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Chapter 1

Resum en català

Malgrat el seu èxit a nivell clàssic, la relativitat general s’enfronta a problemes de no-

renormalitzabilitat a nivell quàntic. No obstant, prediu l’existència de forats negres,

que són objectes tèrmics que s’espera que continuin existint en una teoria satisfactòria

de gravetat quàntica. La seva consistència matemàtica requereix que l’espai-temps

tingui deu dimensions, i d’aquesta manera motiva l’estudi de la relativitat general, i en

particular els forats negres, en dimensions altes. Aquest és el tema central de la nostra

tesi. A més, l’adveniment de la correspondència AdS/CFT, que relaciona una teoria

de gravetat amb una teoria quàntica de camps en una dimensió menys, ha incrementat

encara més l’interès en la gravetat en dimensions altes. Comparada amb la relativitat

general en quatre dimensions, que ha estat àmpliament estudiada i investigada els

darrers anys, la relativitat general en dimensions més altes té moltes caracteŕıstiques

noves i interessants.

La unicitat és una propietat de la relativitat general en quatre dimensions que no

continua sent vàlida en dimensions més altes. Una altra propietat relacionada amb

aquesta és que en quatre dimensions els forats negres només poden tenir horitzons amb

topologia esfèrica, mentre que en dimensions més altes els objectes negres poden tenir

també altres topologies. Els anells negres són una manifestació d’això. Les dues noves

propietats esmentades donen lloc a transicions de fase topològiques a l’espai de fases

dels forats negres en dimensions altes, que és un dels temes que considerem i als quals

contribuim en aquesta tesi.

L’existència d’objectes negres estesos en dimensions altes, anomenats p-branes ne-

gres, és un tema important i fonamental. Se sap que aquests objectes són dinàmicament

inestables. Per tant, la qüestió de cap on condueix aquesta inestabilitat ha esdevingut

un problema important. Quin és l’estat final? Aquesta inestabilitat es coneix com la

inestabilitat de Gregory-Laflamme i és un altre tema que investiguem a la nostra tesi, i

que relacionem amb un tipus de correspondència entre fluids i gravetat a l’espai-temps
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pla. L’existència de p-branes negres s’atribueix al fet que en relativitat general en di-

mensions altes hi ha forats negres que poden rotar de manera arbitràriament ràpida.

És a dir, no hi ha un anàleg de la cota de Kerr en quatre dimensions, que impedeix

que els forats negres donin voltes molt de pressa. La rotació ràpida, per altra banda,

que és possible en dimensions més altes té l’efecte d’aplanar l’horitzó del forat negre al

llarg del pla de rotació, i per tant en el limit de velocitats altes s’apropa a la geometria

de la p-brana negra.

Al caṕıtol 3 donem una breu introducció a l’estudi de forats negres en dimensions

més altes per mitjà de les anomenades “blackfolds”. Discutim les raons per les quals

hom pot fer servir nous mètodes aproximats en dimensions més altes. Introduim els

objectes bàsics de l’enfoc amb blackfolds, les p-branes negres impulsades, i expliquem

com l’enfoc amb blackfolds es pot fer servir per construir a partir d’elles noves solucions

estacionàries de les equacions del camp gravitatori amb noves topologies, i com es pot

fer servir també per construir solucions dinàmiques.

Al caṕıtol 4 donem una breu introducció al tema dels canvis de topologia en rel-

ativitat general. Discutim les fases del forat negre de Kaluza-Klein, la fase de corda

negra homogènia, la fase de corda negra inhomogènia i fase de forat negre localitzat.

Expliquem el mecanisme pel qual apareix una transició de fase topològica quan hom

es mou per l’espai de fases des d’una corda negra fins a un forat negre localitzat.

Al caṕıtol 5 hem aconseguit formular un tipus de correspondència entre fluids i

gravetat a l’espai pla. Hem trobat un mapa entre una p-brana negra impulsada fluc-

tuant i un fluid viscós relativista situat a l’infinit espacial. És a dir, hem construit

una solució de les equacions d’Einstein al buit d’una p-brana negra dinàmica fins a

primer ordre en derivades. El fluid viscós dual està caracteritzat per dos paràmetres

(coeficients de transport) al tensor d’energia-moment, la viscositat de cisallament i la

viscositat de compressió. Fent servir la solució gravitatòria hem pogut calcular aquests

coeficients. A saber, hem trobat que el tensor d’energia-moment del fluid és

Tab = ρuaub + PPab − ζθPab − 2ησab +O(∂2) (1.0.1)

on

η =
Ωn+1

16πG
rn+1

0 , ζ =
Ωn+1

8πG
rn+1

0

(
1

p
+

1

n+ 1

)
. (1.0.2)

són les viscositats de cisallament i de compressió respectivament. A dalt, totes les

quantitats termodinàmiques estan donades en termes del radi de Schwarzschild de la

brana negra, r0. A més, fent servir la descripció efectiva de la p-brana negra com

un fluid viscós en un nombre més baix de dimensions hem estudiat la inestabilitat

de Gregory-Laflamme, i els nostres resultats estan d’acord de manera molt precisa

amb els resultats numèrics prèviament obtinguts en aquest problema (que havien estat
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obtinguts per mitjà d’una anàlisi de les equacions gravitatòries linealitzades). Més

en detall, incloent l’efecte d’amortiment de la viscositat en les ones de so inestables

hem obtingut una aproximació remarcablement bona i senzilla a la relació de dispersió

dels modes de Gregory-Laflamme, la precisió de la qual augmenta amb el nombre de

dimensions transverses. Hem proposat una forma ĺımit exacta quan el nombre de

dimensions tendeix a infinit. Aix́ı, en lloc d’intentar resoldre les complicades equacions

gravitatòries (linealitzades) proposem intentar resoldre les equacions relativistes de

Navier-Stokes per al fluid efectiu (dual), ja que aquestes són molt més senzilles que les

primeres.

Al caṕıtol 6 hem abordat i hem fet progrés en un altre problema: canvi de topologia

en relativitat general en dimensions més altes. Abans del nostre treball no hi havia

cap exemple anaĺıtic complet (només n’hi havia de numèrics) d’una transició de fase

topològica en relativitat general. La transició de fase corda negra/ forat negre en

espais de Kaluza-Klein havia estat analitzada i estudiada només numèricament. No

obstant, alguns models locals havien estat obtinguts anaĺıticament. S’havia argumentat

que la transició de fase passa (o és mediada) per una configuració cŕıtica singular:

una geometria de doble con autosimilar. Aquesta geometria s’havia trobat només

localment, però. Al nostre treball hem proporcionat per primera vegada un exemple

anaĺıtic complet d’una transició de fase topològica. Hem considerat el forat negre

en rotació dins l’espai de de-Sitter (el forat negre de Kerr-de-Sitter), i hem mostrat

que si hom segueix una trajectòria a l’espai de fases al llarg de la qual la rotació del

forat negre augmenta llavors aquest s’aplanarà i estirarà al llarg del pla de rotació, i

finalment tocarà l’horitzó de de-Sitter allà on aquest horitzó s’intersecta amb el pla

de rotació. S’obté una transició de fusió si hom continua movent-se al llarg de la

mateixa trajectòria a l’espai de fases, després de la qual s’arriba a a una fase fusionada

amb un únic horitzó connectat. Al nostre exemple, la configuració cŕıtica (en la qual

els dos horitzons es troben) és mediada per un doble con autosimilar, la qual cosa

confirma propostes prèvies quant al mecanisme pel qual funcionen les transicions de

fase topològiques.

També hem descrit models locals per a les geometries cŕıtiques que controlen moltes

transicions a l’espai de fases de forats negres en dimensions més altes, tals com la

transició d’un forat negre topològicament esfèric a un anell negre o a una p-esfera

negra, o la fusió de forats negres i anells negres en Saturns negres o di-anells en D ≥ 6.

Val la pena esmentar, a més, que els cons que hem trobat són generals (comparats

amb els coneguts prèviament) en el sentit que descriuen dos horitzons que s’intersecten

a temperatures que poden diferir. No obstant, en el cas en què els dos horitzons

s’intersecten a a temperatures diferents no hi pot haver una transició de fusió posteri-
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orment, i per tant la trajectòria de solucions a l’espai de fases s’acaba allà.
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Chapter 2

Introduction

2.1 General relativity in 4 dimensions

However successful general relativity is when one uses it to describe classical phenomena

concerning the gravitational force [1, 2, 3], it goes bad when one tries to quantize it

and to use it to describe quantum phenomena. Not so bad though; surprisingly, on

the classical level it predicts the presence of some objects, called black holes, which,

based on a semi-classical treatment, turn to posses all properties to qualify as thermal

objects. A temperature and entropy were associated to these objects [4, 5] and they

were shown to satisfy the laws of thermodynamics. The surprise lies in the fact that

the thermodynamic properties of black holes, which one is supposed to read from

the quantum theory, were found based on a semi-classical theory of general relativity,

known as Hawking radiation [5].

Therefore, even though general relativity in 4 dimensions is a non-renormalizable

field theory − in fact, that is true also for any number of dimensions larger than 4 − it

can be still trusted at the semi-classical level, that is, when one studies quantum fields

on curved and fixed classical backgrounds [6]. So that, even in a satisfactory theory of

quantum gravity it is expected that some aspects of general relativity, modified slightly

most probably, will remain, such as black holes.

One fascinating and puzzling feature of black holes is that their entropy is given (in

gravitational units) by 1/4 of the area of the event horizon, which is the Bekenstein-

Hawking entropy formula [4, 5]. Whereas for field theories, in general, the entropy is

proportional to the volume of the system, for black holes it is proportional to the area.

This implies, somehow, that black hole physics is holographic [7, 8] − the information of

the inside of a black hole, inside its three-dimensional volume, is stored on its boundary,

a two-dimensional surface.

Uniqueness is one of some features special to 4 dimensional general relativity [9].
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In Einstein-Maxwell’s theory, given certain values of mass, angular momentum, and

charge, there is only one black hole with such a set of values, namely, the charged Kerr

black hole. Of course, the property that black holes are characterized by 3 parameters

only, in the Einstein-Maxwell theory for example, for whatever initial data the space-

time contained before their formation, is known as the ”no hair” property of black holes

[9]. Another feature of black holes special to 4 dimensions is that their horizons must

have spherical topology. There are no black hole solutions with a different topology in

4 dimensions.

The Kerr-bound is one more special character of 4 dimensional general relativity.

The speed of rotation of a rotating black hole is bounded from above. In other words,

in 4 dimensions black holes can not rotate very fast.

2.2 String theory predicts extra dimensions

String theory provides one of the most successful approaches, today, to reconcile and

unify gravity and quantum mechanics [10, 11]. String theory basic assumption is that

the fundamental object in nature is not a point-like object, but rather a one-dimansional

object, with zero thickness − a string. Upon quantizing the string one recognizes the

different oscillation modes (or quantum states) of the string with different particles. In

special, it gives rise to a massless, spin-two particle, the graviton.

General relativity is naturally incorporated in string theory. It gets modified at very

short distances / high energies, but at ordinary distances and energies it is present in

exactly the same form as proposed by Einstein. The importance of this is that general

relativity arises within the framework of a consistent quantum theory.

To obtain a realistic and consistent string theory one must require supersymmetry

as well, and hence the name superstring theory. Superstring theories are able to predict

the dimension of spacetime in which they live. The theories are consistent in 10 dimen-

sions and in some cases (M-theory) an eleventh dimension is also possible. To make

contact between string theory and the four-dimensional world of everyday experiences,

the most straightforward possibility is that six or seven of the dimensions are com-

pactified on an internal manifold, whose size is sufficiently small to escape detection.

This reminds us of the Kaluza-Klein theory, which is an attempt to unify gravity and

electromagnetism by compactifing five-dimensional general relativity on a circle. String

theory has many analogous compactifications. It is important to mention that even if

the internal manifolds are invisible at long distances or low energies their topological

properties determine the particle content and structure of the four-dimensional theory.

As for black holes that come from string theory, it is worth saying that one of the
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most striking successes of string theory so far is the counting of microstates of certain

black holes [12] and, consequentely, the derivation of the Bekenstein-Hawking entropy

formula. The last counting, however, is more successful when there is a large amount

of supersymmetry. This correct counting using the microscopic degrees of freedom of

string theory, in this case what are known as D−branes, gathers a lot of evidence that

string theory is a theory of quantum-gravity.

As a result, one concludes that to make contact with string theory one should

be working with general relativity in higher dimensions (compactified or not) and so,

before all, one should be able to tell / know the differences between 4 and higher

dimensional gravity. As we are going to mention next, higher dimensional general

relativity differs from its four-dimensional counter part in many significant aspects.

2.3 Black holes in higher dimensions

As explained above, string theory motivates and shows the importance of the study

of higher dimensional general relativity. In special, it motivates the study of its basic

obects, i.e., higher dimensional black holes. Even though black holes that come from

string theory are, generically, charged objects, to understand the new phenomena and

differences that arise in higher dimensions, compared to 4 dimensions, it is wise to start

first by studing neutral black holes, being the simplest cases.

We start by the observation that in higher dimensions, D > 4, there are new

types of black objects. Beside the straightforward generalization of the Schwarzschild

black hole to higher dimensions there are extended black objects as well. They extend

infinitely in some directions (say along p spatial directions), while they are compact

along the others. Black p−branes is the name of those objects. Black p−branes have

the special and significant property that they are dynamically unstable objects, which

is a fact known as the Gregory-Laflamme instability [34]. If one Fourier decomposes the

linearized perturbations of black p−branes with respect to the time and the p extended

spatial coordinates, one discovers an unstable mode

hab ∼ exp
(

Ωt+ i~k · ~z
)
, (2.3.1)

(a mode which becomes larger and larger as time increases), for k smaller than a

critical value k ≤ kGL. This implies that there are (probably) other solutions in the

phase space of solutions to which the black p−brane may go to.

One can also generalize the Kerr black hole to higher dimensions, what is known

as the Myers-Perry black hole [13]. There are two aspects of rotation that change

significantly when spacetime has more than four dimensions. First, there is the possi-

bility of rotation in several independent planes and, hence, there is the possibility of
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several independent angular momenta. The other aspect of rotation that changes qual-

itatively as the number of dimensions increases is the relative competition between the

gravitational and centrifugal potentials. The radial fall-off of the Newtonian potential

”− GM
rD−3 ” depends on the number of dimensions, whereas the centrifugal barrier ” J2

M2r2
”

does not since rotation is confined to a plane. We see that the competition is different

in D = 4, D = 5, and D ≥ 6.

An interesting and important difference between higher dimensional black holes and

four dimensional ones is the abscence of the Kerr-bound for some higher dimensional

black holes. Some black holes can rotate very fast, with no upper bound. If you take,

for example, a Myers-Perry black hole with a single rotation and make it rotate very

fast then its horizon shape will pancake along the rotation plane, becoming a black

2−brane in the limit [56]. Consequently, one learns that ultraspinning Myers-Perry

black holes are unstable (in contrast to the the stable 4−dim Kerr black holes), since

black p−branes are unstable themselves.

