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Abstract

Formation Flying (FF) offers space-dependent disciplines such as astrophysics, astrody-

namics, and geodesy, to name a few, the possibility of creating large spaceborne sensors

from an array of small spacecraft flying in formation. This creates exciting scientific

and technical opportunities as the formation could be arranged to work as, for exam-

ple, an interferometer of essentially unlimited angular resolution or a virtual telescope

of unrestricted focal distances. The definition of suitable algorithms for navigation

and control of FF missions has become one the major challenges to realize full FF

capabilities following the first validation of FF technology on NASA’s New Millennium

Program Earth Observing One (EO-1).

The focus of this dissertation is the design and evaluation of algorithms for naviga-

tion and control for formation flying missions. Given its importance, extensive research

has been already conducted to fulfill the increase of accuracy, autonomy, and other re-

quirements of the Guidance, Navigation, and Control (GNC) systems that derive from

novel applications of formation flying missions. To center the scope of present work, we

have mainly focused in three of the present challenges: the difficulties of fusing different

non-linear observations for relative navigation; the analysis and extension of behavioral

algorithms for controlling a formation of spacecraft; and the design and validation of

a control law for formation acquisition and formation keeping of a non-natural relative

trajectory. These three interconnected topics cover a wide range of research in forma-

tion flying and embody the main algorithm components of formation flying algorithms

from the observations to the navigation and to the control.

The first challenge consisted, thus, in addressing the difficulties encountered by

classical filters to estimate a state vector fusing common observations. We proposed

several strategies to improve the robustness of these filters under non-linear condi-

tions. Among these strategies, the modification of the residuals computation for the
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Unscented Kalman Filter (UKF) deserves special mention due to its excellent results

and robustness against nonlinearities. A theoretical basis for these results became,

thus, necessary regarding the new update equation of the UKF and has been developed

subsequently in the frame of this thesis. This work has been published in Perea et al.

[36] and Perea and Elosegui [34].

The collective motion exhibited by some groups of animals has recently attracted

the interest of many research groups who try to take advantage of the robustness

and efficiency of natural patterns. With this aim, we have investigated the possibility

of extending an interaction model that has shown emergent behavior. In particular,

the Cucker-Smale (CS) model has been extended for its application on spacecraft for-

mation flying. Numerical simulations of the Darwin mission have proved that this

strategy is suitable for loose formation keeping. Of special relevance is the low cost of

the controller, specially compared to an alternative strategy, the Zero Relative Radial

Acceleration Cones (ZRRAC) [35].

The problem of tight formation keeping is addressed in [33] and [32]. In these

papers, we first study the relative dynamics of a virtual telescope that follows a non-

natural relative trajectory driven by the position of an observed body and not by the

natural forces in space. This analysis has originated the design of several controls based

on different approximations of the relative dynamics. Their performances have been

tested and compared through numerical simulations of the PROBA-3 mission using,

first, computer based simulations, and then, a realistic platform with GNSS hardware

and operational flight software in the loop. The main conclusions show that simple

control definitions, as defined by the Linear Quadratic Regulator (LQR) and Linear

Quadratic Regulator with the Integral term (LQRI), can fulfill stringent requirements

for formation acquisition and tight formation keeping.
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Chapter 1

Introduction to study

1.1 Formation Flying Mission Definition

A Formation Flying (FF) mission consists of a set of two or more spacecraft whose dy-

namics is coupled through a common control law. This control law is usually expressed

in terms of a relative state vector, which commonly includes relative positions and

velocities, although some degrees of freedom can also account for rotational and trans-

lational displacements. It is quite common to incorrectly associate satellite constellation

missions, such as Global Positioning System (GPS), with FF missions. However, the

states of a constellation are not coupled in any way, and the orbit corrections for each

spacecraft only require individual satellite state vectors. Indeed, the control law of a

FF mission has to, directly or indirectly, consider the relative positions of the entire

formation. This does not mean that all satellites need to feature an active control law,

but, in that case, the control active satellites must track the inactive ones, or a target

that depends on their positions. In case of all satellites have an active control, they

must cooperate to achieve a common target, which can be modified along the mission

lifetime. These missions can feature the possibility to rotate, expand, contract, and/or

re-configure according to new targets, and enable evolution to larger formations. [42]

FF missions have significant benefits compared to single monolithic spacecraft in-

cluding the possibility of unprecedented high resolution for scientific applications, novel

applications in space, a reduction of the size and weight of the spacecraft with its con-

sequent savings in launch costs, a simplification of spacecraft design, and the possibility

of a fast replacement and redundancy in case of failure [9, 13].
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1. INTRODUCTION TO STUDY

1.2 Past, Present and Future of FF Missions

Figure 1.1: Artist
impression of GRACE,
DARWIN, and PROBA-3
missions, respectively.
Source: NASA, ESA, and
ESA, respectively.

Earth Observing One (EO-1) was the first mission se-

lected by National Aeronautics and Space Administration

(NASA) in 1996 which considered FF technology[47]. Since

then, dozens of missions involving FF technology have been

proposed to NASA and other space agencies worldwide,

considered, and moved throughout or up to various phases,

including launch and operations. Some outstanding exam-

ples because of its scientific and technology outcome are

the Cluster mission, to study Earth’s magnetosphere using

four coordinated satellites [12], and Gravity Recovery and

Climate Experiment (GRACE) tandem mission, where the

variations of the relative positions of its two satellites are

used to study Earth’s gravity fiels [45].

The expected outcome of proposed missions is evalu-

ated against its risks before selection, taking also into ac-

count global policies of the agencies, and other economical

aspects. Although some of the investigated missions are fi-

nally discarded for technical, scientific, economical, or even

political reasons, the outcome of their preliminary feasibil-

ity studies and designs can be of great relevance for other

FF mission technologies and applications. In this frame-

work, some missions should be highlighted, such as DAR-

WIN [51] and SIMBOL-X [53, 54], that have been cancelled

during the realization of this thesis. The first one consisted

in a formation of three to five satellites in an orbit around the second Lagrange point

(L2) with the aim of identifying Earth-like planets with possibility of life, which pre-

sented several technological and scientific challenges. Before cancellation of this pro-

gram, this mission was used as a reference scenario for the validation of novel control

algorithms during the realization of present thesis. In turn, SIMBOL-X was envis-

aged as an X-ray telescope for investigating high-energy astrophysics. The telescope

consisted in two satellites over a High Elliptical Orbit (HEO) with small inclination.
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1.2 Past, Present and Future of FF Missions

Table 1.1: Overview of future FF missions [18]

Mission Launch
Date

Number of
Spacecraft

Main Field Agency

TerraSAR-X
and TanDEM-X

2007-
2010

2 Earth’s digital model and
SAR interferometry

DLR/Astrium

PRISMA 2010 2 FF and Rendezvous
(RdV) technology demon-
stration

SSC/DLR/
CNES/CDTI

PROBA-3 2012 2 FF and RdV technology
demonstration

ESA

MMS 2013 4 Science. Magnetosphere NASA
TPF 2015 4 or 5 Sub-mm telescope NASA
PEGASE 2017 3 Infrared Interferometer CNES
MAXIM 2020 34 X-ray telescope NASA
MSR 2020+ 2 Mars exploration. Au-

tonomous long range RdV
ESA

LISA ? 3 Laser interferometer NASA
JC2sat ? 2 FF and technology

demonstration
CSA/JAXA

Groups of satellites are currently designed to build large synthetic aperture radars,

which significantly improve the angular and spatial resolution of past monolithic space

missions with several scientific applications. Table 1.1 contains an indicative list of

envisaged FF missions, which has been built from [18, 27] and the latest updates

in the webs of space agencies. Relevant examples of future applications because of

its demanding technological and scientific challenges are Laser Interferometer Space

Antenna (LISA) and Micro Arcsecond X-Ray Imaging Mission (MAXIM). LISA is in-

tended to use large synthetic aperture technology to detect gravitational waves from a

set of three coordinated satellites that will constitute a virtual telescope orbiting around

the Sun, similar to Earth [10]. In turn, MAXIM will offer the possibility of observ-

ing the region bordering black holes, known as the event horizon, with unprecedented

angular resolution [16] with a set of up to 34 satellites.

Another important set of missions comprise the technological ones. Before the in-

vestment on very challenging scientific missions with a technology demand well beyond

the current state-of-the-art, some intermediate missions shall validate improvements on

these technologies and be a leap between present and future space missions, such as
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1. INTRODUCTION TO STUDY

PRISMA [37], and PROBA-3 [49]. The principal aim of the PRISMA is to test and

validate critical technologies related to advanced FF and In-Orbit-Servicing. Similarly,

PROBA-3 will be a step forward in the demonstration of the novel technologies required

for FF, in particular, the autonomy of Guidance, Navigation, and Control (GNC) sys-

tems, as the third mission of the ESA’s Project for Onboard Autonomy. This last

mission has been of special relevance in the frame of this thesis since it has been also

used as a reference scenario for the development of some control algorithms, as it will

be afterwards detailed.

1.3 FF Technology Roadmap

The present mission roadmap illustrates a constant increase in FF technology demands.

The roadmap for achieving these technological challenges is, however, changing, and

depends on the success for achieving a diversity of intermediate targets. Although the

schedule and details of present technological roadmap for positioning and autonomy

are unknown to the author, the reader may appreciate some notes. According to main

space agencies, the control performances should reach the cm level in the next few

years, and the nanometer (nm) level in approximately one decade [27, 39]. Obviously,

the achievement of this accuracy would depend on the improvements in the navigation

system, which were intended to reach the nm in approximately one decade, while accu-

racy of present operating missions is at the m level. Another significant challenge for the

next decade is autonomy. Satellites are currently monitored and controlled mainly from

ground control centers. Increasing autonomy would imply a reduction of the Earth-

spacecraft communication links, an improvement on the control performances, and a

prompt reaction to contingencies, such as impending collision. With this aim, several

levels of autonomy have been identified for the flight Software (SW), fault detection

and isolation systems, planning and scheduling systems, communications, etc.[27, 39]

The main technological areas under investigation for coordinated satellite missions

can be summarized as follows:

Trajectory optimization; The design of trajectories must be optimized to reduce

the cost of the control and maximize the scientific outcome during the lifetime of

the mission.
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1.3 FF Technology Roadmap

Metrology; New sensors and instruments are under investigation and development for

high accuracy, with special focus on autonomous systems and relative navigation.

Navigation and control algorithms; Novel algorithms are currently investigated to

provide unprecedented high accuracy for relative navigation. Distributed space-

craft algorithms are also desirable to efficiently allocate the computational load,

and the fuel for maneuvers among different spacecraft; and for robustness against

failure of an entire satellite.

Actuators; High precision actuators have to be built to keep tight formations along

large periods of time. Special focus of this development are electric and cold gas

propulsion systems for formation keeping maneuvers.

Autonomy; One of the more challenging characteristics of the future coordinated

satellites missions is autonomy. Increasing autonomy, and reducing ground mon-

itoring tasks, would imply a reduction of the Earth-spacecraft links, an improve-

ment on the control performances, and a prompt reaction to contingencies. With

this aim, research has been also carried in the fields of guidance, navigation and

control autonomy.

Communications; In order to reduce the satellite communications with ground con-

trol centers, the monitoring of the formation must be transferred to the formation

for self-monitoring as much as possible. With this aim, suitable cross-link and

protocols have to be designed for inter-vehicle communications.

Tools; Several tools & testbeds need to be developed to validate both the Hardware

(HW) and SW before the launch of the mission, specially those FF specific issues.

Other; Other areas of research include mission planning, fault detection and isolation

algorithms, nanotechnology, etc.

This thesis focuses on the navigation and control algorithms of a GNC system

with special attention to autonomy. A GNC system is mainly in charge of providing

answers for “where the satellite should be?,” “where it really is?,” and “how to go?,”
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1. INTRODUCTION TO STUDY

respectively. With this aim, several units must interact, such as the metrology, the

GNC, and the propulsion systems.

The metrology system consists of a set of sensors that provide observations of the

system, as inputs to answer the “where” questions. The navigation system processes

these observations through a filter according to some physical models, which provides an

estimation of the state vector within a certain accuracy. Then, the control algorithms

must plan maneuvers scheduled according to the answers of the guidance and navigation

systems. Finally, the actuators are in charge of executing the maneuver commands.

To focus the scope of present work, we have mainly focused in three of the present

challenges involving the GNC systems. The first challenge addressed in this dissertation

deals with the possibility of fusing inertial and relative observations in the navigation

system, while the other two mainly deal with the definition of novel control algorithms

exploiting the benefits of natural behavioral models and the design of simple algorithms

to fulfill demanding positioning requirements, respectively. We describe these challenges

in turn.

1.4 Navigation challenge

In the case of single satellite missions or constellations, the metrology system usually

provides inertial observations only, i.e., inertial pseudo-range distances between each

spacecraft and some Earth stations, or GPS satellites in case of GPS navigation. A

new possibility of combining different types of observations frequently arises in case

of coordinated satellites. In this new scenario, mainly absolute and relative pseudo-

distances might be fused. Under these conditions, the most commonly used filters may

provide a misleading estimation of the satellite location. [21]

A filter is a process to estimate the state vector of a system based on the set

of available observations. As an example, for offline estimation of the mean orbital

elements where all observations are available at a time, a Least Squares Filter (LSQ)

could be used. However, this filter would not be used for real-time estimation, where

the estimates for the orbital elements are updated after every new observation set

is available. In this case, a sequential filter would be used instead. The Kalman

Filter (KF) is the best known among them.
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1.5 Control challenges

This filter, named after his author Rudolf E. Kalman, was first developed in 1960[24].

Since then, the KF and its version for nonlinear systems, the Extended Kalman Filter

(EKF), have been widely used and discussed in estimation problems, specially in navi-

gation, and they have become the most popular sequential filter[29]. However, the KF

was designed under hypotheses of linearity and Gaussianity of the noises that can not

be guaranteed in many situations, and it is the case when inertial and relative distances

are fused. To overcome these limitations, several variations of the filter have been de-

veloped. Among them, the best known are the already mentioned EKF, the Iterative

Extended Kalman Filter (IEKF), and the Unscented Kalman Filter (UKF). A parallel

approach to designing variations of KF include the development of high-order filters

such as the Gauss Second-Order Filter (GSF).

The difficulties associated to the estimation of a state vector fusing different sensors

have lately received special attention. As previously mentioned, the possibility of fusing

different kinds of observations, e.g., inertial and relative distances is of special interest

for FF navigation. In such a metrology system, it is expected that the noise level for

the relative observations is lower compared to the inertial observations. This feature,

together with the nonlinear characteristics of the observations with respect to the state

vector, have been proven to lead the EKF to a misleading estimation[21, 28, 38]. One

of the main topics of this dissertation is the study of the divergence process in these

conditions, and the identification of possible variations that overcome the divergence

problem while keeping the computational load reasonable for online and onboard com-

putation.

In Perea et al. [36] the authors study the divergence process of the EKF in detail

using numerical simulations. As alternative filters, the performances of the Modified

truncated Second Order Filter (mtSOF) and the UKF are compared under the same

numerical conditions with relatively poor results. Thanks to the analysis of the diver-

gence process, a new formulation for the UKF is suggested, and numerically compared

to previous filters with excellent results.

1.5 Control challenges

During last thirty years, different strategies have been investigated and developed to

fulfill the wide spectrum of FF control needs. Different control modes are usually iden-

9



1. INTRODUCTION TO STUDY

tified for each mission: formation acquisition, formation keeping, collision avoidance,

relocation, orbit escape, etc. and are usually fulfilled assuming different strategies for

each control mode [26].

The fuel availability in space is a very limited good and the optimization of its

consumption is one of the drivers in the design of suitable control algorithms. The

first step for this minimization consists of trajectory optimization (see [44, chapter

5] for an introduction to the problem and [31] for an example) and the design of

passive controls as long as they are feasible (e.g., [22]). The optimization consists

of designing a trajectory to optimally perform the mission objectives, and it is usually

solved by an application of the Hamiltonian-Lagrange theory, also referred to as calculus

of variationals. In case active controls are also necessary, for instance for an orbit escape

maneuver or formation reconfiguration, additional algorithms are required.

Traditional control schemes usually make direct or implicit use of Lyapunov con-

trol theory to guarantee convergence and they frequently consider natural or artificial

potential functions, sometimes referred to as cost functions, to fulfill additional con-

trol requirements[43, 30]. These strategies can reach different levels of sophistication

depending on the approximation for the spacecraft dynamics and the consideration of

additional constraints, optimization criteria and adaptability performances.

New trends in the control theory consider models of emergent collective behavior for

its application in space[41]. The natural aggregation and pattern formation processes

shown by some biological groups, from bacteria to herds through insects, schools, and

flocks, have been widely studied and applied in biology, robotics, economy, computer

science and, quite recently, in space missions [46, Chap. 10: Swarms in Space Missions].

These novel strategies have been considered in this dissertation as a potentially powerful

application. In Perea, Gómez, and Elosegui [35], the authors extend a control model

first inspired by bacteria interactions in [48], lately generalized in [23], and extended to

smoother interactions by Cucker and Smale [8], with excellent results.

This model is based on the cancelation of the relative velocities and acceleration

based on the observed dynamics of the neighbor satellites. This strategy, referred to

as Cucker-Smale (CS) after its authors in the dynamic-free environment, has been

shown to provide reasonably good performances for loose formation keeping. A loose

formation is when the position requirements of each spacecraft in the formation allow

a significantly large range of locations. This is the case, for instance, of a group of

10



1.5 Control challenges

satellites in a transfer orbit that have to acquire a specific formation along the target

orbit, but with no additional formation requirement during the transfer. As an example,

the currently withdrawn mission DARWIN was conceived as a group of three to five

satellites that should form a virtual telescope over a halo orbit around L2. One of

the deployment options under consideration was to separate the satellites before the

transfer and keep them in loose formation until the arrival to the halo. This scenario,

indeed, have been the one used to test and compare the performances of the CS control.

An operation mode more characteristic of FF missions is the tight formation keeping

mode. With the aim of building virtual telescopes from spacecraft formation, the rela-

tive positions must be controlled with high resolution, sometimes, along a non-natural

relative trajectory [49]. For this purpose, the cancelation of relative dynamics and

accelerations due to CS control may not be enough, specially in a Planetary Orbital

Environment (POE), where there exist significant forces and environmental distur-

bances. The navigation errors, mismodeling inaccuracies, and hardware limitations

may lead to a rapid violation of the tight formation requirements when using that

control.

Most of the research performed for formation keeping in POE is based on the main-

tenance of a periodic solution of the relative dynamics[42]. Different approximations

are usually considered to find stable solutions depending mainly on the eccentricity

of the formation reference orbit. The better known and more commonly used are the

Hill-Clohessy-Wiltshire (H-C)[3] and the Yamanaka-Ankersen (Y-A)[50] equations for

circular, and elliptic orbits, respectively. On the other hand, there are other mission

scenarios where the reference trajectory for a relative motion is not defined by a solution

or approximation to the natural relative dynamics but by an external condition. This

is the case of a virtual telescope that has to be aligned with a target body to collect

observations. This dissertation is also devoted to this problem. In Perea, D’Amico,

and Elosegui [33], linear and nonlinear approximations for the relative dynamics where

considered in the design of three different control laws for tight formation keeping of

a virtual telescope observing the Sun corona. According to the main results and con-

clusions of that study, an accurate control scheme have been designed afterwards for

formation acquisition and keeping scenarios of the PROBA-3 mission in Perea et al.

