Amphioxus hairy genes

The amphioxus hairy family: differential fate after duplication.

Carolina Minguillón, Georgia D. Panopoulou and Jordi García-Fernández

Abstract

Several representatives of the hairy family have been so far isolated from a range of protostome and vertebrate species. In protostomes such as *Drosophila* they have been implicated in segmentation, peripheral nervous system development, and in somatic sex determination. In *Tribolium*, only a role during segmentation has been suggested for its single hairy gene. On the contrary, hairy genes are expressed in many places in vertebrate embryos and have been implicated in numerous functions, such as somitogenesis, neurogenesis, and endocrine tissue development. In order to gain insight into the timing of acquisition of these roles by the hairy family we have cloned and studied the expression pattern of the hairy family in amphioxus. The cephalochordate amphioxus is widely believed to be the living invertebrate more closely related to vertebrates whose genome escaped the massive gene duplications that took place early during vertebrate evolution. Surprisingly, we have isolated six hairy genes from the “pre-duplicative” amphioxus genome, plus two genomic sequences that most probably represent pseudogenes. In situ hybridizations on amphioxus embryos show that hairy genes have undergone a process of subfunctionalization and non-functionalization predicted in the DDC model (for Duplication-Degeneration-Complementation) that has been described for the maintenance of duplicate genes in the genome by subfunctionalization. Only the summation of all Amphihairy genes expression resembles the expression pattern of vertebrate hairy genes, i.e. in the central nervous system, presomitic mesoderm (PSM), somites, notochord and gut. Noticeably, none amphioxus hairy gene seems to cycle within the amphioxus PSM.

Keywords: Amphioxus, hairy, bHLH, subfunctionalization, DDC model, duplication, Evo-Devo

INTRODUCTION

Genes in the hairy family encode class E of basic helix-loop-helix (bHLH) transcription factors (Ledent and Vervoort, 2001). These are defined by (i) a proline in the sixth residue within the basic domain that allows them to bind preferentially to sequences referred as "N-boxes" in their target genes (Van Doren et al., 1994), (ii) an orange domain, that mediates the specificity of their biological action in vivo (Dawson et al., 1995) and, (iii) a 4-amino acid motif, WRPW, located at the C-terminus of the protein that interacts with the general co-repressor protein Groucho to act as active repressors (Jimenez et al., 1997).

In protostomes, hairy family members have been isolated from *Drosophila melanogaster*, *Caenorhabditis elegans*, and the beetle *Tribolium*. There are three members of the hairy family in the *D. melanogaster* genome called hairy (*h*), deadpan (*dpn*), and similar to deadpan (*side*), that seem to have arisen by independent duplications in the fly lineage (Moore et al., 2000). In contrast, there is only one highly diverged hairy-like gene in the *C. elegans* genome called *lin-22* (Wrischnik and Kenyon, 1997). A single hairy homolog has been isolated from the beetle *Tribolium* (Sommmer and Tautz, 1993). In *Drosophila*, *h* acts during segmentation as a primary pair-rule gene (Carroll et al., 1998), and also during the development of the fly peripheral nervous system as a pre-pattern gene (Fisher and Caudy, 1998). *dpn* function is required during somatic sex determination as an autosomal factor, and also during the development of the peripheral nervous system where it acts as a precursor gene (Fisher and Caudy, 1998). In contrast to hairy and *dpn*, little is known about *side* function during *Drosophila* development. It was identified after the fly genome project. It is expressed in specific subsets of cells in the central nervous system (Moore et al., 2000). In *Tribolium*, the hairy gene also functions during segmentation, but is not involved in nervous system development (Sommmer and Tautz, 1993). The nematode gene *lin-22* is more closely related to the hairy family than to other families of bHLH proteins, although Ledent and Vervoort (2001) argue that it is not a proper hairy gene. Mutant *C. elegans* for *lin-22* function exhibit neuronal defects, most probably due to a premature differentiation of specific neurons (Wrischnik and Kenyon, 1997).

Hairy genes have been also isolated from vertebrates (i.e. mouse, chicken, *Xenopus* and zebrafish). There are two hairy genes in chicken (Palmeirim et al., 1997; Jouve et al., 2000), in the zebrafish (Pasini et al., 2000; Leve et al., 2001), and in *Xenopus* (Davis et al., 2001). In the mouse genome, only a single hairy gene has...
been so far identified (Sasai et al., 1992). They have been named in a way that can lead to confusion. They have been called HES (in mammals) or HER (in the fish) for hairy-enhancer of split related plus a number that most probably reflect the temporal order of cloning. Thus, it is not easy to realize that the mouse HES1 gene is the pro-ortholog of the zebrafish her6 and her9 genes, unless a phylogenetic tree is made. On the other hand, zebrafish her1 is not a hairy gene, but an enhancer of split gene. For mouse HES1 and both chicken hairy genes a striking dynamic expression pattern in the presomatic mesoderm (PSM), where they cycle with a temporal periodicity that corresponds to the formation of one somite, has been observed (Palmeirim et al., 1997; Jouve et al., 2000). Besides the cycling pattern in PSM, their expression is also detected in several other tissues as endoderm-derived tissues (Jensen et al., 2000), the notochord, and the central nervous system (CNS) (Sasai et al., 1992). Accordingly, mice mutant for the HES1 gene exhibit severe defects in neural and endocrine development. Briefly, these defects are thought to be due to the premature differentiation of postmitotic neurons or endocrine cells, respectively (Ishibashi et al., 1995; Jensen et al., 2000). In neither the zebrafish nor Xenopus is there a dynamic expression pattern of hairy genes in the PSM comparable to that in amniotes. During somitogenesis, the zebrafish hairy gene her6 is expressed in the posterior part of each segmented somite and in stripes in the anterior PSM. Within the CNS, her6 is expressed first in the prospective forebrain, and later in hindbrain segmentation with a very dynamic, segmentally restricted pattern. Low levels of her6 expression are also present in the notochord (Pasini et al., 2000). The zebrafish hairy gene her9 is also expressed during CNS development but in contrast to its paralog, neither in segmented somites nor in the PSM. Within the CNS, her9 is predominantly expressed in the fore- and midbrain, and transiently in the hindbrain, leaving a non-expressing gap at the midbrain-hindbrain boundary (MHB), and it is also expressed in the midline mesoderm. Later in development, expression in the head is detectable in the anterior pituitary, in the optic stalk, in the eye, as well as in the anterior hypothalamus (Leve et al., 2001).

In the frog, the two hairy homologs, X-hairy2 and X-hairy1, are expressed in the CNS, somites, and PSM. Both genes have identical expression patterns as a band prefiguring a new somite formation in the anterior PSM and are also transcribed weakly in segmented somites. Within the neuroectoderm, they exhibit a non-overlapping expression pattern (Davis et al., 2001).