The break-down of the uniqueness theorem in higher-dimensional general relativity

was first displayed by the example of the five-dimensional black ring [14]. Now, with a

given value of mass and angular momentum there is not only the rotating black hole

with spherical topology, but also a black ring, thus breaking the uniqueness theorem.

This example shows, furthermore, that black objects with topologies other than spher-

ical can arise in higher dimensional general relativity. Later on, other composite black

objects were found, with new topologies, like black saturn for example [15, 14]; a black

hole at the center of a black ring. Di rings are another example of composite black

objects in which one black ring is located inside a larger black ring, both with the same

rotation plane [16].

As a result of the existence of different branches of solutions, each with a different

topology, in some cases one may expect topological phase transitions between the

different branches or phases. Examples of expected topological phase transitions are

the pinch-down of a topologically spherical black hole to a black ring or to a black

p-sphere, or the merger between black holes and black rings in black Saturns or di-

rings in D ≥ 6. How these phase transitions work or which mechanism is responsible

for them, or whether there is something universal about those transitions in the phase

space of higher dimensional black holes, are interesting questions deserving answers.

In chapter 6 we give a detailed account of those, and also of similar phase transitions,

and we give answers to the previous questions.

As was said in the previous section one may want, in addition, to make contact with

the observed 4−dimensional world. To this end, one needs to compactify the extra

dimensions of spacetime, in a spirit similar to the Kaluza-Klein compactifications.
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This gives rise to many interesting phenomena, part of which we are going to talk

about in chapter 4. If one studies, for instance, the phase space of vacuum and static

black hole solutions in 5−dimensional general relativity with the fifth dimension being

compact (the internal compact manifold is a circle), one finds three special branches

of solutions, the so called homogeneous black string phase, the inhomogeneous black

string phase and the localized black holes phase. For certain values of the mass (for a

fixed length of the circle) the three phases can exist, which is another example of how

higher dimensional gravity breaks the uniqueness theorem. Here also, the phases are

connected by a topological phase transition as explianed in chapter 4.

Finally, one can use the new features of higher dimensional general relativity to

look for new approximate methods (special to higher dimensions) to construct new

black hole solutions. A very successful approach is the blackfolds approach [27, 28, 66],

which we are going to discuss in detial in chapter 3.

2.4 AdS/CFT correspondence

The AdS/CFT correspondence [17], or, more generally, the gauge-gravity duality is

an equality between two theories; a quantum field theory in d spacetime dimensions

and a gravity theory on a d+ 1 dimensional spactime with a d dimensional boundary.

The simplest example involves a conformal field theory (CFT) on the field theory side

and the AdS spactime on the gravity side. Here, we are going to focus on the latter

example, the AdS/CFT correspondence. The AdSd+1 metric in global coordinates can

be written as

ds2 = R2

[
−
(
r2 + 1

)
dt2 +

dr2

r2 + 1
+ r2dΩ2

d−1

]
, (2.4.1)

where R is the radius of curvature of AdSd+1. It is straightforward to see that the

boundary of AdSd+1, which is at r >> 1, is conformal to the cylinder R × Sd−1.

A conformal field theory, on the other hand, is a local quantum field theory invariant

under the conformal group SO(2, d), which includes the Poincare group, the dilatations,

and special conformal transformations [18]. The AdS/CFT correspondence postulates

that all the physics in an asymptotically AdSd+1 spacetime can be described by a

conformal field theory that lives on the boundary R× Sd−1. In other words, it relates

a state of the field theory on the cylinder with a state of the bulk theory in global

coordinates.

As for the conditions that are necessary for the duality we mention the following.

A simple counting of degrees of freedom argument [19] shows that the number of

fields on the field theory side is inversely proportional to the Newton’s constant of the

bulk. Since we want a weakly coupled theory in the bulk, so that gravity is a good

9



approximation, on the dual quantum field theory side this translates in demanding

large N gauge theories, which are gauge theories based on the gauge group SU(N) or,

U(N), with the fields in the adjoint representation.

However, the above is not a sufficient condition for the gravity to be a good approx-

imation. In the gravity approximation we treat the graviton as a point-like particle

and we ignore the string internal structure, thus we ignore the other massive string

states. Namely, we assume that

R/`s >> 1 , (2.4.2)

where `s is the string length. If the above condition is not met then we should con-

sider the full string theory. This condition translates in the field theory side into the

requirement that the field theory should be strongly interacting, otherwise, light states

of higher spin S > 2 will be generated, rendering the gravity approximation invalid.

This is not sufficient though; the coupling should be large enough to give large energies

to all higher spin particles.

As a concrete example we take the 3 + 1 dimensional N = 4 super Yang Mills /

AdS5×S5 duality. Here, the AdS5 radius is given in terms of the Yang Mills quantities

as follows

R4/`4
s = 4πgsN = g2

YMN = λ , R4/`4
p = 4πN , (2.4.3)

where g2
YM and λ are the Yang Mills coupling constant and the effective coupling

constant (or the ’t Hooft coupling), respectively, and `p is the planck length. As

said previousely, for the gravity side to be weakly coupled one has to have N >> 1.

Furthermore, one sees that to trust the gravity approximation the effective coupling

constant has to be large. Thus, for g2
YMN >> 1 the gravity approximation is good and

the field theory is strongly coupled, whereas for g2
YMN << 1 the gravity approximation

is bad and the field theory is weakly coupled.

Finally, we mention, in brief, how the correspondence was derived in the first time.

Look at the extremal black three-brane, or the black D3−brane, metric

ds2 = f−1/2

(
−dt2 +

3∑
i=1

dx2
i

)
+ f 1/2

6∑
i=1

dy2
i , (2.4.4)

with

f = 1 +
4πN`4

p

y4
. (2.4.5)

The coordinates xi are the 3 spatial coordinates parallel to the 3-brane and the yi

are the six coordinates in the transvese direction. By y we mean y ≡
√∑6

i=1 y
2
i . This

description, in terms of extremal black branes, is valid when the string coupling is strong

gsN >> 1. For small string coupling gsN << 1 the same system can be described
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by a set of N D−branes [20] which is the non-perturbative regime of string theory

since the α′ corrections are large (R/`s << 1). The conjecture is that the previous two

descriptions are of one and the same system. This system can be described by either

black branes or by D3 branes. At strong string coupling the D3-brane description

is not valid and so it is better to describe the system by the gravity approximation

which is valid then. At very small string coupling the gravity description breaks down,

while the non-perturbative string theory is valid and so it is appropriate to descibe the

system by D branes. Next, by taking the low energy limit of both descriptions one gets

the gauge gravity correspondence upon identifying the two sides.

2.5 Fluid/Gravity correspondence

The Fluid/Gravity correspondence [21, 26] is a certain universal limit of the AdS/CFT

correspondence in which the dynamics of the quantum field theory simplifies to that

of an effective classical fluid dynamics. This can be done for any interacting quantum

field theory at high enough temperatures by focusing on near-equilibrium dynamics

and restricting attention to long wavelength physics. A qualitatively similar behaviour

was discovered to take place in nature for the special state of matter produced in

heavy-ions collisions at RHIC, known as the quark gluon plasam (QGP). This in turn

requires the understanding of QCD at strong coupling, which is quite different from

the class of superconformal field theories appearing in the AdS/CFT dualities, and

hence the lessons one should draw (regarding the QGP) are only qualitatively true.

The current understanding is that subsequent to the collision of ions, the resulting

constituents of the system rapidly thermalize and come into local thermal equilibrium

and so it evolves according to hydrodynamics until the local temperature falls back

below the deconfinement temperature and the QGP hadronizes.

There is a rich literature on the investigation of linearized fluid dynamics from lin-

earized gravity in asymptotically AdS black hole spacetimes, which started in the work

[22]. In [30] the authors found that the ratio of shear viscosity to the entropy density

of a large class of strongly interacting quantum field theories whose dual description

involves black holes in AdS space is universal

η

s
=

1

4π
, (2.5.1)

and they even provided evidence that this ratio might stand as a lower bound for a large

class of systems. The extension of this work to obtain non-linear fluid dynamics form

gravity is what is known as the fluid-gravity correspondence. According to the gauge-

gravity duality different asymptotically AdS bulk geometries correspond to different

11



states in the boundary theory. The pure AdS geometry, for instance, corresponds to the

vacuum state of the gauge theory. A large Schwarzschild-AdS black hole corresponds

to a state of global thermal equilibrium in the field theory. In more detail, in the

field theory side, thermal equilibrium is characterized by a choice of static frame and

temperature field. In the gravity side, on the other hand, the natural candidates for

the equilibrium configuration are static (or stationary) black hole spacetimes. The

temperature of the fluid would be given be by the Hawking temperature of the black

hole and the velocity field of the fluid would be given by the boost velocity of the black

hole; remember that if you take the radius of the Schwarzschild-AdS black hole to be

very large it goes in the limit to a black brane, or to the planar black hole, for which

a boost velocity is well-defined along the brane directions.

What one would like to do next is to deviate a little bit from thermal equilibrium,

by letting the temperature and the velocity field of the black hole (and hence also the

fluid) vary slowly along the boundary directions. A fluid slightly deviated from thermal

equilibrium can be described in terms of transport coefficients, such as shear viscosity,

bulk viscosity, relaxation times, etc. The consistent procedure in which this can be

done (and the transport coefficents computed from the gravity side at the end) is the

essence of the fluid-gravity correspondence which we are going to describe, in brief,

below.

The fluid-gravity correspondence shows that the Einstein’s equations, with a neg-

ative cosmological constant, supplemented with appropriate boundary conditions and

regularity restrictions reduce to the non-linear equations of fluid dynamics in an ap-

propriate regime of parameters. Start from the black (d−1)−brane solution in AdSd+1

space (the planar black hole). The solution is characterized by the temperature field

T and the d − 1 components of the velocity field ui. By computing the Brwon-York

stress tensor at the boundary one obtains a stress tensor of a perfect fluid, confirm-

ing the previous statement that a static black hole (here it is a homogeneous black

brane) corresponds to global thermal equilibrium. By promoting the temperature field

and the velocity field to slowly varying functions of the boundary coordinates xµ, i.e.,

T → T (xµ) and ui → ui(x
µ) , and adding some corrections to the metric one gets

a solution to the Einstein equations, with a negative cosmological constant, order by

order in this derivative expansion method. The solution describes a dynamical and

inhomogeneous black brane (a black brane slightly disturbed from complete spatial

homogeneity and slowly evolving in time). This in turn corresponds in the field theory

side to a dissipative fluid. Indeed, by computing now the Brown-York stress tensor at

the boundary, in addition to the perfect fluid part, one obtains new dissipative pieces

in the stress tensor of the fluid. At the one derivative level the fluid stress tensor
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has a single undetermined parameter − the shear viscosity which one reads, using the

gravity side, to be η
s

= 1
4π

as anticipated . At the two derivative level one determines

other transport coefficients, such as the relaxation time for example. In this sense,

the gravity side plays the role of choosing specific fluids as their dual by fixing the

transport coefficients of the stress tensor to some values. Remember that by knowing

the stress tensor of the fluid one can derive immediately its equations of motion as they

are simply the conservation equations ∇µT
µν = 0.

2.6 Holography in flat space

Holography is supposed to be a universal feature of gravitational systems [7, 8]. Its

formulation, however, in a general spacetime is understood only in very few cases.

The most familiar and successful example of holography today is the asymptotically

AdS spacetime. The AdS/CFT correspondence incorporates and exposes very nicely

the holographic principle. There were many attempts, partially successful though, to

define and formulate holography in deSitter spacetime. This is what has become known

as the dS/CFT correspondence [23, 24]. There were very little progress, however, in

formulating holography in asymptotically flat spacetimes, despite the fact that those

spacetimes are the closest to intuition and to our experimental setups.

In hindsight, one of the immediately seen differences between the flat and AdS

case is that in Anti-deSitter spacetime the boundary (where the dual theory lives) is

timelike, whereas, in asymptotically flat spaces the smooth boundary of spacetime is

null (future and past null infinity in the conformal Penrose diagram). This poses the

difficulty of how, or even if it is possible at all, to formulate a dual quantum field theory

on null surfaces. Some proposals for solving this problem and others were put forward

by saying that the boundary of flat spacetime is spatial infinity instead (see [37, 38]

and references therein). In [38], for example, it was argued that the dual quantum field

theory to asymptotically flat spacetime is a non-local one.

In this regard, an interesting road to take would be to try to find the analoge of the

fluid/gravity correspondence in flat space. Namely, take an asymptotically flat black

brane (it is asymptotically flat only in the transverse directions of the brane) and try

to find its dual fluid at spatial infinity, by making the brane fluctuate in a certain way,

departing from homogeneity. An attempt in this direction can be found within the

framework of the blackfolds approach [27, 28, 66], and, in particular, in what we are

going to develop in chapter 5.
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2.7 Outline of thesis

The outline of this thesis is the following:

• In chapter 3 we give a short introduction to the blackfolds approach to higher

dimensional black holes. We dicuss the reasons that make new approximate meth-

ods available in higher dimensions. We intoduce the basic objects, or the building

blocks, of the approach, which are the boosted black p−branes, and explain how

the blackfolds approach can be used to construct from them new stationary solu-

tions to the gravitational field equations with new and novel topologies and how

it can be used to construct dynamical solutions as well.

• In chapter 4 we give a brief introduction to the topic of topology change in general

relativity. We discuss the Kaluza-Klein black hole phases, the homogeneous black

string phase, the inhomogeneous black string phase and the localized black hole

phase. We explain the mechanism under which a topological phase transition

appears as one moves in the phase space from a black string to a localized black

hole.

• In chapter 5 we study long wavelength perturbations of neutral black p-branes

in asymptotically flat space and show that, as anticipated in the blackfold ap-

proach, solutions of the relativistic hydrodynamic equations for an effective p+1-

dimensional fluid yield solutions to the vacuum Einstein equations in a derivative

expansion. Going beyond the perfect fluid approximation, we compute the effec-

tive shear and bulk viscosities of the black brane. The values we obtain saturate

generic bounds. Sound waves in the effective fluid are unstable, and have been

previously related to the Gregory-Laflamme instability of black p-branes. By

including the damping effect of the viscosity in the unstable sound waves, we

obtain a remarkably good and simple approximation to the dispersion relation

of the Gregory-Laflamme modes, whose accuracy increases with the number of

transverse dimensions. We propose an exact limiting form as the number of

dimensions tends to infinity.

• In chapter 6 we study topology-changing transitions in the space of higher di-

mensional black hole solutions. Kol has proposed that these are conifold-type

transitions controlled by self-similar double-cone geometries. We present an ex-

act example of this phenomenon in the intersection between a black hole horizon

and a cosmological deSitter horizon in D ≥ 6. We also describe local models

for the critical geometries that control many transitions in the phase space of
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higher-dimensional black holes, such as the pinch-down of a topologically spheri-

cal black hole to a black ring or to a black p-sphere, or the merger between black

holes and black rings in black Saturns or di-rings in D ≥ 6.

