holds for models such as populations
of Kuramoto oscillators [45, 39], whose evolution, after a short transient time, is very well
described by a set of linear equations that can be solved in terms of spectral properties of the

46
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Laplacian matrix [79].

Here, we focus on a dynamical system, a population of integrate and fire oscillators (IFO),
where linearization is not a good approximation, since the evolution takes place in two differ-
ent time scales. One for the slow evolution of the internal state variables (the phase and the
orientation) and the other for the instantaneous interaction between the units (pulse coupling).
During the last years it has been shown that the interaction structure plays a fundamental role
in the dynamics of IFO networks. Zillmer et al. observed different dynamical regimes due to
network connectivity in a system formed by inhibitory integrate-and-fire neurons that were ran-
domly connected. Also, the underlying network structure can affect the speed with which the
system reaches the synchronized state, as studied by Grabow et al.Usually, IFO have been used
to model neural systems but we can also find some examples of applications in other fields, as
for example in economy [80]. Models where the oscillators do not remain fixed, and the net-
work of interactions changes with time can find a direct application in biological systems such
as flashing fireflies, anurans and bush-crickets, that interchange light or sound signals while
searching for potential mates [81, 82].

In the present case we show that the interplay between agents motion and phase evolu-
tion towards a synchronized state presents different asymptotic behaviors, reminiscent of the
observation in Kuramoto oscillators [78] and agents using communication protocols [83].

In the next section we introduce a general model in which agents interact with neighbors
within a certain distance, as proposed in [78] and [83]. We characterize the behavior of the
system for different regions of the parameter space (velocity of the agents and range of inter-
action) and later we identify the different microscopic mechanisms that lead the system to a
globally synchronized state.

Then, we focus on a limiting case. In Sec. 4.2, we introduce a minimal model where each
unit interacts with its nearest neighbor only. We analyze in details this extreme situation that,
once fixed the interaction rule, allows to explore other dimensions of the parameter space by
varying the coupling strength and the size of the system (number of oscillators), apart from with
the velocity. First, in Sec. 4.3, we briefly describe how the strict rule we adopt produces new
kind of interaction patterns that affect the synchronization time dependence on the velocity. We
identifying three different regimes, according to the synchronization properties of the system.
Namely, we distinguish a slow regime, a fast switching limit, and, between them, an anomalous
intermediate region where the synchronization time diverges. A qualitative characterization of
the first two cases is provided in Sec. 4.4. Then, we determine the corresponding regions of the
parameters space for the fast limit (Sec. 4.5) and for the slow regime (Sec. 4.6), also providing
an estimator of the synchronization time. In Sec.4.7, we take stock of which conditions help
or prevent the achievement of the coherent state, putting forward some empirical explanation
about what makes the system unable to synchronize in the intermediate region. In Sec. 4.8,
we sketch some possible improvements of the interaction rule, evaluating their costs and their
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effects on the efficiency of the synchronization mechanisms. Finally, Sec. 4.9 is devote to
summarize the obtained results.

4.1 The geometric model

We propose a setting in which a population of N IFOS [81] move at a constant velocity V in a
bidimensional plane of size L with periodic boundary conditions. Each agent has two degrees
of freedom corresponding to an internal phase φi ∈ [0, 1] and orientation θi ∈ [0, 2π], both
randomly set in a uniform manner at the initial configuration.

The phases of the agents increase uniformly with period τ ,

dφi

dt
=

1

τ
, (4.1.1)

until they reach a maximum value of 1, when a firing event occurs. Then the phase is reset.
Upon this event at time t, the firing oscillator influences its nearest neighbors (oscillators at
minimal distance) producing an update in their phases by a factor ε:

φi(t
−) = 1⇒

⎧⎪⎨
⎪⎩

φi(t
+) = 0

φnn(t
+) = (1 + ε)φnn(t

−)

θi(t
+) ∈ [0, 2π]

. (4.1.2)

Notice that we have kept the dynamical evolution of the units at its maximal simplicity
since we are mostly interested in the interplay between motion (and hence construction of a
dynamical network) and internal dynamics and how synchronization emerges as a collective
property of the system.

The fire event, its propagation, and the phases and orientation updates it implies, have to be
considered as instantaneous events. No ordinary phase evolution or motion takes place in the
meanwhile.

The system is synchronized when we encounter in the system a succession of consecutive
firing events (avalanche) equal to the system size N , since after this fact all oscillators will
remain synchronized forever because all of them will have the same period τ , regardless of the
interactions. For the sake of clarity we define the (discrete) time T , as the number of times a
given oscillator (that we will identify with oscillator 1 in our computer simulations) has fired.
This allows us to define Tsync as the number of cycles this reference oscillator takes to enter
the synchronized state (i.e., the number of updates needed for an avalanche of size N to occur).

Neighbor selection upon a firing event is performed according to a geometric condition,
as shown in Fig. 4.1: every agent scans a circular area of radius R around it and shots the
neighbors therein.

We introduce a parameter r ∈ [0, 1] that indicates the fraction of the system available for
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Figure 4.1: The model of interaction between oscillators, based on geometrical constraints. Only
those within a distance R are affected by the firing of the central one.

interaction and relates both R, L variables and the average degree of the nodes of our evolving
network

r =
πR2

L2
〈kout〉 = (N − 1)r. (4.1.3)

Hereafter, we use fixed parameters L = 100, τ = 1, N = 50 and ε = 0.02 ∼ O(1/N), while
analyzing the explicit dependence on the mobility parameters, r and V .

We present in Fig. 4.2 the results of our simulations. A preliminary observation points out
that the roles and importances of V and r change throughout our map.

Notice that the type of proposed interaction range in this system has been reported to show
statistical properties similar to a continuous percolation [78], that in the case of static oscillators
occurs for approximately rc ≈ 4.51/(N − 1) = 0.09 [84, 85]. In our range of study, we
hope to observe some traces of this percolation as well as saturation properties observed in
other moving oscillator systems at high speeds [78]. Actually, for high enough values of r

(r � rc) , the synchronization time, Tsync, is almost unaffected by the values of the speed V .
Although this time is dependent on r, its range of possible values is much narrower (by orders
of magnitude) than below rc. When r is smaller than this critical value, the velocity plays the
crucial role since for a fixed value of r the synchronization time changes by a factor of 104.

To bring further insight to the map, we show a profile of the final “energy cost” rTsync

of the synchronization dependence on r for various velocities (right panel). Considering that
each interaction between a pair of oscillators has a unit cost (proportional to ε), this final cost
variable balances the range of interactions (the number of shots to different neighbors at each
firing event) and the number of firing events that the system needs to synchronize (equal on
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average to N Tsync).
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Figure 4.2: On the left: Heat map of the synchronization time as a function of r and V ; in the top
picture a large region of the parameters space has been considered, while the bottom figure is a
zoom on the most critical region (r < 0.08, V < 0.25). On the right: Profiles of the efficiency of the
system rTsync against r, for several values of V .

4.1.1 Synchronization Mechanisms

It seems clear that mobility of agents helps to minimize energy consumption but as we approach
the critical percolating value of rc, we observe that a range of behaviors emerge. On one
hand, we observe for high velocities that the efficiency of the process remains roughly constant
independently of r, since the extreme mobility of the agents compensate the reduced range
of its interactions and successfully diffuses the synchronization process around the system, a
process that is equivalent to the observation in other settings [75, 78, 83]. On the other hand, if
the mobility of the agents is reduced, then the path to synchronization is more lengthy as well
as more energy consuming. Synchronization is still possible (below the percolation static limit
rc) but the time to achieve it grows very fast, even resulting in an effectively infinite time1.

These results lead us to identify different regimes and the consequent transitions between
them. On the one hand, we find a “topological” transition at the critical static value rc, since
above it there is basically no velocity dependence whereas below rc the influence of V is
determinant. On the other hand, below rc, where synchronization is made possible by the
mobility of the agents, we can identify a transition (depending on both r and V ) that separates

1In our simulations some realizations of the experiment did not reach synchronization, even working with
a reduced number of oscillators and the described boundary conditions, fact that induces us to think in this
direction.
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two dynamical regimes.
In order to study the distinct mechanisms that the system uses in its path to synchronization,

we introduce an order parameter η(T ) = 〈cos (2πφ(T ))〉 that is an increasing function that
measures the overall synchrony of our system, ranging from a uniform phase distribution of
our oscillators (η(T ) = 0) to complete synchronization2 (η(T ) = 1).

To couple our V and r control parameters we also introduce the number of distinct inter-
actions per oscillator N i

c (accumulated encounters with different agents by a oscillator i). This
value is bounded (on average) between a minimal starting value of 〈Nc〉0 = (r − 1)N and a
maximal value of 〈Nc〉max = N−1 and it provides information about the evolution of our sys-
tem’s synchronizing mechanism. Since the bounding of this value depends on r, we introduce
a normalized magnitude χ,

χ(T ) =
〈Nc〉(T )− 〈Nc〉0
〈Nc〉max − 〈Nc〉0 〈Nc〉 =

1

N

N∑
i=1

N i
c, (4.1.4)

that is a quantification of the mixing of our system. When the mixing is minimal (〈Nc〉 =

〈Nc〉0) χ is 0. As the system mixes, i.e. the oscillators increase its average number of contacted
neighbors, it can grow up to its maximum value χ = 1, i.e. 〈Nc〉 = 〈Nc〉max.

Figure 4.3: Panel a): η against χ for several values of r and V . Panel b): the difference between
the two order parameters (η − χ) as a function of rT . Letters [D], [L] and [B] stand respectively for
“diffusive”, “local” and “bounded” regimes. The values of η and χ at each time instant have been
calculated averaging over 1000 realizations.

We have calculated the time evolution of both η and χ for different values of V ∈ {0.1, 1, 100}
2Note that the average is calculated upon a firing event by the reference oscillator, hence our order parameter

is an average of the phase difference of the other oscillators with respect to this one.
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and r ∈ {0.05, 0.1, 0.2}. In Fig. 4.3 one can see the evolution of both parameters measured
at the same time instants (and sufficiently averaged over enough realizations) together with
the difference between them over time η(T ) − χ(T ) that give insight about the topological
evolution of our system as it synchronizes. The figures show three clearly distinct patterns.

For high velocities we observe in fig. 4.3a) a gradual increase of the order parameter and
a minor influence on r at fixed V , indicating that the synchronization emerges evenly on the
system in a global fashion, due to the quickly changing topology of the network (neighbors
of a given oscillator change rapidly). This regime (which we call diffusive) requires the inter-
contact of the majority of the system, but this circumstance is rapidly achieved due to the
strong mobility of the agents. In fact, this regime is optimal as far as the synchronization time
is concerned, since the interactions are more effective. These conclusions were obtained for
populations of Kuramoto oscillators [78], for which this regime corresponds to the region of
validity of the FSA.

In the opposing case, when velocities are small enough, this behavior is completely lost
and a step function appears, indicating that the slow mobility of the agents allows them to
synchronize locally with their neighbors creating islands of synchrony. The sudden increase
of the order parameter occurs at a regular pace, fact that points out that whenever the islands
are disbanded (change of neighbors), they still transmit the local synchrony to the neighboring
groups, mechanism that allows for system synchrony while keeping χ in small values. The
initial height of the steps is dependent on r and decreasing as χ(T ) grows due to the limited
range of η(T ) available states.

Finally, as we decrease r approaching the critical value rc, we observe a transition from a
local to a bounded regime, where the synchronizing time is so long that again allows for the
interaction of the majority of the agents among themselves upon synchronization time (due to
the bounded nature of the system). In this regime, the range of interaction is very reduced, and
so is the size of the clusters, so an agreement between the multiple clusters created (if any)
comes after almost all the system has interacted. Consequently, the increasing of η with χ is
slower (many small steps, see fig. 4.3a) ) while the final value χ becomes larger (fig. 4.3).

In fig. 4.3b) we provide an explicit time evolution of the difference η(T ) − χ(T ) in order
to make the three regimes and the influence of r better identified.

It is interesting to study the final mixing of our system upon synchronization as shown in
Fig. 4.4. This value χ(T = Tsync) ≡ χsync together with Tsync characterize the evolution of
the system towards the synchronized final state. These features depend on both r and V . At
fixed velocity the final mixing of the system decreases as the interaction range grows. This is
caused by the fact that although an increased r induces more mixing (as oscillators find new
neighbors more easily) it also drastically reduces (below the critical values rc) the synchroniz-
ing time Tsync thus reducing the chances of encounters between different oscillators. Above rc

we observe a saturation of the values as the dependence of Tsync in r and V is practically lost.
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Figure 4.4: On the left: the average value of χ at the synchronization time (χsync) as a function of r
for several values of V . On the right: χsync as a function of rTsync for several values of V . All the
means have been performed over 200 realizations.

Figure 4.4 b) shows a change between the relation pattern of χsync and cost rTsync ranging
from the diffusive regime (mixing independent of rTsync) to the curves where both the local
and bounded regimes are shown. It is important to note the similarity of the observed shapes
(for a wide range of V values) where we find the local phase concentrated around the minimum
value of χsync that gradually grows in a power law fashion as the performance of the system
decreases (it consumes more energy to synchronize).

The introduction of the new parameter χsync allows us to present a phase diagram of
our system relating the overall performance (in terms of energy cost) with the synchroniz-
ing mechanism used (Fig. 4.5). We identify the diffusive regime in the zone of high velocities
V ∼ O(10) where both values of χ and rTsync are almost independent of r. This zone falters
into the bounded one as V and specially r decrease, where both the mixing and the efficiency
of the system is reduced (energy cost increased). Finally for small enough velocities the local
zone is clearly visible with low values of system mixing. From the map one clearly observes
that the most beneficial synchronizing mechanisms (in terms of energy consumption) are the
diffusive and local ones.
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superimposed to the surface rTsync(r, V ). On the right: the same quantities, zoomed in the most
sensitive region of the parameter space.

4.2 Minimal topological model

In the previous section, we have analyzed the system behavior keeping both the coupling
strength ε and the system size N constant, by changing solely the velocity of the agents and
the interaction range. We have seen that the motion of the agents is what ensures that the
system will be able to synchronize. If the agents are static, a minimal fixed topology will be
required to connect them (what is called a giant component in network terminology). In con-
trast, a population of moving agents (even when the interaction range is small) will eventually
synchronize.

Now, we are interested in studying the dependence of the synchronization time on the
coupling strength and on the size of the system. Therefore, in order to limit the number of
free parameters, we need to fix the interaction range. Since we are interested in observing the
maximum possible diversity of behavior when varying the velocity, we want the system to lie
below the percolation threshold. Hence, we consider that the simplest rule we can adopt is
a minimal distance rule, so that each oscillator interacts with its nearest neighbor only. An
additional advantage of this choice is that the total energy cost can now be directly identified
with the synchronization time, thus simplifying the evaluation of the system’s performance.
Finally, having reduced the multiplicity of the firing event to a single shot at a single oscillator,
this minimal model is suitable to represent phenomena where the signal is transferred from one
agent to another instead of spreading around simultaneously towards many agents. This can be
the case of communication protocols with special restrictions for security/privacy reasons.

Additionally, we decided to change the orientation updating rule, relating it to the signals
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Figure 4.6: Snapshot of the system in the incoherent state. Each disk is an oscillator, gray dashed
arrows stand for first-neighbor relationships, while the continuous black one represents a firing event
that is taking place at that precise instant.

an oscillator receives, instead of the signal it sends. Notice that, for small values of the velocity,
the displacement of a given oscillator increases linearly with time only if it does not change
its orientation at each time step. On the contrary, if it is permanently changing the direction
of its motion, the displacement will be proportional to the square root of the time, similarly
to a brownian motion but with finite time step. According to our new interaction rule, it is
assured that each agent, every time it fires, reaches some another unit, while the same is not
true for the incoming shots, whose time separation is a random variable. Oscillators can in
principle remain a long time without any incoming neighbor, thus delaying the achievement of
the synchronization. In order to improve the efficiency of the system, which is critical at low
velocities3 , we chose to allow the oscillators that are not receiving any signal to keep going
straight on, preventing at the same time those with one or more in neighbors to do the same.

Thus, upon a firing event at time T , the firing oscillator influences its nearest neighbor
(oscillator at minimal distance) producing a random reorientation of its motion and an update
in its phase by a factor ε:

φi(t
−) = 1 ⇒

⎧⎪⎨
⎪⎩

φi(t
+) = 0

φnn(t
+) = (1 + ε)φnn(t

−)

θnn(t+) ∈ [0, 2π]

. (4.2.1)

Notice that the chosen interaction rule has two important features that differentiate it from
the previous one, deeply influencing the dynamical behavior of the system. First of all, the
resulting interaction pattern is directed, since there is no necessity for the first-neighbor relation
to be symmetric. Second, the outgoing degree of each oscillator (number of reached unit when

3We have seen that the energy cost dramatically increases when both V and r are small (see Fig. reffig5g)
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it fires) at each time T is fix and equal to 1, while the in degree (number of units that fire to it)
can vary between zero and five4.

