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Abstract

The purpose of this work is to fashion an approach to model theory for general
first-order languages without equality which is aimed at providing a unified vantage
point for some concepts and results common in some other fruitful areas, so far
independently developed from classical model theory; namely, universal algebra
and general sentential logic. The approach has its most recent precedents in two
programs, not simultaneously developed but quite similar in spirit: the model theory
of Universal Horn Logic with equality developed by Mal’cev, and the model theory
of sentential logic based on the concept of logical matriz, initiated in Poland. The
novelty of the approach mainly lies in the importance that we attach to the double
semantics available for languages without equality (full and reduced semantics) and
the parallel development we make of their model theories on the base of the reduction
operator. We put forward the purpose of generalizing as much as possible of the
theory of varielies and quasivarieties to the model theory of first-order logic without
equality. For this, we make a widespread use of the Leibniz operator, a mapping
between structures and congruences in terms of which several elementary theories
can be distinguished by the different algebraic character of their model classes.

The main results of the work cover three topics: (1) the characterization in the
style of Birkhoff’s Variety Theorem of some classes axiomatized by different sorts
of first-order sentences without equality; (2) the conditions under which a reduced
class of general structures (either reduced or nonreduced) can retain or acquire
the different algebraic properties of a quasivariety of algebras; (3) the extension
to general structures without equality of properties typical of certain classes of
algebras, like structure theorems, freeness and Mal’cev conditions. We also discuss
in a final Chapter the way in which the developed theory relates to modern algebraic
logic.
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RESUM DE LA TESI

Raimon Elgueta

El proposit és desenvolupar alguns aspectes basics d’una teoria alge-
braica de models per a llenguatges de primer ordre sense igualtat que exten-
gui el programa de A.I. Mal’cev (veure The metamathematics of algebraic
systems, North-Holland, Amsterdam, 1971, i Algebraic systems, Springer-
Verlag, Berlin, 1973), on desenvolupa basicament la teoria de models de
la logica universal de Horn amb igualtat, i el programa iniciat per ’escola
polonesa sobre la teoria de models de la logica sentencial (veure, per exem-
ple, el treball recent de W. Blok, D. Pigozzi Algebraic semantics for universal
Horn logic without equality, in “Universal Algebra and Quasigroup Theory”,
Heldermann-Verlag, Berlin, 1992, pp. 1-56). Principalment, es tracta d’anar
més enlla en la generalitzacié d’una part de ’algebra universal, la teoria de
varietats 1 quasivarietats, a estructures amb relacions arbitraries i sense igual-
tat.

El treball compren 10 capitols. Els tres primers contenen material basic.
El Capitol 1 introdueix alguna terminologia i notacié basiques, i presenta
alguns resultats fonamentals de la teoria classica de models que sén també
valids per a llenguatges sense igualtat.

El Capitol 2 proporciana el concepte basic d’igualtat de Leibniz, de
la qual se’n troba una caracteritzacié algebraica. S’enceta el capitol amb
una definicié de congruéncia en estructures de primer ordre i es prova que
el conjunt de congruéncies en una estructura donada contitueix un reticle
complet, ’element maxim del qual es precisament la igualtat de Leibniz. Es
proven extensions dels teoremes d’isomorfia de I’algebra universal i s’investiga
la nocié d’estructura quocient, en particular la nocié de quocient de Leibniz.

Al Capitol 3 es discuteixen les conseqiiéncies semantiques de factoritzar
una estructura per una congruéncia i es prova que la logica de primer ordre
sense igualtat admet dues semantiques completes, la semantica plena i la
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semantica reduida. En endavant, 'objectiu és basicament estudiar les propi-

etats algebraiques que mostren les classes plena i reduida de models d’una
teoria de primer ordre (sense igualtat).

El Capitol 4 conté caracteritzacions a ’estil del Teorema de Birkhoff
sobre varietats d’algebres de diferents tipus de classes d’estructures: elemen-
tals, universals, universals de Horn (quasivarietats) i universals atomiques
(varietats). Les demostracions es basen en una técnica classica de la teoria
de models, el métode dels diagrames. Es per aixd que al capitol anterior
s’'introdueix el diagrama de Leibniz d’una estructura com a generalitzacio
per a llenguatges sense igualtat del concepte usual de diagrama. S’inclou
també D’estudi de les corresponents classes reduides, el qual es centra en la
investigacié de les propietats que ’operador de reduccié té en composar-lo
amb els diferents procediments de construccio d’estructures.

El Capitol 5 és central; examina les conseqiiéncies basiques de considerar
la part relacional d’una estructura com a extensié de la nocié de congrueéncia
d’una algebra. S’introdueix ’operador de Leibniz (una correspondéncia entre
estructures -o la seva part relacional- i congruéncies sobre una algebra) com a
criteri principal per distingir propietats de la igualtat de Leibniz en els models
d’una classe d’estructures, les quals es comprova a posteriori que determinen
caracters algebraics diferents. Utilitzant aquest operador, s’arriba a establir
una jerarquia de classes, protoalgebraiques, semialgebraiques, algebraiques i
purament algebraiques, i es comenga l’estudi de les diferents propietats que
tenen les classes de cadascuna d’aquestes categories. S’obtenen resultats que
mostren que les categories de classes protoalgebraiques i semialgebraiques
sén les més amplies mostrant un minim caracter algebraic.

El Capitol 7 estudia com poden millorar-se les caracteritzacions obtin-
gudes al capitol 4 de les classes reduides de models en el cas de tractar-se
de classes d’alguna de les categories anteriors. S’arriben a obtenir, per via
purament semantica, noves caracteritzacions de les diferents categories de
classes d’estructures introduides al capitol anterior.

Finalment, els Capitols 6, 8 i 9 contenen generalitzacions explicites de
resultats ben coneguts de I'Algebra universal. Concretament, al Capitol 6
es desenvolupa la teoria de la representacid subdirecta per a estructures de
primer ordre sense igualtat, posant un émfasi especial en ’obtencio de formes
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més generals del teorema de Jonsson per a varietats d’algebres congruent-
distributives (veure B. J6énsson, Algebras whose congruence lattices are dis-
tributive, Math. Scand. 21, 1967, pp. 110-121). El Capitol 8 s’ocupa
d’investigar el concepte d’estructura lliure. Es prova una condicié necessaria
i suficient per a l’existéncia d’estructures lliures en classes plenes, i condicions
necessaries i suficients, expressades en termes de les propietats de I’operador
de Leibniz, per a ’existéncia d’estructures lliures (en sentit feble) en classes
reduides de models. El capitol inclou també demostracions alternatives,
basades en propietats de les estructures lliures, de results ja provats al capitol
4, i generalitza la correspondencia entre varietats d’algebras i congruéncies
plenament invariants sobre ’algebra de termes. Al Capitol 9 es planteja el
problema de trobar condicions de tipus Mal’cev per a les propietats dels reti-
cles de congruencies relatives (les obtingudes aplicant ’operador de Leibniz)
i se’'n proven alguns resultats.

Finalment, el Capitol 10 es una breu discussi6 sobre el lligam que existeix
entre la teoria desenvolupada als capitols anteriors i algunes tendéncies de la
logica algebraica moderna.



Introduction

In our opinion, it is fair to distinguish two séparate branches in the origins of
model theory. The first one, the model theory of first-order logic, can be traced
back to the pioneering work of L. Lowenheim [77], T. Skolem [107}, K. Gédel [54],
A. Tarski [113] and A.L. Mal’cev [83], published before the mid 30’s. This branch
was put forward during the 40’s and 50’s by several authors, including A. Tarski,
L. Henkin, A. Robinson, J. Los; see [61], [62], (73], [102], [103], [116], [117). Their
contribution, however, was rather influenced by modern algebra, a discipline whose
development was being truly fast at the time. Largely due to this influence, it was a
very common usage among these authors to take the equality symbol as belonging
to the language. Even when a few years later the algebraic methods started to be
supplanted to a large extent by the set-theoretical techniques that mark present-day

model theory, the consideration of the equality as a logical constant in the language
still subsisted.

The second branch is the model theory of equational logic. It was born with
the seminal papers of G. Birkhoff [2], [3], which established the first basic tools
and results of what later developed into the part of universal algebra known as the
theory of varieties and quasivarieties. The algebraic character of this other branch
of model theory was clearer and stronger, for it simply emerged as the last step in
the continuous process of abstraction in algebra.

Amid these two branches of model theory, which suffered a rapid growth at the
time, there appeared the work done by Mal’cev in between the early 1950’s and
the late 60’s, which early gained some influence in the future development of the
discipline, at least in the old Soviet Union. During the period mentioned above,
he developed a first-order model theory that retained much of the algebraic spirit
of the early period and diverged openly from the model theory developed in the
West!. In particular, in a series of papers [84], [85], [86], [87], he put forward the
model theory of universal Horn logic? with equality along the lines of Birkhoff’s
theory of varieties, and showed that such logic forms a right setting for a large part

1Most of his work on this topic was collected in two books [88], [89]; especially this last issue
contains a fairly nice systematic exposition.

2For us, universal Horn logic (UHL for short) will mean the fragment of first-order logic that
deals with the so-called strict universal Horn sentences, i.c., universal sentences in prenex normal
form whose matrix is a finite disjunction of negated atomic formulas and just one atomic formula.
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of universal algebra, including the theory of presentations and free structures. The
most worth-mentioning peculiarities of Mal’cev’s program were the following: first,
he kept on dealing with first-order languages with equality®; second, he adopted
notions of homomorphism and congruence that had little to do with the relational
part of the language.

This well-rooted tradition of developing model theory in the presence of an equal-
ity symbol to express the identity relation, which goes back to its very origin, was
finally broken when logicians from the Polish School started a program similar to
that of Mal’cev for another type of UHL, viz. general sentential logic. Indeed, in
spite of the fact that the algebraic character of sentential logic was evident early
in its development (chiefly because classical sentential calculus could be completely
reduced to the quasi-equational theory of boolean algebras), the natural models of
an arbitrary sentential calculus quickly took the form of logical matrices, that is,
algebras endowed with a unary relation on their universe. This matrix semantics so
became the first attempt of starting a systematic development of a model theory for
first-order languages without equality®. Begining with the publication of a paper by
Los [72] in 1949, matrix semantics was successfully developed over the next three
decades by a number of different authors in Poland, including J. Los himself, R.
Suszko, R. Wojcicki and J. Zygmunt; see [17], [74], [122], [127).

The present evolution of these issues points towards an effort of encompassing
the theory of varieties and quasivarieties and the model theory of sentential logic,
by means of the development of a program similar to Mal’cev’s for UHL without
equality. We recognize that this evolution has been fast and notorious in the last
decade, thanks mainly to the work done by J. Czelakowski, W. Blok and D. Pigozzi
among others. For example, in a series of papers [29], [30], [31], [32], [33], [34],
[35], [36], the first author has been developing a model theory of sentential logic
that inherits a lot of the algebraic character of Mal'cev’s ideas and the theory of
varieties originated by Birkhofl. On the other hand, Blok and Pigozzi, in their
very recent paper [12], have succeeded in the development of a model theory -based
on the Leibniz operator introduced by them in [8]- that does comprise for the first
time both equational logic and sentential logic, and so strengthens Czelakowski’s
program. What enables such a simultaneous treatment in their approach is the
observation that equational logic can be viewed as an example of a 2-dimensional
sentential calculus [11] and thus admits a matrix semantics, this time a matrix
being an algebra together with a congruence on the algebra.

A characteristic of decisive importance in Blok and Pigozzi’s approach is their
apparent conviction that only reduced models really possess the algebraic character
of the models of quasi-equational theories. We give up such a conviction and the
restriction to particular types of languages.

3In some of his original papers, there is a certain ambiguity concerning this point, in the sense
that he seems to allow the interpretation of the equality symbol in a structure which were not
the identity relation; see e.g. his discussion about the notion of consistent configuration in [83,
§3]. However, there is no doubt that in his posthumous book [89] the equality symbol is always
intended to mean the identity.

4 An isolated but worth-mentioning incursion on this topic was [126}, a short paper published
in 1957 but practically unknown. 4
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The main purpose of this paper is to outline some basic aspects of the model
theory for first-order languages that definitively do not include the equality symbol
and which takes account of both the full and the reduced semantics. The theory
is intended to follow as much as possible of the Mal’cev’s tradition by giving it a
pronounced algebraic character and mainly covering topics fairly well studied in
universal algebra (that is the reason for giving the term “algebraic” to our model
theory). Most of the work, that extends to general languages and fairly clarifies
some recent trends in algebraic logic, constitutes the foundations of a model the-
ory of UHL without equality. An important number of the results in the paper
run side by side with some well-known results of either classical model theory or
universal algebra; so, we make an effort to highlight the concepts and techniques
only applied in these contexts although, in some sense, they find a more general
setting in ours. The outgrowth of the current interest in the model theory of UHL
without equality is the emergence of several applications mainly in algebraic logic
and computer science. Therefore we also discuss the way that the developed theory
relates to algebraic logic. Actually, we maintain that our approach provides an ap-
propiate context to investigate the availability of nice algebraic semantics, not only
for the traditional deductive systems that arise in sentential logic, but also for some
other types of deductive systems that are attracting an increasing attention at the
time; see, e.g., [101], [119]. The reason is that all of them admit an interpretation
as universal Horn theories without equality [13], [46]. We finally mention that a
distinct program that also attempts to generalize the theory of varieties to general
first-order structures has been initiated very recently by N. Weaver [120}.

Outline of the work

As we said before, the absence of a symbol in the language to mean the identity
relation is central to this work. Traditionally, the equality in classical model theory
has had a representation in the formal language and has been understood in an
absolute sense, i.e., for any interpretation of the language, the interest of model-
theorists has been put on the relation according to which two members of the
universe are the same or has no other logical relation. We break this tradition
by introducing a weak form of equality predicate and not presupposing its formal
representation by a symbol of the language®. Then the main problem consists,
broadly speaking, in the investigation of the relationship between the features of
this weaker equality in a given class of structures and the fulfillment of certain
properties by this class.

This is not at all a recent treatment of the equality; for instance, it underlies

5The idea of defining the identity relation in second order logic as z & y « YP(P(z) « P(y)),
where P is a variable ranging over all properties, goes back to Leibniz. A natural relativized
first-order analogue of this definition is exactly what we mean by equalily in the sense of Leibniz
all over the paper. On the other hand, we should say that the eventual presence of a symbol in
the language to express the common identity relation would not be restrictive; we can also define
the equality in the sense of Leibniz regardless of it, as it is done in Weaver [120). The point is
that we do want to distinguish equality from other predicates.
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the old notion of Lindenbaum-Tarski algebra in the model theory of sentential logic
[108], and more recently some contributions to the study of algebraic semantics for
sentential logics. Our contribution amounts to no more than providing a broader
framework for the investigation of this question in the domain of first-order logic,
especially the universal Horn fragment.

Several points stand out for they govern all our approach. First, the extended
use we make of two unlike notions of homomorphism, whose difference relies on
the importance each one attaches to relations; this is a distinction that no longer
exists in universal algebra but does exist in classical model theory. Secondly, the
availability of two distinct adequate semantics easily connected through an alge-
braic operation, which consists in factorizing the structures in such a way that the
Leibniz equality and the usual identity relation coincide. We believe this double
semantics is what is mainly responsible for the interest of the model theory for
languages without equality as a research topic; in spite of their equivalence from a
semantical point of view, they furnish several stimulating problems regarding their
comparability from an algebraic perspective (Theorems 8.1.6, 8.1.7, 8.1.8 illustrate
this point thoroughly). Thirdly, the two extensions that the notion of congruence
" on an algebra admits when dealing with general structures over languages without
equality, namely, as a special sort of binary relation associated to a structure, here
called congruence, and as the relational part of a structure, which is embodied in
the concept of filter extension. Finally, and not because of this less important,
the nice algebraic description that our weak equality predicate has as the greatest
one of the congruences on a structure. This fact allows to replace the fundamental
(logical) concept of Leibniz equalily by an entirely algebraic notion, and to put the
main emphasis on the algebraic methods. Actually, it seems to us that other forms
of equality without such a property hardly give rise to model theories that work
out so beautifully.

The paper is organized in 10 chapters. The first three contain basic material
that is essential to overcome the small inadequacies of some approaches to the
topic formerly provided by other authors. Chapter 1 reviews some terminology
and notation that will appear repeteadly thereafter, and presents some elemen-
tary notions and results of classical model theory that remain equal for languages
without equality. Chapter 2 states and characterizes algebraically the fundamental
concept of equality in the sense of Leibniz which we deal with all over the paper.
Starting with the extension of the concept of congruence from algebras to gen-
eral structures, we then show that the greatest one of these congruences on each
structure (Leibniz congruence) amounts to the equality in the sense of Leibniz that
is inherent in every interpretation of the language (Corollary 2.1.3). The devel-
opment of the corresponding basic Isomorphism Theorems and the fundamental
notion of Leibniz quotieni, which in some sense is an extension of the above men-
tioned Lindenbaum-Tarski algebras, are also included here. Finally, in Chapter 3
we discuss the semantical consequences of factorizing a structure by a congruence
and show that first-order logic without equality has two complete semantics related
by a reduction operator (Theorem 3.2.1). Right here we pose one of the central
problems to which most of the subsequent work is devoted, i.e., the investigation of
the algebraic properties that the full and reduced model classes of an elementary



theory exhibit.

Chapter 4 contains the first difficult results in the work. By a rather obvious
generalization of procfs known from classical model theory, we obtain Birkhoff-
type characterizations of full classes of structures axiomatized by certain sorts of
first-order sentences without equality, and apply these results to derive analogue
characterizations for the corresponding reduced classes. In particular, the Chapter
provides a proof of a generalized Birkhoff’s Variety Theorem entirely based in ele-
mentary model-theoretic techniques that do not involve free structures in the same
way as in Birkhoff’s original proof (remark to Theorem 4.5.1).

Chapter 5 is a central one; it examines the primary consequences of dealing
with the relational part of a structure as the natural extension of congruences
when passing from algebraic to general first-order languages without equality. A
key observation in this case is that we must often restrict our attention to classes
that satisfy the filter-lattice condition, i.e., such that the sets of structures on a
given underlying algebra exhibit the structure of an algebraic complete lattice. It
is proved that this classes are just the quasivarieties of structures (Theorem 5.1.1).
The Leibniz operator is defined right here as a primary criterion to distinguish
properties of the Leibniz equality in a class of models. Using this operator, a
fundamental hierarchy of classes -protoalgebraic, semialgebraic, algebraic and purely
algebraic classes- is described (Definitions 5.3.1, 5.4.1, 5.4.6 and 5.4.7). The rest of
the work is almost entirely devoted to investigate the distinct algebraic character
of these classes. Parcicularly, protoalgebraic classes and semialgebraic classes seem
to be the more generic classes for which the corresponding reduced semantics have
a reasonable algebraic character; at least this seems to be the case after their
characterizations and properties are obtained here (Theorems 5.3.8, 5.3.9 and 5.4.5)
and in subsequent chapters. The concept of relative congruence on a structure is
also included in this Chapter, and the close relation between the properties of the
Leibniz operator and the fact that the set of relative congruences have some lattice
structure is pointed out.

Chapter 7 examines how the characterizations of reduced quasivarieties (relative
varieties) obtained in Chapter 4 can be improved when we deal with the special
types of classes introduced formerly. In order to achieve this, we prove characteriza-
tions of protoalgebraic, semialgebraic and algebraic classes in terms of the closure
under some operators of the corresponding reduced class (Theorems 7.2.1, 7.2.4
and 7.2.7). Also, in this Chapter it is posed the problem of relating the lattice-
homomorphism properties of the Leibniz operator and the formal representability
of the Leibniz equality in a class of structures. This is still an open problem at
this level of generality, though some results are known for some particular types of
languages; see [12].

Chapters 6, 8 and 9 provide explicit generalizations of wellknown results from
universal algebra. Concretely, in Chapter 6 we present the main tools of a Subdirect
Representation Theory for general first-order structures without equality, certifying
the validity of some Mal’cev’s results in this wider context (cf. e.g. Proposition
6.1.1 and Theorems 6.1.8 and 6.2.2) and proving general forms of Jénsson’s The-
orem for quasivarieties and relative subvarieties (Theorems 6.2.4 and 6.3.2). We
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also introduce here the concept of filter-distributive class as a natural extension of
congruence-distributivity in universal algebra. Chapter 8 deals with the existence
of free structures both in full and reduced classes. Begining with the former, we
characterize quasivarieties as those classes that admit free structures in a very pre-
cise sense (Theorem 8.1.6). We then pay attention to one of the central problems
in the Chapter: to find out necessary and sufficient conditions on a quasivariety
so that the corresponding reduced class admits free structures in exactly the same
way (Theorems 8.1.7 and 8.1.8). The basic tools for this purposes are the Herbrand
structures, i.e., the models built up out of the same language that are minimal in
the posets of filter extensions. We precisely use these structures and their relative
filter extensions, the so-called term-structures, to supply new proofs of the charac-
terization of the variety and quasivariety generated by a given class, proofs that
are closer in spirit to the proof of Birkhoff’s Variety Theorem. Such proofs rely
on characterizations, in the style of Jénsson’s Theorem on finitely subdirectly irre-
ducible algebras, of the relative filter extensions of Herbrand structures (Theorem
8.2.2). This Chapter also includes the investigation of a correspondence between
(quasi)varieties and some lattice structures associated with the Herbrand struc-
tures, correspondence that offers the possibility of turning the logical methods used
in the theory of varieties and quasivarieties into purely algebraic ones (Theorems
8.3.3 and 8.3.6). In Chapter 9 we set the problem of finding Mal’cev-type condi-
tions for some properties concerning posets of relative congruences or relative filter
extensions of members of quasivarieties. We just pay attention to relative congru-
ences and show that, in this case, the problem has a purely universal algebraic
interpretation (Proposition 9.1.1). We prove a stronger form of Mal’cev’s Theorem
on congruence permutable varieties of algebras (Theorem 9.1.4) and examine the
possibility of getting similar extensions of other Mal’cev-Type theorems.

Finally, Chapter 10 discusses briefly the relation between algebraic logic and the
approach to model theory outlined in the previous chapters, providing thus some
vindication to it. Of course, we cannot say whether this work will ultimately have
a bearing on the resolution of any of the problems of algebraic logic, but for us, it
could at least provide fresh insights in this exciting branch of logic.
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1. Preliminaries

Let the triple £ = (F, R,p) be a first order language; F and R denote par-
wise disjoint sets of function and relation symbols of £ respectively (R must be
nonempty), and p is the arity function from F U R into the set of natural numbers.
We use capital Gothic letters 2, B, €, ..., with appropriate subscripts, to range
over structures on £, also called L-structures. In order to be consistent with the
notation, we denote by A the universe of 2, and by Fy and Ry the interpretations
on 2 of the collections of function and relation symbols of £, respectively, i.e.,
Fy= {f%: f € F} and Ry = {r® : r € R}. The corresponding boldface letter
A is used to understand the underlying algebra (A, Fa) of 2, and we very often
write fA to mean the interpretation of f in 2%. Lowercase boldface letters a,b,...
are used to indicate members of a cartesian product of some family of sets. If A
is an L-structure, a = (a;,...,a,) belongs to A", f € F and r € R, and h is any
mapping with domain A, then f2a, a € r2 and ha are short-hand notations for
f2ay...aq, {a1,... ,a,) € r? and (hay,... ,ha,), respectively.

By an L-algebra we mean the underlying algebra of an L-structure; of course,
if the set of function symbols is empty, an L-algebra means simply an arbitrary
set. The absolutely free L-algebra over a set of a variables, i.e., the algebra of all
L-terms over a variables, is denoted Teg . When o = w we simply write Teg. A
language L' = (F', R',p') is called an ezpansion of £ provided that F C F/, RC R’
and p = p'| FUR. In this case, the L-reduct of an structure A over £’ is defined
as usual, AL = (A, Fa, Ra).

Some more notation of common usage is the following: Str £ to mean the class
of L-structures, For,L the set of L-formulas and Atm,L the set of atomic £-
formulas over a variables, for every cardinal a. Formulas are represented by means
of lowercase greek letters ¢,v,9,..., and uppercase ones are used to denote sets
of formulas. We write ¢(z1,...,2,) to mean that the free variables that occur in
¢ are among Zi,...,Zn. Unless otherwise indicated, all L-formulas are assumed
to be over the set of w variables Var = {zo, 21, za, ... }; in this case, the preceding
notations are abbreviated by For £ and Atm £. We deal with a special type of
L-formulas very often: quantifier-free formulas in prenex form whose matrix is the
disjunction of a finite set (maybe empty) of negated atomic formulas and exactly one
atomic formula. The most common name for them is “strict basic Horn formulas”;
nevertheless, for the sake of simplicity, we call them implicative formulas and denote

7
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by ImpsL the corresponding subset of For,L, or simply Imp L if a = w.

Given an L-structure 2, an algebra homomorphism g : Te o — A (called assign-
ment) and an L-formula ¢, we use the notation % E [g] to refer to the satisfaction
relation defined in the usual way. Following the standard convention, 2k ¢ ex-
presses that 2 satisfies the universal closure of ¢. When we write

AR ¢(z1,... ,2) [a1,... ,ax),

we mean 2 satisfies ¢ with respect to any assigment g : Tez — A such that gz; = q;,
for all 1 < i < k. The notation AF ¢ [g(z/a)] expresses that 2 satisfies ¢ with
respect to the assignment that sends the variable r to a and coincides with g
otherwise. Given a class K of L-structures, Th,K denote the set of all £L-formulas
over a variables which hold in every member of K, i.e., if ¢ € Fory L then ¢ € ThoK
iff Ak for all A € K. When we only want to refer to the quantifier-free formulas,
the implicative formulas and the atomic formulas that hold in K we put respectively
UnqK, Imp,K and Atm,K (Un stands for “universal”). Once more, the subscript
is omitted if o = w.

We say L is a language with equality, or simply £ has equalily, to mean that
L contains a binary relation symbol &~ which is always interpreted as the identity;
in other terms, only the structures 2 for which ~® is the diagonal relation, i.e.,
the set A4 = {(a,a) : a € A}, count as L-structures. On the contrary, we say
L is a language without equalily, or L has no equality, provided that £ does not
contain any such binary relation symbol. Thus, if £ is without equality and r is
some binary relation symbol of £, then r can be interpreted in the L-structures as

any binary relation whatsoever®.

1.1. Substructures and Filter Extensions

Let % = (A, Rq) and B = (B, Rg) be two L-structures. 2 is a substructure of
B, in symbols 2 C B, if A is a subalgebra of B and r? = r® N A?(") for all r € R.
Likewise, B is a filler extension of 2, and in this case we write 2 £ B, provided the
underlying algebras of 2 and B coincide and r® C r® for every r € R.

As is well known, the class of substructures of a given structure 21 defines an
inductive closure system as follows. Let {2 : i € I} be a family of substructures
of A, and define

nie! Ra; = {ﬂ,-u r*: reR}, ﬂ.-ezﬁ-' = (ﬂ;e; Aj, ﬂse: Ray;),

where [;c; Ai means the intersection of the algebras A;, i € I, as it is usually
defined in universal algebra; in particular, the intersection of the empty family is

6Usually the distinction between a language with or without equality relies on the presence
or not of the equality symbol among the logical constants. For convenience, we do not follow
this widely accepted convention in the preceding definition; the reason is that in this way all the
results we state in the sequel amount to well-known results in the case the language has equality.
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taken to be the whole structure 2. If, moreover, {2; : i € I} is a directed family,
set

Uiel Ro, = {Uie! rliire R}, Uiel %= (Usel A"’Uiel Ra,),

where | J;¢; A is the union of the algebras A;, i € I. Then, it can be easily proved
that (;¢; 2 and [J;¢; U are again substructures of 2.

The same is true for the class of all the filter extensions of €; in this case, when
referring to the associated (algebraic) complete lattice we shall write Fe2. Given
a subset X of A, we use the notation 2% | X to understand the substructure of A
generaled by X, i.e.,

ALX = (X, {/*1[X]): fe F}L,{r*n[X)*") : r € R}),

where [X] denotes the universe of the subalgebra of A generated by X.

1.2. Homomorphisms between Structures

A mapping h : A— B is said to be a hkomomorphism from 2 into B if h is an
algebra homomorphism from A into B and the condition

(1.1) (a1,...,a,) €r® = (hay,...,ha,) € r®.

holds for all n-ary relation symbol r € Rand all ay,... ,a, € A; we writeh : A —B
to mean that h is such a homomorphism. It is an embedding or an epimorphism
provided it is as a homomorphism between the underlying algebras; in these cases
we put h : 24— B and h : A —» B, respectively. When h is onto we also say that
B is a homomorphic image of /. Finally, h is an isomorphism between 2 and
B, in symbols h : % = B, if h is one-one and onto and the inverse of h is also a
homomorphism.

We call h : A —B a strong homomorphism from 2 into B, and we write Ak :
A —,B, if h is a homomorphism from 2 into B for which the reverse implication
of (1.1) also holds; so for all n-ary relation symbol r € R and all ay,... ,a, € 4,

(1.2) {a1,...,a,) € <= (hay,... ,ha,) €r®.

Strong homomorphisms that are one-one are called strong embeddings, whereas
those that are surjective are referred to as reductive homomorphisms; we write,
respectively, h : °A—,B and h : A—,B. If there is a reductive homomorphism
from 21 onto B we also say that B is a reduction of 2 and 2 an ezpansion of B.
Note that a bijective strong homomorphism is simply an isomorphism as it is defined
before and that reductive homomorphisms are the same as isomorphisms when the
language has equality. Both assertions are easy consequences of the following result.

TCompare this notion of strong Aomomorphism with the one given by Chang and Keisler in
[25, p.242]; they coincide whenever h is an onto mapping.
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LEMMA 1.2.1. The following holds for every algebra homomorphism h : A —B.
(i) h: A—B iff r2 C h~1r®, for allr € R.
(ii) h :A—,B iff r2 = h=r®, for allr € R.
(iii) h : A —,B implies r® = h~1r® and hr® = r®, forallr € R. m

For each h : A — B, we define the image of 2 through h as the structure h2 =
(hA,hRq), where hRy = {hr® : r € R} and hr? = {(ha,... ,ha,) € B" :
(ay,... ,a,) € r2}. Conversely, we define h~18 = (h~1B,h~!Rg), with h~1Rg =
{h~r® : r € R} and h~'r® = {{ay,...,a,) € A" : (hay,...,ha,) € r?},
and call A~1B the inverse image of B through h. Both h2l and h~1B are again
structures over £, even though A2 is not in general a substructure of B nor h~18 a
substructure of 2. This is true, however, in case that h is a strong homomorphism.
The next proposition states a generalized form of this property.

LEMMA 1.2.2. Let h : A—,B. For each substructure %' of A we have that
' C B. Conversely, if B’ is a substructure of B then h~1B' C A. m

Observe that every surjective homomorphism from 2 onto B can be canonically
decomposed through a reductive homomorphism. Concretely, if h : A— B, then
h maps strong homomorphically h~!B onto B (h~1®B is in fact the least filter
extension of 2 satisfying this property!). So, the composition of the identity id :
20»h=18B and h : h~1B —,B (ha = ha) coincides with h : A—B. As a result,
every homomorphism h : 20— B factorizes according to the following diagram:

h
A — B

® 3| Ji

h=1%8 —_— hU
h
This decomposition explains why homomorphisms will not play quite as important
a role in the algebraic model theory we try to develop as they do in universal
algebra. As we shall see later on, such a role in this case is performed by strong
homomorphisms.

1.3. Products of Structures

Assume that 2; = (A;, Rg,), with i € I, is a family of L-structures. We define
the direct product of {2; : i € I} by setting

Hiel A= (I'I.-e; A, Hiel Ra.),

where [];¢; A: is the usual direct product of the underlying algebras {A; : i € I'}
and [];¢; Ra,; denotes the interpretations on [];c; 2 of the symbols of R defined
in the obvious way: if r € R is an n-ary relation symbol and a;; means the ith
component of a;, foreach 1 < j < n,

rller® .= {(ay,... ,an) € ([Ties 41)" : (@ir,-.. ,ain) € r% for all i € I}.
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We allow I to be empty; in this case, [];c; 2 is the trivial structure with a one
element underlying algebra and all relations holding.

The direct product =onstruction can be extended in several ways, three of which
are useful for our purposes. The first one is the following. Suppose that F is a
proper filter of Sb(I) and define

O = {{a,b) € ([L;es Ai)’: {iel: a;=b} € F}.

As is well known, ©r is a congruence relation on the algebra [];; A, so that we
can put

[ier Ai/F :=Tlic; Ai/OF,  Tlics Rai/F = I}e; R /O,

where H‘Z 1 Ro, denotes the family of relations

[er® = {(ar,...,an) € ([Lies 4)" : {i €1 (ai,...,ain) € *X} € F},

for r € R (actually, for each r, the set H-fe ;T is just the least relation that contains

rllier® and is compatible with © ). Then, the filtered product of {2; : i € I} by
F is defined as the structure

[lier %/ F = ([Lies Ai/F [Lier R/ F),
which coincide with the direct product in the case F = {I}. For simplicity, if
a € [];¢s Ai, the equivalence class of a modulo © is denoted by a/F.

We point out that in general the direct product does not map strong homomor-
phically by the natural projection neither onto its components nor onto the quotient
modulo ©F. Actually, if 75 means the projection from [];.; 2 onto [;¢;2:/F,
the inverse image of [];¢; %:/F through =r is

H?Zl A = (H.-ex A, H‘;l Ry,).

This fact is illustrated by the following diagram.

F
H-‘el A

N\

H.-ez 2A; Hiel A:/F

L

It is easy to show that, if £ has equality, the filtered product [];¢; 2%:i/F is again
an L-structure for any proper filter F, i.e., the interpretation of ~ on [[;c; %:/F
is again the identity relation on [];c; 4i/©=. This is in fact a consequence of the
following result, whose proof can be found in almost every model theory textbook;
see e.g. [25]. ’
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THEOREM 1.3.1. Let ¢ = ¢(z1,...,z,) be an arbitrary Horn formula and let 2;,
i € I, be a family of L-structures over a nonempty index set I. Let F be a proper
filter of Sb(I). If g : Teg — [];cs Ai is any assignment, then

{{€el: Ukp[mogl} €F implies [l;c;%i/FF ¢lrrog)

Moreover, this implication becomes an equivalence if ¢ is atomic. ®

A filtered product [];¢; %;/U is called an ultraproduct if U is an ultrafilter on the
index set I. The following, due to Los [73], is the main property of ultraproducts;
it shows that for ultraproducts the last implication becomes an equivalence which
holds for any first-order formula. Its proof can also be found, for example, in [25];
see also [127) for a treatment of ultraproducts of structures over a special type of
languages without equality.