It is thus to be very pleiotropic a characteristic of vertebrate hairy genes, in contrast to the protostome hairy family members. In order to gain insights into where in evolution the multiplicity of functions was acquired, we studied the hairy family in the cephalochordate amphioxus. Amphioxus is the closest living invertebrate relative to vertebrates and has not undergone the massive gene duplications (up to polyploidization) that took place early during vertebrate evolution (Holland and Garcia-Fernández, 1996). Hence, amphioxus has been widely used as a model system to study the function of a gene family in vertebrates, represented by a single gene in the chordate ancestor that may be very similar to that of modern amphioxus. Surprisingly, we have isolated six canonical hairy family members from the "pre-duplicative" amphioxus genome that we have called AmphihairyA to F, and two genomic fragments of non-canonical hairy genes, that probably represent pseudogenes, that we have called Amphihairy-like1.

<table>
<thead>
<tr>
<th>primer pair</th>
<th>sequence 5’ to 3’</th>
<th>amino acid sequence</th>
<th>PCR product length</th>
<th>cDNA region</th>
<th>kind*</th>
</tr>
</thead>
<tbody>
<tr>
<td>h1/h2</td>
<td>AARCCNATHATGARAA (h1) TCNGCYTTYTCNARYT (h2)</td>
<td>KPIMEK KLEKAD</td>
<td>122 bp</td>
<td>bHLH</td>
<td>Degenerate for hairy genes</td>
</tr>
<tr>
<td>h1/h3</td>
<td>AARCCNATHATGARAA (h1) TTYTCAGGYTTNSWRTG (h3)</td>
<td>KPIMEK HSKLEK</td>
<td>116 bp</td>
<td>bHLH</td>
<td>Degenerate for hairy genes</td>
</tr>
<tr>
<td>h5/h3rep</td>
<td>GTACCGCGGGATCCCCG (h5) TCACCCAGGCTCCACA (h3rep)</td>
<td>YGGIPV MWRPWX</td>
<td>262 to 441 bp</td>
<td>3’ coding</td>
<td>Degenerate for Amphihairy</td>
</tr>
<tr>
<td>RT-CF/RT-CR</td>
<td>GTACCGCACGGACGTTCG (F) AGCGATGAAGCTGCGAC (R)</td>
<td>YAPNSP trailer</td>
<td>311 bp</td>
<td>3’ coding/trailer</td>
<td>Specific for AmphihairyC</td>
</tr>
<tr>
<td>RT-EF/RT-ER</td>
<td>TACCGCCTGACTAGCCGG (F) GCTACCGGATGCTGCAC (R)</td>
<td>YHLTS trailer</td>
<td>235 bp</td>
<td>3’ coding</td>
<td>Specific for AmphihairyE</td>
</tr>
<tr>
<td>RT-FF/RT-FR</td>
<td>CGCTCTACGCACAGCG (F) GATGCTACTACCCAGG (R)</td>
<td>LLAOAP PWXtrailer</td>
<td>207 bp</td>
<td>3’ coding</td>
<td>Specific for AmphihairyF</td>
</tr>
<tr>
<td>h1/SPLIT-R</td>
<td>AARCCNATHATGARAA (h1) ARADATRNCNGTYTTYTC (R)</td>
<td>KPIMEK EKADIL</td>
<td>128 bp</td>
<td>bHLH</td>
<td>Degenerate for hairy genes</td>
</tr>
<tr>
<td>SPLIT-F/h2</td>
<td>MGMNGNCGNMGNATHAA (F) TCGNCYTTYTCNARYT (h2)</td>
<td>RRARIN KLEKAD</td>
<td>97bp</td>
<td>3’ coding</td>
<td>Degenerate for hairy genes</td>
</tr>
</tbody>
</table>

*The product length is variable depending on which Amphihairy gene is amplified.

The length refers to the coding region amplified.
and 2. We have analyzed their expression pattern during amphioxus development by whole mount in situ hybridization, and by RT-PCR for those genes for which no expression was detected by the former technique, namely AmphihairyE and F. Strikingly, Amphihairy genes seem to have undergone a process that was first described for duplicated genomes such as the zebrafish or the maize genome. This is the DDC model (for Duplication-Degeneration-Complementation), by which duplicate genes subdivide the complex role of the pre-duplicative gene had, ensuring the maintenance of duplicates in the genome by subfunctionalization (Force et al., 1999).

MATERIALS AND METHODS

Amphihairy cDNA clones isolation
Degenerated oligonucleotides were designed over the alignment of the bHLH domain of chicken c-hairy 1, mouse HES-1, zebra fish HER-6, Xenopus X-hairy 1, Drosophila hairy, and Tribolium hairy proteins in Palmeirim et al (1997). cDNA obtained from RNA of adult animals was used as a template for the PCR reaction (1 min at 94°C, and 35 cycles of 10 seconds at 94°C, 20 seconds at 42°C, 30 seconds at 72°C) with the degenerate primers h1 and h2 (see table I). As no bands of the expected size were obtained, a semi-nested PCR with the degenerate primers h1 and h3 (table I) under the same conditions was performed. A band of the expected size (116 bp) was subcloned into pBluescript. Sequencing showed its similarity to the hairy family genes.

The cloned fragment was used to screen a cDNA library constructed from mRNA isolated from 6- to 20-h postfertilization amphioxus embryos (Langeland et al., 1998). Approximately 4x10^5 pfu were screened at moderate stringency (55°C, Church’s buffer) with the PCR product. Nine cDNAs were identified, excised, and completely sequenced on automated sequencers [ABI Prism (Perkin-Elmer)]. This led to the identification of four different cDNA clones coding for putative representatives of the hairy family in amphioxus, that we called AmphihairyA, B, C and D (table II). The h1 and h2 primers were used to amplify by PCR most of the bHLH domain of AmphihairyA to D, and all four products were used in conjunction to perform a further screening over the same cDNA library under less stringent conditions (50°C, Church’s buffer). Twenty-seven positives were recovered (table II) and restriction mapped to assign them into groups. One representant of each group was then fully sequenced. This yielded the isolation of a further cDNA representing a hairy family gene in amphioxus that we named AmphihairyE.

A further cDNA clone, AmphihairyF, was identified in a random EST sequence project.

Phylogenetic analysis
The sequences used in the phylogenetic comparisons with the Amphihairy genes reported here (Accession numbers XXXXXX, XXXXXX, XXXXXX, XXXXXX, XXXXXX, XXXXXX, XXXXXX), were obtained from the public databases, and aligned using the Clustal X method and refined by eye. The whole proteins were used to construct a Neighbour-joining tree (Clustal X). Topology robustness was assessed by 1000 bootstrap resampling of the data.

Intron amplification
In order to amplify the putative second intron of Amphihairy genes we performed PCR experiments on different extractions of genomic DNA from single individuals with the degenerate primers h1 (exon 2) and SPLIT R (exon 3) using about 10 ng of genomic DNA as a template (2 min at 94°C, and 35 cycles of 20 seconds at 94°C, 20 seconds at 48°C and 30 seconds at 72°C). As no bands were visible, after primer-cleaning, we performed two nested PCR for each individual with the degenerate primers SPLIT F (exon 2) and h2 (exon 3) using 5 µl of the former purified PCR product (2 min at 94°C, and then 35 cycles of 20 seconds at 94°C, 20 seconds at 50°C and 30 seconds at 72°C). See table I for primers nomenclature and amplifying regions.