[32]. In that last work, two slightly different control algorithms are designed based

on the solution of the Linear Quadratic Regulator (LQR) problem, one for formation
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acquisition and the second one for formation keeping. The resulting scheme has been

tested and validated with a GNSS hardware-in-the-loop FF platform.

1.6 Darwin and PROBA-3 missions

As part of the design and evaluation process of previous algorithms, two missions

have been considered and used to define reference scenarios: Darwin and PROBA-3.

Although these missions have been briefly introduced in the appended papers and the

corresponding summaries (chapter 2), this section presents an extended overview to

provide a global framework of the relevance of these missions. In the next sections, we

introduce the main objectives, architecture, and the scenario of each mission.

1.6.1 Darwin

Figure 1.2: Artist impression of
DARWIN. Source: ESA.

The FF Darwin mission was a first studied by Euro-

pean Space Agency (ESA) between 1997 and 2000,

and became a relevant component of its Cosmic Vi-

sion 2020 Program since it was interrupted in 2007.

Since then, no further activities have been planned

for the future.

The principal aim of Darwin was to build an

InfraRed Space Interferometer to search for Earth-

like planets around other stars, analyze their atmo-

spheres for chemical signatures of life, and to provide

imaging of astrophysical objects with unprecedented

spatial resolution.

This mission was, therefore, named after the English naturalist Charles Darwin.

This scientist became famous for his theories on evolution and the natural selection

that result in a revolution of life and natural sciences. Identifying exo-planets with

signs of life might have significantly contributed the investigation of the evolution of

galaxies, which deserved the name of Darwin mission.

Darwin would have consisted of three or four satellites that would have carried 3-

meter diameter telescopes, plus the central hub spacecraft operating as a light collector.
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The technology for the telescopes was based on the nulling interferometry with observa-

tions in the mid-infrared. The selection of these wavelenghts mitigates the onerous task

of searching light from exo-planets that orbit stars, whose light may easily outshine the

planet’s light.

The infrared light has the particularity that it is partially absorbed by some gases

and other substances strongly related to the existence of life, also referred to as biomark-

ers, such as carbon dioxide, methane, and water. The spectrometer onboard Darwin

would have allowed the identification of these fingerprints from extra solar planets.

Launched with a Soyuz-Fregat rocket, the constellation would have orbited the

libration point L2 of the Sun-(Earth+Moon) system, which is 1.5 million kilometers

from Earth in the opposite direction of the Sun, thus, the Earth permanently projects

its shadow at this point. An orbit around this point would have optimized the Darwin

light conditions for space observation.

The propulsion system of the spacecraft would have probably consisted of tiny and

highly-efficient ion engines, which only need five kilograms of fuel to last the entire five-

year mission. These engines attain satellite movements by expelling, in the opposite

direction, small particles at very high velocity.

The metrology system of the constellation was of special relevance due to its strin-

gent requirements. In order to operate as a synthetic aperture telescope, the spacecraft

must have been arranged with the millimeter level at typical baselines between 40 m

and 1 km. Different metrology systems were considered to cooperate during different

mission phases. These systems mainly encompass a FF Radio Frequency (RF) system,

similar to GPS, and optical observations.

Although extensive research and development was carried on in fields of nulling

interferometry, metrology, FF technology, and validation platforms, the demanding

requirements of this mission could not be fully validated when it was cancelled in 2007.

Additional investigation would have been necessary to successfully prove its feasibility.

1.6.2 PROBA-3

The PROBA-3 mission is the next step in the General Support Technology Programme

(GSTP). The GSTP is aimed at consolidating promising engineering concepts and

readying for final space application with special focus on in-orbit demonstration. This

demonstration is usually performed on carriers of opportunity, such as the International
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Space Station, or through dedicated space missions consisting in small and cheap satel-

lites such the Project for Onboard Autonomy (PROBA) satellites.

Figure 1.3: Artist im-
pression of PROBA-3 mis-
sion. Source: ESA.

In this context, two PROBA missions precede PROBA-

3. The objectives of the single satellite mission PROBA-

1 were to demonstrate and evaluate new HW and SW

spacecraft technologies, onboard operational autonomy,

and Earth observation and space environment instruments.

This mission was successfully launched in October 2001 and

it is still operating as Earth Observation Third Party Mis-

sion. PROBA-2, in turn, consists of a single satellite that

should validate several new technologies such as a dual-

frequency GPS receiver, a xenon gas propulsion system,

and new GNC algorithms, among many others. The PROBA-2 was launched in Novem-

ber 2009 and the commissioning phase was planned to take approximately two months,

thus, it is expected to become soon operational.

PROBA-3 is intended to in-orbit validate FF techniques and technologies with the

scientific aim of observing the Sun’s corona, as part of the FF demonstration, during

a mission lifetime of 2 years. The main technological objectives include the validation

of GPS and RF-based relative positioning navigation systems, new optical metrology

systems, formation acquisition and keeping capabilities, and collision avoidance algo-

rithms.

This mission will consist of a pair of satellites that should constitute a virtual

telescope along a HEO. Named occulter and coronagraph after their scientific payload,

the satellites should keep a baseline separation of 150 m during Sun observations, and

they should be permanently aligned with the Sun.

Two candidate orbits were preliminary considered with orbital periods of 24 h and

72 h, respectively, being the first one finally selected for PROBA-3. In order to avoid

excessive fuel consumption to keep the formation during the perigee, the operations

requiring tight formation keeping will be limited to the apogee passage. During the

perigee passage, the spacecraft should keep a safe separation in free flying mode and

perform collision avoidance maneuvers if necessary. After that, the formation should

be acquired and kept in coarse mode. Along the apogee passage, the formation should

keep tight formation for Sun observations or it should perform a series of precise FF
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demonstration maneuvers, including rotation, resizing, and maintenance. Figure 1.4

sketches the different orbit passages.

Figure 1.4: Orbit pas-
sages scheme. Source:
ESA.

The metrology system for relative navigation will

mainly comprise three different equipments: a Formation

Flying Radio Frequency (FFRF) metrology system (simi-

lar to GPS), an optical Coarse Lateral Sensor (CLS) and

an optical Dual Wavelength Interferometer (DWI) which

incorporates a Fine Lateral Sensor (FLS). Additionally,

GPS receivers should provide absolute position close to

the perigee. Star tracker sensors should also significantly

contribute to the attitude determination. The successful

demonstration of these metrology systems will be regarded

as a significant step forward in the FF missions roadmap.

During the FF experiments, the occulter spacecraft is

assumed to be passive, i.e., with no active control, and the coronagraph is in charge of

achieve the formation requirements. With this aim, electric propulsion micro thrusters

have been envisaged onboard the coronagraph. The impulsive collision avoidance ma-

neuvers require higher thrust and have been allocated to a cold gas propulsion system

onboard the occulter. Additionally, reaction wheels and attitude control actuators have

been also envisaged for both spacecraft.

After the industry early studies for PROBA-3 were initiated in 2004, the mission

Phase A was successfully conducted and finalized in 2007, and the mission is currently

in its Phase B. Once the subsequent Phase CD is completed, the two satellites are

expected to be mounted on a Vega launcher and lifted off in mid-2012.

1.7 Thesis Outline

This dissertation is presented as a compendium of the papers that have been published

or submitted for publication in international journals or in conference proceedings as

part of my PhD research. The content has been organized as follows. Chapter 2 contains

a summary of these publications. The main conclusions and outcome has summarized

in Chapter 3. Next chapter 4 includes a summary of this dissertation in my native

language, catalan. The previously cited manuscripts are collected in Appendix A and
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sorted in chronological order. Finally, a list of the coauthors of the works has been also

included in Appendix B including their affiliation. The bibliography, nomenclature and

a list of acronyms can be found at the end of the dissertation.
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Chapter 2

Summary of appended papers

Much of the graduate work performed in the course of this research period has already

been published or submitted for publication, as proceedings and journal papers. This

chapter is thus devoted to contextualize and summarize those publications. A separate

section has been assigned to each paper following the chronological order of publication.

A copy of the original papers can be found in Appendix A. A list of the coauthors

together with their affiliation have been included in B for reference.

2.1 Nonlinearities in Sensor Fusion: Divergence Issues in

EKF, Modified Truncated SOF, and UKF

This section summarizes the contents of the work by Perea et al. [36], which was

presented at the AIAA Guidance Navigation and Control Conference and Exhibit in

2007, and published as part of the conference proceedings.

As already introduced, the relative navigation of collaborative spacecraft brings

the possibility of fusing different kind of observations, notably inertial and relative

distances. Fusing different sets of observations is very desirable in any experimental

endeavor because it can help improve the accuracy of the state estimations specially

when the observations add not only redundancy but also complementarity. However,

fusing observations has been shown to be challenging since the fusion can result in

misleading estimations in a significant set of scenarios. This is the case when the

magnitudes of the second-order terms of the observation models (with respect to the
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state vector) are significantly different among the different types of observations, and

the ones with larger second-order terms are the ones with higher accuracy. As shown

in [21, 28, 38], these conditions can lead the EKF, which has has been commonly used

for space navigation, to divergence.

In the present work, the divergence process of the EKF is analyzed in detail using

numerical simulations. In order to isolate the difficulties associate to the observations

with the difficulties associated with the time update, we considered the problem of esti-

mating the relative position of a static formation using angle and distance observations.

As representative of state-of-the-art sensors, we assumed that the angle observations

are significantly more accurate than the distance samples. According to the step-by-

step analysis, the filter seems to diverge due to an overestimation of the linear models

of the observations. The uncertainty on the state estimation is updated based on a

constant approximation of the observation models and completely neglects any infor-

mation from the residuals. Thus, the filter shows a discrepancy between the speed of

convergence of the state estimation and the uncertainty matrix. This, in fact, leads to

a misinterpretation of the new observations and results in an estimation with a large

error and an associated uncertainty matrix excessively small, which has been referred

to as filter divergence.

Common alternatives to the EKF are the mtSOF and the UKF. For an easier

comparison of the formulation of these filters, a common expression has been provided

for all these filters. Although the results of these alternative filters generally improve

with respect to the EKF the results are generally poor for this problem, and frequently

yield to divergence. Thus, some modifications or alternatives become necessary even

for these filters.

With the aim of preventing the uncertainty matrix to shrink excessively quick,

several bump-up strategies have been proposed in this work to modify the previous

filters and account for the mismodeling effects of the observations. These strategies

have been mainly borrowed from previous works of Plinval [38], and Mandic [28], and

references therein, and significantly improve the performances of the original filters.

The step-by-step analysis of the UKF divergence process also suggested that there

was some useful information in the observations that was underused due to the defi-

nition of the residuals in the UKF. This result indicated that a new definition of the

residuals could lead to a significant improvement of the performances. The numerical

18



2.2 New State Update Equation for the Unscented Kalman Filter

comparison of this modification, referred to as Unscented Kalman Filter with residuals

modification (UKFz), with respect to previous filters and bump-up strategies showed

that this new formulation outperforms all previous algorithms providing excellent and

robust results.

The paper also provides a sensitivity analysis of the filter performances with respect

to the different variables that are involved in present example (observation noise levels,

the initial error, and the initial state uncertainty). The main result of this extensive

comparison was that the UKFz clearly outperforms all previous filters in most of the

configurations with no additional cost in terms of computational load, compared to the

UKF.

In conclusion, we have successfully identified and designed different strategies to

improve the performances of the EKF, and the UKF for data fusion. In particular,

these variations of the classical filters should result in a significant improvement of the

navigation estimations in FF missions. Further research should address the numerical

performances of the Improved Unscented Kalman Filter (IUKF) under a realistic FF

scenario compared to classical filters.

2.2 New State Update Equation for the Unscented Kalman

Filter

This section summarizes the contents of the work by Perea and Elosegui [34], which

was published in the Journal of Guidance, Control and Dynamics in 2008.

The motivation of this work was to develop the theoretical foundation to prove the

validity of the novel UKFz formulation proposed in previous paper (Perea et al. [36]).

Based on the excellent numerical results that the UKFz showed, a new definition for

the UKF residuals was foreseen as more robust and powerful against general non-linear

problems.

In this work, we develop the theory that supports a new formulation for the UKF

that incorporates this new definition of the residuals. Although the resulting filter,

named IUKF, is slightly different from the original UKFz, the UKFz has been also

justified since it consists in a bump-up of the IUKF.
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The aim of this paper is, thus, the presentation of a new state update equation

for the UKF based on a novel definition of the residuals, which implicitly incorporate

second-order information of the state errors. For this derivation, the UKF is first

introduced and its underlying assumptions are made explicit. This filter borrows the

formulation of the EKF and makes advantage of a more powerful strategy for the

computation of uncertainty matrices, namely the unscented transformation. In the

same way, the state update equation of the IUKF is built as a first order polynomial

of the new residuals while taking the same advantages of the unscented transformation

of the UKF. The different assumptions and approximations that are considered in the

definition of the polynomial coefficients have been proved to have an error, at least,

comparable to the error of the UKF. However, the implicit inclusion of high-order

terms in the residuals results in a significant improvement of the filter performances.

The numerical performances of this new formulation have also been presented in

this work for the same example and baseline configuration used in [36], which is repre-

sentative of the difficulties experienced in formation flying sensor fusion.

2.3 Extension of the Cucker–Smale Control Law to Space

Flight Formations

This section summarizes the contents of the work by Perea, Gómez, and Elosegui [35],

which was published at the Journal of Guidance, Control, and Dynamics in 2009.

As previously introduced, the emergence of group behavior shown by swarms has

recently caught the attention of research groups in space engineering (e.g., [41]) as

a source of promising algorithms for formation control. In this paper, we extend a

behavioral model, first developed by Cucker and Smale in [8], to space flight formations

for formation acquisition and loose formation keeping.

The CS model was first inspired by the emergence of self-ordered motion shown

by a group of biological particles that, with constant velocity, modify their individual

headings with the average heading of particles in neighborhood [48]. Instead, the

authors of [8] proposed an interaction model where each individual modifies its velocity

with a weighted average of the relative velocities with respect to the rest of individuals
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in the complete group. In this case, the weights depend on the relative distance between

two individuals, which may account for the larger uncertainty naturally associated to

the knowledge of relative position and velocity of faraway individuals than nearby.

Thus, the velocity of neighbors in the close vicinity of an individual modify its velocity

more intensively than other individuals.

In that work, the authors provided a specific formulation of the weights for the

velocity average and a characterization of the specific conditions that should verify cer-

tain configuration parameters to guarantee the emergence of collective motion. Indeed,

the authors prove that, under certain conditions, the swarm will finally move as a rigid

body with constant velocity, and would not split into smaller groups of individuals.

In [35], we provide an extension of this model to the space realm by modifying the

velocity of a spacecraft with the relative acceleration with respect to the geometric

center of the formation and the weighted average of the relative velocities according

to the CS model. Based on the results of Cucker and Smale, we directly derive a

characterization of the involved parameters to guarantee that the initial group tends to

move as a rigid body with the dynamics defined by the geometric center of the satellite

formation.

An extensive discussion is also provided regarding the parallel computation and

inter-vehicle communication needs associated to this control algorithm. Possible limi-

tations of the control system are also envisaged and discussed, such as discretization of

the control actions and maximum and minimum thrust capabilities.

In order to test the performances of this control algorithm, we considered the Darwin

mission as a reference scenario. In particular, the performances of the CS control where

evaluated along the transfer trajectory of three spacecraft from an Earth orbit to a

halo orbit around the libration point L2 of the Sun-Earth system since one of the

formation deployment options first envisaged for Darwin consisted in transferring the

three spacecraft separately along the transfer orbit and keep them in loose formation

meanwhile.

An extensive sensitivity analysis of this control algorithm has been carried on us-

ing numerical simulations. The different configuration and initial parameters that are

involved in the control algorithm and mission scenario have been identified and several

simulations have run to address the algorithm sensitivity on each one of these param-

eters. The performances of the control, under these simulations, have been evaluated
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based on two indicators: the maximum separation from the reference trajectory, and

the total Delta v, or fuel expenditure.

For comparison purposes, we also considered the numerical results in Gómez et al.

[17]. In that paper, the authors present a novel strategy based on the existence of

certain cones around the transfer orbit with their centers on the reference trajectory

and with the characteristic that the relative radial acceleration along the generatrices

of the cones is zero. This strategy, referred to as Zero Relative Radial Acceleration

Cones (ZRRAC) control, was also tested using numerical simulations of the Darwin

transfer orbit for formation keeping purposes.

The numerical simulations showed the importance of a good tuning of the con-

figuration parameters of the CS control algorithm. Thus, the optimum configuration

parameters have to be selected based on the specific mission characteristics, mainly

the range of possible initial relative velocities, and the maximum time between con-

secutive maneuvers. Under the optimized values, the CS algorithm provided minimum

variations of the initial relative distances at the same time as the fuel expenditure is

minimized. The algorithm has been also proved to be robust against noises on the

navigation data (position and velocity), which have been tested as part of the mission

scenario parameters. Finally, comparison between the CS and the ZRRAC numerical

simulations, whenever possible, have shown that the first one significantly reduces the

fuel expenditure while providing similar, or even smaller, variations of the inter-vehicle

separations than the ZRRAC.

In conclusion, the CS control algorithm has been shown to be suitable for formation

acquisition, and loose formation keeping along a transfer orbit. However, the area of

application of this strategy is not limited to these kind of orbits but it can also be

considered in deep space, where the disturbance forces are minimum. The suitability

of this strategy in POE could be a topic of further research, with special focus on the

comparison of performances of the control against the altitude of the spacecraft.

2.4 Relative Formation Flying Dynamics and Control of

a Two-Element Virtual Telescope on a HEO

This section summarizes the contents of the work by Perea et al. [33], which was

presented at the 21st International Symposium on Space Flight Dynamics in 2009, and
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published as part of the conference proceedings.

In paper [35], we have presented a control algorithm for formation acquisition and

loose formation keeping based on a behavioral model. However, this algorithm may

not be suitable to acquire a specific formation since the CS control does not guarantee

a final configuration. Once the formation is acquired, the CS control might be used to

keep it as a rigid body. In order to follow a specific reference trajectory, the coordinate

system must be chosen in such a way that the relative positions are constant over the

reference trajectories, which may lead to forced and complicated coordinate systems.

Moreover, the mismodelling of the relative dynamics and hardware limitations may lead

to a rapid violation to stringent formation requirements, which will probably make this

strategy unsuitable for tight formation keeping.

This is the case, for instance of a virtual telescope that has to be perfectly aligned

with the observed body. The principal aim of [33] is to design and validate a control

algorithm for a virtual platform that does not follow a natural relative trajectory, as

in PROBA-3 [49]. This mission is a technological mission that shall prove some of

the novel technological improvements for autonomous navigation and control of a flight

formation. As the main payload, the formation will carry an occulter and a coronagraph

for Sun corona observations. With this aim, the two spacecraft that constitute this

mission have to be aligned with the Sun.