In the following sections, we are going to study the behavior of the synchronization time
as a function of the velocity V . We also investigate the parametric dependence of Tsync(V )

on N and ε, while keeping L fix. The dependence on L is trivial since, in the same way as τ

sets the time scale, similarly, the only role of side of the box is that of fixing the space scale.
The nature of the adopted interaction rule is such that the density of the oscillators does not
play any role. Changing the linear dimension of the box, we are just rescaling the distribution
of the distance between an oscillator and its first neighbor. Consequently, we are rescaling
the time that any agent needs to cover the characteristic length of the system. Modifying the
velocity in the opposite sense, it is possible to exactly compensate the variation of L. Indeed,
it can be shown that any quantity that depends on V is a function of v = V/L and the relation
f(V ; aL) = f(V/a;L) always holds (see Fig. 4.7, inset). Hereafter we take L = 400.

4.3 Time to synchronize

The chosen minimal interaction rule is such that the system lies far below the static percolation
transition. Therefore, without motion, global synchronization is not achievable. Since it is the
non-null velocity of the oscillators that enables the system to reach the coherent state, we could
expect Tsync (the average time the system needs to synchronize) to be a decreasing function of
V , such that Tsync →∞ when V → 0 and Tsync → Tf > 0 (a constant value) when V is high
enough5

Although both limits are correct, Tsync is not a monotonous function of V . On the con-
trary, there is an intermediate region of values of the velocity where the synchronization time
diverges.

Fig. 4.7 shows that, for V < Vs, the synchronization time decreases as a power of V when
the latter increases. Then, the decreasing slows down and Tsync has a minimum at V = Vm >

Vs. Beyond this value, the synchronization time gets larger and larger, until the system enters a
region where it is unable to reach the coherent state in a finite time (gray area in Fig. 4.7). For
even larger values of the velocity, V > V ∗, it decreases abruptly, finally reaching its asymptotic
value when V = Vf .

4Consider a point A in a planar euclidean space. Then add another point P1, plus a second one P2 and
locate it closer to A than to P1. Then, add a third point closer to A than to P1 and P2. While for P2 there is
no problem, for P3 it depends on the positions of the other points whether this is possible or not. It is easy to
show that the maximum number of points one can locate is six, while the conditions on the positions of the rest
of the points become stricter and stricter. Finally, the sixth point can be added only if the previous five point are
located at the vertices of a hexagon, a condition that has null probability if the positions are randomly extracted.
Therefore we say that the maximum number of oscillators that can have the same nearest neighbor, and so the
maximum number of possible in-neighbor of the same agent, is five [86].

5When V is such that the agents, at each time step, cover a distance of the same order of magnitude as of
the linear dimensions of the box, then the interactions are completely randomized (fast switching approximation).
A further increasing of V does not produce any effect.
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Figure 4.7: The average synchronization time Tsync as a function of V , for L = 400, N = 20,
ε = 0.1. In the following, when not otherwise states, the values of the parameters are those used
in this figure. In the inset: Tsync against V/L, for L = 1200 (black), 800 (blue), 400 (red) and 200
(green). Averages are performed over 2000 realizations.

Hence, we distinguish three main regions. A “no-synchronization zone” in the middle, a
“left region” at smaller values of V , and a “right region” at larger ones. In the left region, we
can separate two sub-regions: on the left, at V < Vs, there is what we call the slow regime,
and, on the right, a transition zone. The same happens for the right region. On the left, we find
a transition region, while on the right, at V > Vf , the system enters the fast limit, where Tsync

no longer depends on V .

4.4 Characterizing the system behavior

Before entering into a more specific discussion on the synchronization time, a general charac-
terization of the system behavior can be useful.

In Fig. 4.8 we represent the cumulative individual interaction network (CIN) of an oscillator
(labeled “0”), for two realizations of the synchronization process at two different velocities.
Such a network has been constructed in the following way: whenever an oscillator i fires at
oscillator 0 and oscillator 0 fires at oscillator j, a link between i and j is added. If the link
already exists, its weight is increased. In the case 0 does not receive any shot, we put a link
between 0 and j. A reciprocal shot is represented as a self-link. We repeat this process until
the system reaches the synchronized state. By drawing its CIN, it is possible to visualize the
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role played by a given unit in the signal spreading. In panel A, the velocity is V = 2Vf , while
in panel B it is V = Vm (see Fig. 4.7). Notice that, in panel A, all the nodes are represented in
the picture while, in panel B, there are just a few of them. This means that, when the oscillators
are moving fast, each one of them plays a global role, sending and receiving signals throughout
the whole system. On the contrary, when the velocity is slow, each oscillator plays a local role
mediating the interactions among a small number of units that are the same all the time, no
matter how long the synchronization process could be.

Figure 4.8: Final (T = Tsync) network of the interactions mediated by a single oscillator (labeled ”0”),
in the fast limit, at V = 2Vf (panel A) and at V = Vm (panel B) respectively. Node color changes
from purple to orange increasing the in-degree. Size increases with increasing out-degree. The
weights of the links are proportional to occurrence of the interactions.

In Fig. 4.9 we represent the cumulative total interaction network (CTN), where each link
between i to j stands for a shot between i and j, occurred at any time T < Tsync. Any
repetition implies an increasing in the link’s weight. Drawing the CTN allows to visualize the
interactions that took place in the system while it was evolving toward the coherent state. In the
fast limit (panel A), the resulting topology is an all-to-all network, with almost homogeneous
weights. In the other case (V = Vm, panel B), the network has a single connected component
of size N , that is a necessary condition for synchronization, but the out-degrees and in-degrees
are heterogeneously distributed and their mean value is quite small.

Summarizing, this preliminary observations point out that the fast regime can be understood
as an homogeneous regime, while slow velocity enhance heterogeneity among units. Hence,
the mechanisms that allow the system to synchronize have to be different in the two cases. Our
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Figure 4.9: Final (T = Tsync) total interaction networks, in the fast limit (panel A) and at V = Vm

(panel B) respectively. Node color changes from purple to orange increasing the in-degree. Size
increases with increasing out-degree. The weights of the links are proportional to occurrence of the
interactions.

hypothesis is that the system has different strategies to reach the coherent state in the left and
in the right region, while neither of them work in the intermediate region.

In order to clarify this point, in Fig. 4.10 we have plotted η(T ) against T (blue line) for
the same values of the velocity used in Fig. 4.8 and 4.9 and a single realization for each one.
Then, to have an insight of what happens at the local scale, we also plotted the quantity λ(T ) =

cos (2πφnn(T )) (red line), where φnn(T ) is the phase of the oscillator to which the reference
oscillator fired at time T . The black line represents m(T ), the total number of oscillators that
have been out-neighbors of the oscillator of reference until that moment.

Again, two deeply different behaviors correspond to the different regimes. In the fast case
(panel A), since the velocity is high, interactions are completely rewired at each time T . There-
fore m(T ) increases very rapidly, and therefore φnn is just a random variable extracted among
N − 1 possible ones. This means that λ is exactly the same as η, but with less statistics. Both
quantities increase together (more or less noisily) because, by means of the firing events, the
whole phase distribution becomes narrower. Then, η and λ reach a value that is very close to
1 and they do not fluctuate any more. However, full synchronization has not been achieved
yet. The system lies in an almost-synchronized state, all the oscillator having almost the same
phase, just with a very little dispersion of their values. Remarkably, the system spends around
one half of the total synchronization time in this state before being able to produce an avalanche
of size N .

In the slow case (panel B), things go completely different way. The behaviors of η and λ

appear to be uncorrelated, being λ = 1 almost all the time. The considered oscillator (as anyone
else) spends a quite long time with each one of its neighbors, usually being able to synchronize
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with it before leaving. At the beginning (T < 500), whenever it starts firing toward an new
oscillator (black vertical lines in Fig. 4.10), λ experiences an abrupt decreasing while m(T )

increases, that means that it is the first time the reference oscillator meets that neighbor. Later
(T > 500), the chances to change a neighbor for an other one it has already known, and that has
almost the same phase, increase. The phase distribution has become narrower and, especially
at local scale, among the units the oscillator of reference can meet, the dispersion is small.
Consequently, neighbor changes do not affect λ anymore. It suggests that, unlike in the fast
regime, global coherence can be achieved through local synchronization.

-1

-0.5

 0

 0.5

 1

 0  20  40  60  80  100
 0

 0.25

 0.5

 0.75

 1

η, λ m

T

[A]

-1

-0.5

 0

 0.5

 1

 0  200  400  600  800  1000  1200
 0

 0.25

 0.5

 0.75

 1

η, λ m

T

[B]

Figure 4.10: Global (η, blue line, left axis) and Individual (λ, red line, left axis) order parameters are
plotted together with the Individual Mixing (m, black line, right axis) as a function of time, from T = 0
to the synchronization time. Green vertical lines mark a change of the in-neighbor, while the black
lines stand for a change of the out-neighbors. In panel A, the velocity is V = 2Vf . In panel B, it is
V = Vm. Where green lines are so dense that they form a green band, it means that the oscillator
has more than one in-neighbor simultaneously.
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4.5 Fast limit

Here we want to study the asymptotic behavior of the synchronization time at V > Vf (see
Fig. 4.7), where it no longer depends on V . The value Vf , at which the velocity-dependence of
dynamical quantities ceases to exist, can be empirically estimated. A heuristic argument leads
us to set6 Vf = L/

√
N − 1 (see Appendix B.1).

Since the first preliminary observations (Fig. 4.7-4.9), it was clear that the fast limit was the
most efficient. We described it as the most homogeneous regime of a model that is intrinsically
deeply heterogeneous, having lost even a very general feature of this class of models, that is, an
undirected connectivity pattern. Indeed, the fast motion of the units randomizes the interaction
pattern enabling a relevant reduction of the differences among the oscillators, and erasing in
very few steps every memory of the initial positions and orientations. In this sense, it appears
to be similar to the static all-to-all model since, at the end of the synchronization process,
every unit will have interact almost equally with any other. Therefore, as usually happens in
all-to-all IFO systems, only values of ε < 1/N make sense. Indeed, when ε > 1/N , the
quantity Tf (N, ε) is no longer monotonous in ε (see Fig4.11, panel A). Moreover, keeping ε

fixed (ε = 0.1), and varying N from Nmin = 10 to Nmax = 80, we observe that for N > 20

the behavior of Tsync(V ;N, ε) at V slightly less than Vf starts to change and the dependence
on ε seems to become less and less important (see Fig4.11, panel B).

Here, we will restrict ourselves to the region ε ≤ 1/N and we will empirically derive the
form of the functional dependence of Tsync(V > Vf ;N, ε) = Tf (N, ε) on N and ε.

Fixing N = 20 and varying ε ∈ [10−3, 10−1], we find that values Tf (20, ε) can be fitted by
a function of the type f(ε) = Cε−β , with β = (0.95 ± 0.01) (Fig4.12, panel A).

Then, by varying N , we find that a function of the type f(N) = cNa fits the values
of C(N), with c = (1.4 ± 0.1) and a = (0.37 ± 0.01). Finally, we can write the general
expression for Tf (N, ε):

Tf (N, ε) = cNαε−β, (4.5.1)

with α = (0.37± 0.01) and β = (0.95± 0.01) (see Fig. 4.12, panel B). This relation has been
verified for ε ∼ 1/N up to N = 150.

4.5.1 Assessment of the energy cost

In Sec. 4.1.1, we showed that, whenever the velocity is high enough, the energy cost appears to
be minimal, even if the interaction range is very small. However, a quantitative demonstration
of this qualitative observation was not provided. The present model, that represents the ex-
tremal case r = 1/(N −1) (without fluctuation), can be useful in order to check the hypothesis
of a complete independence of the efficiency on r in the fast regime.

6Since τ has been fixed equal to 1 once for all, for the seek of notation simplicity, hereafter it will not be
included in any expression.
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Figure 4.11: Synchronization time dependence on the velocity in the right region. Panel A: each
curve corresponds to a different value of ε, while the size of the system is kept fixed at N = 20.
Filled circles correspond to values of ε > 1/N (blue: ε = 0.08, red: ε = 0.1, black: ε = 0.2),
squares to ε = 1/N = 0.05 and empty circles to ε < 1/N (blue: ε = 0.002, black: ε = 0.005, green:
ε = 0.01, pink: ε = 0.02). Panel B: each curve corresponds to a different value of N (blue: N = 10,
red: N = 20, black: N = 30, green: N = 50, pink: N = 80), while the coupling strength is ε = 0.1.
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Figure 4.12: Panel A: synchronization time at V = Vf (red filled circles) and V = L/T (blue empty
squares) as a function of ε, for N = 20. Black line stands for a fit function of the type f(ε) = C/εβ,
where C is a constant depending on N and β = (0.95 ± 0.01). Panel B: synchronization time at
V = L/T against x = εβ/Na, with a = (0.38 ± 0.01), for several value of N . Circles are for
N ≤ 50 (blue: N = 10, red: N = 20, black: N = 30, green: N = 50), and single filled squares
are respectively for N = 80 (blue), N = 100 (black) and N = 150 (green), for whom only the point
at ε = 0.01 has been calculated. Black dashed line stands for the fit function f(x) = c/x, where
c = (1.4± 0.1).

Here we want to compare the energy cost of synchronization in two extremal conditions:
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the fast limit of our minimal model and the all-to-all case7, which represents the opposite
situation of a maximum value of r (r = 1). In this way we can verify if the efficiency is r-
independent and, at the same time, we check out whether the fast limit of our minimal model
is as efficient as a fully connected system.

Using the definition of the cost of the synchronization adopted in Sec. 4.1, we have that
it is equal to Γf

1 = Tsync/(N − 1) � Tf/N for our minimal model, while it is ΓALL =
N

N−1TALL
sync � TALL

sync in the all-to-all case. Hence, in order to have the same efficiency, the
synchronization time of the minimal model has to be N times larger than that of the fully
connected case. This would imply that our oscillators, firing N times, achieve the same effect
the oscillators in the all-to-all model achieve with a single shot. Obviously, the number of
pair interactions is the same in both cases, and this makes the hypothesis plausible. However,
between the present model and an all-to-all system of oscillators with an N times larger internal
period there are some other important differences. In our model, firing events are delayed (not
simultaneous) since a given oscillator fires at different targets at different times. Moreover,
while interactions in the all-to-all case occur at constant time intervals, it is not the case for the
fast limit of the minimal model since the time separation between two shots i→ j is a random
variable. Therefore, the energy cost can be the same only if these differences do no affect the
synchronization time.

In order to perform this comparison, we have measured, by means of numerical simula-
tions, the synchronization time in the all-to-all case (see Appendix B.2), obtaining

TALL
sync =

2

Nγε
� ΓALL, (4.5.2)

where γ = (0.80 ± 0.02). From Eq. (4.5.1), we have Γf
1 = c/(N1−αεβ), where 1 − α =

(0.63 ± 0.01). Hence, the all-to-all model can be considered slightly more efficient. It follows
that, even if the performances are very similar, an oscillator with only one neighbor need to fire
something more than N times in order to achieve the same effect an oscillator in the all-to-all
model achieves with a single shot.

We can deduce that the little efficiency loss we observe is due the previously described
secondary differences.This means that heterogeneous interactions make the achievement of the
coherent state slightly more lengthy. The take home message is that an isotropic interaction
pattern without delays reduces the number of interactions the system needs in order to syn-
chronize8 . In conclusions, our analysis points out that, in order to improve the efficiency of
the synchronization, it is strongly recommended to minimize all the possible sources of hetero-
geneity.

7Since in the all-to-all model the motion of the agents does not play any role, there is no problem comparing
it with any other model with a different value of r, at any value of V .

8We have also checked that, among the patterns with fixed out-degree kout = 1, the ring is always the best
option (see Appendix B.3). Unfortunately, this configuration is not consistent with the minimal distance rule.
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4.6 Slow regime

When the velocity is very small (V ≤ Vs), we observe that Tsync decreases as a (negative)
power of V (see Fig. 4.12). Then we can make the following ansatz:

Tsync(v;N, ε) = Cs(N, ε)V −α(N,ε). (4.6.1)
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Figure 4.13: Tsync dependence on V in the slow regime for several values of N (filled squares:
N = 10, filled circles: N = 20, triangles: N = 30, empty squares: N = 40, empty circles: N = 50)
and ε (orange: ε = 0.3, black: ε = 0.2, red: ε = 0.1, blue: ε = 0.05, green: ε = 0.02). All the figures
of this section are obtained averaging over 2000 (for N ≤ 20) or 1000 (N > 20) realizations.