The PCR products were cloned into pBluescript using two different approaches. Firstly, a nested PCR was resolved on an agarose gel and the bands excised one by one. Secondly, another nested PCR reaction was primer-cleaned and directly used for ligation and subsequent cloning. This yielded the isolation of all the former Amphihairy genes plus two new products that, by sequence, represent non-canonical hairy family representatives (Amphihairy-like1 and 2).

Southern blot analysis
In order to ascertain whether different Amphihairy cDNA clones represented different Amphihairy genes or polymorphic alleles of the same gene(s), we performed genomic southern blots. The 3’ coding region (that included neither the conserved bHLH domain nor the orange domain) of the different Amphihairy genes was obtained by PCR over the cDNA clones with the primers h5 and h3rep (table I), and used as a 32-P-labelled probe to hybridize a PsI-, EcoRl-, HpalI- or Mspl-digested genomic DNA from single B. floridae individuals.

Obtaining embryos and in situ hybridization
Ripe adults of the Florida lancelet, Branchiostoma floridae, were collected from Old Tampa Bay, Florida, USA, during the summer breeding season. The males and females were spawned electrically in the

<table>
<thead>
<tr>
<th>Table II. Summary of clones isolated</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st screening</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2nd screening</td>
<td>8</td>
<td>1</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Random sequencing</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Amphioxus hairy genes

RESULTS

Isolation and characterization of the amphioxus hairy family

A PCR survey with degenerate primers able to amplify hairy family genes yielded the isolation of several clones with the highest sequence similarity to those members of the hairy family in other species. One of the PCR products was used to screen a cDNA library at moderate stringency. This yielded the identification of four different cDNA clones, that we called AmphihairyA, AmphihairyB, AmphihairyC, and AmphihairyD. To study whether more genes of the hairy family were present in amphioxus, we performed a further cDNA screening at lower stringency conditions, using nearly all the region coding for the bHLH domain of the four formerly isolated cDNA clones as probes. This experiment resulted in the identification of the already identified Amphihairy cDNA clones plus a novel one that was named AmphihairyE. The random EST sequencing of either a 5- to 6-hour embryos or a 26-hour embryos libraries (Panopoulou et al., 1998) yielded the isolation of all the Amphihairy clones already isolated but AmphihairyE, plus a novel clone, that we called AmphihairyF. Table II summarizes which and how many clones were obtained in each screening and the random sequencing.

An alignment of all six hairy clones isolated shows that the putative proteins are very similar (Fig. 1). An alignment with other hairy proteins shows that this similarity is mainly observed within three regions of the proteins, i.e. the bHLH DNA binding and dimerization domain, the orange domain that gives specificity among the hairy-related proteins, and the C-terminal WRPW domain of interaction with the co-repressor protein Groucho (data not shown). From the alignments we concluded that AmphihairyA to F are bona fide hairy genes.

Phylogenetic analysis

Table III summarizes the percentage identity of all six Amphihairy proteins bHLH domain, with those of selected hairy proteins from both vertebrates and invertebrates. Amphihairy proteins bHLH domain is

| Table III. Percentage of similarities of Amphihairy proteins bHLH domains to other hairy proteins |
|---|-----|-----|-----|-----|-----|-----|
| | A | B | C | D | E | F |
| **GROUP I** | | | | | | |
| mHES1/hHES1 | 97 | 88 | 95 | 93 | 97 | 86 |
| c-hairy2 | 95 | 90 | 97 | 91 | 95 | 86 |
| zHER6 | 95 | 86 | 93 | 91 | 95 | 86 |
| X-hairy1 | 97 | 88 | 95 | 93 | 97 | 86 |
| **GROUP II** | | | | | | |
| c-hairy1 | 95 | 88 | 93 | 91 | 95 | 84 |
| X-hairy2/zHER9 | 97 | 88 | 95 | 93 | 97 | 86 |
| **protostomes** | | | | | | |
| Dm hairy | 81 | 75 | 81 | 78 | 81 | 76 |
| Dm Dpn | 76 | 74 | 78 | 76 | 76 | 69 |
| Tc hairy | 85 | 79 | 83 | 84 | 85 | 75 |
| Ce-lin22 | 55 | 57 | 55 | 53 | 55 | 53 |
| **E(spl)** | | | | | | |
| mHES2 | 64 | 62 | 64 | 64 | 64 | 64 |
| hHES2 | 66 | 66 | 66 | 64 | 66 | 62 |
Amphioxus hairy genes

more closely related to that of vertebrate hairy proteins (88-97%) than to those of other invertebrate hairy proteins (69-85%; note that the divergent lin-22 sequence is not considered).

To gain more insight into the relationships among hairy genes, we conducted a molecular phylogenetic analysis by the neighbor-joining method on the full hairy proteins, using mouse and human HES2 sequences as outgroups (Fig. 2). Vertebrate hairy proteins fell together (bootstrap value 100%) into two well supported groups (values 78 and 88%) that we denominate group I and group II. All the Amphihairy proteins form a monophyletic group that branches immediately outside these groups (as their sister group; 93%). The grouping of all Amphihairy proteins in a monophyletic group is also highly supported (96%), which mean that all they have originated by independent duplication in the cephalochordate lineage after its divergence from the phylogenetic tree main branch. Moreover, the positioning of Amphihairy proteins before the origin of the vertebrate groups I and II, is also supported by a high bootstrap value (100%), in agreement with the hypothesis that vertebrate genes have originated by duplication after the cephalochordate-vertebrate divergence.

"Non-canonical" hairy genes in the amphioxus genome

To study whether more hairy genes were present in the amphioxus genome, we performed PCR experiments on genomic DNA extracted from single individuals. We used degenerate primers (see materials and methods) able to amplify hairy family genes that were flanking a putative intronic position deduced by conserved intronic positions among vertebrate hairy genes (Nishimura et al., 1998). The PCR and nested PCR reactions were electrophoresed on an agarose gel, which made visible the existence of a major band of about 450 bp plus lots of bands ranging...
from 200 to 250 bp (Fig. 3). We purified the PCR reaction by either excising the bands from the gel, or by primer-cleaning directly the nested PCR.

This approach yielded the isolation of the putative intron 2 plus flanking exonic regions of all the formerly isolated Amphihairy genes. The 450 bp band represented the sequence of AmphihairyE gene, whereas the smaller bands represented all the other Amphihairy genes. Apart from them, we also obtained two novel sequences that we called Amphihairy-like1 and Amphihairy-like2. Figure 4 shows the alignment and percentages of similarity of these sequences (the putative exonic parts) with those of the formerly isolated Amphihairy genes and a selected vertebrate and invertebrate hairy genes. We argue that these sequences may represent pseudogenes in the amphioxus genome. First, although Amphihairy-like1 and 2 sequences are more closely related to hairy than to Enhancer of split genes (E\[spl\]), (e.g. they are more similar to hairy genes than to the mouse HES2 gene which belongs to the E\[spl\] family), they are very divergent (46-62% whereas the proper amphioxus hairy genes are 75-92% similar to HES1). And second, we have been unable to isolate their cDNA clones although we isolated the cDNA clones that correspond to the AmphihairyE and AmphihairyF genes which are expressed at very low levels during embryogenesis, from embryonic libraries (see below). We think thus that these sequences may also represent ancient duplicates of a single hairy gene that have undergone a process of non-functionalization (see discussion).