The relative dynamics between the coronagraph and its reference trajectory directly

depends on the Sun and occulter positions. In present paper, we first address the

relative dynamics of a formation of two spacecraft at a baseline distance of 150 m along

a HEO, as envisaged for PROBA-3. With this aim, we quantify the magnitude of

the relative accelerations due to the different force sources, e.g., the Earth gravity, the

oblateness of the Earth, and the Solar Radiation Pressure (SRP). Due to the different

illumination conditions of the two satellites, one projects its shadow to the other, the

two forces that drive the relative dynamics are the Earth gravity, and the SRP.

Based on the analysis of the relative dynamics, we propose three control laws for the

acquisition and maintenance of the formation, that stem from different approximations

of the relative dynamics. The first control mainly consists in two terms: the relative

acceleration to cancel variation of the dynamics with respect to its reference and a
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linear term for formation acquisition. The relative acceleration is approximated by the

two main forces, i.e., the Earth gravity and the SRP, while the linear term is defined

by a Hurwitz matrix -with the poles on the left-hand side of the complex plane-. Since

the approximation to the relative dynamics hereby considered is not linear, this control

has been named as the nonlinear control in contrast with the other two.

Indeed, these two other controls are based on a linear approximation of the relative

dynamics. Under this assumption, a feedback gain matrix is designed to guarantee

that the real trajectory will tend to its reference. With this aim, we first address the

approximations necessary to linearize the dynamics. As a result, the relative SRP is

completely omitted in this approximation, as well as the constant component of the

relative acceleration due to the Earth gravity. This approximation is then used to define

two control functions that are linear in the error vector.

The robust pole-placement control considers the Kautsky-Nichols-Van Dooren (KNV)

algorithm to compute the feedback gain matrix, while the LQR control additionally

considers a cost function and designs the feedback gain matrix to minimize its value.

These algorithms make use of some configuration parameters -the poles definition and

the error and control weighting matrices, respectively- that need to be tuned for each

specific problem.

The three controls have been compared using numerical simulations. As previously

mentioned, we have considered the ESA mission PROBA-3 as a reference scenario in

present study. More specifically, we have considered the experimental phase, when

the formation has to be acquired for Sun corona observations and tightly kept along

the apogee passage. Two HEO orbits have been simulated since both of them were

preliminary under consideration when this research study begun [49]. These orbits

have periods of 1 and 3 days, respectively, being the first one afterwards selected for

PROBA-3 [40]. The specific characteristics of the orbit, experimental phase, and modes

of operation are also introduced in this paper together with other relevant data for the

definition of the scenario.

The experimental platform developed for testing and comparing the control laws

is also fully described in the paper, including the dynamics, the metrology system for

relative navigation, and the complete characteristics of the GNC models.

The significance of the tuning of each control algorithm is first introduced as part

of the results. As explained in section “Results and Discussion”, unsuitable values
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may result in thruster saturation, slow convergence, or high frequency oscillations of

the position error of the controller. Examples of these behaviors are provided for the

nonlinear control. Furthermore, the role of the configuration parameters of each control

is also discussed and compared among them, being the LQR the easier algorithm for

tuning.

Under optimized configurations, however, all control algorithms provide similar per-

formances and can reduce an initial position error with respect to the reference trajec-

tory from several meters to the cm level, according to present simulations. The only

remarkable difference consists in the error reduction when accurate models of the rel-

ative acceleration are considered within the control, as it is the case of the non-linear

control. However, the inclusion of nonlinear components of the relative dynamics is

only worth after formation acquisition and when the relative accelerations are suffi-

ciently large, i.e., at relatively low altitudes. Otherwise, the error component linearly

included in the control definition absorbs the mismodelling errors and yields all controls

to provide similar performances.

2.4.1 Additional notes

Regarding the computation of the SRP that affect the coronagraph, the definition of

the occulter shadow coefficient ϕ was not included in the paper and is developed here

for completeness. Using the same nomenclature as in [33], it should be defined as:

ϕ(xcs) =
1
|S|

∫

S
η(x)dx (2.1)

Now, equation (5) from reference [33] can directly be derived from

fSRP (xos) ≈ ν(xos)asrp(xos)

= ν(xos)P�AU2Kos
xos − x�
||xos − x�||3

(2.2)

and

fSRP (xcs) =
1
|S|

∫

S
η(x)asrp(x)dx

≈ asrp(xcs)
|S|

∫

S
η(x)dx

= ϕ(xcs)asrp(xcs)

≈ ϕ(xcs)ν(xos)asrp(xos) (2.3)
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Regarding the inclusion of the nonlinear components of the relative dynamics in

the definition of the control algorithms, there are additional considerations that are

worth noting. First, in the case of the contribution to the relative dynamics arising

from the Earth’s gravity, the larger nonlinear contribution consists in a constant term.

Second, the largest nonlinear component of the SRP contribution is of second-order,

and of lower magnitude than the Earth contribution -except at high altitude where

the nonlinear terms play no significant role-. Therefore, the second-order terms due to

variations of the SRP can probably be omitted from definition of the nonlinear control,

and the relative SRP can be reasonably approximated (within the control definition)

by a constant value along the reference trajectory. Thus, the nonlinear contribution

can easily be limited to the inclusion of a constant contribution along the reference

trajectory during formation keeping maneuvers. The inclusion of such a constant would

allow an improvement of the performances similar to the results shown in the paper

by the nonlinear control compared to the remaining controls at no additional cost in

terms of computational burden.

2.5 Relative Control of a Virtual Telescope in High Ellip-

tical Orbit using GNSS and Optical Metrology

This section summarizes the contents of the work by Perea et al. [32], which has been

submitted for publication in the Journal of Guidance, Control and Dynamics in January

2010, as an engineering note.

In this paper, we further build on previous work and develop control strategies

for formation acquisition and formation keeping of a virtual telescope that has to be

aligned with the observed body, thus following a non-natural trajectory, taking as a

reference the PROBA-3 mission. Based on the good performances of the LQR control,

its simplicity of implementation, and the reduced computational cost onboard, we again

consider it for formation acquisition. In order to reduce possible biases of the position

error due to the controller at steady-state, we also present an extension of the LQR for

formation keeping by including the integral of the error since steady-state. The resulting
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control algorithm is referred to as Linear Quadratic Regulator with the Integral term

(LQRI) and is designed for tight formation keeping.

These two control algorithms have been implemented in a formation flying platform

for its validation under a realistic environment. We used the GSOC Formation Fly-

ing Testbed (FFTB), which was formerly designed and developed to test and validate

the GNC algorithms for the PRISMA mission. This platform emulates the spacecraft

dynamics and attitude, embeds the onboard GNC algorithms, and includes a Spirent

GS7700 and two single-frequency Phoenix GPS receivers in-the-loop. For the valida-

tion of the present control scheme, we have also considered the navigation algorithms

of PRISMA mission. This is also a technological mission aimed at validating sensor

and actuator technology and demonstrating autonomous formation flying capabilities,

and consists of two satellites flying in formation along a Sun synchronous orbit. The

navigation algorithms for PRISMA process GPS observations for relative navigation, as

envisaged for the PROBA-3 navigation at low altitudes, and have been reused in present

simulations. Due to the significant differences between PRISMA and PROBA-3, some

upgrades have been necessary.

A brief description of the FFTB and the navigation algorithms for PRISMA has

been included in present paper providing some references for further reading. The nec-

essary upgrades are described with more detail as it corresponds to a new contribution,

including the simulation models of an optical metrology system for relative navigation

at high altitudes.

As already stated, we again consider the PROBA-3 mission as a real example of a

virtual telescope that has to be aligned with the Sun during the experimental phase.

The mission characteristics, GNC system attributes, and modes of operation are briefly

introduced, together with the configuration of the control algorithms, to describe the

scenario for the simulations.

The performances of the complete GNC system are analyzed in detail along one

orbital period, with the exception of a short interval along the perigee passage which

is out of scope of this study. First, the performances of the relative navigation system

are addressed using GPS and, then using the optical metrology system at higher alti-

tudes. Second, the accuracy of the guidance system is also characterized, and finally,

the performances of the control algorithms under formation acquisition and formation

keeping modes are studied. As a global result, the interaction of the complete GNC
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system allows a reduction of a position error with respect to its reference from 8 m to

the cm level.

It is suggested, as a further work, to improve the accuracy of the relative velocity

estimation when using optical observations to reduce the oscillations of the control

input, and as a result, reduce the cost of the control. This can be achieved by improving

the estimation filter of the optical navigation system.

In conclusion, we have developed a simple control algorithm and proved its validity

for stringent control requirements. The simulations under the PROBA-3 scenario, must

be considered as a realistic example, but the application of this technique does not limit

to this mission and can be easily extended to other formations in POE. This results of

special interest when the reference trajectory is defined by a non-natural trajectory.

2.5.1 Additional notes

The PROBA-3 scenario that we simulated follows the mission parameters as defined in

[2, 49, 39]. Still, some of the key mission parameters such as the perigee passage and

observation phase durations were not fully defined, thus, unavailable to us at the time

of this research. Without lose of generality, we have considered values that we believe

as reasonable. Any variation on these values will obviously result in a variation of the

numerical performances, but the qualitative assessment that we have already presented

should still be valid. Indeed, the modification of certain scenario conditions, such as

the passage duration, and noise levels of the observations, among many others, should

not yield to different conclusions regarding the suitability of the controls presented.

As an example of these parameters, we have assumed that the observation phase

-almost equivalent to the passage with formation keeping control- takes approximately

22 hours while a recent document [40] limits its maximum duration to 12 hours. This

limitation results in a reduction of the apogee passage which directly yields to a re-

duction of the cost of the control. Since the magnitude of the orbital perturbations

decreases as the altitude increases, this might also result in a modest reduction of the

position error on the control along the passage. However, no significant qualitative

variations of the results would be expected compared to previous analysis.
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Conclusions

This research deals with the design and evaluation of algorithms for navigation and

control suitable for formation flying missions. In particular, our interest has focused on

the possibility of sensor fusion for relative navigation, the usage of behavioral models for

formation control, and the control algorithms to keep non-natural relative trajectories.

Regarding the difficulties of fusing non-linear observations for relative navigation,

the causes for filter divergence have been identified. According to [36], the discrepancy

between the convergence speed of the state estimation and the speed for the uncertainty

matrix leads the filter to a misinterpretation of new observations and results in filter

divergence.

Based on this rationale, some bump-up strategies have been proposed which im-

prove the performances of the classical filters. Additionally, a modification of the state

update equation of the Unscented Kalman Filter (UKF) has been proposed, formally

proved and numerically validated. According to the extensive simulation assessment

performed, it provides robustness against nonlinearities and excellent estimations, out-

performing all previous filters.

We have successfully extended a control model of swarms to spacecraft formation

flying missions for formation acquisition and loose formation keeping. The convergence

conditions have been theoretically identified and numerically validated using simula-

tions of the Darwin mission. These simulations show that this control law can acquire

and keep a formation with reduced variations on their relative positions at a cheap cost

in terms of total Delta v, specially compared to the Zero Relative Radial Acceleration

Cones (ZRRAC) control.
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A simple linear design of a control has been theoretically developed and numerically

proved to achieve stringent control requirements for formation acquisition and keeping

of a formation of satellites that have to follow a non-natural relative trajectory with

high precision.
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Caṕıtol 4

Resum en català

El vol de satèl·lits en formació ofereix a les disciplines de l’espai, com ara l’astrof́ısica,

l’astrodinàmica i la geodèsia, per anomenar-ne unes quantes, la possibilitat de crear

grans sensors espacials a partir d’un petit grup de satèl·lits en formació. Disposar els

satèl·lits per a operar com, per exemple, un interferòmetre, i per tant, oferint una reso-

lució angular gairebé il·limitada, o com a telescopi virtual i aconseguir distàncies focals

inimaginables amb un únic satèl·lit, crea grans oportunitats cient́ıfiques i tècniques.

Des del moment en que la NASA va seleccionar la primera missió espacial que incorpo-

rava tecnologia de vol en formació (EO-1), un dels reptes que es preveien per a realitzar

autèntiques missions de vol en formació és la definició d’algorismes espećıfics per a la

navegació i control dels satèl·lits.
L’objectiu principal d’aquesta tesis és el disseny i avaluació d’algorismes de nave-

gació i control apropiats per al vol de satèl·lits en formació. Donada la importància

d’aquestes missions, s’ha realitzat una extensa investigació per aconseguir acomplir

amb l’increment d’objectius referents a la precisió, l’autonomia, i altres requisits del

sistema de Guiat, Navegació i Control (GNC) que resulta de les noves aplicacions d’a-

questes missions. El contingut d’aquesta tesis es centra en tres reptes actuals referents

al sistema GNC: les dificultats de combinar diferents tipus d’observacions no lineals

per a la navegació relativa; l’anàlisi i extensió d’algorismes de “comportament” per a

controlar una formació de satèl·lits; i el disseny i la validació d’una llei de control per

a l’adquisició i manteniment d’una formació en trajectòria no natural. Aquests tres

temes interconnectats cobreixen una àmplia àrea de recerca en el camp del vol en for-

mació i incorpora els principals components dels algorismes de vol en formació, des de
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les observacions fins a la navegació i el control.

La majoria del treball realitzat durant aquest peŕıode de recerca ha estat publicat

o està pendent de publicació dins les actes de congressos o en revistes internacionals.

En les seccions següents es resumeix el contingut d’aquests articles en català per ordre

cronològic de publicació. La còpia original dels articles es pot trobar a l’Apèndix A.

4.1 No Linealitats en la Combinació de Sensors: Proble-

mes de Divergència Associats a l’EKF, al SOF Modi-

ficat i Truncat, i a l’UKF

En aquesta secció es resumeix el continut de l’article [36], que ha estat presentat al

congrés AIAA Guidance Navigation and Control Conference and Exhibit l’agost del

2007, i publicat a les respectives actes.

La navegació relativa de satèl·lits en col·laboració ofereix la possibilitat de combi-

nar diferents tipus d’observacions, t́ıpicament inercials i distàncies relatives. Combinar

observacions provinents de diferents sensors resulta desitjable per tal de millorar la

precisió de les estimacions, especialment quan les observacions incorporen no només

redundància sinó també complementaritat. S’ha demostrat, però, que combinar obser-

vacions pot ser un repte real ja que aquesta combinació pot fer que es generin estimaci-

ons incorrectes en un gran nombre d’escenaris. Aquest és el cas de les combinacions on

la magnitud dels termes de segon ordre dels models d’observacions (respecte al vector

d’estat) son significativament diferents entre els diferents tipus d’observacions, especi-

alment quan les que inclouen termes més grans de segon ordre son les més precises. Tal

i com es demostra en [21, 28, 38], aquestes condicions poden portar al filtre extès de

Kalman (EKF), un dels filtres més significatius en la navegació espacial, a divergir.

En aquest treball s’estudia en detall el procés de divergència de l’EKF utilitzant

simulacions numèriques. Per fer-ho, hem considerat l’estimació de la posició d’una

formació estàtica utilitzant mesures d’angle i distància. Tenint en compte les carac-

teŕıstiques dels sensors més avançats del moment, hem assumit que les observacions

d’angle son força més precises que les de distància. D’acord a l’anàlisi seqüencial que

presentem, el filtre sembla que divergeix degut a una sobreestimació dels models lineals
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de les observacions. El grau d’incertesa de l’estimació (matriu de covariança) s’actu-

alitza d’acord a una aproximació constant del model i omet completament qualsevol

informació dels residuals. Aix́ı, el filtre mostra una discrepància entre la velocitat de

convergència del vector d’estat i la corresponent matriu de covariança que porta al filtre

a confondre la informació de les noves observacions i acaba resultant en la divergència

del filtre.

Alternatives comuns a l’EKF son el filtre de segon ordre modificat i truncat (mtSOF)

i el filtre “inodor” de Kalman (UKF). Per tal de facilitar la comparació de la formulació

d’aquests filtres, l’article presenta una formulació comú. Tot i que els resultat general-

ment milloren quan es comparen amb els de l’EKF, aquests continuen sent pobres i,

altra vegada, tenen tendència a divergir. Per tant, esdevenen necessàries alternatives o

modificacions a tots aquests filters.

Amb l’objectiu d’evitar que la matriu de covariança es redueixi excessivament ràpid,

s’han proposat diferents estratègies d’explosió que modifiquen els filtres anteriors i

tenen en compte els errors de modelatge de les observacions. La major part d’aquestes

estratègies s’ha pres de treballs anteriors de Plinval [38], i Mandic [28], i les referències

derivades, i milloren significativament les prestacions dels filtres originals.

L’anàlisi seqüencial de la divergència de l’UKF suggereix que hi ha informació útil

en les observacions que es desaprofita degut a la definició dels residuals en l’UKF.

Aquest resultat indica que una nova definició dels residuals pot donar lloc a una millora

substancial dels resultats. La comparació numèrica d’aquesta modificació, anomenada

com a UKFz, respecte els filtres anteriors i les corresponents estratègies d’explosió,

mostren que aquesta nova formulació supera els algorismes anteriors i aconsegueix una

robustesa i estimacions excel·lents.

L’art́ıcle també ofereix un anàlisi de sensibilitat del filtre respecte a les diferents

variables que estan involucrades en l’exemple actual (nivell de soroll de les observacions,

error inicial, i matriu inicial de covariança). El resultat principal d’aquesta comparació

extensiva ha estat que el UKFz clarament supera als anteriors filtres en la majoria de

les configuracions sense cost addicional en termes de càlculs, comparat amb l’UKF.

Com a conclusió, hem pogut identificar i dissenyar amb èxit diferents estratègies

per tal de millorar les prestacions dels filtres EKF, i UKF per a la combinació d’obser-

vacions. En particular, aquestes variacions dels filtres clàssics haurien de donar lloc a

millores substancials de l’estimació relativa en missions de vol en formació. El següent
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pas per a l’aplicació d’aquests filtres en missió espacial de vol en formació consisteix,

doncs, en estudiar les prestacions numèriques de l’IUKF sota un escenari més realista

i complert, tema que podria donar lloc a una futura investigació.

4.2 Nova Equació d’Actualització d’Estat per al Filtre In-

odor de Kalman

En aquesta secció es resumeix el contingut de l’article [34], publicat a la revista Journal

of Guidance, Control and Dynamics l’any 2008.

La motivació d’aquest treball ha estat desenvolupar la base teòrica per demostrar

la validesa de la nova formulació UKFz que es presenta en l’article anterior ([36]).

Partint dels excel·lents resultats numèrics que ha mostrat l’UKFz, proposem una nova

definició dels residuals de l’UKF amb l’objectiu d’aconseguir un filtre més robust a les

no linealitats de les observacions i que ofereixi millors estimacions que els filtres clàssics.

En el present treball, desenvolupem una nova formulació per a l’UKF que incorpora

aquesta nova definició dels residuals. Tot i que el filtre obtingut, anomenat IUKF,

és lleugerament diferent del filtre original UKFz, la validesa del filtre UKFz queda

justificada ja que aquest consisteix en una explosió del filtre IUKF.