• In chapter 7 we summarize our results.

• A and B are appendices belonging to chapter 6 .
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Chapter 3

Blackfolds

3.1 General idea

The blackfolds approach to higher dimensional black holes [27, 28, 66] is an effec-

tive long-wavelength world-volume theory for the dynamics of black p−branes. It is

analogous to the D.B.I action, which gives an effective description of the dynamics

of D−branes when the deviations from the flat D−brane configuration are locally

sufficiently small. Given a flat black p−brane in a background space, the blackfolds

approach tells you how to bend this black p−brane over a submanifold Wp of the

background manifold MD, order by order in a certain derivative expansion, so as to

make it a solution to the gravitational field equations. In this sense, the blackfolds

approach can be used to construct new stationary solutions to the field equations with

new topologies. A simple example of the latter idea is a black string in flat space.

By boosting and curving the black string into a circle appropriately (to balance the

forces), one obtains a black ring in flat space. A similar exercise can be performed in

AdS and dS spaces [46]. One can use the blackfolds approach to study dynamical and

non-stationary situations as well, as we are going to show in detail in chapter 5, and it

turns to capture the Gregory-Laflamme instability of black p−branes in a very striking

way.

The main reason why such constructions are not available in 4−dimensional gravity

is the fact that whereas in 4−dimensions the length scales set by the mass and the

angular momentum are of the same order of magnitude due to the Kerr bound J ≤
GM2, in higher dimensional gravity they can be largely separated since there are black

holes with no upper bound on the angular momentum. The large separation in the

length scales defines a small parameter which can be used to construct new solutions
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order by order in the small parameter,

`M
`J

<< 1 , (3.1.1)

where `M and `J are the length scales associated with the mass and the angular mo-

mentum, respectively. For example, for neutral vacuum black holes one has

`M ∼ (GM)
1

D−3 , `J ∼
J

M
. (3.1.2)

A familiar example of the previous dicussion is the Myers-Perry black hole. If one

rotates it very fast and at the same time one keeps its horizon size finite then its horizon

pancakes along the rotation plane and the resulting geometry is the infinitely extended,

boosted flat black brane [56]. This example suggests that our building blocks should

be the flat black p−branes as we are going to discuss in the next chapter.

One may want also to apply the blackfolds approach to construct new black hole

solutions in supergravity and low energy string theory, stationary or dynamical. Here

the test black objects (the blackfolds) can be charged with respect to different fields, of

the types that arise in supergravity and string theory. This line was pursued in detail

in [67, 68].

3.2 Boosted black p−branes

The building blocks of the blackfolds approach are the boosted black p−branes given

by the metric

ds2 =

(
ηab +

rn0
rn
uaub

)
dσadσb +

dr2

1− rn0
rn

+ r2dΩ2
n+1 , (3.2.1)

where one should remember, throughout, that the spacetime dimension D is given by

D = p+ n+ 3 (3.2.2)

and where σa (a = 0, ..., p) are the world-volume coordinates of the black p−brane. The

collective coordinates of the black brane that describe its embedding in a background

space are the horizon size r0, the p spatial components of the velocity ui satisfying

ηabu
aub = −1, and the embedding spacetime coordinate Xµ(σ) that specifies the lo-

cation of the black brane inside the background space. The long-wavelength effective

theory makes the variables (the collective coordinates) vary slowly along the submani-

fold Wp over a large length scale R >> r0. Typically, R is set by the smallest curvature

radius associated with Wp.
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In general, upon such embeddings of branes in background spaces, promoting the

variables to functions of the world-volume coordinates σ is also accompanied by changes

in the world-volume metric (induced metric) ηab → γab(X
µ(σ)). Altogether one gets

the following metric

ds2 =

(
γab(X

µ(σ)) +
rn0 (σ)

rn
ua(σ)ub(σ)

)
dσadσb +

dr2

1− rn0 (σ)

rn

+ r2dΩ2
n+1 + ... (3.2.3)

where the dots denote corrections of order O(r0/R) that make the metric solve the

vacuum Einstein equations. In chapter 5 we are going to focus on the case where

the black brane is in flat space and where only intrinsic fluctuations are allowed − no

extrinsic bending of the brane is performed − so that γab(X
µ(σ)) = ηab, and we are

going to compute the first order corrections to the above metric. In ref [69] the authors

studied the case in which one performs an extrinsic bending of the brane as well.

3.3 Effective stress tensor

The metric (3.2.3) is a solution to the field equations in what is called the near zone

region, r0 ≤ r << R, where the black brane degrees of freedom are dominant. On

the other hand, in the far zone region, r0 << r ∼ R, the background space degrees

of freedom dominates. Hence, the two metrics should match together in the matching

zone, or the intermediate zone, where

r0 << r << R . (3.3.1)

Using the metric (3.2.3) one can compute a stress-energy tensor in the intermediate

zone in accord to the Brown-York prescription [36],

T (BY)
µν =

1

8πG

(
Kµν − hµνK − (K(0)

µν − hµνK(0))
)
, (3.3.2)

where Kµν is the extrinsic curvature of the r = constant surface, hµν is the induced

metric on the surface , and where we perform a background substraction from flat

spacetime. Furthermore, we can obtain an effective p + 1 stress tensor of the black

brane by integrating out the short-wavelength degrees of freedom by integrating over

the sphere Sn+1. That is, the effective p+ 1 stress tensor is

Tab =

∫
Sn+1

T
(BY)
ab . (3.3.3)

At leading order in the expansion one obtains

Tab =
Ωn+1

16πG
rn0 (nuaub − ηab) . (3.3.4)
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This is a stress tensor of a perfect fluid,

Tab = (ρ+ P )uaub + Pηab , (3.3.5)

where the energy density and the pressure are

ρ =
Ωn+1

16πG
(n+ 1)rn0 , P = − Ωn+1

16πG
rn0 . (3.3.6)

One also defines local entopy and temperature,

s =
Ωn+1

4G
rn+1

0 , T =
n

4πr0

. (3.3.7)

The thermodynamics of black holes is satisfied locally on the black brane. The first

law of thermodynamics is satisfied locally,

dρ = Tds , (3.3.8)

and also the the Euler-Gibbs-Duhem relation,

ρ+ P = Ts . (3.3.9)

3.4 Equations of motion for blackfolds

Finally, we list below a couple of results in a short manner. The blackfolds equations

of motion split into extrinsic and intrinsic equations respectively,

T µνKµν
ρ = 0 , (3.4.1)

DaT
ab = 0 , (3.4.2)

where a, b, ... are world-volume indices and µ, ν, ... are spacetime indices. In the above

we have used the following definitions. T µν is the pullback tensor constructed from T ab

as

T µν = ∂aX
µ∂bX

νT ab . (3.4.3)

The tensor Kµν
ρ is the extrinsic curvature tensor defined as

Kµν
ρ = hµ

σhν
α∇αhσ

ρ , (3.4.4)

where hµν is the first fundamental form of the submanifold Wp+1 given by

hµν = ∂aX
µ∂bX

νγab . (3.4.5)

Finally, Da is the world-volume covariant derivative.
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Chapter 4

Topology change in general

relativity

4.1 Prelude

As is well known, in 4−dimensional gravity there is the uniqueness theorem [9], which

states, in special, that for vacuum Einstein equations, for a given mass and angular mo-

mentum there is only one black hole solution, the Schwarzschild-Kerr black hole, which

has a horizon topology of a 2−shpere. In higher dimensions however, for spacetime

dimension D larger than four, the uniqueness theorem does not hold, and a counter

example was found; the 5−dimensional black ring [14]. In 5−dimensions, for a given

mass and angular momentum, in addition to the Myers-Perry black hole solution there

are two black ring solutions as well. Another example of the break down of the unique-

ness theorem in higher dimensions is the phase space of static and neutral Kaluza-Klein

black holes, which is going to be the focus of our current chapter. The known phases

insofar are the socalled (1) the uniform black string (2) the nonuniform black string

(3) the localized black hole, and a class of phases which is called (4) the Kaluza-Klein

bubbles. For certain values of the mass three solutions exist, a uniform black string,

a nonuniform black string and a localized black hole, the latter having a topology

different from the former two phases. As for the phases of Kaluza-Klein bubbles we

refer the reader to [71] and we content ourselves by saying that there, there is even a

continuousely infininte non-uniqueness of solutions .

As was just mentioned, in this chapter, for simplicity, we are going to focus on

static and neutral Kaluza-Klein black holes. For reviews including charged and rotating

Kaluza-Klein black holes see for example [70].
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4.2 Phases of Kaluza-Klein black holes

A (d+1)−dimensional static and neutral Kaluza-Klein black hole is defined as a vacuum

gravity solution that asymptotes to d dimensional Minkowski spacetime times a circle

S1. That is, at infinity it is Md × S1. There are 3 branches of solutions that share the

property that they have a local SO(d− 1) symmetry and they are the:

(i) Uniform black string

(ii) Nonuniform black string

(iii) Localized black hole

and there is a quite distinct further class of phases (for which we refer the reader to

[71]), called the Kaluza-Klein bubbles. In what follows we give an account of each of

the three phases in some detail.

(i) The uniform black string solution is a familiar one, and its metric is

ds2 = −
(

1− rd−3
0

rd−3

)
dt2 +

dr2

1− rd−3
0

rd−3

+ r2dΩ2
d−2 + dz2 , (4.2.1)

with the coordinate z having the compact range

z ∈ [0, L] , (4.2.2)

where L is the length of the Kaluza-Klein circle S1. The topology of the horizon

of the uniform black string is

Sd−2 × S1 . (4.2.3)

For fixed L, the black string solution exist for every size of the horizon r0. Never-

theless, for sufficiently small black strings (r0 sufficiently small relative to L) the

uniform black string is unstable due to the Gregory-Laflamme instability, whereas

for sufficiently large r0 the uniform black string is stable. In other words, for fixed

L and d, there is a certain size of the horizon r0 = LGL such that for r0 < LGL

the uniform black string is unstable while for r0 > LGL it becomes stable.

In the range r0 < LGL, which is equivalent to say, for small masses, if one

perturbes the uniform black string, then the Gregory-Laflamme instability takes

the uniform black string to another solution. However, as the Gregory-Laflamme

mode is time dependent in this range, one will be moving in the phase space of

solutions along a trajectory of time dependent solutions. The latter trajectory,

however, lies outside the static configuration space we are interested in. In short,

in this range the uniform black string is dynamically unstable.
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In the range r0 > LGL, that is, for large masses, the uniform black string is

stable, but agian, since perturbations are time dependent the resulting perturbed

solutions are dynamical (they will decay to the uniform black string after some

time) and so these configurations fall short of our interest.

The marginal value r0 = LGL is interesting and it gives rise to the nonuniform

black string phase, which we will discuss next.

(ii) At the the marginal value r0 = LGL something interesting happens to the uni-

form black string. As the perturbation mode is time independent for this marginal

value one expects to move from the uniform black string configuration to another

static configuration in which the black string size varies along the Kaluza-Klein

circle. This phase is called the inhomogeneous black string phase or the nonuni-

form black string phase. Since this phase is connected continuously to the uniform

phase, the topology of the nonuniform black string is the same as the uniform

one, Sd−2×S1, at least when the deformation away from the uniform black string

is sufficiently small. This solution was found numerically in [49].

(iii) Note that one can localize on the Kaluza-Klein circle a black hole of topology

Sd−1 if its size is very small compared to the length of the circle L. For regions

close enough to the black hole, the black hole can be approximated by the familiar

Schwarzschild solution in d+ 1 dimensions

ds2 = −
(

1− Rd−2
0

rd−2

)
dt2 +

dr2

1− Rd−2
0

rd−2

+ r2dΩ2
d−1 , (4.2.4)

where R0 is the Schwarzschild radius of the black hole. For R0 << L an analyt-

ical solution was found in [72, 73] up to first order. There has been also some

numerical work on this branch (see for example [74, 75]).

Note that this phase corresponds to small masses in the parameter space. Since

the uniform black string is dynamically unstable in this range, one expects the

localized black hole to be the end state of that instability. Therefore, one expects

the localized black hole to be dynamically stable.

4.3 Black string−black hole transition

Upon taking the localized black hole and starting to increase its size (its mass) little

by little, at some point the two ends of the black hole will touch each other across

the Kaluza-Klein circle. After its two ends intersect one expects them to merge. Note

that the configuration with the two ends of the black hole merged is no more than a
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nonuniform black string configuration. Therefore, one clearly sees that, the nonuniform

black string phase connects the localized black hole phase with the uniform black string

phase, each with a different topology, and hence one expects to encounter, here, a

topological phase transition.

One can also imagine the opposite direction scenario. Start from a nonuniform

black string solution, and increase its inhomogeneity little by little, in such a way as

to make the horizon shrink to zero size, or pinch off, at some place along the Kaluza-

Klein circle. The resulting solution is a large localized black hole with its two ends

just touching across the circle. The next point along this phase space trajectory is

a localized black hole with its two ends seperated from each other. Here again, the

nonuniform phase behaves as a mediator upon moving, in the phase space, from the

uniform phase to the localized phase.

It was argued in [52] that the solution that mediates between the two different

topology solutions is singular. Locally, at the point where the two ends of a large

localized black hole intersect an exact solution was proposed. It is a Ricci-flat self-

similar cone, which can be written in the Euclidean section as

ds2 = dz2 +
z2

D − 2

[
dΩ2

2 + (D − 4)dΩ2
D−3

]
, (4.3.1)

which is a cone over S2 × SD−3. The Lorentzian version is,

ds2 = dz2 +
z2

D − 2

[
− sin2 βdt2 + dβ2 + (D − 4)dΩ2

D−3

]
. (4.3.2)

with β ∈ [0, 2π]. The cone is singular at the apex, at z = 0. There are two horizons,

one at β = 0 and the other at β = π, and they are connected, not smoothly, at the apex

of the cone z = 0. Note, furthermore, that both the S2 and the SD−3 are contractible

since their sizes shrink to zero at the apex. There are two ways to deform the cone

so as to turn it into a smooth geometry (see figure 4.1 below). The first way is to

go to the nonuniform black string phase, by resolving the SD−3, i.e., by making it

not contractible, leaving the Euclidean S2 contractible. The second way is to go to

the localized black hole phase, by resolving the Euclidean S2, i.e., by making it not

contractible, leaving the SD−3 contractible. See the figure 4.1, below, for illustration.

The cone metric written above is the local critical geometry around the intersection

point. As for the critical geometry away from the intersection point, no analytical

results were obtained, and people have resorted, instead, to numerical work (e.g. see

[74] and references therein).
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Figure 4.1: Black hole/black string transition in a Kaluza-Klein circle (the circle runs along

the horizontal axis), following [52]. The circle fibered over the dashed segments is the Eu-

clidean time circle, which shrinks to zero at the horizon: this fiber bundle describes a S2. We

also mark a cycle SD−3 on the horizon. In the black string phase (a) the S2 is contractible,

the SD−3 is not, while in the black hole phase (c) the SD−3 is contractible, the S2 is not.