AmphihairyA, B, C and D genes expression in gastrula stages

The expression of four different Amphihairy genes was studied by whole mount in situ hybridizations: Amphihairy A, B, C, and D. In brief, all these four genes have a specific expression pattern whose summation resembles that of the single (for the mouse) or the two hairy genes that exist in other vertebrates.

No signal is detected at the blastula or early gastrula stages for any of the Amphihairy genes. During mid-gastrula stage, AmphihairyA is expressed in two domains: in the anterior endoderm and just outside the dorsal lip of the blastopore in the presumptive neural plate (arrow in fig. 5A).

Expression of AmphihairyB, C, and D is first detected at the very late gastrula stage in both the neural plate and the presumptive somitic mesoderm. In the presumptive somitic mesoderm all three genes are expressed in a striped pattern prefiguring the definitive somites. Specimens with a 2/3, 3 and 4 bands are shown for AmphihairyB (Fig. 5B, 5C and 5E, respectively). For the 2/3 stripe embryo only a weak signal is seen in the left side presumptive third somite (Fig. 5B, the presomitic bands are numbered). The expression pattern in the presumptive somitic mesoderm is very similar between AmphihairyB, C and D. For example, a 3-stripe pattern is shown for AmphihairyC (Fig. 5F) and a 4-stripe pattern is shown for AmphihairyD (Fig. 5G and H).

AmphihairyB, C and D are also expressed in the presumptive neural plate of the late gastrula. For AmphihairyB, expression is at about the level of the first and second somites (Fig. 5C, arrow) and is strongest laterally (Fig. 5D). For AmphihairyC the relatively weak signal in the neural plate is in two regions: an anterior one between the first and second somites (Fig. 5F, arrow) and a posterior one from third somitic stripe towards the posterior-most part of the gastrula (Fig. 5F, twin arrows). And last, AmphihairyD is expressed only in the posterior-most region of the neural plate between the third and the fourth somite (Fig. 5G, arrow).

In summary, AmphihairyA was the only hairy gene...
Amphioxus hairy genes

expressed in the endoderm and not in the presumptive somitic mesoderm, region where the rest of Amphihairy genes seem to be co-expressed. In the medial neural plate all four genes have a striking pattern, being all of them expressed there but in complementary patterns. AmphihairyA is expressed in the posterior-most region, then is expressed AmphihairyC but leaving a gap between somitic stripes 2 and 3 that is filled by AmphihairyD expression, and anteriorly are AmphihairyB and again AmphihairyC expressed.

AmphihairyA, B, C and D genes expression in neurula stages

During neurula stage, the expression of the four Amphihairy genes becomes more gene-specific. AmphihairyA gene behaves accordingly to the pattern observed for earliest stages; namely it is expressed in the endoderm and the posterior-most part of the neural tube. In early neurula stages the signal is conspicuous along most of the gut and also in the posterior-most third of the dorsal nerve cord (Fig. 6A, arrow). The nascent Hatschek's left diverticulum also expresses the gene (arrowhead in Fig. 6A). In later neurulae, the signal remains in the posterior third of the neural tube (arrow in fig. 6B), whereas the signal in the gut is now restricted to specific regions. It is confined to its ventral posterior-most part, a middle part, and in the anterior-most part, the signal is restricted dorsally and in the Hatschek's left anterior diverticulum (arrowhead in fig. 6B) and the anterior wall of the gut.

AmphihairyB also continues to be expressed in the same tissues as it was in gastrula stages. It is strongly expressed in the neural plate and also in the posterior part of the formed somites and in the most posterior paraxial mesoderm. In an oblique dorso-lateral view of a very young neurula, the signal is detected in stripes at the posterior-most part of the segmented somites (the arrow in fig. 6C marks the posterior border of the last formed somite) and very highly in the anterior-most PSM. It is also detected all along the neural plate (Fig. 6C). A similar pattern was observed for older neurulae within the somites and anterior PSM, but the signal in the neural plate is no longer detected over its entire length and appears more region-specific (Fig. 6D). In transverse sections (Fig. 6E to G from anterior to posterior) the signal in the neural plate (arrowhead in Fig. 6E), in the neural plate and the somites (arrowhead and arrows in Fig. 6F) or in the somites (arrows in Fig. 6G) is better observed. Later on the signal in the somites becomes extinguished, and is only

Figure 5. AmphihairyA, B, C, and D genes expression in amphioxus gastrulae by whole mount in situ hybridization. All embryos in dorsal views (A, B, C, E, F and G) have anterior toward the left. The lateral view (H) has anterior to the left and dorsal up. In the transverse optical dissection (D), dorsal is up looking from posterior. The presumptive somitic bands are numbered and the arrows indicate expression domains in the neural plate (with the exception of D). A) AmphihairyA expression within the anterior inner endodermal cell layer and the posterior neural plate. B) Dorsal view of an AmphihairyB 2 to 3 stripe-pattern gastrula. C) Dorsal view of an AmphihairyB 3-stripe pattern embryo. D) Optical transverse dissection of the specimen in (C) showing the highest AmphihairyB expression levels at the edges of the neural plate (arrowheads). The expression in the dorso-lateral walls of the archenteron is shown by arrows. E) Dorsal view of an AmphihairyB 4-stripe pattern embryo. F) Dorsal view of a 3-stripe pattern embryo stained for the AmphihairyC probe. G) Dorsal view of a 4-stripe embryo stained for the AmphihairyD labelled probe. H) Lateral view of the gastrula in (G) showing the AmphihairyD gene expression as pre-somitic stripes.
detected in the most posterior paraxial mesoderm (arrowheads in fig. 6H and 6I). In the anterior part of the neural tube, there is a gap between the anterior-most expression domain and the next domain (Fig. 6Hand 6I, lines).

During neurula stage, **AmphihairyC** (Fig. 6J) and **AmphihairyD** (Fig. 6R) have slightly different expression patterns. Although both were expressed in the neural plate (arrowheads in fig. 6K and 6S, respectively), they were complementarily expressed in the dorsal portion of the anterior gut. **AmphihairyC** was conspicuously expressed as two patches at the immediate lateral to the midline anterior endoderm (arrows in fig. 6K), whereas **AmphihairyD** mRNA was present in the dorsal-most part (arrow in fig. 6S) and in two lateral domains of the anterior endoderm (double arrow in fig. 6S). In a medial section, both genes were also similarly transcribed in the neural plate (arrowhead in fig. 6L). **AmphihairyC** was highly expressed in the segmented somites (arrows in fig. 6L) and low expressed in the notochord. In a posterior transverse section, another difference came to light. Although both genes where highly expressed in the forming somites, **AmphihairyC** was the only one expressed in the neural plate (arrowhead in fig. 6M and asterisk in fig. 6T). Moreover, whereas **AmphihairyC** is weakly expressed in the forming notochord (asterisk in fig. 6M),