Given the minimal interaction rule of our model, the system is not able to synchronize in
the static case, that is Tsync → ∞ when V → 0. Indeed, as we have previously noticed, it is
the motion of the units that allows the synchronization.

We suppose that when the velocity is small enough, the mechanics of synchronization can
be understood in terms of a coalescence toward a globally coherent state through (i) the achieve-
ment of local synchrony and (ii) the modification of the interaction pattern. Consequently, we
consider that the dynamics of the system is characterized by two time scales: the one of local
synchronization (phases dynamics) and that of neighbor changing (motion). The slow regime
can be defined as that region where the second time scale is larger than the first one and there-
fore local synchrony is usually achieved before the interaction topology undergoes a change
[78, 83]. If such a hypothesis is correct, then
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i) Tsync must be proportional to this second characteristic time, a purely kinetic quantity
that does not depend on the coupling constant ε;

ii) it has to scale with the ratio of the two time scales.

In order to verify our hypothesis we have to estimate both time scales.
The rate at which a given oscillator changes its neighbor is a function of N and V that can

be calculated under some approximation (see Appendix B.4). Here we can use the estimator
(B.4.12), that can be rewritten as a function of v = V/L:

Tout(v;N) =
πg′

4v
√

N − 1
, (4.6.2)

where g′ = 0.83 is a correction factor empirically determined. We notice that, if Tout is
the mean time an oscillator spends with his neighbor, T

(N)
out = Tout/N is the average time

separation between two sequential neighbor change events in the system, and hence can be
regarded as a good estimator of the topological change time scale.

The other quantity we have to calculate is the mean synchronization time of an average
connected clusters in the static case. We observe that the nearest neighbor rule is such that
the average size of connected components in the system does not depend on density the of
agents, taking the “universal value” Scc = 3.2 (see Appendix B.1). Therefore, we can assume
that the typical time needed for the achievement of local synchrony can be estimated as the
average (over initial phases) synchronization time of three oscillators T3(ε) arranged in the
only configuration allowed by our topological rule (two symmetric shots plus a single one,
being p = 0 the probability of a triangle, see the inset of Fig. 4.14 and Appendix B.3 for more
details). The function T3(ε), for ε ≤ 0.3, can be approximated as T3(ε) = κ/ε, κ = (2.0±0.1)

(see Fig. 4.14). We notice that, at least in the range of parameters we are taking into account
(ε ∈ [0.02, 0.3], N ∈ [10, 100]), the value Vs (see Fig. 4.7) is such that in general when V < Vs

it is also true that T3(ε) ≤ T
(N)
out . This fact corroborates our previous statements.

We can now write a preliminary expression for Tsync in the slow regime:

Tsync(v;N, ε) = Tsync(
V

L
;N, ε) = Nout(N)T

(N)
out (

V

L
,N, ε) =

πg′Nout(N)

4N3/2v
, (4.6.3)

where Nout(N) is the average number of neighbor changes that are necessary in order to reach
the synchronized state. Our hypothesis implies that Nout(N) only depends on N , since it is the
size of the system that determines how many times the interaction pattern has to be modified if
order to enhance the coherence from local to global scale.

Comparing Eq. (4.6.1) and Eq. (4.6.3) we have

a) Cs(ε,N) = Nout(N)N−3/2;
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Figure 4.14: Average synchronization time for a group of N = 3 static oscillators dependence on
the velocity. The black line stands for a fit function f(ε) = κ/ε. Averages have been performed over
a regular sample of the initial phase values in the square [0, 1]× [0, 1], keeping fixed at 1 that of the
oscillator of reference. We have considered different initial conditions. In the inset: a sketch of the
connectivity pattern.

b) α(ε,N) = 1.

To write the scaling relation for Tsync in terms of the variable

r(v;N, ε) = T3/T
(N)
out = ρvN3/2/ε, (4.6.4)

where ρ = 4κg′/π, we have to substitute v with r in Eq.(4.6.3). Thus we obtain

Tsync(v;N, ε) = Tsync(r;N)N3/2/ε =
r

v
Tsync(r;N). (4.6.5)

4.6.1 Checking the hypothesis.

In order to verify our hypothesis, we have to check expression a) and b), and the scaling relation
(4.6.5). We expect to observe, plotting Tsync dependence on r, that all the curves with different
ε that correspond to the same value of N collapse, thus obtaining a single curve for each
value of N . Moreover, we expect the shape of such curves to be the same, while they should
differ for a multiplicative factor Nout(N), that is an increasing function of N to be empirically
determined. Notice that in this new framework, determining vm(N, ε) and vs(N, ε) means to
check out the corresponding values of r, rm and rs, that are the same for all the considered N

and ε. Finally, we should verify that Tsync ∼ r−1 at r < rs (or, that is the same, Tsync ∼ V −1

at V < Vs).
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Figure 4.15: Rescaled synchronization time Tsync(r) = (v/r)Tsync(v) against r in the slow regime
for several values of N and ε. Colors and symbols are the same as in Fig. 4.13.

First of all, we plot Tsync(r) = v
r Tsync(v) against r. As we expect, all the minima are

arranged along a vertical line and the curves look like vertical translations of the same function
(Fig. 4.15), at least at r ≤ rm. Hence, the first part of our hypothesis has been verified. We find
out rm = (3.3±0.3) and rs = (1.4±0.2). Anyway, points corresponding to the same value of
N and different values of ε do not collapse onto the same curve. For each one of the considered
values of N , we can observe more or less separated group of close but not superposed curves.
This dispersion can be regarded as a minor deviance from the predicted behavior, since actually
the curves belonging to the same group are almost collapsed. Consider that, while the spread
of values of ε is around one order of magnitude, the largest value of N is just five times the
smallest one. However, the separation among curves of the same group seems to increases with
N (see Fig, 4.15).

In order to quantify the discrepancy between our theoretical prediction and the real behavior
of the system, and to check the relation Tsync ∝ V −1, we try to fit raw data (Tsync vs V ) at
V < Vs with a function of the type f(V ) = cV −a.

The obtained values of a are quite close to 1, but they show a weak decreasing when N

increases. In particular, for N = 10 the parameter takes value c = (0.95 ± 0.02), while for
N = 40 it takes value c = (0.85 ± 0.02). At the same time, apparently, it starts decreasing
when ε < 0.05, a too small value that does not allow to formulate any hypothesis about the
form of this dependence.
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The values of c, instead, are clearly grouped into separated set, each one corresponding to a
different value of N , but inside each sets the variability associated to ε is significant. Actually, c

increases with N (strong dependence) and decreases with ε (weak dependence). The empirical
form we find for this weak dependence is that of a negative power with exponent β(N), ranging
from β(10) = (0.20 ± 0.01) to β(40) = (0.50 ± 0.02) (see Fig. 4.16).
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Figure 4.16: Coefficient c dependence on ε for several values of N (filled squares: N = 10, filled
circles: N = 20, triangles: N = 30, empty squares: N = 40). Black lines stand for fit function of the
type fN(ε) = c0ε

β(N), with β(N) = {0.20; 0.33; 0.42; 0.50} respectively for N = {10; 20; 30; 40}.

Consequently, we can conclude that our heuristic argument is mostly correct, although
there are some limitations. On the one hand, even in this slow regime, the coupling constant
has considerable influence on the synchronization time, whose relevance increases at larger N .
On the other hand, the dependence on the velocity is not exactly of the expected kind, even if
quite close to it. However, r results to be the appropriate scale variable.

4.6.2 Empirical proposal of a scaling relation

Through an empirical analysis, we have been able to derive the following relation:

Tsync(r;N, ε)εΛ(N)N log N = Kr−B, (4.6.6)

where Λ(N) = N/Λ0, with Λ0 = (100±5), is the scaling factor that allows the perfect collapse
of curves corresponding to the same N (see Fig. 4.17). Other parameters K = (500 ± 5) and
B = (0.90 ± 0.05). This equation holds whenever N ≥ 20 (4.18), but it is also possible
that for larger N new terms are going to appear in Λ as well as in K . Unfortunately, for
N > 50, simulations of the slow regime become extremely lengthy9. In conclusion, in the

9Notice that the computational time scale roughly as the total number of avalanches (∼ N Tsync) times the
number of pair distances we need to calculate (∼ N

2), so that it is more or less proportional to N
3
Tsync
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Figure 4.17: Rescaled synchronization time Tsync(r) = (v/r)Tsync(v) times the empirical scaling
function εΛ(N) against r for several values of N and ε. Colors and symbols are the same as in
Fig. 4.13.

slow regime, to separate the dependence of the synchronization time on the coupling strength
on the one side, and on the size of the system on the other side, is almost impossible. The
interplay of both quantities is much more complicated than in the fast limit case. Despite this
intrinsic complexity, there exists a universal value rm at which Tsync has a local minimum and
a universal value rs below which Tsync ∼ r−B.

4.6.3 From local coherence to global synchrony

In order to better clarify the underlying mechanisms, let us consider the case of a very small
system of just four oscillators composed by two pairs of units already synchronized. The first
one includes the reference oscillator and so it phase is φ1 = 0. The second one has a different
phase φ2. Interchanging two units between the pairs, we obtain two identical objects, that is
two pairs each one composed by an oscillator with phase φ1 and the other one with phase φ2.
At the end, when local synchronization will be reached again, all the units will share the same
phase. Global synchrony will have been achieved.

Now consider the case N = 6. If there are pairs only, by means of interchanging units
among them, we always obtain two pairs that share the same phase plus a third one with a
different phase value. Obviously, by means of subsequent recombination, their values can
approach each other, but the process may be arbitrary long. On the contrary, if at a given
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Figure 4.18: Rescaled synchronization time Tsync(r) = (v/r)Tsync(v) times the empirical scaling
function N log(N)εΛ(N) against r for several values of N and ε. Green dashed line stands for a fit
function of the type f(r) = Kr−B , with K = (500± 5) and B = (0.90± 0.05). Colors and symbols
are the same as in Fig. 4.13.

moment the pair with a different phase value breaks and its two oscillators start firing each
one at an oscillator belonging to a different pair, global synchrony is immediately achieved.
Indeed, in this particular case, these two oscillators proceeding from the broken pair, are able
to impose their common phase to the whole population. They have no in-neighbor, so they keep
their phase unchanged, while they are able to set the pace of the other oscillators. Consequently,
when local synchrony is achieved, all the units will share their same phase.

In more complicated scenarios, where there are several groups of two, three, four and
sometimes five or more oscillators, the complexity of the process increases awfully. There are,
however, some general features that can be worth to outline:

1) in any connected component of size larger than 2, there is always at least one oscillator
that has null in-degree and hence its phase is not changed by the shots of the others.
Then, the only way towards the local synchrony is through the progressive adjustment of
the phases of the other units to that of this one;

2) whenever inside the same connected component there are two or more units with null
in-degree that do not share the same phase, complete local synchrony is not possible;

3) when an oscillator with null in-degree leaves the group it belongs to a new one, if (and
only if) in the new group it still has null in-degree and there is no other unit without
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in-neighbors, then it will be able to synchronize its original group with the new one;

4) continuous units interchanges among pairs of oscillator progressively narrows the phase
distribution.

More in general, we can say that

5) every change in the interaction pattern causes a temporary damage in terms of local
coherence;

6) the large majority of the modifications an interaction pattern can undergo contribute little
or nothing to the enhancing of global synchrony.

In conclusion, we can state that this coalescence from local to global synchrony needs so many
steps (topological changes) in order to be achieved because many of them are useless or even
damaging. We can describe it as a random trial and error process, without any learning.

At the end, the system is able to synchronize thanks to a reduced number of really useful
topological changes, like those at point 3), plus a huge number of small contributions, like
those at point 4).

4.7 Wasting time. The no-synchronization region.

In the previous sections, we have seen that the fast regime is the most homogeneous and there-
fore the most efficient. It is similar to the static all-to-all case with an N times larger period,
even if not exactly the same because of a certain degree of residual heterogeneity. The phase
dispersion is almost monotonously reduced during the in time evolution of the system and
synchrony is achieved directly at a global scale, similarly to what occurs in other system of
interacting moving agents [78, 83].

In the slow regime instead the system reaches the synchronized state through a very tortu-
ous pattern, achieving and breaking the local synchrony a huge number of times, and finally
converging to a globally coherent state. This mechanism reminds a walk through a rough land-
scape.

In the intermediate region, to find a way towards the achievement of a globally coherent
state appears to be even more difficult.

If starting from V = Vf (fast limit) we reduce the velocity a bit, the oscillators will start to
fire at the same target consecutively (Tout > 1). These repetitions can be regarded as pure waste
of time, since their are too few in order to enhance the local coherence. They are just increasing
the effective period in the all-to-all analogy from T = Nτ to T = N T

(i)
outτ . Moreover, since

T
(i)
out is a random variable that varies in time and that is different for every oscillator (even if

they all have the same mean value), the amount of heterogeneity introduced by these repeated
interactions is enormous (out of control). And so, the synchronization time diverges. However,
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to understand the details of the mechanism that makes the synchronization time increase so
abruptly is still an open problem.

When the velocity is further reduced, then repeated interactions among small groups of
units start to allow the system to reach a certain degree of local synchrony. At a first moment, it
will be the case for a fraction of lucky pairs only, those having the shortest synchronization time.
Then, also some groups of three units, plus some other pairs, will be allowed to synchronize,
and so forth. Consequently, the system can again reaches the global coherent state. At even
slower velocity, the improvement of the local synchrony allows the system to synchronize
faster and faster, until it reaches a local minimum (where possibly almost all the pairs are able
to synchronize) as explained in Sec. 4.6.

4.8 Synchronizing faster, synchronizing cheaper

In this section we want to discuss, on the basis of what we have learned up to now, how to
improve the efficiency of the system. Let us start noting that synchronization mechanisms in
the slow regime and in the fast limit are deeply different. Consequently we can expect that a
modification able to reduce the synchronization time in one case, could damage in the other.
For instance, in the fast case, it would help if the oscillators could look for the first and the
second neighbor, eventually firing at that with whom they have been interacting less. This is
a quite simple compensation mechanism able to homogenize the interaction pattern. However,
the result is doubtful in the case of the slow regime since this would probably prevent the
achievement of local coherence, damaging the ability of the system to synchronize. Similarly,
it could be useful, in the slow regime, to make the agents stay at rest for a while when they meet
a new neighbor. They could wait until they synchronize with their neighbor or move anyway
after a maximum waiting time10. In this way, we hope to optimize the ability of the system
to combine the achievement of local coherence and topological change. Obviously, in the fast
limit, such a rule would be absolutely damaging.

It is also worth to stress that all this additional rules, even if they are neutral in terms of the
efficiency defined in Sec. 4.1 since the number of shots per agent is kept unchanged, actually
imply other kind of cost. In order to be able to recognize with whom they have been interacting
more or less, or to distinguish whether the current neighbor is the same they had at the previous
time step or not, our agents need to store information. Usually, in real world, this can not be
done for free. Therefore, it could be appropriate, in order to compare the efficiency of different
models, to define a more general cost function.

A complementary step towards a more realistic evaluation of the cost of the synchronization
can be taken by including the cost of the agents motion, that is, their kinetic energy. Whenever

10Since there exist local configurations that are frustrated and cannot reach a complete coherent state, it
is important to prevent the oscillators from falling into frozen configuration by letting the agents move after a
certain time, even if they have not synchronized with their neighbor.
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the agents have a mass, this is a non-null quantity that, in principle, should be added to the
interaction term in the energy cost expression. Notice that, by adopting this new framework,
previous conclusions about which is the most efficient regime could change. In Fig. 4.19 we
show the total energy cost as a function of the velocity for N = 20 and ε = 0.1 (the same
values used in Fig. 4.7), using the expression

Γ = Tsync + λV 2,

with λ = 1 and λ = 10.
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Figure 4.19: Efficiency dependence on the velocity for N = 20, ε = 0.1, and λ = 1 (red circles) and
λ = 10 (blue squares).

In this case, there are two minima, one at V = Vm, the other in the right region, at a value
of V ≤ Vf that depends on λ. Indeed, while in the left region the velocity is so low that the
kinetic contribution to the cost is unimportant, in the right one it is much more significant.
Hence, there exists a precise value of V , depending on λ, such that a further increasing of the
velocity implies a waste of kinetic energy that the decreasing of the synchronization time, if
any11, cannot compensate. Therefore, if when defining the efficiency we take into account the
energy required to make the agents move at the desired velocity, it is no longer assured that the
fast limit represents the best option.

11Notice that for V > Vf the synchronization time does not decrease any more.
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4.9 Conclusions

Following the recent literature on complex systems, one of the hottest topics is the relation
between dynamics and topology of interactions. In particular, there are many evidences that the
patterns of interaction change rapidly with time, thereby completely altering and conditioning
the dynamical properties of the system.