The transition between the two phases is of conifold type, with the critical geometry (b)

becoming, near the pinch-off point, a cone over S2 × SD−3.

4.4 Other topological transitions

In chapter 6 we are going to provide an exact analytical example of a topological phase

transition of a different, but analogous, system in which the transition is mediated,

as well, by a self-similar cone; a rotating black hole in deSitter space with a single

rotation in D ≥ 6. In other words, we are going to give the full geometries (not only

the local ones) along the transition trajectory in the phase space of solutions, starting

from a regular phase of two disconnected horizons, to a critical geometry (singular) of

two intersecting horizons, and finally to a merged phase with a single horizon.

We are also going to describe in chapter 6 local models for the critical geometries

that control many transitions in the phase space of higher-dimensional black holes,

such as the pinch-down of a topologically spherical black hole to a black ring or to a

black p-sphere, or the merger between black holes and black rings in black Saturns or

di-rings in D ≥ 6.
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Chapter 5

Black Brane Viscosity and the

Gregory-Laflamme Instability

5.1 Introduction and Summary

Black holes exhibit thermodynamic behavior, so it is natural to expect that their long

wavelength fluctuations, relative to a suitable length scale, can be described using an

effective hydrodynamic theory. Over the years there have appeared several different

realizations of this idea, which differ in the precise set of gravitational degrees of free-

dom that are captured hydrodynamically (e.g., only those inside a (stretched) horizon

as in [25], or the entire gravitational field up to a large distance from a black brane

spacetime as in [26, 27]) or in the kind of asymptotics (Anti-deSitter [26] or flat [27])

of the black hole/brane geometry.

In this chapter we focus on the hydrodynamic formulation developed recently for

higher-dimensional black holes, including asymptotically flat vacuum black holes and

black branes [27]. In this approach the effective stress tensor of the ‘black brane fluid’ is

the quasilocal stress tensor computed on a surface B in a region that is asymptotically

flat in directions transverse to the brane1. The equations of stress-energy conserva-

tion describe both hydrodynamic (intrinsic) fluctuations along the worldvolume of the

brane, and elastic (extrinsic) fluctuations of the brane worldvolume inside a ‘target’

spacetime that extends beyond B. Thus the dynamics of a black p-brane takes the

form of the dynamics of a fluid that lives on a dynamical worldvolume. This is referred

to as the blackfold approach.

In this chapter we only study the intrinsic, hydrodynamic aspects of the brane.

The worldvolume geometry, defined by the surface B at spatial infinity, is kept flat

1In the following, asymptotic flatness always refers to directions transverse to the brane.
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and fixed. Fluctuations of the worldvolume geometry are non-normalizable modes, so

the extrinsic worldvolume dynamics decouples. With this simplification, the set up is

very similar to the fluid/AdS-gravity correspondence of [26], which we follow in many

respects. The main difference is that we consider vacuum black brane solutions, with

no cosmological constant and with different asymptotics.

The quasilocal stress tensor of a neutral vacuum black brane, with geometry equal to

the n+ 3-dimensional Schwarzschild-Tangherlini solution times Rp, is that of a perfect

fluid with energy density ρ and pressure P related by the equation of state

P = − ρ

n+ 1
. (5.1.1)

We may choose the black brane temperature T as the variable that determines ρ and

P . The brane could also be boosted and thus have a non-zero velocity field along

its worldvolume. In a stationary equilibrium state, the temperature and the velocity

are uniform. We study fluctuations away from this state where these quantities vary

slowly over the worldvolume. Their wavelength is measured relative to the thermal

length T−1, so for a fluctuation with wavenumber k the small expansion parameter is

k

T
� 1 . (5.1.2)

Since for a vacuum black brane the temperature is inversely proportional to the thick-

ness of the brane, r0, this can be equivalently expressed as kr0 � 1.

To leading order in this expansion we obtain the hydrodynamics of an effective

perfect fluid, which refs. [28, 27, 29] have used to derive non-trivial results for higher-

dimensional black holes. At the next order the stress tensor includes dissipative terms.

For the purely intrinsic dynamics, these are the shear and bulk viscosities, η and ζ. In

contrast to [26], our fluid is not conformally invariant so ζ 6= 0 is expected.

By analyzing long wavelength perturbations of the black brane and their effect on

the stress tensor measured near spatial infinity we obtain

η =
s

4π
, ζ = 2η

(
1

p
− c2

s

)
(5.1.3)

where s is the entropy density of the fluid, i.e., 1/4G times the area density of the black

brane, and

c2
s =

dP

dρ
= − 1

n+ 1
(5.1.4)

is the speed of sound, squared.

Written in the form (5.1.3), these values for η and ζ saturate the bounds proposed in

[30] and [31]. The result for the shear viscosity is not too surprising: η can be argued to

depend only on the geometry near the horizon and its ratio to s is universal for theories
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of two-derivative Einstein gravity [30, 32] (see also [33]). The bulk viscosity, instead,

does depend strongly on the radial profile transverse to the brane2 so the saturation of

the bound is presumably less expected. Note, however, that these black branes have

different asymptotics than in all the previous instances where the effective viscosities

of black branes have been considered. In particular, these black branes presumably

are not dual to the plasma of any (local) quantum field theory. In any case it is worth

emphasizing that our computations are for the theory with the simplest gravitational

dynamics: Rµν = 0.

The imaginary speed of sound (5.1.4) implies that sound waves along the effective

black brane fluid are unstable: under a density perturbation the fluid evolves to be-

come more and more inhomogenous. Since this means that the black brane horizon

itself becomes inhomogeneous, ref. [27] related this effect to the Gregory-Laflamme

(GL) instability of black branes [34]3. Then (5.1.4) implies a simple form for the

dispersion relation of the GL unstable modes ω(k) = −iΩ(k) at long wavelength:

Ω = k/
√
n+ 1 + O(k2), i.e., the slope of the curve Ω(k) near k = 0 is exactly (and

very simply) determined in the unstable-perfect-fluid approximation.
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Figure 5.1: Left: dispersion relation Ω(k), eq. (5.1.5), for unstable sound waves in

the effective black brane fluid (normalized relative to the thickness r0). Right: Ω(k)

for the unstable Gregory-Laflamme mode for black branes (numerical data courtesy of

P. Figueras). For black p-branes in D spacetime dimensions, the curves depend only

on n = D − p− 3.

Using our results for η and ζ we can include the viscous damping of sound waves

in the effective black brane fluid. The dispersion relation of unstable modes becomes

Ω =
k√
n+ 1

(
1− n+ 2

n
√
n+ 1

kr0

)
, (5.1.5)

2For instance, in the membrane paradigm the bulk viscosity on the stretched horizon for a generic

black hole turns out to be negative. Our result (5.1.3) is instead positive.
3This connection had also been made for black branes with gauge theory duals in [35].
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which is valid up to corrections ∝ k3. Figure 5.1 compares this dispersion relation

to the numerical results obtained from linearized perturbations of a black p-brane.

Zooming in on small values of kr0, the match is excellent. When kr0 is of order one

0 2 4 6 8 10
k r00.00

0.05

0.10

0.15

0.20

0.25

W r0

n=100

Figure 5.2: Dispersion relation Ω(k) of unstable modes for n = 100: the solid line is our

analytic approximation eq. (5.1.5); the dots are the numerical solution of the Gregory-

Laflamme perturbations of black branes (numerical data courtesy of P. Figueras).

we have no right to expect agreement, but the overall qualitative resemblance of the

curves is nevertheless striking. The quantitative agreement improves with increasing

n and indeed, as figure 5.2 shows, at large n it becomes impressively good over all

wavelengths: for n = 100 the numerical values are reproduced to better than 1%

accuracy up to the maximum value of k. Although the extent of this agreement is

surprising, we will provide some arguments for why the fluid approximation appears

to be so successful as n grows.

Thus, the effective viscous fluid seems to capture in a simple manner some of the

most characteristic features of black brane dynamics. We believe this is a significant

simplification from the complexity of the full Einstein equations.

The outline of the rest of the chapter is as follows: the next section contains the

bulk of the calculations of the paper for a generic hydrodynamic-type perturbation of

the black brane. We highlight the differences with the analysis of [26], in particular at
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asymptotic infinity, and compute the values (5.1.3) for the effective η and ζ. Section 5.3

relates the linearized damped sound-mode perturbations of the fluid to the Gregory-

Laflamme perturbations of the black brane. We examine the conditions that can lead

to the surprising quantitative agreement of the dispersion relation at large n, and we

propose its exact form as n→∞. We close in section 5.4 with an examination of the

differences with other fluid-like approaches to the GL instability, and a discussion of

our results within the context of the blackfold approach.

5.2 Hydrodynamic perturbations of black branes

In this section we study general perturbations of a vacuum black p-brane with slow

variation along the worlvolume directions of the brane. Up to gauge transformations,

they are fully determined by the boundary conditions of horizon regularity and asymp-

totic flatness at spatial infinity. Most of our analysis is very close to the study of

hydrodynamic perturbations of AdS black branes, but there is an additional complica-

tion in the study of the perturbations at asymptotic infinity. Nevertheless, we are able

to find the complete explicit form of the perturbed solution for a generic hydrodynamic

flow to first order in the derivative expansion.

Readers who do not need or want the technical details of the calculation of the

perturbed solution and the viscous stress tensor can safely skip to section 5.3.

5.2.1 Preliminaries

Black branes and their effective stress tensor

The black p-brane solution of vacuum gravity in D = p+ n+ 3 dimensions is

ds2 =

(
ηab +

rn0
rn
uaub

)
dσadσb +

dr2

1− rn0
rn

+ r2dΩ2
n+1 , (5.2.1)

with a = 0, 1, . . . , p. The solution is characterized by the horizon radius r0 (or brane

‘thickness’) and the worldvolume velocity ua, with uaubηab = −1. It is asymptotically

flat in the directions transverse to the worldvolume coordinates σa. We can associate

to it a stress-energy tensor measured at spatial infinity. There are several possible

definitions of this stress tensor that would be equivalent for calculational purposes, but

for conceptual reasons the most convenient for us is the quasilocal one of Brown and

York [36]. We consider a boundary surface at large constant r, with induced metric

hµν and compute

T (BY)
µν =

1

8πG

(
Kµν − hµνK − (K(0)

µν − hµνK(0))
)
, (5.2.2)
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where Kµν is the extrinsic curvature of the surface and we perform a background

substraction from flat spacetime.

The geometry of the boundary surface for (5.2.1) is R1,p× Sn+1. We will introduce

perturbations with wavelengths much longer than the size r0 of the Sn+1 at the horizon.

The deformations of this sphere all have large masses ∼ 1/r0 and therefore decouple.

Thus the SO(n+ 2) symmetry of Sn+1 is preserved and, in an appropriate gauge, the

metric will remain a direct product with a factor of this sphere. We integrate over the

sphere to obtain the stress tensor for the black p-brane

Tab =

∫
Sn+1

T
(BY)
ab . (5.2.3)

We regard this stress tensor as living on the worldvolume of the brane, i.e., the

p + 1 extended directions of the boundary. The worldvolume metric results from the

asymptotic form of the boundary metric, which in our case is the Minkowski metric

hab → ηab . (5.2.4)

A main advantage of using the quasilocal stress tensor is that the Gauss-Codacci

equations for the constant-r cylinder imply ∂aTab ∝ Rr
b, so imposing the Einstein

equations in vacuum it follows that the stress tensor is conserved

∂aTab = 0 . (5.2.5)

The stress tensor for the solution (5.2.1) has the perfect fluid form

Tab = ρuaub + PPab , Pab = ηab + uaub (5.2.6)

with energy density and pressure

ρ = −(n+ 1)P = (n+ 1)
Ωn+1r

n
0

16πG
. (5.2.7)

The horizon area allows to associate a local entropy density to this effective fluid

s =
Ωn+1r

n+1
0

4G
(5.2.8)

and all the thermodynamic functions can be expressed as functions of the temperature

T =
n

4πr0

. (5.2.9)

We can equivalently use T or r0 as the variable that determines local equilibrium. In

this section we will mostly use r0 for notational simplicity.
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We will be interested in preserving regularity at the horizon. This is manifest if

instead of the Schwarzschild coordinates in (5.2.1) we use Eddington-Finkelstein (EF)

ones,

σa → σa − uar∗ , r∗ =

∫
1

1− (r0/r)n
dr , (5.2.10)

such that

ds2 = −
(

1− rn0
rn

)
uaubdσ

adσb − 2uadσ
adr + Pabdσ

adσb + r2dΩ2
n+1 . (5.2.11)

Perturbations

We promote the thickness and velocity parameters to collective fields over the world-

volume, so

ds2
(0) = −

(
1− r0(σ)n

rn

)
ua(σ)ub(σ)dσadσb − 2ua(σ)dσadr + (ηab + ua(σ)ub(σ)) dσadσb

+r2dΩ2
n+1 , (5.2.12)

where r0(σ) and ua(σ) are assumed to vary slowly relative to the scale set by r0. In this

chapter we expand them to first order in derivatives, which we keep track of through

a formal derivative-counting parameter ε. With non-uniform r0 and ua, the metric

(5.2.12) is not Ricci flat so we add to it a component with radial dependence

ds2 = ds2
(0) + εfµν(r)dx

µdxν +O(ε2) . (5.2.13)

We choose a gauge in which ∂r is a null vector with normalization fixed by the radius

r of Sn+1, so that

frr = 0 , fΩµ = 0 . (5.2.14)

With this choice the sphere Sn+1 can be integrated out.

Demanding that (5.2.13) satisfies the vacuum Einstein equations to first order in

ε results into a set of ODEs for fµν(r). These will be solved subject to regularity at

the horizon r = r0, which is easily imposed as a condition of metric finiteness in EF

coordinates, and to asymptotic flatness, to which we turn next.

Asymptotic infinity

The asymptotic behavior of our spacetimes introduces an important difference relative

to the perturbations of AdS black branes. For the latter, the calculations can be

performed in their entirety in EF coordinates in which ∂r is a null vector. By taking

large values of r in these coordinates one approaches null infinity, but in AdS this is
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the same as spatial infinity. The AdS boundary is always a timelike surface. However,

in our asymptotically flat space, null and spatial infinities differ.

We are ultimately interested in computing the quasilocal stress tensor on a timelike

boundary of spacetime endowed with a non-degenerate metric. But if we approach

null infinity, the boundary metric will be degenerate and it is unclear whether the

quasilocal stress tensor is well defined there. Instead, it seems more appropriate (and

is definitely unproblematic) to compute the stress tensor at spatial infinity4. For this

purpose EF coordinates are very awkward and it is much more convenient to switch

back to Schwarzschild-like coordinates {r, t, σi} at large r.