THEOREM 1.3.2. (Los Theorem) Let I be a nonempty set. Assume 2;, i € I,
are L-structures and let U be an ultrafilter of Sb(I). If g : Teg — [];e; Ai and
¢ = p(z1,...,zy) is an arbitrary first-order formula over L, then

{iel: AiFp[nogll €U iffl [Lie;Ui/UEp[myog).m

The second generalization of the direct product construction we are interested in
comes from Birkhoff’s work in universal algebra. A structure 2l is called a subdirect
product of the system {®; : i € I}, in symbols A C,4 [];c; i, if A is a substructure
of [];c; i and the restriction of the projection map =; to A is surjective for every
i € I°. An embedding h : A [;c; Ui is subdirect if A% C,a [];c; Ui; we write
h:A—,q I'I.-e ; % to mean h is a subdirect embedding. Note that every subdirect
embedding is strong; indeed, if h : A—,q4 Hie, 2;, then hr? = rllicr%i (hA)?
for every n-ary relation symbol r; so, being h one-one, (hay,... , ha,) € rllier 2
implies {a;,... ,a,) € r%, for all ay,... ,a, € A.

Finally, a last generalization of direct products that combines filtered and sub-
direct products has been recently introduced by Czelakowski [37]; we also use it
in subsequent sections. Let 2 be a subdirect product of a system {2; : i € I} of
L-structures, and let F be a proper filter on I. It is an easy matter to check that
the restriction of O to A,

O©r4:=0rnN A?,

is a congruence on the algebra A. So we define the filtered subdirect product of
by F as the structure
U/F := (A/O5.a.RE/OF,4),

where

P27 = I'LJ;, r2 NAMT) . forallr € R,

R} :={r*% : r € R}.

8This way of extending the notion of subdirect product from algebras to arbitrary structures is

due to Tarski [117], even though it were Mal'cev [86] and a bit later Lyndon [79] who investigated

its properties. A distinct nontrivial generalization of the concept can be found in [18] with the
notion of full subdirect product.
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Let us notice that, by the definition, 2%/F is isomorphic to a substructure of the
filtered product [];¢; i/ F, for in fact the quotient algebra A/OF 4 can be em-
bedded into [];¢; Ai/F; the embedding is established by the mapping that assigns
the equivalence class a/F of a (modulo ©x) to each element a/Ox 4 € A/Ox 4.
Also, observe that the projection from 2 to 2%/F given by a — a/Ox 4 need not
be strong; the inverse image of 2 through it is the structure 2% := (A, R]).



2. Congruences on Structures

The theory of congruence lattices of universal algebras is one of the most rich
and developed parts of contemporary algebra, but unfortunately the rather special
and purely internal definition of the congruence relation does not seem to extend
in a unique successful manner to structures other than sets with operations. This
explains why the notion of congruence on an algebra has been extended to general
first-order structures in at least two different ways. The first one of these extensions
can be found, for instance, in [76], [89], and gives rise to a theory already put forward
by Mal’cev and not very different from the theory of algebras. In some sense, this
first definition is not quite satisfactory, since it has relatively little to do with the
relations of a structure; for example, the quotient modulo a nontrivial congruence
in this sense of the linearly ordered additive group Z of integers is a finite group
Zn which cannot be linearly ordered.

The second extension also appears in the literature though implicitly and in
different contexts; e.g. [14], [126] and more recently [7], [29], [120]. This second
notion is the one adopted here and plays a central role in the present work; the
way to deal with relations in this case is based on the notion of compatibility.
A fundamental result in the Chapter is to show that this notion leads just to an
algebraic description of a weak form of equality predicate, viz. the equality in the
sense of Leibniz outlined in the introduction (Corollary 2.1.3). The very definition
of this new equality predicate is given right here, and we point out the importance
of relating this logical concept of equality and the algebraic concept of congruence.®.

2.1. The Lattice of Congruences

Let 20 = (A, Rg) be any L-structure. A binary relation 6 on A is said to be a
congruence on 2 if 4 is a congruence on the underlying algebra which is compatible

®A third notion of congruence on an arbitrary first-order structure, which strictly speaking
differs from the preceding ones, can also be found in the literature; it results from pasting together
the second notion and the concept of filter extension [56]. We come back to this point later in
Section 6.1. Also, other notions of congruence for particular types of structures have been used
with interesting results, specially for (quasi)ordered algebras; see, e.g., [27], [70].

14
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with all the relations belonging to Ra, i.e., for every r € R of arity n,
(ay,...,a,) € r? and g; =b;(0), for1<i<n = (by,...,b,) €r2

For simplicity, if a = (a;,...,a,), b = (b1,... ,bs) € A" we write a = b (8) to
mean a; = b;(0) for all 1 < i < n. The compatibility property of # with an arbitary
n-subset D of A can then be expressed as follows: if a € D then b € D for every
b € A" such that a= b (). In this case,

D = U,ep(a1/6) x (az/8) x ... x (an/6).

Clearly the set of all congruences on 2, denoted Co¥, is a subset of Co A. The
following proposition provides a full description of this subset.

PRoOPOSITION 2.1.1. For every L-structure ?, the poset Co = (Co®,C) is a
principal ideal of Co A.

Proof. Clearly ¢ C 6 and 8 € Co? implies that ¢ € Co2. Hence, it suffices to
show that for each family {6; : i € I} of congruences on 2, \/;;6; belongs to
Co%. Let a= (ay,...,a,),b = (b),...,b,) € A”. From universal algebra, we
know a = b (V;¢; 6;) iff there exists a sequence of elements ¢;,... ,cx € A® and
1,... ,%k-1 € I such that a=¢;, ¢c; = b and

c;i=cj41(6iy), 1<j<k-1
Thus, the compatibility of ;¢ 6; follows immediately. m

We call Co 2 the lattice of congruences of 2 and, extending the terminology and
notation introduced in [8], we denote by Q2 its maximum element and call it the
Leibniz congruence of . So, by the previous lemma,

CoA={0€CoA:0CQAU}.

Notice that Q2 # V4 whenever r2 # A?(") and r? # @ for some relation symbol
r € R (V4 denotes the set of all ordered pairs of members of A, and is called
the all relation). Also, if 2 contains a binary relation that satisfies the axioms
of equality, QU coincides with this relation. In fact, a structure 2 is said to be
reduced if Co2 = {A,} or, equivalently, if Q% = A4. So if £ has equality, then
any structure over L is reduced.

Ezamples. Let £ be a language with some (possibly none) function symbols and a
sole relation symbol, of arity 2. We are going to describe the Leibniz congruence
of four types of structures over £ which we use frequently in the sequel. For this,
assume A is an L-algebra. We claim that a congruence ¢ on A is compatible with
a binary relation Ron A iff ¢- R-¢ C R, where - denotes the relative product of any
two binary relations; the proof is straightforward and is provided for instance in
[12, Prop.5.7). Using this fact, it is easy to conclude the following: for any binary
relation 6 on A, the Leibniz congruence of 2 = (A, ¥6) is
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(1) V{¢ € CoA : ¢ C 6}, if 6 is an equivalence relation on A;

(2)V{¢€CoA: ¢-0-¢C0},if 0 is a reflexive, symmetric relation compatible
with the functions on A, i.e., such that for any funtion symbol f and any a,b €
APU)| fAa = fAD(0) whenever a = b (6)!°;

(3) N6, if 0 is a quasi-order on A, i.e., a reflexive, transitive relation com-
patible with the functions on %;

(4) 6, if 8 is a congrunece on A. 4

The next purpose is to see that the notion of Leibniz congruence of a structure
is just the algebraic counterpart of a purely logical concept, viz. the concept of
equality in the sense of Leibniz. To this goal, let us call Leibniz formula over £
any formula ¢(z,y) with two free variables such that, for some atomic £L-formula
¢ = ¢(x,21,...,2z;) with at least one free variable z,

1/’(3’ y) = Vzl .. .VZk((p(I,Zl, oo ’zk) - <p(y,21, ceey Zk)).
Then we have

THEOREM 2.1.2. If 2 is an £-structure, then a = b (Q2) if AL Y(z, y) [a,b] for all
a,b € A and all Leibniz formulas y(z,y) over L.

Proof. Let @ be the set of all pairs (a, b) such that AF ¢(z,y) [a,d] for all Leibniz
formulas 1. One easily verifies that 8 is an equivalence relation. In order to see that
it is actually a congruence, let f be any n-ary function symbol. We have to show
that, if a = b (), where a,b € A", then f®a = f?b(f). Since 6 is transitive, it
suffices to prove the condition

(21) fmbl e b;_la;a,-.H v Op = fmbl . .b,-_lb.-a,-+1 Y P9 (0),

for all i > 1. Let v(z,y) be any Leibniz formula and select any parwise distinct
variables w;,...,w,—1 not in ¥. Let ¥ be the formula that results of simultaneously
substituting fw;...wi—1z2w; ... wa—y for z and fw;...wi—1yw;... wy_1 for y in

¥(z,y). Then

AEY(z,y) [0 ... bi—10iGip1 ... an, f20y .. bimybiaiyr ... ag] iff
AF 19(3,!/, Wiy ..y wn—l) [al'y bl'y bl, reey bi-l, [LTES PRI ’an]~

Hence, since Yw; ...Vw,_19(z,y,w1,...,wn-1) is again a Leibniz formula over £
and a; = b;(#), the second condition holds and (2.1) is proved.

Assume now that r is an n-ary relation symbol of £ and that a € r2, a = b (8)
hold for some members a = {ay,...,a,), b= {by,...,b,) of A". Take ¢ to be the
atomic formula r2; ...2;17z; ...2,-1. Then AE (z,y) [a;, b;] and, consequently,
we have the equivalence (b ...b;—10iai41...a,) € r% iff (by...bio1bigi41...an) €
r2. This is true for all i > 1; so that a € r? implies b € r%, and 6 is a congruence
on 2A.

10Such relations are known in the literature as tolerance relations. Introduced by Zelinka in
his 1970 paper [125], they have attracted some attention in the last decade; for exemple, see
[21,22,23,104) and other references there.
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Finally, suppose @ is another congruence on 2, a = b (®) and ¢;,...,cx € A. If
t1,...,tn are terms over £ whose free variables are among z,z;,...,2; then

t}a,c1y. .. k) =tP(byer,y ..., 0) (@), forl1<i<n.
Thus, if r is any n-ary relation symbol, the compatibility of ® with relations implies
AR rty(z,2) ... ta(x,2) — rty(v,2) .. . ta(y,%) [a,b,c1, ..., k),

where Z = (z1,...,2;). As a result, AF ¢(z,y) [a,b] for each Leibniz formula ¢
and a = b(6). This shows that 8 is the greatest element of Co?l and completes the
proof. m

An easy induction on the complexity of the formulas allows to prove that the
atomic predicate ¢ in the Leibniz formulas can be replaced by arbitrary elementary
predicates. Therefore, we actually have the following logical description of the
Leibniz congruence on a structure.

COROLLARY 2.1.3. Let 2 be an £-structure and let a,b € A. Then a = b (Q2) iff
for any first-order formula ¢ := ¢(z,21,... ,2;) over £ and any ¢y, ... ,c; € A,

AR p(z,21,...,2¢) [a,¢1,... ,cx] IFf Ak p(z,21,...,28) [b,c1,... ,ck]). ®

In light of the previous result, the binary relation Q2 has a double meaning;
from an algebraic viewpoint, it is the greatest congruence on 2, whereas for its
logical content it represents a weak form of equality in the model 2. So, we shall
use indistinctly the expressions Leibniz congruence of 2 and Leibniz equality in A
to mean the relation Q.

The following result is quite simple but it will be used later on.

PROPOSITION 2.1.4. Let L' be an expansion of the language £ obtained by adding
some new constants and relation symbols, and let &’ be any structure over £'. If the
interpretations in 2’ of all the new relation symbols in L' are elementary definible
in £, then QU = Q2’| L).

Proof. The inclusion Q(2' [ £) C Q2 is clear. To see the converse we use that any
atomic formula ¢ over £’ has associated a first-order £L-formula ¢’ in the same free
variables, such that

AEVzy .. Valp(z, 21, .., 2) = (¥, 21,-..,2)) [a, 8]
iff A'JLEVz ... V(o' (z,21,...,2k) = @' (¥, 21,...,2t)) [a,b].

110bserve that the Leibniz equality in % does not coincide with another form of equality
relation that naturally follows from the Leibniz Principle, namely, the relation according to which
two members a,b of the universe of 2 are equivalent if for every L-formula with exactly one free
variable, ¢ := @(x), the following holds: AF ¢(z) [a] iff AF ¢(z) [b). As it was pointed out to
the author by Czelakowski, the latter is not in general a congruence on the algebra A, and o is
just the least congruence on A that includes it.
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So the inclusion follows trivially. =

There is an interesting relationship between strong homomorphisms and congru-
ences that arises from & further notion. For any homomorphism h : A =B, define
the kernel of h as the set Ker h = h~1Ap. Then we have the next result, which is

the first step to provide an external (categorical) characterization of the notion of
congruence.

LEMMA 2.1.5. Let U,B be two L-structures and let h : A—B. Ifh : A—,B
then Kerh € Co®. Conversely, if Kerh € Co and r® = hr? for allr € R, then
h:%—,B.

Proof. Clearly Kerh € CoA. Let r be any relation symbol and let a,a’ € A#(")
be such that a € r? and a = a' (Kerh). Since h is strong, ha’ = ha € r® implies
a’ € r2%, and so Kerh belongs to Co2. Assume now that Kerh € Co2 and
r? = hr? for all r € R. If ha € r®, there is an element a’ € r2 such that ha = ha'.
Thus a = a’ (Ker h) and, consequently, a € r® is equivalent to ha € r?. m

Some natural questions concerning the relation between the lattice of congru-
ences of certain structures and those of their substructures, homomorphic images
and products may arise. We shall not enter into this subject, but merely state two
results that tell us something in this sense and that will become useful later on.

LEMMA 2.1.6. Let ¥ be an L-structure and B C 9. For every binary relation
6 C A?, define 6 = 0N B2. Then, 6 € Co implies g € Co'B.

Proof. Clearly fp is a congruence on the underlying algebra of . The fact that
fp is compatible with the relations of B follows directly from the definition of
substructure. =

LEMMA 2.1.7. For all h: A —,B, ¢ € CoB implies h~1¢ € CoQ. If, moreover, h
is a reductive homomorphism, then 6 € Co and 8 D Ker h implies hf € Co‘B.

Proof. Suppose that h is strong and ¢ is a congruence on B. Obviously, h=1¢ is an

equivalence relationon A. Let a = (ay,...,a,),a’ = (a},...,a},) € A™ be such that
a = a’(h~'¢). Then ha = ha'(¢), so that fhay,... ,ha, = fPha)... ha) (¢) for
all n-ary function symbol f and, consequently, f%ay,... 6, = f2a}...a}, (h~19).

Hence, h=1¢ is a congruence on A. Moreover, if r is an n-ary relation symbol, a € r2
and a = a’ (h~'¢) imply ha € r® and ha = ha'(¢). Then, since ¢ is compatible
with relations, ha’ € r®, which entails a’ € r2 by the strongness condition on h.
As aresult, h~1¢ is compatible with relations and hence a congruence on 2.

The proof of the converse is also a straighforward consequence from the assump-
tions. Now the fact that A is surjective and Ker h C 6 is used to show that hf
is still an equivalence relation. Let us see that hf is transitive as example. Take
b1,b2,b3 € B such that

b1 =np b2 =pe ba.
Then ha; = by, hay = by = haj and hag = b3 for some a;,az,a5,a3 € A satisfying
that (ay, a2),(a5,as) € 8; hence, as {(az,a) € Ker k C 0, we have a; = a3 (f) and
consequently (b;,b3) € hf. So, hf is transitive. To prove that hf is a congruence,
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suppose b = (by,...,b,),b" = (¥'1,...,8'n) € B™ are such that b = b’ (h8). This
means that for all 1 < i < n there exist a;, a} € A satisfying

a; =a} (), ha;=0b; hal =},

And from here we conclude the desired compatibility condition of hf with the
functions and relations of 'B. m

The following is an interesting consequence from the last lemma.

THEOREM 2.1.8. Let A, B be two L-structures. If h : A—,™B, the following holds.
(i) k=108 = Q9;
(ii) hQA = Q8.

Proof. Evidently h=1Q%B € Co®. Assume 6 € Co® and let 6’ = 8 V Ker h, where
the supremum is taken in the lattice Co2. By Lemma 2.1.7, h8’ € Co*B, so that
ho C QB. Hence, 8 C h~1hf C h—1QB, which proves that h~1QB is the greatest
congruence on . On the other hand, since h is surjective, ¢ € Co'B implies
é = hh='¢ C hQ. Thus, using 2.1.7, (ii) is also proved. m

2.2. Quotient Structures and the Isomorphisms Theorems

Let 2 be an L-structure and 6 a congruence on 2. We construct a new L-
structure /6 on the quotient set A/ = {a/f : a € A} as follows. For each n-ary
function symbol f in F and each a,,... ,a, € A, we put

f%a,/0...a,/0 = f2a;...0,/6;

similarly, for each n-ary relation symbol r in R, let
r28 = {{a,/6,...,a,/0) € (A/O)" : {ay,... ,a,) € r2}.

Evidently, the interpretations of the symbols as defined above do not depend on
the choosen representatives, since @ is supposed to be compatible with functions
and relations of 2. Thus /0 is well defined; it is called the guotient of %A modulo
6. From now on, the notations Fy/¢ and Rg/@ will mean the interpretations of the
symbols of F and R in /0, respectively.

The following result provides a converse of Lemma 2.1.5; it shows that every
congruence is the kernel of a reductive homomorphism and thus completes the
external characterization of congruences on a structure announced before.

PROPOSITION 2.2.1. Assume 2 is an L-structure and @ € Co®. Then the natural
mapping wg from 2 into /0 given by mea = a/f is a reductive homomorphism
such that Kerng=60. ®»

The last proposition can also be used to conclude that quotient structures are
reductions. The converse is true again and allows us to state a homomorphism
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theorem similar to the one that holds in universal algebra when we extend the
notion of congruence from algebras to general structures. We base its proof on a
new lemma that is important by itself.

LEMMA 2.2.2. Let 2,'B,€ be L-structures and assume that h : 2 —B and g :
A —,C satisfy Kerg C Ker h. Then there exists a homomorphism k : €—B such
that h = k o g. Moreover, h is strong iff k is strong.

Proof. Given ¢ € C, choose a € A such that g(a) = c and define k(c) = h(a). The
condition Kerg C Ker h says that k is an algebra homomorphism from C into B.
Indeed, let ¢y,... ,¢, € C and a,ay,... ,a, € A satisfying that g(a) = f%;...c,
and g(a;) = ci, 1 <i < n. Then (a, f2a;...a,) € Kerg C Ker h, so that k is an
algebra homomorphism. Finally, if ¢ = (cy,...,cn) € r® for some n-ary relation
symbol r € R, we have that a = (a;,... ,a,) € r* and hence ha = kc € rZ. If, in
addition, h is strong, then kc € r® implies a € r® and consequently c € r¢. =

THEOREM 2.2.3. (Homomorphism Theorem) Given any two L-structures 2 and
B, ifh:A—,B then A/Kerh = B, ’

Proof. The proof is a straighforward consequence of Proposition 2.2.1 and the pre-
ceding lemma. =

COROLLARY 2.12. Let A,'B be two L-structures, and let h : 2 —B. There exists
a descomposition of h,

h = jh'rid,
where id is the identity function from 2 onto h=1B, 7 denotes the natural projection
from h~1B onto the quotient h—1B/Ker k, j is the inclusion mapping h2l—B and
k' : h-'®B/Ker h—h2 is an isomorphism given by a/Ker h— ha. =

The situation may be illustrated by the commutative diagram

2 s D3
(++) idl IJ’
h-1% hd

\? h~1%B/Ker h /

which completes the decomposition of an arbitrary homomorphism described in
diagram (). As a result of such decomposition, homomorphic images are best
thought of as quotients of filter extensions.

The following are model-theoretic versions of the First and Second Isomorphism
Theorems in universal algebra; they will be used occasionally in the sequel.

THEOREM 2.2.5. (First Isomorphism Theorem) Let 2 be an L-structure, B a
substructure and 8 a congruence on 2. Define B® = {a € A: BNa/6 # 0}. Then
B? is the univers of a substructure 8% of 2 and

B/6p = B° (G
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by the mapping b/0g —— b/0p..

Proof. Clearly the mapping b/6p +— b/0ge is an isomorphism between the under-
lying algebras. Moreover, from the definition of quotient structure, if (b1,... ,b,) €
B™ then (b/0p,...,b,/08) € rB/°8 iff (b;,... ,b,) € r®. Similarly,

(b1/0pe,....ba/0ps) € rB° /%60 i (by,... b)) € r® = r% N (b°)".

Hence, (b1/6p,...,bs/0p) € r®/% is equivalent to (b1/0ge,...,by/0ge) € rP° /00
and the theorem is proved. =

THEOREM 2.2.6. (Second Isomorphism Theorem) Assume 2 is an L-structure and
é,0 € Co? with 6 C ¢. Let ¢/0 denote the congruence w9 on A/0. Then

(u/6)/(4/6) = /¢
by the mapping a/0/¢/0 — a/¢.
Proof. It is also an easy consequence of the definition of quotient structure. m

CoROLLARY 2.2.7. (Correspondence Theorem) Let A be an L-structure and 6
a congruence on A. Let [6,92] denote the sublattice of Co whose carrier is
{6 € CoU: 6 C ¢}. Then [0,QU] = Co2/6 by the mapping ¢ — ¢/0. m

2.3. Leibniz Quotient of a Structure

For any L-structure 2 = (A, Ra), the quotient of % modulo Q% is called the
Leibniz quotient of 2. For simplicity, we write 2* to mean 2A/Q2l; A* denotes the
underlying algebra of 2* and a* is used sometimes to mean the equivalence class
a/QU, for each a € A. Given two L-structures 2,8 and a mapping h : A —B, we
denote by h* the correspondence a* +—— (ha)* induced by h between the quotient
sets A* and B*; it is not in general a well-defined mapping.

By Proposition 2.2.1, 2* is a reduction of 21. Moreover, according to the Cor-
respondence Theorem stated in 2.2.7, * is a reduced structure so that 2A** = 2*.
The next results show that actually the Leibniz quotient 2* is minimal in the sense
that it is a reduction of any other reduction of 2.

ProrosiTION 2.3.1. For each h : 2 —,%B, the correspondence h* defines an isomor-
phism between 2* and B*. More generally, if h : A—B then h* : (h=!B)* = B*.

Proof. Assume h : A—,B. By 2.1.8, a = o’ (Q2) iff ha = ha' (2B), so that h*
is well defined and one-one. Moreover, for any a= {a;,...,a,) € A", if a* =
(a},...,ap) then '

h'fm.a' - (hf‘.’la): = (f%ha)t = fm'h.a..

Also, since h is strong, a* € r*" iff h*a* € P . Hence h* is an isomorphism.
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To see that h* : (h~1B)* = B* if h is an onto homomorphism, it suffices to
apply the decomposition stated in diagram (*). =

COROLLARY 2.3.2. Let B an L-structure. If B is a reduction of ¥, the Leibniz
quotient 2* is a reduction of B.
Also, if A =B, thenA*=B". =

The importance of the Leibniz quotients rests on the fact that the Leibniz equal-
ity in them coincides with the common equality relation.



3. Semantics for First-Order Logic

without Equality

The development in the last Chapter shows that the quotient of a structure
modulo a congruence as defined formerly entails a process of identifying some of
the elements of its carrier when they have exactly the same elementary properties
expressable in £. In particular, this identification is carried out as far as possible
in the Leibniz quotient: any two elements in this case are going to be the same
in the quotient if and only if they are “equal” in the above sense, i.e., they can
be mutually replaced in any elementary predicate with no change on truth (see
Corollary 2.1.3).

All this suggests that the class of reduced structures is enough to give a complete
semantics for first-order logic. And certainly this is the case. In this Chapter we
discuss the semantical meaning of reductions and expansions and state both reduced
and nonreduced structures as building blocks of two distinct complete semantics for
languages without equality. Also, we supply some examples of elementary theories

that serve to motivate the ultimate issue that underlies the present work, and which
is posed at the end of the Chapter.

3.1. Elementary Homomorphisms and Reductions

The basic logical relation between structures is provided by the notion of elemen-
tary equivalence; remember from classical model theory that two structures 2,8
over £ are elementary equivalent iff every L-sentence true in 2 is also true in B,
and viceversa. This relationship is usually denoted by = and it can be easily proved
that 2 = B entails 20 = B. For our purposes, however, we need a stronger form
of elementary equivalence, which also comes from classical model theory. We say
that 2 is an elementary substructure of B, in symbols % C, B, iff A C B and for
any formula ¢ and any assignment g of elements of A to L-terms, the equivalence
Ak ¢ [g] iff BE ¢ [g] holds. Still extending this notion, a homomorphism h : 4 —B
is said to be elementary, in symbols h : A— B, iff for any formula ¢ and any
assignment g, AF ¢ [g] iff BE ¢ [hog]. Evidently, if h : %A —.DB then 2 = B and,
as a result, ¥ C, B implies A = B.

The next proposition will be used several times in the sequel; its converse is not

23
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true but a weaker implication is contained in Corollary 3.1.4 below.
ProrosiTiON 3.1.1. Every reductive homomorphism is elementary.

Proof. Let h be a reductive homomorphism from 2 onto 8. We claim that Ak ¢ [g]
iff BE ¢ [hog] for every formula p over £ and every assignment g. The proof goes
by induction on the logical complexity of .

Clearly the statement is true if p is an atomic formula. Moreover, the induction
step is obvious when ¢ is a negation or a conjunction. Hence, suppose that ¢ is
Jzy(z) for some other formula . Then Ak Izy(z) [g] iff AEY(z) [g(a/z)] for
some a € A, which is equivelent, by the induction hypothesis, to the condition
BF () [hog(a/z)] for some a € A. But

BEY(z) [hog(a/z)] ifl BE¢(z) [(hog)(ha/z)].
Thus, the fact that h is surjective completes the proof. m

COROLLARY 3.1.2. Let 2,B be two arbitrary L-structures. If B is a reduction of
A, then A =B.m

Note that if the language £ has equality then any elementary homomorphism
is an embedding, so that our definition may be formulated by saying that a map
h : A — B is elementary if k is an isomorphism of 2 onto an elementary substructure
of B. But this is not true if £ does not involve the equality symbol ~. We are
going to examine what happens for languages without equality. To start with we
need some preliminaries.

Let 2 be an L-structure, and let £4 be an A-expansion of L, i.e., the language
obtained from £ by adding new distinct individual constants ¢, for all a € A. Fol-
lowing a common notation, all over this Section we use @ to mean the sequence of
elements of A according to a certain well order on A, andé to mean the correspond-
ing sequence of constants. Structures over L4 are denoted (B, b5)aca, where B is
an structure over £ and b, is a member of B for each a € A.

As usual, we call diagram of ¥, denoted D2, the set of all atomic sentences
and negations of atomic sentences over £4 which hold in (%, a),c4. We define the
Leibniz diagram of 2, and denote it by D;¥, as the set that results from D2 by
adding all £ 4-sentences of the form ¥(t,t’), for ¢(z,y) a Leibniz £-formula and
1,1’ closed terms of L4 (i.e., terms constructed only from constants and function
symbols of £4) such that their interpretations in (%,a)a.ca are congruent modulo
Q2. This can be expressed as follows:

DA = DAU {y(t,t') € SenL 4 : ¥(z,y) is a Leibniz L-formula,
t = t() and t’' = '(§), and t*@) = ' @) (%)}

Finally, we call elementary diagram of 2, D.2, the set of all sentences of £ 4 which
hold in (2,a),¢4- Note that by 2.1.2, DA C D, 9.

The following theorem shows that, whereas the nature of elementary diagrams
does not depend on the presense of the equality symbol in the language, the weaker
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concept of diagram, as a logical expression of the notion of substructure when £
has equality, need to be replaced by that of Leibniz diagram if £ has no equality.
This fact is largely used to prove the main results of Chapter 4.

THEOREM 3.1.3. (Diagrams’ Lemma) The following holds for all L-structures 21, B.
(i) If (B, ha)sea is a model of Dy then h* : Y* »—,B*.
(ii) If (B, ha),¢ 4 is a model of D, then h* : A* — ,B".
Moreover, implications become equivalences under the assumption that h is a
homomorphism from 2 into ‘B.

Proof. (i) Assume (B, ha)se4 is a model of D;A and a* = a'*, for some a,a’ €
A. By Theorem 2.1.2, ¥(ca,car) € Di2, for all Leibniz L-formula ¥(z,y). Thus
BF ¥(z,y) [ha, ha'] and consequently (ha)* = (ha')*. This proves that h* is well
defined.

Let us see that h* is a strong homomorphism. For this, let f be an n-ary function
symbol and a = (a,,...,a,) a member of A”. For all Leibniz formula v(z,y) we
have Y(cyag,. 4.1 fCa; ---Ca,) € Di2U. Consequently, since (B, ha)aca is a model
of D:Ql,

hf%ay...an = f®ha; ... ha, (2B),

which implies that h* is a homomorphism between the underlying quotient algebras.
Similarly, if » is an n-ary relation symbol, the condition

TCqy ... Ca, € DI iff (B,ha)seaFre,, ...Co

n

follows directly from the definition of D and the fact that (B, ha)sea is a model
of DiA. So, a € 2" iff (ha)* € r®" and A* is strong. Finally, Proposition 2.1.5
implies that Ker h* € Co?2*. Hence, Ker h* = A 4. and h* is a strong embedding
from 2* into B*.

The reverse implication is an easy consequence from the definitions involved.
Given an n-ary relation symbol r and elements a;,...,a, € A, the condition
(A*,a*)agaF rea, .. .cq, is equivalent to (B*,(ha)*)scaF req, ... Ca,, because A*
is strong. Hence, (U, a)seaFrcq, ... Cq, iff (B,ha)geaFreq, ... Cq,. On the other
hand, let t and ¢’ be terms over £ whose constants are among ¢, , ..., cq, for some
a,...,ar € A. If ¥(t,1") € D;2 then

t*ay,... @) = %ay,... ,a;) ().
Since h is an homomorphism and h* an embedding, this implies
t®(hay,... ,har) = U'"2(hay, ..., hay) (UB),

so that, by Theorem 2.1.2, (B, ha),e a satisfies ¥(t,t'). Therefore, (B, ha)aca is a
model of D;2. This completes the proof of (i).

(ii) The fact that h* is elementary follows from Corollary 3.1.2. According to
this corollary, (2*,a*)aca = (U,a)aca and (B*,(ha)*)aca = (B, ha)sea, so that
for all L-formula ¢(z1,...,z¢) and all ay,... ,a; € A, we have

(2*,8")acaF @(Cays - -+ Cay ) Iff (B*, (ha)*)ocaF w(cays - - +Cay )-
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Thus,
A'Ep(z1,...,22) [a],...,a1) iff B*Ep(z1,...,2¢) [(Ra1)*,...,(ha)*),
ana the only-if part is proved. The converse is obtained by a similar argument. =

COROLLARY 3.1.4. Let U, B be L-structures. Then:
(i) h:A—.B implies h : A —,B and h2A C, B;
(ii) h : A—.B implies h* : A* —,B"* and h*A* C, B".

Proof. Using Proposition 1.2.2, part (i) is easy to check. So, let us show (ii). Since h
is elementary, (B, ha)qe 4 is a model of D, . Hence, by 3.1.3(ii), h* is an elementary
embedding. Moreover, A* = A** and A* = B* imply that A*A* =B*. =

Observe that, according to the preceding corollary, if A : % —.B then some
quotient of A is isomorphic to some elementary substructure of 9, whereas the
Leibniz quotient 2* of 2 is directly isomorphic, as it occurs when the language has
equality, to some elementary substructure of the Leibniz quotient B* of B. We
shall see in the next Chapter that much of the difference of the algebraic charac-
terization of certain classes of structures as compared to the characterization of the
corresponding classes defined using the equality symbol has to do with this fact.

3.2. Model Classes and Completeness Theorem

Given any elementary theory T over the language £ (or more generally, any set
of L-formulas), let

ModT = {% € Str L: Ak p for all p €T},
Mod'T' = {% € ModT : 2 is reduced}.

ModT and Mod*T are called, respectively, the full model class and the reduced
model class of T'. Their relationship can be expressed as follows. If K is any class
of L-structures, define

L(K) = {2 : A = B* for some B € K}

(for simplicity, we often write K* to mean this class). Then, since 2* is elementary
equivalent to 2 by Corollary 3.1.2, we have Mod'I' = L(M odT’).

The operator L is called reduction operator. If K is an arbitrary class of L-
structures, we say K is a full class whenever it is closed under expansions and
reductions!?; also, we say K is a reduced class if it is obtained by applying the
reduction operator to some other arbitrary class. In particular, the whole class of
reduced L-structures, denoted Sir* L, is called reduced semantics to differentiate it

12This concept of full class for the case £ has equality amounts to what Mal'cev called abstract
classes, i.c., classes closed under isomorphims [89]; see the comments following the definition of
expansion and reduction in Section 1.2.
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from the class Str £, named full semantics. Observe that, if every member 2 of K
satisfies that r® = @ or r? = A?("), for all r € R, then K" is formed of one-element

algebras endowed with empty and/or all relations. A reduced class whose elements
are all of this kind is called {rivial.

Following the standard notation, for any set ¥ of £L-formulas and any single £-
formula ¢, we write ZF ¢ to mean that for all 2 € Str £ and all assignment g,
Ak ¢ [g] holds whenever AF ¥ [g] holds. Similarly, $E* ¢ will mean that for all
A € Str* L and all assignment g, AF T [g] implies AF ¢ [g]. At first glance, it can
seem that F* is weaker than F, but the following easy result expresses that actually
both full and reduced semantics are complete for first-order logic without equality.

THEOREM 3.2.1. (Completeness Theorem) Let £ be a set of first-order L-sentences
and ¢ a single first-order L-sentence. Then £ + ¢ if TFp if TE" .

Proof. The first equivalence is just the contents of Godel’s completeness theorem,
and the second one is a direct consequence from Corollary 3.1.2. =

The same is true for fragments of first-order logic. The result for universal Horn
logic (see [68], [92]) is specially interesting for our purposes, particularly in Chapter
10. Another remarkable property that is closely related to the content of the above
theorem is the following.