Here we have proposed a framework in which agents move on a plane and are allowed to
interact in a pulsing way. Each agent, representing a phase oscillator, moves at a common ve-
locity and changes its internal phase with a common period. When this internal phase reaches a
threshold value, the oscillator “fires”, thus resetting its own phase. We considered two different
models. In the first one, each oscillator, when firing, resets the orientation of its own motion
and interacts with the neighbors within a certain distance by changing their phases. In the sec-
ond one, the oscillator who fires modifies the phase and at the same time resets the orientation
of its nearest neighbor, while itself continuing to move in the same direction.

For the first model, keeping all geometrical parameters constant, we analyze the system
behavior by changing solely the velocity of the agents and the interaction range. We measure
the time needed for the system to synchronize as a function of the velocity and the fraction of
population they interact with. We have introduced a new order parameter that stands for the
fraction of different units each oscillator has interacted with. This order parameter allows to in-
troduce a novel phase diagram that enables us to identify three different mechanisms leading to
synchronization: i) the diffusive mechanism, where the system very quickly reaches synchro-
nization by means of extremely effective interactions of each oscillator with a large fraction
of the population; ii) the local mechanism, where agents move very slowly, but the interaction
range is large enough so that local synchronization is sufficient to lead the system to the glob-
ally synchronized state; and finally iii) the bounded mechanism, characterized by very slow
motion and short range of interaction, which allow a high degree of accumulated mixing dur-
ing a very long synchronizing time. As expected, the minimal energy cost, which stands for the
total number of signals emitted by the population to reach the synchronized state, is achieved
when agents move very fast, irrespective of the interaction range; however, synchronization in
systems with low mobilities dramatically depend on the interaction range.

For the second model, we study the dependence of the synchronization time on the velocity,
also varying the size of the system and the coupling strength. Since the interaction rule is
so restrictive that the system lies far below the static percolation threshold, it is the non-null
velocity of the oscillators that enables the system to reach the coherent state. Hence, we could
expect the synchronization time to be a decreasing function of V , but we find that there is an
intermediate region where the synchronization time diverges. We have been able to characterize
the mechanisms that allow the system to synchronize both in the slow and in the fast regime,
also calculating the value of the velocity at which the system enters these two regions as a
function of the system’s size N and the coupling strength ε. The mechanism of the fast limit of
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this model does not differs from the diffusive mechanism (i) of the previous one, while the slow
regime resembles the bounded regime (iii) but with a very small velocity since, a the end of the
synchronization process, each oscillator has interacted only with a finite fraction of the other
oscillators. It has been also possible to provide an empirical estimator of the synchronization
time as a function of N and ε in the fast limit, and as a function of V , N and ε in the slow
regime. Then, we qualitatively discuss the reasons why the system cannot synchronize within
a finite time in the intermediate region. Finally, we consider that, measuring the cost as the
number of shots needed for the system to synchronize, the fast limit is always the most efficient
regime. Whereas, if we take into account the energy required to make the agents move at the
desired velocity, i.e., a kinetic term proportional to the square of the velocity, this is no longer
the case. The new energy cost displays two minima, one corresponding to the local minimum
the synchronization time has in the left region, the other one located in the right region, below
the fast limit.

The identification of the mechanisms that relate mobility and interaction to synchronization
will undoubtedly be crucial in similar models of populations of moving agents which can be
applied, for instance, to the field of wire-less communications. Indeed, understanding these
phenomena will help to design optimal protocols to dissect more realistic settings by defining
appropriate interaction rules.



Chapter 5

Conclusions and perspectives

5.1 Conclusions

In this thesis we have neither developed a new theory about some aspect of complex networks,
nor have we studied an applied problem of interest. What we have done, hopefully, has been
to enhance the “theoretical toolbox” that researchers can use to built new knowledge about
applied as well as general issues. The models we investigate are as simple in their definition
as rich in the behaviors they display. They are suitable to be modified to model real situations,
but from each one them we can also extract useful insights about general features of the class
of systems they belong to.

• In Chapter 2, we address a problem common to many experimental situations, where the
a priori unknown connectivity of a particular network is inferred from purely dynam-
ical measurements. We consider a system of Kuramoto oscillators where we perturb a
setting of identical units by allowing one of them, the pacemaker, to have a different
natural frequency. If the natural frequency of the pacemaker is not very different from
the value of the rest of the population, the system enters in a frequency-locked state and
all the units evolve with the same effective frequency. On the contrary, if the frequency
difference is too large, this is no longer possible and the system undergoes transition
between a coherent and a incoherent state. We show how to capitalize the dependence
of the synchronization properties on the topology of the underlying complex network to
gather information about the latter.

We find that, measuring the critical frequency, it is possible to estimate the degree of each
pacemaker. Moreover, slightly above the transition point, we can obtain the hierarchical
structure of the whole network by measuring correlations between effective frequencies.
Finally, far above the critical point, the oscillators that are directly connected the pace-
maker can be easily recognized, so that we can recover the connectivity pattern.

This problem has been addressed by different works proposing different approaches. Our
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method is based on the change of the frequency of a single unit and its efficiency may
change depending on the practical purposes it is applied to.

• In Chapter 3, we propose and study a model of information retrieval in a complex net-
work based on a biased random walk, whose bias to walk forward or backward is tuned
by a parameter. The key point of the algorithm is that the information retrieved by the
walker is only available when it first arrives to its home departing node. Our main find-
ing is that, unless the walker is allowed to explore the network during a very long time,
there is a finite value of the parameter for which the information retrieved is maximal.
Moreover, only at this precise value the performance of the explorer is independent on
the degree of the home-node. For other choice of the parameter, to recover a satisfactory
amount of information when starting from a poorly connected nodes is very unlikely,
even if the walker can perform a very long searching.

We have also proposed an adaptive scheme in order to overcome the problem of fixing an
a priori unknown optimal value. This adaptive search protocol performs optimally, both
in terms of the quality and quantity of the information retrieved, with a minimum (local)
information about the network structure whenever. Moreover it works equally good with
all kinds of topology whenever there is minimal amount of heterogeneity in the degree
distribution and hence could be suitable to be applied to the exploration of real artificial
networks.

• Finally, in Chapter 4 we further explore the relation between dynamics and topology of
interactions focusing on a case in which the patterns of interaction change rapidly with
time. We propose a framework in which a population of integrate-and-fire oscillators
moves on a plane, considering two possible interaction rules. According to the first one,
each oscillator, when firing, resets the orientation of its own motion and interacts with
the neighbors within a certain distance. According to the second one, each oscillator
interacts with its nearest neighbor only, changing its phase and also resetting its orienta-
tion.

For both models, we analyze the system behavior by changing the velocity of the agents
and other parameters that characterize the system, such as the interaction range, the
coupling strength or the size of the population. We measure the time needed for the
system to synchronize as a function of the velocity and study its parametric dependence
on the rest of parameters.

We have been able to characterize the mechanisms that allow the system to synchronize
under different dynamical conditions, and in some cases we also calculate the value of
the velocity at which the system enters each one of these regions of the parameter space.

For the second model, it has been possible to provide an empirical estimator of the syn-
chronization time when the motion of the agents is very slow or very fast. At intermediate
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values of the velocity we find that the synchronization time diverge and we qualitative
discuss what, at the microscopical level, prevents the system to synchronize. Finally,
we consider that, measuring the cost as the number of shots needed for the system to
synchronize, the fast motion is always the optimal choice. On the contrary, if we take
into account the kinetic energy required to make the agents move, to identify the most
efficient regime is not so trivial since the total cost displays two minima whose relative
height depends on the system’s parameters.

Understanding the mechanisms that relate mobility and interaction to synchronization,
identifying those general features that do not depend on the details of the interaction rule,
can help, for instance, to design optimized communication protocols.

5.2 Perspectives

During the development of the work presented in this thesis, a number of possible applications,
additional questions, and related issues have been raised and could be further investigated in
the future.

• It can be worth to check the robustness of the method for the detection of functional
communities in networks of Kuramoto oscillators presented in Sec. 2.4. If we could
prove that, as we expect, the results are not sensitive to the details of the functional form
of the interactions, then the method could be applied to a lot of situations of interest,
regardless of the specific nature of the considered network.

• The walkers introduced in Chapter 3 change their behavior in a nontrivial way when
changing the parameter that tune the probability they go forward or backward. In par-
ticular, there exists a precise value of the parameter for which the agents, in general,
visit many nodes and then come back to their home. Beyond the issue of network ex-
ploring, we are interested in understanding more general consequences of this peculiar
behavior. For instance, we could analyze the new phenomenology that may arise sub-
stituting usual random walks with our walkers in a metapopulation model for epidemic
spreading on complex networks. It could be also interesting to consider each walker as
a phase oscillator allowed to interact with other oscillators in the same node only, and
each node population as an initially synchronized community. We may ask whether the
value of the parameter that is optimal for the network exploration is also able to enhance
the achievement of global coherence throughout the whole network.

• Finally, further investigation is required to better understand some features of the mini-
mal model introduced in Sec. 4.2. It can be worth to identify the necessary and sufficient
conditions for the dependence of the synchronization time on the velocity to become
non-monotonous. Currently, we are investigating in this direction and it is already proved
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that a pulse interaction is required. Indeed, when replacing the integrate-and-fire oscil-
lators with Kuramoto oscillators, the synchronization time behaves as a monotonously
decreasing function of the velocity, for any values of the coupling strength.



Appendix A

Pacemakers in a Cayley tree of
Kuramoto oscillators

In this appendix we analyze in datails, as a simple, analytically solvable application of what
we studied in the first chapter, a system of Kuramoto oscillators with identical frequencies in
a Cayley tree. Heterogeneity in the frequency distribution is introduced in the root of the tree,
allowing for analytical calculations of the phases evolution. This simple case can be regarded
as a starting point in order to understand how to extract topological features of the connectivity
pattern from the dynamic state of the system, and viceversa, for the general situation of a set of
phase oscillators located on a tree-like network.

A.1 The model

We consider as the network structure of our system a Cayley tree of variable radii and coordi-
nation numbers (Fig. A.1).

The nodes follow the dynamics described by the Kuramoto model of phase oscillators [45,
39]. All of them have the same natural frequency (taken to be zero without loss of generality)
except for the one located at the root of the tree, that has a different natural frequency ω. We
will refer to this node as the pacemaker. The equations are

φ̇p = ω +
∑

j

apj sin(φj − φp); (A.1.1)

φ̇i =
∑

j

aij sin(φj − φi) ∀i �= p, (A.1.2)

where the first one is for the pacemaker, the second for all the rest. The matrix aij is the
corresponding adjacency matrix for the network.

Notice that for our natural frequencies distribution it is never possible to reach synchro-
nization in the meaning of an equal phases state, that is a state where all the interaction terms
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Figure A.1: Cayley tree with coordination number q = 3 and radius R = 5. The pacemaker is located
at the root of the tree (filled circle).

vanish. It is also important to stress it does not depend on the choice we made of a null natural
frequency for all the N − 1 oscillator except the pacemaker. Indeed, we can change the mean
value of the natural frequencies distribution just rotating the frame, without any modification
of dynamical properties of the system. For instance we could choose a zero mean distribution,
that can be obtained applying the following transformation to the phases: ϕi → ϕi + Ωt, in
which Ω = ω/N is the first moment of the distribution.

A.2 Characterizing the global behavior

The transition from an incoherent to a synchronized state is usually described by means of an
order parameter introduce by Kuramoto:

z(t) =
1

N

∑
j

exp(iφj). (A.2.1)

The amplitude of this quantity is proportional to 1/N in the incoherent regime whereas it grows
with decreasing ω in the phase-locked state and asymptotically it tends to 1 as ω tends to 0
(phase-locking state). Anyway, since our system can undergo through a phases synchronization
only at local level, this parameter is not an appropriate one in order to describe its global
dynamical behavior.

Then, following [87], we analyze an order parameter already introduced and used in [41]
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Figure A.2: (Left) Effective Frequency Dispersion Order Parameter Δω (A.2.2) vs. time. (Right) Nor-
malized Frequency Dispersion Order Parameter rω) (A.2.3) vs. natural frequency of the pacemaker
ω.

and [46] that measures the effective frequency dispersion:

Δω =

√
1

N

∑
i∈N

[φ̇i− < ω >]2 (A.2.2)

In Fig. A.2 (left) we present the time evolution of this order parameter for a Cayley tree
with a coordination number q = 3, and radius R = 5, with a total of N = 94 nodes. The
results correspond to initial conditions with all the phases equal to zero. For frequencies below
a critical value ωc the order parameter decays exponentially to zero, revealing that for long
times there is no dispersion in the effective frequencies and the system becomes synchronized.
Above ωc the system does not reach equilibrium, and the order parameter presents an oscillating
behavior.

Note also that the frequency dispersion presented in Eq. (A.2.2) is not normalized. We
divide the frequency dispersion by its maximum allowed value ω

N

√
N − 1, and thus obtain a

normalized order parameter:

rω =

√√√√ 1

N − 1

∑
i∈N

[
φ̇i

〈ω〉 − 1

]2

(A.2.3)

In Fig. A.2 (right) we present the stationary value of the normalized order parameter as a
function of the pacemaker frequency ω. As noted, for values above ωc the system is not in
equilibrium, however it is possible to define a mean value around which the order parameter
oscillates. The figure shows the behavior observed for three different values of the coordination
number, q = 3, 4 and 5. As q grows, the critical value also grows accordingly. The inset in the
figure shows the data collapse obtained by scaling the natural frequency of the pacemaker with
the coordination number, ω/q.
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A.3 Results

In order to analyze the relation between the topology of the connectivity pattern and the ability
of the system to reach a synchronized state, we can notice that when we increase the regulator
frequency ω then there will be some oscillators cannot keep the phase difference, breaking
the synchronized state. The left-hand side of eq. (A.1.2) is indeed bounded because of the
sine terms, whereas the right term increase as the regulator frequency is increased. The same
happens in eq. (A.1.1). Consequently, there will be a transition from a synchronized to an
incoherent state, at a precise value of ω. Thus we can define the natural frequency of the
pacemaker critical value as follows:

ωc
p/ω > ωc

p � frequency locking state

i.e. ωc is that value of the frequency of the regulator above which no synchronized state exists.
In the case of a Cayley tree topology, it is possible to analytically calculate this quantity. We
start noticing that, since the existence of a steady state is a necessary condition for a frequency-
locked state, we can compute the constant value all the effective frequencies are going to take
in a stationary condition. First of all we notice, following [87], that summing up all the Eq.s
(A.1.1)-(A.1.2) we have:

N∑
i=1

Ωi = ω (A.3.1)

where Ωi are the stationary effective frequencies. Consequently, if they all take the same value,
this will be ω/N . In this case the system is in a synchronized state where all the frequencies are
equal and constant. Now we can calculate, as a function of the radius R and of the connectivity
number q, which is the maximum value ω such that all the oscillators can reach an effective
frequency equal to ω/N . Since the left side of phase evolution equation for the pacemaker
(A.1.1) is bounded, it is clear that a bound exists. Indeed, it is just when all the sine terms in
that expression take values −1 that we have the maximum ω able to satisfy this equation. So
we found the following condition for the critical frequency:

ωc ≤ q
N

N − 1
= q +

[
R−1∑
r=0

(q − 1)

]−1

. (A.3.2)

where in the last equality we used the expression N = 1 + q
∑R−1

r=0 (q − 1).

Locating the pacemaker at the root is a special situation of the more general case discussed
in [87]. There it was shown how this particular configuration, where all the neighbors of the
pacemakers keep a phase difference from it equal to −π/2, is not always allowed. Indeed, the
interplay of other equations, different from that of the pacemaker, may cause a breaking of the
stationary condition earlier.
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In order to take into account all these contributions, according with [87], for an arbitrary
topology of the interactions, we can generalize inequality (A.3.2) in the following form:

ωc ≤ N

[
Kout

Nout

]
min

(A.3.3)

where
[

Kout

Nout

]
min

is the minimum ratio we can found for a connected component of the connec-
tivity pattern including the pacemaker, being Nout the number of nodes outside the considered
group and Kout the number of ”external links” connecting the component with the rest of the
network. This expression reduces to (A.3.2) if we take into account just the pacemaker itself,
since in this case we have Nout = N −1 and Kout coincides with the degree of the pacemaker,
q in our case. Doing so, we are not minimizing the ratio in Eq. (A.3.3), we are instead maxi-
mizing its denominator but often it is a very good approximation. Moreover, if the connectivity
pattern has a tree-like topology, that is there is no cycle on it, Eq. (A.3.4) is not just a bound,
but the exact expression of the critical frequency.