Figure 6. **AmphihairyA, B, C, and D** genes expression in amphioxus neurulae by whole mount in situ hybridization. Lateral views (A, B, C, D, H, J, N, R and V) have anterior to the left and dorsal up. In dorsal views (I and O), anterior is to the left. In transverse sections (E, F, G, K, L, M, P, Q, S, T, W and X), dorsal is up looking from posterior. **A** AmphihairyA expression in the endoderm and the posterior dorsal nerve cord (arrow) of an early amphioxus neurula. **B** AmphihairyA expression in the endoderm and the posterior dorsal nerve cord (arrow) of a late neurula. The expression in the Hatcheck’s left diverticulum is shown by an arrowhead in A and B. **C** Oblique view of an early neurula that exhibits AmphihairyB expression in the whole neural plate and the posterior compartment of the segmented somites (the last somitic border is marked by an arrow). **D** Lateral view of an early neurula showing AmphihairyB expression in the neural tube, the posterior PSM, and in the segmented somites. **E** Cross-section through level i in F showing the expression of AmphihairyB in the neural tube (arrowhead). **F** Cross-section through level ii in F showing the expression of AmphihairyB in the neural tube (arrowhead) and the segmented somites (arrow). **G** Cross-section through level iii in F showing the expression of AmphihairyB in the posterior PSM (arrows). **H** Lateral view of late neurula showing AmphihairyB expression in the neural tube and the posterior PSM (arrow). **I** Dorsal view of the specimen in (H); the expression in the PSM is shown by arrowheads. The gap in the anterior neural tube domain is shown by a line in H and I. **J** Lateral view of an early neurula stained for the AmphihairyC mRNA with the expression in the neural plate, the somites and the posterior PSM. **K** Cross-section through level i in J showing the expression of AmphihairyC in the neural plate (arrowhead) and the anterior gut (arrow). **L** Cross-section through level ii in J showing the expression of AmphihairyC in the neural tube (arrowhead) and the somites (arrows). **M** Cross-section through level iii in J showing the expression of AmphihairyC in the posterior neural plate (asterisk) and mesoderm. The low expression levels in the forming notochord is shown by an asterisk. **N** Lateral view of a late neurula stained for the AmphihairyC mRNA showing the expression in the neural plate, the anterior gut, the somites and the posterior PSM. **O** Dorsal view of the specimen shown in N. The arrowheads show the expression in the PSM. **P** Cross-section through level i in N showing the expression of AmphihairyC in the neural tube (arrowhead) and the segmented somites (arrow). The low expression in the dorsal notochord is shown by an asterisk. **Q** Cross-section through level ii in N showing the expression of AmphihairyC in the posterior mesoderm and no longer in the neural plate (asterisk). **R** Lateral view of an early neurula showing AmphihairyD expression in the anterior endoderm, the neural tube and the notochord. **S** Cross-section through level i in R showing the expression of AmphihairyD in the neural plate (arrowhead) and the gut (arrow and double arrow). **T** Cross-section through level ii in R showing the expression of AmphihairyD in the posterior mesoderm. The lack of AmphihairyD expression in the posterior neural plate is shown by an asterisk. **U** Lateral view of a late neurula showing AmphihairyD expression in left gut diverticulum (arrow), the neural tube and the notochord. **V** Cross-section through level i in V showing the expression of AmphihairyD in the neural plate (arrowhead), the ventral notochord (asterisk) and the gut (arrow). **X** Cross-section through level ii in V showing the expression of AmphihairyD in the posterior mesoderm. The asterisk marks the expression in the forming notochord.
AmphihairyD is expressed at high levels in this territory (arrow in fig. 6T). During the late neurula stage, both genes are expressed in dorsal structures (Fig. 6N for AmphihairyC and 6V for AmphihairyD) with several differences. AmphihairyC signal is mainly seen in the neural tube (arrowhead in fig. 6F), the gut, the segmented somites (arrows in fig. 6P), and only at low levels within the dorsal notochord (asterisk in Fig. 6P). AmphihairyD signal is also detected in the neural tube (arrowhead in Fig. 6W) and in the gut (Fig. 6W, arrow). However, AmphihairyD signal is not detected within the segmented somites, but is conspicuous in the ventral notochord (asterisk in fig. 6W). In a posterior section through level ii in 6N and 6V, the signal is detected in the forming somites for both genes. However, AmphihairyD signal is stronger detected in the forming notochord (asterisk in fig. 6X) than AmphihairyC signal (Fig. 6Q).

Interestingly, all four genes are similarly expressed within the neural tube of late neurulae as they where expressed in the neural plate of gastrula stages. That is, AmphihairyA being the hairy gene expressed in a posterior-most domain of the neural tube (Fig.6B), AmphihairyB being highly expressed in the anterior-most domain (Fig. 6H), and AmphihairyC and AmphihairyD similarly expressed in between (Fig. 6N).

AmphihairyA, B, C and D genes expression in larvae

During larval stages, AmphihairyA expression is similar to that observed in late neurulae. Its mRNA continues restricted to the posterior-most part of the dorsal nerve corde, and within the gut it is strongly expressed in three regions (Fig. 7A): in the most posterior gut it has a two-domain pattern; in a middle region there are scattered positive cells; and in the anterior gut it is expressed dorsally in the left anterior gut diverticulum that will become the Hatschek's pit (asterisk in fig. 6A), in the anterior wall of the gut, and in the pharynx endoderm more ventrally. Cross sections through level i in fig. 7A show AmphihairyA expression in the left anterior gut diverticulum (arrow in fig. 7B). A cross section through a more posterior level (ii in fig. 7A) shows the signal within the posterior neural tube (arrowhead in fig. 7C) and the gut (arrow in fig. 7C). AmphihairyB expression is still restricted to the anterior part of the neural tube during larval stages (Fig. 7D), which is better observed in a transverse section through level i in fig. 7D (arrowhead in fig. 7E). There is still a gap between the anterior patch of AmphihairyB expression and the rest along the mid-anterior neural tube (line in Fig. 7D).

In contrast to earlier stages AmphihairyC is no longer detected in neural tissues. Its expression is mainly

Figure 7. AmphihairyA, B, C, and D genes expression in amphioxus larva by whole mount in situ hybridization. Lateral views (A, D, F, J) have anterior to the right and dorsal up. In dorsal and ventral views (I, K, N), anterior is to the right. In transverse sections (B, C, E, G, H, L, M), dorsal is up looking from posterior. A) AmphihairyA expression in the endoderm and the posterior dorsal nerve cord of an amphioxus larva. B) Cross-section through level i in A showing the expression of AmphihairyA in the gut (arrow). C) Cross-section through level ii in A showing the expression of AmphihairyA in the gut (arrow) and the posterior neural tube (arrowhead). D) AmphihairyB expression in the anterior half of the dorsal nerve cord. E) Cross-section through level i in D showing the expression of AmphihairyB in the neural tube (arrowhead). F) Lateral view of an amphioxus larva showing AmphihairyC expression in the posterior tail bud, and in the anterior endoderm (arrow for the pharyngeal endoderm, and asterisk for the preoral pit). G) Cross-section through level i in F showing the expression of AmphihairyC in pharyngeal endoderm (arrow). H) Cross-section through level ii in F showing the expression of AmphihairyC in the posterior mesoderm. I) Dorsal view of the specimen in F showing the AmphihairyC expression within the tail bud. J) Lateral view of a larva showing AmphihairyD expression in the anterior club-shaped gland (asterisk) and the preusspummate first and second gill slits (arrows), and in the posterior mesoderm. K) Ventral view of the specimen in (J). L) Cross-section through level i in J showing the expression of AmphihairyD in the pharyngeal endoderm (arrow). M) Cross-section through level ii in J showing the expression of AmphihairyD in the posterior mesoderm. N) Dorsal view of the specimen in J showing the AmphihairyD expression within the tail bud.
Amphioxus hairy genes

observed in the posterior paraxial mesoderm associated with the tail bud, and in the anterior endoderm, where it is conspicuously expressed in a region ventral to the mouth and the branchial anlage (arrow in fig. 7F), and in the ventral part of the left anterior gut diverticulum or preoral pit (asterisk in fig. 7F). A cross section through level i in fig. 7F shows the expression in the ventral pharyngeal endoderm (arrow in fig. 7G), and in the posterior mesoderm through a more posterior level (Fig. 7H). In a dorsal view, the signal in the posterior tail bud is better observed (Fig. 7I).