THEOREM 3.2.2. For all set T of L-sentences, Th(Mod I') = Th(Mod*T). =

In light of these theorems, both the full and the reduced model classes of an
elementary theory are indistinguishible from a semantical viewpoint. But their
comparability from an algebraic perspective appears as an interesting problem by
itself, motivated by the distinctive algebraic character of the model classes of some
special theories arising in algebraic logic. We shall come back to this point in the
next section.

3.3. Some Exemples

We have described in Chapter 2 the Leibniz congruence of several structures (see
the examples following the definition). These structures are, in fact, models of some
elementary theories which have a paradigmatic character, for their model classes
are amenable to the common universal algebraic methods but to different degrees.
We are going to define now these theories accurately; they have been picked out for
their intrinsec mathematical interest and not for their logical content.

Let £ be any first-order language with some function symbols and a sole relation
symbol r, of arity 2. Let

(Ref) r(z,z);
(Sym) r(z,y)—r(y.2);
(Tra) r(z,y) Ar(y.z)—r(z,z);
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(Com) r(z,y)—=r(7(z1,- 1 2ic1,%,Zig1y -, 2k),
T(21,---12i=1, Y Zig1,- -, 2k)), Tor all L-terms 7 and all i.

Our theories consists of some of the forecoming axioms:

Theory of equivalence relations, T'eq c:
(Ref) + (Sym) + (Tra).

Theory of tolerance relations Ty :
(Ref) + (Sym) + (Com).

Theory of quasiorders Ty :
(Ref) + (Tra) + (Com).

Theory of congruences, T'¢o ¢
(Ref) + (Sym) + (Tra) + (Com).

Usually, we omit the supscript £ and write simply Teq, ['to, I'qo and [eo. The
full model classes of these theories are denoted respectively by Kq, Ko, Kqo and
Ko, again omitting the supscript. We remark that, for the case £ has no function
symbol, T'eq and I'¢o coincide.

Some more general elementary theories (rather, strict universal Horn theories)
that deserve a special attention are the following ones. Let Q be a quasivariety of
L-algebras, and let T be a set of quasi-identities that axiomatizes Q. Let L' be the
language with the same function symbols as £ and a sole relation symbol d, of arity
2, distinct from r, and denote

d(Z) = {Ai=; d(si,t:) —d(s,t) : Nz si t;—»s~tEX).
Then we define the following theories:
Theory of tolerance Q-algebras, Iy, o:

Tio,c + Teo et + d(E) + {r(z,y) Ad(z,u) Ad(y, v) =r(u, v)}.
Theory of quasiordered Q-algebras, Tqq o
Pgo,c + Teocr +d(E) + {d(z,y) —r(z, v)}.
Theory of ordered Q-algebras, T'po,0:
Tqo.c + {Ajz; r(si, i) Ar(ti, i) —r(s,t) Ar(t,s) : AL, simti—sxt €L}

Theory of Q-algebras, I'g:

Leo,c + {Ainy r(sisti) —=r(s,t) : AL simti—ms~teL).

We follow the same conventions on notation as before; so, notations like Ko @ and
Koo are selfexplanatory.
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By the definition, the theories I'yo, g, T'po,@ and I'g are the same as I'to, I'qo and
T'co, respectively, when Q is taken to be the whole class of L-algebras. Also, notice
that if 2 = (A,d"",r“) is a member of any one of the full model classes Kio,g or
Kqo,0, then

A = (A/QUA, A 4 02,72 /Q2),

where now A /Q2 belongs to the quasivariety Q and r2/Q2 is a tolerance relation
or a quasi-order on A/Q%, respectively. Also, if 2 = (A, r?) is a member of Kpo,0,
then Q% = r2 N (r2)~! and so

2A* = (A/Q2, r*/Q91),

where A/Q2 € Q and r?/Q% is a partial order on the algebra. Finally, if 2 =
(A,r%) is a member of Kg, then

Q(. = (A/QQ[,AA/()Q),

where A/Q% € Q. As a result, the reduced model classes K, o, K3, o, Ko o and
K"Q amount essentially to quasivarieties of tolerance algebras, quasiordered algebras,
ordered algebras and algebras (or equivalently, ordered algebras with the discrete
order), respectively. In particular, when Q is a variety, K;,’Q is what Bloom calls
a variety of ordered algebras [14).

The full model classes Ky,0 and Kg are specially important, for they have some,
or all, of the algebraic properties we are interested in. In this sense, they fall into
two very nice categories of classes. The problem we announced at the begining of
the Chapter is suggested by the following question: are there any other types of
classes of structures that are still amenable of universal algebraic methods and for
which we can prove general forms of certain universal algebraic results? The rest of
the work is mainly devoted to answer this question; roughly speaking, we propose
to identify those full model classes K such that K and K* exhibit a metatheory as
similar as possible to that of I'g, and to investigate them. We come back to this
point in Chapter 5, where we also discuss the nature of the assumptions that set
such kind of classes apart.



4. Birkhoff-Type Characterization
of some Model Classes

In Chapter 3 it has been established that first-order logic without equality has
two complete semantics, viz., the full and the reduced semantics. Now the aim is
to state characterizations, in the style of Birkhoff’s Variety Theorem (see, e.g., [20,
Thm.11.11.9]), of both the full and the reduced model classes of certain theories;
namely, elementary, universal, universal Horn and universal atomic theories!3. For
this purpose, we prove algebraic characterizations for the full classes and examine
the commutativity properties of the reduction operator when composed with the
different constructions described in Chapter 1; these commutativity properties allow
to derive the analogue results for reduced classes. An important aspect, closely
related to this problem, is that these latter characterizations can be sharpened by
assuming some properties about the Leibniz equality predicate introduced before,
but we don not deal with this issue until Chapter 7 below.

4.1. Operators on Classes of Structures

In order to investigate the algebraic properties of classes of structures, let us
introduce the operators that correspond to the constructions defined so far and let
us state some technical lemmas. For any class K of £L-structures, define

S(K)={2%: A =¢ and € C B for some B € K},

S.(K)={2%: A= € and € C, B for some B € K},

F(K) = {2 : 2 = ¢ and B<C for some B € K},

H(K)={2%: A= and h: B -»C for some B € K and some h},
RK)={%A: A=¢ and h: B —,C for some B € K and_some h},
EK)={2%: A= and h: C~»,B for some B € K and some h},
PK)={A: A=]];c; % and A; €Kforallie I},

13The investigation of similar characterizations for some other theories (e.g., universal-existential
theories) is an interesting problem but it is outside the purpose of the present work.
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Py(K) = {2: A= T, %/F, % € Kfor alli €I and F is a proper filter on I},
Pu(K) = {%: A=TL;;%/U, %; €K for all i € ] and U is an ultrafilter on I},
Pa(K) = {2: % € Kforalli € ] and h : 2,4 [];¢; 2 for some h},

Pp(K) = {2: A= B/F, B € P,a(K) and F is a proper filter on I}.

If © and O’ are any two of these operators, we write OO’ for their composition
and O < O to mean that O(K) C O'(K) for any class K of L-structures. For
each O, we also use the short notation 0" for LO. Note that O(K), for O €
{P, Py, Py, P,4, Py,}, are always nonempty classes, even if K is empty, since one
can choose I = 0 and then they contain the trivial, one-element structure with all
relations holding. When necessary, we shall write O(K) to indicate that we only
take nomempty index sets in the respective constructions.

LEMMA 4.1.1. If O is any one of the operators defined above, 0? =0.

Proof. The equality is easy to verify except when O is one of the operators that
corresponds to a product construction. So let us give an idea of the proof for these
cases. Assume first that O = P;. Obviously, P, < PyP;. To prove the reverse
inclusion, let F; be a proper filter on I, for all j € J, and F a proper filter on J.
Define a new index set K = |J;c;(J; x {j}) and let

G ={Ujes(Fj x {j}): J' € F and F; € F; for each j € J'}.
It is easy to see that G is a proper filter of Sb(K), so it suffices to show that
H(".J')GK %;;/G = Hje.l(niel,- Aii/F3)]F,

for all L-structures 2;;. We shall give the precise definition of the isomorphism
and omit the details. Let a = (aij : (i,4) € K) € []; jyex %ij- For each j € J, let
a’ :=all; x {j}. Clearly & € [];¢;, Uij, so that &’ /F; € [];¢y; Uij/F;. Define h
to be the function given by

h(a/G) :=(a/ /F; : j € J)/F.

Then h is the desired isomorphism.

The above construction specializes trivially to the case that the filters ; and F
are respectively {I;} and {J}, so that we also have a proof that P = PP. Moreover,
if F;, for j € J, and F are all ultrafilters, the set G is again an ultrafilter of Sb(K),
and thus the equality P, = P, P, follows.

Suppose now O = P,g. Let hj : 2 —,4 Hielj A;; and h: Ay njeJ A If K
denotes again the set ;¢ ;(I; x {j}), we already know that

njeJ(Hielj Qlii) = l'l(.-,,-)ex 21:‘j-

So it is enough to verify that there exists a subdirect embedding from 2 into the
product Hjel(nielj 2;;). Indeed, the mapping given by a+— (h;m;ha : j € J)
satisfies the desired condition.
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Finally, the idempotency of the operator Py, can be derived almost immediately
from the equalities already stated; we omit the details. m

The second of the lemmas describes the behavior of the operators £ and R when
composed with some other operator.

LEMMA 4.1.2. For all O € {S,S., P, Py, P., P,4}, the following is true.
(i) OE < EO;
(ii) OR < RO, except if O # P,gq.

Proof. Let K be any class of L-structures.

(i) Suppose first A € SE(K). Let h : €—,B and % C € for some B € K. By 1.2.2,
h2A C B. Moreover, the restriction of A to 2 defines a reductive homomorphism
from 2 onto A%, as h~*r?® = h=1hr2 by the definition of h2. Hence, A € ES(K).
This gives the statement for O = S.

To show that S.E(K) C ES.(K), let 2 be such that A C. € and h : €—,B for
some B € K. The restriction of h to 2 is still an elementary homomorphism, so by
Corollary 3.1.4, h?A C. B. Therefore, 2 € ES.(K).

Let us consider now the case O = P. Suppose ™ = [];c; % and h; : 2; —,B;
with B; € K, for any i € I. Define the mapping h from [];.; A; into I'L.E, B; by
ha = (h;a; : i € I}, where a = (g; : i € I) is an arbitrary element of [];.; A;. We
already know that h defines a surjective algebra homomorphism, so let us verify the
strongness condition. For any n-ary relation symbol r € R, if a;,...,8, € I'L.e 1 Ai
we have

(a1,...,an) € A~ rllier B iff (hiai, ..., hiain) € r®¢ forallie 1.

Thus, since h; is strong for each i € I, the definition of the product structure implies
that this is equivalent to (a;,...,a,) € rllier % As a result, there is a reductive
homomorphism from [];.,; %; onto [];¢; B:, and hence 2 € EP(K).

The above proof extends easily to the cases O = Py, P,. Now, given any proper
filter F (possibly an untrafilter) of Sb(I) we define the canonical mapping hr from
Iics Ai/F into [;es Bi/F by hx(a/F) = (ha)/F and we can verify that hr is
again a reductive homomorphism from [;¢; %:/F onto [];¢; Bi/F. In particular,
the strongness condition follows from the equality

{iel: (hia;,...,hiain) € rB}={ierl: (ay,...,ain) € rm‘}.

Finally, assume 2 € P,4E(K). Let h; : %; —,DB; for B; € K and i € I, and let
g : % —,a]];er 2. Define the map h from 2 into [];, B; by letting ha = (h;og(a) :
i € I). So defined h is the composition of two strong homomorphism (remember
that any subdirect embedding is strong), so it is strong. Hence, 2/Kerh & A% C
Il;er Bi. On the other hand, the commutativity of the diagram involved implies -
that the composition of h with the projection from H'-e 1 B onto B, is surjective,
for all . Consequently, h2 is a subdirect product of {®B; : i € I} and 2A € EP,4(K).
This completes the proof of part (i).

(ii) Let 24 C € and h : B —,C for some B € K. As h is strong, Lemma 1.2.2 says
that 2’ = h~12l is a substructure of B and the restriction of h to 2 is a reductive
homorphism. So 2 belongs to RS(K).
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Assume now that 2 is in addition an elementary substructure of € and let us
see 2l € RS.(K). We keep the previous notation up. Let ¢ = ¢(zy,...,z%)
be any formula over £ and let a},...,a}, € A’. As h : %' —,%, by 3.1.1 we
have 'k o(zy,... ,z¢) [a},...,a}] iff AE p(zy,... ,2¢) [ha},...,ha}). Similarly,
BE(z1,...,2¢) [a],...,a}]) is equivalent to €F ¢(z1,... ,z¢) [ha],...,ha}]. So,
as 2 C. €, we conclude that 2%’ C. B and, consequently, 2 € R(2’) C RS.(K).

The proof of the inequalities OR < RO, for O € {P, Py, P,}, is again straighfor-
ward and it is omitted. m

Algebraically, filter extensions and homomorphic images do not retain some of
the nice properties of other constructions. This fact will appear obvious in the study
of elementary classes axiomatized by atomic formulas. The next lemma contains
some of the properties of filter extensions that we shall need in the investigation of
these classes.

LEMMA 4.1.3. (i) EF < FE;
(ii) FR< RF=H;
(iii) FS < SF.

Proof. (i) Suppose 2 € EF(K) and let h : A —»,C, where B <C for some B € K.
Then h='r® C r? for all r € R, so that 2 is a filter extension of (A,h~!Rsy).
Moreover, (A,h~1Rg) € E(B). So we conclude 2% € FE(K).

(ii) Let 2l € FR(K) and let h: B —,€ and € < A for some B € K. The inverse
image of 2 under h is a filter extension of B and, consequently, % € RF(K). The
equality RF = H has already been proved in Section 2.2.

(iii) Assume € < 2 and € C B for some B € K (in fact, we should suppose 2 is
isomorphic to some filter extension of € and € isomorphic to some substructure of
8, but the same argument goes through). Define ® = (B, ReUR4). Then B x D
and, as can be easily proved, 2 C D. Consequently, 2 € SF(K). =

LEMMA 4.14. (i) EL= ER = RE;
(i) LE=LR=RL=L<EL.

Proof. Let K be again an arbitrary class of L-structures.

(i) Assume 2 € RE(K) and let € be such that 2,8 € R(€) for some B € K. By
2.3.1, C* = A* and €* = B*. Thus, A,B € E(C*) and hence A € ER(K). For the
converse, let h : A—»,C and g : B—,¢, with B € K. From universal algebra we
know that there exists an absolutely free algebra F and surjective homomorphisms
k:F—A and f: F—B such that ho k = go f. Then it suffices to define § =
(F, (h o k)~'R¢); the condition %,B € R(F) holds and, consequently, % € RE(K).
This proves the equality ER = RE. .

To show that ER = EL, assume as before that 2, B are expansions of some C,
for B € K. Then 2, B are also expansions of €*, so that 2 € EL(K). The opposite
inclusion is trivial.

(ii) It is a direct consequence of the definitions involved. m

The last result of this section states the special commutativity properties of the
reduction operator L when composed with other operators. This sort of commuta-
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tivity is central to derive in following sections the Birkhoff-type characterizations
of reduced model classes from the analogue ones for the full classes.

PROPOSITION 4.1.5. (i) For each operator O € {S, P, Py, Py, P,q}, we have LO =
LOL,ie, 0" =0O"L.
(i) LS, =LS.L=S.L.

Proof. (i) Assume first O = S and let % € 5*(K). Suppose A = €* for some € such
that € C B8 and B € K. We need a sublemma whose proof is immediate:

If % C B and 6 € Co'B, then the mapping a/0, — a/0 defines
a strong embedding from /0, into B/6, where 4 = 6 N A%,

In our case, the sublemma says that there is a strong embedding from €/f0c
into B*, where fc = QB N C% So, by virtue of 1.2.2 and the Homomorphism
Theorem stated in 2.2.3, €/fc¢ is isomorphic to some substructure of B*. On the
other hand, Lemma 2.3.1 implies €* 2 (€/6¢)* and consequently A = (C/0c)".
Thus, 2 € S*L(K). To prove the reverse inclusion, let 2 = ¢* for some € such
that € C B* and B €K. If 7y denotes the projection from B onto B* then
¢ = 7@1@ is a substructure of B and the restriction of 7 to €’ is also a reductive
homomorphism. Therefore we have 2 € S*(K).

Let us suppose now that O = P;. We shall show that for each family of £-
structures {2; : i € I} and each proper filter F over I, we have

(4-1) (Hiel Qt,-/]-')' = (Hie! Qi;/}')‘.

Under this assumption, the desired equality follows trivially, for 2 € P;(K) iff
A = ([];es Ui/ F)* for some A; € K, i € I, and A € Py L(K) iff A = ([, %7 /F)"
for some 2; € K, i € I. So let us proceed to prove (4.1).

Denote by 2 and 2 respectively the products [];¢; 2} and [];¢; 2%, and define
a mapping h from 51/.7-' into (A/F)* by h(a/F) = (a/F)*, for every element a =
(a7 : i € I) € A. We must first of all show that h is well defined. For this, assume
a/F =b/F,ie,{i €I: a} =b}} € F,and let us conclude that (a/F)* = (b/F)*.
We use Theorem 2.1.2. Given any atomic L-formula ¢ := ¢(z,2,...,2:) and
elements a,/F,...,ar/F € A/F, Theorem 1.3.1 says that

A/FEp(z,21,... ,2¢) [a/F,a1/F,...,ac/F]
if{iel: Fkop(z,2,...,2) [ai,ai1,...,0i]} €F.

On the other hand,

{iel:aq;=b}n{i€el: Fp(z,n,...,2) [ai,0i1,...,a80]}
- {iEI: Ql,":tp(z,zl,... ,-zk) [b.',a.-l,...,a.-k]}.

Therefore, since F is a filter, A/FEp(z,21,... ,2) [a/F,a1/F,...,a;/F] and
a/F = b/F implies that {i € I : AiFp(z,21,...,2¢) [bi,014,...,0k]} € F,
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which is the same as A/F E p(z,21,... ,2k) [P/f,a;/f, ...,a/F], again by 1.3.1.
Consequently, under the assumption a/F = b/F we conclude that

Q[/ft¢(z’zli“‘ ,zk)—up(y,zl,... ,Zk) [a/]:’b/}.ial/]:)"')ak/ﬂ'

The same argument proves the reverse implication. So, as ¢(z,21,...,2¢) and
a;/F,...,ap/F are arbitrary, 2.1.2 gives (a/F)* = (b/F)*. To verify that h is a
strong homomorphism is a direct consequence of the definitions involved and the
proof is omitted. Finally, since h is surjective, Proposition 2.3.1 says that

Bt (A F) = (A F)

and hence h* is the desired isomorphism. This completes the proof of (4.1) and
consequently the equalities O* = O*L for O € {P, Py, P,}.

Consider finally the case O = P,g. Let g : 2,4 Hiel A; with A; €K, forie I,
so that 2* € P;,(K). We are going to show that 2A* € P;;(K*). Indeed, consider
the map h from 2 into [];¢; U} defined as follows: if a € A and ga = (a; : i € I},
let

ha=(a;:i€1I).

Clearly h is a strong homomorphism and its composition with the projection from
2; into 2A] is surjective, for all i. Therefore, A/Ker hr,4[];c; i, and hence
(%/Ker h)* € P4(K*). Proposition 2.3.1 completes the proof.

(ii) For O = S, we reason in very much the same manner as for O = S and then
apply 3.1.2 to obtain S; = S; L. To be more precise, let us keep the same notation
and assume € C. B. Then, since ¢/6 = ¢ and B = B*, we have ¢/6 = B*
and consequently the embedding from €/6 into B* is elementary. For the converse
we just need to check that if € = B*, the inverse image of € under mg is also
elementary equivalent to 8. And this is a straightforward verification

Once we have derived the equality S; = S L, it is easy to see that S;L = S.L.
Indeed, let us prove that if % C, B and B is reduced then 2 is reduced. Two
applications of 2.1.2 give the following: for all a,b € A,

a = b (Q) iff AF ¢(z,y) [a,b] for each Leibniz L-formula ¢
iff BE ¢(z,y) [a,b] for each Leibniz L-formula 9iff a = b (2B).

So Q2 C OB, and consequently if B is reduced then 2 is reduced as well. =

4.2. Elementary Classes

Remember that a class K of L-structures is said to be elementary if there
exists some set T' of sentences over £ such that K= ModT, or equivalently, if
K = ModThK. Thus, the following theorem is an extension to general first-order
languages, with or without equality, of a well known result in classical model theory
(recall that if £ has equality, expansions and reductions are just isomorphic images,
for the reductive homomorphisms are isomorphisms in this case).
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THEOREM 4.2.1. For any class K of L-structures, the following statements are
equivalent.

(i) K is an elementary class. _
(ii) K is closed under E, R, S, and P,.
(iii) K= ERS, Py(K'), for some K'.

Proof. The implication from (i) to (ii) follows directly from Corollary 3.1.2 and Los
Theorem on ultraproducts. Moreover, (ii) implies (iii) is trivial, for let K' = K. So
let us show that (iii) entails (i). We claim that K is axiomatizable by ThK', where
K’ is as in (iil). Note first of all that for any class L of L-structures, ThL = Th O(L)
whenever O € {E,R,S., P,}, again by 3.1.2 and 1.3.2. Thus, ThK = ThK’ and
the inclusion K € ModThK' is clear. Assume 2 € ModThK' and let us see
that & € K. Let A = Sb, (D.%). Given any set & of L4-formulas, we write
®(cqyy---,Ca,) to mean that the constants c,, for a € A, appearing in the elements
of & are among ¢, , . . .,cq,. We claim that if & € A, then there exist some B¢ € K’
and some {ba,¢ : a € A} C By such that

(Be, ba,8)ac aF AP(cay,---1Cas)-
Suppose not. Then, given any B € K’ and any {b, : a € A}, we have
(B,ba)acaF 2 A¥(cayy---1Ca,)-

Consequently, the class K’ satisfies the L-sentence Vz;...Vzi— A ®(zy,...,z),
ie.,

Vz,... Vo~ A®(z1,...,2:) € ThK'.

But this implies that AFVz,...Vz; - A ®(zy,...,2i), and hence contradicts the
assumption ® € A. So the claim does hold.

As usual, define Jp = {¥ € A: & C ¥} for & € A. The family {Js : ® € A}
has the finite intersection property, so that there is an ultrafilter I/ on A such that
Jo €U for every ®. Let B = [[4c5 Ba/U. Clearly B € P.(K'). Let us show that
if ba := (ba,e : ® € A) € [[p¢a Be, for each a € A, then

(4.2) (B,ba/U)aca is a model of D, 2.

Indeed, suppose ¢ := ¢(cq,,-..,¢a,) € D.A. The following equivalences hold (the
second one by Los Theorem):

(B, ba/U)aca F pl€ayy--1Ca,)
if BE(zy,....24) [ba, /U, ... ba, U]
iff {PEA: BeFop(zy,...,zk) [bay,e,--r0a,0]} EU
iff {P€A: (Be.bas)acaFp(cas .. c,)} EU.

Also, Jy,) €U and J(,) C {® € A: (B, bs0)acaF¥(cay,- -+, ¢a,)}. Therefore,
since U is an ultrafilter, the last condition above is satisfied. So (B,bq/U)aeca is a
model of ¢(cq,,-..,¢q,) and (4.2) is proved.
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We now apply Diagrams’ Lemma. Then h* : %" — 8", where ha = (bs/U),
and so 3.1.4 gives A € ES.R P,(K'). Lemma 4.1.2(ii) and the assumption that
K= ERS, P,(K') complete the proof. m

Given a class K of L-structures, we define the full elementary class generated
by K, or simply the elementary class generated by K, as KE = ModThK. Also,
we call reduced elementary class generated by K the class (KE)' = L(ModThK);
observe that (KF)" is not in general elementary. The next corollary describes the
way to contruct KE and (KE )' from K by applying certain operators.

CoOROLLARY 4.2.2. The following holds for any class K of L-structures.
(i) X% = ERS, P, (K).
(i) (KF)" = 5. Py(K").

Proof. Part (i) follows immediately from the proof of the preceding theorem, for
the latter states the equality ModThK = ERS, P,(K). To see (ii), it suffices to
show that LERS, P, = S, P, L. Indeed,

LERS.P,=LS.P,, byLemma4.14,
= S, ﬁ;L, by Proposition 4.1.5. m

COROLLARY 4.2.3. A class K of reduced L-structures is a reduced elementary
class (i.e., K=(KF)*) iff it is closed under elementary substructures and reduced
ultraproducts modulo ultrafilters over nonempty sets.

Proof. It is an obvious consequence of Corollary 4.2.2(ii). =

A reduced elementary class is not in general closed under the operator P,. A
counterexample is provided by Blok and Pigozzi [12, p.30]; actually, they give a
universal Horn theory and describe an ulraproduct of reduced models which is not
reduced!®,

4.3. Universal Classes:

Recall that a class K of L-structures is said to be universal if there exists some
set T of universal sentences over £ such that K = ModT, or equivalently, if K =
Mod UnK. The following is the characterization of universal classes defined with or
without equality; it simultaneously extends a well known result in classical model
theory (see, e.g., [20, Thm.V.2.16]) and a more recent result of Czelakowski [32,
Thm.L.7]. ‘

14 An earlier counterexample of Malinowski [90, p.26] shows that the reduced model class of a
universal Horn theory is not in general closed under direct limits of directed systems (sce e.g. [25,
p.320] for a definition of direct limit), and this actually implies that the class cannot be closed
under the operator Pu. -



38

THEOREM 4.3.1. For any class K of L-structures, the following statements are
equivalent.
(i) K is a universal class.
(ii) K is closed under E,R,S and P,.
(iii) K= ERS P, (K), for some K'.

Proof. The implication from (i) to (ii) follows from 3.1.2, Los Theorem and the
additional well-known fact that universal sentences are preserved under substruc-
tures. (ii) implies (iii) is again trivial. So, let us concentrate on the proof that (iii)
entails (i). We follow a similar argument to the one given for Theorem 4.2.1. In this
case, the aim is to see that K is axiomatizable by Un K’. Note again the inclusion
K C ModUnK'. Assume 2 € ModUnK' and let us show 2 € K. Let A = Sb(D ).
For every ® € A, there exist some Bg € K and some {ba,e : a € A} C By such
that

(Ba,bs,8)acaF A®(cays-.-1Car);

otherwise, we could conclude that Vz;...Vzy ~ A®(z],...,2¢) € UnK', which is
impossible for AF 3z, ...3zx A®(zy,...,zk).

Define as before Jo = {¥ € A : & C ¥} for every & € A, and let U be an
ultrafilter on A containing the family {Js : ¢ € A}. Let

B = H«beA Be/U,
bo := (ba,e : ® € A) € [[gea Be, foreachace 4,
C:=B | {b/U: a€ A}.

Clearly € € S P,(K'). Let us establish the following lemma:
4.3) (€,ba/U)aea is a model of DA,

We begin by showing that (€, b4/U)ae 4 is a model of DY. Consider any element
@ :=p(Cayy---,¢ca,) of DA We have

Jipy €U and J,} C{P €A : BoFp(z1,...,2k) [bay, 8- -1 Doy 2]}
so that, as U/ is an ultrafilter, the last set belongs to «. So, by virtue of 1.3.2,
BF p(z1,...,2k) [ba, /U, ... ba, JU]
and consequently, since ¢ is an atomic or negated atomic L-formula,
CEp(z1, ..., 2) [ba, /U, ... ba, U]
Finally, this last condition is equivalent to (€,bs/U)acaF ¥(Cays---,Car)-
Now consider any other element ¥(t,t') of D;2, where t := t(c,,,...,¢q,) and

t :=t'(csy-.-1Ca,) for some k > 0 and some ay,...,a; € A. Our definition of
Leibniz diagram says that we have

tA(ay,...,ae) =t (ay,... ,a;) ().
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Assume ¥(z,y) := Vz1...Vz(p(x,21,... ,25) = @(y,21,... ,2p)) and take arbi-
trary elements b, /U, ..., by /U of C. We must prove the equivalence

(€, 6a/U)aeaF p(t(Cays--1€ay)s 21y v 5 2p) b1 JU, ... by U]
(4.4) T (€, b0 /U)acaF o(t'(Cays- o s€a)s 21,y v 2p) [B1/U, . .. bp JU].

Since € is generated by {bs/U : a € A}, there exist some ¢ > 0, some al, ..., a; € A
and some L-terms t,,... ,t, in ¢ variables such that

bifU := 1 (bay U, ..., ba fU),  for1<i<p.
Thus we have the following chain of equivalences:

(€, ba/U)aea Fp(t(cayy---1Car)s21y-en s 2p) [b1fU, ... bp U]
il CFo(t(zry- -2 Tk)y 21000 4 2p) [bay UL .. ba, fULbLU, .. by fU)
iff CRp(t(z1y...,ze),t1(ur,...,ug), . tp(u,. .., uy))
[bay /Uy .., bay /U, by JU, ..., bay U]

(ui1,...,u, are additional variables distinct from z,,...,zi). Take y to be some
other new variable and let & be the atomic £-formula given by

o(y,u1,...,ug) = oy, t1(ur, ... ,ug),..., tp(uy, ... ,uy)).
Then the last condition above can be expressed as
Cro(t(z1,...,2E),u1,... ,Uq) [bal/ll,...,bak/ll,barl/ll,...,ba:q/U].

Hence, since it has already been proved that (€,bs/U)aca is a model of DY, we
have AF o(t(z1,... ,2¢), 11, ... ,ug) [a1,... ,ax,0],...,a7], ie.,

Ak o(z,uy,... ,ug) [tA(ay,. .. yGk), Y, .., ).

We now apply the assumption t4(ay, ... ,ax) = t'A(ay, ... ,ar) (), which says
that the preceding condition is equivalent to

(4.5) Ak o(z,uy,...,uy) [t'A(al,... ,ak),a'l,...,a;],

Finally, backing the argument just made we derive the equivalence of (4.5) with
the right-hand side of (4.4):

(<, ba/u)aGA': (,o(t'(ca,,. N2 I TPT ,Zp) [bl/u,. o ,bp/U].

This completes the proof of (4.3).
Apply now part (i) of Diagrams’ Lemma to (4.3). We have that the mapping
a* +— (by/U)* defines a strong embedding from 2* into €*. Moreover, h is surjec-

tive, so that once more the Homomorphism Theorem gives %™ = €*. As a result,
2 € ERS P4(K') = K and the theorem is proved. =
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Let K be any class of L-structures. The full universal class generated by X, or
simply the universal class generated by K, is defined as KY = ModUnK, whereas
the reduced universal class generated by K is taken to be (KU)‘ = L(ModUnK).

Once more, (KU)‘ need not be even an elementary class. The next result looks like
Corollary 4.2.2.

CoROLLARY 4.3.2. If K is any class of L-structures, the following holds.
(i) KY = ERSP, (K).
(i) (K”)" = S*F,(K").

Proof. We just repeat the argument for the proof of Corollary 4.2.2. m

COROLLARY 4.3;3. A class K of reduced C-structures is a reduced universal class
(ie, K = (KU) ) iff it is closed under reduced substructures and reduced ultra-
products modulo ultrafilters over nonempty sets. =

A reduced universal class is not in general closed under the operators S and P,,.
For ultraproducts the example given in the preceding Section keeps on working now.
For substructures we can find simple counterexamples. For instance, consider the
language of groups together with a unary relation symbol, £ = {-,e,r }. The whole
class Str L is universal (the sentence Vz(rz —rz) provides an axiomatization). Let
A be a simple group and B a nonsimple subgroup of A. Then, if N is the universe
of a normal subgroup of B, % = (A, N) € Str*L, B = (B,N) C % and B is not

reduced.

4.4. Quasivarieties

We say that a class K of L-structures is a quasivariety if there exists some set T' of
implicative £-formulas such that K= ModT, or equivalently, if K = Mod ImpK?!5.
Our purpose now is to provide some algebraic characterizations of quasivarieties
that hold for languages with as well as without equality. The results we are going
to establish generalize the classical theorem of Mal’cev [87] and some more recent
theorems due to Czelakowski {29,37]. The technique of the proof given here differs
from the one used by Czelakowski, but we shall see in Section 8.2 below that his
proof can also be extended.

THEOREM 4.4.1. For any class K of L-structures, the following statements are
equivalent:
(1) K is a quasivariety.

15The common expression among Western model-theorists to refer to quasivarieties as defined
here is “strict universal Horn class”. We have chosen the former terminology, which goes back to
Mal'cev and is also pretty usual among Eastern model-theorists. The choice purports to show the
algebraic spirit that the model theory we try to develop (mainly for UHL) has. Also, it has been
picked out for it is consistent with the more convenient terms of variety and relative subvarietly
used later on. To avoid any possible confusion with the usual meaning of the term “quasivariety”
in the West (a class of algebras defined by a set of quasi-identities) we shall always speak of
“quasivariety of L-structurcs” as opposed to “quasivaricty of L-algebras”.
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(ii) K is closed under E,R,S and Py.
(iii) K= ERSP; (K'), for some K'.

Proof. As for universal classes, (i) implies (ii) is easily checked using Theorem

1.3.1 instead of Los Theorem. Likewise, (ii) implies (iii) is clear. Let us prove the
implication from (iii) to (i). For this, we shall see that (iii) entails K is axiomatizable
by ImpK'. Certainly K C ModImpK' (observe that K must contain the trivial,
one-element structure). Suppose % € Mod ImpK'. Let A = Sb, (D). If we are
given ® € A, ® := ®(cq,,...,Cq, ), then

AF Iz, ... 3z AO(21,...,21)-

We want to show that some member of P(K') satisfies this sentence as well. For
this purpose it suffices to prove

(4.6) Vz,...Vz ~A®(zy,...,z) ¢ ThP(K').