Thus we will work with two sets of coordinates: EF ones, in which horizon regu-

larity is manifest, and Schwarzschild coordinates, in which spatial infinity is naturally

approached. We need to provide the change of coordinates that relates them, extending

the inverse of (5.2.10) to include O(ε) terms. The correction is naturally guessed by

recalling that ua and r0, which appear in the transformation (5.2.10), now depend on

the EF coordinates. Thus,

σa → σa + ua(v, σi)

∫
dr

1− (r0(v, σi)/r)n
, (5.2.15)

or more explicitly,

v → t+ r∗ + ε
(t+ r∗)∂vr0 + σi∂ir0

r0

(
r∗ −

r

1− (r0/r)n

)
+O(ε2) ,

σi → σi + ε
(
(t+ r∗)∂vu

i + σj∂ju
i
)
r∗ +O(ε2) . (5.2.16)

5.2.2 Solving the perturbation equations

At each point we choose coordinates centered on that point and go to an (unperturbed)

local rest frame. In EF coordinates the velocity perturbation is

uv(σ) = 1 +O(ε2) , ui(σ) = εσa∂au
i(0) +O(ε2) . (5.2.17)

Note that since local velocities are small the constraint u2 = −1 is automatically

satisfied to the order we need. The other collective variable of the effective black brane

4Presumably the appropriate notion of spatial infinity here is not Penrose’s i0 (which is just a point)

but more along the lines of [37], which naturally allows a dependence along the boundary directions.

Although our spatial infinity is not exactly the same as in [37] since instead of a hyperboloid we work

on a cylinder where R1,p and Sn+1 scale differently at infinity, this is not a problem for us since we

are integrating over Sn+1. It would be interesting, especially with a view to holography, to further

formalize this notion of spatial infinity. Related remarks concerning holography in asymptotically flat

spacetimes have been made in [38].
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fluid is the temperature T , or equivalently the thickness r0, which we perturb as

r0(σ) = r0(0) + εσa∂ar0(0) +O(ε2) . (5.2.18)

In the following we understand all quantities as evaluated at σa = 0 and thus denote

∂au
i(0)→ ∂au

i, r0(0)→ r0 etc.

The metric (5.2.13) is now

ds2 =2dvdr − f(r)dv2 +

p∑
i=1

dσ2
i + r2dΩ2

n+1

− 2εσa∂auidσ
idr + ε

nrn−1
0 σa∂ar0

rn
dv2 − 2ε

rn0σ
a∂aui
rn

dσidv + εfµν(r)dx
µdxν ,

(5.2.19)

where we denote

f(r) = 1− rn0
rn
. (5.2.20)

The Einstein equations with a radial index, Rr
a = 0 do not involve second deriva-

tives and are constraint equations. Indeed they only involve the hydrodynamic fields

r0 and ui and not fµν ,

(n+ 1)∂vr0 = −r0∂
iui , ∂ir0 = r0∂vui, (5.2.21)

so they are to be regarded as the equations of fluid dynamics, consistently with (5.2.5).

We also verify this interpretation later.

The remaining Einstein’s equations are dynamical and we solve them to find fµν .

The equations Rij = 0 give

∂r
(
rn+1ffij

′) = −2(n+ 1)rn∂(iuj) , (5.2.22)

which, requiring finiteness at the horizon, are solved by

fij(r) = cij − 2∂(iuj)

(
r∗ −

r0

n
log f

)
. (5.2.23)

The integration constants cij will be fixed later demanding asymptotic flatness. The

equations Rvi = 0,

∂r
(
rn+1fvi

′) = −(n+ 1)rn∂vui , (5.2.24)

are solved by

fvi = c
(2)
vi +

c
(1)
vi

rn
− ∂vuir , (5.2.25)

which are regular at the horizon for all values of the constants. Next, the equations

from Rrr = 0 and RΩΩ = 0 are

fvr
′ =

r

2(n+ 1)

p∑
i=1

fii
′′ , (5.2.26)
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and

∂r (rnfvv) = rn∂iui +
rnf

2

(
p∑
i=1

fii
′ − 2fvr

′

)
− 2nrn−1fvr , (5.2.27)

which, assuming that eqs. (5.2.21) are satisfied, are solved by

fvr = cvr +
r2

2(n+ 1)

d

dr

∑
i

fii
r
, (5.2.28)

and

fvv =
2∂iuir +

(
1− n+2

2

rn0
rn

)∑p
i=1 fii

n+ 1
− 2cvr +

rn0
rn
cvv . (5.2.29)

Again these are regular at the horizon for all choices of the integration constants. Note

that frj does not appear in Einstein’s equations to first order in ε and corresponds to

a gauge mode. This, and the integration constants, will be fixed shortly.

At this stage, for any hydrodynamic perturbation that solves the equations (5.2.21),

we have managed to construct a perturbed metric that is regular at the horizon.

Next we must ensure that the solution remains asymptotically flat. Transforming

to Schwarzchild-like coordinates using (5.2.16), we require that

gab = ηab +O(r−n) . (5.2.30)

For the other metric components, we find that grr = 1 + O(r−n), gri = O(r−n), and

gtr = O(r−n+1) when n > 1 (gtr = O(log r/r) when n = 1), are enough to obtain

a finite stress tensor. Recall also that all the metric components involving angular

coordinates of Sn+1 are unaltered.

Omitting details, we find that the conditions on gij and gtj fix

cij = c
(2)
vj = 0 . (5.2.31)

In addition, the effect of c
(1)
vj in gtj amounts to a global shift in the velocity field along

the spatial directions of the brane, so in order to remain in a local rest frame we set

c
(1)
vj = 0 . (5.2.32)

Furthermore, if we perform the change

t→ t (1− εcvr) , (5.2.33)

then cvv − 2cvr results in a global shift in the temperature, which we eliminate by

choosing

cvv = 2cvr . (5.2.34)
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Asymptotic flatness in gtr imposes a choice for cvr that singles out the slower fall-off of

n = 1,

cvr = −∂tr0 for n = 1 , cvr = 0 for n > 1 (5.2.35)

(note that the values of ∂tr0 and ∂vr0 at σa = 0 are equal).

Asymptotic flatness in these coordinates is a little delicate when n = 1 due to its

slower fall-off, and to make it manifest we take an frj gauge diverging at infinity. This

is not necessary when n > 1 (and neither choice affects the calculation of the stress

tensor). Thus we set

frj = −∂jr0 log
r

r0

for n = 1 , frj = 0 for n > 1 . (5.2.36)

Summarizing, we obtain

gij =δij + εr0

2∂(iuj)
n

log f , (5.2.37)

gtj =− εr
n
0

rn
σa∂auj , (5.2.38)

gtr =ε
∂tr0

f

((
rn0
rn
− f

n

)
log f − rn0

rn

(
n
r∗
r0

+ 1

))
− εcvr , (5.2.39)

grj =εfrj(r) + ε
∂jr0

r0

r∗ − r
f

, (5.2.40)

grr =f−1 + εf−2

(
nrn−1

0 σa∂ar0

rn
+
rn0∂tr0

rn
(log f − 2)

)
, (5.2.41)

gtt =− f + ε

(
nrn−1

0 σa∂ar0

rn
+ ∂tr0 log f

(
rn0
rn
− 2

n
f

))
, (5.2.42)

(σa correspond to Schwarzschild coordinates here, so σ0 = t). This is the complete

solution for the black brane metric that corresponds to a hydrodynamic perturbation

that solves the equations (5.2.21) expanded around the origin of the local rest frame,

σa = 0.

5.2.3 Viscous stress tensor

We are now ready to compute the quasilocal stress tensor (5.2.2). The renormalization

via background subtraction is simple and appropriate, since our metrics are infinitesi-

mally close to the uniform black p-brane and their asymptotic boundaries can always

be embedded in flat spacetime. Straightforward calculations give

Tij =
Ωn+1

16πG

(
−δij(r0 + εσa∂ar0)n − εrn+1

0

[(
2∂(iuj) −

2

p
δij∂

`u`

)
+ 2

(
1

p
+

1

n+ 1

)
δij∂

`u`

])
,

Ttt =
Ωn+1

16πG
(n+ 1) (r0 + εσa∂ar0)n , (5.2.43)

Ttj = −Ωn+1r
n
0

16πG
εnσa∂auj ,
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which are valid up to O(ε2). One can easily check that the hydrodynamic equations

∂aT
ab = 0 are indeed equivalent to the constraint equations (5.2.21).

Write now this stress tensor in the form

Tab = ρuaub + PPab − ζθPab − 2ησab +O(∂2) (5.2.44)

where the expansion and shear of the velocity congruence are

θ = ∂au
a , σab = Pa

c

(
∂(cud) −

1

p
Pcd

)
P d

b . (5.2.45)

The component Ttt in (5.2.43) determines the energy density, and requiring that

the equation of state (5.1.1) holds locally uniquely identifies the pressure. Then we can

write

Tij = Pδij − εη
(

2∂(iuj) −
2

p
δij∂

`u`

)
− εζδij∂`u` (5.2.46)

with

η =
Ωn+1

16πG
rn+1

0 , ζ =
Ωn+1

8πG
rn+1

0

(
1

p
+

1

n+ 1

)
. (5.2.47)

Using (5.1.4) and (5.2.8) these can be rewritten as in (5.1.3).

5.3 Damped unstable sound waves and the Gregory-

Laflamme instability

Our analysis in the previous section applies to generic long-wavelength perturbations

of arbitrarily large amplitude. Let us now consider small perturbations of a static fluid

of the form

ρ→ ρ+ δρ , P → P + c2
sδρ , ua = (1, 0, . . . )→ (1, δui) , (5.3.1)

where cs is the speed of sound, and with

δρ(t, σi) = δρ eiωt+ikjσ
j

, δui(t, σi) = δui eiωt+ikjσ
j

. (5.3.2)

We substitute these in the viscous fluid equations and linearize in the amplitudes δρ

and δui, to find

ωδρ+ (ρ+ P )kiδu
i +O(k3) = 0 ,(5.3.3)

iω(ρ+ P )δuj + ic2
sk

jδρ+ ηk2δuj + kj

((
1− 2

p

)
η + ζ

)
klδu

l +O(k3) = 0 .(5.3.4)
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Applying our results above, any solution to these equations can be used to obtain an

explicit black brane solution with a small, long-wavelength fluctuation of r0 and ua. If

we eliminate δρ we find that non-trivial sound waves require

ω − c2
s

k2

ω
− i k

2

Ts

(
2

(
1− 1

p

)
η + ζ

)
+O(k3) = 0 , (5.3.5)

where k =
√
kiki and we have used the Gibbs-Duhem relation ρ + P = Ts. This

equation determines the dispersion relation ω(k). For a stable fluid with c2
s > 0,

viscosity adds a small imaginary part to the frequency, which becomes complex and

describes damped sound oscillations. Instead our effective fluid has imaginary sound-

speed, eq. (5.1.4), so ω is purely imaginary: sound waves are unstable. Writing

ω = −iΩ (5.3.6)

we solve (5.3.5) to find

Ω =
√
−c2

sk −

((
1− 1

p

)
η

s
+

ζ

2s

)
k2

T
+O(k3) . (5.3.7)

For the specific black p-brane fluid this yields the dispersion relation (5.1.5). The

connection between these unstable sound waves and the Gregory-Laflamme instability

was pointed out at the perfect fluid level (i.e., Ω linear in k) in [27], and we have

discussed it in the introduction.5

Figures 5.1 and 5.2 show that our approximation (5.1.5) improves as n grows. In

order to see how this might be justified, let us first rewrite the dispersion relation

(5.1.5) in terms of the temperature T instead of r0,

Ω =
k√
n+ 1

(
1− n+ 2√

n+ 1

k

4πT
+O(k2/T 2)

)
. (5.3.8)

In principle, at any given n, both quantities r0 and T−1 define length scales that are

parametrically equivalent. But if we vary n and allow it to take large values, then r0

and T−1 ∼ r0/n can differ greatly. We propose that in this case, T−1, and not r0, is

the length scale that limits the validity of the fluid approximation, so the appropriate

expansion variable for large n is k/T and not kr0. This may actually be natural since

from the fluid point of view T has a clearer physical meaning than r0. In effect, we

are proposing that when n � 1 it is more accurate to view the effective theory as

describing very hot black branes, rather than very thin ones.

5Observe that the result (5.1.5) is independent of p. That this must be the case is clear from the

outset in the GL analysis and also in our analysis of the Einstein equations.
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The point of this exercise is that for large n the maximum values over which Ω

and k in (5.3.8) range are (k/T )|max ∼ 1/
√
n and (Ω/T )|max ∼ 1/n. So as n grows

the frequency and wavenumber of unstable modes extend over a smaller range of k/T

and Ω/T . This strongly suggests that hydrodynamics can capture more accurately

the dynamics of GL modes when the number of dimensions becomes very large.6

More precisely, if we write the corrections inside the brackets in (5.3.8) in the form∑
j≥2 aj(k/T )j, and assume that the n-dependence of the coefficients aj is such that

ajn
−j/2 → 0 as n → ∞, then the expansion in k/T , i.e., the hydrodynamic derivative

expansion, becomes a better approximation over a larger portion of the curves Ω(k).

This is a relatively mild-looking assumption on the n-dependence of the higher-

order coefficients in the expansion in k/T ,7 and in particular is satisfied if the aj≥2

remain finite as n → ∞. But since we have not computed higher-derivative trans-

port coefficients then, within our perturbative framework, we cannot prove its validity.

However, since the numerical data appear to strongly support it, we conjecture that the

truncation of the dispersion relation up to k2-terms captures the complete dispersion

relation at large n. More precisely, if we define a rescaled frequency and wavenumber,

Ω̃ = nΩ , k̃ =
√
nk (5.3.9)

that remain finite as n→∞, then we propose that

Ω̃ = k̃

(
1− k̃

4πT

)
(5.3.10)

is the exact limiting relation valid for all wavenumbers 0 ≤ k̃ ≤ 4πT .

Note that the truncation of Ω(k) in (5.3.8) appears to capture the zero-mode with

Ω = 0 at a finite k = kGL. This is quite remarkable, since the viscous fluid equation

(5.3.5) does not admit any zero-mode solution. The comparison with numerical data

in figure 5.2 shows that the quantitative result for kGL, although poor for small n,

becomes excellent for large n. Further evidence for the validity of our proposal comes

from the analytical value of the GL zero mode in the limit n→∞ [40]

kGL →
4πT√
n
. (5.3.11)

This is the same as the limiting value for the zero-mode ‘predicted’ by (5.3.9), (5.3.10).8

6This is similar in spirit, although not precisely equal, to the proposal in [39] that in the limit of

large number of dimensions black holes are accurately described by fluid mechanics.
7Which, crucially, is not satisfied by the coefficient of the linear term inside the brackets in (5.3.8).
8The relative difference between the results for kGL from the large-n subleading correction com-

puted in [41] and from (5.1.5) is equal to 1/n. This is precisely the size of the discrepancy observed

in fig. 5.2.
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Presumably, by effecting the scaling (5.3.9) in the full linearized perturbation equa-

tions of the GL problem one may prove (or possibly disprove) equation (5.3.10).

5.4 Discussion

Our analysis of the GL instability must not be confused with recent studies where a

connection to the Rayleigh-Plateau instability of fluid tubes is made. In the latter ap-

proach, following a suggestion in [42], refs. [39, 43] related a d-dimensional black string

in a Scherk-Schwarz compactification of Anti-deSitter space to a d−2-dimensional fluid

tube with a boundary with surface tension (see [44]). The Rayleigh-Plateau instability

of the fluid tube arises from the competition between surface tension and bulk pressure.