L’objectiu d’aquest art́ıcle és, doncs, la presentació de la nova equació d’actualit-

zació per al filtre UKF basada en la nova definició dels residuals, que impĺıcitament

incorporen informació de segon ordre de les observacions. Amb aquest objectiu, primer

introdüım el filtre UKF ressaltant les hipòtesis de que fa ús. Aquest filtre pren la for-

mulació del filtre EKF i utilitza una estratègia diferent per al càlcul de les matrius de

covariança del error, anomenada transformació inodora, i que resulta molt apropiada

sota condicions de no linealitat. De la mateixa manera, l’equació d’actualització de

l’estat de l’IUKF es construeix com a un polinomi de primer ordre en els nous residuals

aprofitant les avantatges de la transformació inodora de l’UKF. Les diferents hipòtesis

i aproximacions que s’han considerat en la definició dels coeficients d’aquest polinomi

porten un error associat que s’ha demostrat que és, com a mı́nim, comparable amb

l’error de l’UKF. Tot i aix́ı, la incorporació impĺıcita de termes de segon ordre en els

residuals resulta en una millora significativa de les prestacions del filtre.
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Alguns dels resultats numèrics d’aquesta nova formulació també s’inclouen en aquest

treball utilitzant el mateix exemple i configuració de referència utilitzats en [36] que

posa de relleu, de manera simplificada, les dificultats que es troben en la combinació

d’observacions per al vol de satèl·lits en formació.

4.3 Extensió de la Llei de Control de Cucker i Smale al

Vol Espacial de Formacions

En aquesta secció es resumeix el contingut del treball [35], que ha estat publicat a la

revista Journal of Guidance, Control, and Dynamics l’any 2009.

El comportament emergent que mostren molts grups d’animals ha atret recentment

l’atenció de grups de recerca en enginyeria espacial (e.g., [41]) com a font d’algorismes

prometedors per al control de formacions. En aquest article, estenem un model de

comportament, inicialment dissenyat per Cucker i Smale a [8], a formacions de vol

espacial per a l’adquisició i manteniment relaxat de les formacions.

El model de CS s’inspirava en el comportament emergent que mostraven grups

biològics de part́ıcules que, amb velocitat constant, modificaven la seva direcció amb

la mitja de les direccions de les part́ıcules vëınes [48]. Els autors de [8], en canvi,

proposaven un model d’interaccions on cada individu modifica la seva velocitat amb la

mitja ponderada de les velocitats relatives respecte a la resta d’individus de la població.

En aquest cas, els pesos depenen de la distància relativa entre dos individus tenint en

compte, aix́ı, la major incertesa associada al coneixement de la posició i velocitats

relatives d’individus llunyans.

En aquell treball, els autors ofereixen una definició de pesos per a la ponderació

de les velocitats relatives per a la que caracteritzen les condicions necessàries per al

sorgiment d’un comportament collectiu. En aquest cas, els autors demostren que, sota

certes condicions, el grup acabarà movent-se com un sòlid ŕıgid amb velocitat constant

i que no s’acabarà partint en grups menors d’individus.

En [35], estenem aquest model al camp espacial modificant la velocitat d’un satèl·lit
amb l’acceleració relativa respecte el geocentre de la formació i la mitja ponderada de

les velocitats relatives d’acord al model de CS. Basant-nos en els resultats de Cucker i
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Smale, podem oferir directament una caracterització dels paràmetres involucrats en el

control que garanteix que el grup inicial tendirà a moure’s com un sòlid ŕıgid amb la

dinàmica definida per al centre geomètric de la formació de satèl·lits.
En l’article incloem una extensa discussió sobre la possibilitat de càlcul en paral·lel

i les necessitats de comunicació entre vehicles associades a aquest algorisme. També

es preveuen i discuteixen les possibles limitacions del sistema de control, com ara la

discretització de les accions de control i capacitats màximes i mı́nimes dels motors.

Per tal d’avaluar les prestacions d’aquest algorisme de control, hem considerat la

missió Darwin com a escenari de referència. En particular, les prestacions del control

de CS son avaluades al llarg de l’òrbita de transferència entre una òrbita terrestre i una

òrbita halo al voltant del punt de libració L2 del sistema Terra-Sol. Una de les opcions

de desplegament que es van considerar per a Darwin consistia en enviar els satèl·lits
separadament a l’òrbita halo mantenint una formació relaxada.

Per tal d’avaluar detalladament les caracteŕıstiques d’aquest nova llei de control

hem realitzat un anàlisis de sensibilitat extensiu utilitzant simulacions numèriques.

Concretament, hem identificat els diferents paràmetres inicials i de configuració invo-

lucrats tant en el control com en la definició de l’escenari i, per a cadascun d’aquests

paràmetres, hem considerat diversos valors i realitzat les simulacions corresponents.

Els resultats d’aquestes simulacions s’han avaluat basant-nos en dos indicadors: la se-

paració màxima respecte la trajectòria de referència i el cost energètic o Delta v total.

Per tal de poder comparar aquests resultats, hem pres com a referència els resultats

presentats a [17]. En aquest treball, els autors presenten una nova estratègia basada

en l’existència de certs cons al voltant de l’òrbita de transferència amb els seus centres

sobre l’òrbita i amb la caracteŕıstica especial de que l’acceleració radial relativa sobre les

generatrius dels cons és zero. Aquesta estratègia, anomenada com a control ZRRAC,

també es va avaluar sota el mateix escenari de l’òrbita de transferència de Darwin

utilitzant simulacions numèriques i amb l’objectiu de mantindre una formació relaxada.

Les simulacions numèriques han mostrat la importància del calibratge dels paràmetres

de configuració de l’algorisme de control CS. Aix́ı, la configuració òptima dels paràmetres

s’ha de basar en les caracteŕıstiques espećıfiques de cada missió, principalment, el rang

de possibles velocitats relatives inicials, i els temps màxims entre maniobres consecu-

tives. Sota configuracions òptimes, l’algorisme de CS ofereix variacions mı́nimes de les

distàncies relatives respecte els valors inicials al mateix temps que minimitza el cost
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energètic. L’algorisme s’ha validat incloent soroll en les dades de navegació (posició

i velocitat) i ha demostrat una sòlida robustesa. Finalment, la comparació entre els

algorismes CS i ZRRAC, quan aquesta han estat possible, ha mostrat que el primer

redueix significativament el cost energètic mentre ofereix resultats similars o fins i tot

millors en termes de la separació entre vehicles.

En conclusió, l’algorisme CS ha mostrat ser un candidat apropiat per a l’adquisició

i manteniment relaxat de formacions al llarg d’aquesta òrbita de transferència. Tot

i aix́ı, l’àrea d’aplicació d’aquesta estratègia no es limita aquest tipus d’òrbita, sinó

que també es pot considerar a l’espai profund, on les pertorbacions de la dinàmica

son mı́nimes. La idonëıtat d’aquesta estratègia en entorns planetaris POE pot ser un

tema d’investigació futura, amb especial atenció a la comparació de prestacions respecte

l’altitud de la formació.

4.4 Dinàmica Relativa i Control per al Vol en Formació

d’un Telescopi Virtual de Dos Elements en Òrbita

Molt El·ĺıptica

Aquesta secció resumeix el contingut de l’article [33], que va ser presentat al 21st

International Symposium on Space Flight Dynamics l’any 2009, i publicat a les actes

corresponents.

El l’article [35], hem presentat un algorisme per a l’adquisició i manteniment relaxat

d’una formació basat en un model de comportament en grup. Aquest control, però, pot

no ser apropiat per a l’adquisició d’una formació geomètrica espećıfica ja que el control

CS no garanteix una configuració final concreta. Un cop els satèl·lits estan en formació,

el control CS pot ser usat per a mantindre la formació com un sòlid ŕıgid. Per tal de

seguir una trajectòria de referència espećıfica s’ha d’escollir un sistema de referència

apropiat, tal que les posicions relatives en aquest sistema siguin constants al llarg de

la trajectòria de referència. Això pot donar lloc a utilitzar sistemes de referència força

complicats i poc intüıtius. A més, els errors de modelat de la dinàmica relativa i les

limitacions en el hardware poden portar a una ràpida violació dels exigents requisits de
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la formació. Tot això pot fer que l’estratègia de CS no sigui apropiada per a mantindre

una formació amb gran precisió.

Aquest és el cas, per exemple, d’un telescopi virtual que ha d’estar perfectament

alineat amb el cos observat. L’objectiu principal de [33] és el disseny i validació d’un

algorisme de control per a una plataforma virtual que no segueix una trajectòria relativa

natural, com és el cas de la missió PROBA-3 [49]. Aquesta és una missió tecnològica

que té com a objectiu principal provar algunes de les noves millores tecnològiques per

a la navegació i control autònoms per al vol en formació. Com a principal càrrega

cient́ıfica, la formació portarà un ocultador i un coronògraf per observar la corona

solar. Amb aquest objectiu, els dos satèl·lits que constitueixen aquesta missió han

d’estar perfectament alineats amb el Sol.

La dinàmica relativa entre el coronògraf i la seva trajectòria de referència depèn

directament de la posició del Sol i l’ocultador. En aquest article, primer analitzem

la dinàmica relativa d’una formació de dos satèl·lits a una distància base de 150 m

al llarg d’una Òrbita Molt El·ĺıptica (HEO), tal i com està previst per a PROBA-3.

Amb aquest objectiu, quantifiquem la magnitud de les acceleracions relatives degudes

a les principals forces, e.g., la gravetat terrestre, variacions del potencial gravitatori, i

la Pressió de Radiació Solar (SRP). Degut a les diferents condicions d’il·luminació dels

dos satèl·lits, ja que un projecta la seva ombra sobre l’altre, les dues forces principals

que defineixen la dinàmica relativa son la gravetat terrestre i la SRP. Per tal de tindre

en compte l’ombra que projecta l’ocultador sobre el coronògraf, proposem un model

per a aquesta ombra i el càlcul del diferencial de SRP.

Basat en l’anàlisis de la dinàmica relativa, proposem tres lleis de control per a

l’adquisició i manteniment de la formació tal i com es deriven d’aproximacions diferents

de la dinàmica relativa. La primera llei de control consisteix en dos termes: l’acceleració

relativa per a cancel·lar la variació de la dinàmica respecte la seva referència i un terme

lineal per a aconseguir la formació. L’acceleració relativa l’aproximem per les dues

forces principals, és a dir, la gravetat terrestre i la SRP, mentre que el terme lineal es

defineix per una matriu Hurwitz -amb pols sobre el semiplà esquerra del pla complex-.

Ja que aquesta aproximació de la dinàmica relativa no és lineal, aquest control s’ha

anomenat com control no lineal en contrast amb els altres dos.

Aquests altres dos controls es basen en aproximacions lineals de la dinàmica relativa.

Sota aquesta hipòtesis, dissenyem una matriu de guany per tal de garantir que la
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trajectòria real tendeixi a la de referència. Amb aquest objectiu, primer considerem les

aproximacions necessàries per a la linealització de la dinàmica. Com a resultat, el terme

de la SRP s’ommet completament en aquesta aproximació, igual que la component

constant de l’acceleració relativa deguda a la gravetat terrestre. Aquesta aproximació

és, llavors, utilitzada per a definir dos controls lineals en el vector d’errors.

El control de posicionament de pols robust considera l’algorisme de KNV per a cal-

cular la matriu de guany, mentre que el control LQR, a més a més, considera una funció

potencial de cost i dissenya la matriu de guany per tal de minimitzar el valor d’aquest

potencial. Aquests algorismes tenen associats uns paràmetres de configuració -la defi-

nició dels pols i les matrius de pes dels errors i magnitud del control, respectivament-

que s’han calibrar per a cada problema.

Els tres controls s’han comparat utilitzant simulacions numèriques. Per fer-ho, hem

agafat com a referència la missió espacial de la ESA PROBA-3 com a escenari de

referència. Més concretament, hem considerat la fase experimental on els satèl·lits han

d’adquirir la formació per prendre observacions de la corona solar i s’ha de mantindre

amb gran precisió durant el pas per l’apogeu. En les simulacions s’han considerat

les dues òrbites HEO que eren candidates a l’òrbita de referència quan aquest estudi

va arrancar [49]. Aquestes dues òrbites tenen peŕıodes 1 i 3 dies, respectivament,

sent la primera la seleccionada finalment per a PROBA-3 [40]. Les caracteŕıstiques

espećıfiques de l’òrbita, fase experimental, i modes d’operació també s’han introdüıt en

l’article juntament amb altra informació rellevant per a la definició de l’escenari.

L’article descriu completament la plataforma experimental desenvolupada per a la

validació i comparació de les lleis de control, incloent els models de la dinàmica, el

sistema de metrologia per a la navegació relativa i les caracteŕıstiques completes dels

models de Guiat, Navegació i Control (GNC) rellevants a aquest estudi.

La importància del calibratge per a cadascun dels algorismes queda manifesta en la

primera part dels resultats. Tal i com s’explica en la secció “Results and Discussion”,

valors no apropiats poden resultar en la saturació dels motors, convergència lenta, o

oscil·lacions d’alta freqüència dels errors de posicionament. Com a exemple, es mostren

els resultats per al control nolineal. Finalment, es discuteix el paper dels paràmetres de

configuració durant el calibratge i es compara el procés entre ells, sent el control LQR

el de calibratge més senzill i intüıtiu.
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Sota configuracions optimitzades, però, tots els controls ofereixen resultats similars

i poden reduir l’error inicial en posició respecte la trajectòria de referència d’uns quants

metres al nivell del cent́ımetre, d’acord a les simulacions que es presenten. La principal

diferència consisteix en la reducció de l’error quan els models de la dinàmica relativa

inclosos en el control són més acurats, tal i com és el cas del control no lineal. Tot i

aix́ı, la inclusió de termes no lineals en la dinàmica relativa només millora els resultats

un cop els satèl·lits ja estan en formació i les acceleracions relatives son prou grans, en

comparació amb la magnitud del control, és a dir, a poca altitud. Altrament, el terme

lineal en l’error de control inclòs en el càlcul del control absorbeix els errors de modelat

i fa que tots els controls ofereixin resultats similars.

4.5 Control Relatiu d’un Telescopi Virtual en Òrbita Molt

El·ĺıptica usant GNSS i Metrologia Òptica

Aquesta secció resumeix el contingut de l’article [32], que ha estat enviat per a avaluació

i corresponent publicació, si s’escau, a la revista Journal of Guidance, Control and

Dynamics el gener del 2010, com a nota d’enginyeria.

En aquest article, continuem el treball anterior i desenvolupem estratègies de control

per a l’adquisició i manteniment prećıs d’un telescopi virtual que ha d’estar perfecta-

ment alineat amb el cos observat i seguir, aix́ı, una trajectòria no natural. De nou, la

missió PROBA-3 ha estat presa com a referència. Motivats per les bones prestacions

del control LQR, la seva simplicitat d’implementació, i el redüıt cost computacional

abord, tornem a considerar-lo per a l’adquisició de la formació. Per tal de reduir pos-

sibles contribucions constants a l’error després d’estabilitzar-se la solució, considerem

també una extensió de l’LQR que inclou un terme integral de l’error a partir de l’es-

tabilització. Aquest nou control l’hem anomenat com a LQRI i té com a objectiu el

manteniment prećıs de la formació.

Aquests dos algorismes s’han implementat en una plataforma de vol en formació per

a la seva validació sota un entorn realista. La plataforma de vol en formació (FFTB)

del centre d’operacions de l’agència alemanya GSOC té com a objectiu la validació

i anàlisi d’algorismes de GNC. Aquesta plataforma emula la dinàmica dels satèl·lits,
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inclou els algorismes de GNC, un simulador de la senyal GPS Spirent GS7700 i dos

receptor Phoenix GPS de freqüència simple.

Per a la validació d’aquest esquema de control, hem considerat els algorismes de na-

vegació previstos per a la missió PRISMA. Aquesta missió, també tecnològica, té com

a objectiu la validació de tecnologia de sensors i motors i demostrar capacitat d’auto-

nomia en el vol en formació i consisteix en dos satèl·lits volant en formació en òrbita

heliośıncrona. Els algorismes de navegació per a PRISMA processen observacions GPS

per a la navegació relativa, tal i com està previst per a la navegació PROBA-3 a altituds

baixes i s’ha reutilitzat en les simulacions actuals. Degut a les diferències substancials

entre PRISMA i PROBA-3, alguns canvis han estat necessaris a la plataforma, tal i

com es descriuen en l’article.

A partir d’aquestes simulacions hem analitzat les prestacions del sistema complet

de GNC en detall durant un peŕıode orbital, amb l’excepció d’un petit interval corres-

ponent al pas sobre el perigeu. Primer, hem analitzat les prestacions de la navegació

relativa utilitzant GPS i, després, utilitzant un sistema òptic de metrologia per a alti-

tuds superiors. Després hem caracteritzat el sistema de guiat i, finalment, estudiem les

prestacions dels algorismes de control per als modes d’adquisició i manteniment prećıs.

Com a resultat global, la interacció del sistema complet de GNC permet una reducció

de l’error de posició respecte la seva referència d’uns 8 m al nivell del cent́ımetre.

Finalment, suggerim la possibilitat de millorar la precisió de les estimacions de la

velocitat relativa quan utilitzem observacions òptiques per tal de reduir les oscil·lacions

del control i, com a resultat, reduir el cost associat a aquesta estratègia. Segurament,

això es podria aconseguir millorant el filtre d’estimació implementat, en primera apro-

ximació, per al sistema de navegació òptic.

En resum, hem desenvolupat un algorisme de control simple i hem provat la seva

validesa per acomplir exigents requisits de control. Les simulacions de l’escenari de

PROBA-3 s’han d’interpretar com un exemple realista, tot i que l’aplicació d’aquesta

tècnica no es limiti a aquesta missió sinó que es pot estendre fàcilment a altres missions.
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Appended Papers

In this appendix, we include a copy of the five papers that form the core of this graduate
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proceedings, two as journal papers and, the last one, submitted for publication in a

journal paper. All five are peer reviewed.
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• L. Perea and P. Elosegui. New State Update Equation for the Unscented
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Nonlinearity in Sensor Fusion: Divergence Issues in

EKF, modified truncated SOF, and UKF

L. Perea∗ J. How† L. Breger† P. Elosegui∗

Relative navigation is a challenging technological component of many planned NASA
and ESA missions. It typically uses recursive filters to fuse measurements (e.g., range and
angle) from sensors with contrasting accuracies to estimate the vehicle state vectors in
real time. The tendency of Extended Kalman filter to diverge under these conditions is
well documented in the literature. As such, we have investigated the application of the
modified truncated Second-Order Filter (mtSOF) and the Unscented Kalman filter (UKF)
to those mission scenarios using numerical simulations of a representative experimental
configuration: estimation of a static position in space using distance and angle measure-
ments. These simulation results showed that the mtSOF and UKF may also converge to an
incorrect state estimate. A detailed study establishes the divergence process of the mtSOF
and UKF, and designs new strategies that improve the accuracy of these filters.

I. Introduction

Formation flying is expected to become a core technology component of future space missions such as
Symbol-X, TPF, and DARWIN. Missions demonstrating formation flying technologies, e.g. the Proba 3
concept1 of the European Space Agency (ESA), are under consideration at space agencies worldwide. These
missions may combine measurements from various sensors,2 likely with different accuracies, to meet position
and attitude requirements defined both for the individual satellites and for the formation. Measurements such
as range and bearing will require nonlinear estimators that are robust and can also operate autonomously for
extended periods of time.3 This study investigates divergence properties of high-order filters, in particular
the unscented Kalman filter (UKF), in the presence of nonlinearities; and evaluates proposed modifications
to improve filter performance.