We distinguish three cases. If none of the elements of ® is a negated atomic £L-
formula then (4.6) holds, for P(K’) contains the trivial, one-element structure which
does not satisfy the negation of any atomic L-formula. If exactly one element of
® is negated atomic then the universal sentence above is logically equivalent to
the universal closure of some implicative L-formula which is not true in 2 and,
consequently, since 2 € Mod ImpK', in K. The last case is the most difficult to
argue. Let @ := {¢1,...,9,} and let us suppose at least two elements of & are
negated atomic formulas, say ¢; for 1 < i < p, where 2 < p < ¢. Then one can
reason as above that

Vzy...Vzr (0pi(Z1y. .o Z8) Vo (21, - 1 ZTE) Vo Vg (2, ..., 22)) € ThK,
for 1 < i < p. Consequently, for some B; € K’ and some b3, .-.,b;r € B;,1 <i<p,

BiEi(z1,... ,Zk) A@pt1(T1, -  ZE) AL A pg(21,... ,21)) [Bi1,- - -, bik)-

Define
bj = (blj,...,bpj)enls.'sth ISJS’C

Then Theorem 1.3.1 implies
nlS‘SP %.’ E /\Q(zl, P ,xk) [bl, RPN ,bk],

and hence, since [];¢;¢, Bi € P(X’), (4.6) is proved.
Now, for each ® € A, consider By € P(K') and {bs,5 : @ € A} C Bs such that

(mé,ba,tb)aEA F Aq)(ca; I ERRN] cah)'

We can now proceed as in the proof of 4.3.1 to obtain an £ 4-structure (<, ba/U)aea
of SP,P(K') such that (C,b./U)sea € ModD,AU. So, a new application of tha
Diagrams’ Lemma gives % € ERSP, P(K’). But
SP,P < SP; Py, by definition, ,
= SPy, by Lemma 4.1.1.
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Hence, 2 € ERSP,P(K’') € ERSP;(K') and the assumption (iii) says that 2 € K.
This finishes the proof of the theorem. ®

Given any class K of L-structures, we define the full quasivariely generated by
K, or simply the guasivariely generated by K, as K¢ = Mod ImpK, and the reduced
guasivariety generated by K as (K?)" = Mod*ImpK. The next result includes a
generalization of [12, Thm.6.2).

COROLLARY 4.4.2. The following is true for any class K of L-structures.
(i) K¢ = ERSP; (K).
(i) (K®)" =5"P;(K’). m

CoROLLARY 4.4.3. A class K of reduced L-structures is a reduced quasivariety
(i.e, K = (K9)") iff it is closed under both reduced substructures and reduced
filtered products. m

We sometimes use the notation  to abbreviate the composed operator ERS Py,
so that we have just proved that K = Q(K) and Q* = S*P;L. The next lemmas
can be used to derive some other useful descriptions of these operators @ and Q*
for generating quasivarieties.

LEMMA 4.4.4. (Gratzer and Lasker [58, Lemma 2]) SP; = SPP,.m

LEMMA 4.4.5. (Czelakowski [37]) SP; = Py, = P,aSP..

Proof. Let us prove first the equality SP; = Py,. The inclusion Py, < SP; is
obvious: by definition, a filtered subdirect product of a system of structures is
always isomorphic to a substructure of a filtered product of the system. Also,
P; < Py,. Solet us see that § < Py,. Take an arbitrary class K of L-structures,
and suppose % C B € K. Define

4.7 C:={beB“: b =aifi >m, for some a € A and m € w}.

Note that, for every b € C, the element a in (4.7) is unique; let us denote it
by a(b). Also, C is the universe of a subalgebra of the direct power B“; rather,
it is the universe of a subdirect power of B“, for the projection of C into each
component is surjective. So, let € := B¥[C. If

F:={X € Sb(w) : X is finite},

we claim that the mapping h from C/F into A given by b/F +~— a(b) defines
an isomorphism between the filtered subdirect power €/F and the substructure 2.
Indeed, if b,b’ € C, then
b/F =b’/F ifl there exists m € w such that b; = b} foralli>m
iff a(b) = a(b’).

Thus h is well defined and bijective. Now chose elements by, ...,b, € C and let f
and r a function and a relation symbol, repectively, of arity n. Since a(f€b; ...b,) =
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fBbim ...bum for some m € w, we have h(b;/F) = a(b) = b;y, forall 1 < i < n,
and consequently

hfS/7bi/F ... by/F = a(fCb;...b,) = fAa(by/F)...a(bs/F).
Moreover, by the definition of filtered subdirect product,

(bi/F,...ba/F)erT iff {icw: (by,...,bn) €ErZ}E€F
iff there exists m € w such that (by;,...,b,;) € r2 for all i >m
iff {a(b1),...,a(b,)) € r2.

So h is the desired isomorphism. From the claim we conclude that 2 € Py,(B) and
hence S(K) C Py,(K). This completes the proof of the equality SP; = Py,.

To see Py, = P,4S Py, we first notice that P,sSP, < Py,, for Py, is idempotent
by Lemma 4.1.1 and each one of the operators P,4, S and P, is less than Py,.
For the reverse inclusion, let {2; : i € I} be a system of structures and let F
be a proper filter on I. Clearly F may be expressed as the intersection of some
family of ultrafilters on I; for simplicity suppose {U; : j € J} is such a family, i.e.,
F = (\jes Uj, where U; is an ultrafilter of Sb(I). Then the congruence O is the
intersection of the family {©y; : j € J}, and so the filtered product [];, 2;/F is
subdirectly embeddable in [, (IT;es 2:/U;) (this follows from a property proved
below in Chapter 6, Proposition 6.1.1). Let us say h the subdirect embedding.
Then, if A/F is a filtered subdirect product of the system {2; : i € I}, the
image h(2/F) can be easily proved to be isomorphic to a subdirect product of the
structures A/U;, j € J. In conclusion, P;, < P,4SP,, which finishes the proof of
the second equality and the Lemma. m

COROLLARY 4.4.6. The following equalities hold.
(i) Q= ERSPP, = ERP;, = ERP,4SP,.
(i) @ =S*P*P; = P;, = P),S"P;.

Proof. Part (i) follows directly from 4.4.4 and 4.4.5. To obtain (ii) we can apply
Proposition 4.1.5(i) and the preceding lemmas. m

The examples provided in the previous sections show that reduced quasivarieties
are not in general closed under the operators S and P,. An easy counterexample
borrowed from [12] proves that they are neither closed under P and hence P;.
Indeed, if £ consists of one relation symbol, of arity 1, and no function symbol, then
the reduced L-structures are of the form 2 = ({a, b}, {a}) for distinct elements a,b.
So, A2 is not reduced, since |A?| = 4.

4.5, Varieties and Relative Subvarieties

Let K be any class of L-structures. We say K is a variely if K = ModT for
some set T' of atomic formulas over £; equivalently, if K = Mod Atm K. Next
result provides a generalization of Birkhofl’s Variety Theorem to general first-order
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languages, with or without equality. The proof is entirely of the same nature as
the proof of the previous theorems in the Chapter, and so runs far from Birkhofl’s
original proof.

THEOREM 4.5.1. For any class K of L-structures, the following statements are
equivalent.
(i) K is a variety.
(ii) K is closed under H,E,S and P.
(iii) X= HESP (K'), for some K'.

Proof. (i) implies (ii) and (ii) implies (iii) are clear. Let us show (iii) implies (i)
by proving that K is axiomatizable by AtmK'. Once more the inclusion K C
Mod AtmK' is easy to check. Assume % € Mod Atm K’ and let A be the set
D~ of negated atomic L£4-sentences which are satisfied by (2,a)sea. Let o :=
@(Cays---1€a) € A. We claim there exist B, € K’ and {b;,, : a € A} C B, such
that

(mwba.(p)aeA': ‘P(Ca,yn-,ca,,)-

Otherwise, the sentence Yz, ...Vzi ~p(zy, ... ,zi) is logically equivalent to the uni-
versal closure of some member of AtmK', and hence AEVz; ...Vzy ~¢(zy,..., z).
But this contradicts the assumption ¢ € A. So let

B .= H‘P€Am¢’
ba := (bay : ¢ € A) €[] en By, for each a € 4,
€:=B[{bs: a€ A}

Obviously € € SP(K'). Moreover, by 1.3.1, we have BF A and thus CFA.

Consider the absolutely free L-algebra Teg 4| over |Al-variables {z, : a € A},
and define h : Te |4 —C by za — bs. Let § = (Tes ), A~ Re) be the inverse
image of € under h, so that we have h : § —,C. We want the mapping z, —— a to be
a surjective homomorphism from § onto 2. Clearly A is an algebra homomorphism.
Also, since (€, b5)se4 is a model of A = D=9, the following is true for any atomic
L-formula rt; ...1,, where {;,...,t, are terms in k variables:

(1(Zays--rZar)s---rtn(ZTagy- -1 Zay)) er’
iff (t€(bays---10a0)s- -1 2S(bays- - -y bay)) € 7€
implies (t(ay,...,ax),...,t2(a1,...,a)) € r2.
iff (ht1(Zayr---rZay)serer htn(Tays-- -1 2a,)) € r2.

Therefore, h : §F—2. From here we conclude that % € H(J) and § € E(C). As a
result, 2 € HESP(K'). =

Remark. Notice that this result specializes to Birkhoff’s Variety Theorem, for re-
ductive homomorphisms are just isomorphisms when £ has equality. In fact, the
preceding proof simplifies in this case and provides a proof of a general form of
Birkhoff’s Variety Theorem strictly based on model-theoretic techniques. The sim-
plification goes as follows. If & is a symbol of £, then the £ 4-sentence ¢, = ¢qr
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belongs to A, for each a,a’ € A such that a # a'; therefore, b, # bar must hold.
Also, if (a3,...,an), (a],...,a,) € A", then f%a;...a, # fAd}...a], implies
~fca,...Ca, ™ fea) ...ca, € A, and hence fbs,...bs, # fCbas ...bay. In gen-
eral, we can iterate this argument and prove that we can construct directly a sur-
Jective homomorphism from € onto 2 such that b, —— a, and hence we obtain

2 € H(¢) C HSP(K'). 4

We define the full variety generated by a class K, or simply the variety generated
by K, as K = Mod AtmK, and the reduced variety generated by K as (KY)" =
Mod* AtmX. Then we have:

COROLLARY 4.5.2. The following is true for any class K of L-structures.
(i) KY = HESP(K).
(i) (K¥)" = F*ESP (K).

Proof. It follows directly from Lemmas 4.1.3(ii) and 4.1.4(ii). m

As for quasivarieties, we introduce the notation V to express the composed
operator HESP, so that we have proved the equality KY = V(K). In general,
however, the operators E and F do not commute, nor F* coincides with F*L as
it occurs for the remaining operators (¢f. Lemma 4.1.5 above). There are easy
counterexamples of that. For instance, let

2A:=(NxN,+,(0,0),~), B:=(NxN,+,(0,0),~'),
where ~ is the binary relation on NxN given by
(a,b) ~ (a'", V) ifa+ b =a' +b,

and ~/ is the relation that results from ~ by joining the set {(0,1),(1,0)}?. Then
it is easy to check that the Leibniz congruence on 2l is the relation ~ (recall the
construction of the integers by the symmetrization process). Also, 2B coincides

with the set of all pairs {(a,b),(a’,¥’)) of ~ that satisfy the following additional
condition:

(a,b) € {(0,0),(1,0),(0,1)} or (', ') € {(0,0),(1,0),(0,1)}
(4.8) implies (a,b) = (a',b').

Indeed, denote by 0 such set of pairs. Clearly 8 is an equivalence relation and
# C~. So we have that 6 is compatible with ~’. It remains to show that 6
is also compatible with the addition. For this purpose, assume (a,b)8(a’,d') and
(c,d)8(c’,d'). We distinguish three cases. If none of the pairs (a, b), (¢, d) belongs to
{(0,0),(1,0),(0, 1)}, then we actually have that (a,b) ~ (a’,b’) and 8¢,d) ~ (¢, d’)
and hence

(4.9) (a+c,b+d)f(a’ +c b +d).

If (a,b) is one of the pairs {(0,0),(1,0),(0,1)}, then (4.8) says that (a,b) = (a’,?)
and consequently (4.9) also holds. Finally, if (a,b), (¢,d) are both members of the
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set {(0,0),(1,0),(0,1)}, we reason as before and obtain the same conclusion. All
this proves our claim and therefore we have that B € FE(U") but B ¢ EF(2*),
for no quotient of B can have as underlying algebra the additive group of integers.
A similar counterexample can be found that proves F* # F*L.

The previous remark says that the variety generated by a class K cannot be
obtained by adding ER to the classical operator HSP that generates varieties in
presence of the equality symbol; so far, this had constituted the only necessary
modification with respect to the model theory developed by Mal’cev. Also, since
F* # F*L, F*S*P*(K") does not necessarily coincide with (K¥)*. In view of
that, two interesting issues arise naturally: to determine sufficient conditions for
the class K to satisfy the equalities KY = ERHSP(K) and (K¥V)* = F*S*P*(K").
An answer to these problems is given in the next Chapter, Corollary 5.3.10 and
Theorem 5.3.11; see also Chapter 7, Corollaries 7.2.3 and 7.2.6. Meanwhile, notice
that none of the inequalities F*S*P* < F*ESP and F*ESP < F*S*P* seem to
hold in general.

There are absolutely no examples of interesting classes of structures defined
without equality and closed under H, E, S and P; even the many well-known purely
algebraic varieties (such as groups, rings, lattices and so on) are not closed under
homomorphic images when they are defined using a language without equality, for
in this case they become quasivarieties of the form Kg described in Section 3.3.
We close this section by introducing what seems to be the natural counterpart of
the concept of variety when we deal with such a kind of languages. This concept is
central to the purpose of generalizing the theory of varieties to arbitrary structures.
Let K be any class of L-structures. A subclass V of K is called a relative subvariety
of K if there exists a set of atomic L-formulas ¥ such that 2 € Viff 2 € K and
2 € ModX. In this case we say that the reduced class V" is a reduced relative
subvariety of K*. As it was first noted by Blok and Pigozzi [11,12], this latter
notion specializes to varieties in the usual universal algebraic sense when we take
K to be the whole class K,.

The following is an easy consequence from the preceding results; Hgq is the
operator that gives all the homomorphic images belonging to the class Q and Fg
denotes the operator that provides filter extensions that are members of Q.

COROLLARY 4.5.3. Let Q be a quasivariety of L-structures and K a subclass of Q.
The relative subvariety of Q generated by K is KVnQ= HQESP(K). Similarly,
the reduced relative subvariety is KY N Q* = FQESP(K). =



5. The Leibniz Operator and some
Well-behaved Classes

As is well known, most of the results in universal algebra involve, in one way or
another, lattices of congruences; let us mention, for instance, the profound influence
that congruence identities have on the structure of varieties. For such a reason, the
concept of congruence is central to the development of a model theory that tries
to generalize as much as possible of universal algebra. But this concept splits
into two different notions when dealing with arbitrary structures. The first one of
this notions is the straightforward extension that we obtain when the compatibility
with relations is required; it turns out to be the notion of congruence on a structure
studied in detail all over Chapter 2. The motivation of the second extension is based
upon the semantics of the theory I'co defined in Section 3.3. Indeed, we have that
the relational part of the members of K., with underlying algebra A are just the
congruences on A. So, in some sense, it is reasonable to think of the relational part
of structures as another generalization of the concept of congruence when passing
from algebras to arbitrary structures!®.

Such a splitting of the concept of congruence causes that the generalization of
universal algebraic results could take place into two different directions. Thus,
we have already seen in Section 2.2 that the Isomorphisms Theorems of universal
algebra (we include here the classical Homomorphism Theorem and Correspondence
Theorem) have an easy counterpart when we replace the notion of congruence on
an algebra by that of congruence on a structure; for instance, we already know the
close connection that exists between congruences on two structures 2 and B when
B is a reduction of A (see Corollary 2.2.7). Now a similar problem emerges for the
second extension of the concept of congruence, and this problem turns out to be in
the very base of the solution to the main issue we posed at the end of Chapter 3.

Indeed, one might expect the close link between properties of congruence lattices
and properties of classes of algebras to carry over to a similar link between properties
of the posets formed of the relational part of the structures of a class (on a given
underlying algebra) and properties of this class. But, asit has already been observed
in a restricted context (see, e.g., [7, p.338]), the latter link does not exist without
some restrictions.

18] ater it will become suitable to combine these two extensions of the concept of congruence
into what we call congruence-filter pair on a structure (see Section 6.1 below).

47
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Roughly speaking, the approach that guides this work and that fortunately works
out beautifully is the following: the algebraic character of a class K and its reduced
class K* relies on the properties the posets of predicates (or relations) have in com-
parison with the ones satisfied by lattices of congruences. So the main purpose of
this Chapter is to introduce what we call Leibniz operator, a mapping that estab-
lishes a correspondence between the relational part of a structure and a congruence
on the corresponding underlying algebra (it is going to be the Leibniz equality!).
Then we use the properties of this operator as the primary criterion to describe a
hierarchy of special classes for which we shall be able to derive here and subsequent
chapters more general forms of some classical results of universal algebra, results
that do not hold any longer for more arbitrary classes. On the top of this hierar-
chy we shall find those classes for which the Leibniz operator is an isomorphism
in a sense we make precise below (Definition 5.4.7); they constitute an important
category of classes to which we come back in Chapter 10 for their relevance in
algebraic logic. The starting point of the Chapter is to describe those full classes
that are better amenable of universal algebraic methods, and which turn out to be
the quasivarieties of £-structures (Theorem 5.1.1 below).

5.1. Lattices of Relative Filter Extensions

Let K be a full class of L-structures, and consider any L-algebra A. We define
the set of K-structures on A, denoted by Ka, as the set of elements of K whose
underlying algebra is A; when A is the term algebra Tec o, we talk about the
term-struclures of K (with « generators). In general, the set of K-structures on
A is a partially ordered set with respect to the filter extension relation <. If, in
addition, it is an algebraic closure system!? for all A, then we say that K satisfies
the filter-lattice condition (FL condition for short). In this case, IKA = ( Ka,N,V)
is an algebraic complete lattice, where

V.-GIQ(,' = n{Qle Ka: 9 X Aforeachi € I}.

The relevance of such a condition rests on the fact that most of the known proper-
ties of algebras and varieties or quasivarieties of algebras strongly depends on this
property of sets of congruences. So, the problem of characterizing the full classes
that satisfy the filter-lattice condition calls for an answer. The next theorem says
that these classes are exactly the quasivarieties. A proof very different in nature to
the one provided here was pointed out to the author by Czelakowski [37].

THEOREM 5.1.1. Let K be any full class of L-structures. Then K satisfies the
filetr-lattice condition iIff K is a quasivariety.

17We use indistinctly the terms inductive closure sysiem and algebraic closure system to mean
a nonempty system of subsets of a set closed under arbitrary intersections and unions of directed
families. It was proved by Schmidt (see {26, Thm.II1.1.1)) that they are exactly those nonempty
systems closed under arbitrary intersections and such that each member can be expressed as the
union of all its finite subsets.
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Proof. The backward implication is easy to check: it suffices to show that implicative
formulas are preserved under arbitrary intersections and unions of well ordered =-
chains (recall that closure under unions of directed families in a poset is equivalent
to closure under unions of chains [26, Prop.1.5.9]. For this, consider any implicative
L-formula ¢ := A ®—y and let A be a fixed L-algebra. The intersection of the
empty family of A-structures is the structure with all relations holding, i.e., where
the interpretation of any relation symbol r is A?("). So ¢ is true in (0. Let now
2, i € I, be a nonempty system of A-structures such that 2; F o, for i € I. Given
an assignment g : Te; — A, we have

Nier%F A2 [g) iff Aikpilg), 1<j<m, i€l
implies A;Fp[g), i€l
T (es 2 Lol

Hence, ;e; AiF 0.

Assume finally that a is an ordinal and 2, A < a, are such that A < 2, when-
ever \,u < a and A < p. Also, suppose ™AyEo for all A < a. Let A = UKG An.
Then, since r® = Uscar® for all r € R, AE A® [g] implies A,k A& [h] for
some Agp < a. Thus, the assumption says 2, F ¢ [g] and finally 2AF ¢ [g]. Hence
again we conclude %F o.

For the converse, consider any member 2 from K< and let a := max{w, |A|}.
Take h to be an algebra homomorphism from Teg o onto A. Since K satisfies the
filter-lattice condition, the structure §o := (| Ke.,, belongs to K; in particular,
h=12 is a filter extension of F,. Also, k=12 € E() C K9 and 2% € R(h~'2). So
the forward implication will be proved if we show that every filter extension of §,
that belongs to K@ is also a member of K, for K is closed under R by hypothesis.

To this goal, let § be an arbitrary filter extension of F,. We write

Fugd:=N{AdeK: Fx4}.

Notice right off that FgxF € K, for K satisfies the filter-lattice condition. We are
going to see that § € K? implies FgxF = J; this will prove § € K and thus the
theorem. Since K satisfies the filter-lattice condition,

FgxF = U{Fox%: A € K, A X F and |J Ry is finite}.

Therefore, let us prove Fgx2 < § for all 2 satisfying the preceding three conditions.

We may assume without loss of generality that o = w; if it did not, we use the
same argument and apply the equality Mod Imp,K = ModImpK, which holds
whenever a > w. Define the set

o] := {y € Atm L : Ak [id]},

where id denotes the identity function on Ter, and take an arbitrary atomic £-
formula . (Observe that the members of ®[2] are exactly the atomic L-formulas
rty ...t such that (t,...,1,) € r2; so, in particular, ®[2(] is a finite set, for URg
is finite by assumption.). We claim:

Fgx2UE o [id] implies A ®[%] —¢ € ImpK.
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If this is true, then FF ¢ [id], because we are assuming that § belongs to Mod Imp K
and U < F. Therefore, Fgx £ § and the assertion will be proved.

It only remains to show the claim. The proof runs as follows. Let B be any
element of K and h : Tez —Tec any homomorphism, and suppose BF A ®[2] [h].
This assumption is clearly equivalent to 20 < A~!®B by the previous observation.
Moreover, since K is a full class, we must have h~1B € K. So, Fgx2 < h~1B. We
now apply the hypothesis Fgx2F ¢ [id] and conclude h=1BE ¢ [id], i.e., BE ¢ [h].
That is what we wanted. =

According to the preceding theorem, we shall be forced to restrict our attention to
quasivarieties of L-structures whenever we want a class to exhibit certain algebraic
properties, namely those that entirely depend on the filter-lattice condition. This
explains why the rest of the work will often be centered on the development of
a model theory for the strict universal Horn fragment of first-order logic without
equality. The next definition is a central one to this purpose.

Let 2 any L-structure. We say B is a filler eziension of 2 relative to K, or simply
a K-filter extension of AU, if B € K and A< B. The set of all such relative filter
extensions is denoted by Fex2. If K is a quasivariety then it coincides with the
principal sublattice of IK5 generated by 2, and thus forms an algebraic complete
lattice Fex® = (Fex®,N,V). Note that Fex((1Ka) = Ka. For convenience, we
standarize a notation introduced in the proof of the last theorem; we write

Fox2%:=[{{B € K: A< B}.

The structure Fgx2 is called the K-filler ertension generated by A. Obviously, if
A € K then Fgx2% = 2.

Eramples. 1If K = K., and (A, 6) is a member of K, then Fex(A,f) = CoA/f by
the Correspondence Theorem of universal algebra. More generally, let Q be any
class of L-algebras and A any L-algebra. Define the set of Q-congruences on A as

CogA={p€CoA: Alé€ Q}.

Then Fex,(A,0) = CogA /8 for all (A,0) € Ko, whenever Q is a quasivariety.
Another example of this kind will be provided in Section 5.3, using a more general
form of the Correspondence Theorem. -

In the last part of this Section we look at the connection between the lattice of
relative filter extensions of a structure and that of its homomorphic images. For this,
given a homomorphism h : 2 —B between two structures 2,‘B of a quasivariety K,
let hx : Fex —FexB be the mapping defined by setting

hx' = Fgx(B,hRy U Rs),
for all A’ € Fex2. Then the connection is summarized in the next lemma. Some-

thing more can be said by imposing some restrictions on the class of structures;
see, e.g., Theorem 5.3.8 below.
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LEMMA 5.1.2. Let K be a quasivariety of L-structures. Let 2, B be elements of K
and h : A —+B. The following statements hold.
(i) h=1B’ € Fex?, for all B’ € Fex'B.

(ii) If B’ € Fex'® then hyh='B' = hh~1B' = B',

(iii) If A' € Fex? then h=1hy%' = h=1hY = A’ if A~ 1B <A and Kerh €
Co?'. In particular, h= *hx2 = h=1h2A = A iff h is a reductive homo-
morphism.

(iv) A=1(B'NB") = h=1B' N h~1B", for all B',B" € Fex'B.

(v) hxFgx€ = hxC, for all € € Fe .

Proof. (i) It is a consequence of the fact that h is a reductive homomorphism from
h—18’ onto B’ and the assumption that K is a full class.

(ii) The equality hh=1B' = B’ follows directly from the surjectivity of k, and
implies that Fgx(hh~18’) = B'. So, (ii) holds.

(iii) Since h is surjective, h~1hx' = h~1h?' implies hx2' = A2, so that
B < hY'. Hence, the equality A~ A2 = A’ gives h~1B’ < A’. On the other hand,
h=1h9’ = 2’ entails h is a reductive homomorphism from 2’ onto A2, so by Lemma
2.1.5, Ker h € Co?'. This proves one implication. For the converse, we know that
Kerh € Co? implies h~'h2' = ', and consequently h : 2’ —»,h2’. Therefore,
h’' € Kg, for K is a full class and %' € Ko. On the other hand, A~1B < 2’, and
s0 B < hA'. Thus, hA’' € Fex™B and finally A = hx?’. The case %A’ = A holds as
a consequence of 2.1.5.

(iv) It is obvious.

(v) The inclusion hx€ =< hx FgxC€ is clear. To see the opposite inclusion assume
B’ is any K-filter extension of B that includes h€. Then €< h~1B’. Also, since
h~1%8’ € Fex2, we have FgxC<h~ 1B’ and hence, by (ii),

hngxQ‘,;( ng(hh-lm,) V8= ‘B’.
Thus, hx Fgx€ =< hxC also holds. =

5.2. Leibniz Operator and Relative Congruences

Following the terminology introduced by Blok and Pigozzi [8, p.10], we call
Leibniz operator the mapping Q : A — QU defined on the whole class of L-
structures. Given a quasivariety K, this mapping can be restricted to Ka, for each
L-algebra A, and then gives rise to a mapping between two algebraic complete
lattices, namely IK4 and Co A. An element of the image of KA under Q is called
a congruence on A relative to K, or simply a K-congruence on A; we write CoxA
to denote the set of all such congruences, i.e.,

CoxA := {8 € CoA : 6= QU for some A € Kp}.

Ezamples. We already know that € restricted to Ko is the projection onto the
second component. So we trivially have that Cox, A = CogA, for each L-algebra
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A and each quasivariety Q of algebras of type £. Likewise, since Keo € Kgo,
Cox,,.oA and Cox,, oA also coincide with Cog A. These three equalities are in
fact trivial cases of a general result proved in Chapter 9, Proposition 9.1.1. -

Remark. Observe that, although all the preceding three classes determine the same
set of K-congruences, the 2 operator restricted to (Kg)a is essentially the identity
function and thus an isomorphism onto Cog A, whereas it is not one-one, nor even
a lattice homomorphism, when the domain is one of the broader classes (Kqo,0)A or
(Kpo,0)A - This is the ultimate reason for Kg to exhibit a better algebraic character
than Kqo,0 or Kpo,. -

The importance of the Leibniz operator just rests on the connection between its
properties when restricted to a given class K and the fulfilment of some properties
by K itself and the associated reduced class K*. Using the notion introduced above,
the idea turns out to be quite simple: the more assumptions on  to guarantee that
the relational part of members of K can be replaced by the K-congruences with “no
loss of information”, the nicer algebraic character of K and K*. The same idea can
still be expressed in other words by noting that, in essence, congruences are weaker
forms of equality; under this view, the restrictions on § are better thought of as
restrictions to ensure that the set of all predicates in the members of K is “close”
to an equality predicate.

At this point, a key issue that arises naturally is to find out the properties
that must be assumed on Q. For the case we are interested in, i.e., when K is
a quasivariety, the properties that seem to be of interest include the ones typical
of mappings between two algebraic complete lattices (e.g. to be a meet or join
homomorphism, to be monotone or injective, and so on), for Q is just of this type
when it is restricted to the posets of K-structures on the L-algebras. Apparently,
however, on the base of some special cases investigated in detail in the context of
algebraic logic (see, e.g., [12]), few of this properties seem to be enough to reflect
the algebraic character of K and K*. But this is still an obscure point that asks for
a systematic investigation.

On the other hand, the behaviour of the  operator with respect to the different
algebraic constructions described in Chapter 1 also seems to be relevant. For ins-
tance, the property used in Definition 5.4.1 below to distinguish a special kind of
quasivarieties turns out to be of this sort. In fact, all of them are closely connected,
and an open problem is to express them in terms of properties of a purely syntactical
nature that describe the explicit connection between the Leibniz equality predicate
and the predicates of the language. We come back to this point later in Chapter 7,
after Theorem 7.1.4.

The next result concerns the conditions under which the poset Cox A can be
endowed with a structure of complete lattice for every L-algebra A.

PROPOSITION 5.2.1. Let K be a quasivariety of L-structures and A an L-algebra.
If Q is a complete meet-homomorphism between the lattices IKo and Co A, then
CoxA = (CoxA,N, Vi) is a meet-complete subsemilattice of Co A, where

OVxd:=[){O€ECoxA: 0,6 CO).m
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Notice that, as the previous result shows, the lattice structure of CoxA is the
one inherited from Ko by Q; in general, CoxA is not a sublattice of Co A, for
6 Vx ¢ may strictly include every congruence on A that contains § and ¢. Even
more, the mapping Q : IK, —CoxA rarely is a join-homomorphism, though the
assumption § is a complete meet-homomorphism is enough to prove the inclusion
QAVK OB C Q(AV B). We shall delay however further discussion on the lattice
structure of Cox A until Chapter 9, for it is right there where the problem of finding
out similar conditions to ensure Cox A has a structure of algebraic complete lattice
is specially meaningful.

5.3. Protoalgebraic Classes

Let 2, B two L-structures such that 2 < ®B. Cleatly, for any atomic £-formula ¢
and any assignment g : Tec — A, the condition 2F ¢ [¢] entails BE ¢ [g]. Never-
theless, this does not mean that two elements a, b of the common universe of 2% and
B staisfy exactly the same first-order properties in the model B whenever they do
in the model ¥, i.e., a = b (Q2A) does not imply a = b (2B). In spite of this fact,
it seems up to some point reasonable to assume that this is the case; i.e., the more
positive information we gain about the common univers in passing from 2 to B, the
more denotations of its elements can be identified. In other words, this information
can never be used to distinguish two elements that were formerly identified. This

assumption is in the origin of one of the main notions in the paper, a notion due
to Blok and Pigozzi [7]18.

DEFINITION 5.3.1. A full class K of L-structures is said to be protoalgebraic if Q is
<-monotone in K, i.e., for each L-algebra A, and each %A,B € K5, ™ < B implies
QA C QB. ’

Let us notice that in the previous definition we do not assume anything on the
class K except being full, and even this restriction is superflous. But we shall see
that the best properties of protoalgebraic classes hold when K is a quasivariety.

PROPOSITION 5.3.2. For every first-order language £ and every quasivariety Q of
L-algebras, the classes K.q, Kqo,0, Kpo,@ and Kg are protoalgebraic.

Proof. We saw in Section 2.1 that € is the function (A,6) — \/{¢ € Co A : ¢ C 6}
on Keq, the function (A,6) — 6N 6~ on Ky and the projection onto the second
component on Kc,. Thus, the above four classes are trivially protoalgebraic. m

In contrast to what happens for the preceding classes, neither K, nor K, o
are in general protoalgebraic. For instance, an easy counterexemple for Ko is the
following. Consider the language £ with no function symbols and just one relation

18 Actually, Blok and Pigozzi consider sentential logics whose class of matrix models satisfy the
above monotonicity of the Leibniz operator. In {12], they prove that such logics are exactly those
that Czelakowski called non-pathological logics in earlier papers [33,36).
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symbol r, of arity 2, and let %, B the following L-structures:

2:=({0,1,2},r%), r¥:=Ag01,2 U{(0,1),(1,0)};
B :=({0,1,2},7%), r®:= A1) U{(0,1),(1,0),(0,2),(2,0)}.

Then 2,8 € K, and A< B. On the other hand, we easily have that Q2% = r® and
QB = Ago1,2) Y{(1,2),(2,1)}. Hence, Q2 ¢ QB.

There are several alternative characterizations of protoalgebraicity that provide
insight into the various aspects of the notion. It is important however to realize
that some of these characterizations hold in general, whereas some others only hold
for classes satisfying more than the condition of fullness. The first two are just
useful reformulations of the definition.

ProrosiTioN 5.3.3. A full class K is protoalgebraic iff for any L-algebra A and
any 2A,B € Ka such that A < B, we have Co C Co ‘B, i.e, if 6 € CoA is
compatible with the relations on 9, it is also compatible with the relations on any
other K-filter extension of ¥.

Proof. 1t follows directly from 2.1.1. =

PRrOPOSITION 5.3.4. Let K be a full class of L-structures satisfying the following
property (see Corollary 6.1.2 below for an equivalent formulation of this condition):

(5.1) KA is a closure system for all £L-algebra A.

Then K is protoalgebraic iff 0 is meet-continuous in K, i.e., for any L-algebra A
and any set {2; : i € I'} of K-structures on A, the equality Q((V;¢; %) = N;e; 2N
holds.

Proof. Suppose K is protoalgebraic and let A be any L-algebra. Let 2;, i € I,
be a family of K-structures on A. We must show that QA = (;; Q%;, where
A = [);esAi- The inclusion from left to right is a direct consequence of Q being
<-monotone. To see the opposite inclusion, we are going to show that (;; Q%; is
a congruence on 2. Indeed, let r be any relation symbol and let a,b € A?(") be
such that a € r? and a = b (). For all i, we have a = b (22;) and hence
b € r2. Therefore, b € r2. This proves the forward implication.

The backward implication is easier: if A= B, then A = AN B and consequently
QUA=0ANLB. =

A third characterization that holds for classes satisfying condition (5.1) is the
following. Let K be a full class of L-structures such that (5.1) is true for K. Given
any relation symbol r of £ and a tuple a € A?("), set

Fgi [r;a] :=N{B€ Fex: a € r?}.
Then we can prove the following.

ProPoSITION 5.3.5. Let K be any full class of L-structures satisfying (5.1). Then
K is protoalgebraic iff for all members A of K, all relation symbols r € R and all
tuples a,b € A?("), the condition a = b (QA) implies Fg§ [r;a) = Fg3 [r;b).



55

Proof. Assume K is protoalgebraic. Fix a member 2 of K and a relation symbol r.
Let n = p(r) and let a = (ay,... ,a,),b = (by,... ,b,) be two arbitrary elements
of A" such that a = b (Q2). For all i < n, define b; = (b;,... ,bi,8i41,...,85); in
particular, we have a = bg and b = b,,. We claim that

(5.2) Fgg [r;bi-1] = Fg§ [r;by], for all i > 0.