In contrast, our effective fluid does not have any boundaries so the instability is not

of the Rayleigh-Plateau type, but rather one in the sound modes. Also note that our

calculations in sec. 5.2 yield explicit black brane solutions to the Einstein equations (in

vacuum) in a derivative expansion, something that, although expected to be possible

in principle, at present cannot be realized for the fluid solutions in [39, 43].

We stress that our analysis is not a ‘dual’ solution of the GL instability problem:

we have investigated the same perturbation problem as in [34] and explicitly solved it

in closed analytic form in a derivative expansion. Since our approach does not require

the perturbations to be small, it may even be used to study the non-linear evolution

of the GL instability.

One of our motivations has been to show explicitly how the effective theory of

blackfolds of [27] can be systematically developed as a derivative expansion of the

Einstein equations. Although we have done it only for the intrinsic aspects of blackfold

dynamics, we have been able to: (i) derive in detail, starting from the ‘microscopic’

(full Einstein) theory, the lowest-order blackfold formalism that ref. [27] had developed

following general principles; (ii) prove that the first corrections to the lowest-order

formalism can be computed and result in perturbations of the black brane that preserve

regularity of the horizon. The viscosity coefficients are determined precisely from this

condition.

In general, the worldvolume of a blackfold is dynamical and can be curved. Our

calculations in this paper can be regarded as being valid for fluid perturbations with

a wavelength that, while longer than T−1, is much shorter than the typical curvature

radius R of the blackfold worldvolume. In this case, the intrinsic and extrinsic dynamics

decouple. Thus, for a curved blackfold our results for the GL instability are valid at

most up to wavelengths smaller than R. At longer wavelengths the hydrodynamics

of the effective fluid is fully coupled to the elastic dynamics of the worldvolume. For
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instance this is case for perturbations of thin black rings with wavelength comparable

to the ring radius. These lie beyond the range of applicability of our results.

It should be quite interesting to extend our analysis to include the extrinsic aspects

of the blackfold. To do this, one first allows the worldvolume metric where the fluid

lives to be a curved background, with an extrinsic curvature radius much larger than

T−1. This curvature acts as an external force on the fluid [27]. In the derivative expan-

sion, the stress tensor will in general contain, besides the viscosities, higher-derivative

coefficients that multiply derivatives of the worldvolume metric. These coefficients

will be determined by demanding horizon regularity of a perturbation that curves the

asymptotic geometry. Perturbations of this kind have been studied for certain illus-

trative examples in [45, 46, 29] in stationary situations that do not involve viscous

dissipation. Thus it may be possible to extract the extrinsic pressure coefficients in the

stress tensor.

In the AdS context, the external force on the fluid from a worldvolume curva-

ture has been studied in [47]. However, in that case the worldvolume geometry is

regarded as a fixed, non-dynamical background. Instead, in the blackfold context this

geometry is dynamical. A solution of the forced fluid equations will backreact on

the background spacetime where the blackfold lives, and thus modify the worldvol-

ume geometry. Therefore for a generic, curved blackfold the explicit construction of

perturbative metrics becomes rather more complicated than in the fluid/AdS-gravity

correspondence.
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Chapter 6

Self-similar critical geometries at

horizon intersections and mergers

6.1 Introduction

As was said in chapter 2 and chapter 4, black holes in higher dimensions exhibit

a pattern of phases much more intricate than the simple situation that uniqueness

theorems impose in four dimensions. Unraveling the structure of this phase space is a

problem in which, despite the steady progress in recent years, there remain important

open issues. In particular, the topology-changing transitions in the space of solutions

at which horizons split or merge involve all the non-linearity of Einstein’s theory and

lie far from the regimes where analytic perturbative techniques of the type developed

in [28, 27] would apply. Numerical methods, while very valuable, face the problem that

the geometries that effect the change in topology involve curvature singularities.

The most studied example of this phenomenon1 is the black hole-black string tran-

sition in Kaluza-Klein compactified spacetimes [48], which we already explained, in

some details, in chapter 4. The uniform string phase branches into a non-uniform

black string phase [49] whose non-uniformity grows until a cycle along the horizon of

the string pinches down to zero size. The same pinched-off phase can be approached

from black holes localized in the KK circle, where the size of the black hole grows

until the two opposite poles of the horizon come into contact with each other along the

circle [50] (see ref. [51] for the state of the art in solutions on both sides of the tran-

sition). Early in these studies, ref. [52] emphasized that the pinched-off solution plays

the role of a critical point in phase space and argued that some of its properties, in

particular the local geometry near the singular pinch-off region, should be determined

1In this chapter we are concerned only with evolution in the phase space of stationary black hole

solutions, not with time evolution in dynamical mergers of horizons.
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by general symmetry considerations. Specifically, it was proposed, using an argument

that we summarized in fig. 4.1, that this geometry (after Wick-rotation to Euclidean

time) is locally modelled by a self-similar cone over S2×SD−3. The transition between

phases is analogous to the ‘conifold transition’, where the critical cone geometry can

be smoothed in two ways, each one leading to one of the phases at each side of the

transition.

Ref. [52] could present in exact form only the local conical geometry asymptotically

close to the pinch-off point. The details of how, and even whether, this conical region

extends to a full critical solution in the KK circle remained open. Moreover, the non-

singular geometries that approach the critical solution are only known perturbatively

or numerically (see [53, 54] and other works cited above). The aim of this chapter is

to, first, present an exact example of a horizon-merger transition that provides strong

analytic evidence for the conifold-type picture, and second, to argue for the universality

of this picture among wide classes of topology-changing transitions involving higher-

dimensional black hole phases.

To this end, in section 6.2 we present a complete, exact family of geometries that

approach a merger of horizons, and we give explicitly the critical solution at the merger.

The system describes the meeting of the horizon of a black hole with a cosmological

deSitter horizon in any D ≥ 6, with the black hole sufficiently distorted away from

spherical symmetry that it intersects the deSitter horizon along a circle, and not on all

points on the horizon. This study confirms that the critical solution near the pinch-

off is locally a self-similar cone with the geometry anticipated in [52]. Section 6.3 is

an attempt to find the geometry after the horizons have merged into a single one.

Unfortunately, the result is only partially successful since the solution presents some

pathologies.

In section 6.4 we describe the critical geometries at the merger point in other im-

portant instances — here we do not have a description of the approach to the merger

transition, but we can always identify the local model for the critical geometries.

Refs. [45, 55] (following [56]) have proposed the following picture for a specific class of

topology-changing transitions: a black ring of horizon topology S1 × SD−3 in D ≥ 6

becomes, as its spin decreases, fat enough that its hole closes up. Coming from the

other side of the transition, the same phase is reached when a pinched rotating black

hole pinches off to a singularity at its axis of rotation. In this chapter we describe the

local conical geometry that controls this transition. We also extend the analysis to

similar transitions that involve black holes with horizon topology Sp × SD−p−2, with

p ≥ 1 [28, 29]. We find the critical conical geometries that appear when the round Sp

closes off and the critical solution connects to a black hole of spherical topology. Other
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Figure 6.1: Black ring pinch in D ≥ 6. The pictures are only illustrative of expected

solutions that are yet to be constructed. In sec. 6.4 we describe the critical geometry near

the self-similar pinch-off point.

Figure 6.2: Circular pinch in the transition involving a black Saturn in D ≥ 6.

conical geometries, for instance those that appear at the merger of a black ring and a

black hole, or two black rings, are easily obtained too.

An interesting, perhaps unexpected, consequence of our analysis is that the critical

conical geometries appear not only when horizons merge, but more generally when they

just intersect. To understand the distinction, note that if there is an actual transition

in which two separate horizons merge to form one horizon, the surface gravities (i.e.,

temperatures) of the two horizons must approach the same value at the critical solution.

However, we find exact critical solutions in which the two horizons have different surface

gravities. These horizons can approach and touch each other locally, i.e., intersect, over

a singularity, but they cannot merge to form a single, connected horizon over which the

temperature must be uniform. Such intersection geometries correspond to endpoints

of trajectories in the space of solutions, and not to topology-changing transitions.

We find that they also take the form of self-similar cones, but their base is not a

homogeneous space (a direct product of round spheres) but an inhomogeneous one (a

warped product).
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Caveat emptor, evolution in the space of black hole solutions, as studied in this

chapter, occurs along geometries that can be quite different than in dynamical evolution

in time, as the example of the black string/black hole transition shows [57]. Presumably

this is also the case in the instances we discuss here.

6.2 Intersection of black hole and deSitter horizons

The so-called D-dimensional Kerr-deSitter solution for a rotating black hole in deSitter

space with a single rotation, as found in [58] but with a shift φ→ φ+ at/L2, is

ds2 = − ∆r

ρ2Ξ2

(
∆θdt− a sin2 θdφ

)2
+ ρ2

(
dr2

∆r

+
dθ2

∆θ

)
+

∆θ sin2 θ

ρ2Ξ2

(
(r2 + a2)dφ− a

(
1− r2

L2

)
dt

)2

+ r2 cos2 θdΩ2
(D−4) (6.2.1)

with

ρ2 = r2 + a2 cos2 θ , (6.2.2)

∆r = (r2 + a2)

(
1− r2

L2

)
− 2M

rD−5
, (6.2.3)

∆θ = 1 +
a2

L2
cos2 θ , (6.2.4)

Ξ = 1 +
a2

L2
, (6.2.5)

and

0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ 2π . (6.2.6)

The metric satisfies Rµν = (D − 1)L−2gµν . When M = 0 this is deSitter spacetime in

‘ellipsoidal coordinates’. When M is non-zero and positive, there is a range of values

of M and a for which the function ∆r has two real positive roots that correspond to

the black hole and cosmological horizons. With non-zero rotation a 6= 0, both horizons

are distorted away from spherical symmetry. For reasons that will become apparent,

we only consider D ≥ 6.

6.2.1 Horizon intersection

We want to take a limit in which the black hole grows and its horizon touches the

cosmological horizon, in such a way that this occurs not uniformly over all of the

horizon, but only along the ‘equator’ at θ = π/2, as illustrated in fig. 6.3. There is an

intuitive reason why this should be possible in D ≥ 6: in these dimensions, Myers-Perry
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black hole horizon

deSitter horizon

Figure 6.3: Sketch of black hole-deSitter horizons in the approach to the solution in which

the black hole touches the deSitter (cosmological) horizon along its equator. Only in D ≥ 6

does the black hole admit a large enough distortion away from spherical symmetry to allow

this type of configuration.

black holes rotating along one plane can become very flat and thin, effectively like disks

of a black membrane [56]. The blackfold approach of [28, 27] allows to construct a static

configuration in which this disk extends along a plane and touches the deSitter horizon.

This blackfold construction is easy to perform and gives an approximate solution for

the intersecting-horizon configuration. However, we will not give its details since we

can obtain the complete exact solution that it is an approximation to.

The appropriate limit of (6.2.1) is

a,M →∞ (6.2.7)

keeping fixed

µ =
2M

a2
. (6.2.8)

Even if we are taking the rotation parameter a to be very large, this does not mean that

the black hole rotates very rapidly relative to the cosmological horizon. By taking M

large we are also making the black hole size grow. The relative drag between the two

horizons increases and as a consequence they approach corotation, with the relative

angular velocity decreasing. Eventually, when the black hole touches the deSitter

horizon, the configuration becomes manifestly static with our choice of coordinates.

However, as we shall see presently, since the distortion away from spherical symmetry

remains in the limit, the horizons touch only along the equator.
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Taking the above limit in (6.2.1), we find

ds2 = L2(dθ2 + sin2 θdφ2)

+ cos2 θ

(
−
(

1− µ

rD−5
− r2

L2

)
dt2 +

dr2

1− µ
rD−5 − r2

L2

+ r2dΩ2
(D−4)

)
= L2

(
dθ2 + sin2 θdφ2

)
+ cos2 θ ds2(Schw-dSD−2) , (6.2.9)

where Schw-dSD−2 denotes the Schwarzschild-deSitter geometry in D − 2 dimensions.

When µ = 0 this factor becomes (D − 2)-dimensional deSitter (dSD−2) and the whole

geometry is dSD spacetime of radius L. The singularity at θ = π/2 in this metric is

just a coordinate artifact. The cosmological horizon at r = L has the usual geometry

of a round SD−2.

Our actual interest is in the solutions with µ 6= 0. Then the singularity at θ = π/2

is a true one where the curvature diverges. Setting θ−π/2 = z/L, then near z = 0 the

geometry asymptotically becomes

ds2 → dz2 + L2dφ2 +
z2

L2
ds2(Schw-dSD−2) . (6.2.10)

This has the form of a cone over Schw-dSD−2, spread along the circle generated by φ.

Before we took the limit, the solution (6.2.1) in the parameter range of interest

described two separate horizons, black hole and cosmological. In the limiting solution,

these are still present. The equation

r2

L2
+

µ

rD−5
= 1 (6.2.11)

with

0 <
µ

LD−5
<

2

D − 5

(
D − 5

D − 3

)D−3
2

(6.2.12)

has two real positive roots for r, for the black hole and cosmological horizons in the

Schw-dSD−2 sub-spacetime. These are the limits of the black hole and cosmological

horizons of the original solution (6.2.1) in D dimensions. In (6.2.9) these two horizons

come to touch each other along the circle θ = π/2.

The continuously self-similar structure of a cone around this intersection point is

apparent in (6.2.10). If we analytically continue to Euclidean time τ , then the (τ, r)

part of the Schw-dSD−2 geometry describes a two-sphere, generically with a conical

defect (of codimension 1) at either the cosmological or black hole horizons since their

temperatures are not the same for generic values of µ/LD−5. Except for this defect

the Euclidean geometry of Schw-dSD−2 is a warped product of S2
(τ,r) and SD−4. So the

Euclidean continuation of (6.2.10) is a cone over this warped S2 × SD−4, times the φ
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circle. This cone is essentially the local model for the critical geometry that [52] had

proposed.

Note, however, that what we have found is a more general cone than in [52]. In

(6.2.9) the temperatures of the black hole and of the cosmological horizons need not

be the same. For instance, in configurations where the black hole has the shape of a

very thin pancake, which occur when µ� LD−5, the black hole temperature is clearly

much higher than the temperature of the cosmological horizon.2

When their temperatures are different, the two horizons can approach each other

and intersect, but not evolve beyond the intersection to merge and form a single,

connected horizon. Since the temperature over the latter must be uniform, a merger

requires that the temperatures of the two horizons approach the same value at the

intersection. Ref. [52] focused on merger transitions, but we have seen that the ap-

pearance of self-similar conical geometries is a more general feature of intersections

of horizons, even when they cannot merge. For the Lorentzian solutions the differ-

ence in temperatures does not imply any pathology, so it is natural to consider these

configurations as well.