Last, AmphihairyD mRNA is not longer present in the neural tube during larval stages. It is only expressed in the anterior endoderm and in the posterior tail bud, similarly to AmphihairyC. In the anterior region of the larva, it is expressed in a 3-stripe pattern. The first one marks the region where the ventral duct of the club-shaped gland is developing (asterisk in fig. 7J), and the two posterior ones that are in the branchial anlage, may prefigure the first two gill slits (arrows in fig. 7J). This pattern is clearly seen from a ventral view (Fig. 7K). A section through level i in fig. 7I makes further visible AmphihairyD expression within the pharyngeal endoderm (arrow in fig. 7L), and in the posterior mesoderm through a more posterior level (Fig. 6M). It is also noticeable from a dorsal view, the signal within the entite tail bud, although a bit higher in its anterior part, the chordoneural hindge of the tail bud (Fig. 7N).

AmphihairyC and AmphihairyD genomic southern blots

As shown before, AmphihairyC and AmphihairyD exhibited a quite similar expression pattern during amphioxus embryogenesis. Although by sequence they are not the most similar ones (see figs. 1 and 2), we wanted to really ascertain whether they represented different hairy genes or very polymorphic alleles of a single hairy locus. With this aim, Southern blots of genomic DNA obtained from single individuals were hybridized with the most specific cDNA region obtained by PCR with the primers h5 and h3rep (table II) over the full length cDNA clones. As a different hibridizing pattern is observed for each gene and for each digestion, we concluded that they represent different hairy genes in the amphioxus genome (Fig. 8).

AmphihairyE and AmphihairyF genes expression

Although we tried several times by in situ whole mount hybridizations with AmphihairyE and F probes, we were unable to detect any expression on amphioxus embryos. We then thought in the possibility that these genes were expressed at too low levels to be readily detected by this technique. We thus planned RT-PCR experiments on embryonic and larval cDNA with specific primers for each of these genes plus and internal control, namely AmphihairyC. After blotting the gels and further hibridization with internal probes of AmphihairyC plus AmphihairyE or AmphihairyC plus AmphihairyF specific regions, we observed that the mRNA levels of AmphihairyE and AmphihairyF were not detected or detected much under the levels of AmphihairyC (Fig. 9). This made sense, as AmphihairyC, in contrast to the former genes, was already detected by whole mount experiments. We thus concluded that neither AmphihairyE nor F are expressed during amphioxus embryogenesis, or they are expressed under detectable levels by in situ whole mount hybridizations. We favour the former, as even with the high-sensitive technique of PCR, we did not detect AmphihairyE or F expression. In the mouse, the hairy HES1 gene is expressed during embryogenesis, but also in the adult (Sasai et al., 1992). It was then still possible that these two Amphihairy genes were expressed in the adult and no longer in the embryo. However, the same RT-PCR strategy was used on adult amphioxus cDNA, and we obtained the correspondent amplification band for AmphihairyC but not for AmphihairyE or F (data not shown).

DISCUSSION

Figure 8. B. floridiae genomic Southern Blots. A) Genomic DNA from single individuals digested with Pst I (P) or Eco RI (R) were probed for AmphihairyC (left panel) and AmphihairyD (right panel). B) Total genomic DNA from a single animal digested either with the methylation-sensitive enzyme HpaII (lane H) or with its methylation-insensitive isoschizomer MspI (lane M) probed for AmphihairyC (left panel) and AmphihairyD (right panel).
The amphioxus hairy family

Here we report the characterization of the big hairy family of amphioxus. This family is composed by a minimum of four genes that are expressed during *B. floridæ* embryogenesis (*AmphihairyA* to *D*) and have undergone subfunctionalization, two hairy genes that are not longer expressed (*AmphihairyE* and *AmphihairyF*), and at least two very diverged hairy duplicate copies that most probably have undergone nonfunctionalization (*Amphihairy-like1* and *Amphihairy-like2*). Although other cases of gene duplication have been reported in amphioxus (Minguillón et al., 2002), to our knowledge, this is the first report of such an extreme case of duplication. Moreover, this is also the first case in which a differential fate after duplication can be asserted for the duplicate copies. In other cases of duplicate genes in amphioxus, only two copies were reported (one case with three), and either they were too similar to distinguish among their expression patterns (Holland et al., 1995), or only quantitative differences accounted for their expression patterns (Shimeld, 1997).

As all six “canonical” hairy genes are closely related to both vertebrate and protostome hairy genes (Fig. 2, table III) the nomenclature for their relationship with other hairy genes needs of extra concepts. For instance, each amphioxus hairy genes is semi-ortholog of the single beetle hairy gene, and the latter is pro-ortholog of all Amphihairy genes. On the other hand, each amphioxus hairy gene is trans-ortholog of each vertebrate or *Drosophila* hairy gene (for nomenclature see Sharman, 1999). Although phylogenetic trees cannot be constructed due to the short available sequence of Amphihairy-like1 and 2, we argue that they are hairy representatives and not members of other related families as the Enhancer of split family. Although very low, the highest similarity (of the Amphihairy-like sequences) is found with other hairy genes (Fig. 4). The existence of multiple hairy copies in the amphioxus genome does not enter in conflict with the “pre-duplicative” state of its genome. All the copies put together would constitute the pro-ortholog of vertebrate hairy genes (Fig. 2) and each Amphihairy gene is a trans-ortholog of each vertebrate gene, which mean that they have arose by independent duplication in the *B. floridæ* genome. The fact that the cephalochordate lineage scaped the massive gene/whole genome duplications (see Wolfe, 2001 for discussion) do not imply that its genome is not evolving, meaning that it can suffer specific gene duplications, gene losses, etc. Hence, it has to be kept in mind that although amphioxus may resemble the ancestor of the vertebrates, it is not the ancestor, only its closest living relative, a prívileged position that did not include the freezing of its genome.

Why did the *B. floridæ* genome undergo such an extreme case of duplication of the hairy genes is unknown. Has the duplication occurred recently in evolution and is specific to *B. floridæ*, or in contrast, it is more ancient and the same representatives should be found in other Branchiostoma species? To really ascertain between both possibilities, it would be necessary the study of the hairy family in other amphioxus species, such *B. lanceolatum*. In fact, there are cases in the literature in which a gene has been duplicated only in one amphioxus species (Dalfó et al., 2001), and even duplicated different times in each amphioxus species (Karabinos and Bhattacharya, 2000). Therefore, it would be interesting to study this gene(s) in other species, and moreover, in the case that a single gene existed, to see whether its expression pattern is the summation of the patterns of the *B. floridæ* hairy genes.