The extended Kalman filter (EKF) is a nonlinear filter that is used extensively because it usually provides
very good estimation performance and has a straightforward implementation. However, the EKF has been
shown to fail (i.e., to diverge or to converge to an incorrect solution) in many object tracking applications
where the dynamic models, measurement models, or both, are not linear functions of the state vector.4,5

An example of this is determining the orbit of a satellite formation using Global Positioning System (GPS)
measurements and inter-vehicle ranging (e.g., using microwave signals), for which EKF has been shown to
be unreliable.6 Huxel et al. characterized the error associated with the EKF and the modified Gaussian
second-order filter due to the combination of inertial and relative range measurements with different accu-
racies. Plinval7 and Mandic8 further analyzed the divergence process of the EKF under similar conditions,
and investigated the performance of an alternative recursive filter focusing on an ad hoc increase of the
measurement noise levels,7–10 a technique also known as “Bump-up.”

There are several other filters in the literature that have been designed to deal with nonlinear measure-
ments,5–7,11–18 with respect to the state vector. These filters use different approximations of the measurement
models, different approximations of the probability density functions, or both. For example, there exists a
large set of filters that are variations of the EKF. The iterated EKF (IEKF) is known for its accuracy with
nonlinear measurement models conditioned to ensure that the system is fully observable.14 Its main draw-
back is the computational load associated with the additional filter iterations that are required. The linear
regression Kalman filters (LRKF) represent another set of variants that approximate the state/measurement
estimate and the associated uncertainty by a statistical linear regression through a well chosen set of “sigma
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points”. This process allows multiple moments of the probability density function and terms of the Tay-
lor series expansion of the dynamic/measurement models to be considered. Some examples of this family
are the central difference filter, the first-order divided difference filter, and the recent unscented Kalman
filter (UKF).13,14,19 These filters require the evaluation of the measurement model at several points, but, in
contrast with the EKF and IEKF, they avoid the computation of the Jacobian of the models. This makes
them particularly well suited to the case where the evaluation of the Jacobian is complex or computationally
expensive.

Another important set of filters are the high-order filters. The second-order filters (SOF) are probably
the best known among them. These filters approximate the models by a high-order Taylor approximation,
and assume that the third and higher-order moments of the probability functions are a function of the
covariance.15 The complexity and computational load required for the implementation of these types of
filters typically make their implementation unfeasible, particularly in the vector case (x ∈ Rn, n > 1).15 In
the case of the SOF family, some simplifications have been designed to avoid the complexity of implementing
a full SOF. For example, the mtSOF, which accounts for bias correction terms due to nonlinearities in the
models,15 is commonly used.

Particle filters approximate the full probability distribution, not only the mean and the variance, by using
a finite set of samples. These filters use the sequential sampling and resampling according to an “importance
function” to provide much better performance than Kalman filters. The improved performance is especially
pronounced when using nonlinear models (e.g., object tracking using bearing sensors5), or non-Gaussian
distributions. However, the high computational cost associated with using the large number of samples
required makes them unsuitable for almost real-time navigation applications.5,12

This study is aimed at characterizing the error due to nonlinear measurements (with respect to the state
vector) using different kinds of filters suitable for near real-time missions, such as those presented above.
For this purpose, we evaluated the estimation performance of a representative set of filters: the EKF,4,9, 15

bump-up strategies based on the EKF,6–10 the mtSOF,15 and the UKF.5,13 We used a popular experimental
case5,7, 8 that allows full isolation of the performance of the update equations from the propagation equations.
We evaluated the estimation performance and long-time stability of these filters under identical experimental
conditions, and designed possible modifications to improve their performance, when possible.

In the following sections, we introduce previous filters using a unified approach for describing both
prediction and update phases. This notation permits straightforward comparisons between filters and makes
clear the respective roles of each term in the filter equations. Because of their common structure we will
refer to this kind of filters as Kalman-type filters in the sequel. The errors and divergence processes of these
Kalman-type filters are characterized in detail. Then, proposed modifications to these filters are described
that improve their performance in the presence of nonlinear measurement models. These modifications have
been evaluated for a large set of experimental configurations.

II. Description of Kalman-type filters

The extended Kalman filter, the modified truncated second-order filter, and the unscented Kalman filter
all belong to a common family of Kalman-type filters. They are used to estimate the n-dimensional state
x ∈ Rn of a process that is governed by an almost-linear stochastic differential equation,

ẋ = f(t, x)dt + G(t, x)dβ(t)

through the measurements z ∈ Rm

z = h(x) + v

where ẋ is the time derivative of the state vector x, n is the dimension of x, f is the dynamic model function,
t is time, G is an n-by-s function, β is an s-vector dimensional Brownian motion of diffusion Q(t), z is
the measurement vector, m is the dimension of z, h is the measurement modeling function, and v is the
measurement noise (∼ N(0, R)). The state estimation procedure has two distinct phases: first, it predicts
the statistics that describe the distribution of the state x at time t−∆t to time t, when new measurements
will be available; and second, it updates the predicted state estimate as new measurements become available.

Kalman-type filters are based on the assumption that the state, measurement, and error distributions
can be characterized by only two statistics: the mean and the covariance. Higher order central moments are
assumed small enough to be neglected. Therefore, the equations used to propagate and update the state
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estimates are based on different approximations of the following conditional expectations

x̂−k = E[x(tk)|z(tk−1) = zk−1] (1)
P−xx,k = E[(x(tk)− x̂−k )(x(tk)− x̂−k )T |z(tk−1) = zk−1] (2)

x̂+
k = E[x(tk)|z(tk) = zk] (3)

P+
xx,k = E[(x(tk)− x̂+

k )(x(tk)− x̂+
k )T |z(tk) = zk] (4)

where the character ∧ denotes estimated value, k is a time index, − indicates a predicted value, z(t) is the
measurement variable, zk is the measurement, Pxx,k is the covariance matrix of the state estimate, T denotes
matrix transpose, and + indicates an updated term.

The approximations of the conditional expectations (1) and (2) corresponding to the prediction phase
are called prediction equations, and they vary between filters. The EKF propagates the state estimate
statistics (i.e., the mean and the covariance) by integrating the linearized differential equations. Therefore,
the statistics estimated using the EKF are linear approximations of the true mean and true covariance matrix.
On the other hand, the mtSOF and UKF may propagate the state statistics using higher-order terms of the
nonlinear dynamic model f , thus increasing their accuracy with respect to the EKF. In particular, the mtSOF
includes second-order terms of the dynamic model by using the first and second derivatives of f , thereby
increasing the complexity of the algorithm implementation in many problems.15 The UKF circumvents such
increased complexity by generating a set of well distributed points around the current estimate, propagating
this set of sigma points to the next epoch, and then re-computing the statistics from the resulting set of
sigma points. Depending on the number and distribution of the original sigma points, the UKF can include
high-order terms of the dynamic model f with adjustable accuracy for these equations, though this can also
add complexity in the selection of the sigma points.12

To approximate the conditional expectations (3) and (4) of the update phase, all previous filters use the
following approximations, which are usually referred to as update equations:

Kk = Pxz,kP−1
zz,k (5)

x̂+
k = x̂−k + Kk(zk − ẑk) (6)

P+
xx,k = P−xx,k − Pxz,k(Pzz,k)−1PT

xz,k (7)

where Kk is the Kalman gain matrix, Pxz is the covariance matrix between the state and the measure-
ment, Pzz is the covariance matrix of the measurements, z is a vector of measurements, ẑ are the expected
measurements, and (zk − ẑk) are the innovations or measurement residuals.

Equations (5) - (7) correspond to a linear function of the measurement residuals, and that the coefficients
are functions of x̂−k , P−k , and h. When h is a nonlinear function, the coefficients are also nonlinear functions
of the state space statistics and each filter generally computes them with the same degree of accuracy as
that used in the propagation equations. For the computation of ẑk, Pzz, and Pxz, the state statistics x̂−k
and P−k are transformed to the measurement space using the same approximations of (1) and (2). The EKF
transforms mean and covariance using a linearization of the measurement function h; the mtSOF transforms
these statistics using the first and second derivatives of h; the UKF generates a set of sigma points for this
transformation.

Figure 1 shows the performance of these filters for the case of a static vehicle (i.e., f(t, x) = 0) in R2

without process noise (Q(t) = 0), using linear measurements (e.g., h(x) = x), and independent measurement
noise levels (R is diagonal, with elements σ1 = 2.5E−5 and σ2 = 6E−3 in the example shown). Under this
configuration, both the EKF and the mtSOF coincide because there are no second-order terms, and all three
filters provide good estimates from the first iteration, as expected for linear measurements. The following
sections analyze the suitability of the linear assumptions of the update equations in the EKF, mtSOF, and
UKF in experimental configurations that involve highly nonlinear measurements.

III. Description of the experimental configuration

In order to address the accuracy of the update equations, we will consider the estimation of a fixed
position in Cartesian coordinates x = (x1, x2) in R2 (i.e., a system with no dynamics ẋ = f(t, x) = 0 and
Q ≡ 0 as in Figure 1), thus effectively isolating the prediction phase from the update phase. The nonlinear
measurements considered are distance r =

√
x2

1 + x2
2 and angle θ = arctan (x2/x1). This configuration
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Figure 1. Variation of the (red) EKF, (green) mtSOF, and (black) UKF position error of a static vehicle using linear
measurements. Note that the vertical axis is in logarithmic scale.

was previously employed by several authors5,7, 8 to evaluate the performance of the EKF. It is particularly
well-suited for filter evaluation because of its simplicity and nonlinearity.

The propagation equations associated with this problem are identical for all filters:

x̂−k = x̂+
k−1 (8)

P−xx,k = P+
xx,k−1 (9)

We have chosen to make the distance measurements significantly more accurate than the angle measure-
ments to be representative of sensor suites on possible future proposed formation flying missions.7,8, 20 As a
baseline configuration x̃true = (100, 100) units; the covariance matrix of measurement noise R is a diagonal
matrix with a radial measurement noise level σ2

r of 2.5E−5 square units, and an angular noise level σ2
θ of

6E−3 square radians; an a priori state estimate x̂0 = (20, 80); and the a priori state uncertainty Pxx,0 = σ2I,
where σ = 100. Other values will be used in the sensitivity analysis (see below). Perfect measurements have
been used as realizations of the measurement variable z, i.e., z(tk) = h(x̃true) for every k. This represents a
best-case scenario in which measurements are better-than-expected under normal experimental conditions.

IV. Divergence process of the EKF

To introduce the problem of filter divergence, an analysis of the EKF divergence process is presented
first. The explicit expressions for the coefficients of the update equations (6)–(7) in the EKF are:

ẑk = h(x̂−k ) (10)
Pzz,k = R + HkP−xx,kHT

k (11)

Pxz,k = P−xx,kHT
k (12)

where Hk = ∂h
∂x

∣∣
x̂−k

is the Jacobian matrix of h(x) evaluated at x = x̂−k .
The EKF linearizes the nonlinear measurement function h around the current predicted state estimate

and ignores higher-order terms. Although widely used, the EKF is thus only reliable for systems that are
almost linear within the time scale of the update interval.19 Plinval7 and Mandic8 evaluated the performance
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of this filter for the problem described in Section III and found that it failed to converge to the true
position regardless of the number of filter iterations, a process that they diagnosed as filter divergence. They
determined that the divergence was due to an over-reduction of the state covariance matrix in all dimensions,
which, in turn, was caused by the nonlinearities of the measurement model. They found that the true state
vector lies outside the ellipsoid that approximates the confidence area of the estimated state vector after a few
filter iterations. This section builds on that example to further investigate the problem of filter divergence.

Figure 2(a) shows the experimental configuration after the first filter iteration. The estimation process
starts with the initial state estimate at the (unitless) position x̂+

0 = (20, 80), and the true position x̃true =
(100, 100). During the first measurement update, the radial component of the measurement residual is
projected into the direction of x̂−1 = x̂0 from the origin of coordinates -this direction will be referred to as
radial direction in the sequel-, and the angular component of the measurement residual is projected onto
its tangential direction due to the linearization process of the measurement model. Due to the linear model
of the measurement update equations, both contributions are combined through simple addition, leading to
the new state estimate x̂+

1 = (77.36, 126.43). The resulting error in the update state estimate x̃true − x̂+
1 is

significantly large compared to the measurement noise R.

0 50 100 150
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100

150
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x 2

(a) First update process. This figure depicts (green)
x̃true = (100, 100), (blue) x̂−1 = x̂0 = (20 80), (grey)
the new state variation due to the radial residual (along
the radial direction), and to the angular residual (along
the linearized angular direction), (blue) the resulting up-
date state estimate x̂+

1 = (77.36 126.43), and (black)
the 1-σ2 confidence area associated to the state covari-
ance matrix P+

xx,1. Note that the ellipse P+
xx,1 has al-

most collapsed to an interval.
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(b) Second update process. This figure depicts x̂−1 = x̂0,

x−2 = x+
1 , the new state variation due to the radial

residual (along the linearized angular direction of x̂0

due to the erroneous correlation of Pzz,2), and to the
angular residual (undetectable due to its small size),
x̂+
2 = (55.32 131.94). The resulting (black) 1-σ2 con-

fidence area associated to the state covariance matrix
P+

xx,2 has contracted so much that it can not be appre-

ciated in this picture, for this reason we plotted 104-σ2

confidence area.

Figure 2. EKF update process.

The state covariance update remains unaffected by the error in the state update because the former
assumes a linear measurement model. The magnitude of the update state covariance is greatly reduced in
all directions due to the small size of the measurement noise levels (R matrix). Due to the differences in the
measurement noise levels, the confidence area has contracted faster in the direction of x̂−1 = x̂0 than in the
linearized angular direction. The confidence area of the new state estimate corresponds to an ellipsoid with
axis parallel to the eigenvectors of P+

xx,1, that correspond to the radial and angular directions of x̂−1 6= x+
1 .

Figure 2(a) shows that the large reduction of the state covariance has allowed the solution x̃true to fall
outside the 1-σ confidence area defined by P+

xx,1.
After the first update, the radial and angular directions associated with the new state x̂+

1 have changed.
Therefore, the eigenvectors of P+

xx,1 do not correspond to the radial and angular directions of x̂+
1 . This

misalignment, together with the high condition number of the state covariance, result in a significant term
appearing in the off-diagonal of Pzz,2 = (R+HkP−xx,2H

T
k )−1. The presence of this term is interpreted by the
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filter as indicating a correlation between the radial and the angular measurements, which leads the filter to
a misinterpretation of the residuals during the next update. Figure 2(b) shows that the new measurement
residuals are further misinterpreted leading to an update state estimate with a larger error than the first
update. Since the covariance matrix update is independent of the residuals, the updated covariance matrix
shrinks again in all directions (P+

xx,1 has been magnified by 104 in Figure 2(b); see figure caption).
At this stage, the state covariance is sufficiently small compared to the measurement noise levels that the

filter under-weights all new measurements. This is illustrated in Figure 3, which shows that the state estimate
error remains effectively constant after two iterations. Henceforth, we refer as apparent filter divergence, or
just filter divergence, to the situation in which a large error in the state estimate exists relative to a small
state covariance matrix at steady state, which coincides with the definition used in references 4,15.
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Figure 3. Variation of the EKF position error with filter iteration.

In summary, the example demonstrates that if the linear approximations of the measurement directions
have a large dependence on the state estimate (i.e., H(x) = ∂h(x)

∂x is far from constant) and the measurements
have very different noise levels, the linear update equations may lead the filter to diverge. To overcome the
divergence of the EKF, both Plinval and Mandic investigated the possibility of artificially increasing the
measurement noise levels to slow down the convergence process. This strategy will be referred to as bump-
up EKF.

IV.A. Bump-up EKF strategies

A bump-up EKF strategy (B-EKF) tries to avoid the divergence of the filter by reducing the rate of conver-
gence in the direction of the more accurate measurements, and “waits” for convergence in the less accurate
directions. This strategy mitigates the over-reduction of the state covariance matrix. Additionally, the pos-
sible correlations in Pzz,k due to a misinterpretation of the state covariance matrix will have a lower impact
on the measurement update. The only difference in the formulae between these strategies and the EKF,
is that a B-EKF will artificially increase the noise associated with the accurate measurements, and reduce
this increment as a function of the confidence in current state vector estimates. Geometrically, this strategy
means using larger and less eccentric confidence areas (or P+

k,xx) compared to the EKF.
Based on this rationale, Plinval defined the following bump-up on the measurement noise level, which is

assigned the label B-EKF 1:
B-EKF 1: Rnew = R + HkP−xx,kHT

k (13)

The right-hand side term R + HkP−xx,kHT
k corresponds to the linear approximation of the measurement

estimate covariance Pzz,k (i.e., equation (11)) and the new measurement covariance is then Pzz,k,new =
R + 2HkPxx,kHT

k . Hence, the artificial increase is expected to be reduced as the state estimate uncertainty
decreases. At steady state, this strategy is nearly equivalent to the EKF.

Figure 4 shows the norm of the estimation error ||x̃true− x̂k|| as a function of filter iteration k for B-EKF
1, EKF, and other filters (see below). The remarkable improvement of the B-EKF 1 with respect to the
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EKF is consistent with reference 7. Mandic generalized this bump-up strategy and defined:

Rnew = R + αHkP−xx,kHT
k (14)

where α ∈ R+. This author noted that the α value of the bump-up and the magnitude of the error at steady
state were related. It is further stated that the α value that minimizes the error at steady state seemed to
depend on the error of the a priori information, and that no method for selecting α a priori was known.8

Further building on these strategies, we designed several alternative bump-up strategies to increase the
state or measurement error noise covariance matrices (P or R). The rationale behind these new B-EKF
is twofold; first, to reduce the probability of over-reduction of the state covariance matrix by artificially
increasing the measurement noise levels; and second, to create a measurement noise matrix with a confidence
area in the state space that is circle-shaped, thereby partially canceling possible misinterpretations of the
correlations in P . The following bump-up strategies are labeled B-EKF 2, 3, and 4,

B-EKF 2: Rnew = R + ||P−xx,k||HkHT
k (15)

B-EKF 3: Rnew = ||JkRJT
k ||HkHT

k (16)
B-EKF 4: P−xx,k,new = ||P−xx,k||In (17)

where J is the Jacobian of h−1(r, θ) assuming the existence of this inverse function.
Equation (15) has the same form as (13), and becomes identical when P−xx,k is a multiple of the identity.

The usage of ||P−xx,k|| · In, instead of P−xx,k, is equivalent to considering the minimum circular area that
contains the 1-σ confidence area defined by P−xx,k. Therefore, an error in the direction of the eigenvectors
would have a minor impact. Figure 4 shows that the performance of B-EKF 1 and B-EKF 2 are very similar.

The bump-up method in equation (16) considers equivalent noise levels for different types of measurements
and bump-up for only the lower accuracy terms of the R matrix in order to create similar convergence
velocities in all directions. In the numerical simulation considered, starting from a state estimate x̂0 = (20, 80)
units means that a radial error of 1 unit is equivalent to an error of 1 unit along the radial direction, while
an angular error of 1 degree is equivalent to an error of ∼1.4 units perpendicular to the radial direction. To
compare the noise levels of different types of measurements, it is necessary to transform the measurement
covariance matrix to the state space. Equation (16) uses a linear approximation, JkRJT

k , to apply such a
transformation. In order to have comparable noises in the state space, this strategy uses ||JkRJT

k || · In, and
linearly transforms this covariance matrix back into the measurement space. The resulting Rnew matrix,
which is larger than R by construction, consists of comparable (in state space) noise levels for different
types of measurements. Figure 4 shows that though the improvement relative to the EKF is significant, this
bump-up performs worse than the previous B-EKF beyond the second iteration. Conceptually, the bump-up
should affect all directions, not only the directions of the coarse measurements, thus effectively preventing
over-reductions in any direction.