If this is true, then the forward implication follows trivially. So let us prove (5.2).
To this goal, we use 2.1.2 and the hypothesis that K is protoalgebraic, Then we
obatin the following chain of implications:

a; = b; () implies a; = b; (2B) for all B € Fex2
implies BEVz; ... Vza_1(rz;...2ic122; ... 20y
Pz 2Zio1Y2i .. 2n) (a5, 8], for all B € Fex
implies b;_; € rPiffb; € r®, for all B € Fex2
implies Fg§ [r;bi—1] = Fg? [r;by].

To see the converse, let A, B € K be such that A < 8. We are going to show Q2
is a congruence on B. Consider any relation symbol r and let a,b be two tuples of
length p(r) satisfying the conditions a € r® and a = b (Q2). Then we have that
Fg3 [r;b] = Fg} [r;a] < B. As a result, b € r®. This finishes the proof of the
proposition. ®

From Proposition 5.3.3 and Theorem 2.2.6 we easily obtain that protoalgebraic
classes satisfy a generalized form of the Second Isomorphism Theorem of universal
algebra.

COROLLARY 5.3.6. For every protoalgebraic class K of L-structures, if %4,B € K
are such that 2 < B then Q2 C QB and (B/QA)/(QB/QA) =B*. =

Related to the above corollary, we have the following definition, which isolates
the property that is mainly responsible for the distinctive algebraic character of pro-
toalgebraic quasivarieties; it consists precisely in satisfying a kind of “filter version”
of the Correspondence Theorem of universal algebra.

DEFINITION 5.3.7. A quasivariety K of L-structures is said to have the filler cor-
respondence property (FCP for short) if for any 2,B € K and any reductive homo-
morphism h : A —,B, the mapping B’ — h~1®B’ defines an isomorphism between
FexB and Fex2 with inverse &' — hQ'.

The next theorem contains some different characterizations, very close in spirit,
of protoalgebraic quasivarieties. Similar results are included in [7,12].

THEOREM 5.3.8. Let K be a quasivariety of L-structures. Then the following
statements are equivalent.
(i) K is protoalgebraic.
(i) For all 2,8 € K and all h : 4 —,B, h='hY’ = A’ whenever A’ € Fex2.
(iii) K has the FCP.
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(iv) For all %,8 € K and all h : A—»B, h~hyY = A’ vV h~18 whenever
A € Fex2l.

Proof. Assume K is protoalgebraic, and let %, B € K and h : A —,B. Consider
any 2’ € Fex. By Lemma 2.1.5, Kerh € Co%, so 5.3.3 gives Kerh € Co%’.
Moreover, since h is strong, h~'B = A< A'. Hence, from Lemma 5.1.2(iii) we
conclude that A~1h2’ = 2’ and the implication from (i) to (ii) is proved.

Suppose now (ii) and let us show (iii). Consider h : A—,B, for A, B € K.
Clearly, the mapping B’ +— h~1B’ from Fex'B into Fex is well defined and order-
preserving. If A’ € Fex? then (ii) says h~*h2' = 2, so that h2' € R(2') C K.
Thus, A’ +— h2’ is also well defined and order-preserving, and consequently the
class K has the FCP.

Assume (iii) and let h : %D for %,B € K. Let A’ € Fex2. The inclusion
A'VA—1B g h—thx is clear, for A’ A~ hx2’ and B < hx’. To show the reverse,
we use that h is a reductive homomorphism from A~1%B onto 8. Then, 2/ VA~18 €
Fexh~!B, and so the FCP gives that h(%’' V h=1B) is a K-filter extension of B
such that A=A(2' Vh~1B) = A’V h~1B. Therefore, since A2’ g h(A' V h~18B), we
conclude h= hy' g h=1h(A' V h~18B) = %' vV h~1B. So, the implication from (iii)
to (iv) is proved.

Let us finally see that (iv) entails (i). For this, assume 2%, € K are such
that A< B. Consider the natural projection # : A-,A*. Since B € Fex¥, (iv)
implies that 7= 17x®B = B VvV 7~ 1%*. Hence, as 7 is a reductive homomorphism,
BLr a8 g v 17xB = B, and consequently, 7~ 1ax®B = 7~ 178 = B. We apply
5.1.2(iii) and obtain Kern = QA € Co®B. As a result, QA C QB. =

Ezamples. The Correspondence Theorem of universal algebra is a particular case
of the FCP obtained when K is taken to be the quasivariety K.o; in this case,
given (A,0) € K., we have that Fex(A,6) = Fex(A,0)*. But, since the Leibniz
quotient of (A,6) is (A/6, Aaye), this means that [,V 4] = Co A/6, where the
isomorphism is given by the mapping ¢ — ¢/6.

A similar correspondence theorem can be obtained when we apply the preceding
theorem to the protoalgebraic quasivariety Kqo. For every L-algebra A, define the
set

Qo A = {¢ C A?: ¢ is a quasi-order on A}.
Then, if K = Ko and (A, 0) is a member of K, the lattice Fex(A, 6) is isomorphic
to the sublattice [, V4] of Qo A, whereas Fex(A,0)* = Qo A/6N#~!. Thus the
FCP says that
[6,V4] = QoA/6NE?

by the mapping ¢ — ¢/6N0~1. 4

Certainly, the last characterization contributes significantly to get some idea
about the nice properties that can be expected of protoalgebraic classes (quasiva-
rieties) of structures. We are going to end this Section with some results which
illustrate this point successfully. The first one expresses basically that, if K is a
protoalgebraic class, then K* is a full reflective subcategory of K (this latter cat-
egory with all surjective homomorphisms as arrows)!®. An earlier version of this

19For the notion of reflective subcategory see, e.g., [80, p.8Y].
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theorem can be found in {12, Thm.8.2).

THEOREM 5.3.9. Let K be any protoalgebraic class of L-structures, and let 2,8
be members of K. Then every surjective homomorphism h : A —B induces a

surjective homomorphism h* : * —B" of the respective Leibniz quotients, defined
by a/QU +— ha/QB.

Proof. Certainly A< h=1®B and h maps strong homomorphically A~!9B onto B.
Thus, by protoalgebraicity and 2.1.8(i), we have Q2% C Q(h~1B) = h~1QB. So h*
is well defined and thus is an algebra homomorphism from A* onto B*. Also, it is
a homomorphism of 2* onto B* since hr?" = (hr?)/QB C rB/QB = r®", for all
relation symbol r. =

The second one concerns the commutativity of the operators E and F and al-
lows us to get a description, which holds in some cases, of the relative subvariety
generated by a class.

THEOREM 5.3.10. Let Q be a protoalgebraic class of L-structures, and let K be
any subclass of Q. Then EFq(K) = FoE(K).

Proof. The inclusion EFg(K) C FoE(K) follows from 4.1.3(i). So, assume 2 €
FQE(K). Let h : B—,C with € € K and 2% € FeqB. By 2.1.5, we know that
Ker h € Co'B. Hence, as Q is protoalgebraic, Ker h € Co?. Thus we just need to
apply the Homomorphism Theorem: € = B/Kerh<%/Kerh. m

COROLLARY 5.3.11. Let Q be a protoalgebraic quasivariety of L-structures and K
any subclass of Q. Then KY NQ = ERFQSP(K).

In particular, if Q is itself a variety, then KY = ERFSP(K). =

The last corollary solves an open problem suggested in the preceding Chapter.
Remember that in Section 4.5 we proved a generalized form of Birkhoff’s Variety
Theorem to describe the variety generated by a given class. From this result we
derived immediately a characterization of the reduced variety generated by a class
as the one that results by applying the operator F* ESP. The question was to
find out sufficient conditions under which this operator is not distinct but coincides
with F*S*P*. Now we are going to show that protoalgebraicity is enough; in
other words, the assumption of protoalgebraicity guarantees a good behaviour of
the operator F' when passing from full to reduced semantics, as Proposition 4.1.5
says that happens with the remaining operators. A special case of this result was
proved in [12, Thm.11.1] following a different argument. Chapter 7 below contains
improved forms of the Theorem (Corollaries 7.2.3 and 7.2.6).

THEOREM 5.3.12. Let Q be a protoalgebraic quasivariety of L-structures, and let
K be any subclass of Q. Then the reduced relative subvanety of Q* generated by

K* is KY nQ" = FgS*P*(K").
In particular, if Q is itself a variety, then (KV)" = F*S*P*(K").

Proof. By Corollary 4.5.3, we know that KYnQ = LFQESP(K). So we must
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prove

LFQESP(K) = F3S" P*(K").
It is easy to check that if ¢ is any atomic L-formulauniversally satisfied by all the
members of K, then ¢ is also satisfied by any structure in Fy(K), S*(K) and P*(K).
Thus, using 4.1.5(i), FgS*P*(K*) C F§S*P*(K) C LFQESP(K). Let us see the
opposite inclusion. By the preceding theorem, the operators E and Fq commute,
and hence LFQESP(K) = FaSP(K). We claim that

F(2) € FoL(2)

holds for all 2 € Q. The proof is as follows. Let 2 be an element of @, and let
B be any Q-filter extension of 2. Since Q is protoalgebraic, Q2% € CoB. Hence,
A X B/QA. Moreover, by 2.3.1, (B/QA)* = B*. Thus, B* € FoL(2), as required.

Now, using the claim, the desired inclusion follows immediately from Lemma
4.1.5(i)). =

The preceding theorem can be applied, for instance, to the quasivariety Kqo.
Recall from Section 3.3 that, for any variety of £-algebras V, the reduced relative
subvariety Kg, y of K, is the class of all ordered V-algebras, so that in this case
Theorem 5.3.12 amounts to a result of Bloom [14, Thm. 2.6} recently called Bloom’s
Order Variety Theorem [121, p.271).

There are still other alternative characterizations of classes which are protoalge-
braic. We shall give two more characterizations in subsequent chapters.

5.4. Some Other Types of Classes

Another important property of the Leibniz operator that seems to provide a
nice algebraic character of classes of structures, specially when passing to reduced
semantics, concerns the connection between the Leibniz congruences of a structure
and its substructures. Let 2,B be two L-structures such that 2 C B. We are
interested in those classes for which the expansion of the universe that occurs in
passing from 2 to B does not result into the distinction of two elements of the
original universe A that were formerly identified. This carries us to introduce a
second type of monotonicity of the {2 operator.

DEFINITION 5.4.1. A full class K of L-structures is said to be semialgebraic if it is
protoalgebraic and, in addition, § is C-monotone in K, ie, forallA, B e K,AC B
implies Q% C QB.

PROPOSITION 5.4.2. For every first-order language £ and every quasivariety Q of
L-algebras, the classes Kqo,0, Kpo, @ and Ko are semialgebraic.

Proof. Certainly, if 2 = (A,0,¢) € Kqgo,@ then Q2 = 8 and hence Q is C-monotone.
The remaining cases are also immediate and their proof is omitted. =

Obviously, if £ has no function symbol, Keq is semialgebraic, for it coincides
with K. But in general, as it occurs with Ky, but for different reasons, Kq is



59

not C-monotone. For a counterexample, consider once more the language of rings
L= {+,-,0} and let

2A:= ({Z+,+,-,0},Vz+), B .= ({Z,+,-,0},Vz+ UVgz).

(Z4+ denotes the set of nonnegative integers and Z_ the set of negative integers).
Clearly 2,B € K¢q and Q2 = Vz,. On the other hand, QB = Ay, for Az is the
only congruence on B contained in Vy, U V.. Hence, 2 C B but Q2 ¢ QB.

It is still an open problem to obtain a characterization of the C-monotonicity
of the Leibniz operator in terms of a property of Q as a mapping between (al-
gebraic complete) lattices. The next result just includes an easy but interesting
reformulation of the definition.

PROPOSITION 5.4.3. A class K of L-structures is C-monotone iff for all %,B € K,
A C B implies QA = QB N A2,

Proof. Let 21 C B be two structures of K. By Lemma 2.1.6, QBN A% C Q2. Hence,
if K is C-monotone, QA = QB N A2. This proves the forward implication. The
converse is clear. &

Recall from the preceding Section that protoalgebraic classes satisfy a general
form of the Second Isomorphism Theorem of universal algebra (Corollary 5.3.6).
Now, it is well worth noting that also a general form of the First Isomorphism The-
orem holds for semialgebraic classes. So we can expect better algebraic properties
of this type of classes, since most of the typical properties that set algebras apart
from arbitrary structures derive from the Isomorphisms Theorems.

ProrosITION 5.4.4. Let K be a semialgebraic universal class of L-structures, and
assume 2U,B € K are such that A C B. For every K-filter extension B’ of B, if
A =B'| A then - _

2A'/Q% = A/QB' N A?,

where A= {a: a = b (QDB’) for some b € A} and 2A=B'A.

Proof. The proof is an immediate consequence of 5.4.3 and 2.2.5. Note that the

hypothesis of K being universal is required to ensure that 2’ and 2l are still members
of K. m

We are not going to prove now other characterizations of semialgebraic classes
as we did for protoalgebraic ones in the preceding Section. Let us observe however
that Theorem 5.3.9 can be sharpened by assuming semialgebraicity, for we can take
K to be the category with all homomorphisms as arrows (not only the surjective
ones!) and then K* is still a full reflective subcategory of K. This easy property,
which will be used later on (see the proof of Theorem 8.1.8), can be stated as
follows.

THEOREM 5.4.5. Let K be a semialgebraic universal class of L-structures, and
let 2,8 € K. Then every homomorphism h : A—% induces a homomorphism
h* : A* —B" of the respective Leibniz quotients, defined by a/Q2 +—— ha/QB.
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Proof. Let € = B | hA. The structure € is a member of the class K, for this is a
universal class and thus closed under substructures. So, using Theorem 5.3.9, we
have that h* : 2* —€*. Also, since K is C-monotone, Q€ = QB N C?. Hence, we
can apply the sublemma stated in the proof of 4.1.5. We conclude that €* —3B* by
the natural embedding 8/Q¢C — b/QB. In conclusion, by composing appropiate
maps, h* is a well defined homomorphism from 2* into B* and thus the theorem
is proved. =

Both kinds of monotonicity of the Leibniz operator considered so far can be ap-
parently strengthened by a third property of £ whose motivation is not so clear
(that this is so follows from Theorem 7.2.3 below). The property is used to distin-
guish a new category of well-behaved classes, this time quasivarieties.

DEFINITION 5.4.6. A quasivariety K of L-structures is said to be algebraic if Q is
join-continuous in K, i.e., if QqU;¢; %) = U;e; QU for any L-algebra A and any
<-directed system {; : i € I} of K-structures on A.

A last kind of quasivarieties that can be distinguished for the algebraic character
they exhibit is obtained by assuming an additional property on the Leibniz operator,
considered as a mapping between algebraic complete lattices. We take account of
these quasivarieties again in Chapter 10 with the notion of algebraizable deductive
system [8].

DEFINITION 5.4.7. A quasivariety K of L-structures is said to be purely algebraic
if Q is join-continuous in K and, moreover, one-one when restricted to the set Ky,
for any L-algebra A

The above distinction of several categories of classes of structures (without equal-
ity) on the base of the Leibniz operator can be found explicit for the first time in
a paper by Blok and Pigozzi [12] which works out an approach to the study of
algebraic semantics for deductive systems. So not only the first examples of pro-
toalgebraic classes were given in the context of general sentential logic, as we already
noted in Section 5.3, but also the first examples for the remaining special classes
can be found in several papers on algebraic logic. For instance, when the language
has just one relation symbol (of arity 1), semialgebraic classes correspond to the
model classes of a special type of deductive systems; see [12, Thm. 13.13]. We shall
come back to this point in the last Chapter??.

20We could have adopted the common terminology in algebraic logic to refer to the different
types of classes. But several reasons leads us not to follow this option, the main one being that
such a terminology is inspired in certain syntactical characterizations of these classes that are not
known to hold in our broader context. Anyway, although the terminclogy we have adopted here
has no convincding justification, it has the advantage of expressing the fundamental idea that there
exists a hierarchy among classes of structures relying on the exhibition or not of some of the nice
features of classes of algebras.



6. Subdirect Representation Theory
for Structures

The representation of algebras as direct or subdirect products was extensively
studied in the 1940’s and 50’s by many authors; see, e.g., [5,6,50,60]. Quite prob-
ably, the main and more influential result on this decomposition problem was the
result obtained by Birkhoff [5], which, concerning the class of all algebras of a
fixed similarity type, fashioned the familiar subdirect representation theory so use-
ful in universal algebra. Not very later, this result was improved by Mal’cev [86];
he pointed out the interest of having an analogous resuit for narrower or broader
classes, and established a relativized version of Birkhoff’s theorem, this time avail-
able not only for classes of algebras but for a wide range of classes of structures
over arbitrary first-order languages with equality.

The aim of this Chapter is to examine Mal’cev’s result when we consider general
languages without equality and state appropiate versions for both the full and
the reduced semantics. The resulting theorem (Theorem 6.1.8) can be applied
in the same way as one uses Birkhoff’s Theorem to understand the structure of
algebras in a given class, i.e., by identifying the (relatively) subdirectly irreducible
members of the class. In this sense, we also investigate the characterization of
relatively subdirectly irreducible members of certain classes of structures in the
style of Jénsson’s Theorem [67] on congruence-distributive varieties.

6.1. Relative Subdirect Representations

Let K be any class of £-structures and consider an arbitrary L-structure 2. A
congruence-filler pair of A relative to K, or simply a K-congruence-filler pair of
2, is any pair (B,6) such that B € Fex and 0 € Co B?!. The set of all K-
congruence-filter pairs of 2 is denoted by Cfx2; by virtue of Theorem 5.1.1, it
forms an inductive closure system iff K is a quasivariety. In the case £ has equality,
congruence-filter pairs of a structure 2 are of the form (B,Ap) for B € Fex®,
and hence they naturally identify with the K-filter extensions of 2. Also, if £ has
no other relation symbol except the equality, the notion of relative filter extension

21 A non-relativized form of this notion first appeared in Nelson [93, p.34] under the name of
relation kernel. See also [56), [120].

61
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becomes superflous and the preceding definition of congruence-filter pair can be
conveniently replaced by the usual notion of congruence on an algebra.

An C-structure 2 is said to be subdirectly representable relative to K if & €
P,4(K). One of the main results in the Chapter will state that under certain natural
conditions each member of a class K is subdirectly representable relative to K. The
following result is fundamental for this purpose; in particular, it shows that the role
congruences on algebras play in the corresponding subdirect representation theory
is now performed by congruence-filter pairs.

ProrosiTioN 6.1.1. Let K be any full class of L-structures and let B; € K, for
i € I. Then 2 is isomorphic to a subdirect product of {'B; : i € I} iff there exists a
corresponding system {(2;,6;) : i € I} of K-congruence-filter pairs of 2 such that
() Nier(ir6i) = (&, Aa);
(ii) Ql,'/e,' > B; foralliel.

Proof. Assume h : A —,4 Hie 1 B; for B; € K. Let m; denote the natural projection
of [T;er Bi onto B; and let Y; = (m; o h)~1B;. Since =; is onto, 2A; € E(B;) C K,
and thus 2; € Fex2 {(we do not assume 2 € K!). Moreover, given an n-ary relation
symbol r and arbitrary elements a,,...,a, € A, we have

(a1,-..,80) € Nis ™ iff (hay,...,ha,) € rllies
iff (hali"',han) e rh? iff (al,...,an) € rn,

for by 2.1.5 h is strong. Hence [};; 2%; = 2. Let us take ; = Ker(m;oh), fori € I.
We know that 8; € Co 2;, so the Homomorphism Theorem says %;/8; = B; for all
i. Finally [;c; 6i = A, for h is an embedding by assumption. So the implication
from left to right is proved.

For the converse, consider the mapping h : A=+,a[];c; A/6; defined by ha =
(a/6; : i € I), and suppose (i)-(ii) hold. By (i), & is a subdirect embedding of
the algebra A into [];c; A/6;, so it is enough to see that A2 C [];c; %:i/6i. Let
r be an n-ary relation symbol. Using (i) and the fact that h is injective, we have
rh? = Nier hr?i. Hence, for all ay,...,a, € [licr A/9:, with a; := (a;;/6; : i € I)
for 1 < j < n, we have

(a1,...,a5) € " iff (ai1,...,08in) €™ foralli€ I.
But the last condition is equivalent to (ay, ..., an) € rIlies ®:/%  So h2t C [T, ¢, %:/6:
and the proof is finished. m

From this proposition we can draw several interesting properties. The first one
is a generalization of a result due to Mal’cev [86, Thm. 2].

COROLLARY 6.1.2. An full class K of L-structures is closed under P,q iff Kp is
closed under arbitrary intersections, for all L-algebra A. m

The result analogue to 6.1.1 for reduced semantics is the following.

COROLLARY 6.1.3. Given a full class K of L-structures, a reduced L-structure 2
and a system {%B; : i € I} of reduced members of K, we have A4 [];¢; B; iff
there exist A; € Fex, for i € I, such that
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() Mier % =2
(ii) A7 = B, foreachi € I.

Proof. Once more assume h : A ,4 1'[,-61 B; for B, reduced structures of K, and
let 2; = (m;0h)~1B;. By the proof of 6.1.1, the necessity will be proved if we verify
that Ker (m; o h) = Q2;. But this is an easy consequence of the assumption that
B; is reduced and 7; o h : A; —,B; for all i. Indeed, the Homomorphism Theorem
says Ui/ Ker (mioh) = B;. This means that the quotient 2;/Ker (x;0h) is reduced.
So, by virtue of the Correspondence Theorem stated in 2.2.7, Ker (7; o h) = Q;,
as required.

For the converse, we have that the intersection [);c; Q2; is a congruence on
2, for (;e; i = 2. Hence, since 2 is reduced, [);c; QA = Aa, and thus the
implication follows trivially from 6.1.1. =

Let us notice that in the proofs of the preceding Corollary and Proposition 6.1.1,
the hypothesis of K being a full class is only used to show the forward implications.
In fact, the hypothesis can be removed but then we obtain weaker results of the
forecoming results; namely, we cannot guarantee that the filter extensions ; of 2
are relative to K. This observation is going to be used in the proofs of Propositions
6.1.4 and 6.1.5 below.

Let K be any class of L-structures (not necessarily full). A nontrivial 2 € K
is (completely) subdirectly irreducible relative to K if h : 2,4 ];¢; 2 with 2; €
K for all i € I implies #; oh : A—,A; (m; oh : A = 2;) for some i. The
class of all relatively (completely) sudirectly irreducible members of K is denoted
by Krsi (Krcsi), and their elements are called RSI (RCSI) for short, omitting
any mention to the class K, which is always clear from context; Kgg; and Kgcsr
are shortened notations to mean (Kgrsi)* and (Krcsi)® respectively. These classes
must be distinguished from the one formed of the relatively subdirectly irreducible
members of K*, i.e., (K*)rs1. By virtue of the Homomorphism Theorem, the latter
class coincides with (K*)rcsi, for a reduced structure is RSI iff it is RCSI. This
equivalence does not hold any longer for arbitrary non-reduced structures; we give
an easy counterexample a few paragraphs below. The following lemma summarizes
the relationship between all the forecoming classes without any assumption on K.

LEMMA 6.1.4. For any class K of L-structures, the following holds: (K*)rs1 =
(K")rcst € Krest € Krsi-

Proof. The equality (K*)rs1 = (K*)rcs1 and the inclusion Kies; € Kgg; are clear.
Let us see that the relatively subdirectly irreducible members of K* are also com-
pletely subdirectly irreducible relative to K. For this, take 20 € (K*)rs1 and let
h A4 [l Ui, with A; € K for all i € 1. Consider the mapping k from Hiel 2A;
onto [];c; ®; given by

{a;:i€I)r— (a; :i € ).

We claim that k o h is a subdirect embedding from 2 into [];.,; ;. Indeed, the
compositions of k o h with the natural projections are clearly surjective. Moreover,
since k and h are strong homomorphisms (the latter for being a subdirect embed-
ding!), ko h is strong, and thus h2l is a substructure of [];¢, 2;, by virtue of 1.2.2.
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Also, Ker (koh) is a congruence on 2, this time by 2.1.5. So the hypothesis that 2
is reduced entails Ker (k o h) = A4. In conclusion, k o h is one-one, and the claim
is proved. The situation is reflected in the next commutative diagram, where the
onto homomorphisms are natural projections.

h x;
A [hies % —» %

N

. x
[T/ — 2

Apply now that 2 is subdirectly completely irreducible relative to K*. We obtain
that, for some i € I, the composition =} o k o h is an isomorphism between 21 and
A;. But #lokoh = p;om oh and hence

Ker(mioh)C Ker(p;opioh)= Ker(miokoh)= Ay,

So, m; o h is a bijective homomorphism. It remains to see that 7; o h is strong. But
this follows from the next chain of equivalences: for all r € R and all a € A?(",

a€r?iff (v} okoh)(a) €™
iff (pi o m; 0 h)(a) € 1™ iff (mi o h)(a) € r™. m

The next proposition states a characterization of the relatively subdirectly irre-
ducible members of a given class of structures that extends trivially the one obtained
by Birkhoff for subdirectly irreducible algebras; in this generalization, the role of
congruences is performed by the relational part of structures. It is also an easy
consequence of 6.1.1.

PROPOSITION 6.1.5. Let K be any class of L-structures (not necessarily full) and
let % € K be nontrivial. Then the following statements are equivalent.
(i) 2 is subdirectly irreducible relative to K.
(ii) For any ; € Fex, i € I, the condition ﬂiu A; = A implies Y = U; for
somei € l.
(iii) There exist an r € R and an element a € A*(") such that a ¢ r® but
a € r® for all B € Fex.

Proof. Let 2; € Fex, i € I, be such that % = [;; 2. As A4 is a congruence
on 2; for all 1, the proof of 6.1.1 says h : 2,4 [];c; %, where ha = (a: i € I).
Consequently, if 2 € Krgy then =, 0 h : A —,; for some i, and thus A = ;. This
proves the implication from (i) to (ii).

Suppose now that (ii) holds. Let 2y = {2 € Fex2 : B # A}. Since A, must
be different from 2, there exists an r € R such that r® # r%. Thus (iii) follows
trivially from the fact that 2 <B for all B € Fex2 \ {2}.

Let us prove finally that (iii) entails (i). If h : 2,4 Hie! B; for B; € K, by
6.1.1 again we have that 2 = ﬂ,-e, A;, where ; = (7; o h)~1B; € Fex2, for all
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i € I. Thus (iii) implies A = ¥; for some i, and therefore #; 0 h : A—,WB;. So
2 € Kgsi, as required. m

The preceding proposition and the fact that (K*) rsi = (K*)rcs: suggest the
notion of relatively subdirectly irreducible structure, and not that of relatively com-
pletely subdirectly irreducible structure, is the proper generalization of subdirectly
irreducible algebras when we consider general first-order languages without equal-
ity. The subdirect representation theorem available for full semantics (see Theorem
6.1.8 below) will convince us of that. Actually, in order to obtain a characterization
of RCSI nonreduced structures, it is not enough to think of the relational part of
sructures as playing the role of congruences, but we must use the forecoming no-
tion of congruence-filter pair. The following is no more than a direct consequence
of Proposition 6.1.1.

CoROLLARY 6.1.6. Let K be any class of L-structures (not necessarily full) and let
2 € K be nontrivial. Then 2 is subdirectly completely irreducible relative to K iff
for all (2;,6;) € Cfx such that ;¢ (i, 6;) = (A, As), we have (A, A4) = (2;6;)
for somei€l. m

As in Proposition 6.1.5, we do not require K to be a full class in the preceding
Corollary, so both results may be applied to characterize subdirectly (completely)
irreducible structures relative to reduced classes. Also, observe that if we assume
Ka is closed under arbitrary intersections, for all £-algebra A (for instance, if K is
closed under P,4, cf. Corollary 6.1.2), then we have the following equivalences: 2/
is RSI iff Fex2 \ {2} has a minimum element, whereas 2 is RCSI iff C fx2 \ {%}
has a minimum element.

The following necessary condition for a structure to be completely subdirectly
irreducible relative to a full class is interesting, for it involves the lattice of con-
gruences instead of the lattice of congruence-filter pairs and must be added to the
necessary condition that follows from 6.1.5.

PROPOSITION 6.1.7. Given any full class K of L-structures and a nontrivial % € K,
if % is subdirectly completely irreducible relative to K then Co \ {A4} has a
minimum element, i.e., for all 6; € Co%, i € I, the condition [);¢; 6; = A4 implies
0; = Ay forsomei€ .

Proof. Assume Co2\ {A 4} has no minimum element. Then (Co A\ {A4} = A4.
So, using 6.1.1, h : A—,a s, 4, A/6, where ha = (a/6 : 6 # A,). But none of
the projections my : A —, /6 is injective if § # A4. Consequently, as K is full,
2/6 € K and 2 is not completely subdirectly irreducible relative to K. m

We can apply 6.1.7 to give an easy example that shows RSI non-reduced struc-
tures are not in general RCSI; once more, the example is one in the type with some
operations (maybe none) and just one relation, of arity 2. Concretely, consider the
class Ko and let A be a non subdirectly irreducible algebra of the appropriate sim-
ilarity type. Then (A,V,) is non-reduced and, by 6.1.5, is subdirectly irreducible
relative to Keo. On the other hand, 2 ¢ (Kco)rcsl, since Co2 = Co A and A has
been taken to be not subdirectly irreducible.
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We are ready to establish the Subdirect Representation Theorem for full and
reduced semantics. The minimal requirements on the class of structures that are
needed in order to have such a subdirect decomposition into relatively subdirectly
irreducible members were discovered by Mal’cev {86, Thm. 3].

THEOREM 6.1.8 (Subdirect Representation Theorem). Let K be any full class of
L-structures satisfying that Ka is closed under the union of <-chains, for all A.
Then the following holds:
(i) K € P,4(Kgs1), i.e., every structure of K is isomorphic to a subdirect
product of members of K that are subdirectly irreducible relative to K.
(ii) K* C P;;(Kgsi), i.e., every structure of K* is isomorphic to the Leib-
niz quotient of a subdirect product of reduced members of K that are
subdirectly irreducible relative to K.

Proof. (i) Let 2 € K and define A := {(r,a) : r € R,a € A°(") and a ¢ r?}.
For each (r,a) € A, choose an 2(r,a) € Fex that is maximal with respect to the
property a ¢ r2("®); since K, is closed under unions of <-chains, for all A, we can
apply Zorn’s lemma and such a filter extension exists. It is easy to verify that

n(r,a)EA Q((r’a) =2

So, by 6.1.1, A—,4 H(r'a)eA A(r,a). Moreover, the definition of 2(r,a) and 6.1.5
say that %(r, a) is subdirectly irreducible relative to K. Therefore 2 € P,4(Kgs1).
(ii) It follows directly from part (i) and Proposition 4.1.5(ii). =

Remark. By the above, the Subdirect Representation Theorem holds whenever K
is assumed to be a full class and to satisfy that

(6.1) Ka is closed under unions of =-chains, for all A.

This is in accordance with Mal’cev’s conditions for languages with equality (see the
remark following [86, Thm. 3]), for in this case we know that the full classes are the
ones closed under isomorphisms. -

Certainly, by virtue of 5.1.1, the Subdirect Representation Theorem stated above
holds in particular for arbitrary quasivarieties. We shall see, however, that by im-
posing some more restrictions on K, part (ii) can be slightly improved and conse-
quently K* acquires a nicer structure theory (Theorem 6.2.2 below). On the other
hand, it is not difficult to find examples of other full classes K that are not quasi-
varieties but of where the Subdirect Representation Theorem holds, because they
still satisfy (6.1). The following result describes a sufficient condition for K to be
of this sort.

ProposITION 6.1.9. If K is an elementary class of L-structures axiomatized by
positive and/or universal sentences, then K satisfies condition (6.1).

Proof. Remember that a sentence is called positive if it is of the form

lel .. -kaké(zl,- .. ,-‘L'k),
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where Q; are arbitrary quantifiers and ®(z,,...,z;) is a quantifier-free formula
constructed from atomic expressions with the aid of the connectives V and A only.
Let us show that positive and universal sentences are preserved under unions of «-
chains. The statement for positive sentences follows trivially from the next claim:
if ¢ is a positive formula, A<B, g : Ter —A and AF ¢ [g], then BE ¢ [g]. The
claim is proved by an obvious induction on p; we take the atomic case and the
passage from ¢ to Jzp as examples. Suppose first that ¢ = rty...1, for some
L-terms ty,...,1,. Since AF[g), we have (hty,...,ht,) € r2. Hence, A<B
implies (ht;,...,ht,) € r® and consequently BF ¢ [g]. Now assume the claim for
¥, and suppose that 2AF 3zp[g]. Let b be an element of the common universe of 2%
and B for which 2k ¢ [g(z/b)). By the induction hypothesis BE ¢ [g(z/b)], so that
BFIzp[g), as desired.

The proof of the statement for universal sentences is in very much the same
manner and so it is omitted. ®

Ezamples. There is a big amount of interesting classes to which the above proposi-
tion can be applied to conclude the validity of the Subdirect Representation The-
orem for them. Examples of such classes that arise in the algebra context are
provided by Mal’cev [86], who was aware of the property contained in 6.1.9: rings
without zero divisors, rings embeddable in skewfields, torsion free groups,... We
know these cases are not immediately covered by Birkhoff’s Theorem because ho-
momorphic images of rings without zero divisors, e.g., may not be without zero
divisors. Other exemples of where the Subdirect Representation Theorem holds
and which also are not a consequence of Birkhoff’s Theorem are the class Kqo
and, for instance, its subclasses of directed quasi-ordered algebras or totally quasi-
ordered algebras, i.e., pairs (A,8) such that 6 is a quasi-order on A and satisfies
respectively the conditions: (1) for all a,b € A there exists a ¢ € A such that afc
and bfc; (2) for all a,b € A, abb or bba. -

To close this Section, it is worth noting that when applied to lattices as ordered
sets (i.e., members of the class K;, in the case £ has no function symbol), our
structure theory need not yield the usual Subdirect Representation Theory for
lattices as algebras. For example, the lattice Ny illustrated bellow is nontrivially

subdirectly representable relative to K¢, for it decomposes in the following way:
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Besides, it is nontrivially subdirectly irreducible relative to the narrower class of
all members of K;o that are lattices, i.e., that satisfy the next additional axioms:

VzVy3z(r{z, 2) Ar(y, 2) AVu(r(z,u) A r(y,u) —r(z,u)),
VzVy3z(r(z,z) A r(z,y) AVu(r(u,z) A r(u,y) —r(y, 2)),

However, as an algebra it is easy to see that N5 has no nontrivial subdirect repre-
sentation. This surprising fact simply shows that the structure theory we describe
here strongly depends on the language; namely, there exist two classes, defined over
distinct languages, that exhibit the same logical properties but whose structure the-
ories do not coincide (take K to be the subclass of K* mentioned above and K’ the
class K};, where V is the variety of lattices as algebras)?2.