Differential fate after duplication of the amphioxus hairy genes

Several mathematical models have been developed to explain the future of paralog genes after duplication from a single ancestral gene. These models predict that duplicate genes initially have fully overlapping, redundant functions, such that one copy may shield the second from natural selection, if gene dosage is not critical. Because deleterious mutations occur more frequently than beneficial ones (Lynch and Walsh, 1998), the classical model predicts that one of the duplicate loci should most commonly deteriorate into a pseudogene (i.e. be fixed as a null allele) (Watterson, 1983). The classical model also considers a rarer alternative: maintenance of duplicate copies, owing to the fixation of a rare beneficial mutation in one copy that endows it with a novel function, while the other maintains the original role (Ohno, 1970). The DDC model (for Duplication-Degeneration-Complementation) was proposed by Force et al. (1999) as a possible explanation for the higher maintenance of duplicate genes in duplicated genomes observed than that expected under the classical mathematical models. According to this model, duplicate copies of an ancient single gene preserve their maintainence in the genome by subfunctionalization i.e. by differential degeneration of regulatory regions among the duplicate genes.

Figure 9. RT-PCR on RNA obtained from different amphioxus embryonic stages. 12h, 15h, 18h and 21h refer to hours after fertilization. Abbreviations used are: C-, negative control; C, AmphihairyC positive control; E, AmphihairyE positive control; F, AmphihairyF positive control.
Hence, paralog genes decouple a pleiotropic role that was carried out by their single ancestor gene and become thus all copies necessary for carrying out all the functions that the ancestral pre-duplicate gene did. *AmphihairyA*, *B*, *C* and *D* genes have expression patterns that generally do not overlap, although some of the differences are subtle. Briefly, *AmphihairyA* is mainly expressed within the endoderm and to a lesser extent at the anterior end of the neural tube, *AmphihairyB* in the neural tube, posterior paraxial mesoderm, and somites, and *AmphihairyC* and *D* are more widely expressed in all three embryonic layers. There are several cases of combinatorial patterns among the Amphihairy genes all along amphioxus development. More noticeable are those within the neural plate first and the neural tube latter, and those in some anterior endoderm-derived structures in amphioxus larvae. The single mouse gene *HES1* is expressed all along the neural tube, but strikingly, only the summation of expression for all four hairy genes of amphioxus covers the entire amphioxus neural plate and neural tube. *AmphihairyB* is expressed at the very front of the animal, *AmphihairyA* at the anterior, and *AmphihairyC* and *D* genes in between. It is also interesting that a combination of two hairy genes (*AmphihairyA* plus *AmphihairyB*) is required to include all the cells of Hatschek’s left diverticulum, a suspected homolog of the vertebrate adrenal gland. In contrast, zebrafish *her9* is expressed in the whole pituitary. Hence, if we assume that this subfunctionalization has originated by differential losses of *cis* regulatory sequences, one must be struck by the high degree of complexity in the regulatory regions of hairy genes. Only for these two examples, we have to think in at least three distinct regulatory elements driving the expression of an ancestral pre-duplicate hairy gene within the neural tube, and at least two driving the expression in the left anterior diverticulum, that have been differentially lost by the duplicate copies during or after the process of duplication.

The hairy family genes in *B. floridanae* seem to have undergone different processes after duplication from a single hairy gene in its lineage. First, as shown above, *AmphihairyA*, *B*, *C*, and *D* genes seem to have undergone subfunctionalization, a process guaranteeing their maintenance in the genome as duplicate genes. Second, the other two hairy “canonical” genes, *AmphihairyE* and *F*, seem to be in the process of subfunctionalization, as they do not have any obvious function in developing or adult amphioxus, as shown by the RT-PCR experiments (Fig. 9), or are expressed in very particular instants of development that escaped the analyses. And finally, the two *Amphihairy-like* genomic sequences seem to be already nonfunctional (pesudosgenes), as we were unable to recover them after exhaustive cDNA screening or random EST sequencing but also since they have a very divergent “hairy-like” sequence.

Insights into amphioxus early somitogenesis from Amphihairy genes expression

The amphioxus hairy gene expression data shed some light on specific aspects of cephalochordate development. First, they are relevant to the long-standing discussion on the asymmetry of amphioxus somitogenesis and somites. Classical morphologists had noticed that the amphioxus somite-rows were inherently asymmetric, with the left-side somites a bit advanced in their development, and thus offset a little anteriorly to their right-side counterparts. However, the extent of this asymmetry was controversial. Conklin (1932) and Hatschek (1893) agreed that somites are roughly symmetrical until the 7- or 8-somite stage, but Cerfontaine (1906) postulated that asymmetry is present from the first pair, with a slight delay in the development of the right side with respect to that of the left side. Our results support Cerfontaine observations, as the asymmetry is already molecularly detected in means of *AmphihairyB* expression in a late gastrula even when the somites are not yet visible (Fig. 5B). In this embryo, three pre-somitic stripes are visible on the left side, whereas only two are seen on the right. Still during somitogenesis, all three amphioxus hairy genes that are expressed in the presumptive somitic mesoderm (*AmphihairyB*, *C*, and *D*) shed light on the formation of the first four pair of amphioxus muscular somites. These somites have the peculiarity that they bud off virtually simultaneously from the dorso-lateral walls of the archenteron. Hatschek (1893) claimed to have observed embryos with a single pair of somites, whereas Conklin (1932) never detected them and claimed that always more than one somite were present in all the embryos he analyzed. Regardless of their simultaneous or sequential antero-posterior appearance, they are molecularly prefigured one by one, as we have detected gastrulae with a 2-stripe, 2-to 3-stripe, 3-stripe, and 4-stripe pattern (Fig. 5). Moreover, the maturation of those four first muscular somites also appears as a sequencial process, as the intensity of *AmphihairyB*, *C* and *D* expression is stronger in posterior (and thus younger) pre-somites than in the anterior (older) ones (Fig. 5).

Similarities among amphioxus and vertebrate hairy genes

Within the central nervous system, the mouse gene *HES1* is expressed in undifferentiated neuronal precursor cells in the ventricular zone, and its transcription decreases as neurogenesis proceeds until expression is no longer detected in mature neurons or glial cells (Sasai et al., 1992). Accordingly, mutant mice for the *HES1* gene exhibit severe neural defects. Moreover, in their brain there is an up-regulation of some neural bHLH factors and postmitotic neurons appear prematurely. It thus appears that *HES1*, like the *Drosophila hairy* gene, acts as a negative regulator of...
neurogenesis, and that its down-regulation is required for precursor cells to enter the differentiation processes (Ishibashi et al., 1995). It seems reasonable to think that amphioxus hairy genes are carrying out a similar function within the amphioxus nerve cord. In the mouse, HES1 is expressed all along the neural tube which corresponds to the summation of the expression patterns of all four Amphihairy genes. In larval stages, only the anterior- and the posterior-most parts of the neural tube are positive for a hairy gene (AmphihairyB, Fig. 7D, and AmphihairyA, Fig. 7A, respectively). It is tempting to speculate that these differences may account for differential maturation rates along the neural tube. Unfortunately, no work has been done about this differentiation process to really ascertain whether amphioxus hairy genes are regulated and function in a similar way than HES1 in the mouse. In the zebrafish, the hairy ortholog her9 is expressed in the mid- and hindbrain but in the MHB (Leve et al., 2001). It is striking thus to note a gap also in the anterior amphioxus neural tube (AmphihairyB expression in fig. 6 and 7). The existence of a tripartite brain in cephalochordates is still on debate (Ferrier et al., 2001 and references therein) and the gap of expression in this region suggestively weights to the presence of a MHB.