The precise case of a Cayley tree topology of the connectivity pattern has been analyzed in
([87]), where it is provided an explicit expression of the inequality (A.3.3) for a tree of radius
R and coordination number q, where the pacemaker is located at distance r from the center:

ω(r)
c =

N

N −∑R−r
i=0 (q − 1)i

, (A.3.4)

It is easy to show that the new bound simply coincides with (A.3.2) when the distance between
the pacemaker and the center of the Cayley tree is r = 0. Consequently, we can rewrite Eq.
(A.3.2) in the form of an equality:

ωc = q +

[
R−1∑
r=0

(q − 1)

]−1

, (A.3.5)

it is the critical value for the natural frequency of a pacemaker located at the root of a Cayley
tree.

In order to better describe the dynamical behavior of the system above the critical point it is
useful to compute the order parameter defined by Kuramoto. Indeed, even if it is not useful in
order to identify the transition point, this quantity provides interesting qualitative information
about the global time evolution of the phases when the coherent state is broken.

First, we can ask ourselves which is the behavior of this quantity exactly at the critical
point. In order to do this, we can re-write the order parameter defined in (A.2.1) as

z(t) =
1

N
[exp(iφp) +

q∑
j=1

exp(iφj) +

N−q−1∑
l=1

exp(iφl)], (A.3.6)
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Figure A.3: Values taken in the complex plane by parameter (A.3.9) for a Cayley tree for radius
R = 4 and coordination number q = 3, during time windows of increasing duration. The pacemaker
natural frequency is ω = 1.01ωc.

where the units labeled j are the first neighbors of the pacemaker, and those labeled l all the
rest. Now, using the critical condition for the synchronization φj − φp = −π

2 , we have:

z(t) =
1

N
[exp(iφp) +

q∑
j=1

exp(i(φp − π

2
)) +

N−q−1∑
l=1

exp(iφl)] (A.3.7)

z(t) =
1

N
[exp(iφp)(1 + q exp(−i

π

2
)) +

N−q−1∑
l=1

exp(iφl)] (A.3.8)

z(t) =
1

N
[exp(iφp)(1− iq) +

N−q−1∑
l=1

exp(iφl)] (A.3.9)

In general, this quantity is not computable analytically since the phases are mutually coupled
by transcendental equations. However, if we consider a star shaped network, that is a one level
Cayley tree (R = 1), then this last equation becomes

z(t) =
1

N
[exp(iφp)(1 − iq)] (A.3.10)

and we have an analytical expression for the behavior of the Kuramoto order parameter. For
this simple case it is also possible to achieve an analytical expression for the time evolution of
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Figure A.4: Curves described in the complex plane by the order parameter (A.3.10) for a star of
degree q = 3 and different value of the pacemaker natural frequency. That corresponding to the
critical value is analytically computed while the other ones are obtained by numerical simulations.

effective frequencies:

φ̇i�=p = − sin

[
2 arctan

([
A tan

(
−A

2
t + B

)
−N

]
1

ω

)]
; (A.3.11)

and
φ̇p = ω + (1−N)φ̇i�=p, (A.3.12)

where A =
√

ω2 −N2 and B = arctan(N
A ). Plotting the values the order parameter (A.3.9)

and (A.3.10) in the complex plane, for a sufficiently large time window, we can see what
happens below and above the critical point. In the first case we have a circle whose radius
decreases as we increase the natural frequency of the pacemaker. At the critical point this
circle takes its minimal size. If we further increase the value of ω then we get something that
is completely different, although the figure is still a closed curve with central symmetry. In
Fig. A.3 we plot a sequences of images of the values taken by parameter (A.3.9) during time
windows of increasing duration.

In Fig. A.4 we plot the final frame of some sequences analogous to the previous one, for
different values of ω, in the case of a star. All these plots are obtained by means of numerical
simulation, except for the critical order parameter for the star in Fig. A.4. Both figures show
how, above the critical point, these values approach initially a circle smaller than the critical
one, then they depart from it rapidly. It implies that the effective frequencies of the all oscilla-
tors approach each other during a certain time lag, but then they can not reach a stable constant
value. This situation is also confirmed in Fig. A.5, where we plot expressions (A.3.11) and
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Figure A.5: Time evolution of the effective frequencies of the pacemaker (up) and its neighbors
(down) in star of coordination number q = 3 for different value of the pacemaker natural frequency
ω > ωc: ω = 1.01ωc (black line), ω = 1.05ωc (red line), ω = 1.20ωc (blue line).
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Figure A.6: Comparison of the time evolution of the effective frequencies of the pacemaker (up) and
its neighbors (down) in Cayley trees of coordination number q = 3 and different radius. The radii are
respectively R = 1 (black line, analytically computed), R = 2 (red line), R = 3 (blue line) and R = 8
(pink line).

(A.3.12) for several values of ω ≥ ωc. It is easy to notice how all the frequencies reach the
same meta-stable value if ω is not too far from ωc, keeping it during a time lag that decreases
increasing ω, until it disappears. Then the frequency of the pacemaker and the ones of the
other oscillators get completely apart. In all cases, the frequencies show a periodical trend with
a common period.

Finally we want to compare this analytically solved simple case (the star) with the general
case of a Cayley tree of arbitrary radius R (see Fig. A.6). There are two main consideration
we may do about the general case. First, we notice that the time evolution of the effective
frequency of the pacemaker and its neighbors, changing the radius R (and consequently the
size N ), given the same ω, differ from the corresponding quantities for a star of equal q, just
for the oscillation period. Actually, they share the same maximum and minimum value, and it is
possible to transform one curve into another one rescaling time t → t′ = αt. However, there is
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Figure A.7: Comparison of the effective frequencies time evolution in a Cayley tree of radius R = 4
and coordination number q = 3. The red line (left panel) corresponds to the pacemaker, the blue
one to the nodes of the first shell, the other to the second one (green) and the third one (black).
In the right panel we have removed the pacemaker effective frequency zooming on the other ones
in order to show the hierarchical organization of the amplitudes of the frequencies oscillation. The
pacemaker natural frequency was 20 times larger than its critical value.

no trivial expression for the rescaling factor α. Then we observe that, at least for large enough
ω, the perturbation introduced by the pacemaker on the dynamics in the more external shells
can be neglected (see Fig. A.7). The frequencies of these units oscillates with a very small
amplitude, when compared with those of the pacemaker and the most internal shell, around a
mean value that is the same for all the oscillator that are not the leading one.

In terms of the order parameter it means that if we consider a Cayley tree with increasing
radius, the last term in Eq .(A.2.1) becomes clearly dominant, and eventually, the perturbation
introduced by the pacemaker will not be detected (see Fig. A.7, right panel).

A.4 Conclusions

Analytical results are quite scarce when dealing with dynamical properties of nonlinear sys-
tems embedded in complex topologies. We have presented here a paradigmatic model with
some assumptions that relax topological complexity, but nevertheless maintain the inherent
dynamical complexity. Cayley trees or Bethe lattices have been subject of many analysis in
the literature because its recurrent topology facilitates the achievement of exact results. In our
case, taking a Cayley tree as a reference structure, we have computed analytically the effect of
a single pacemaker located at the root of the tree for a system of Kuramoto oscillators. We have
then found exact values for the critical frequency of the pacemaker above which the system is
not able to synchronize and also exact values for the order parameter introduced originally by
Kuramoto. These results concern the relation between topology and dynamics in a system of
interacting units in a tree structure. They provide important clues on this relation in a number
of situations where the connectivity patterns are tree-like or have an almost tree-like topology,
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such as technological systems, like computer networks [21], or biological systems, such as
prokaryotic gene regulatory networks [88].



Appendix B

Estimations and
micro-characterization for the
minimal IFOS model

This appendix is devoted to the derivation of some results we used throughout the chapter 4.
In Sec. B.1, we derive the average size Scc of connected components in the model introduced
in Sec. 4.2, then discussing the stability of these local structures when dealing with moving
agents. In Sec. B.2, we analyze the synchronization time TALL

sync in a model of integrate-and-fire
oscillators whose phases evolve according to the rule introduced in the chapter 4 and whose
interaction pattern is a fully connected graph. Sec. B.3 is devoted to discuss the synchroniza-
tion properties of those small (weakly) connected clusters which characterize the interaction
patterns of the model presented in Sec. 4.2. We empirically derive the dependence of the syn-
chronization time (when existing) on the coupling strenght. Finally, in Sec. B.4, we provide an
analytical estimator for the average time an oscillator spends with its nearest neighbor (Tout)
as a function of V and N .

B.1 Average size of connected components

Here we want to calculate the average size of the connected components in the Nearest Neigh-
bor Graph (NNG) for a set of N point {Pi}, i = 1, . . . , N , randomly distributed in a box
periodic with boundary condition. The NNG is a directed graph with P being its vertex set
and with a directed edge from Pi to Pj whenever Pj is a nearest neighbor of Pi

1.
Let us starting noting that in the NNG, as well as in any directed graph where every vertex

has out-degree kout = 1, only cycles of length 2 are possible and each weakly connected
1Franco P. Preparata and Michael Ian Shamos (1985). Computational Geometry - An Introduction. Springer-

Verlag. 1st edition: ISBN 0-387-96131-3; 2nd printing, corrected and expanded, 1988: ISBN 3-540-96131-3;
Russian translation, 1989: ISBN 5-03-001041-6.
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component2 has exactly one 2-cycle[86]. Thus, knowing the probability that a given point is in
a 2-cycle of the NNG, we can predict the number of connected components and therefore their
average size.

Consider a particle located at the center of a box of side L 3. The probability of finding its
nearest neighbor Pj at a distance between xL and (x + dx)L is given by the product of the
probability of finding anyone of the possible (N − 1) particles between Lx and L(x + dx)

times the probability of having none of the remaining ones at a smaller distance, that is, the
probability that (N − 2) units lie outside this disk Di(Lx) of radius Lx centered in Pi:

P (x)dx = (N − 1)(1 − πx2)N−22πxdx. (B.1.1)

The necessary condition for Pi to belong to a 2-cycle is that it is also the nearest neighbor of
its nearest neighbor Pj . This condition is satisfied if in the disk Dj(Lx), centered in Pj , there
is no other particle. Hence, the probability distribution of the distance between two reciprocal
nearest neighbors can be obtained by replacing, in expression (B.1.1), the area of Di(Lx) with
that of Ai,j(Lx) = Di(Lx) ∪Dj(Lx) [86]. Finally we have

P (x)dx = (N − 1)

⎡
⎣1− x2

(
4π

3
+

√
3

2

)2
⎤
⎦

N−2

2πx dx. (B.1.2)

Finally, we have to integrate Eq.(B.1.2) over all the possible values of x. Since we have a radial
distribution, while our system is in a box, we need to approximate it with a disk by setting the
upper limit of integration equal to x∗ = 1/

√
π, so that π(x∗L)2 = L2. Then, using standard

approximations that hold when N � 1 while N/L2 remains a finite quantity, we obtain

P2c =
6π

8π + 3
√

3
� 0, 6215 . (B.1.3)

Therefore, the expected number of 2-cycles is N2c = N P2c/2. Since, as previously stated,
each pair of reciprocal neighbors belongs to a different connected component, the average size
of a connected cluster in the system is given by

Scc = 2/Psl � 3, 218 . (B.1.4)

B.1.1 Significance in the case of moving agents

This value can be regarded as an universal constant of this kind of graphs since it neither de-
pends on N , nor on L or N/L2. However, its significance is limited when the particles are

2A directed graph is weakly connected if replacing all of its directed edges with undirected edges produces
a connected (undirected) graph. In the NNG there weakly connected components only, except for the case of
pairs of reciprocal nearest neighbors.

3Thanks to the periodic boundary conditions, every particle is virtually at the center of the box.
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allowed to move. Here we consider the model introduced in Sec. 4.2. Our aim is to determine
the maximum value of V at which this quantity makes sense. We want to measure the fraction
〈s〉 of shots that, during the evolution of the system, can be regarded as a reply to a previous
interaction between the same pair of units in the opposite direction, thus closing a cycle. There-
fore, we need a good, general, definition of “reply-shot”. The main problem is that we have
limited time resolution. We are not able to order firing events that occur between two shots of
the oscillator of reference. Hence, we have to establish a formal ordering. The simplest way
to do this is by ordering the oscillators according with their labels. We consider that a firing
event by unit i, occurred at time T , comes before (after) an other firing event by oscillator j,
occurred at the same time T , if i < j (i > j). Thus, the conditions for a given shot i → j,
occurred at time T , to be the reply to a previous one j → i are:

1) j fired at i at time T − 1 if i < j ;

2) j fired at i at time T if i > j.

According to this definition, if a symmetric link between two oscillators, that is, a 2-cycle
is established at time T and broken at time T + k, all the shots from both the units have to
be considered as reply shot, except the first one, that is that of the oscillator with the smallest
ordering number at time T . Thus, when V � 1, the average fraction of replies is almost equal
to P2c. On the contrary, when the oscillators are moving fast, all the possible pairs of reciprocal
neighbor are rewired at each time step. In this case, only the second one of the previously
exposed conditions can be satisfied due to a favorable geometrical configuration. The first
condition can be satisfied only by chance, with mean probability p1 = 1

2N . Consequently,
the average fraction of replies will approach P2c/2 (plus a correction of order N−1). In this
situation, the meaning of the connected components in the interaction pattern is lost. They no
longer represent a set of units whose phases evolve in a interdependent way, because the mean
life of the 2-cycle is simply too short. By measuring the average fraction of reply-shots for
increasing values of V , we are able to localize the transition from an almost static situation,
where the connected components play an important role in the dynamical evolution of the
system toward the coherent state, to a condition of permanent random rewiring.

Fig. B.1 shows that in the left region, and in particular for V ≤ Vm, there is absolutely
no problem using P2c and therefore Scc. In the same figure, we also plotted the average final
mixing χ = 1

N

∑
i ni(Tsync), where ni is the number of different neighbors with whom oscil-

lator i has interacted until Tsync. Both 〈s〉 and χ undergo a transition that starts close to the
no-synchronization region, displaying an opposite behavior. The first quantity is constant in
the slow regime, then starts decreasing and finally, when the system enters the fast regime, it
reaches its minimal value. The second one is minimal in the slow regime, slowly increasing
until the system enters the no-synchronization region, and finally it reach the maximum value
χ = 1 at the entrance of the right region.
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Figure B.1: The average symmetry 〈s〉 (empty circles, left axis) and the global final mixing χ (filled cir-
cles, right axis) are plotted against the velocity V . The grey rectangle marks the no-synchronization
region where no empirical data is available.

B.2 Synchronization time in a fully connected IFOS system

We consider a system of N integrate-and-fire of the type introduced in Sec. 4.1 on an all-
to-all interaction pattern. When any of the oscillators fires, it reaches simultaneously all the
remaining N − 1 modifying their phase according to the rule φj → (1 + ε)φj . In this case, the
mobility of the agents does not play any role.

We have numerically computed the average synchronization time for this model with N ∈
{10, 20, 30, 50, 80, 100, 150}, averaging over 2×104 realizations, varying value of the coupling
strength between εmin = 2/N and εmax = 1. In Fig. B.2 we plotted the synchronization time
dependence on ε. The standard deviation of the sample is irreducible increasing the number of
repetitions since it is a direct consequence of different initial conditions giving rise to different
paths to synchronization in the phases landscape. In the inset of Fig. B.2.1 we can see that
all the points collapse into a single curve when plotted against Nγε, with γ = (0.80 ± 0.02).
Finally, we found the empirical expression

TALL
sync =

2

Nγε
. (B.2.1)
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Figure B.2: Synchronization time dependence on ε for the same value of N (black: N = 10, red:
N = 20, blue: N = 30, green: N = 50, orange: N = 80, grey: N = 100, pink: N = 150).
Error bars represent the dispersion (standard deviation) among the values obtained for different
realizations (different initial conditions). In the inset: Synchronization time T ALL

sync as a function of
Nγε for various values of N . Black solid line stands for Eq. (B.2.1).

B.3 Local cluster synchronization time

In this section we want to explore the typical time spent by the stable clusters formed in our
minimal model. We have already seen that in slow regime V < Vm such clusters emerge with
a typical size of Scc = 3.218 and hold the key to the eventual synchronization of the system.

Here we consider groups of size N = 2, 3, 4. We take into account only those configura-
tions that may attain synchronization. For N = 2 and N = 3 all configurations are able to
synchronize, while for N = 4 the the oscillators with kin = 0 have to share the same initial
phase.

For the pair case N = 2, the synchronization time T2 as a function of the initial phase
difference Δφ can be computed in a straightforward way, as well as its mean value,

T2(ε) =
1

ε(ε + 2)
. (B.3.1)

For the case N = 3 we can consider two given configurations, a triangle (that has null prob-
ability) and a pair plus a third oscillator with kin = 0, that is the configuration we considered
in Sec. 4.6. Hereafter, we will refer to this configuration as 3-chain (see figure B.3).