6.2. Structure Theory for Protoalgebraic Classes

A remarkable point in the development of a structure theory for a class K of
structures defined without equality is that we can obtain better properties of the
reduced class K* by imposing some restrictions on K of the type considered in
Chapter 5, i.e., restrictions on the Leibniz operator. Certainly, the monotonicity of
the Q operator with respect to < has not been a necessary requirment for the results
stated so far. However, as we already suggested, this assumption is needed when
we try to obtain a generalization of some other universal algebraic results, as we
want now to do. Partly, this is due to the fact that relative subdirect irreducibility
is not in general preserved under expansions, though it really is under reductions.
In this Section and the following we put our attention basically on quasivarieties of
structures. To start with, the next proposition contains a property of full classes
that is going to be used later and clarifies the preceding comment.

ProPOSITION 6.2.1. Let K be any full class of L-structures. If 4,8 € K are such
that B is a reduction of 2, then U € Krs; implies B € Krsi. The converse is true
if K is protoalgebraic.

Proof. Suppose that h : % —,B and let {B, : i € I} be a family of members of Kg
such that B = ﬂie, 8;. Since K is full, 2; = k=18, € Fex. So the strongness of
h says that 2 can be expressed as the intersection of some of its K-filter extensions:

A=h"1B = h-l(n.'el B;) = niel 2;.

Therefore, % € Kgs; entails 2 = 2; for some ¢, and hence B = hh~1% = By, for A
is surjective. Thus the first implication follows from Proposition 6.1.5.

To see the converse, assume 2 = [,¢,%; for A; € Fex. By 5.3.8, we have
that h=*h2; = 2; for all i (for this, we do not need K to be a quasivariety).
Consequently,

22 An interesting structure theory for ordered sets distinct from the one provided here is devel-
oped by Duffus and Rival {42]. It differs substantially from ours, for it adds to the idea of subdirect
representation the concept of retraction as a substitute of the common homomorphisms.
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The surjectivity of h entails B = [);¢; h2;. Thus, if B € Krs) we have B = h2;
for some i. As a result, 2 = 2;, and Proposition 6.1.5 finishes the proof. =

Theorem 6.1.8(ii) can be sharpened for full classes that are also protoalgebraic
quasivarieties, in the sense that Kgpg; can be replaced by the narrower subclass
(K*) rest; of. Lemma 6.1.4.

THEOREM 6.2.2. IfK is a protoalgebraic quasivariety of L-structures, then K* C
P,a((K")rcst), i.e., every structure of K* is isomorphic to a subdirect product of
relatively completely subdirectly irreducible members of K*.

Proof. Let 2 be an element of K*. By part (i) of 6.1.8, there exist a set I and
an structure 2A; € Krsy for i € I such that A : AU,y Hiel 2A; for some h. Thus,
reasoning as in the proof of 6.1.4, ¥ can be subdirectly embedded into the product
[Tic; ;. It suffices to show that 2; belongs to (K*)rsi. First of all observe that the
lattice Fex?; has a smallest proper element, by 6.1.5. Also, as K is protoalgebraic,
Theorem 5.3.8 entails that Fex®; is isomorphic to Fex2;. Hence, Fex; also has
a smallest element. So the desired condition follows from 6.1.5. =

Given a quasivariety K, a structure 2 € K is said to be (finitely) meet prime
in FexB if ();¢; % < A, where {2; : ¢ € I} is a (finite) system of K-filter exten-
sions of B, implies A; < A for some i € I. Note that, by Proposition 6.1.5, & is
(finitely) meet prime in Fex® iff 2 is (finitely) subdirectly irreducible relative to
K. This equivalence, however, does not hold in general. Certainly, if 2 is (finitely)
meet prime in Fex®, for some B such that B 2, then it is (finitely) subdirectly
irreducible relative to K. But the converse is true only if the lattice Fex®B is dis-
tributive; in this case, [;¢; % <% implies A = AV (N;e; W) = Nies (2 VA), and
consequently the subdirect irreducibility of 2 relative to K entails 2 = AV %;, i.e.,
A; <A, for some i € I.

LEMMA 6.2.3. Assume K is a quasivariet; of L-structures. Let €; € K fori € I,
and B C I'LE, €;. Then, if A € Fex™8 is finitely meet pnme in Fex'B, there exists

an ultrafilter U on I such that ¢ | B <%, where ¢/ = H'EIQ

Proof. Suppose r& # B" for some n-ary relation symbol ro € R; otherwise, every
ultrafilter & on I satisfies the desired condition €¥ | B . Foreach J C I, if s
denotes the natural projection from [];¢; @ onto [;¢; €; , let

¢ = ”Jl(nje.l ¢j)v
B,:=¢ B,
U:={JeSbl): B £ U},
where J means I\ J. Note that B; € Fex® for all J € Sb(I). We claim that U

is a proper filter. Indeed, we have that rgf = C" and hence rom" = B" ¢ r%. So
I € U. Assume now J € U and J C K. Clearly €53 <Cp, and thus By Bx.
Hence B; £ 2 implies Bg & 2, i.e., K € U. Let us see U is closed under finite
mtersectlons Consider J, K € U. Since K is a quasivariety, .

B; € SEP(K) CK,
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for all J € Sb(I). So,as B; 4 A, Bz £ A and U is finitely meet prime in FexB,
we have B; N B £ A. It suffices to verify that B3N B = Bj,5%. But this is
an easy consequence from the definitions involved: for each r € R, if p(r) = n,

N7 = {aeC": (aj1,...,a;n) €r% forall j ¢ J and
(ak1,...,akn) € r for all k ¢ K}
={aeC": (aj,...,85,) €r% forall j €eJU K} = r®7mE,

where & = (a;,...,a,). This proves U is a filter. Also, since Ci = ILier @, we
have B; = B < A and consequently @ ¢ U, i.e., U is proper. So the proof of the
claim is finished.

Consider now an ultrafilter & containing U. Given an n-ary relation symbol r
and elements ay,...,a, € [];¢; i,

(a1,...,8n) € rYUseu 7 iff there is a J € U such that (a;i,...,ajn) € r% for j € J
iff {iel: (ai1,...,ai) €ErS} €U
iﬂ'(al,...,an)eﬂ?e,rc‘.

Therefore, | ;¢ €5 = ni‘e, ;. On the other hand, if J € & then J ¢ U and hence
J¢U,ie., By<A Asaresult, ¥ |B= Uleuml <A =

The following theorem can be viewed as an analogue for protoalgebraic qua-
sivarieties of the well known result of Jénsson [3,67] characterizing the finitely
subdirectly irreducible algebras in the variety generated by a set K of algebras,
provided the variety is congruence-distributive. Of course, in the present case the
theorem splits into two parts, one concerning the full semantics and the other the
reduced semantics. If K is any class of L-structures, Kgrrsr means the class of all
finttely subdirectly irreducible siructures relative to K, i.e., those members 2 of K
for which & = (), ¢, %; with 2; € K implies % = 2; for some i < n (or equivalently,
h:%—,4Tlicn 2; implies 7; 0 h : A—»,2; for some i). Note that Krsy € Kgrrsr
for each K. ~

THEOREM 6.2.4. Let Q be a protoalgebraic quasivariety of L-structures. The
following holds for any subclass K C Q.

(i) (K®)rrs1 € ERSP,(K).

(i) (K®)rrs1 € S"P(K").

Proof. (i) Let 2 be finitely subdirectly irreducible relative to K¢, By 4.4.2 and 4.4.4,
K? = ERSPP,(K) C Q, so there exist a €; € P,(K), with i € I, a substructure
B C [L;es & and homomorphisms b : B—,D, g : A—»,D. Now 2 is finitely
subdirectly irreducible relative to K? and therefore B is also finitely subdirectly
irreducible relative to KQ, by 6.2.1. Hence, as ‘B is the smallest K9-filter extension
of B, B is finitely meet prime in Fexo'B. So we can apply Lemma 6.2.3 by taking
2 as B; we conclude that there is an ultrafilter & on I such that ¢ | B < 8B. Thus,
B = ¢ | B. Also we know that, by definition of €, the natural projection from
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¢ onto the ultraproduct [];¢; €:/U is a reductive homomorphism. As a result,
4.1.1 and 4.1.2(i) say that

B € SEP,Py(K) = SEP,(K) C ESPy(K).

Finally, 21 € ER(8) C ERESP,(K) = ERSP,(K), as desired.
(ii) We apply part (i) and repeat the proof of 4.2.2(ii). m

The special case of this theorem for quasivarieties of algebras was first proved by
Dziobiak [44], whereas earlier versions for classes of structures other than algebras
can be found in {12, Thm.9.6]) and [34, Thm.IIL.8].

Notice that the assumption of filter-distributivity is not required in the previous
result. The aim in the next Section is precisely to give another analogue of Jénsson’s

Theorem, which does require filter-distributivity and is much closer in spirit to the
original result.

6.3. Relative Filter-Distributivity and Generalized
Jénsson’s Theorem

A quasivariety K of L-structures is said to be relative filter-distributive (RFD for
short) if Fex2 is a distributive lattice for all % € K; equivalently, IK, is distributive
for all L-algebra A. Actually, the assumption of K being a quasivariety entails a
stronger condition on the lattices of relative filter extensions: if B € Fex2 and
{2 : i € I} € Fex, then

BN (Vielm‘) = Viel(% N;).

Relative filter-distributivity in the sense we have just defined was first considered
by Dzik and Suszko [43], and it seems to be the most fruitfull generalization to
classes of structures of the concept of congruence-distributivity in universal algebra
(take K to be any subclass of K, and observe that RFD amounts to such concept!).
There is, however, another feasible generalization, namely, the one we obtain by
looking at the relative congruences on a structure defined in Section 5.2 as another
extension of the notion of congruence on an algebra. But we shall not enter into
this subject until Chapter 9 below.

The following is an easy but interesting characterization of RFD protoalgebraic
quasivarieties inspired in a result of Blok and Pigozzi [7].

THEOREM 6.3.1. Let K be a protoalgebraic quasivariety of L-structures. Then the
following statements are equivalent.
(i) Kis RFD.
(ii) For all 2,8 € K and all h : A —~%B, the mapping hx : Fex% —FexB is a
surjective lattice homomorphism.
(iii) For all %, € K and all h : A —%, the mapping hx : Fex? —Fex® is a
meet-homomorphism.
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Proof. Assume that K is RFD, and let h : A—DB for 2,8 € K. The mapping
hx : Fex2—Fex® is clearly surjective, for if B’ € FexB then hh~19B' = B’
Consider two K-filter extensions p,; of . By Theorem 5.3.8, we have

h=hy(2oN21) = (Ao N VA™IB = (Ao V A~1B) N (%, V h~1B)
= h-lhxmo n h‘lthl, = h—l(hxmo B] thil).

Thus, applying hx to both sides of the equality and using 5.1.2(ii), we get hx(™p N
A1) = hxo N hx;, which says that hy is a meet-homomorphism. Also,

h= hx (o V) = (Ao V AIB) v (A, V A™18B)
= h™ hyQo V A~ 1hye 2, g = (hxo V hiL,).

So we repeat the preceding argument and obtain hx(2o V1) = hx2o Vhx2;. Since
the reverse inclusion holds trivially, we conclude that A is a join-homomorphism.
Hence we have proved that (i) entails (ii).

The implication from (ii) to (iii) is trivial. Let us see that (iii) implies (i). For
this, take an element % € K and let g, 2A; and B be K-filter extensions of .
We want to show the equality (Ao N2A;) VB = (Ao V B) N (A; V B). Obviously,
the identity function on A, call it k, is a surjective homomorphism from ?1 onto
B. Moreover, by 5.3.8, we have h=1hx2p = o V A~ 1B = Y, V B, and similarly,
h= hy2; = Ao VB and A~ hy (Ao N2A;) = (Ao NA;) VB. So, since by assumption

h_lhx(mo nay) = h_l(hxmo Nhx2,) = h_lhxmo n h_lhxml,

we conclude (Ao NA)NVB = (A VB)N(A; VB). m

The next result is the natural generalization of Jénsson’s Theorem. Earlier
generalizations in more restricted contexts can be found in [7], [12], [31].

THEOREM 6.3.2. Let Q be a protoalgebraic quasivariety and let K C Q. Let V
denote the relative subvariety of Q generated by K. If V is RFD, then we have:

(i) Vrrsr C ERFQSP.,(K),‘

(ii) Verrsr € FQS"Pi(K).

Proof. (i) Suppose 2 € Vgrrsy. By Corollary 5.3.11, V = ERFqSP(K), and so
there exists a €; € K, for i € I, a substructure € C 1'[..6 1 €, a Q-filter extension
B of € and homomorphisms h : B —,D, g : A —+,D. Since A is finitely subdirectly
irreducible relative to V, 6.1.1 gives that B also belongs to Vgrs;. Hence, B is
finitely meet prime in Fey€, for the lattice Fey€ is distributive by hypothesis. We
use now Lemma 6.2.3. There is an ultrafilter & on I such that ¢ | C <B. Thus,
reasoning as in the proof of 6.2.4(i),

2 € ER(B) C ERFQSEP,(K)
C ERFQESP,(K) C ERFQSP,(K).

We have applied Theorem 5.3.10 in the last inclusion.
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(ii) Using part (i), the proof runs as in 5.3.12. =

Remark. The assumption that V is RFD in the above theorem can be replaced by
the condition that the whole class Q is RFD. Actually, for each % € V, we have
that Fey2 = Feq, for V is closed under Fq. Hence, Vis RFD whenever Q is. A
trivial consequence of this property, it follows trivially that Vrrst = VN Qrpsy-

COROLLARY 6.3.3. Under the assumptions of the preceding theorem, we have:
(i) V= EP,gHQS Pu(K);
(i) V' = P,‘dF{)S‘P;(K'). ]



7. Reduced Quasivarieties

As we already noticed in Section 4.4, reduced quasivarieties of L-structures are
not in general elementary over the language £. Even, if Lo denotes the language
that results from £ by adding the equality symbol =~ (not necessarily included
in L), they also may not be elementary over Ly for they are not closed under
ultraproducts. The same is true for any other type of reduced model class, but our
interest is mainly centered on quasivarieties for the reasons adduced in Chapter 5.

In this Chapter we propose to find out the relation between the properties of the
Q) operator when restricted to a quasivariety K and the closure of the corresponding
reduced class K* under certain algebraic constructions. Concretely, we shall provide
new characterizations, purely algebraic in nature, of the classes defined in Sections
5.3 and 5.4, and conclude stronger forms of previous results that hold for such
classes by replacing operators of the sort O* by (. Firstly, it becomes appropiate
to introduce a new model-theoretic notion that leads to consider another type of
full model classes (and so quasivarieties); it is the concept of elementarily reducible
class, of which we investigate some useful aspects.

7.1. Elementarily Reducible Classes

Let K be a full class of £-structures. We say that K is elementarily reducible if
K" is an elementary class over the language with equality L. By a classical result
of Los, Suszko and Chang [24,75), the assumption of K being elementarily reducible
entails in fact a stronger condition. Namely, we have the following proposition.

ProrosITION 7.1.1. IfK is an elementarily reducible class of L-structures, then
K* is a universal-existential class over L, i.e., K = ModT for some set T of
universal-existential sentences over L.

Proof. Using [25, Thm.5.2.6], it suffices to see that K* is closed under unions of
C-directed systems. So let {%; : i € I} be a family of members of K* such that
(I,<) is a directed poset and, for all #,j € I, i < j iff %; C ;. Define the union
of the system {2; : i € I} as usual, and denote it by 2. We claim that 2 still
belongs to K and it is reduced. To see this, consider a finite set ® := &(z;,... ,z5)

74
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of atomic L-formulas and a single atomic £-formula ¢ := ¢(z4,... ,z,) such that
2; is a model of the implicative formula

A®(zy, ... ,zn) —p(zy,...,2,),

for all i € I. Take elements a;,... ,a, € A. If AF A®(zy,...,2,) [ay,... yGn),
then there exists ¢5 € I such that

61,...,8, € A; and A F A®(zy,...,24) [a1,... a0},

for all i > 4p. Therefore, A; F ¢(z4,...,2,) [a1,... ,a,] whenever i > iy, and from
here we conclude that %AF ¢(zy,...,z,) [a1,...,@,). This shows the first part of
the claim, i.e., that 2 € K.

Suppose now a,b are distinct elements of A. We have that a,b € 4;, for some
io € I. Hence, as %;, is reduced by hypothesis, (a,b) ¢ Q%;,. By Theorem 2.1.2,
this implies that there is some Leibniz L-formula, let us say ¢(z,y), such that 2;,
is not a model of ¥(z,y) when z and y are interpreted as a and b respectively. So
we just need to apply that 2;, C 2 and obtain 2A¥ ¢(z,y) [a,b). Once more 2.1.2

says (a,b) ¢ Q2, and consequently Q2 must be equal to A4. Thus the claim is
proved. =

Recall from classical model theory that a class of structures over a language
with equality is elementary iff it is closed under ultraproducts of nonempty families,
elementary substructures and isomorphisms (this also turns out to be a consequence
of Theorem 4.2.1 above). So, using that reduced elementary classes are in general

closed under S, (cf. Corollary 4.2.3), the previous result can be sharpenend as
follows.

ProrosiTION 7.1.2. Let K be an elementary class of L-structures. Then K is
elementarily reducible iff K* is closed under P,,.

Proof. The forward implication is well-known. To see the converse, we use Lemma
4.1.5(ii); we have that S.(K*) = S.L(K) = LS.(K) = K*. Therefore, K* is closed
under S, and Theorem 4.2.1 completes the proof. m

CoROLLARY 7.1.3. A quasivariety K of L-structures is elementarily reducible iff
K* is closed under P,.

Proof. 1t suffices to observe that K* contains the trivial structure, for K does. =

A question concerning elementary classes of L-structures arises naturally right
now. It consists in finding out the condition that the Leibniz operator rectricted
to such a kind of class must satisfy for this to be elementarily reducible. In a sense
this is an open problem, for apparently such condition cannot be expressed in terms
Q) when this is understood as a mapping between two posets, even in the case that
the class is a quasivariety and so the mapping is between two algebraic complete
lattices. On the contrary, a sufficient condition of purely syntactical nature is
known; it refers to the formal representability of the Leibniz equality by means of
some L-formula. To be precise, let K be any full class of L-structures, as usual.
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We say that the Leibniz equality is (uniformly elementarily) definible in K if there
exists some L-formula in two free variables, a(z,y), such that, for all 2 € K,

QA = {{a,d) € A% : AF a(z,y) [a;b]}.

Then we have the next theorem, a special case of which has been recently obtained
by Rautenberg [100, Prop.2].

THEOREM 7.1.4. Let K be an elementary class of L-structures. The following
statements are equivalent.
(i) K is elementarily reducible. v .
(ii) There exists a finite set ¢1,... ,%¥m of Leibniz L-formulas such that, for
all frakA €K, QU = {(a by € A?: AE AL, ¥i(z, y) [a, 8]}
(iii) The Leibniz equality is definible in K.

Proof. To show the implication from (i) to (ii), assume (ii) does not hold; we shall see
that (i) is also false. Let {¢& : k € w} be an enumeration of the Leibniz £-formulas,
and set ¥, := {¢; : i < k}. By 2.1.2, Q2% C {(a,b) € A% : AF V,(z,y) [a,d]} for
each 2 € K. Thus, for every k € w, there exist an ™ € K and elements ag,b; € A
such that A F ¥i(z,y) [ax,be] and (ax,b:) ¢ Q. Using Proposition 3.1.1, this
condition is equivalent to '

(7.1) A ¥, (z,y) [af, 6] and af # b;.
So define

U := {X € Sb(w) : X is finite },
A= HkEw Q‘;/u )
a* /U :=(a;: k€ew), b*"/U:=(b;:ke€w).

Clearly 2 € P,(K®). Also, a* /U #b* /U, for {k €w : a} = b} =0 ¢ U. It suffices
to show that

(7.2) AE¥m(z,y) [a"/U,b" /U], for each m € w.

If so, Theorem 2.1.2 implies {a*/U,b*/U) € QA, and hence K* is not closed under
ultraproducts; thus, the negation of (i) follows from the preceding proposition.

Let us verify (7.2). Fix m € w. By (7.1), the infinite set {m,m+1,...} is
included in {k € w: A} F ¥,,(z,y) [a},b;]}. Therefore, this second set belongs to
U. So we just need to apply Los Theorem to conclude the desired condition.

The implication from (ii) to (iii) is trivial. Assume finally that (iii) holds. Let
a(z,y) be an L-formula that defines the Leibniz equality in K. Since K is a ele-
mentary by hypothesis, K* is the class of models of the set of £-formulas ThK and
the single Lx-sentence VaVy(a(z,y) =z ~ y). Hence, K* is elementary over the
language L and (i) holds. m

The above theorem turns out to be a very interesting one; it suggests the possi-
bility of translating the various properties of the Leibniz operator (when restricted
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to a given elementary class) into the uniform definibility of the Leibniz equality in
the class by means of some set of L-formulas. We do not deal with this problem

here but invite the reader to look at the paper by Blok and Pigozzi [12, §13], which
contains some results in this direction.

7.2. Characterizing some Reduced Quasivarieties

It has already been established in Chapter 5 that the various properties of the
Leibniz operator when restricted to quasivarieties of structures derives into a good
behaviour of the corresponding reduced classes. In essence, the nature of these
properties concerned the handling of the operator § when dealing with certain
methods of construction of new structures from old ones, namely, filter extensions,
substructures and unions of directed systems of filter extensions. So, as there exists
a close connection between these methods and the distinct product constructions
(cf. e.g. the proofs of 4.4.5, 5.2.3 and 6.1.2), one can also expect to handle easily
the Leibniz operator when dealing with them. This idea suggests the feasibility of
attaining purely algebraic characterizations for the distinct types of classes intro-
duced some pages back in Sections 5.3 and 5.4. The next theorems summarize such
characterizations.

THEOREM 7.2.1. Let K be a full class of L-structures closed under subdirect
products. Then K is protoalgebraic iff K* is closed under P,4.

Proof. Consider the forward direction. Suppose h : 2,4 [];¢; B; with B; € K*.
The hypothesis that K is a full class closed under P,q says that 2 € K, so it is
enough to see 2 is reduced. And this is easy to check. By the proof of 6.1.1,
A = (V;es Ui and ),y Ker(mioh) = Ay, where 2; = (m; oh)~19B; for each i. Also,
since B; is reduced and =; o h : 2; —,B; by definition, Ker(m; o h) = Q;. So, the
monotonicity of Q implies

QAC ;s Ui = As

and thus 2 is reduced.

To show the backward direction, consider 2, B € K such that % < B. Construct
amap h: A—A/QA x A/QB by setting ha = (a/Q2,a/QB). Since B is a filter
extension of 2, h induces an algebra homomorphism from A into A/Q2 x A/QB
that satisfies the strongness condition:

(a1,...,an) € r2 iff {a1/Q%,...,a,/QA) € 2" and (a1/98B,...,a,/2B) € 2
iff (hay,... ,ha,) € P2 XB"

Moreover, Ker h = QAN QB, and hence A/QAN QB —,4A* x B* by the Homo-
morphism Theorem. So, since K* is closed under P,4, we conclude that 2A/QANOQB
must belong to K* and consequently must be reduced. Therefore QN QB is the
largest congruence on %, i.e., QAN QB = N, and finally QA C QB. This proves
K is protoalgebraic. = :
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COROLLARY 7.2.2. Let K be any quasivariety of L-structures. Then the following
statements are equivalent.
(i) K is protoalgebraic.
(ii) X* is closed under P,4.
(iii) K* = P,3S* Pi(K*).

Proof. We apply Lemma 4.4.5 and the above theorem. m

The following is a trivial consequence of the preceding Corollary and Theorem
5.3.12. Notice however that it can also be derived without using the Corollary; for
this, we just need to apply 5.3.12 and Lemma 4.1.5(i).

COROLLARY 7.2.3. Let Q be any protoalgebraic quasivariety of L-structures, and
let X be a subclass of Q. Then the reduced relative subvariety of Q° generated by
K isKY NQ* = F§S*P(K").m

THEOREM 7.2.4. Let K be a full class of L-structures closed under substructures
and direct products. Then K is semialgebraic iff K* is closed under S and P.

Proof. By 7.2.1, if K is semialgebraic then K* is closed under P. So it is enough to
prove that K* is closed under S*. Let B € K* and 2 C 'B. By assumption, K is
full and closed under substructures, so that 2,8 are both members of K. Thus the
monotonicity of Q with respect to C entails that QA C OB = Ap. Consequently,
QA = A, and 2% is reduced. This proves the implication from left to right.

Assume now K* is closed under S and P. In particular, K* is closed under P,,.
So, 7.2.1 again (this time the backward implication) implies K* is protoalgebraic.
Let us show that Q is C-monotone. Take 2,8 € K such that 2 C 8. The natural
projection mweg : B —,B* gives rise to a strong homomorphism from 2 into *B*. Let
us call k this homomorphism; it sends an element a € A to the equivalence class
a/QB. By 1.2.1, 2% C B* and hence k2 is reduced, for K* is closed under S. So,
using 2.3.1, A2 must be isomorphic to 2A* by the mapping

a/QB +— a/ONA.

On the other hand, the Homomorphism Theorem stated in 2.2.3 says that the
correspondence a/Ker h —— a/QB establishes an isomorphism between 2/Ker h
and hA. So we actually have that %/Kerh = 2* by the mapping a/Kerh —
a/Q, and therefore Kerh = Q2. Hence, since Kerh C QB by the definition of
h, the desired inclusion 2% C 2B holds. =

COROLLARY 7.2.5. Let K be any quasivariety of L-structures. Then the following
statements are equivalent.
(i) K is semialgebraic.
(ii) K* is closed under S and P.
(iii) K* = SPP;(K").

Proof. We use again Lemma 4.4.5 and the preceding theorem. m
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In contrast to what happened before, now it seems that the next result cannot
be derived without using the above Corollary, for in general the reduction operator
L does not commute with F' in the sense of Lemma 4.1.5(i).

COROLLARY 7.2.6. Let Q be any semialgebraic quasivariety of L-structures, and
let K be a subclass of Q. Then the reduced relative subvariety of Q° generated by
K* can be expressed as KY N Q" = FQSP(K*).m

THEOREM 7.2.7. Assume K is a quasivariety of L-structures. Then K is algebraic
iff K* is closed under S, P and P,.

Proof. Suppose first that K is an algebraic quasivariety and let us prove K* is closed
under S, P and P,. By 4.4.4 and 4.4.5, it is enough to see that K* is closed under
filtered subdirect products. Consider first the case of filtered subdirect products
modulo principal filters. Let {2; : i € I'} be a family of members of K* and let F
be the principal filter of I generated by X € Sb(I). We just need to verify that
if A C,a [I;cs i, then A/F is reduced, for clearly it belongs to K. Take elements
a/F,b/F € A/F and let ¢ := ¢(z,2;,...,2;) be any atomic L-formula. Since
2/F is isomorphic to a substructure of the filtered product [];¢, 2:/F,

A/FEQ(z,21,... ,2¢) [g] iff Tlies Wi/ FE@(z,21,...,2) [9),

for each assignment g : Teg, —A/F. Therefore, using 2.1.2 and 1.3.1, the condition
(a/F,b/F) € QA/F) is equivalent to the next one: for all atomic L-formula
o(z,21,...,2¢) and all ¢q,...,c; €A,

Xcliel:%Ep(z,2,...,2) [a)/F),c1/F,...,cx/F] ifi
(7.3) XCcliel: A Ep(z,21,...,2t) [b/F),c1/F,...,c/F].
We now apply the definition of direct product; (7.3) can be expressed as

Tliex %i FV21 .. . Vae(p(z, 21,00y 2k) < (y, 21, . »2t)) [al X, b1 X],
for all ¢ € Atm L. Hence, a new application of 2.1.2 leads us to conclude that
(a/F,b/F) € QU/F) iffl (a[ X,b | X) € Q[[;cx Ui). Since Q is 5-monotone,
Theorem 7.2.1 says that K is closed under P and consequently Q([;ex %) =
An,a;- SoX c{iel:ai= b;} € F, which implies that a/F = b/F. This
proves A/ F is reduced and thus a member of K*.

Consider now the general case, i.e., let F be an arbitrary (proper) filter on I.
Keeping the notation introduced in the proof of Lemma 5.2.3, define the following
K-filter extensions of 2:

a7 = 731 (2/F),
AFx = x5 (A/Fx), forall X € F.
Clearly the family {27% : X € F} is a directed system of members of Ka: for all

X,Y € F, the structure 2A7*"Y is a filter extension of both 27* and 27¥. Also, if
aj,...,a, € A and r is an n-ary relation symbol of L, we have

(a1,... ,8n) er? iff {i €1: {(ayi,...,ans) er¥}eF
iff {i €l: (an,...,ans) erm'}e}'x for some X € F.
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Thus, A% = UXG,Ql’-X. So, applying Theorem 2.1.8(i) and the join-continuity of
2 on K, we can argue as follows to conclude that 2/F is also reduced in the general
case:

(a/F,b/F) € QAU/F) iff (a,b) € AU) = Uyer QU
iff (a,b) € QAT* for some X € F
iff (a/Fx,b/Fx) € QU/Fx) for some X € F
iff a/Fx =b/Fx forsome X € F
ifft {t€el:ai=b}eF
iff a/F=b/F.

Suppose now K is closed under S, P and P, or, equivalently, under S and Py,
and let us show that the Leibniz operator is join-continuous on K. Choose any L-
algebra A and consider an arbitrary directed system {%; : i € I} of A-structures
from K. Denote by 2 their union. Let F be the filter on I generated by the family
{[#) : i € I} of subsets of I, where [i) = {j € I : i < j}. Then we define the
mapping h from A into [];¢; A7 /F by setting ha = (a/Q; : i € I})/F. We claim
that so defined h is a strong homomorphism from 2 into [];c; %;/F. Indeed,
we omit the proof that h is an algebra homomorphism for it is a straightforward
consequence from the definitions involved. To verify the strongness condition, let
r be an n-ary relation symbol of £ and let a;,... ,a, be arbitrary elements of A.
The assumption that {; : i € I} is a directed system and the definition of F entail
the following equivalences:

(ay,... ,a,) € P iff (ay,... ,a,) € r¥ for some i € I
iff (a1/9%;,...,a,/9%;) € r% for all j € [i) and some i € I
iff {jel: (a,/Q,...,a,/Q%;) €r¥} € F.
Therefore h : A —, [];¢; %; /F. We now apply the Homomorphism Theorem stated
in 2.2.3 and conclude that 2/Ker h belongs to the class SP;(K*), which by hy-
pothesis coincides with K*. Hence we have proved that %/Ker h is a reduced
structure. So, to show that Q2 = {J;.; Q2; we just need to verify the condition
Ker h = | J;¢y 2¥;. For this, we use again the fact that {%; : i € I} is a directed
system and the definition of 7. We have:
ha=hbiff (a/QU;: i€ I)/F = (b,Q% : i € I)/F
iff{iel: a/QU =b/QU}eF
it N5, [i;) C {i€1: a/Q%; = b/Q;) for some iy, ... ,ix €]
iff a/QA; = b/QY; for all j > i and some i€ I
iff (a,b) € Ui, % @

A special case of the above result can be found in [12]; however the proof there
takes quite a different path, since it rests on the effective use of syntactical char-
acterizations of the properties of the Leibniz operator that hardly extend to the
general case.
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COROLLARY 7.2.8. A quasivariety K of L-structures is algebraic iff it is an elemen-
tarily reducible semialgebraic class.

Proof. 1t is a direct consequence of Proposition 7.1.2 and Corollary 7.2.4. m

COROLLARY 7.2.9. A quasivariety K of L-structures is algebraic iff K* is an L..-
quasivariety, i.e., K* = SPP,(K"). =



8. Free Structures

In this Chapter we deal with the existence of free members in classes of structures,
a problem that attracted the attention of several authors during the last decade for
its applications to computer science [81,82], and more recently for its interest in
algebraic logic. The origin of the problem can be traced back to the 1930’s in the
context of universal algebra when Birkhoff [4] stated a sufficient condition for the
existence of free members in a class of abstract algebras (see also [6, Thm.13’]);
Birkhoff’s result was improved a few years later by Mal’cev [85, Thm.1], who
provided a sufficient as well as necessary condition. The investigation of the same
problem for classes of structures over arbitrary first-order languages with equality
was solved at the end of the 1960’s [109)].

Now, in the context of first-order logic without equality, we are obliged to in-
vestigate what happens for both full and reduced classes. We go further specially
in the context of reduced semantics obtaining a characterization of protoalgebraic
and semialgebraic quasivarieties in terms of the existence of some sort of free struc-
tures (Theorems 8.1.7 and 8.1.8 below). Also, we examine the nature of the term-
structures of the quasivariety generated by a class and use them to supply new
proofs for Theorems 4.4.1 and 4.5.1. A final Section is devoted to study the cor-
respondence of quasivarieties with some specific types of lattice structures; such a
correspondence will generalize Neumann’s result [94] relating varieties of algebras
with fully invariant congruences and offers the possibility of turning the logical
methods used in the theory of varieties and quasivarieties into purely algebraic
ones.

8.1. Free Structures in Full and Reduced Classes

Let K be a class of L-structures, 2 a single L-structure and X a subset of elements
of the universe of %, which can be empty iff £ contains some constant symbol. We
say 2 is freely generated over K by X if, for any B € K and any g : X — B, there
exists a unique homomorphism h : 2 —B such that h[ X = g. A is free in K with
« generators if A € K and 2 is freely generated over K by some set of generators
of cardinal a. Clearly any two structures freely generated over K by some sets of
generators of the same cardinality are isomorphic. The first purpose of this Section

82



83

is to characterize those full model classes which contain free structures.