Equation (17) defines the only strategy that uses a bump-up of the state covariance P−xx,k instead of
the measurement covariance matrix R. It raises the lower accuracy terms of the state covariance matrix to
impose a circularly shaped confidence area for the state estimate just before updating the state estimate with
a new measurement. This minimizes the effect of a misinterpretation of the direction of the eigenvectors in
the computation of Pzz,k, and Pxz,k. Figure 4 shows that this approach and the prior B-EKF provide similar
performance for the current configuration. On a logarithmic scale, the improvement of the initial estimation
using the bump-up strategies is approximately linear.

The main drawback of the B-EKF is that the speed of convergence, in terms of reducing the uncertainty
associated to the state estimate, may decrease substantially with respect to the EKF.

V. Divergence process of the mtSOF

As previously introduced, the second-order filter is probably the best known among the high-order filters.
These filters approximate the models by a second-order Taylor series expansion,15 but the complexity and
computational load required for an implementation of the full-scale second-order filter typically makes its
implementation unfeasible, particularly in the vector case (x ∈ Rn, n > 1).15 In the case of the second-order
filter family, some simplifications have been designed to avoid the complexity of the full-scale implementation
while retaining many of its useful properties. The version presented hereafter is referred to as the modified
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Figure 4. Variation of the position error for various bump-up strategies: (red) EKF, (blue dots) B-EKF 1, (blue line)
B-EKF 2, (cyan line) B-EKF 3, and (cyan dots) B-EKF 4. Both axes are in logarithmic scale.

truncated second-order filter (mtSOF), which additionally assumes that the conditional density is nearly
symmetric, and also that fourth and higher order even central moments can be neglected. The explicit
update equations are:

ẑk = h(x̂−k ) + bm (18)
Pzz,k = R + HkP−xx,kHT

k − bmbT
m (19)

Pxz,k = P−xx,kHT
k (20)

where bm,i = 1
2 tr{∂2hi(x̂

−
k )

∂x2 P+
xx,k}, and i denotes the index for the vector component of h. The expressions

for x̂+
k , P+

xx,k, and Pxz,k are identical to equations (6), (7), and (12), respectively. Comparison of equations
(10)–(11) and (18)–(19) shows that mtSOF is an EKF plus the b vector, which captures the second-order
contribution of h.

Figure 5 shows the position error as a function of the filter iteration for the same experimental configu-
ration presented in Section III. Comparison of Figures 5 and 3 shows that even though the mtSOF uses a
second-order term bm, any improvement over the EKF is marginal. Figure 5 also shows that mtSOF is very
unstable. Inspection of the filter values reveals that the state covariance matrix does not retain its positive
definite property after the first update. The bmbT

m term causes a large reduction from P+
xx,0 to Pzz,1 and,

in turn, of P+
xx,1. For this reason, the results of the filter in successive iterations become unrealistic and

unpredictable. After a certain number of iterations, around 200, the filter reaches a steady state with an
error of ∼40 units and a state covariance matrix corresponding to an uncertainty smaller than 0.04 square
units in the angular direction, and 2E−7 units in the radial direction. These results indicate that the filter
diverges because the state covariance matrix experiences an over-reduction right at the first iteration for the
experiment being considered.

V.A. Bump-up mtSOF

We investigated a bump-up strategy of the measurement noise level similar to those designed for the EKF.
We implemented the bump-up strategy defined in equation (13), which we will refer to as B-mtSOF for
consistency, because of the good performance obtained with the B-EKF 1 and the reduced computational
load associated with the bump-up. Figure 5 shows the estimation error for the mtSOF and the B-mtSOF. In
this example, the B-mtSOF avoids the tendency of the state covariance matrix to lose its positive definiteness
for more than 20 iterations and, therefore, shows a significant improvement over the mtSOF. However, the
updated state covariance matrix loses positive definiteness after iteration 23, making the filter performance
unpredictable. This leads to a sudden state estimate degradation near iteration 100.
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Figure 5. Variation of the state estimation error for the (dots) mtSOF and (continuous line) B-mtSOF.

VI. Divergence process of the UKF

The linear regression Kalman filters represent a set of EKF variants that approximate the state/mea-
surement estimate and the associated uncertainty by a statistical linear regression through a well chosen
set of points. This process allows multiple moments of the probability density function and terms of the
Taylor approximation of the dynamic/measurement models to be considered. A representative example of
this family is the UKF.13,14,21 It requires the evaluation of the measurement model at several points, thereby
avoiding the computation of the full Jacobian, in contrast with the EKF. This makes the UKF particularly
well suited to the case where the evaluation of the Jacobian is complex or computationally expensive.

The explicit steps involved in updating the set of sigma points for this filter in absence of dynamics
include the computation of:5,12,22

1. The sigma set from the predicted state and covariance matrix as

Xk =
[

x̂−k , x̂−k + γ
√

P−xx,k, x̂−k − γ
√

P−xx,k

]
(21)

where the matrix
√

P−xx,k is interpreted as a set of n column vectors, and γ is a constant.

2. The measurements associated with this sigma set

Zk = h(Xk) (22)

ẑk =
2n∑

i=0

W
(m)
i Zi,k (23)

where W
(m)
i and W

(c)
i are a specific set of weights, m denotes mean, c denotes covariance, and i is the

index of the sigma point (see reference [12] for additional details).

3. The expected correlations from the image set Zk are

Pzz,k = R +
2n∑

i=0

W
(c)
i (Zi,k − ẑk)(Zi,k − ẑk)T (24)

Pxz,k =
2n∑

i=0

W
(c)
i (Xi,k − x̂−k )(Zi,k − ẑ−k )T (25)

(26)

4. The update equations are the same as those used in the previous filters, i.e. equations (6)–(7).
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Figure 6. Variation of the state estimation error for the UKF.

Figure 6 shows the norm of the state estimation error as a function of filter iteration for the experimental
configuration introduced in Section III. The error pattern of the estimated state of the UKF is counterintuitive
because there is an initial phase of significant improvement (up to iteration ∼45), followed by a phase in
which the error increases (between iterations ∼45–90), and a final phase where the improvement is marginal
(beyond ∼90). Since the dynamic model of this example is static, the propagation equations cannot be the
cause of this variation. To gain some insight into the relative accuracy of equations (10) and (23), Figure 7
shows the estimated measurement ẑk after equations (10) and (23) for the UKF. This figure reveals that
equation (23) is approximately four times more accurate than (10). This leads to an almost zero residual
vector, and thus, a too small modification of the state estimate.
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Figure 7. Measurement estimates ẑk for the first 30 iterations using the (red) UKF equations and (blue) a linear

approximation (ẑk = h(x̂−k )). Within each curve, the time direction is from bottom-right to top-left. The true position
z̃true = h(x̃true) is marked by a green dot.

The divergence process of the UKF can be summarized as follows:

1. At iteration number 14, the state estimate confidence area has contracted too much and the true
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state x̃true falls outside the ellipsoid that approximates the confidence area Pxx,k (see Figure 8(a) and
8(b)), as was the case when using the EKF with fewer iterates. Figure 8(c) shows the ellipsoid Pzz,k

that approximates the confidence area of the measurement estimate still includes the measurement
corresponding to the true state h(x̃true).

2. At iteration number 21, h(x̃true) exits the ellipsoid defined by Pzz,k (see Figure 8(d)).

3. Beginning at iteration number 29, the information from new measurements is misinterpreted by the
filter and the state estimates begin moving away from the solution in the angular direction first, and
then in the radial direction. The increasing condition number of Pxx,k together with the discrepancy
between the direction of the associated eigenvectors and the linear approximation of the measurements
direction results in a significant correlation between radial and angular measurements in the Pzz matrix,
as in the EKF example. This causes the residual information to be misinterpreted in the filter.
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(a) (Black) 1-σ2 confidence area for the (red) state es-
timate at iteration number 14.
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(b) Same as in Figure 8(a), zooming on x+
14, and also

showing (green) the true position x̃true.
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(c) (Black) 1-σ confidence area of the measurement vari-
able z at iteration number 14. Red point corresponds to
ẑ14, and green point depicts h(x̃true).
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(d) Same as Figure 8(c) at iteration number 21.

Figure 8. Divergence process of the UKF.
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In conclusion, the state covariance reduction appears to occur overly fast compared with the accuracy of
the state estimates. The misalignment of the eigenvectors of Pxx,k, together with the high condition number
of this matrix, leads the filter to a misinterpretation of new residuals. These two effects seem to lead the
filter to ultimately diverge, as was described previously.

VI.A. Modifications to the UKF

Based on the hypothesis that the divergence of the UKF is due to the over-reduction of the covariance
matrix compared to the error reduction in the state estimate, we defined two types of filter modifications,
one by increasing the measurement noise level as in the B-EKF and B-mtSOF strategies, and second, by
using more information from new measurements in the residuals. The first modification is labeled B-UKF
and the second modification UKFz.

VI.A.1. B-UKF

Based on the results obtained examining bump-up strategies with the EKF, the bump-up UKF (B-UKF) is
defined as follows

Rnew = R +
2n∑

i=0

W
(c)
i (Zi,k − ẑk)(Zi,k − ẑk)T

and

Pzz,k,new = R + 2
2n∑

i=0

W
(c)
i (Zi,k − ẑk)(Zi,k − ẑk)T

Results using these modifications are presented in Figure 9 together with a comparison with the original
UKF. This figure shows that the B-UKF has delayed the divergence of the nominal UKF, though it does not
eliminate the problem.

VI.A.2. UKFz

The second modification alters the UKF algorithm by computing ẑk as h(x̂−k ) instead of using a high-order
transformation. The rationale behind this approach is based on the results in Figure 7. That figure suggests
that equation (23) is significantly more accurate than (10). For the same reason, the measurement residuals
are smaller in the UKF than when using a linear approximation for the expected measurement computation.
The residuals computed as zk−h(x̂−k ) are expected to point in a similar direction as the residual zk− ẑk,ukf ,
but with a larger magnitude. Thus, h(x̂−k ) should be nearly equivalent to an over-weighting of the new
residuals in the state update equation, but without an increase in the contraction rate of the state covariance
matrix. This strategy will be referred to as UKFz.

Figure 9 shows that the UKFz is the only approach that appears to avoid diverging at least for the
experiment being considered. The convergence rate for this filter seems to be logarithmic (nearly linear in
logarithmic scale), as was the case with the B-EKF strategies, though the UKFz is much faster. The figure
shows that this filter reaches the numeric precision of the computer at the steady state very fast. Notice that
the error at steady state is primarily due to the rounding errors associated to the computation of

√
P−xx,k.

VII. Sensitivity Analysis

The results presented in the previous sections were based on a representative experimental configuration,
also used by several authors in the past, and a particular choice of model parameters such as the true
position, relative noise level, and a priori measurement error and uncertainty.

We thus performed an extensive set of numerical simulations to examine the dependence of these results
on variations of these choice parameters. As part of this sensitivity analysis, we assessed filter performance
for the following and wide range of variations:

• Initial covariance error:

P0 =

(
σ2 0
0 σ2

)
, where σ ∈ [10−8, 108]
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Figure 9. Variation of the state estimation error for the (black dots) UKF, (green line) the B-UKF, and (black line)
the UKF-z strategies.

• Noise levels associated with different types of measurements:

R =

(
2.5E-5 + β 0

0 6E-3

)
, where β ∈ [0, 0.1]

• Error in the initial estimate (= x̂0 − x̃true):

x̂0 = x̃true + d · (cos α, sinα)

– for a fixed distance (angular variations): α ∈ [0, 2π), d = 82.4621

– for a fixed angle (distance variations): α ∈ {0, π/4}, d ∈ [10−11, 104].

To be fully consistent with previous sections and enable direct comparison, the true position was always
assumed to be at x̃true = (100, 100), the vehicle was static (i.e., ẋ = f(t, x) = 0), and there was no process
noise (Q ≡ 0). This investigation does not include the effect of using different values for x̃true because this
can be readily derived from the analysis of previous terms. A variation of the true state x̃true 6= (0, 0)a

is equivalent to a rotation and dilation of the state space. Therefore, the analysis of a variation on the
true state can be derived from the analysis of a variation on the initial estimate and the covariance matrix
magnitude.

We defined an indicator I of the filter performance to facilitate comparisons among the filters. It is
defined as the ratio between the error at iteration number 1000, when the filters should have already reached
steady state, and the initial error:

I =
||x̂1000 − x̃true||
||x̂0 − x̃true||

(27)

This parameter is thus an indicator of the error reduction, or improvement of the initial estimate, i.e., lower
values of I correspond to larger improvements.

Figure 10 shows the improvement for the four types of analysis proposed above. Most of the filters (i.e.,
EKF, B-EKF 3 and 4, mtSOF, B-mtSOF, UKF, B-UKF) do not perform well regardless of the magnitude
of the initial state covariance (see Figure 10(a)). The exception are filters B-EKF 1 and 2, and UKFz. In
those cases, results suggest that it is important to start with a coherent P0 covariance matrix to get good
estimation performance (i.e., x̃true should be inside the 1-σ confidence area defined by x̂0 and P0). If the
initial covariance matrix is big enough, all three filters reach the computer numerical precision associated
with the algorithm (the precision for the UKFz is worse than the B-EKF 1 and 2, primarily because of the

computation of
√

P−xx,k). Otherwise, the filter is over-constrained and has no ability to improve the state
estimate, as intended.

aThe measurement model derivative does not exist at (0, 0), and will be excluded from the configuration set for x̃true.
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Figure 10(b) shows the existing dependence on noise levels for several filters. For these filters, there
appears to be a small interval of noise ratios in which filter performance is sensitive. The two noise levels can
be considered comparable when σdistance ≈ ||x|| sin(σangle). For the experiments performed ||x|| ≈ 100, and
noises will be comparable when, σdistance ≈ 100 σangle. When the noise levels on the angular measurements
are larger (σdistance � 100 σangle), EKF, mtSOF, and UKF seem to diverge as in Sections V–VI. When the
noise levels of the radial measurement are the largest (σdistance � 100 σangle), the state estimate uncertainty
is much larger in the radial direction than in the angular direction. This situation reduces the convergence
speed in the radial direction (vs. the speed in the angular direction). As a result, the orientation of the
eigenvectors of the state covariance will vary little after a few iterations compared with the example in
Section III. This indicates that when noise ratios are higher than ∼0.08, the UKF does not diverge. From
this figure, the effect of the bump-up on the UKF is to reduce the impact of higher angle noise levels of
the measurements. The same phenomenon occurs with the bump-up mtSOF when compared to the mtSOF.
Performance of B-EKF, and UKFz strategies appear to be independent of the ratios between measurement
noise levels.

Figure 10(c) shows that the performance of EKF, B-EKF 1-4, and UKFz vary as a function of the initial
direction α. If x̂0 has the same angle as x̃true, i.e. x̂0 = x̃true + (r · cos(±π/4), r · sin(±π/4)), a filter only
needs to improve the magnitude of the initial state, not the angle θ. This configuration (α = ±π/4), in
fact, provides the best filter performance. The rest of the filters (mtSOF, B-mtSOF, UKF, and B-UKF) do
not perform well regardless of the angle. In the case of the UKF, this fact highlights the high sensitivity
of the filter on small variations of the measurement correlation matrix Pzz,k, that make the filter diverge
even in the case that x̂0 and x̃0 have the same angle (situation corresponding to α = ±π/4). In such a case,
the small variations on the measurement correlation matrix are mainly due to the rounding errors in the
computation of

√
P−xx,k.

In order to address the filter performance as a function of the initial distance r while being consistent with
the conclusions regarding the analysis of the initial state covariance matrix, a different covariance matrix was
considered for each initial state x̂0 = x̃true + (r · cos(α), r · sin(α)). For each distance r, we chose P = σ2I,
where σ = 2.5r, which guarantees that the true state is inside the initial confidence area. The performance
curve of the filters in Figures 10(d) and 10(e) shows an unexpected pattern: when the initial estimate is close
to the true state, the filter is unable to improve the initial error. This behavior is the subject of ongoing
research.

VIII. Conclusions

We investigated the divergence problems of Kalman-type filters in the presence of nonlinearities for the
EKF, high-order filters (mtSOF), and LRKF families (UKF). In particular, this work fully isolated the
characteristics of the prediction and update phases of these filters and concentrated on the update phase
by associating the nonlinearities exclusively to the measurement models. Measurements were modeled for
two independent sensors with contrasting levels of accuracy. This type of investigation on sensor fusion is
relevant for multi-satellite missions that rely on formation flying technologies.

It was determined that not only the EKF, but also the mtSOF and UKF may diverge, and that there is a
common cause for the divergence of all these filters for the experimental confiuration considered. When using
nonlinear measurement models, the accuracy of the state update equation is not commensurate with the
reduction of the state covariance during the update phase. In the case of the EKF and UKF, the misalignment
between the eigenvectors of the state covariance matrix is interpreted by the filter as a correlation between
the measurements. This effect plays an important role in the divergence process.

We designed several modifications to these filters were proposed to circumvent the over-reduction of
the state covariance without increasing the computational load over that of the baseline algorithms. The
strategies were primarily based on a bump-up of the covariance matrix of the measurement noise. Those
defined by equations (13) and (15) provided good performance when applied to the EKF, but did not
eliminate divergence in the mtSOF and UKF. The accuracy of the measurement residuals or innovations
was found to be key to the performance of the UKF. An additional modification was proposed to increase
the importance of the residuals in the update phase (UKFz). This filter clearly outperforms all of the other
filters investigated.

We performed a numerical study to examine the dependence of the filter performance on a priori filter
information for key filter parameters such as x̂0, Pxx,0, and R. This study was intended to identify the set

14 of 16

American Institute of Aeronautics and Astronautics

Perea, How, Breger, and Elosegui - (2007)

58



10−4 100 104 108
10−20

10−10

100

1010

σ

Im
pr

ov
em

en
t

(a) Sensitivity on σ (P = σ2I). The initial error in
distance is 82.46, therefore, σ should be larger than this
value in order for the 1-σ confidence area to contain the
true state.

10−2 100
10−10

10−5

100

105

Measurement noise ratio

Im
pr

ov
em

en
t

(b) Sensitivity on measurement noise levels ratio σr
σθ

.

0 2 4 6
10−20

10−10

100

1010

Im
pr

ov
em

en
t

Angle, radians
(c) Sensitivity on angle (α) variations.

10−10 100
10−15

10−10

10−5

100

105
Im

pr
ov

em
en

t

Initial distance
(d) Sensitivity to initial distance (d) in the horizontal
direction (α = 0).

10−10 100
10−20

10−10

100

1010

Initial distance

Im
pr

ov
em

en
t

(e) Sensitivity to initial distance (d) in the same direc-
tion of x0 (α = pi/4).