The parameter µ in the critical geometry (6.2.9) can be adjusted so that the two

horizons have the same surface gravity. In fact it is possible to consider not only

this solution, but an entire subfamily of solutions of (6.2.1) in which the two separate

horizons, black hole and cosmological, have the same surface gravity even away from

the critical merger geometry. This subfamily of solutions describes a rotating black

hole with the same temperature as the cosmological horizon, i.e., a ‘rotating Nariai’

solution, and is of some interest in itself, so we describe it next.

6.2.2 Isothermal solutions

The limit of the solutions (6.2.1) where the two separate horizons have equal tempera-

tures, or surface gravities, is defined in appendix A. The mass and the radial coordinate

are fixed to values M = M0 and r = r0 that depend on the rotation parameter a. Using

for simplicity units where L = 1, the metric that results is

ds2 = Cρ2
0(− sin2 χdt̃2 + dχ2) +

ρ2
0

∆θ

dθ2

+
∆θ sin2 θ

ρ2
0Ξ2

(
(r2

0 + a2)dφ̃− 2Cr0aΞ cosχdt̃
)2

+ r2
0 cos2 θdΩ2

(D−4) . (6.2.13)

2The blackfold method reproduces these configurations to leading order in µ/LD−5 � 1. In the

exact solutions one can take a limit to focus on the region very close to the axis θ = 0 and recover

the geometry of a black 2-brane of thickness much smaller than L.
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where

ρ2
0 = r2

0 + a2 cos2 θ , (6.2.14)

and ∆θ, Ξ as in (6.2.4), (6.2.5) (with L = 1) and

0 ≤ χ ≤ π , 0 ≤ θ ≤ π

2
, 0 ≤ φ̃ ≤ 2π . (6.2.15)

The constants r0 and C are determined in terms of a by

a2 = r2
0

D − 3− (D − 1)r2
0

(D − 3)r2
0 − (D − 5)

(6.2.16)

and

C =
(D − 3)r2

0 − (D − 5)

(D − 1)(D − 3)r4
0 − 2(D − 5)(D − 1)r2

0 + (D − 5)(D − 3)
. (6.2.17)

Actually, we could take the only parameter in the solution to be r0 instead of a, since

they are related in one-to-one manner in the range of interest, which is

0 ≤ a ≤ ∞ ,
D − 5

D − 3
≤ r2

0 ≤
D − 3

D − 1
(6.2.18)

(note this implies r2
0 < 1).

In going from (6.2.1) to (6.2.13), the cohomogeneity of the geometry has been

reduced from two to one, the only non-trivial dependence being now on θ. It is manifest

that the surface gravities at the two horizons, at χ = 0 and χ = π, are equal. However,

there is a relative angular velocity between them,

Ωrel =
4Cr0aΞ

r2
0 + a2

. (6.2.19)

For a merger of the two horizons to be possible, this relative motion between them

must disappear at the critical solution.

In the conventional static limit a → 0, where r2
0 → (D − 3)/(D − 1), eq. (6.2.13)

becomes the Nariai limit of Schw-dSD, namely the direct product geometry

ds2 a→0−→ 1

D − 1
(− sin2 χdt̃2 + dχ2) +

D − 3

D − 1
dΩ2

(D−2) (6.2.20)

which Wick-rotates to S2 × SD−2. In this solution, and in all the solutions with finite

a, the two horizons remain separate.

The limit that we are interested in, where the two horizons touch at the equator

θ = π/2, lies at a→∞, with r2
0 → (D−5)/(D−3). Then Ωrel → 0 (as we had already

observed in the previous section) and

ds2 a→∞−→ 1

D − 3
cos2 θ(− sin2 χdt̃2 + dχ2) + dθ2 + sin2 θdφ̃2 +

D − 5

D − 3
cos2 θdΩ2

(D−2) .

(6.2.21)

50



This is indeed the same geometry that results if we take the Nariai limit of the

Schw-dSD−2 geometry inside (6.2.9). We have obtained it here along a particular

one-parameter subfamily of the solutions (6.2.1).

In the region close to the intersection of horizons, with small θ − π/2 = z/L, the

geometry (6.2.21) becomes, after rotation to Euclidean time (and restoring L),

ds2 → dz2 + L2dφ̃2 +
z2

D − 3

(
dΩ2

(2) + (D − 5)dΩ2
(D−4)

)
, (6.2.22)

which is exactly the kind of double-cone geometry predicted by the arguments in [52].

We have studied the solutions in which the initial black hole rotates along a single

plane, but it is straightforward to extend this to the general solutions with rotation in

an arbitrary number of planes and then obtain intersections along odd-spheres instead

of circles. Appendix B explains this construction.

6.3 Merged solution

It is natural now to look for an exact solution for the geometry after the two horizons

have merged into a single one. Here we describe our attempt at finding this solution.

In contrast to the pre-merger solution of the previous section, the merged solution that

we find is not entirely satisfactory — its Lorentzian section is complex, and it has a

naked singularity. It is unclear to us whether this is a deficiency somehow intrinsic to

the (cosmological) set up that we are considering, or whether there is another solution

for the merged configuration. Readers not interested in the details can safely jump to

section 6.4.

One might expect, by analyticity in the space of solutions, that the solution after

the black hole and cosmological horizons have merged should be in the same family

as (6.2.13), but in a different parameter range than before the merger — i.e., in the

merged solution the parameter a extends beyond the range we have been considering

in sec. 6.2.2. Actually, we will consider not only (6.2.13), or the initial Kerr-dS solution

(6.2.1), but the Kerr-NUT-dS family. This is the largest known family of solutions that

appear appropriate for this task. As in section 6.2, away from the critical solution we

consider the Lorentzian section of the geometries.

It is useful to first identify the main properties that the solution must possess. First,

the family of solutions should obviously have a limit to the critical geometry (6.2.21).

Second, from the general picture of the conifold-type transition, in the merged

solution there should be a ‘Lorentzian two-sphere’ (like the one that t̃ and χ describe

in (6.2.21)) that is contractible to zero, and a SD−4 that is not. Observe that this, and
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Figure 6.4: Horizon geometry in (a) the black hole-deSitter phase; (b) critical solution; (c)

merged solution.

the first condition, rule out the simple possibility that when the two horizons merge

we recover dSD.

Finally, we can easily determine the topology of the spatial sections of the horizon.

As illustrated in figure 6.4, before the merger the horizon is the sum of two SD−2.

Each of these spheres can be viewed as the result of fibering the (topological) disk D2,

parametrized by (θ, φ), with spheres SD−4 whose size goes to zero at the boundary of

the disk at θ = π/2. In the critical geometry, the two disks meet at their edges: they

form a topological S2. The spheres SD−4 fiber over this S2, with their sizes shrinking to

zero at the circle where the two disks meet: this is the horizon of the critical solution.

When the two horizons merge to form a single one, the SD−4 do not shrink to zero

anywhere, so the horizon of the merged solution has the topology S2 × SD−4.3

Consider now the Kerr-NUT-dS solution in D-dimensions [59], in units of L = 1,

ds2 = ρ2

(
dr2

∆r

+
du2

∆u

)
− ∆r

ρ2Ξ2

(
(1 + a2u2)dt− a(1− u2)dφ

)2

+
∆u

ρ2Ξ2

(
(r2 + a2)dφ− a(1− r2)dt

)2
+ r2u2dΩ2

(D−4) (6.3.1)

with ∆r and Ξ as in (6.2.3), (6.2.5), and

ρ2 = r2 + a2u2 , ∆u = (1− u2)(1 + a2u2) +
2N

uD−5
. (6.3.2)

Our notation and choice of parametrization is different than in [59], but more adequate

for our purposes. If we set the NUT parameter4 N = 0 and redefine u = cos θ we recover

3Away from the critical solution, this could be a non-trivial bundle. This will not be important in

our analysis.
4In the four-dimensional solution, the usual NUT parameter is not exactly the same as N here.

The relation is nevertheless easily found.
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(6.2.1). Note that having N 6= 0 in D ≥ 6 prevents u from reaching zero, since the last

term in ∆u would blow up.

We are interested in solutions with a single temperature, so we take the same limit

as in appendix A to obtain a generalization of (6.2.13),

ds2 = Cρ2
0(− sin2 χdt̃2 + dχ2) +

ρ2
0

∆u

du2

+
∆u

ρ2
0Ξ2

(
(r2

0 + a2)dφ̃− 2Cr0aΞ cosχdt̃
)2

+ r2
0u

2dΩ2
(D−4) , (6.3.3)

where

ρ2
0 = r2

0 + a2u2 , (6.3.4)

and r0, C are the same functions of a2 as in sec. 6.2.2. The only non-trivial dependence

of the metric is on u.

There are two parameters, a and N . In sec. 6.2.2 we set N = 0 and 0 ≤ a2 ≤ ∞,

with the critical phase being reached as a → ∞. Here we extend the solutions into a

new parameter range by considering negative values of a2, specifically

−∞ ≤ a2 < −1 (6.3.5)

as covered when r0 varies in5

D − 5

D − 1
< r2

0 ≤
D − 5

D − 3
. (6.3.6)

Note that this implies 0 < r2
0 < 1, and also M0 < 0. It is convenient to define

α2 = −a2 , Ĉ = Ca2 , (6.3.7)

so that α2, Ĉ > 0, and

Σ(u) =
ρ2

0

a2
= u2 − r2

0

α2
, (6.3.8)

Υ(u) =
∆u

a2
= (1− u2)(u2 − α−2) +

2N̂

uD−5
, (6.3.9)

where we have conveniently absorbed a power of α in N̂ . The metric reads6

ds2 = ĈΣ(− sin2 χdt̃2 + dχ2) +
Σ

Υ
du2

+
Υ

ΣΞ2

(
(α2 − r2

0)dφ̃+ 2iĈr0αΞ cosχdt̃
)2

+ r2
0u

2dΩ2
(D−4) , (6.3.10)

5This range of a2 is also obtained with 1 < r20 ≤ ∞, but one can see this is not adequate for

obeying the required behavior.
6Refs. [60, 61] give the Euclidean version of this solution in a different parametrization that is more

elegant but less appropriate for our purposes.
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This is a complex metric, with imaginary gt̃φ̃, since we are taking the rotation parameter

a into imaginary values. We will return to this issue below.

We take u to vary in an interval for which Σ and Υ are both non-negative. The

zeroes of Υ, which limit this interval, depend on the NUT parameter N̂ , which so far

has been free. When N̂ = 0, the range in which Υ is positive is

α−1 ≤ u ≤ 1 (N̂ = 0) (6.3.11)

(we need only consider u > 0). Since for α < ∞, u is never zero, we fulfill one of

the topological requirements on the merged solution: the SD−4 never shrinks to zero

size. However, since α−1 > r0/α, we have that Σ(u), although positive, is never zero

and therefore the Lorentzian-S2
t̃,χ

is not contractible. This can be remedied by turning

on the parameter N̂ and tuning it so that the smallest of the two relevant roots of Υ

moves to the value r0/α; the other will be u1 > 1. Then we take

r0

α
≤ u ≤ u1 . (6.3.12)

Note that since now Σ and Υ both have a simple zero at u = r0/α, the φ̃ circle has

finite size there.

While it is easy to solve for the required value of N̂ as a function of α, we are

mostly interested in the regime where α is very large, in which we approach the critical

solution. Then one finds

N̂ ≈ 1

D − 3

(
D − 5

D − 3

)D−5
2 1

αD−3
,

r0

α
≈
√
D − 5

D − 3

1

α
, u1 ≈ 1 + N̂ . (6.3.13)

Note that N̂ → 0 as α→∞.

With these parameter choices, we obtain a solution in which

• as α → ∞ the metric becomes that of the critical solution (6.2.21) (with u =

cos θ),

• there is a contractible Lorentzian-S2 and a non-contractible SD−4.

• the constant-t̃ sections of the horizon, where sinχ = 0, have topology S2×SD−4.

The S2 is made of the two disks at χ = 0, π, joined along u = r0/α.

Therefore, this one-parameter family of solutions satisfies all the properties that we

required at the beginning of the section.

Unfortunately, these geometries have two significant shortcomings. First, they are

complex, and then it is unclear whether it is sensible to talk about a horizon. Second,

and perhaps worse, when the Lorentzian-S2
t̃,χ

shrinks to zero at u = r0/α, it does not
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do so smoothly. Near this point, the (u, t̃, χ) part of the geometry behaves (up to

constant factors) as

(u− r0/α)(− sin2 χdt̃2 + dχ2) + du2 (6.3.14)

which is singular at u = r0/α.7

The problem of the Lorentzian metric being complex can be remedied by going to

the Euclidean section. However, the trouble then comes back in that it does not seem

possible to have a regular, real Euclidean section for the solution before the merger. It

seems we cannot have the real transition both ways.

We have not found any other way of obeying the topology requirements of the

merged solution using the family of metrics (6.3.1) than with these parameter choices.

It is unclear whether there may be a more general solution that is better behaved.

6.4 Critical geometries for other topology-changing

transitions

In sec. 6.2 we have presented an exact instance of an intersection of horizons that gives

a satisfactory account of all the aspects of the pre-merger transition conforming to

the analysis of [52]. Thus it seems justified to look for local models for the critical

geometries in other horizon-merger transitions that are expected to occur for higher-

dimensional black holes. We will see that there exist self-similar cone geometries with

the adequate properties for all these transitions.

Black ring pinch. The simplest new critical geometry that we describe corresponds

to the transition between a black ring with horizon topology S1 × SD−3 and a black

hole with horizon topology SD−2 in D ≥ 6. In the black hole phase, the horizon

geometry develops a pinch along the rotation axis, which grows until it pinches off in

the critical solution. Coming from the black ring side, the ring becomes fatter until

its central hole closes up. The pinch-off occurs on the rotation axis, so we can expect

that asymptotically close to this point the rotation is negligible. Thus, the self-similar

geometry around this point will be locally a static cone.

In the black ring phase the Euclidean time circle fibers over disks D2 that fill the

ring’s hole, to form a S3. In addition, on the horizon we can find spheres SD−4 that

shrink to zero size at the inner rim of the ring. Instead, in the black hole phase these

SD−4 do not shrink anywhere in the region close to the axis, while the previously

described S3 does shrink to zero there. Hence, we have an instance of a conifold-type

7The fact that these solutions have M < 0 might be behind this.
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Figure 6.5: Critical geometry at the ‘black ring pinch’ transition between a black ring and a

topologically spherical black hole. Relative to fig. 4.1, the main difference is that the dashed

segment is replaced by a disk D2. In general, for a p-sphere pinch, the disk D2 is replaced by

a ball Bp+1, and the S3 by a Sp+2 (p = 0 is the case in fig. 4.1).

transition, with the critical geometry being a cone over S3 × SD−4,

ds2 = dz2 +
z2

D − 2

(
2dΩ2

(3) + (D − 5)dΩ2
(D−4)

)
(6.4.1)

(see fig. 6.5; this can be obtained by rotating the critical solution of fig. 4.1 around a

vertical axis.). The Lorentzian version of the geometry is

ds2 = dz2 +
2z2

D − 2

(
− cos2 χdt2 + dχ2 + sin2 χdφ2 +

D − 5

2
dΩ2

(D−4)

)
(6.4.2)

with the horizon being at χ = π/2.