Two basic notions for solving this problem turns out to be that of Herbrand
structure of a class ovar some set of variables, and that of relative £-subvariety of
a class, where £ is an arbitrary cardinal. Let us start with the notion of Herbrand
structure. For this, fix a cardinal o > 0 and an arbitrary class K of type £. We
define the a-Herbrand structure of K as the structure

HoK = (Tec.m RK,a):
where Ry o = {r®® : r € R} is given by setting
(8.1) ™% = {{t1,... ,tn) €TeZ o : KErt;...1,},

for each r € R. (As before, the case o = 0 is allowed iff the set of constant symbols
of £ is nonempty).23

Remark. If £ has equality, then H,K as defined above may not be directly an
L-structure, because the interpretation of two distinct closed terms may coincide
in every element of K. So in this case the definition of Herbrand structure must
be modified as follows. Let ~ denote the equality symbol in £, and assume =X
is given by (8.1). It is easy to see that ~¥* is a congruence on (Tec,a, Rx q); in
fact, it is the Leibniz congruence. Thus, the a-Herbrand structure of K can now be
defined as

9{0'( = (Tec'a/ z""’,RK,Q/ z""’).

We must notice right now that with this new notion all the subsequents results
remain true with no changes. -

Herbrand structures have several important properties whose proof is rather
immediate. The first one is just a useful reformulation of their definition, which
says that every a-Herbrand structure of K can be obtained from H,K.

LEMMA 8.1.1. Let K be any class of L-structures. For any cardinal ¢ and any
n-ary relation symbol r € R,

5o = {(ty,... ,1a) € Te? , : there exist ¢ € Atm L and
o : Tec —Tec o such that KEp and op =1ty ...1,}.

Proof. The inclusion from right to left is clear. Suppose ¢3,... ,i, € Tec o are such
that KErty ...1,. Let z,,,...,25, be the distinct variables occurring among the
terms t;, 1 <i<n. lHp:i=rt... 1, let 7, : Tec,o —Tec be such that

TeZxr, =2, 1<i<n.

23The reason of naming such structures in this way is that the terminology of Herbrand struc-
ture is presently quite extended among logicians and computer scientists to refer to our 0-Herbrand
structures, as Herbrand {64] used a closely related concept in the proof of his famous theorem (see,
e.g., [63,71]). Nevertheless, to be historically accurate, we should call them Lindenbaum struc-
tures, because it was Lindenbaum who considered for the first time, during the 20’s, models built
up out of the same language. On the other hand, according to Tarski’s contribution, the term
Lindenbaum- Tarski matrir used by Blok and Pigozai [12, p.32] would appear to be more adequate .
to refer to the Leibniz quotient of our Herbrand structure.
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Since 7, is locally one-one, there exists by the Axiom of Choice a homomorphism
o, : Teg —Te, o satisfying (o, 07,)(t;) = 1, for all i. So, for the reverse inclusion
it suffices to show that KF 7,¢0. But this is a clear consequence from the following
equivalence: for any member 2 of K and any assignment g : Teg —A, AF 1,0 [g]
ifAFp[gor,). =

The second property says that, for quasivarieties, Herbrand structures are mini-
mal elements in the set of all term-structures of the class.

ProrosiTioN 8.1.2. Let K be a quasivariety of L-structures. Then, for all « > 0,
HoK = KTe, o, ie., HoK is the minimal structure of K with underlying algebra
Tec’a. n

The third property extends the well known peculiarity of freely generated alge-
bras pointed out by Birkhoff, according to which the set of atomic formulas (over a
fixed set of variables) satisfied by a class of algebras coincide with the one satisfied
by its corresponding free algebra. In the terminology of Makowsky [82, p.274], we
should say that the Herbrand structures are generic relatively to atomic formulas.
This third property has an interesting consequence that we shall analyze in detail
in Section 8.3 below,

LEMMA 8.1.3. Let K be any class of L-structures. For all cardinals § > a > 0, if
¢ Is an atomic L-formula over a variables, then KF ¢ iff HgKFE .

Proof. The “only if” part follows trivially from the definitions involved. For the
converse, it suffices to observe that, if ¢ := rt)...t,, where t3,...,t, € Tec q,
then HsKE ¢ entails (t1,... ,2,) € r*?. For this, we use that 5 > . m

A fourth property can be derived from 8.1.3 and provides a sufficient condition
for a class K to contain almost all of its Herbrand structures. This property is going
to be quite a lot improved in the next Section, Theorem 8.2.2.

ProPosITION 8.1.4. IfK is a quasivariety of L-structures, then H.K € K, for every
cardinal a.

Proof. Let us sketch the proof for & = w; the general case entails only some ad-
ditional technical difficulties. Let ¢; A -+« A ¢, = be any implicative L-formula
satisfied by K and let ¢ : Tec —Tecs. I H, KFp; [o], for 1 < i £ m, then
0Pty 0P, € AtmK; hence, op € AtmK, which by 8.1.3 equals to AtmH, K.
But this implies that H,KF ¢ [¢]. Thus, since ¢ was arbitrary, H, K € Mod ImpK =
K, for by hypothesis K is a quasivariety. m

Finally, the last property follows immediately from the definition and is mainly
responsible for the usefulness of Herbrand structures.

PRrOPOSITION 8.1.5. For each class K of L-structures and each 2 € K, there exists
a cardinal o such that % € H(H.K).

Proof. It suffices to take a = |A| and consider any bijection between X, and A. ® .
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The other basic notion we mentioned a few paragraphs back is introduced to
avoid the use of a more general concept of free structure that would correspond to
what Mal’cev called algebras with defining relations [85). Take an arbitrary cardinal
€ and let £; mean the language obtained from £ by joining ¢ new constant symbols
{ea : A < €}. Then a class V of L¢-structures is said to be a relative €-subvariety
of K, or simply a relative subvariety of K when £ = 0, if there exists a set of atomic

L¢-formulas ¥ such that 2 € Viff U is a model of £ and the £-reduct of 2 belongs
to K.

Earlier versions of the next theorem can be found in several papers; e.g. [53],
[81], [109]. Our proof closely resembles the one given in [109), as it is also based in
the model-theoretic method of diagrams initiated by Henkin and Robinson in the
50’s; for a proof that takes a different path, see [53].

THEOREM 8.1.6. Assume K is an elementary class of L-structures. Then the
following statements are equivalent.
(i) X is a quasivariety.
(ii) Every relative §-subvariety of K has a free structure with « generators,
for all cardinals £, such that € + « > 0. Concretely, H,V is the free
structure in V with a generators, for each relative £-subvariety V of K.

Proof. Assume (i) and fix £, > 0 such that £ + a > 0; this condition is added to
ensure that it has sense to consider a-Herbrand structures on the language L¢. Let
V be a relative {-subvariety of K and denote by T a set of atomic L¢-formulas that
defines V. We are going to show the Herbrand structure H,V is free in V with o
generators X, = {2 : A < a}. Indeed, since K is a quasivariety, V coincides with
the class of models of ZUImpK. Consequently, Proposition 8.1.4 ensures that H,V
belongs to V. Also, given a structure B € V and g : X, —B, g extends uniquely to
an algebra homomorphism A : Tec,,« —B. So, since trivially k preserves relations,
HoV is free in V with set of generators X,. This proves (i) implies (ii).

Assume now (ii) and let us see that Mod ImpK C K; the opposite inclusion is
clear. Let % be an L-structure such that %= ImpK. Take T to be the positive
diagram of 2, i.e., the set of atomic £)4}-sentences that hold in (2,a)se4, and
denote the relative |Al-subvariety of K determined by £ by V. Then, using (ii),
HoK is a member of V and hence HoV | £ € K. We claim that ® is a reduction
of HyV | L. To establish a precise reductive homomorphism, consider the algebra
homomorphism k which sends the constant ¢, to a, for all a € A, and each one of
the original constants of £ to their interpretations in 2{. We must show that for all
n-ary r € R and all terms 1,,... ,1, € Teg,,,0,

(8.2) (t1y. - stn) €7V0 G (hty, ..., hty) €7

Notice right off that {(hty,... ,ht,) € r2 implies rt, ...t, € £, and consequently
the backward direction of (8.2) is obvious. So assume the left-hand side condi-
tion. Since K is elementary by hypothesis, we have that V = Mod(Z U ThX), and
consequently

SUThK [ iy ...1q.
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Thus, by the Compactness Theorem, there exists a finite subset {e1,...,06} of T
such that

ThK F 61/\.../\0k-—'711 ...tn.

We now use a well known property of first-order logic and obtain that the formula
that results by simultaneously substituting the distinct constants ¢; of 6y A ... A
o —rty ...ty by distinct variables is included in ImpK. Therefore, as Ak ImpK,
we conclude (ht;,..., ht,) € r2.

This finishes the proof of the claim, so it suffices to apply once more that K is
elementary; using 4.2.1, we get A € R(HoVIL)C R(K) =K. =

Remark. The difference between the above proof and the one for the case £ has
equality rests on the fact that the mapping defined from HoV | £ into ® is di-
rectly one-one and thus an isomorphism in this case (see the remark following the
definition of Herbrand structure). -

Observe that (ii) can be replaced in the previous theorem by the following weaker
condition: “every relative £-subvariety of K has a free structure over 0 generators,
for all cardinals £ > 0”. This follows from the proof of (ii) implies (i). On the
contrary, (ii) cannot be replaced by the statement “every relative subvariety of K
has a free structure with a generators, for all cardinals a”. The next one is an
easy counterexample that shows the equivalence would not hold any longer in this
case. Consider the language £ with exactly one function symbol 0 and one relation
symbol <, of arities 0 and 2 respectively, together with the equality symbol =. Let
K be the class of L-structures axiomatized by the set of formulas

0<z

z<z
r<yAyLz—zrry
z<yAy<Lz—zr<z
r<yVy<sz

(the members of K are just totally ordered sets with a minimum element). The
only relative subvarieties of K are K itself and the class that in addition satisfies the
axiom r < y and whose members are structures with all relations holding. Thus
the weaker condition above is clearly satisfied in this case; the free structures are
respectively (Teg o, A) and (Tez o, V). But obviously K is not a quasivariety.

Let us turn now our attention into the existence of free structures in reduced
classes. To start with, we introduce two distinct notions of freeness. Let K be a class
of L-structures, as usual. Then we say that a reduced L-structure % is (weakly)
freely generated over K* by a subset X of Aif, forall B € K* and all g : X — B (such
that gX generates B), there exists a unique (surjective) homomorphism h : 2 —B
such that A [ X = g. 2 is (weakly) free in K* with a generators if A € K* and
2 is (weakly) freely generated over K* by some set of generators of cardinality a.
Once more, any two structures (weakly) freely generated over K* by some sets of
generators of the same cardinality are isomorphic.
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Notice that, in general, an arbitrary nontrivial reduced quasivariety need not
have free structures, nor even weakly free structures, over a generators, for all
cardinals . The point is that, if § is free in a class K with a generators, let us
say X = {zx : A < a}, then the set X* = {2} : A < a} in the quotient §* may
not be of cardinal o, or even J* may not be freely generated. A simple example
of the first situation is provided by the whole class of structures over the language
with no function symbols and just one relation symbol, of arity 1. Indeed, the
nontrivial reduced members of such class are of the form ({a, b}, {a}), for distinct
elements a,b (if 2 = (A4, D) is a member of this class, then Q% is the equivalence
relation whose equivalence classes are D and A \ D!). Even when we restrict our
attention to protoalgebraic quasivarieties, the admission of free structures with an
arbitrary number of generators is not inherited, strictly speaking, in passing to
reduced semantics. Nevertheless, protoalgebraicity is enough to ensure that the
reduced class of a quasivariety admit at least free structures in the weak sense for
almost all cardinals a. Concretely, let us denote by 3 K the Leibniz quotient of
H, K, for any class K, and call V a reduced relative £-subvariety of K* if V is obtained
from a relative £-subvariety of K by applying the reduction operator. Then we have
the next theorem.

THEOREM 8.1.7. Let K be a quasivariety of L-structures. The following statements
are equivalent.
(i) X is protoalgebraic.

(ii) Every nontrivial reduced relative §-subvariety of K* has a weakly free
structure with o generators, for all cardinals €, « such that {+a > 0 and,
either a is infinite or a < 1. Concretely, H_V is the weakly free structure
in V* with « generators, for each relative -subvariety V of K such that
V" is nontrivial.

Proof. Consider the implication from (i) to (ii). Let £, a be two arbitrary cardinals
satisfying the conditions required in (ii), and let V be a relative £-subvariety of K
determined by some set £ of atomic L¢-formulas such that V™ is nontrivial (recall
that A € V* if A € Mod T and A[L € K"). If K is protoalgebraic so is V; to get
this conclusion, we just need to apply 2.1.4 and obtain that

QA=QAIL) C QBIL)= 0B

for all 2,8 € V such that 2% < B. On the other hand, by Proposition 8.14,
K,V is contained in V and hence its Leibniz quotient belongs to V*. Let us show
that this reduced Herbrand structure is weakly freely generated over V* by the set
Xz = {z} : A < a}. For this, consider a structure 8 € V" and a map ¢* : X; —B
such that g*X? generates B. Define g : Xo —B by setting gzx = g*z} for each
) < a. The proof of Theorem 8.1.6 says in this case that g extends to a surjective
homomorphism h from H,V onto B. So, by 5.3.9, we have A* : H,V—»B* =B,
as required. :

It remains to see that X7, is still a set of cardinal a. If & < 1 the statement is
trivial. So let us consider the case a > w. Take two distinct elements A, 4 < o and
suppose zj = z,; we shall derive a contradiction. To simplify the notation, put
u := z) and v := z,, so that our assumption is u = v (QH,V). We claim that
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u = v (QHgV) for all B > a. Indeed, consider an arbitrary, fixed atomic £L-formula
¢ :=p(z,21,...,2;). Using 2.1.2, it suffices to show that the following equivalence
holds for all ¢;,... ,t; € Tec, 5:

HeKEp(z,21,...,2k) [u,tq,... 4] iff
(8.3) HeKFp(z,21,...,28) [v,t1,... &)

To this end, we reason as follows. Since Ter,,s is obtained by adding to the
generating set of T'ez, o as many variables as necessary, we can assume that the free
variables of the terms t; are among z.,,...,2x,,2,,,,...,22,,,, Where z), € X,
whenever 1 < i < p, and z,,,; € Xp \ X, whenever 1 < j < ¢. Choose ¢ new
variables z,,,...,z,, of X, distinct from u,v, Try,---,Za,; We can do that for
a > w by hypothesis. Then the new terms

o= ti(Zp, /2,000 Tug[20,4,), 1 Si<E,

are elements of Teg, o. So the definition of Herbrand structure and the assumption
that u = v (QH,V) entail the following chain of equivalences, which includes the
required condition (8.3):

HeVE p(z,21,... ,2k) [u,t1, ... 8] if HgVE@(z,21,...,2k) [u,t1,... ,t'k)
if HoaVE@(z,21,...,2K) [u,t'1,...,t']
iff HoVEQ(2,21,...,2:) [v,t'1,...,t's)
iff HpVEp(z,21,...,2¢) [v,0'1,... , U]
iff HpVEo(z,21,...,2) [v,t1,... ]

Once the claim is proved, let & € V and let a,b be two arbitrary elements of
A. We are going to see that a = b (Q2). For this, let us distinguish two cases.
If |A| < a, there exists a surjective homomorphism from H,V onto 2 such that
u — a and v — b, for we already know H,V is freely generated over V by
Xo. Let us call b this homomorphism. Then, since V is protoalgebraic, we can
apply Theorem 5.3.9 and obtain that h* is a well defined homomorphism from
.V onto A*. So, as u = v (QH,V) by hypothesis, we conclude that a = b (Q2).
For the second case, |A| > «a, we reason in very much the same manner; this
time we use the claim proved previously and the fact that there exists a surjective
homomorphism from 34V onto 2 sending u — a and v +—— b. Therefore, the
condition a = b () always holds. In conclusion, we have proved the following:

u=v (QH,V) implies QA=V, forallA e V.

But this contradicts the assumption that V* is a nontrivial reduced class. Thus,
uz v (QH,V), and hence we have | X} | = a, as desired.

To see that (ii) implies (i), let %, B € K be such that 2  B. If QB = V4, then
the inclusion QA C QB holds trivially. So suppose that QB # V4. Consider the
relative |A|-subvariety V of K determined by the positive diagram of 2. Since B is
a filter extension of %, we have (*B,a)sca € V and consequently V* is nontrivial.
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Thus, using (ii), HgV is weakly free in V*. Consider the only homomorphism
that applies HyV onto (B*,a/QB)aea; it must send & to a/QB, so that ¢, =
¢y (2HoV) implies a = b (2B). On the other hand, the unique homomorphism from
HoV into the expanded structure (2,a),¢ 4 is clearly a reductive one and such that
cs — a. Hence, if h denotes this homomorphism, Theorem 2.1.8 and Proposition
2.1.4 say QHoV = h~1Q2. In conclusion, we have the following implications:

a = b (QA) implies ¢ = ¢ (RHpV) implies a = b (2B).
So, Q%A C QB and K is protoalgebraic. =

Once more, observe that the condition that every nontrivial reduced relative £-

subvariety of K* has a weakly free structure with 0 generators, for all ¢ > 0, suffices
to guarantee the protoalgebraicity of K.

For languages with just one relation symbol, it has been proved in [12, Thm. 10.1]
that reduced protoalgebraic quasivarieties do admit weakly free structures with an
arbitrary number of generators; the proof relies on the effective use of a syntactic
characterization of protoalgebraicity that is not known to have a simple extension
for more general languages. The necessary and sufficient requirement for any quasi-
variety to keep admitting free structures (this time with any number of generators!)
is semialgebraicity. Concretely, we have the next result.

THEOREM 8.1.8. For any quasivariety K of L-structures, the following statements
are equivalent.

(i) K is semialgebraic.

(ii) Every nontrivial reduced relative -subvariety of K* has a free structure
with a generators, for all cardinals £, & such that £ + a > 0. Concretely,
3V is the free structure in V* with o generators, for each relative &-
subvariety V of K such that V* is nontrivial.

Proof. The argument that proves the first part of (i) implies (ii) is the same as in
8.1.7, except this time we use Theorem 5.4.5 instead of 5.3.9. Moreover, to see that
|X%] = a for any cardinal «, infinite or not, we reason as follows. If # > « then
HaV C HpV and hence, by semialgebraicity, QH,V C QHgV. So this time the
implication

u = v (QH,V) implies u = v (QHgV), forall 8> a,

holds no matter the value of a is. Therefore, we can repeat the argument of 8.1.7
to obtain again that u = v (QH,V) implies V" is trivial.

For the reverse implication, it suffices to see that the Leibniz operator restricted
to K is C-monotone, by virtue of 8.1.7. So take 2,8 € K such that % C B. As
before, we obtain that the Leibniz quotient of the Herbrand structure of V, where V
is the relative |A|-subvariety of K determined by the positive diagram of 2, applies
into (B*, a/QB)ac 4, maybe not surjectively. Therefore, followwing the steps of the
proof of 8.1.7, we also conclude that QA C QB. =

“Remark. We can also prove the last theorem using 7.2.3 and Fujiwara’s Theorem
[53, Thm. 2). However, anything similar happens in the case of 8.1.7, for we already
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know that protoalgebraic reduced quasivarieties are not in general closed under
substructures. -

The preceding result can be applied, for instance, to the class Kqo of quasi-
ordered algebras of a given similarity type. In this case, Theorem 8.1.8 specializes
to a well known result of Bloom [14, Thm.2.2]. :

8.2. Further Properties of Herbrand Structures

So far we know that, given any class K of L-structures, its Herbrand structures
belong to the quasivariety generated by K, which can be expressed as ERSPP,(K);
this is just a consequence of Proposition 8.1.4. The next result sharpens this by
showing that, in fact, all the Herbrand structures of K are in the smaller class
EP,45(K); furthermore, we shall see that their filter extensions relative to K< are
included in EP,3SP,(K). Of course, the proof now runs quite differently. To start
with we need a lemma.

LEMMA 8.2.1. Let K be any class of L-structures closed under ultraproducts. Let
& U {¢} C Atm L be such that, for all 2 € K and all assignment g : Ter —A, if
AF D [g] then AF ¢ [g). Then there exists a finite subset {¢1,...,pm} of ® such
that o1 A--- Ao —p € ImpK.

Proof. Suppose @1 A -+ A gy =¥ ¢ ImpK for all {p;,...,om} C ® and let us
get a contradiction. For each ¥ € Sb,(®), there exist an Ay € K and an algebra
homomorphism gy : Ter — Ay such that

Ag F A¥ AP [ge].

Consider an ultrafilter U of Sb,,(®) that includes all the sets Uy = {E € Sb,(P) :
¥ C E}, for ¥ € Sb,(®), and let

A:= HWeSb,(Q) Ay,
g:Tec—A, gz; = (gyz; : ¥ € Sb,(P)), fori<w.

Since U,y € {¥ € Sbu(®) : Ay Fp Ay [gy]} and Uy} € U, the set {¥ €
Sb,(®) : Ay F o A -y [ge]} belongs to U, for all ¢ € ®. Thus, Los Theorem says

A/UE @ A~ [my 0 g),

for each p € ®, i.e., A/U E & [my o g] whereas A/U¥ i [my 0g]. But this contradicts
the assumption K is closed under ultraproducts. m

The following result can be viewed as a characterization, in the style of Jénsson’s
Theorem on finitely subdirectly irreducible algebras, of the term-structures of the
quasivariety generated by a given class.

THEOREM 8.2.2. The following holds for any quasivariety K of L-structures.
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(i) HaK € EP,4S(K), for every cardinal a.

(ii) For every cardinal a, if § is a filter extension of H,K relative to KQ, then
S € EP,4SP,(K).

Proof. (i) Fix a cardinal & and define
Agi={rty ...ty € AtmyL: (ty,... ,t,) ¢ ).

By definition, ¢ € A, implies there exist %, € K and h, : Teg o —A,, such that
A, W o [hy)]. Let

3‘,, = (Te[_’a, h;lev).

Clearly k,, : J, —,2,. So, by 1.2.2 and the Homomorphism Theorem, we have that
Jo € ES(K). Also Kerh, € CoJ,, by virtue of 2.1.5. We are going to show that a
quotient of H,K is isomorphic to a subdirect product of {J, : ¢ € A}; if thisis true,
then we just need to apply 4.1.2(i) to obtain that H,K € EP,4ES(K) C EP,45(K),
and thus part (i) of the theorem will be proved.

Take an n-ary r € R and let t3,... ,t, € Teg . Since 2, is a member of K for
all p € A,, the condition {t1,... ,t,) € r® implies that A, Frt; ...t [h,] for all
@ € Ag; 50, (t1,... ,ts) € rv for allp € A,. Conversely, if {t1,... ,tn) € r* then
@ =rty,...,tn € Ag, so that (hyt,,... byt ) ¢ r2¢; thus (¢,... ,t,) € r¥¢. In
conclusion, we have that HoK = [}, Jo- We now apply Proposition 6.1.1. Define

0a(K) := Npea, Ker hy.

Then 6.1.1 says that the quotient H,K/604(K) is isomorphic to a subdirect product
of {J, : ¢ € A}, as required.

(ii) The idea for the proof is quite the same as in part (i). Now, given a filter
extension F of HoK relative to K¢, we must consider the index set

Aa,(i = {Ttl ---tn € Atma‘c : (tl) e ’tn) ¢ rﬁ}‘

If Ay,z = 0 then § is the structure on Tec o with all relations holding, so that
Q3F = V7. and hence J is an expansion of the empty direct product. If A, 5 # 0,
we claim that, for all ¢ € A, 3, there is an %, € P,(K) and a homomorphism
hy : Teg o — A, such that

F<h,'Y, and A Ko [hy].

The proof of the claim is based on Lemma 8.2.1. Take ¢ € A, 3. Certainly, if
A, denotes the same set as in (i), then Ay 5 C A,. Thus there exist 2 € K and
h : Tec,o —A satisfying A¥ ¢ (). If, in addition, % and h are such that § < h—19t
the claim is proved. So, suppose otherwise. We shall have that, for all % € K and
all h: Teg,oa—A, if §F< h=12 then AF ¢ [h]. Let us see we can find a structure
in P,(K) satisfying the condition asserted in the claim. For this, we proceed again
by “reductio ad absurdum”. Assume F = h~!2 implies AF ¢ [h], not only for all
2 € K but also for any other element of P,(K) and any homomorphism h. Observe
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that, given any L-structure 2, if AF ¢ [h] for all ¢ ¢ A, 3 then § < h~!2. So, our
assumption says that, for every 2 € P,(K) and every h : Tec o —A,

2AF 9 [h) for all 4 ¢ A, 3 implies 2AE ¢ [h].

We can now use the lemma, since 4.1.1 ensures Py(K) is closed under unltraprod-
ucts. We conclude that there exists a finite set {¢1,...,%¥m} of atomic L-formulas
over a variables, not in A, 3, such that

Y1 A Athy, —p € Imp Py(K) = ImpK.

But FF ImpK, since by assumption J is included in K. Therefore, v & Ay 3, and
this contradicts that ¢ had been choosen from A, 3. So the claim is proved.

For the rest of the proof we just repeat the argument of part (i) and obtain the
desired condition, i.e., § € EP;gSPy(K). =

Remark. The proof of 8.2.2(i) can be technically simplified by considering, instead
of the set {h, : ¢ € Ay}, the whole class of homomorphisms with domain Te
and range the algebra reduct of some member of K; concretely, we have that

HK=N{h"'A:A€Kand h:Teg,—A},
6.(K) = ({Kerh: h:Tes,—A for some 2 € K}.

The same is true for 8.2.2(ii); in this case, for example, we have
F=N{r~2%: A€ Py(K), h: Teg,o —A and Fh~12}.

Nevertheless, we believe the given proofs eventually provide some additional insight
into the concepts we deal with, and for this reason we have chosen them.

On the other hand, it is clear that in our proof we are actually constructing,
by a method different from the one discovered by Birkhoff [4], a structure which
is in general distinct from 3K but which is also freely generated over K by a
generators; it is the structure H,K/0,(K). This does not contradict the uniqueness
of free structures, because none of H,K and H,K/0,(K) must necessarily belong
to K. In fact, if H,K € K then both structures coincide, since the identity function
is included in the class of homomorphism from Te, . into the algebra reduct of a
member of K (i.e., 2, can be chosen to be H K for all p € A,). -

It is worth noting that the preceding proof can be slightly modified to obtain
that the Herbrand structures with a sufficiently large number of generators are in
fact in the smaller class EP,4(K). Rather, we have the following.

THEOREM 8.2.3. Let K be an arbitrary class of L-structures. There exists a
cardinal ag such that H,K € EP,4(K), for all a« > aq.

Proof. Once more, define the set

Ay :i={rty... 1, € Atm L (t;,... ,1,) ¢ rx""}.
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For each ¢ € A, there are 2, € K and h,, : Tec —A,, such that %, ¥ ¢ [h,]. Set
a0 1= w -+ sup{| Ay : ¢ € Au,

and take a > . We are going to show that HoK € EP,4(K). Let A, be defined as
in the proof of 8.2.2(i). Foreach ¢ € Aq, ¥ := ¥(2a,,...,21,), let 7y : Teg o = Te,
be such that 7z, = z;, where 1 < i < k. By Proposition 8.1.1, there are 2, € K
and gy : Tec — Ay satisfying

Ay E 1y [gy].

We may assume that the structure 2 is one from the set {2, : ¢ € A, }, because

“in fact 749 € A,. So, consider a surjective algebra homomorphism hy from Te. o
onto Ay such that hyzy, = gyz;, whenever 1 < i < k. For such a homomorphism,
we have 2y F ¢ [hy], and hence we can follow the preceding argument to obtain
HaK € EP,4(K) (now using that the inverse image of 2y, under hy, belongs directly
to E(K), forall¢in A,). =

We can infer some interesting consequences from the above theorem. The first
one concerns the Leibniz quotient of Herbrand structures and part of it can be found
in [12], proved under the assumption that the class K generates a protoalgebraic
quasivariety.

COROLLARY 8.2.4. The following holds for any class K of L-structures.
(i) H X € P;;S*(K"), for every cardinal a.
(ii) There exists a cardinal ag such that H_ K € P;4(K*), for all a > aq.

Proof. We apply Theorems 8.2.2 and 8.2.3, and Lemma 4.1.5(ii). =

The second one is another characterization of the variety (relative subvariety)
generated by a given class of structures (included in a quasivariety), different from
the one given in Chapter 4. It generalizes to arbitrary first-order languages, with
or without equality, a result of Kogalovskii; see [19)], [69).

COROLLARY 8.2.5. (i) For any class K of L-structures, KV = HEP,4(K).
(ii) If Q is a quasivariety and K is any subclass contained in Q, then KYnQ =

Proof. (i) Let 2 be a member of K¥. Proposition 8.1.3 (see also Lemma 8.3.2(ii)
below) implies H,K = 3. KY; so there exists @ > 0 such that % € H(H.K), by
virtue of 8.1.5. Also, 8.2.3 says that for some ag, H,K € EP, 4(K) whenever a > ay,
so that we actually have 2t € HE P,4(K). Therefore the inclusion KY C HEP,4(K)
is proved. The reverse inclusion follows immediately from the characterization of
varieties stated in 4.5.1.

(ii) It is a trivial consequence of part (i). =

In addition to the above consequences, free structures have some other worth-
noting applications. For instance, we can use them to get a proof of 4.5.1 closer
in spirit to the original proof of Birkhoff’s Theorem that characterizes varieties of
algebras as classes closed under H, S and P. This new proof uses 8.2.2(i) to see
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the hard implication, i.e., that any class of structures closed under H, E, S and P
is a variety. The idea of the proof is as follows. If 2l € Mod Atm K then any atomic
L-formula satisfied by 3| 4K is also satisfied by 2, and thus 2 € H (3| 4;K); hence,
if K is closed under H, E, S and P, the condition 2 € K must hold.

Also, using the characterization of term-structures stated in Theorem 8.2.2(ii),
we can provide another proof that ERSPP,(K) is the least quasivariety containing
K, and in this case we run close to an argument of Czelakowski [29, Thm.5.1],
successfully generalized in [38]. Again, we summarize the main steps for proving
the difficult implication. Suppose % € Mod ImpK, and let a = max{|A},w}.
Clearly, there exists a surjective homomorphism k from 3, K onto &, since AtmK =
Atm H K by 8.1.3. Let F be the inverse image of ¥ under this homomorphism A.
Then § € EP,3SP,(K) and consequently % € REP,4SP,(K) C ERSPP,(K). So,
K? C ERSPP,(K). The last argument also sketches an alternative proof of a
further result, namely, that K¢ = ERP,4SP,(K); cf. Corollary 4.4.6 above.

8.3. Fully Invariance and (Quasi)Varieties

A well known result in universal algebra, due to Neumann [94], says that those
algebras which are free in some class are the ones that can be obtained by factorizing
the absolutely free algebra by a fully invariant congruence. And from this property
it is easy to conclude that the lattice of varieties of algebras of a given similarity
type is isomorphic to the lattice of fully invariant congruences of the absolutely
free algebra. More recently, Hoehnke [65) have also proved that an analoguous
correspondence can be established between lattices of quasivarieties of algebras
and certain systems of congruences on the absolutely free algebra. In this Section
we propose to extend these results to structures over arbitrary first-order languages,
with or without equality. For this purpose, the natural generalization of the notion
of congruence on an algebra is the relational part of structures. We introduce
the following definition: an L-structure 2 is called fully tnvariant iff every algebra
homomorphism h from A into itself is also a homomorphism from 2 into %, i.e., h
satisfies that hRyq C Ry. Then we have the next result.

PRroPOSITION 8.3.1. For any class K of L-structures, the structure H, K is fully

invariant. Conversely, if 2 is a fully invariant structure with underlying algebra
Tec, then A = 3,V (2).

Proof. It is a straightforward excercise to verify that 3, K is always fully invari-
ant, so the proof of the forward implication is omitted. Assume conversely that
A = (Ter,Ra) is fully invariant. Consider an n-ary relation symbol r € R
and terms ty,...,t, € Teg such that (t;,...,%,) € rZ. Since 2 is fully invari-
ant, for all A : Te; —»Tes we have (ht;,... ,ht,) € r®, and hence AErt; .. .1,.
Thus V() Erty ...1, and finally (t;,... ,t,) € V(3w This proves the inclusion
Ry C Ry(a)w. The argument for the reverse inclusion is easier and it is also
omitted. In conclusion, Ry = Ry (g, and consequently 2 = H,V(2). =

It is an easy matter to check that the set of fully invariant structures on a
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given underlying algebra is closed under arbitrary intersections; thus, the preceding
proposition says that the set of w-Herbrand structures forms a complete lattice.
We are going to show this lattice is actually isomorphic to the lattice of varieties
of structures of type £. To this goal, the next lemma, a consequence of 8.1.3,
establishes the existence of a one-one correspondence between both lattices.

LEMMA 8.3.2. The following properties hold for any class K of L-structures and
any cardinal a.

(i) V(H.K) = V(K).

(i) HoK = HoK' whenever KC K CKY.

Proof. Certainly (i) is a direct consequence of 8.1.3. To see (ii) we must use that
AtmKY = Atm K, equality that is immediate from the definition of KY. m

The desired generalization of Neumann’s result is the following. A similar iso-
morphism was already pointed out by Mal’cev [87], who calls totally characteristic
the structures that we name fully invariant,

THEOREM 8.3.3. Let V(L) = (V(L),C) denote the lattice of varieties of L-
structures, and H(L) = (H(L), <) the lattice of w-Herbrand structures of type
L. Then V(L) and H(L) are dually isomorphic by the mapping V+— H,V.

Proof. Indeed, the previous lemma guarantees that the mapping V+— H, Vis a
bijection. Thus the theorem follows from the next easy equivalence: V C V' iff
AtmVD AtmV'. u

The problem of establishing a similar correspondence between quasivarieties of
structures of type £ and some other kind of objects related to Herbrand structures
seems to be a little bit more intricate. For instance, notice that 8.1.3 does not hold
any longer for quasivarieties, since Q(3H.,K) may be strictly included in Q(K); in
other words, there can be an implicative formula which is true in 3, K but not in
K. However, we do have the next equivalence.

ProPosITION 8.3.4. Let K be any class of L-structures and let «, 3 be two arbitrary
cardinals such that § > a > 0. Then, if ¢ € Imp,L, we have that KE o if FF ¢
for every K9-filter extension of HgK.