10−4 100 104 108
10−20

10−10

100

1010

σ

Im
pr

ov
em

en
t

EKF
B−EKF 1
B−EKF 2
B−EKF 3
B−EKF 4
mtSOF
B−mtSOF
UKF
B−UKF
UKFz
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of possible configurations that led previous filters to diverge, and to test the filters and filter modifications
under a wide set of configurations. For most of the configurations tested, the divergence problems observed
in the baseline experimental configuration remained. The filters that provide the best performance and that
overcome the divergence problem were the B-EKF 1, B-EKF 2, and the UKFz. The UKFz was the fastest
filter to reach steady-state and also showed excellent estimation performance.
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ABSTRACT

The goal of this study is to find an appropriate control law for a constellation of two space-
craft in flight formation that constitutes a virtual telescope for Sun’s corona observation. During
scientific operations, both satellites should be aligned with the Sun, thus, one of the spacecraft
projects its shadow to the other while orbiting the Earth on a High Eccentricity Orbit. This
mission characteristic has a direct impact on the relative dynamics, since the relative Solar Ra-
diation Pressure between spacecraft has a higher effect on the dynamics than the Earth’s gravity
harmonics and the Sun and Moon perturbations. Based on this result, we explore the applica-
bility and performances of several continuous controls based on pole placement techniques.

1. INTRODUCTION

Formation flying is a key, forthcoming technology with an ever increasing number of ap-
plications in space missions. Interest for these missions resides on the idea that several small
and coordinated spacecraft may minimize the cost of a mission, lower its risk by implementing
redundancy and robustness, and enable scientific applications, particularly involving long base-
lines, that are not feasible with a single monolithic spacecraft. Although significant progress
has been made over the last years, critical technological challenges still remain in areas such
as navigation and control, on-board sensing and actuation, high-level mission management and
planning, distributed fault-detection, isolation, and recovery. Moreover, failure and termination
of past formation flying missions such as DART and TechSat-21 have hindered progress in this
area.1 However, the success of more recent missions such as OrbitalExpress and the advanced
state of upcoming missions such as PRISMA and TanDEM-X, offer a positive outlook for these
technologies.

PROBA-3 is a significant step forward in the roadmap of formation flying technologies and
a leap to advanced missions such as Xeus and Darwin. The main objective of PROBA-3 is
to test and validate formation acquisition and tight formation keeping on a High Eccentricity
Orbit (HEO) around the Earth. As scientific payload, PROBA-3 will carry a solar coronagraph
which, during scientific observations, requires constant alignment with the axis of the Sun’s
shadow casted by an eclipsing spacecraft. A tight formation will be kept during the apogee
passage, but spacecraft will be in free-flying mode during the perigee passage to minimize
energy costs associated with the cancellation of orbit perturbations.

The aim of this study is to analyze the relative dynamics between two spacecraft under
mission characteristics similar to PROBA-3, and design a suitable control law for formation
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acquisition and formation keeping. The main control law will be based on an approximation
of the relative dynamics plus a time-invariant linear term. Several options for tuning this linear
term will be considered such as the Linear Quadratic Regulator (LQR) solution based on suit-
able approximations of the relative dynamics. The resulting controls will be compared using
numerical simulations under a PROBA-3-like scenario.

2. DYNAMICS

Fig. 1: PROBA-3
scheme. Source: ESA.

In accordance with PROBA-3, our study involves two spacecraft
in close proximity whereby the Sun’s radiation arriving to one of the
spacecraft is eclipsed by the other, together acting as a two-element,
virtual telescope, as depicted in Fig. 1. For the definition of the rel-
ative dynamics of such telescope, we will assume that the eclipsing
spacecraft, shaped as an occulter disk, follows a natural trajectory on
a HEO around the Earth. The spacecraft that carries the scientific
sensor, an optical coronagraph, is required to be aligned with the axis
of the Sun’s shadow casted by the occulter disk. Furthermore, the
baseline between the two spacecraft is to be kept at a fixed distance.
In the following, these satellites will be referred to as the occulter
spacecraft and the coronagraph spacecraft, respectively, to ease iden-
tification.

2.1 Dynamics of the coronagraph spacecraft

The requirement of alignment between the Sun, and the occulter and coronograph spacecraft
can be defined as

xcs,ref = xos + l

(
xos − x�
||xos − x�||

)
(1)

where x and v denote position and velocity, respectively, of the centre of mass of a spacecraft
in a Geocentric Inertial (GCI) reference frame; the subscripts os and cs refer to the occulter
and coronagraph spacecraft, respectively; the subscript cs, ref refers to the reference trajectory
of the coronagraph; l is the reference separation between the occulter and the coronagraph
spacecraft; and � is the Sun’s symbol.

Therefore, the equations for the relative motion of the coronograph spacecraft with respect
to its reference orbit are

ẋcs − ẋcs,ref = vcs − vos − l
(

xos − x�
||xos − x�||

)′
; (2)

v̇cs − v̇cs,ref = f(xcs)− f(xos)− l
(

xos − x�
||xos − x�||

)′′
+ u (3)

where f(x) is the natural acceleration of x; (·)′ and (·)′′ denote the first and second time deriva-
tive of the function within brackets, respectively; and u is the control input.

The difference between the coronagraph spacecraft with respect to its reference trajectory
will be referred to as the control error, and be denoted by ec := (xcs − xcs,ref , vcs − vcs,ref )T .

The term f(xcs)− f(xos) represents the relative acceleration between two free-flying satel-
lites separated by l meters, and it is the sum of several relative forces acting simultaneously,

f = fCM⊕ + fsh,n>0 + fSRP + fCM� + fCMM
+ fdrag + fothers, (4)
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Fig. 2: Relative accelerations between two satellites aligned with the Sun-Earth axis, at a con-
stant separation of 150 m. Contributions are from (continuous line) Earth’s gravity constant,
(long dashed line) high-order geopotential, (short dashed line) Sun’s gravity constant, (dotted
line) Moon’s gravity constant, and (dotted-dashed line) SRP.

where fCM⊕, fCM�, and fCMM
stand for the contribution due to Earth, Sun and Moon gravity

constants respectively, fsh,n>0 is the contribution due to the spherical harmonics of positive or-
der (n > 0) of the geopotential, fSRP is the Solar Radiation Pressure (SRP) contribution, fdrag
is the atmospheric drag contribution, and fothers stands for the rest of lower-order contributions
such as tides, albedo, and relativity. Fig. 2 shows, for an inter-satellite separation of 150 m,
the magnitude of the relative acceleration of the most significant forces as a function of the
distance to Earth, which is largely characterized by the contributions from the Earth gravity
constant and the SRP coefficients. It is interesting to note that, in contrast to what happens
for the rest of the forces, the relative force due to the SRP can be of similar magnitude than
the SRP of the occulter. Under the virtual-telescope configuration, the occulter is under full
illumination while the coronagraph is in dark penumbra due to the occulter’s shadow, which
result in a relative SRP with the same order of magnitude than the SRP of the occulter. (See
section 4.1 for departures from this configuration.)

The term l
(

xos−x�
||xos−x�||

)′′
is due to the rotation of the coronagraph with respect to the oc-

culter necessary to keep the former aligned with the Sun-occulter axis. This rotation is almost
equivalent to the rotation of the Earth around the Sun except for slight variations on the unit
vector

(
xos−x�
||xos−x�||

)
due to the spacecraft orbit around Earth. Thus, it has a 1-year period, and

its second derivative is of the order of l × 10−15 m/s2.

2.2 The effect of the coronograph shadow model on the relative dynamics

The formulation of the relative acceleration due to the SRP is

fSRP (xcs)− fSRP (xos) ≈ P�AU
2 [ν(xcs)ϕos(xcs)Kcs − ν(xos)Kos]

xos − x�
||xos − x�||3

≈ ν(xos)P�AU
2 [ϕos(xcs)Kcs −Kos]

xos − x�
||xos − x�||3

(5)

where P� ≈ 4.56 · 10−6 N/m2 is force per unit area exerted by the SRP; ν(x) ∈ [0, 1] is the
Earth-shadow coefficient; ϕos(x) ∈ [0, 1] is the a coefficient to account for the shadow projected
by the occulter spacecraft; Kos and Kcs are the ratios CRA/m for the occulter spacecraft and
the coronagraph, respectively; CR is the radiation pressure coefficient of the satellite surface;
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Fig. 3: Illumination coefficient ϕos(xcs). The results are plotted in an orthonormal reference
frame centered at xos. The x−axis is aligned with the shadow direction. The y−, and z−axis
represent the distance to xos in two arbitrary directions perpendicular to the shadow axis.

A is the area of Sun exposition; m is the mass of the spacecraft (both A and m are assumed
constant values); x� is the position vector of the Sun; and AU is the astronomical unit.

When the coronograph is in dark penumbra, the ϕos is close to 0 and the relative SRP
acceleration becomes close to the acceleration of the occulter, as discussed above and shown
in Fig. 2. Any significant variation of the relative SRP over short-time intervals arises from
variations in ϕos, i.e., the eclipse conditions. We discuss hereafter a model for the shadow of
the occulter on the coronograph.

Unlike Earth’s shadow on the spacecraft, the shadow projected by a satellite is very nar-
row and the assumption of constant illumination (or lack thereof) on the Sun-facing surface
of the shadowed spacecraft breaks down. More realistically, the coronograph surface could
experience almost the whole gamut Sun exposure, from dark penumbra to full illumination,
depending on the relative spacecraft positions. The acceleration of the coronagraph spacecraft
due to the pressure exerted by the solar radiation can be mathematically modelled as

fSRP (xcs) =
1

|S|

∫

S

η(x)asrp(x)dx (6)

where S is the region of the spacecraft facing the Sun, x ∈ S, η(x) ∈ [0, 1] is the eclipse
coefficient corresponding to the occulter shadow, and asrp(x) is the acceleration of the space-
craft due to the SRP assuming there is no spacecraft shadow. The eclipse coefficient has its
minimum value when the coronagraph is aligned with the shadow axis of the occulter, and has
its maximum value of 1 when it is far enough from this axis. The two views in Fig. 3 illustrate
the eclipse coefficient function for an occulter disk, which is constant outside the shadow area
and is dome shaped over a cross section perpendicular to the shadow axis.

3. CONTROL DEFINITION

In this section, we will present different approaches to define a suitable control law for a
virtual telescope that has to be aligned with the Sun. In order to guarantee convergence of the
expected formation and, once achieved it, keep it with a high level of accuracy (of the order of
the centimeter), we will assume that the control u can be executed at high frequencies (≥ 1 Hz).
Therefore, the control laws that are presented will be defined as continuous functions.

Inspection of Eq. (3) reveals that, once the formation has converged, the thrust necessary to
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continuously keep the formation assuming an infinite accuracy should be

u = f(xos)− f(xcs) + l

(
xos − x�
||xos − x�||

)′′
. (7)

However, some limitations have to be considered for a realistic definition of the control thrust.
The physical thrust limitations, such as the maximum thrust, the thrust resolution, and the
(high-frequency) discrete execution of the control input should be accounted for, together with
the numerical errors such as the model inaccuracies, and the discrete computation of the control
input. For example, the magnitude of the acceleration of the Sun with respect to the occulter
l(·)′′ is of the order of l × 10−15 m/s2 which is, for short baselines, under the thrust resolution
of the state-of-the-art thrusters. Therefore, this term will be dropped from Eq. (7) and, instead,
contribute to its numerical inaccuracy.

All these physical limitations and numerical inaccuracies of the system could lead to the vi-
olation of the formation requirements rather quickly. For this reason, an additional term should
be included in the control law to guarantee smooth convergence towards the desired formation.
A technique commonly employed for motion stabilization is to introduce a linear term which
formally guarantees exponential convergence of the system to the desired formation,

u = f(xos)− f(xcs) +KH · ec, KH = (H1, H2) ∈ R3×6. (8)

Using this formulation, the system (2)-(3) reduces to

ėc = H · ec, H =

(
0 I3
H1 H2

)
∈ R6×6, (9)

which guarantees exponential convergence to the reference trajectory as long as the stabiliza-
tion matrix H is Hurwitz, i.e., the real part of the eigenvalues of H is negative. The speed of
convergence of the system depends on these eigenvalues, aka poles in the engineering litera-
ture. The larger these values, the faster the convergence. However, large values may result in
thrust saturation. Finding suitable values for these parameters is a non-unique procedure. One
approach involves testing different indicators for a wide range of configuration values using
numerical simulations. In what follows, we will present three different strategies to tune the
pole placement of system (9) assuming different approximations of the relative dynamics.

3.1 Nonlinear control

We approximate the relative dynamics by considering only the Earth’s gravity and the SRP
contributions to model the relative acceleration (see 2.1).

u := GM⊕

(
xcs − xos
||xos||3

)

+ν(xos)P�AU
2 (ϕos(xcs)Kcs −Kos)

x� − xos
||x� − xos||3

+KH ·
(
xcs − xcs,ref
vcs − vcs,ref

)
(10)

Due to the non linear characteristics of the model for the relative dynamics, we will refer to this
control function as the nonlinear control.

In order to guarantee the continuous formation convergence, we will consider the following
Hurwitz matrix for the present control
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nonlinear control:
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given β value.

H =

(
0 I3
−αI3 −βI3

)
with α, β > 0.

The poles of the resulting closed loop system are shown in Fig. 4. The
α value acts as a weight of the relative positions within the controller,
while β weights the relative velocity. Therefore, large β values will
result in position variations that hardly depend on the relative po-
sitions, but highly depend on the relative velocities. As a result, the
convergence to the reference position will be slow and with few oscil-
lations. On the contrary, large α values will result in fast movements
towards the reference position with large relative velocities. At the
instant the spacecraft reaches the reference position, the relative ve-
locity may be too large and the relative position may thus increase
again before the controller can cancel the relative velocities. This
behavior could even lead to error oscillations with amplitudes that
increase with time, specially, though not only, in the case of thrust
saturation. In this study, the proper tuning of the α and β values will
be done by comparing the performances of different configuration
values using numerical simulations.

3.2 Robust pole placement control

I

R

Fig. 5: Pole placement
of a closed loop system
after the KNV algo-
rithm control (see text).

In previous sections, we have presented a control function that moves
the poles of the system to the desired location by considering a non-
linear approximation of the dynamics. In this sub-section, we will
consider an additional common technique: the robust pole assign-
ment algorithm designed by Kautsky-Nichols-Van Dooren (KNV) in
[2], and implemented as the Matlab c© built-in function place. The
KNV algorithm optimizes the choice of the eigenvectors for a robust,
or well-conditioned, solution for a given set of poles. In order to use
this method, we need to consider a linear and time-invariant approx-
imation of the system (2)-(3).

As discussed before, the second derivative of the Sun-rotation
term in Eq. (3) can be neglected, and the relative dynamics are mainly
characterized by the Earth gravity and the differential SRP. The
Earth gravity contribution can be easily approximated by a first or-
der polynomial in ec assuming that ||xos||3 is almost constant in the
time frame of several hours as

fCM(xcs)− fCM(xos) ≈ − GM⊕
||xos||3

(xcs − xos)

=
GM⊕
||xos||3

(xos − xcs,ref )−
GM⊕
||xos||3

(xcs − xcs,ref ) (11)

When the coronagraph is close to its reference position, the independent coefficient of this
polynomial is larger than the drift, however, a linear model omits it.

The linearization of the relative SRP presents additional difficulties. According to Eq. 5, an
approximation of the relative SRP around the reference trajectory needs to include a non-zero
constant term, unless Kcs = Kosϕos(xcs,ref ). The linear term would come from the lineariza-
tion of the eclipse coefficient ϕos(xcs) around xcs,ref . Because of the dome shape of the eclipse
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coefficient, as observed in Fig. 3, the gradient is 0 in any direction perpendicular to the shadow
axis. Thus, the derivative is only nonzero in the direction of the shadow axis. We will denote
Lu�ϕos the derivative of ϕos in this unique direction, or Lie derivative

Lu�ϕos =
∂ϕos
∂x
· u�

where u� = (xos−x�)
||xos−x�|| is an unitary vector in the shadow direction. The eclipse coefficient can

be approximated by,

ϕos(xcs) ≈ ϕos(xcs,ref ) + Lu�ϕos uT� (xcs − xcs,ref ), (12)

and the relative SRP by,

fSRP (xcs)− fSRP (xos) = ν(xos)P�AU
2 (ϕos(xcs,ref )Kcs −Kos)

x� − xos
||x� − xos||3

+ν(xos)P�AU
2KcsLu�ϕos uT�

x� − xos
||x� − xos||3

(xcs − xcs,ref ). (13)

In general, the relative SRP at the reference position, or the constant term, is larger than the
variation of this differential acceleration due to the linear term, which depends on Lu�ϕos. For
this reason, the error of a linear approximation (without the constant term) is of the same order,
as the error of omitting the full contribution of the relative SRPs.

Therefore, a linear approximation of the dynamics will not include the constant term of the
Earth gravity contribution and the relative SRP. The following equation describes the resulting
linear approximation according to previous discussion,

ėc = Acec +Bu, (14)

with

Ac =

(
03 I3

− GM⊕
||xos||3 I3 03

)
and B =

(
0

I3

)
.

In order to apply the KNV algorithm, we need to further assume time-invariance of the system.
For this reason, we will split the orbit into several arcs and assume time-invariance of the
system along each one of these arcs. The time length for these time windows depends on the
rate of variation of the position vector norm, thus, on the period and eccentricity of the orbit.
The linear time-invariant approximation to the relative dynamics enables the use of the KNV
algorithm, obtain a control feedback matrix KK , and define a linear control u = KKec.

In what follows, we will define the poles of the closed loop system, to feed the KNV, at

bandwidth · e2πi(j/12+5/24) with j = 1÷ 6,

i.e., equally spaced along a circle of radius bandwidth and restricted on the negative side of the
complex plane as shown in Fig. 4. The resulting control will be referred to as KNV control.

3.3 Linear Quadratic Regulator control

In this section, we present a more sophisticated technique to define the control feedback matrix
K which is based on the optimization of the ratio between the control errors and the energy cost
associated to the control. This strategy, which is referred to as the Linear Quadratic Regulator,
provides a linear control and shifts the indetermination of previous α and β values, or the
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definition of the poles in the KNV control, to the indetermination of two weight matrices, Q
and R, which provide a better insight into physics.

The objective of the LQR is to find a control u that minimises a potential function, also
referred to as the cost function,

J :=

∫ T1

t0

(uTRu+ eTc Qec)dt (15)

where R and Q are positive definite matrices.
Then, the optimal control is of the form

u = −KLec, (16)

where KL = R−1BTP is the control gain or feedback matrix, and P is a symmetric non-
negative definite matrix that satisfies the matrix Riccati equation. In a time-invariant system,
the solution will reach a steady state after certain time, and the confidence matrix P will get
close to a constant value. After convergence to the steady-state solution, Ṗ ≈ 0, and P can be
computed as the solution of the Continuous Algebraic Ricatti Equation (CARE):3–5

0 = Q− PBR−1BTP + PA+ ATP, (17)

In order to use this method, we will consider the same time-invariant linear approximation
of the relative dynamics of Eq (14). This enables the use of the LQR solution to obtain a
control feedback matrixKL, and define a linear control u = KLec. Since the 3×3 blocks of the
dynamic matrixAc are diagonal, and the correlations in the observations have been omitted, the
resulting feedback gain matrix KL of the LQR is of the same form as in the nonlinear control,
(a I3 b I3) for certain a, b ∈ R. The main appeal of the LQR strategy is the optimum selection
of the parameters a and b with respect to the cost function J .