In endodermal derivatives, HES1 is expressed in, and required for, the proper development of the endocrine islet cells of the mouse pancreas as well as other dispersed endocrine cells along the entire gut (Jensen et al., 2000). It was suggested that HES1 functions as a general negative regulator of endodermal endocrine differentiation, in an analogous way that it does within neural precursors (Jensen et al., 2000). Similarly, the amphioxus hairy genes are expressed in the developing gut and certain derivatives (AmphihairyA, C and D only at larval stages). Amphioxus does not have a discrete pancreas but has several types of endocrine cells incorporated into the gut epithelium, some of which are possibly homologous of the pancreas-islet cells of mammals (Holland et al., 1997a). Interestingly, patches of AmphihairyA expression in the gut may represent regions with presumptive endocrine cell types. All hairy genes but AmphihairyB are also conspicuously expressed in combinatorial patterns in some endoderm-derived glands. Briefly, in the left gut diverticulum, AmphihairyA is predominantly expressed in the dorso-posterior region and AmphihairyC in its ventral region, whereas AmphihairyD is conspicuously expressed in the club-shaped gland. Hatschek’s left gut diverticulum contributes to the Hatschek’s pit in the adult, a structure thought to be homologous to the vertebrate adenohypophysis (Whittaker, 1997), an organ where the zebrafish hairy gene her9 is expressed (Leve et al., 2001). The homology of the club-shaped gland has been difficult to assess (Goodrich, 1930), and based on specific gene expression data some authors support the hypothesis of being an amphioxus evolutionary novelty (Jackman, 2000). The expression of AmphihairyD in this misterious gland do not resolve any discussion about the existence of an homologous structure to the club-shaped gland in vertebrates, as it may merely reflect the future endocrine nature of this gland.

In summary, the addition of the expression patterns of AmphihairyA to D genes resembles a grosso modo the expression of the single mouse HES1 gene or the multiple hairy genes in other vertebrate species. They are expressed in the CNS (all of them in complementary patterns), in the posterior paraxial mesoderm (AmphihairyB, C, and D), in the posterior compartment of the segmented somites (AmphihairyB), in the gut (AmphihairyA always and AmphihairyC and D in larval stages), and in the notochord (AmphihairyC and D). Hence, the common ancestor of cephalochordates and vertebrates already possessed a single hairy gene of a very pleitropic nature, in contrast to protostome hairy genes.

Do the Amphihairy genes cycle within the amphioxus posterior paraxial mesoderm?

There is not a single technique available to demonstrate whether one (or more) amphioxus hairy genes are cycling within the PSM in a similar way that they do in amniotes. Amphioxus somitogenesis is divided in two different phases. During an earlier one, the somites originate by the budding off of the dorso-lateral walls of the archenteron (which could be considered a sort of PSM) forming their coeloms by enterochoely. The first eight pair of muscular somites are formed during this early phase from paraxial mesoderm formed during gastrulation (Holland et al., 1997b). In contrast, during the second phase, somites arise directly from the proliferative tail bud by a schyzocoelic process (Schubert et al., 2001) without the intervention of any PSM between the tail bud and the nascent somites. Hence, if any hairy gene has a cycling behaviour, it will only be visible during the early phase of amphioxus somitogenesis. Then only AmphihairyB, C, and D could in principle cycle during the first phase of somitogenesis, as they are expressed at the right place at the right time. Nevertheless, the first eight muscular somites arise very quickly (within a few hours) and thus there is not much time for any cycling gene transcription.

In the chicken, the onset of the dynamic expression of hairy genes correlates with ingestion of the paraxial mesoderm territory from the epiblast into the primitive streak. Hence, the number of oscillacions experienced by somitic cells is correlated with their position along the anterio-posterior axis (Jouve et al., 2002). If any hairy gene is being regulated accordingly to this cyclic behaviour, we should have been able to detect their “on and off” expression within or around the blastopore, the equivalent structure to the primitive streak, and this was not the case. Besides, we have detected
Amphihairy genes expression within the paraxial mesoderm (AmphihairyB, C, and D) not as pulses, but as stripes that prefigure the first muscular somites. Moreover, we saw gastrulae with 2, 3 or 4 stripes (Fig. 5), which may indicate that they are formed one by one, in the anterior PSM in a way much more similar to that of hairy genes in lower vertebrates such as the zebrafish her6 gene or both Xenopus hairy genes. The expression of these genes is seen as one to three stripes at the anterior PSM that prefigure the regions where new somites will be added (Pasini et al., 2001; Davis et al., 2001). Then, we suggest that the cycling behaviour of the hairy family may be an amniote novelty, and not a secondary loss of this behaviour in the fish and frog lineages. None gene that exhibits a cyclic expression in higher vertebrates behaves so in Xenopus. On the contrary, there are some cycling genes in the zebrafish, as the Notch ligand DeltaC and the E(spl) family genes her1 and her7 (Jiang et al., 2000; Holley et al., 2000; cited in Leve et al., 2001). Also an E(spl) family gene, Hes7, cycles within the mouse PSM (Bessho et al., 2002). Therefore, it is possible that other genes related to the Notch signalling pathway or other genes from the E(spl) family cycle in the amphioxus PSM. Another possibility would be that somitogenesis in amphioxus would not need such an accurate control as happens with Xenopus. Interestingly, somitogenesis is also inherently asymmetrical in the frog, being the right side of the embryo temporally advanced in segmentation (Davis et al., 2001). It is thus plausible that there is no way to coordinate an asymmetrical cycling pattern, and that those organisms, namely amphioxus and the frog, use other strategies.

Acknowledgements
We are indebted to Jim Langeland for cDNA library, to the Serveis Científico-Tècnics of the Universitat de Barcelona for the sectioning and to Elisa Serra for unvaluable help. We thank colleagues from Departament de Genètica for discussions and Seb Shimeld, Ricard Albabat, and Nic Holland for discussion, support, and advice. This work was supported by grants from DGESIC to J.G.F (Ministerio de Educación y Cultura PB98-1261-C02-02). C.M. holded a CIRIT (Generalitat de Catalunya) fellowship.

References

Leve C, Gajewski M, Rohr KB, Tautz D. (2001). Homologues of c-hairy1 (her9) and lunatic fringe in zebrafish are expressed in the developing central nervous system, but not in the presomitic mesoderm. Dev Genes Evol. 211, 493-500.