Proof. Fix an arbitrary implicative L-formula ¢ over o variables. Clearly, if KF ¢
then K?Ep and hence FF ¢ for all § € FexoHsK. So the forward implication
holds. Assume conversely that FE ¢ for every KQ-filter extension F of HpK, and
let %A € K and g : Teg o —A. We must show AF ¢ [g]. Indeed, consider a homo-
morphism h from Tec g into A such that h [ Tec o = g, and define §F = h~12.
Then § applies strong homomorphically into 2, so once more we use 1.2.2 and the
Homomorphism Theorem to conclude that § € ES(2). But this says § € K, since
obviously ES(2) C K?. So, by virtue of 8.1.2, F is a K9-filter extension of the
Herbrand structure HsK. We can now apply the hypothesis and obtain FF ¢. In
particular, this means that, if k is the canonical embedding from Te. o into Tec, g,
then we have F ¢ [k] (recall that 8 > a by assumption). But using the definition
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of &, the equivalence
SEY (k] iff ARy [g]

holds whenever ¢y € Atm L. Hence, the condition FF ¢ [k] implies AF ¢ [g], as
required. =

The preceding result suggests the right way to obtain the desired correspondence.
Indeed, it will turn out that a special sort of closure systems determined by the
Herbrand structures are the algebraic counterpart of quasivarieties of structures.
With this goal, let us follow Hoehnke [65] in defining a fully invariant system on
an algebra A as any set S of structures with underlying algebra A satisfying the
next two conditions: (i) S is an algebraic closure system; (ii) for all % € § and all
h:A—A, h~'2 € S. Then we have the following result, which looks like 8.3.1.

THEOREM 8.3.5. For any quasivariety K of L-structures, the set FexH, K is a
fully invariant system Conversely, if § is a fully invariant system on Te., tben
S Feng‘c S

Proof. By 5.1.1, FexH,K is an algebraic closure system for any quasivariety K.
Moreover, if § is a K-filter extension of 3 K and h : Te —Te, is an algebra
homomorphism, then we have

H.K<h™1F € ES(B),

and consequently h~!F € FexH,K. So the first implication holds.

Suppose now §S is a fully invariant system on the algebra of £L-terms. Let F,
be the least element of S, i.e., Fo = [|S € S. For each algebra homomorphism
h : Tec —Tec, we have h~'Fo € S and hence o h~1Fo. Therefore Fp is a fully
invariant structure on Tegz. Using 8.3.1, we obtain that Fo = 3, V(Fo) or, which
is equivalent by 8.3.2(ii), Fo = HoQ(Fo). Also, FoF ¢ iffl SFp for any atomic
formula . So we apply once more 8.3.2 to get that Q(Fo) and S? have the same
w-Herbrand structure. All this says the converse will be proved if we show that
S = Fego3o. Indeed, the inclusion from left to right is trivial. For the reverse, let
2 be an element of Fegqy. We extend the notation introduced in Chapter 5 and
write Fgs? to mean the least element of S that is a filter extension of %, i.e.,

Fgs?:=}{B€S: AgB}.

Then Fgs € S, for § is a closure system by hypothesis. So, by repeating the
argument that proves the “only-if” part of 5.1.1, we obtain that Fgs = . This
completes the proof. m

Again, it is easy to see that the set of fully invariant systems on a given algebra
is closed under arbitrary intersections. We use this fact in the next theorem, whose
universal algebraic version is the main result in Hoehnke [65, Thm. 2.3].

THEOREM 8.3.6. Let Q(L) = (Q(L),C) denote the lattice of quasivarieties of
L-structures, and let FH(L) = (FH(L),C) the lattice associated to the set of all
lattices of the form FexH,K, for K a quasivariety of type L. Then Q(L) and FH(L)
are isomorphic by the map K — Fex3_ K.
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Proof. Clearly, the mapping is a bijection, whose inverse is FexH,K +—— K. Also,
if K and K’ are quasivarieties of the same type, K C K’ implies H,K' g H K
and consequently FexH, K C FexH,K'. So, the map K — FexH, K is order-
preserving. Finally, FexH K C FexH K’ entails that any K-filter extension of
H,K is a member of K’ and thus a model of ImpK’. Hence, by Proposition 8.34,
KE ImpK/, and from here it immediately follows that K C K'. Therefore, the
function FexH,K — K is an order-preserving inverse of the preceding map. In
conclusion, Q(L) and FH(L) are isomorphic lattices. =

We close this section noting that the varieties of Q(£) correspond exactly to the
elements FexH., K of FH(L) that are principal ideals in Fe H,K; see {65, Thm. 5.2].



9. Some Mal’cev-Type Theorems

It has already been established in earlier chapters that in passing from the study
of classes of algebras to classes of structures, the very central notion of congruence
on an algebra need to be replaced, depending on the purpose, by that of congruence
on a structure or by that of filter extension (or even by the concept of congruence-
filter pair, as it happens when we want to develop a Subdirect Representation
Theory). Besides, as our real interest is in languages without equality, the usual
notion of congruence on an algebra is still susceptible of another generalization,
viz. the concept of relative congruence introduced in Section 5.2 by means of the
Leibniz operator. Qur opinion is that it may be of interest to know if some of
the Mal’cev conditions proved for (relative) congruence identities also generalize in
some of the forecoming senses, and if so, how the extensions look like. In view of
the Generalized J6nsson’s Theorem (Theorem 6.3.2), this is specially true in the
case of identities concerning lattices of relative filter extensions; one really would
like to have something like a Mal’cev condition for relative filter distributivity of a
quasivariety of structures.

In this Chapter we provide an answer to a very few questions that are inside the
scope of this general problem, and that they concern the characterization of some
properties of lattices of relative congruences.

9.1. Relatively Congruence Permutable Classes

Let K be any class of L-structures. An L-algebra A is said to be congruence
permuiable relative to K if every pair of K-congruences on A permute, i.e.,0-¢ = ¢-0
for all 8,¢ € CoxA. The class K is called relatively congruence permutable (RCP
for short) if every L-algebra A is congruence permutable relative to K. The first
result provides an interesting reformulation of the concept of relative congruence
introduced in Section 5.2 which is going to play quite an important role in the
present Chapter. Let

Alg(K*)={A: A, € CoxA},

i.e., Alg(K") is the whole class of L-algebras A such that K5 contains some reduced
structure. Then we have the following.

98
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ProrosiTION 9.1.1. For any full class K of L-structures and any L-algebra A,
CoxA = COMg(x-)A.

Proof. By definition, if 8 is a K-congruence on A, there exists a structure 2 € K
such that 6 = Q2. Hence, 2/6 € K* and consequently A/6 belongs to Alg(K").

Conversely, suppose 8 € Coarg(x+)A. Then we have that QU = A4 /6 for some
member 2 of K with underlying algebra A /6. Define B := x 19(, where 7y denotes
the natural projection from the algebra A onto the quotient A/6. Then 8 is an
element of K, for this is a full class by hypothesis. Moreover, by Theorem 2.1.8,
QB =7;10%=n;'A4/s = Kerx;! = 0. In conclusion, § € CoxA. m

An obvious consequence from the above proposition is that relative congruence
permutability has an easy universal algebraic interpretation as follows.

CoROLLARY 9.1.2. Let K be any full class of L-structures. Then the following
statements are equivalent.
(i) Kis RCP.
(ii) Every pair of Alg(K")-congruences on A permute, for all L-algebra A.
If, in addition, K is protoalgebraic and satisfies condition (5.1), then both prop-
erties above are equivalent to the following one:

(iii) Every pair of Alg(K")-congruences on A permute, for all A € Alg(K*).

Proof. The equivalence between (i) and (ii) and the implication form (ii) to (iii) are
clear. So let us prove that (iii) implies (ii). For this, consider any L-algebra A. We
must show that every pair of Alg(K*)-congruences on A permute. Let

9K,A = nCOKA.

Since K is protoalgebraic and satisfies condition (5.1) by hypothesis, fx a is also
a K-congruence on A by virtue of 5.3.4; actually, we have that 0x o = Q((\Ka).
Hence the quotient algebra A /6 A is a member of Alg(K"). Moreover, the Corre-
spondence Theorem entails that

(9.1) COA,](K.)A x>~ COAIg(K‘)A/OK,A

by the map ¢ — #/0x a. So, since (§/0)-(¢/0) =6 -¢/O for all 6,¢4,0 € Co A
such that © C 0, ¢, we apply (iii) and conclude the desired conditon. m

COROLLARY 9.1.3. For any quasivariety Q of L-algebras, the class Ko is RCP iff
every pair of Q-congruences on A permute, for allA € Q. »

The following is the main result of the Section; it states a Mal’cev-like condition
for relative congruence permutability in semialgebraic quasivarieties of structures.

THEOREM 9.1.4. Assume £ contains some function symbol and let K be a semi-
algebraic quasivariety of L-structures. Then K is RCP iff there exists a ternary
L-term i(z,y, z) such that for all A € K and alla,b € A,

tA(a,b,b) = a (V) and t2(a,a,b) = b ().
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Proof. Consider first the backward direction. Let A be any L-algebra and let
0,9 be two K-congruences on A. Take two arbitrary elements a,b € A such that
(a,b) € 0 - ¢. By definition of the product -, there exists a ¢ € A satisfying af¢c and
c¢b. Hence, by (ii), we have

agtt(a,c,c)$tP(a,c,b)01*(a,b,b)0b,

and so {a,b) € ¢ - 0. This proves the inclusion § - ¢ C ¢ - 6, and so the required
condition.

To show the converse, let Tec s denote the algebra of L-terms over the three
variables z,y and 2, and define the class

Hyy:={(h,2%): A€ K, h:Ter3—A and hz = hy (Q2)}.

For every pair (h,?) of H,,, the structure J5 a = h~!2 belongs to ES(K), which
is included in K for this class is a quasivariety by hypothesis. On the other hand,
Proposition 6.1.1 says that the structure

Jzy = ﬂ(h,m)eﬂ,,, Jha

is isomorphic to a subdirect product of the system {Jp o : (h,2%) € H:y} (observe
this system is in fact a set, though H;, may be a proper class). Consequently,
once more the assumption K is a quasivariety entails that J. , € K. We can define
exactly in the same way the class Hy . and the structure J, ., this time y and z
playing the role of z and y respectively, and again we can prove that J, . € K.
Hence, using (i), we obtain

(9.2) Iz Wy: = Wy,: - Wz y-

Now let us see that z = y (Js,y). Indeed, for each (h,%) € H 4, the relation
h=1Q% is a congruence on Jua, by Lemma 2.1.7. Moreover, z = y (h~1Q2).
Therefore, we have

Niroyen.., h"Qﬂ €Co3zy and 2=y (Nihoen.,, h—1Q9).

So we just need to apply the definition of Leibniz congruence; n(h,m)e H.., A0
must be included in Q3. , and consequently £ = y (23:,y). The same argument
proves that y = 2 (QJ,,:). Therefore, using (9.2), we obtain (z,z) € QJy,. - Iy
This means there exists an element t(z,y, z) € Tec 3 such that

(9.3) z =1(z,y,2) (y,:), z2=1t(z,y,z) (Wz,y)-

It suffices to show that t(z,y, z) satisfies (ii). To this end, consider an 2 € K and
choose arbitrary elements a,b € A. Let h be an algebra homomorphism from Tec 3
into A such that hz = a and hy = hz = b. Clearly (h,2) € H,,., and hence
Jy,z XJn,2. We now apply that K is semialgebraic. Since A : Jp 0 —,hJn o and
h3na C AU, we have
3y,: € a2, by =¢-monotonicity of ,
= h™'QhJs 2, by Theorem 2.1.8(i),

C h™l0Y, . by C-monotonicity of .
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Consequently, the first part of (9.3) implies a = tA(a, b, b) (Q2).
The conclusion b = t4(a, a,b) (Q2) is proven similarly. m

Observe that, if we use as usual the symbol &= to formally represent the common
identity relation, then condition (ii) in Theorem 9.1.4 can be expressed as follows:

Alg(K YFi(z,y,y) =z At(z,z,y) = ¥.

Hence, by Corollary 9.1.2, the equivalence of (i) with (ii) in the preceding theorem
amounts to Mal’cev’s Theorem on congruence permutability whenever Alg(K") is
a variety (e.g., if K = Ky for some variety V of L-algebras). But in general this is
not the case; Alg(K") may not be a variety nor even a quasivariety.

Using the previous theorem, we can still prove a further characterization of rela-

tive congruence permutability that sharpens the universal algebraic reformulation
stated in Corollary 9.1.2.

CoROLLARY 9.1.5. Assume L contains some function symbol and let K be an
arbitrary semialgebraic quasivariety of L-structures. Then the following statements
are equivalent.
(i) K is RCP.
(ii) Alg(K") is congruence permutable in the usual universal algebraic sense,
i.e., every pair of congruences on A permute, for all A € Alg(K®).

(iii) Every pair of congruences on A containing 0x a permute, for all L-algebra
A

Proof. Assume K is RCP and let us prove (ii). Take A € Alg(K") and consider two
arbitrary congruences 6, ¢ on A. The definition of Alg(K*) says that there exists
an 2 € K such that Q% = A,. So, by Theorem 9.1.4, a()cqﬁb implies

a=t?(a,c,c) ¢tA(a,c,b) 0tA(a,a,b) = b,

for all a,b,c € A. As aresult, 6-¢ C ¢ -6 and consequently # and ¢ permute, as
required. ‘

Suppose now that (ii) holds and fix any L-algebra A. Define 2 = [} Ka. Since
K is a protoalgebraic quasivariety, we have 2 € Ka and Q2 = 6x a, and hence
A/8x.a € Alg(K*). So, every pair of Co A /fk,a permute by hypothesis. The rest
of the proof runs as in 9.1.2, using the Correspondence Property.

Finally, the implication from (iii) to (i) is clear, for 6x A is contained in every
K-congruences of A, for all L-algebra A. m

COROLLARY 9.1.6. Assume L contains some function symbol. Then the following
are equivalent for each quasivariety Q of L-algebras.
(i) Every pair of Q-congruences on A permute, for all A € Q.
(ii) Q is congruence permutable in the usual universal algebraic sense.
(iii) There exists a ternary L-term t(z,y,z) such that

QFt(z,yy)mz At(z,z,y) = y.
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Proof. It follows immediately from 9.1.3,9.14 and 9.1.5. m

It is natural to ask about the consequences and the interest of taking as notion
of congruence permutasbility of a class the following: K is congruence permutable iff
every pair of congruences on 2 permute, for all 2 € K. The fact is that it becomes
hard to find in this case a congruence permutable class; actually, we can argue there
is no way in our context of proving a Mal’cev-like result characterizing congruence
permutability in this sense and that specializes to Mal’cev’s Theorem. Indeed, if
@Q is any class of L-algebras, then we have Kg is congruence permutable (in the
above sense) iff for each L-algebra A and each Q-congruence 8 on A, every pair of
[A 4, 6] permute, and this condition is far from the common notion of congruence
permutability of Q.

In spite of this, a proper generalization of Mal’cev’s Theorem that points towards
this direction is proved by Weaver [120], certainly in a different context?4. But it is
not clear Weaver’s result really strengthens Mal’cev’s one, for no example of a class
of structures satisfying the stated notion of congruence permutability is provided in
his paper, aside from the cases already covered by Mal’cev’s Theorem. Something
similar occurs with other properties of lattices of congruences, like distributivity,
arithmeticity and so on.

9.2. Study of Other Mal’cev Conditions

In light of the results of the preceding Section, we can think of two feasible
extensions of the usual concept of congruence identity in universal algebra, both
refering to our notion of relative congruence. For the sake of simplicity, let us
center our attention on the property of congruence distributivity; the situation is
very much the same for some other properties (none of them the one considered
previously!). Let K be any class of L-structures. Then K is said to be congruence
distributive (CD for short) if the class Alg(K") is congruence distributive in the
usual sense, i.e., if Co A is a distributive lattice for all A € Alg(K*). If, moreover,
K is protoalgebraic and satisfies condition (5.1), K is called relatively congruence
distributive (RCD for short) if CoxA is a distributive lattice for all L-algebra A.
(Recall that assuming protoalgebraicity and (5.1) on K is enough to guarantee that
CoxA has alattice structure, inherited by that of Ko through the Leibniz operator).

The first two results are easy reformulations of CD and RCD, respectively; com-
pare them with the contents of Corollaries 9.1.2 and 9.1.5 above.

ProPosITION 9.2.1. Let K be any class of L-structures. Then K is CD in the above
sense iff the sublattice [fx, a,V 4] of Co A is distributive for each L-algebra A.

24The main difference of Weaver's context compared with ours relies on the fact that he
assumes the existence of an equality symbol % in the language and consider as a generalization
of varieties those classes of structures axiomatized by implications of the form A ¢ —¢, where ®
is an arbitrary set of atomic formulas (maybe infinite), none of them of the form s & t, and ¢ is
any atomic formula.
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Proof. Clearly, if A € Alg(K") then fx o = A,; so the backward implication is
trivial. To see the reverse implication, assume K is CD. We already know that for
each L-algebra A, the quotient A /fx A belongs to Alg(K"). Hence Co A /O, A is
a distributive lattice by hypothesis. Thus it suffices to apply the Correspondence
Theorem of universal algebra and we complete the proof. m

ProrosITION 9.2.2. Let K be any protoalgebraic class of L-structures satisfying
condition (5.1). Then K is RCD iff Coaig(x+)A is distributive for all A € Alg(K").

Proof. The implication from left to right is trivial. For the converse, we apply
(9.1). Then Coyge(x+)A is distributive iffl Co4yg(xs)A/0k A is. So the backward
implication also holds. m

In contrast to what happened for congruence permutability, this time CD and
RCD are not equivalent assumptions on a class K, except of course in the trivial
case that Alg(x*) is a variety; clearly, in this case the lattice Co41g(x+)A coincides
with the lattice of all congruence relations on A. The point is that, as we already
noticed in Section 5.2, Cox A is not in general a sublattice of Co A. Besides, it is
still an open problem to obtain a manageable description of the lattice operation
Vx, which eventually could be helpful to get a Mal’cev-like condition for relative
congruence distributivity. Recently, it has been proved such a kind of result for
quasivarieties of algebras; in our context, this result says the following.

THEOREM 9.2.3. (Dziobiak [45), Nurakunov [95]) Let Q be any quasivariety of
L-algebras. Then the following statements are equivalent.

(i) Ko is RCD.

(ii) (Kg)rrs1 = (Kg)rs1 and there exists a finite nonempty sequence

(t;(z,y,z),u,-(:r,y, z),v.'(:t,y,z)), i<n,

of triples of ternary L-terms such that the next conditions hold for all
A € Ko and all a,b,c € A:

t*(a,a,0) = uP(a,q,b) (), i< n;
ul(a,b,b) = v2(a,b,b) (), i< m;
tM(a,b,0) = ul(a,b,a) = v,-A(a,b,a) (QA), i<n;
t2(a,b,c) = v2(a,b,v) (Q), for all i < n implies a = ¢ (). =m

The proof of the preceding theorem largely rests on the fact that Cox, A (or
equivalently CogA) is an algebraic complete lattice. We are going to see, however,
that this is in general quite a strong assumption. For this, we first need a purely
universal algebraic lemma. The proof of the necessity was suggested to the author
by Czelakowski; for the sufficiency, see [105].

LEMMA 9.2.4. Let Q be any class of L-algebras closed under isomorphisms. Then
the set Cog A is an inductive closure system iff Q is a quasivariety.
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Proof. Suppose CogA is an inductive closure system and let us see that @ is a
quasivariety. Using 4.4.1 and 4.4.5, it suffices to show that Q is closed under Py,.
So, let A; € Q, i € I, and assume A C,q [];c; Ai. If m; denotes the natural
projection from A onto A;, then A/Ker x; = A;, so that Ker m; € CogA for all
i € I. Moreover, [);c; Ker m; = A4 for A is by hypothesis a subdirect product of
the system {A; : i € I'}. Hence, since CogA is a closure system, A4 € CogA, i.e.,
A € Q. This proves that Q is closed under P,.

Take now X € Sb(I) and let Fx be the principal filter on I generated by X.
Define the set

Ax = Hiex A TA.

It follows immediately from A C,4 Hiel A; that AT X C,q [l;ex Ai. Also, A/Fx
is isomorphic to A x. To see this, consider the surjective mapping h from A/Ox, 4
onto Ax defined by setting h(a/Fx) = afX. So given h is clearly well defined and
one-one, for if a/Fx,b/Fx € A/Oxy a,

a/Fx =b/Fx ifi {i€el:aq;=5}2X
iff alX =bl{X.

Thus, since

h(fA17% )/ Fx ...an/Fx) = h(fAa1...00/ Fx)
- anl ...8p [X = fNXh(al/]:x) ...h(an/fX)7

h is the desired isomorphism. This proves @ is closed under filtered subdirect
products modulo principal filters. The closure of @ under arbitrary filtered subdi-
rect products follows from the fact that F = {Jy¢r Fx. The set of congruences
{©rx,4a : X € F} is a directed system of Cog A whose union is O 4. There-
fore, since Cog A is an inductive closure system by hypothesis, ©r 4 € CogA, i.e.,
A/F € Q. This completes the proof of the necessity.

For the converse, suppose Q is a quasivariety and let {6; : i € I} any family of
Q-congruences on A. The quotient algebra A/[;c; i is subdirectly embeddable
into the direct product [];; A/6;. Hence, as by assumption A/6; € Qforalli € I,
we have A/ (;¢r0i € P,a(Q) = Q. This shows that Cog A is closed under arbitrary
intersections. Assume now {6; : i € I} is a nonempty chain of Q-congruences on
A. The family {[i) : { € I} of subsets of I ([{) = {j € I : i < j}) satisfies the finite
intersection property and thus it is included in some ultrafilter of S5(I). Denote it
by & and let B := [];.; A/6;. It is an easy matter to check that the kernel of the
function h : a — (a/6; : i € I) composed with the natural projection my from B
onto B/U coincides with the union J;¢; 6;; actually, using that {§; : i € I} is a
chain, we have the following equivalences:

(a,b) € Ker (myoh) it {i€I:af6;=0b/6;}eU
iff a/6; =b/6; for some i€l
iff {a,b) € U;e; bi-
In conclusion, the quotient A/|J;¢; i is isomorphic to a subalgebra of B/U, and

thus, as Q is a quasivariety, A/J;¢;6i € Q. This means |J;¢;6; € CogA and
finishes the proof of the lemma. m
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THEOREM 9.2.5. Let K be any full class of L-structures and A any L-algebra. The
set CoxA is an inductive closure system iff the class of L-algebras Alg(K") is a
quasivariety.

Proof. It follows trivially from Proposition 9.1.1 and the previous lemma. =

It is still an open problem to find out a necessary and sufficient condition, ex-
pressed in terms of the Leibniz operator or by other means, for the class Alg(K")
to be a quasivariety. But in any case the above theorem has a negative conclu-
sion: it seems hard to strengthen the content of Theorem 9.2.3 by considering more
arbitrary quasivarieties of £-structures.



10. Connections with Algebraic Logic

It is generally understood that three distinct traditions can be traced back in
the history of algebraic logic?®; see, e.g., [9] or [91]. The first one of these traditions
originated with the work of Boole and De Morgan [16,39], and it is characterized
by the fact that algebra is viewed as the embodiment of logic rather than merely
a representation of it. At the present time this tradition is partly overshadowed
by other algebraic approaches to logic, mainly because of the huge influence of the
so-called logicist method of Frege, Whitehead and Russell. It remains alive however
in the modern theory of relation algebras.

The second tradition largely started with Tarski [114). He established the bases of
a method for the algebraization of various logical or deductive systems that arised
from the formalism of the preceding three authors?®, The main fact on which
this second tradition rests on is that the whole deductive apparatus of a logical
system, as well as many of its higher-order metalogical properties (e.g., deduction
and interpolation theorems), can be interpreted algebraically in many cases. So,
according to this tradition, algebra plays an auxiliary role as just a useful way
of representing logic. The very precise investigation of the connection between
deductive systems and classes of algebras is the main purpose of this algebraic
approach to logic and it has been carried on by several authors under different views;
e.g., [1], [2], [15), [17], [47], [98], [99]. A culminating point in this investigation was
the abstract analysis of the notion of algebraization worked out by Blok and Pigozzi
[8). They developed a theory of algebraizable logics that have deeply influenced most
of the subsequent contributions to the subject.

The third tradition concerns the investigation of algebraic semantics of deductive
systems on a more general level; instead of looking for a class of algebras whose
quasi-equational theory fairly describes the entire deductive apparatus of the sys-

25The phrase “algebraic logic™ originated with Halmos [59]. He intended “algebraic logic” to
refer specifically to the algebraization of first-order prediacte logic, but it has come to mean the
whole body of work in logic in which algebraic methods are dominant.

26 The definition of deductive system was carried out in several stages by Tarski during the
1930's [111,112,114,116]; nowadays. it usually means a particular purely algebraic language to-
gether with a consequence relation attached to it (see, e.g., [8, p.5]). This notion is general
enough to include not only all the classical and non-classical systems of sentetial logics but also of
first-order logics. For instance, a formalization of classical first-order logic as a deductive system
in the above sense is provided in [8, Appendix C).
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tem, as it happens when it is algebraizable in the sense of Blok and Pigozzi [8],
now the “algebraic” properties of its class of matriz models are examined?’. So
this time the role algebra plays in logic need to be understood in a more abstract
sense. The roots of this last tradition can be found not only in the development
of matrix semantics for propositional logic by Lukasiewicz and Tarski and their
collaborators in the 1920’s, but also in the model theory worked out by Birkhoff
and, a bit later, by Mal’cev for equational logic and first-order logic with equality,
respectively. Roughly speaking, it relies on the fact that by imposing some restric-
tions on a deductive system, much weaker than the system to be algebraizable in
the sense of [8], the matrix semantics begins to show many of the characteristics of
a purely algebraic semantics, and thus a good part of the theory of varieties and
quasivarieties carries over to classes of matrices?s.

The whole of our work can be seen as a contribution to this third tradition in
algebraic logic, which can be traced back to model theory and that now we intend
to develop into a new trend in this area. The primary motivation of our shift from
the investigation of matrix semantics of deductive systems to the study of classes
of arbitrary first-order structures defined without equality was the emergence of
some more general kinds of logical systems, viz. the k-dimensional deductive sys-
tems of [11] and the Gentzen systems of [101], and the much attention they have
attracted recently. Since Bloom [13], it is well known that any deductive system
in the sense defined above can be formalized as an (elementary) strict universal
Horn theory without equality and with a single, unary relation symbol. A simi-
lar interpretation, however, can be carried out for a rather general sort of logical
systems that include the preceding ones and even some other consequences nat-
urally associated to classes of algebras, like the quasiequational consequences [46].
Although the obtained theories need to be defined this time over languages with
maybe more than just one relation symbol, the truth of the matter is that the strict
universal Horn fragment of first-order logic is still enough to get such an elementary
characterization for this broader class of logical systems.

This is a fundamental fact that, together with Theorem 5.1.1 of Chapter 5, brings
us to what in our opinion is the core of the connection between the work developed
previously and algebraic logic: strict universal Horn theories (without equality)
seem to be the elementary notion that better retains the main features of Tarski’s
deductive systems. Just because of this conviction, a great deal of the theory of
deductive systems, including their matrix semantics, is extended in the previous
chapters to the formalism of UHL without equality. The ultimate purpose is to
lay the foundations for a theory general enough to encompass the investigation of
algebraic semantics of particular types of logical systems.

Many examples of the well-behaved classes introduced in Chapter 5 are furnished
in the literature on algebraic logic, a small part of which have been cited before and
can be found in the bibliography. In fact, we already pointed out that the concept
of Leibniz operator and the hierarchy

27Gee, e.g., [8, p.9] for a definition of matriz model of a deductive system.
28 We mentioned this point in the Introduction. So see there in for some references.
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Purely Algebraic Quasivarieties

Algebraic Quasivarieties

Semialgebraic Quasivarielies

Protoalgebraic Quasivarieties

Quasivarieties

comes from this research area. Thus, for instance, the protoalgebraic deductive
systems introduced in [7] are exactly those systems whose class of matrix models
form a protoalgebraic quasivariety in our sense. To better illustrate this influence,
it is appropriate to mention some examples, borrowed from sentential logic, of well-
behaved quasivarieties of structures. For instance, the classes of matrix models of
the following sentential logics are of the type indicated below:

1. Purely algebraic quasivarieties: classical logic, intuitionistic logic, nor-
mal modal logics, the relevance logics R and RM, many-valued logics of
Lukasiewicz; see [8], [98].

2. Algebraic quasivarieties that are not purely algebraic ones: quasi-normal
modal logics S4pp and S5pp [66).

3. Semialgebraic quasivarieties but not algebraic ones: quasi-normal modal
lOgiCS KMp and TMP [66].

4. Protoalgebraic quasivarieties that are not semialgebraic: the sentential
logics defined by the Gentzen calculi G; and G of [48] .

5. Quasivarieties that are not even protoalgébraic: the {V, A}-fragment of
classical logic and the {V,A,—}-fragment of intuitionistic logic are not
protoalgebraic; see [8], [49), [101].

The property of a quasivariety of structures to be purely algebraic deserves a
special consideration for it is closely related to the notion of algebraizable deductive
system introduced by Blok and Pigozzi. In [8] they showed that the algebraizable
deductive systems are just those systems whose class of matrix models form a
purely algebraic quasivariety. Their result has been recently extended to general
strict universal Horn theories in [41], and by virtue of this generalization we can
find some other examples of purely algebraic quasivarieties that are not matrix
semantics but come from particular Gentzen systems; see [101). A remarkable
fact is that purely algebraic quasivarieties of L-structures are, roughly speaking,
the quasivarieties elementary definitionally equivalent to some quasivariety of £-
algebras, where the possible definitions are required to be of a very special form;
see [8, Appendix A]. That is way they exhibit so nice algebraic properties.
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Special Notation

Numbers refer to the page on which the notation is defined or first used.

L, 7 ALX, 9

Fo, Ra, 7 h:A4—-B, 9
AL, 7 h:A—,B, 9
Tec,or Tee, T h2t, 9

Str L, 7 h=18, 9
For L, ForL, 7 Tlies ™, 10
Atmo L, Atm L, 7 [Ties Ra» 10
Imp,L, ImpL, 8 OF, 11
g:Teco—A, 8 H;:, Ry, 11
Ak p o), 8 Tler /7, 11
AF ¢, 8 [lie; Ra,/F, 11
Ak p(z1,... ,zk) [@1,... 0], 8 a/F, 11

AF ¢ [9(z/a)), 8 ITes 2, 11
TheK, 8 A Cod [Tier Air 12
Un,K, 8 b, ]ier iy 12
Atm.K, 8 Or ., 12
Imp.K, 8 . A/F, 12

Ag, 8 R%, 12

ACB, 8 A%, 13

A<B, 8 a/Or a, 13
Mics %, 8 a=b(0), 15

U,‘elmi) 9 aEb(G), 15
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Cof, CoA, 15
oA, 15

Va, 15

Kerh, 18

fp, 18

A/6, 19

T, 19

B¢, 20

A, A%, a*, 21
h* . A* —2B*, 21
A=98, 23
AC. B, 23
h:2A—.8, 23
La, 24
(Ql,a)aeA, 24
DA, 24

D, 24

D2, 24
ModT, 26
Mod*T', 26

L, 26

K*, 26

Str* L, 26
TEe, 27
TE, 27
FCeq.t) Tio,@r---, 28
Keg, s Kio,@s--+, 28
S, 30

S., 30

F, 30

H, 30

R, 30

E, 30

P, 30

Py, 31

P,, 31

P4, 31
P;,, 31
0<0, 31
o, 31

0, 31

KE, 37
KY, 40
K@, 42

Q, 42

KY, 45

v, 45
Hgq, 46
Fq, 46
Ka, 48
FCKQI., Ferl, f 50
Fgx%, 50
COQ, 50

hx : Ferl —>Fex%, 50

hx2l’, 50
COKA, COxA, 51
Fg3[r;a], 54
QoA, QoA, 56
Cfx2, 61

Krs1, Kresi, 63
Kgst, Krest, 63
Krrs1, 70

Ly, 74

HK, 83

Rx.ar %2, 83
V(L), 95

H(L), 95

(L), 96
FH(L), 96
Alg(K*), 98
fx,4, 99
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Birkhoff’s Variety Theorem, 43,93
Completely subdirectly irreducible structure, 63
Completeness Theotem, 27
Congruence, 14
—— distributive class, 102
—— permutable class, 98
Congruence-filter pair, 47%,61
Deductive system, 106*
Diagonal relation, 8
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Diagrams’ Lemma, 25
Direct product, 10
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—— structure, 24
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Finitely meet prime structure, 69
— subdirectly irredubcible structure, 70
First Isomorphism Theorem, 20
Free structure, 82
Fujiwara’s Theorem, 89
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—— elementary class, 37
—— model class, 26
—— semantics, 27
Fully invariant structure, 94
— —— system, 96
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Generic structure, 84
Gentzen system, 107
Herbrand structure, 83
Homomorphism, 9

—— Theorem, 20
Image structure, 10
Implicative formula, 7
Inductive closure system, 48*
Inverse image structure, 10
Isomorphism, 9
Join-continuous class, 60
Jénsson’s Theorem, 70,72
Kernel, 18
K-congruence, 51
K-congruence-filter pair, 61
K-filter extension, 50

—— generated by a class, 50
K-structure, 48
L-algebra, 7
L-reduct, 7
L-structure, 7
Language, 7

—— with equality, 8

—— without equality, 8
Leibniz congruence, 15

—— diagram, 24

— equality, 17

—— formula, 16

— operator, 51

— quotient, 21
Los Theorem, 12
Matrix model, 107"
Meet-continuous class, 58
Meet-prime structure, 69
=<-monotone class, 53
C-monotone class, 58
Ordered algebra, 28
Protoalgebraic class, 53
Purely algebraic class, 60
Q-congruence, 50
Quasi-order, 16
Quasiordered algebra, 28
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Quasivariety, 40"
Quotient structure, 19
Reduced class, 26
elementary class, 37
model class, 26
quasivariety, 42
relative (€)-subvariety, 46, 87
structure, 15
universal class, 40
variety, 45
Reduction, 9
—— operator, 26
Reductive homomorphism, 9
Relative congruence, 51
— —— distributive class, 102
— _— permutable class, 98
Relative filter distributive class, 71
e . extension, 50
—— (&)-subvariety, 40*,46,85
Second Isomorphism Theorem, 21
Semialgebraic class, 58
Strong homomorphism, 9
Structure, 7
Subdirect embedding, 12
—— irreducible structure, 63
—— product, 12
— Representation Theorem, 66
Substructure, 8
Term-structure, 48
Tolerance algebra, 28
— relation, 16*
Trivial reduced class, 27
Ultraproduct, 12
Universal class, 40
—— Horn Logic, 1*
Variety, 40°, 43
Weakly free structure, 68
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