Finally, for the case N = 4, we consider two different cases, both with non-null probablity,
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while we neglet the square configuration (see figure B.3). The first one, is a configuration
with only one agent having a null in-degree (4-chain). In second one, there are two agents
with kin = 0 (and with the same initial phase) which fire at two different oscillators which
are reciprocal neighbors (star). There is also a third configuration that can be present in the
system. In this case the oscillators with null in-degree share the same nearest neighbor (semi-
star). Differently from the first two ones, this last connected component only synchronizes for
a subset of the possible initial conditions, even if the oscillators that are not receiving any input
are already synchronized. Notice that for any configuration may exist a set of initial conditions
that prevents the system to synchronize, but in all the cases except this one this set has null-
measure. For instance, for a pair of reciplocal neighbors there exstis a unique fix-point at
Δφ = [1− 1/(2+ ε)] such that the phase difference does not change during the time evolution
of the system. In Fig. B.4 we show the average synchronization time as a function of ε for each

Figure B.3: Connected cluster of size N = 2, 3, 4.

one of the considered motifs.

B.3.1 Local synchrony time scale

Fig. B.4 shows that, for the cases of a star, a 3-chain and a 4-chain, the synchronization time
is almost always the same, with a constant relative error (standard deviation). The triangle is
quite faster to synchronize. As we discussed in Sec.4.5, an isotropic connection pattern help
the system to achieve a coherent state ina a shorter time. The case N = 2 is characterized by
a larger dispertion (see the bottom inset), being the stantard deviation of the values of Tsync

obtained for different initial conditions of the same order of magnitude as the mean value.
Consequently, to identify the typical time scale of the local synchrony is not an easy task.

On the one hand, there are configurations that cannot synchronize, or that can synchronize
only if some of the units had already the same phase; on the other hand, there is a relevant
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Figure B.4: Synchronization time as a function of ε for a 3-chain (green), a triangle (blue), a 4-chain
(orange) and a 4-star (black). In the inset below, the synchronization time dependence on ε for a
pair of reciprocal neighbors. Error bars stand for the standard deviation of the values obtained for
different initial conditions. In the inset above: data for a pair (red triangles), a 3-chain and a 4-
chain, in the interval ε ∈ [0.005; 0.1] fitted by a function (black lines) of the type f(ε) = aN/ε, with
a2 = (0.50 ± 0.01), a3 = (2.00 ± 0.01) and a4 = (2.85 ± 0.01). Each point has been calculated
averaging over a sample of 100 equispaced values of the phase of each oscillator (except that of
reference, whose phase we set equal to 1).

fraction of pairs that synchronize very quickly. Actually, we should count out all the frustrated
configuration since they do not play any role in the increasing of local coherence. Even if the
mean size of the connected components is Scc � 3.2 (see Appendix B.1), the mean size of a
good cluster able to synchronize is probably smaller than 3. Therefore, the typical time scale
of local synchrony would likely be smaller than T3, the synchronization time of the 3-chain,
a assumed in Sec. 4.6. However, the only effect of this possible correction is a multiplicative
constant factor in the definition of the scaling variable r introduced in Sec. 4.6, Eq. 4.6.4. In-
deed, the dependence on ε of the synchronization time for all the considered configuration is of
the type Tsync ∼ ε−1, at least when the coupling strength is small enough (see the top inset).
The scaling argument provided in Sec. 4.6 holds even if we cannot set a local synchrony time
scale with a good precision since what really matter is the dependence of this time scale on ε

that has been univocally identified.
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B.4 Estimation of the (out-)neighbor change time

Here we want to calculate the average time an oscillator spends with its neighbor Tout(V ;N, ε)

or, in other words, the average time an oscillator needs to change its neighbor.
Let us starting considering a unidimensional version of our system: N oscillators move on

a ring of length L and fire at their first neighbor when their phase is equal to 1. To perform our
calculation we suppose that all the particles are fixed and equispaced, being l = L/(N −1) the
distance between two consecutive ones. Only a single oscillator, labeled i, is allowed to move.

The ring can therefor be considered as divided into (N−1) line segments {lj}j �=i, each one
of whom is centered in a different unit j. If i lies in lj , this implies that j is its first neighbor.

Now we want to to write the probability that i changes its neighbor within a time windows
ΔT = 1, that is, the frequency of the neighbor change events. For sake of simplicity, let us
suppose that the system is already synchronized.

According to the rules of the model, i is supposed to move straightway during a time
lag τ = 1, covering a distance Δs = V . At each time T , it would change its orientation
(V → −V ) with probability p = 1/2 because of the shot it receives from its neighbor. Notice
that the existence of an in-neighbor that fires at i is assured by construction.

In order to change its neighbor, oscillator i has to cross one of the end points of lj .
Therefore, it is going to change its neighbor between time T − 1 and time T if (i) it lies at

a distance d ≤ Δs from one of the two end points at time T − 1 and (ii) it is moving toward
that same point. The joint probability to satisfies condition (i) and (ii) is given by:

P 1D
out = 2

Δs

l

1

2
=

V (N − 1)

L
, (B.4.1)

where the factor 2 is due to the two possible exiting directions.
Eq.(B.4.1), being a probability per unit of time, is the inverse of the average time separation

between two neighbor changes, that is the quantity we are looking for. Thus we can write

T 1D
out =

L

V (N − 1)
. (B.4.2)

In order to generalize the calculation to the 2-dimensional case, instead of a ring divided in
line segments, we have to consider a box of side L where (N−1) particles arranged in a lattice.
Thus we have (N − 1) squares of side l = L/

√
N − 1, and a fixed oscillator located at the

center of each one of them. Oscillator i changes its neighbor when it exits a square to enter one
of the four adjacent ones. It will cross a given side between time T − 1 and T if, at time T − 1,
the component of V perpendicular to that side is larger than the distance s separating i from
that same boundary. Adopting an appropriate axis system, the coordinates of the four vertexes
of the considered square are, respectively, A ≡ (0; 0), B ≡ (l; 0), C ≡ (l; l) and D ≡ (0; l).
Let us focus on one of the four possible sides, namely BC (see Fig. B.5, left panel).



98 Appendix B. Estimations and micro-characterization for the minimal IFOS model

Figure B.5: Oscillator i exiting from a square of side l. The green circles of radius V and center in i
marks the possible positions that the oscillator will take at time T + 1. In the left panel, the position
and velocity (module) are such that, if the velocity vector (orientation) lies in the red area, i will exit
the square through the border BC at the next time step, othewise it will remain inside the square. In
the right panel, there is also the chance for i to cross the border CD if the velocity vector is in the
blue area. Depending on the orientation of its motion, i could cross BC or CD or none of them.

For this side, previous requirement can be expressed as (V cos θ) > s and the probability
of satisfying this condition is given by

PBC(out|s) =
1

π
arccos

( s

V

)
, if s ≤ V

(B.4.3)

PBC(out|s) = 0 otherwise.

Finally, we can write:

Pout =

∫
4P1(out|s)p(s)ds =

4

π

∫ V

0
arccos

( s

V

) √N − 1

L
ds =

4

π

V
√

N − 1

L
, (B.4.4)

where the factor 4 is due to the four possible exiting directions. From the inverse of Eq.(B.4.4)
we obtain

Tout =
π

4

L

V
√

N − 1
. (B.4.5)

Despite that in deriving estimator (B.4.5) we used some strong approximations, it turns out to
be remarkably good (dashed line in Fig. B.6).

However, we have completely neglected the fact that, under certain conditions, oscillator
i is able to exit the square through more than one side during a time interval ΔT = 1. In
other words, it can be the case that both (V cos θ) and (V sin θ) are larger than the distance
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Figure B.6: The average out-neighbor time Tout (filled symbols, left axis) and the average in-neighbor
time Tin (empty symbols, right axis) are plotted against the quantity V

√
N − 1/L, for some values

of N (red: N = 10, black: N = 20, blue: N = 30) and L (circles: L = 200, squares: L = 400,
triangles: L = 800). The black dashed line stands for the theoretical estimator (B.4.5), while the
solid line is the estimator (B.4.11). The green solid line correspond to Eq.(B.4.13).

from the respective orthogonal sides. This situation, that is quite unlikely when the velocity
is small, becomes very frequent when V is of the same order of magnitude as l. This implies
that we are not allowed to sum the probabilities corresponding to each exit direction to get the
total exiting frequency, as we do in (B.4.4). On the contrary, we have to take into account all
the different possible situations, in order to properly express the probability to cross a certain
boundary. Considering again the side BC (see Fig. B.5, right panel), the conditions to exit the
square by this side can be written as

⎧⎪⎨
⎪⎩

V cos θ > l − x;

V sin θ < l − y;

−V sin θ < y;

(B.4.6)

where P ≡ (x, y) is the position of oscillator i at time T − 1. The conditional probability to
exit the square by the boundary BC, given the position of i, can then be expressed as

PBC(out|x, y) =

=
1

2π

[
min

{
arccos

(
l − x

V

)
; arcsin

(
l − y

V

)}
+ min

{
arccos

(
l − x

V

)
; arcsin

( y

V

)}]
.
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Since it is

arccos
(

l−x
V

)
= arcsin

(
l−yM

V

)
⇒ yM = l −

√
V 2 − (l − x)2;

arccos
(

l−x
V

)
= arcsin

(ym

V

)⇒ ym = arccos
(

l−x
V

)
; arcsin

( y
V

)
;

(B.4.7)

we obtain

PBC(out|x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2π

[
arccos

(
l−x
V

)
+ arcsin

( y
V

)]
, y < ym;

1
π arccos

(
l−x
V

)
, ym < y < yM ;

1
2π

[
arcsin

(
l−y
V

)
+ arccos

(
l−x
V

)]
, y > yM .

(B.4.8)

Integrating over the region of the square where the first condition holds (y < ym), we can write
the corresponding exit probability as

PBC,1(out) =
1

2πl2

∫ l

l−V

∫ ym

0
PBC(out|x, y)dy dx

=
1

2πl2

∫ l

l−V

[
2 arccos

(
l − x

V

)√
V 2 − (l − x)2 + l − x− V

]
dx

=
V 2

2πl2
(γ − 1

2
), (B.4.9)

where γ = (4 + π2)/8.

For the second region (ym < y < yM ) we have

PBC,2(out) =
1

πl2

∫ l

l−V

∫ yM

ym

PBC(out|x, y)dy dx

=
1

2πl2

∫ l

l−V
arccos

(
l − x

V

)[
l −

√
V 2 − (l − x)2

]
dx

=
V

πl
− γ

V 2

πl2
. (B.4.10)

For the third region (y > yM ) we notice that, since the system is symmetric with respect to
the axis x = l/2, the probability PBC,3 has to be the same as the probability PBC,1.

Finally, we can write

Tout =
1

4

[
V
√

N − 1

πL
− V 2(N − 1)

2πL2

]−1

. (B.4.11)

Estimator (B.4.11) behaves the same as the empirically measured quantity it should predict
(continuous black line in Fig. B.6), differing from it just for a constant factor. This discrepancy
is due to the underestimated average first-neighbor distance induced by the used simplified
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configuration. Indeed, the first moment of the distribution (B.1.1) is 〈xnn〉 � l/2, where the
approximation holds for N � 1 (it is already exact for any practical purpose when N =

10). On the contrary, considering a uniformly distributed particle inside a square of side l =

L/
√

N − 1, the average distance from the center is given by 〈s〉 = l[(
√

2+log(
√

2+1))/6] �
0.299 l. As a consequence, we are overestimating the distance the oscillator i has to cover in
order to change its neighbor, and so the corresponding time Tout.

Hence, we decide to try a fit function of the form (B.4.11) with a multiplicative free pa-
rameter g. We find that with g = 0.75 (green line in Fig. B.6) the function fits perfectly data
points corresponding to velocity values of the right region, while for those of the left one a
factor g′ = 0.83 is better.

This is because our empirical data refer to the entire duration of the dynamical evolution
of the system, from a completely random initial state, until the achievement of the synchro-
nization. In the incoherent state, the time separation between two consecutive fires of the same
oscillator is in general smaller than 1 (being equal to one only if it is not receiveing any shot).
This implies that the distance covered by any unit during the time lasting between two shots
of the oscillator of reference is a bit smaller than s = V , and consequently Tout is slightly
larger. Anyway, the effect of this correction is not the same in all the regimes, being much
more relevant in the slow case. Indeed, in the right (fast) region, the system spends half of the
time it needs to synchronize in an almost-coherent state (see Sec.4.4) and the measured Tout is
very close to that we could have measured in the synchronized state.

In conclusions, we can write the following predictors T left
out and T right

out respectively for the
region on the left (including the slow regime region V < Vs) and that on the right of the
no-synchronization interval:

T left
out =

g′

4

[
V
√

N − 1

πL
− V 2(N − 1)

2πL2

]−1

� 4g′
πL

V
√

N − 1
(B.4.12)

T right
out =

g

4

[
V
√

N − 1

πL
− V 2(N − 1)

2πL2

]−1

, (B.4.13)

where g = 0.75 and g′ = 0.83.

B.4.1 The fast limit case. Heuristic derivation of Vf

About the fast limit (V > Vf ), we have to notice that in our derivation we have considered
only values of the velocity V ≤ l. We were implicitly assuming that there is no necessity for
a predictor of Tout beyond that value of V . Indeed, in the real system, all the particles move
at the same time, but with independent orientations. If, at each time step, the displacement of
every oscillator is such that the distance between the previous and new position is l for all of
them, this should ensure a complete re-arrangement of the units in the different squares. This
means a complete rewiring of the connectivity pattern. Then, the probability of taking a new
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neighbor is given simply by Pout � (1 − 1/N), that is the same as saying that if someone of
the oscillators maintains its previous neighbor, it is just for chance. Hence, for the fast regime,
we can write:

T f
out =

N

N − 1
(B.4.14)

Since beyond this value of the velocity, every dynamical quantities we can measure, including
Tsync, no longer depends on V , we expect the system to enter the fast regime at this precise
value of V , that is Vf = L/

√
N − 1.

B.4.2 The in-neighbor change time

Together with Tout, in Fig. B.6, we also plotted Tin. Differently from Tout, Tin is bounded
and does not diverge when V → 0. Notice that, if an oscillator i has a number of in-neighbor
k

(i)
in > 1, the it will be changing k

(i)
in in-neighbors per time unit. Assuming that all the connected

components in the system are groups of three units, during any time windows ΔT , there is one
third of the population with kin = 2. So, during this time lag, the total number of neighbor
changes is given by

Nin(ΔT ) =
2NΔT

3
,

where we have neglected any additional changes due to the dynamics (static limit). Then, the
average in-neighbor change time is

Tin =
1

Pin
= lim

ΔT→∞

NΔT

Nin(ΔT )
=

3

2
.

This simplistic calculation accounts very well for the order of magnitude of Tin in the slow
regime (see Fig. B.6).



Resumen

Introducción

Durante siglos, se ha considerado que el conocimiento cientı́fico se identifica con la posibilidad
de predecir la evolución futura de los fenómenos a partir del conocimiento de las leyes que los
rigen, y que el objetivo de todo esfuerzo cientı́fico es el descubrimiento de esas leyes. Este
programa está profundamente influenciado por el gran éxito que la Fı́sica tuvo a partir del siglo
XVI. La Fı́sica, una disciplina experimental en la que las predicciones teóricas se comparan
con los experimentos, se diferencia de otras ciencias naturales por el papel fundamental de las
matemáticas. Los fı́sicos describen los fenómenos mediante el uso de modelos matemáticos
y sus predicciones se obtienen mediante el razonamiento matemático [7]. La trayectoria de
una bala, la velocidad de un cuerpo en caı́da libre, el tiempo necesario para cubrir una órbita
determinada, fueron las primeras cantidades que se pudieron calcular con precisión arbitraria,
mediante la aplicación de las leyes de la dinámica y de la gravitación universal formuladas
por Newton. El éxito empı́rico de este método ha ido reforzando la creencia de que todos los
fenómenos fı́sicos, a pesar de sus apariencias heterogéneas, puedan ser explicados en términos
de leyes simples y universales que permitan predecir, por medio de cálculos, la secuencia
de eventos que se darn en un sistema dado, siempre y cuando las condiciones iniciales sean
conocidas [8].