Note that this conifold transition can not occur for five-dimensional black rings

since the required cone does not exist.

p-sphere pinch. Refs. [28, 29] generalized black rings with horizon S1 × SD−3 to

solutions with horizon Sp × SD−p−2, with odd p, where the Sp is a contractible cycle

— we refer to it as an ‘odd-sphere blackfold’. Like in a black ring, the Sp has to rotate

in order to maintain its equilibrium at a given radius. The approximate method used

in [28, 29] is only valid as long as the blackfold is thin, i.e., the Sp is much larger than

the SD−p−2, but it is natural to expect that when the angular momentum decreases,

the sphere Sp shrinks until its inner hole closes up, like in the example of the black

ring. At that point the configuration makes a transition to a topologically-spherical

black hole.

In this case the inner hole is a ball Bp+1 over which the Euclidean time circle fibers,

shrinking to zero at the boundary of the ball: this is a Sp+2. The size of this sphere
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remains finite in the odd-sphere-blackfold phase, and shrinks to zero at the axis in the

topologically-spherical black hole phase. On the other hand the horizon has a SD−p−3

that shrinks to zero size in the odd-sphere blackfold phase, and remains finite (near

the axis) in the black hole phase. Thus we have another conifold transition, this time

with a critical geometry

ds2 = dz2 +
p+ 1

D − 2
z2

(
dΩ2

(p+2) +
D − p− 4

p+ 1
dΩ2

(D−p−3)

)
, (6.4.3)

and in the Lorentzian version

ds2 = dz2 +
p+ 1

D − 2
z2

(
− cos2 χdt2 + dχ2 + sin2 χdΩ2

(p) +
D − p− 4

p+ 1
dΩ2

(D−p−3)

)
(6.4.4)

with 0 ≤ χ ≤ π/2 and horizon at χ = π/2.

Note that the boundary of Bp+1 is connected when p > 0 so, unlike in sec. 6.2

(which was locally the case p = 0 smeared along a circle), in these cases the merger

necessarily involves only one horizon.

In the odd-sphere blackfold, when the angular momenta are not all equal, the Sp

is not geometrically round. One may reduce some of the angular momenta while

the others are kept fixed. In this case we expect a transition to an ultraspinning

topologically spherical black hole, controlled by a local geometry of the type above

with a collapsing sphere of lower dimensionality.

Circular pinch. Finally, we describe another type of critical pinch-off geometry that

is expected to occur in the phase space of higher-dimensional rotating black holes. This

is the case of a circular pinch at finite radius on the plane of rotation. This mediates the

transition between, for instance, a black Saturn in D ≥ 6 and a topologically spherical

black hole with a circular pinch. The same local critical geometry also appears when

two black rings in D ≥ 6 merge.

The two black objects that merge are rotating, but as they approach we can go to

a reference frame that is asymptotically corotating with the two horizons, and in this

frame the geometry near the pinch-off point looks again static. This is then locally like

in fig. 4.1, spread over the direction of the circle where the horizons touch. The local

model for the critical geometry is the same as (6.2.22). Note again that this cannot

occur in five dimensions.

It is actually possible to consider also intersecting geometries in which the two black

objects have different temperatures, as in (6.2.10), where the horizons touch on a cone

but cannot merge. What does not seem possible is to have the two horizons touch over

a cone if they have relative non-zero velocity. Presumably, an attempt to force two

such horizons to touch gives a stronger singularity.
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Given these examples, it is straightforward to extend them to cones for many other

transitions that are expected to occur for higher-dimensional black holes.

6.5 Concluding remarks

The main features of the phase space of neutral, asymptotically flat, higher-dimensional

black holes are controlled by solutions in three different regions:

(i) Large angular momenta.

(ii) Bifurcations in phase space.

(iii) Topology-changing transitions.

The regime (i) is captured by the blackfold effective theory [28, 27]. Regions (ii) are

controlled by zero-mode perturbations of black holes that give rise to bifurcations into

new families of solutions. The initial conjectures about these points [56, 45] have been

confirmed and extended in [62]. In this chapter we have begun to explore regions (iii)

in D ≥ 6 and provided local models for the critical geometries that effect the topology

change.

We have presented an example where we can study in a detailed exact manner

the geometry in a topology-changing transition, at least in one of the sides of the

transition and at the critical point itself. The critical geometry conforms precisely to

the predictions of [52]. It seems valuable to have an exact and simple analytic model

of one such transition from which one can extract further details. In particular, a more

detailed study of how the conical geometries, including the large class of examples in

appendix B, are resolved away from the critical point is probably of interest.

We have also seen that self-similar cone geometries occur when two horizons inter-

sect but cannot merge since their temperatures are unequal. In this case the cone is

over a warped product, not a direct one, and the arguments of [52] would not apply.

Nevertheless, the extension we have found is a natural one: the direct-product Nariai

solution at the base of the cone is simply replaced by the more general Schwarzschild-

deSitter solution. This allows to study intersecting horizons in more generality.

Topology-changing transitions among five-dimensional asymptotically flat rotating

black holes do not fall within the class studied in this chapter. Indeed, the phase

diagram of five-dimensional black holes, say with a single spin, already reveals that

the transitions are controlled by a different class of critical geometry, not of the coni-

fold type. The same is true of transitions that are effectively in that same class by
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having some directions smeared along the intersection (e.g., black Saturn or black di-

ring mergers), and in general those that involve a collapsing S1. The study of these

transitions deserves a separate investigation.
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Chapter 7

Summary of results

• In chapter 5 we managed to formulate a type of fluid-gravity correspondence for

asymptotically flat black branes. We found a map between a fluctuating boosted

black p−brane and a relativistic viscous fluid living at spatial infinity. That is,

we constructed a solution to the vacuum Einstein equations of a dynamical black

p−brane up to first order in derivatives. The dual viscous fluid is characterized

by two parameters (transport coefficients) in the stress tensor − the shear and

bulk viscosities. Using the gravitational solution we succeeded to compute those

coefficients. Namely, we found that the fluid stress tensor is

Tab = ρuaub + PPab − ζθPab − 2ησab +O(∂2) (7.0.1)

where

η =
Ωn+1

16πG
rn+1

0 , ζ =
Ωn+1

8πG
rn+1

0

(
1

p
+

1

n+ 1

)
. (7.0.2)

are the shear and bulk viscosities, respectively. For more details on the notations

and on what each quantity in the stress tensor is see chapter 5 . Furthermore,

by using the effective description of the black p−brane as a viscous fluid in a

lower number of dimensions we studied the Gregory-Laflamme instability and we

found a striking agreement with the numerical results, already obtained, on this

problem (those are gravitational calculations). Hence, instead of attacking the

complicated (linearized) gravitational equations we propose instead to attack the

relativistic Navier-Stokes equations of the effective (dual) fluid, as they are much

simpler than the former.

• In chapter 6 we tackled and made progress in a different problem − topology

change in higher dimensional general relativity. Before our work there had been

no analytical (but only numerical) complete example of a topological phase tran-

sition in general relativity. The black string / black hole phase transition in
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Kaluza-Klein spaces was analyzed and studied only numerically. Neverthelss,

some local models had been obtained analytically. It was argued that the phase

transition passes through (or is mediated by) a singular critical configurtaion;

a self-similar double cone geometry. This geometry was found only locally,

though. In our work we have provided for the first time a complete analytical

example of a topological phase transition (it has some shortcomings, though, see

chapter 6). We took the rotating black hole inside de-Sitter space (the Kerr-de-

Sitter black hole), and we showed that if one follows a trajectory in the phase

space of solutions along which the black hole rotation is increased then it will pan-

cake along the rotation plane, and finally it will touch the de-Sitter horizon along

that plane. A merger transition is obtained if one continues to move along the

same phase space trajectory, leading to a merged phase with a single connected

horizon. In our example, the critical configuration (in which the two horizons

just meet) is mediated by a self-similar double cone, thus confirming previous

propositions of the mechanism under which topological transitions work.

We also described local models for the critical geometries that control many

transitions in the phase space of higher-dimensional black holes, such as the

pinch-down of a topologically spherical black hole to a black ring or to a black

p-sphere, or the merger between black holes and black rings in black Saturns or

di-rings in D ≥ 6.

It is worth mentioning, in addition, that the cones we have found are general

ones (compared to previousely known ones), in the sense that they descibe two

horizons that intersect each other at different temperatures, not only ones that

intersect each other with the same temperature. However, in the case the two

horizons intersect at different temperatures, there can be no merger transition

afterwards, and so the trajectory of solutions in the phase space ends there.
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Appendix A

Equal-temperature limit

In this appendix we define a limit of the Kerr-deSitter solutions (6.2.1) and the Kerr-

NUT-deSitter solutions (6.3.1) that generalizes the well-known Nariai limit of the Schw-

dS solution1. We use units where the cosmological radius is L = 1.

In order for the two horizons of (6.2.1) to have equal surface gravities, or equal

temperatures, the value of the radial coordinate r must be the same for both, i.e., ∆r

must have a double root r = r0,

∆r(r0) = ∂r∆r(r0) = 0 . (A.0.1)

These two conditions determine the values of M and a as functions of r0,

M0 = rD−3
0

(1− r2
0)2

(D − 3)r2
0 − (D − 5)

, a2 = r2
0

D − 3− (D − 1)r2
0

(D − 3)r2
0 − (D − 5)

. (A.0.2)

Although their radial coordinates coincide, the proper radial distance between the two

horizons goes to a finite non-zero limit. We can pry open the space between them by

first introducing a small parameter ε that takes us slightly away from the limit, with

a new ‘radial’ coordinate χ,

r = r0(1− ε cosχ) , (A.0.3)

and

M = M0

(
1− r2

0

C(r2
0 + a2)(1− r2

0)
ε2

)
, (A.0.4)

where C is as in (6.2.17). Then redefine appropriately the Killing coordinates t and φ

to

t = C
r2

0 + a2

r0

t̃

ε
, φ = φ̃+ C

a(1− r2
0)

r0

t̃

ε
. (A.0.5)

Finally, take the limit ε→ 0 to find the finite metric (6.2.13).

1Ref. [63] describes essentially the same limit, but in a different parametrization.
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The limit fixes one of the two dimensionless free parameters of the original solution,

leaving r0, or a, as the only parameter. In this work we are interested in approaching

the solutions that satisfy (6.2.7), (6.2.8). In the one-parameter family, this corresponds

to

r2
0 →

D − 5

D − 3
. (A.0.6)

Indeed in this limit

a→∞ , M0 →∞ , (A.0.7)

while
M0

a2
→ 1

D − 5

(
D − 5

D − 3

)D−3
2

(A.0.8)

remains finite. Also, in this limit Ca2 → 1/(D − 3).
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Appendix B

General black hole-deSitter

intersections

Here we extend the analysis of sec. 6.2 to the situation where the black hole rotates

in an arbitrary number of planes. The starting solution is the general Kerr-deSitter

metric as given in ref. [64], whose presentation we follow closely.

In order to have a unified description for even and odd D, we introduce

ε = (D − 1) mod 2 . (B.0.1)

The spacetime dimension is then D = 2n+ ε+ 1, where n is the number of orthogonal

rotation planes. On each of these, we choose angles φi with period 2π. We also

introduce an overall radial coordinate r and n+ ε direction cosines µi satisfying

n+ε∑
i=1

µ2
i = 1 , (B.0.2)

with 0 ≤ µi ≤ 1, i = 1, . . . , n. In even D the µn+1 has range −1 ≤ µn+1 ≤ 1.

The solution is characterized by a mass parameter M and n rotation parameters

ai, and its metric is

ds2 = −W
(

1− r2

L2

)
dt2 +

2M

U

(
Wdt−

n∑
i=1

ai µ
2
i

1 +
a2i
L2

dφi

)2

+
n∑
i=1

r2 + a2
i

1 +
a2i
L2

µ2
i dφ

2
i

+
U

V − 2M
dr2 +

n+ε∑
i=1

r2 + a2
i

1 +
a2i
L2

dµ2
i +

1

W (L2 − r2)

(
n+ε∑
i=1

(r2 + a2
i )µi dµi

1 +
a2i
L2

)2

,(B.0.3)

where

U = rε
n+ε∑
i=1

µ2
i

r2 + a2
i

n∏
l=1

(r2 + a2
l ) , (B.0.4)
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V = rε−2

(
1− r2

L2

) n∏
i=1

(r2 + a2
i ) , (B.0.5)

and

W =
n+ε∑
i=1

µ2
i

1 +
a2i
L2

. (B.0.6)

We take the limit in which we send a number s of rotation parameters to infinity,

all at the same rate. For now, the remaining n− s ones are set to zero, so

aj →∞ , j = 1, . . . , s ,

ak = 0 , k = s+ 1, . . . , n , (B.0.7)

with

2s ≤ D − 4 . (B.0.8)

At the same time we send M →∞ in such a way that

µ =
2M∏s
j=1 a

2
j

(B.0.9)

remains finite (compare to appendix A of [56]).

We introduce an angular variable θ such that

s∑
j=1

µ2
j = sin2 θ ,

n+ε∑
k=s+1

µ2
k = cos2 θ , (B.0.10)

with range 0 ≤ θ ≤ π/2. With this variable, the metric on the unit SD−2 is written as

n+ε∑
i=1

dµ2
i +

n∑
i=1

µ2
i dφ

2
i = dΩ2

(D−2) = dθ2 + sin2 θ dΩ2
(2s−1) + cos2 θ dΩ2

(D−2s−2) . (B.0.11)

After some labor one finds the limiting geometry

ds2 = L2
(
dθ2 + sin2 θdΩ2

(2s−1)

)
+ cos2 θ

(
−f(r)dt2 +

dr2

f(r)
+ r2dΩ2

(D−2s−2)

)
(B.0.12)

with

f(r) = 1− µ

rD−2s−3
− r2

L2
. (B.0.13)

Near θ = π/2 this has the form of a cone over Schw-dSD−2s, spread over a sphere

S2s−1. When s = 1 we recover (6.2.9). The restriction (B.0.8) on the number s of

‘ultraspins’ guarantees that the Schw-dSD−2s factor in the limit geometry is at least

four-dimensional.
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It is easy to generalize the limit to

aj →∞ , j = 1, . . . , s ,

ak finite , k = s+ 1, . . . , n , (B.0.14)

again with finite µ in (B.0.9) to obtain the geometry

ds2 = L2
(
dθ2 + sin2 θdΩ2

(2s−1)

)
+ cos2 θ ds2

(
Kerr-dS(D−2s)

)
, (B.0.15)

where Kerr-dS(D−2s) has the finite ak as rotation parameters. The Euclidean version of

the latter solution is known to contain many interesting Einstein metrics, in addition

to products S2 × SD−2s−2, such as Page’s metric for the non-trivial S2 bundle over S2

[65] and higher-dimensional generalizations thereof (see e.g., [60] and references to it).

Our construction results in cones over all these spaces. It may be interesting to study

them in more detail.
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