A principios del siglo XIX, Laplace escribı́a que un matemático infinitamente inteligente
serı́a capaz de predecir con certeza el futuro mediante la observación del estado actual del
universo utilizando su conocimiento de las leyes del movimiento. Según este punto de vista,
para entender un sistema, es necesario descomponerlo en sus componentes mı́nimos. Por el
contrario, una representación detallada es inútil y engañosa, pues los accidentes no cambian la
naturaleza del fenómeno y, por tanto, su evolución. Una vez realizado este proceso de limpieza,
todo se vuelve simple y predecible. Esta visión, generalmente etiquetada como reduccionista,
gobernó el pensamiento cientı́fico durante la mayor parte de la historia de la ciencia y alcanzó
su apogeo durante el siglo XX con el nacimiento de la biologı́a molecular y de la fı́sica de
partı́culas. Su papel en el desarrollo de la ciencia moderna es innegable. Gracias a este enfoque,
la fı́sica moderna ha alcanzado el nivel más alto de precisión en la descripción matemática de la
realidad, basando su descripción en una representación adecuada de la materia en términos de
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estructura atómica y subatómica. Además, este mismo método permitió llegar a la estructura
de las macromoléculas biológicas y a la lógica de sus funciones. En aquellos años, gran parte
de la comunidad cientı́fica compartı́a la opinión de Francis Crick, quien pensaba que conocer
“en todos sus detalles todos los pasos quı́micos que tienen lugar en la célula durante el ciclo
celular” sólo era cuestión de tiempo, y después “no habrá nada más que saber acerca de la
propia célula, y el mecanismo de su vida será decodificado por completo.”

Sin embargo, en los años 60 las cosas empezaron a cambiar. Sin duda, la gran mayorı́a de
los cientı́ficos activos admitı́a que “el funcionamiento de nuestras mentes, de nuestros cuerpos
y de toda la materia animada e inanimada de la cual tenemos un conocimiento detallado, está
[...] controlado por el mismo conjunto de leyes fundamentales” [9]. Se empezaba también a
poner de manifiesto que la comprensión de fenómenos a mayor escala a partir de las escalas
inferiores es a menudo imposible. Como señaló P. W. Anderson en 1972 [9],

“la hipótesis reduccionista no implica en modo alguno una hipótesis construc-
cionista: la capacidad de reducir todo a leyes simples y fundamentales no implica
la posibilidad de reconstruir el universo a partir de estas leyes. [...] La hipótesis
construccionista se quiebra cuando es confrontada con las dificultades gemelas de
escala y complejidad. Resulta ser que el comportamiento de grandes y complejos
agregados de partı́culas elementales no puede ser entendido en términos de una
simple extrapolación de las propiedades de unas pocas partı́culas. Por contrario,
en cada nivel de complejidad aparecen propiedades completamente nuevas, y el
entendimiento de los nuevos comportamientos requiere de investigación que con-
sidero tan fundamental en su naturaleza como cualquier otra [... y que mostrará]
cómo el todo no sólo es más que la suma de las partes, sino que es muy diferente.”

Sistemas que muestran tales caracterı́sticas están formados por muchos elementos en inter-
acción y se conocen generalmente como sistemas complejos. Tradicionalmente, la ciencia
fundamental explora lo que está más allá de la percepción cotidiana de los humanos, es decir,
lo muy pequeño y lo muy grande. La peculiaridad de los sistemas complejos es que tienen que
ver con una clase de fenómenos de importancia fundamental en los cuales el sistema y el ob-
servador pueden evolucionar en escalas de tiempo y espacio comparables [10]. Existen muchos
ejemplos de sistemas complejos para los cuales se han desarrollado modelos, entre ellos encon-
tramos las colonias de hormigas, las economı́as y las estructuras sociales humanas, el clima,
el sistema nervioso, las células y los seres vivos, incluidos los seres humanos, y también la
modernas infraestructuras de energı́a o de telecomunicaciones. Se entiende que tales sistemas
muestran propiedades dinámicas emergentes inherentemente relacionadas con la topologı́a del
subyacente patrón de conexiones entre las partes constituyentes. Las propiedades más impor-
tantes de los sistemas complejos se deben más a la forma de las relaciones entre las partes y
en la organización dinámica global que en la naturaleza de sus constituyentes. Por eso, para
entenderlos, es preciso estudiar tanto el todo como sus partes [12].
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As que, por un lado, no es posible explicar un nivel de organización sólo en términos de
los niveles inferiores. Por otro lado, queda claro que, más que los detalles inherentes a los
componentes, lo que necesitamos es un mapa de las interacciones. Los sistemas complejos en
muchos casos se pueden describir adecuadamente a través de sus redes de contactos, es decir,
en términos de nodos (que representan los componentes del sistema) y de enlaces (sus interac-
ciones). De esta manera es posible capturar sus caracterı́sticas esenciales en una representación
simple y general.

En 1998, Watts y Strogatz [13] presentaron la primera evidencia de las que llamaron re-
des complejas. Hasta entonces, ya se habı́an utilizado redes de sistemas dinámicos acoplados
para modelar osciladores biológicos, uniones de Josephson, redes neuronales, redes de con-
trol genético y muchos otros sistemas auto-organizados. Pero, mientras que normalmente la
topologı́a de las conexiones se suponı́a totalmente regular, o completamente aleatoria, Watts y
Strogatz se dieron cuenta de que “muchas redes biológicas, tecnológicas y sociales se encuen-
tran en algún lugar entre estos dos extremos.” Este es el caso, por ejemplo, de la red neuronal
del gusano Caenorhabditis elegans, de la red eléctrica del oeste de Estados Unidos, y del grafo
de las colaboraciones de los actores de cine. Todos estos patrones de conexión muestran rasgos
comunes que no pueden explicarse mediante modelos matemáticos simples. En particular, la
presencia de atajos hace estas redes extremadamente pequeñas en términos de distancias me-
dias entre nodos, mientras que al mismo tiempo guarda la huella de su origen ordenado a través
de un coeficiente de agrupamiento (clustering, relacionado con la existencia de triángulos en la
red) mayor de lo esperado [11]. Estos dos fenómenos no se podı́an explicar simultáneamente
mediante los modelos utilizados hasta la época (totalmente ordenados o totalmente desordena-
dos). Un poco más tarde, Barabási y Albert [14], mostraron que la distribución del número de
conexiones que salen de un nodo dado (por ejemplo, ordenadores en Internet, las páginas de
la World Wide Web, o el número de artı́culos escritos por los cientı́ficos) está sesgada, lo que
significa que, mientras que la gran mayorı́a de los elementos tienen muy pocas conexiones,
existen algunos actores en las redes que están inesperadamente muy conectados [11]. Desde
entonces, las redes complejas [15, 16, 17, 18] se han convertido en un marco importante y
ampliamente utilizado para la comprensión de aspectos tanto dinámicos como topológicos de
sistemas tales como el cerebro [19], las redes de interacción proteı́na-proteı́na [20], o Internet
y la WWW [21].

Al principio, cuando las redes complejas eran un campo cientı́fico recién nacido, casi todo
el esfuerzo investigador estaba dirigido a describir sistemas mediante una red y analizar las
caracterı́sticas topológicas de los grafos resultantes. Fue ası́ posible identificar caracterı́sticas
importantes compartidas por sistemas pertenecientes a una misma clase, lo que en fı́sida se
conoce como clases de universalidad. En años más recientes, el creciente interés en este en-
foque, gracias también a un progreso tecnológico favorable, ha llevado a la acumulación de
una cantidad cada vez mayor de datos. Bases de datos de redes habituales codifican la in-
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formación acerca de cuales pares de nodos están conectados y cuales no, a veces con alguna
especificación adicional sobre de la fuerza de las conexiones o la importancia de las unidades.
Actualmente, existe una enorme cantidad de estos datos disponibles. Esta situación ha per-
mitido el surgimiento de nuevas preguntas y, por lo tanto, la diversificación de la actividad
cientı́fica. Entre ellas podemos destacar tres cuestiones generales que han estado recibiendo
mucho interés: (i) la información disponible es siempre fiable y completa? (ii) cómo un patrón
de interacción complejo puede afectar el surgimiento de comportamientos colectivos? Y (iii)
cual es el papel de la movilidad en el marco de las redes complejas?

i) Por lo que se refiere a la pregunta (i), hoy en dı́a se sabe que muchas de las redes anal-
izadas sólo se conocen parcialmente. Pensemos, por ejemplo, en las redes artificiales,
como las redes sociales on-line o la misma Internet, que se componen de millones de
nodos heterogéneos y no idénticos. En este tipo de redes de gran tamaño, un mapa
completo es muy difı́cil de conseguir [22]. En consecuencia, proporcionar herramientas
eficientes para su exploración se ha convertido en un desafı́o crucial.

Por otro lado, en muchas situaciones, las conexiones entre los elementos no son accesi-
bles directamente, en el sentido que no son objetos fı́sicos, como un cable, un hiperen-
lace o un axón. Muchas de las redes naturales, como las redes genéticas, cerebrales o
ecológicas, tienen que ser entendidas como representaciones de las relaciones existentes
entre las diferentes partes del sistema considerado. En todos estos casos, para poder
trazar un patrón de conectividad, los enlaces tienen que ser inferidos midiendo correla-
ciones de cantidades relacionadas con el comportamiento de las unidades. Obviamente,
diferentes métodos y experimentos pueden dar lugar a resultados diferentes. Es este el
caso, por ejemplo, de las redes de regulación génica. Al fin de construir patrones de
conexión cada vez más completos, a menudo se necesita combinar datos obtenidos por
medio de diferentes procedimientos experimentales, no siempre coherentes entre ellos.
Por lo tanto, en los últimos años, el problema de la inferencia de topologı́as de red a
partir de medidas dinámicas ha sido objeto de intensa investigación, tanto experimental
como teórica. Recientemente, se ha presentado un marco matemático y computacional
para hacer frente al problema de la fiabilidad de los datos en redes complejas [23]. En
particular, este enfoque pretende identificar de forma fiable las interacciones que faltan
y las que sobran en observaciones de redes ruidosas.

ii) Acerca de la pregunta (ii) tenemos que decir que el hecho de que la topologı́a del patrón
de conexión afecte a la evolución dinámica de los elementos es precisamente lo que
permite la reconstrucción de muchas redes. Por lo tanto, es evidente que los compor-
tamientos colectivos, es decir, los comportamientos que caracterizan el sistema como un
todo y que existen gracias a las interacciones entre las partes, pueden cambiar dependi-
endo las caracterı́sticas de la topologı́a de conexión. Hoy en dı́a, una parte importante del
esfuerzo cientı́fico está dirigido a comprender cómo las propiedades dinámicas globales



Introducción 107

se relacionan con la dinámica de las unidades y las interacciones entre ellas. Uno de
los primeros ejemplos de esta relación a ser investigados fue la transición entre orden y
caos que las redes booleanas [25] muestran al aumentar el número de entradas (conex-
iones) de cada nodo. Más recientemente, el impacto de la topologı́a de la red ha sido
objeto de gran interés en relación, solo por citar uno entre muchos otros fenómenos, a la
propagación de enfermedades [26]. Sin embargo, se podrı́an proporcionar muchos otros
ejemplos importantes.

iii) Hay dos tipos de movilidad que se pueden considerar en el marco de las redes complejas.
Por un lado, puede haber diferentes tipos de caminantes moviéndose a lo largo de la
red para realizar un gran número de posibles tareas. Modelos basados en agentes se
han utilizado para estudiar fenómenos como la difusión de epidemias, la formación de
opiniones o el tráfico en Internet. Por otro lado, en algún otro caso de interés, es la propia
red a ser generada por las interacciones entre agentes móviles que constituyen los nodos
del patrón de conectividad, ası́ que la topologı́a de la red evoluciona por efecto de la
movilidad. Esta situación es común a muchos sistemas, tanto artificiales como naturales,
y las aplicaciones van desde la robótica [27, 28] hasta la ecologı́a [29].

Esta tesis se ha desarrollado siguiendo estas tres lı́neas, que están estrictamente relacionadas
entre sı́. Hemos profundizado tres casos de estudio, cada uno de los cuales se ocupa de dos
de los macro-temas mencionados. Consideramos la cuestión del carácter incompleto de la
información disponible tanto en el caso de redes naturales (Capı́tulo 2) como de redes artifi-
ciales (Capı́tulo 3). Nos centramos en la sincronización de los osciladores de fase acoplados
(Capı́tulos 2 y 4) en cuanto comportamiento emergente paradigmático, investigando en pro-
fundidad cómo los diferentes patrones de conexión puedan afectar la consecución de un estado
coherente a nivel global. Por último, incluimos agentes móviles en dos marcos diferentes,
utilizándolos como exploradores de redes desconocidas (Capı́tulo 3) y considerándolos como
unidades que interaccionan y son capaces de establecer conexiones con sus vecinos (Capı́tulo
4).

Si la emergencia se refiere “al surgimiento de estructuras, patrones y propiedades nuevas
y coherentes”, y “los fenómenos emergentes se conceptualizan como algo que tiene lugar en
el nivel macro, en contraste con el nivel micro de los componentes y procesos de los cuales
surgen” [30], la sincronización se puede considerar como el comportamiento emergente más
interesante, abundante y bien definido. Reconocidos por primera vez en 1665 por Christiaan
Huygens, los fenómenos de sincronización se encuentran en la naturaleza, en la ingenierı́a y en
la vida social. “La variación sincrónica de los núcleos celulares, de las emisiones sincrónicas
de las neuronas, el ajuste de la frecuencia cardı́aca con los ritmos respiratorio y/o locomo-
tor, las diferentes formas de comportamiento cooperativo de los insectos, animales e incluso
humanos”, son fenómenos universales y pueden ser entendidos dentro de un mismo marco
común basado en la moderna dinámica no lineal [31]. Nuestro entorno está lleno de objetos
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Figure i: Mi tesis en un diagrama.

oscilantes. Sistemas tan diversos como un público aplaudiendo y un equipo de radiocomuni-
cación comparten la caracterı́stica común de producir ritmos. Por lo general, estos sistemas no
están cerrados e interactúan con otros objetos. “Esta interacción puede ser muy débil [...] pero
sin embargo a menudo causa una transición cualitativa: un objeto ajusta su ritmo en conformi-
dad con los ritmos de otros objetos. [...] Este ajuste de los ritmos debido a una interacción es
la esencia de la sincronización” [31].

En esta tesis se han considerado osciladores acoplados con amplitudes fijas que interactúan
a través de la adaptación mutua de sus fases. En el capı́tulo 2, se estudia el problema de
la reconstrucción de una red de interacción desconocida, cuyos nodos son osciladores de Ku-
ramoto. El modelo de Kuramoto, propuesto por primera vez por Yoshiki Kuramoto [32], ofrece
un ejemplo paradigmático de las transiciones de no-equilibrio entre un estado incoherente y uno
sincronizado. Su formulación fue motivada por el comportamiento de sistemas de osciladores
quı́micos y biológicos, y ha encontrado aplicaciones diversas, por ejemplo en neurociencias.
En el modelo se asumen varias hipótesis, entre las cuales que el acoplamiento sea débil, que
los osciladores sean idénticos o casi idénticos, y que las interacciones dependan sinusoidal-
mente de la diferencia de fase entre cada par de objetos. En esta tesis se analizan poblaciones
de osciladores casi idénticos en redes de interacción arbitrarias. Nuestro objetivo es extraer
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caracterı́sticas topológicas del patrón de conectividad mediante medidas puramente dinámicas,
basándonos en el hecho de que en una red heterogénea la dinámica global no sólo está afectada
por la distribución de las frecuencias naturales, sino también por la ubicación de los diferentes
valores. Con el fin de realizar un estudio cuantitativo, nos centramos en una distribución de
frecuencias muy simple, asumiendo que todas las frecuencias sean iguales excepto una, la del
nodo que llamamos marcapasos. Luego, se analiza el comportamiento dinámico del sistema
justo en el punto de transición y ligeramente por encima de él, ası́ como muy lejos del punto
crı́tico, cuando se encuentra en un estado altamente incoherente. La información topológica
recogida varı́a desde caracterı́sticas locales, como la conectividad individual de los nodos, a la
estructura jerárquica de los grupos funcionales, e incluso a la matriz de adyacencia completa.

En el capı́tulo 4, en cambio, se presenta un modelo de osciladores integrate-and-fire (in-
tegra y dispara) que son agentes móviles, desplazándose libremente en un plano. La fase de
los osciladores evoluciona linealmente en el tiempo y, cuando alcanza un valor umbral, es-
tos disparan a sus vecinos eligiéndolos de acuerdo a un cierto rango de interacción (Sec. 4.1)
o simplemente seleccionando lo que se encuentre más cerca (Sec. 4.2 y siguientes). De este
modo, la red de interacción es un objeto dinámico por sı́ mismo, ya que se recrea en cada paso
de tiempo en consecuencia del movimiento de las unidades. Dependiendo de la velocidad del
movimiento, del número medio de vecinos, de la fuerza de acoplamiento y el tamaño de la
población de agentes, identificamos diferentes regı́menes. Caracterizamos estos regı́menes en
términos del tiempo que el sistema necesita para alcanzar el estado coherente, que en algunos
casos somos capaces de predecir, y también proporcionamos una detallada aunque cualitativa
descripción de los mecanismos que permiten aumentar el grado de sincronización del sistema.

Los agentes móviles se emplean también en el capı́tulo 3, donde juegan el papel de explo-
radores de redes artificiales desconocidas, cuya misión es recuperar información acerca de la
estructura topológica. El problema de la reconstrucción de redes se suele abordar por medio de
algoritmos basados en el enrutamiento de la búsqueda y del tráfico [33, 34, 35] realizados, en
muchos casos, por agentes móviles que exploran el espacio topológico. Aquı́ proponemos un
modelo en el que random walkers (caminantes aleatorios), con nodos de origen previamente
asignados, navegan a través de la red durante un perı́odo de tiempo fijo. Consideramos que la
exploración es exitosa si el caminante devuelve la información obtenida a su nodo de partida
(nodo-casa), de lo contrario, no se recuperan los datos. En cada paso de tiempo, los cami-
nantes tiene la opción, con cierta probabilidad, de ir hacia atrás acercándose a su casa o bien
ir más lejos. Se demuestra que hay una solución óptima para este problema en términos de
la información recuperada promedio y del grado de los nodos de origen y se diseña una es-
trategia adaptativa basada en el comportamiento del random walker. Por último, se comparan
diferentes estrategias que surgen del modelo en el contexto de la reconstrucción de la red.
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Se ha demostrado recientement que sistemas de osciladores de Kuramoto no idénticos pueden
alcanzar un grado de sincronización que depende fuertemente de la topologı́a de la red compleja
subyacente. Aquı́, estas propiedades dinámicas se han utilizado para recopilar información
sobre los patrones de conectividad, en particular mediante el establecimiento de diferentes
tipos de correlaciones entre la evolución dinámica de los osciladores. Es importante subrayar
que este es el caso de mayorı́a de las situaciones experimentales, donde la conectividad a priori
desconocida de una red concreta se infiere a partir de mediciones puramente dinámicas.

Cuando los osciladores son idénticos (todos ellos tienen la misma frecuencia natural) cualquier
configuración topológica tiene un atractor único, que es el estado completamente sincronizado,
lo que significa que los osciladores terminan teniendo todos la misma frecuencia eficaz y fases
idénticas. Este estado no ofrece ninguna información sobre la topologı́a. Nosotros perturbamos
esta configuración, permitiendo que uno de los osciladores tenga una frecuencia natural difer-
ente que el resto. Esta unidad se llama el marcapasos de la red. Tal perturbación provoca que
el estado final deje de ser de la sincronización de fases. Pero si la frecuencia natural del marca-
pasos no es muy diferente del valor del resto de la población, el sistema todavı́a mantendrá un
cierto grado de coherencia, es decir, el sistema en su conjunto puede evolucionar con la misma
frecuencia efectiva. Sin embargo, si la diferencia se hace más grande, el sistema será incapaz
de encontrar cualquier tipo de sincronización. El umbral entre el primer caso y el último es
un valor bien definido, que es estrictamente dependiente de la ubicación del marcapasos en
la red. En este contexto, podemos utilizar las correlaciones entre las frecuencias efectivas de
los osciladores en el estado incoherente para reproducir la conectividad de la red. Además, se
demuestra que las correlaciones dinámicas en diferentes situaciones, cerca o lejos del punto
crı́tico, aportan información complementaria de la red.

1. Trabajando alrededor del punto crı́tico se puede estimar el grado de cada marcapasos
utilizando sólo su frecuencia crı́tica.

2. Ligeramente por encima del punto de transición, la estructura jerárquica de la red (en
relación a los módulos funcionales) puede obtenerse a partir de las correlaciones entre
las frecuencias eficaces. Un refinamiento adicional nos permite recuperar toda la red de
conectividad con buen grado de exactitud.

3. Muy por encima del punto crı́tico es posible reconocer cuales de los osciladores están
directamente conectados al marcapasos a partir de medidas muy cortas de la evolución
temporal de las frecuencias eficaces. De esta manera podemos recuperar el patrón de
conectividad, y este método resulta ser mucho más preciso y más eficiente que el anterior.
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Figure ii: Ejemplo de un dendograma representante la estructura jerárquica de una red, obtenido
mediante medidas de correlaciones dinámica justo por encima del punto crı́tico.

En resumen, hemos analizado diferentes maneras de poner en relación las propiedades
dinámicas de los nodos individuales y la topologı́a de la red. Las propiedades topológicas
inferidas de la dinámica pueden ser locales (la existencia de un enlaces entre dos nodos), ası́
como globales (la organización jerárquica de los nodos de la red funcional). En particular, para
una red libre de escala, y si los grados de los nodos se conocen (o han sido estimados a partir de
las frecuencias crı́ticas), considerando el 30 % de los posibles marcapasos, si se seleccionan los
nodos más conectados, será suficiente información como para reconstruir aproximadamente el
90 % de los enlaces.

Otros trabajos han considerado el problema de la reconstrucción de la red a partir de in-
formación dinámica. Al igual que en nuestra propuesta, pero con objetivos especı́ficos, Tegner
et al. [56] han analizado la respuesta dinámica de una red de regulación génica al variar de los
niveles de expresión de determinados genes. Por otro lado, di Bernardo et al. [57] han consid-
erado el efecto global de diferentes tipos de perturbaciones para inferir la topologı́a de la red.
Más recientemente, este enfoque ha sido seguido también por Gorur Shandilya y Timme [58].
Estos autores asumen que se disponga de cierta información acerca de la evolución dinámica
de las unidades aisladas y sobre el acoplamiento. Nuestro método, basado en la modificación
de la frecuencia de sola unidad mediante la cual se confiere contenido informativos a las cor-
relaciones entre los nodos, puede ser más eficaz en los sistemas oscilatorios. En cualquier
caso, para fines prácticos, el método elegido dependerá los detalles especı́ficos de la configu-
ración experimental e incluso una combinación de diferentes enfoques puede ser la opción más
adecuada.
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Explorando redes complejas mediante caminantes adptativos

Hemos presentado un modelo para la búsqueda y exploración de redes en el que agentes
móviles evalúan en cada paso de tiempo si deben ir más allá, alejándose su nodo-casa, o volver
con la información obtenida hasta ese momento. Estas probabilidades dependen de un único
parámetro q el cual, para tiempos de exploración comparables al tamaño del sistema, presenta
un valor óptimo, q = qp < 1 (q = 1 corresponde al lı́mite de camino aleatorio markoviano).
Por contrario, cuando a los caminantes se les permite explorar la red de forma indefinida o du-
rante tiempos más largos, el valor óptimo resulta ser q = ∞. Sin embargo, aunque la cantidad
de información recuperada adoptando la última opción podrı́a ser máxima, los resultados son
altamente dependientes del grado del nodo-casa: cuanto menor sea el grado del nodo asignado
al caminante, menor será la información que ese podrá llevar a casa. De hecho, para la mayorı́a
de los nodos (recordemos que en una red libre de escala la mayor parte de los nodos están muy
mal conectados) q = ∞ no es la mejor estrategia.

Aprovechando el comportamiento de los caminantes en función de q, hemos propuesto un
algoritmo alternativo en el que los agentes pueden ajustar el valor del parámetro q para opti-
mizar la información recuperada. A través de simulaciones numéricas, hemos demostrado que
este mecanismo permite una exploración tan eficiente como la que se obtiene con la config-
uración q = qp. Sin embargo, el esquema adaptativo tiene la ventaja de que el valor de q se
modifica de forma dinámica, por lo que supera el problema de tener que fijar un valor óptimo
qp a priori desconocido. Creemos que este protocolo adaptativo de búsqueda podrı́a ser una
adición valiosa a la literatura actual, ya que su es rendimiento es óptimo con un mı́nimo (local)
información sobre la estructura de la red. Como demostración de las potencialidades de los
algoritmos analizados en este trabajo, hemos comparado diferentes estrategias de búsqueda y
exploración de redes. Como se esperaba, el mecanismo adaptativo tiene el mejor rendimiento
en términos de calidad y cantidad de la información recuperada. Establecer si este tipo de
estrategias pueden ser ulteriormente desarrolladas y aplicadas a la exploración de redes reales
serı́a ir más allá del objetivo del presente trabajo. De toda forma, podemos identificar por lo
menos dos escenarios en los que nuestro algoritmo puede ser de utilidad: el descubrimiento de
nuevas conexiones en las redes de comunicación y la exploración de redes planares (es decir,
redes de ciudades), utilizando solo información local. Nótese que en la red que se ha utilizado
como referencia, el nodo con el grado máximo está conectado con tan sólo el 1% del resto de
los nodos, algo que se puede dar también en las redes planas, aunque estas no puedan ser libre
de escala. Los resultados obtenidos son muy generales, siendo validos siempre cuando el grado
máximo kmax sea (al menos) un orden de magnitud mayor que 〈k〉.

Sincronización de osciladores móviles

Siguiendo la literatura reciente sobre los sistemas complejos, uno de los temas más candentes
es la relación entre la dinámica y la topologı́a de las interacciones. En particular, hay muchas
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Figure iii: Diagrama de flujo del algoritmo adaptativo.

evidencias de que los patrones de interacción cambian rápidamente con el tiempo, alterando y
condicionando por completo las propiedades dinámicas del sistema. Aquı́ hemos propuesto un
marco en el que los agentes se mueven en un plano y se les permite interactuar de una manera
pulsátil. Cada agente, que representa un oscilador de fase, se mueve a una velocidad común (en
modulo) y cambia su fase interna con perı́odo común. Cuando esta fase interna alcanza valor
umbral, el oscilador “hace fuego”, ası́ reiniciando a cero su propia fase. Se han considerado dos
modelos diferentes. En el primero, cada oscilador, al disparar, reinicia al azar la orientación
de su movimiento e interactúa con los vecinos dentro de una cierta distancia, modificando sus
fases. En el segundo, el oscilador que dispara modifica la fase y al mismo tiempo reinicia
la orientación de su vecino más próximo, mientras que él continúa movéndose en la misma
dirección.

Para el primer modelo, manteniendo todos los parámetros geométricos constantes, se ha
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analizado el comportamiento del sistema cambiando únicamente la velocidad de los agentes
y el rango de interacción. Hemos medido el tiempo necesario para que el sistema sincron-
ice en función de la velocidad y de la fracción de la población con la que los agentes in-
teractúan. Hemos introducido un parámetro de orden nuevo, a lo que llamamos mixing, que
representa la fracción de las diferentes unidades con las cuales cada oscilador ha interactu-
ado. Este parámetro de orden permite introducir un diagrama de fase nuevo que nos permite
identificar tres mecanismos de sincronización diferentes. i) El mecanismo difusivo: a altas ve-
locidades y rango arbitrario, el sistema alcanza muy rápidamente la sincronización por medio
de interacciones extremadamente efectivas de cada un oscilador con una gran fracción de la
población.
ii) El mecanismo local: los agentes se mueven muy lentamente, pero el rango de interacción
es bastante grande, ası́ que la sincronización local es suficiente para llevar el sistema al estado
globalmente sincronizado manteniendo limitado el valor del mixing.
iii) El mecanismo limitado que, siendo caracterizado por velocidades muy lentas y interac-
ciones de corto alcance, implica tiempos de sincronización muy largos y, de consecuencia, un
mixing mayor.

Como era de esperar, el costo mı́nimo de energı́a, que representa el número total de señales
emitidas por la población para alcanzar el estado sincronizado, se consigue cuando los agentes
se mueven muy rápidamente, independientemente del rango de interacción. Sin embargo, la
sincronización en los sistemas con movilidades bajas si que depende, y dramáticamente, del
rango de interacción.

Para el segundo modelo, se ha estudiado la dependencia del tiempo de sincronización de la
velocidad, variando también el tamaño del sistema y la intensidad del acoplamiento. Dado que
la regla de interacción es tan restrictiva que el sistema se encuentra muy por debajo del umbral
de percolación estática, es la velocidad no nula de los osciladores la que permite que el sistema
alcance el estado coherente. Por lo tanto, podrı́amos esperar que el tiempo de sincronización
fuera una función decreciente de V , pero nos encontramos con que hay una región interme-
dia en la que el tiempo de sincronización diverge. Hemos podido caracterizar los mecanismos
que permiten al sistema de sincronizar, tanto en el régimen lento como en el rápido. También
hemos calculado,en función del tamaño del sistema N y la fuerza de acoplamiento ε, los val-
ores de velocidad a los cuales el sistema entra en estas regiones. El mecanismo del lı́mite de
movimiento rápido de este modelo no difiere del mecanismo difusivo (i) del anterior, mientras
que el régimen lento es similar al régimen limitado (iii) cuando la velocidad es extremadamente
pequeña ya que, en el régimen lento de este modelo, el mixing final no es muy grande.

Ha sido también posible proporcionar un estimador empı́rico del tiempo de sincronización
en función de N y ε en el lı́mite rápido, y en función de V , N y ε en el régimen lento. Luego,
hemos analizado cualitativamente las razones por las cuales el sistema no pueden sincronizar
dentro de un tiempo finito en la región intermedia.
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Figure iv: Tiempo de sincronización en función de la velocidad para el segundo modelo considerado
(interacción a primeros vecinos).

Finalmente, se ha considerado que, midiendo el coste en el número de disparos necesarios
para que el sistema sincronice, el lı́mite rápido es siempre el régimen más eficiente. Por con-
trario, si se tiene en cuenta también la energı́a necesaria para hacer que los agentes se muevan
a la velocidad deseada, es decir, el término cinético proporcional al cuadrado de la velocidad,
esto ya no es cierto. El nuevo coste energético total muestra dos mı́nimos, uno de los cuales
correspondiente al mı́nimo local del tiempo de sincronización en la región izquierda, el otro
localizado en la región derecha, por debajo del lı́mite rápido.

La identificación de los mecanismos que relacionan movilidad y interacción con la sin-
cronización, será sin duda crucial en modelos similares de poblaciones de agentes móviles que
pueden ser aplicados, por ejemplo, al campo de la comunicación inalámbrica. De hecho, la
comprensión de estos fenómenos ayudará a diseñar protocolos óptimos para configuraciones
más realistas mediante la definición de normas de interacción adecuadas.

Perspectivas

Durante el desarrollo del trabajo presentado en esta tesis, se han planteado una serie de posibles
aplicaciones, preguntas adicionales, y otros temas relacionados que podrı́an ser investigado en
el futuro.

• Puede valer la pena comprobar la robustez del método para la detección de las comu-
nidades funcionales en redes de osciladores de Kuramoto presentado en la sección 2.4.
Si se pudiera demostrar que, como es de esperar, los resultados no son sensibles a los
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detalles de la forma funcional de las interacciones, entonces el método podrı́a aplicarse
a una gran cantidad de situaciones de interés, independientemente de la naturaleza es-
pecı́fica de red considerada.

• Los caminantes introducidos en el capı́tulo 3 cambian su comportamiento de manera no
trivial variando el parámetro que ajusta la probabilidad de ir hacia adelante o hacia atrás.
En particular, existe un valor preciso del parámetro por el cual los agentes, en general,
visitan muchos nodos y luego vuelven a su casa. Más allá del problema de la exploración
de redes, estamos interesados en comprender las consecuencias más generales de este
comportamiento peculiar. Por ejemplo, podrı́amos analizar la nueva fenomenologı́a que
pueda surgir sustituyendo los random walks habituales con nuestros caminantes en un
modelo de meta-población para la propagación de epidemias en redes complejas. Podrı́a
ser también interesante considerar los caminantes como un osciladores de fase a los que
se le permite interactuar solamente con otros osciladores en el mismo nodo, asumiendo
que la población de cada nodo sea una comunidad inicialmente sincronizada. Podemos
preguntarnos si el valor del parámetro que es óptimo para la exploración es también
capaz de ayudar a la consecución de la coherencia global en la red.

• Por último, se necesita más investigación para entender mejor algunas de las carac-
terı́sticas del modelo mı́nimo introducido en la sección 4.2. Puede merecer la pena pros-
eguir la investigación al fin de identificar las condiciones necesarias y suficientes para
que la dependencia del tiempo de sincronización de la velocidad deje de ser monótona.
Actualmente, estamos investigando en esta dirección y ya está demostrado que la in-
teracción tiene que ser pulsátil. En efecto, al sustituir los osciladores integrate-and-
fire con osciladores de Kuramoto, el tiempo de sincronización se comporta como una
función monótonamente decreciente de la velocidad, para cualquier valor de la fuerza de
acoplamiento.



Bibliography

[1] A. Arenas, A. Dı́az-Guilera, and C. J. Pérez-Vicente. Synchronization processes in
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