4. SIMULATIONS

4.1 Experimental Scenario

Fig. 6: PROBA-3 orbit pas-
sages scheme. Source: ESA.

In order to exemplify the performances of previous control
laws, we have defined a scenario for numerical testing of per-
formances and comparison between different controls. This
scenario is based on the formation flying mission of the Eu-
ropean Space Agency PROBA-3. The reference orbit for this
mission will be a HEO to avoid perturbances of the relative
dynamics during the apogee passage, when the telescope is as-
sumed to be active (see Fig. 6). During Sun’s corona observa-
tions, both spacecraft should be aligned with the Sun, and they
should preserve a baseline distance of 150 m to constitute the
virtual telescope. In the present study, we have considered two
baseline orbits: a more eccentric orbit with a period of three
days and a less eccentric one with a period of one day, as they
were preliminary contemplated for this mission. The Keple-
rian parameters of these two orbits have been included in Table
1. We have assumed that the sun-facing surface of the satellites are discs of radius Ros, and
Rcs, respectively. The spacecraft physical characteristics used in current simulations have been
summarized in Table 2. The metrology system is assumed to provide two modes of operations,
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Coarse and Fine, with lateral accuracy of 1 degree and 1 arcsecond, respectively, in standard de-
viation. The errors in longitudinal direction are assumed to be 1 cm in both navigation modes.
Observations are collected at 1 Hz in coarse mode, and at 10 Hz in fine mode. The thrusters are
assumed to reach 0.04 N before saturation, with maximum thrust resolution of 10−6 N.6

Orbit name a (km) e i (rad) Ω (rad) ω (rad) M (rad)
3-days orbit 87865 0.917 0.5585 0 0 2.33

1-day orbit 42241 0.778 0.6981 0 0 1.02

Table 1: Orbit Definition

Spacecraft m (kg) R (m) A (m2) CR

Occulter 200 1 3.1416 1.3

Coronagraph 200 0.75 1.7671 1.3

Table 2: Spacecraft Physical Characteristics

For the purpose of this study, our simulations focus on five hours of formation flying in
coarse mode, and two hours in fine mode, for the two types of HEOs defined in Table 1. We
limit our simulations to an orbit arc section sufficiently away from perigee passage to conform
to PROBA-3 expected operating conditions. Specifically, the spacecraft altitude ranges between
approximately 37000 km and 63000 km for the 1-day HEO, and between 150000 km and
158000 km for the 3-days HEO.

4.2 Experimental Platform

We have developed a Simulink c© model under the Matlab c© environment to test and compare
the aforementioned control laws. The dynamics of each spacecraft have been propagated with
a variable order Adams-Bashforth-Moulton integrator. The SRP model features the eclipse
coefficient described in 2.2 for the shadow casted by the occulter on the coronagraph spacecraft,
with a cylindrical model for the Earth shadow, and a conical model for the occulter shadow.7

The metrology system have been assumed to be affected by independent, and uncorrelated,
errors in distance and angle. Two navigation modes have been considered that provide different
levels of accuracy: Coarse and Fine.8 Since the metrology system provides position but not
velocity, an observer module has been included. This module has been designed as a Kalman
Filter at steady-state with plant matrix Ac as in the control definitions. The process noise has
been set up to 100 times the mismodeling errors to conceal the deterministic errors, which
remain as 1% of the noise. According to Fig. 2, the mismodeling errors due to considering a
constant Ac decrease as the spacecraft altitude increases up to ∼ 105 km. At higher altitudes,
the magnitude of the mismodeling errors keeps constant and equal to the relative accelerations
due to the SRP. Thus, we have selected a process noise level of 10−4 m/s2 in standard deviation
for altitudes ranging from 37000 km to 63000km, and a noise level of 10−5 m/s2 for altitudes
150000 km to 158000 km. Regarding the measurement noise, the correlation between different
coordinates of the observations have not been considered within the filter and the measurement
covariance matrix has been setup as a diagonal matrix with diagonal elements equal to 10 ·
max{σrange, l ∗ sin(σangle)}2 · I3. The factor 10 has been included for conservativeness.

For a spacecraft separation of 150 m, the resultant observational errors due to the metrology
system are 1 cm in the direction along the two spacecraft (see 4.1) both in coarse and fine
navigation modes, but 2.6 m and 0.7 mm in the perpendicular direction in the coarse and fine
modes, respectively. When the control system is enabled, the inter-vehicle distance should be
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close to the baseline distance (150 m), and the performances of the metrology system should
not vary significantly. Under these conditions, the Root Mean Square (RMS) of the navigation
errors, are, approximately 27 cm in position and 3 cm/s in velocity in coarse mode, and 0.93 cm
in position and 0.016 cm/s in velocity in fine mode.

According to the characteristics of present orbits, we have considered time windows of
2 hours for the time invariant linear approximations of the dynamic system. During these
intervals, the variations on the plant matrix Ac are minimal with a negligible impact on the
control gain matrices. Thus, these gain matrices are updated every 2 hours. The reference
position for the coronagraph has been assumed to be known by the controller with no error. No
Earth eclipses have been considered during current simulations, i.e., the occulter spacecraft has
been assumed to be under full illumination during the complete orbit passage. Main physical
limitations of the thrusters have been taken into account: the saturation of the thruster, and its
resolution by considering a maximum thrust and quantize the control output.

5. RESULTS AND DISCUSSION

Using the scenario and platform just described, we performed simulations to test the per-
formances of the three controls defined above. Since the performance depends critically on the
values adopted for the specific parameters involved in the definition of each control law, we
first discuss the optimal tuning of these parameters.

5.1 Control tuning

Fig. 7 illustrates the performances of the nonlinear control under different configurations, for
the case of 1-day orbit and coarse navigation. The top panel corresponds to an optimal con-
figuration, defined as one whereby the position error decreases to the expected noise level in a
relatively short time span. For this particular control and simulation, we find that an optimized
configuration can be achieved with parameter values α = 10−4 and β = 10−2. In contrast to
this, the middle and bottom panels of Fig. 7 show two examples of non-optimal configurations
resulting from excessively small α and β values, respectively. As discussed in 3.1, small α
values result in position variations that hardly depend on the relative positions, and the con-
vergence to the reference position is excessively slow, whereas small β values results in fast
motions towards the reference position and large relative velocities, which cause significant
oscillations.

The configuration of the KNV control depends only on one parameter: the bandwidth. In
this case, the ratio between the position and velocity weights within the controller are optimized
within the KNV algorithm, thus, the strategy to tune the nonlinear control does not apply to
this control. The bandwidth parameter shall be tuned according to the convergence speed
requirements while avoiding thrust saturation. The simulations show that bandwidth = 0.01 is
close to the maximum value before thrust saturation, thus leading to a fast convergence.

The optimum solution of the LQR depends on the definition of the cost function J , which
depends on the Q and R weighting matrices. In the present study, we will define these matri-
ces according to the maximum size technique, i.e., defining a maximum error in position and
velocity, pmax, vmax, a maximum control input umax, and define the matrices as,

Q =

(
p−2
maxI3 03

03 v−2
maxI3

)
and R = u−2

maxI3.

The definition of the values pmax, vmax, and umax will obviously depend on the control mode
(coarse or fine). The ratio between the maximum position and velocity values will, in fact, play
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exactly the same role as the α and β values of the nonlinear control. Too large values for vmax
results in position variations that hardly depend on the relative positions, and the convergence
to the reference position is excessively slow. On the contrary, large pmax values yield to fast
movements towards the reference position with large relative velocities that result in significant
oscillations as in Fig. 7. The optimum values for the current scenarios have been found to be
close to (pmax, vmax, umax) = (0.1, 10−3, 10−5) in coarse mode, and (10−3, 10−5, 10−7) in fine
mode.

The optimum configurations for the three algorithms in fact, are closely related. The opti-
mized α and β values are almost identical to the a and b values resulting from the optimized
Q and R definitions; and the optimized bandwidth corresponds to the norm of the poles of the
closed system when considering the nonlinear control or the LQR control.
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Fig. 7: Nonlinear control error under different configurations during coarse navigation along
the 1-day orbit passage for (top) α = 10−4 and β = 10−2, (middle) α = 10−6 and β = 10−2,
and (bottom) α = 10−4 and β = 10−3. In all panels, colors show the error in (blue) x, (ref) y,
and (green) z component of relative position.

5.2 Comparison of control performances

In this subsection, we will compare the performances of the controls under the optimized con-
figurations. The initial control error before enabling the control system is assumed to be 10 m.
In the coarse mode, all controls reach the steady-state in less than 15 min, and reduce the er-
rors to less than half a meter in RMS, therefore, we will assume that the error is 0.5 m before
switching to fine mode. In this mode, the system will reach again the steady-state in less than
15 min under any of the control algorithms. Table 4 summarizes the control performances at
steady-state.

As it can be observed from this table, all controls provide reasonable and quite similar
performances, in terms of ec. Although the inclusion of an accurate model of the relative accel-
erations in the control definition can improve the performances in some scenarios, its omission
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1-day orbit passage 3-days orbit passage
Coarse Fine Coarse Fine

Nonlinear 32 0.6 13 0.5

KNV 40 1.5 22 0.7

LQR 34 1.7 13 0.5

Table 3: RMS of control error in cm.

does not prevent the controls to get reasonably good performances thanks to the forcing of the
cancellation of ec through the linear term KHec.

The algorithms that provide better performances are, in general, the nonlinear and the LQR
controls. The higher errors of the KNV control are due to an unsuitable selection of the poles
in section 3.2. From previous results, it seems that some of the poles of the system are not
far enough from the positive side of the complex plane for the optimum bandwidth, and using
larger bandwidth values for the definition of the poles, which would increase the distance to
this semi-plane, results in long lasting thrust saturation. A definition of the pole locations closer
to the ones of the nonlinear, and the LQR controls (see Fig. 4) should provide better results.

In three out of the four scenarios that result from combining control mode and orbit passage,
the performances of the nonlinear and LQR controls are quite similar. Fig. 8 shows an example
of the control error performances corresponding to the 1-day orbit passage in coarse mode
using the nonlinear control. The similar results between both controls in these three scenarios
can be explained by the large magnitude of the linear term KHec of the nonlinear control in
comparison with the relative acceleration term. As an example, the magnitude of the control
input for the previous scenario is depicted in Fig. 9. Notice that the magnitude of the control
input at steady-state is of the order of 5 · 10−5 m/s2, which is one order of magnitude larger
than the relative accelerations (see Fig. 2). As a result the only real difference between both
controls is concealed (see Eq. (10)).

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−10

0

10

20

E
rr

or
 (

m
)

Time (s)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−1

−0.5

0

0.5

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−10

0

10

20

E
rr

or
 (

m
)

Time (s)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−1

−0.5

0

0.5

1

Fig. 8: Control error of the nonlinear control in coarse mode along the 1-day orbit passage. x,
y, and z components of ec in blue, green, and red, respectively, and ||ec|| in cyan.

In the special scenario corresponding to the fine mode control along the 1-day orbit passage,
the magnitude of the linear term reduces with respect to the coarse navigation and lets the
relative acceleration term play a significant role within the nonlinear control reducing the error
by a factor of 2.8 with respect to the LQR control. Note that, since the relative acceleration
decreases with the altitude of the spacecraft, this term vanishes again compared to the linear
term as the altitude of both spacecraft increase, which explains that no significant difference
can be encountered between both controls in fine mode along the 3-days orbit passage.
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Fig. 9: Control input for the nonlinear control in coarse mode along the 1-day orbit passage.

Table 4 shows some statistics of the control input corresponding to the 1-day orbit passage
in fine mode, where significant differences appear in the control error performances among dif-
ferent controls. First column contains the RMS of the control input at steady-state, and second
contains the RMS of variations of the control input, i.e., u(ti+1) − u(ti) for two consecutive
control update instances, as an indicator of the control input oscillations. As it can be observed
from these figures, the relative accelerations term within the nonlinear control yields to a signif-
icant reduction of the control oscillations compared to the remaining controls. The importance
of this reduction resides on the subsequent reduction of the cumulative thrust necessary to keep
the formation.

u (m/s2) ∆u (m/s2)
Nonlinear 8.4 · 10−7 9.5 · 10−9

KNV 1.1 · 10−6 2.3 · 10−7

LQR 9.6 · 10−7 2.9 · 10−7

Table 4: Control input variations

The oscillations of the linear term KHec are mainly due to two factors, the navigation error
included in the ec computation; and the discretization of the control update, which currently
occurs at the same rate of observation reception (1 Hz in coarse mode, and 10Hz in fine mode).
A detailed analysis of the results have shown that, under current scenarios, the driver of the
control oscillations is the error in the relative velocity. Therefore, an upgrade of the metrology
system or the navigation filter to produce better relative velocity estimations may result in a
significant improvement of the control performances.

6. SUMMARY AND CONCLUSIONS

In this document we have identified the Earth gravity and the Solar Radiation Pressure
(SRP) as the major forces that drive the relative motion of two spacecraft in a virtual telescope
formation, where one projects its shadow to the other. Since this shadow projects a narrow
cone of umbra and penumbra, we have introduced a model which accounts for variations of
the eclipse coefficient over the sun-facing surface of the coronagraph, or occulted spacecraft.
We have designed several control laws and test its suitability for formation acquisition and
formation keeping of a two spacecraft in formation for a virtual telescope.

In this study, we have tuned these controls for a PROBA-3 like scenario and compared the
performances among them. The main conclusions of the results are as follows:
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• The tuning of the control configuration parameters to obtain a gain feedback matrix can
be a laborious task in general. The more suitable strategy to setup the control gain KH

is probably to define the Q and R matrices and compute a feedback matrix as the Linear
Quadratic Regulator (LQR) solution. However, the physical insight of the α and β values
also provide a reasonable method for tuning.

• Under the optimized configurations, all these controls can provide very similar perfor-
mances and keep the formation within a maximum error of ∼ 50 cm in coarse mode,
and 2 cm in fine mode along altitudes ∼ 30 − 40 · 103 km. At the maximum altitudes
tested, ∼ 150− 158 · 103 km, these errors reduce to 30 cm in coarse mode and 0.3 cm in
fine mode.

• The inclusion of an accurate model for the relative accelerations, within the controller
has an interesting benefit after formation acquisition, but never before. Thus, the compu-
tational burden associated to this term can be avoided till the formation is acquired. After
that moment, the inclusion of the relative dynamics can significantly reduce the control
error with no cost in terms of energy, or total ∆v.

• The inclusion of the relative accelerations can reduce the control error by a factor of
2.8, as long as the magnitude of the linear term KHec is not larger than the relative
acceleration, which occurs along low passages of the spacecraft under fine mode. In case
the metrology system and the navigation filter provide better performances as the ones
currently considered, the benefits of the relative acceleration term within the controller
can be extended to higher altitudes.

ACKNOWLEDGMENTS

This work was supported by Spanish Ministry of Education and Science (MEC) fellowship
BES-2005-8607 (LP) and MEC grant ESP2007-62680. Special thanks to Dr. Oliver Mon-
tenbruck for his permanent support and clever advice.

REFERENCES

[1] T. Rupp, S. D’Amico, O. Montenbruck, and E. Gill. Autonomous formation flying at
DLR’s German Space Operations Center (GSOC). In Proceedings of the 58th International
Astronautical Congress, Hyderabad, India, September 2007.

[2] J. Kautsky, N. K. Nichols, and P. Van Dooren. Robust pole assignment in linear state
feedback. International Journal of Control, 41(5):1129–1155, 1985.

[3] H. Kwakernaak and S. Raphael. Linear Optimal Control Systems. Wiley-Interscience,
New York, 1972. Available at http://www.ieeecss.org/PAB/classics.

[4] B. Friedland. Control System Design: An Introduction to State-Space Methods.
McGraw-Hill Higher Education, first edition, January 1985.

[5] E. D. Sontag. Mathematical Control Theory. Deterministic Finite Dimensional Systems.
Texts in Applied Mathematics. Springer-Verlag, 1990.

[6] PROBA-3 phase A team. PROBA-3 phase A study executive summary report. Technical
Report PROBA3-ASU-RPT-14, issue 01, EADS Astrium, December 2007.

[7] O. Montenbruck and E. Gill. Satellite Orbits. Models, methods and applications.
Springer, Berlin, third edition, 2005.

14 of 15

Perea, D’Amico, and Elosegui - (2009)

90



[8] A. Wishart, F. Teston, S. Kemble, S. Grocott, A. Davies, C. Warren, and K. Geelen.
The PROBA-3 formation flying technology demonstration mission. In Proceedings of the 58th
International Astronautical Congress, Hyderabad, India, September 2007.

15 of 15

Perea, D’Amico, and Elosegui - (2009)

91



Perea, D’Amico, and Elosegui - (2009)

108



Appendix B

List of coauthors

D’Amico, Simone; Scientist at GPS Technology and Navigation Group at Deutsches

Zentrum für Luft- und Raumfahrt (DLR); German Space Operations Center

(GSOC), Münchner Strasse 20, 82234 Oberpfaffenhofen-Wessling, Germany; si-

mone.damico@dlr.de.
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Nomenclature

Roman Symbols

A Dynamics matrix;

deterministic matrix;

or the area of Sun exposition of a

spacecraft

a State transition matrix;

semi-major axis;

the acceleration vector;

or the weighting function of the CS

model

Ax Adjacency matrix

AU Astronomical unit (149598000 km)

B Deterministic matrix;

or polynomial coefficient

bm Second order term of the mtSOF

C Observations matrix

CR Radiation pressure coefficient of the

satellite surface

d Time derivative;

or distance

Dx Derivative with respect to x

Dx Diagonal matrix

E Expectation value

e Error vector;

eccentricity;

or 2.7183

f Dynamic model function

G Driver function for the Brownian mo-

tion

g Generic function

GM Gravitational parameter

H Jacobian of h, i.e. Dxh;

or Hurwitz matrix

h Measurement model function

I Improvement indicator of filters

i Index;

orbital inclination;

and the integral of the position;

or
√
−1

J Jacobian of the inverse of h, i.e.

Dx(h−1);

or cost function

K Gain matrix;

a multiplier coefficient of the CS

model;

or the reflectivity ratio CRA/m

l Reference separation between the oc-

culter and the coronagraph space-

craft

L1 GPS frequency for civilian use

L2 Second libration point of the Sun-

(Earth+Moon) system

Lx Laplacian of the adjacency matrix Ax

M Mean anomaly

m Dimension;

or the mass of a spacecraft

N Number of corrective maneuvers as-

sociated to one control maneuver

n Dimension of the state space;

or order of the harmonic decomposi-

tion

Nm(a,B) Normal distribution of dimension m

with a mean and B variance
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NOMENCLATURE

NavSet Flags the availability of relative ac-

celeration data within the navigation

data set

P Solution of the CARE

p Dimension;

or position vector

P = Pxx State covariance matrix

P� Force per unit area exerted by the

SRP (4.56 · 10−6 N/m2)

Pxz State-measurements correlation ma-

trix

Pzz Measurements covariance matrix

Q Process noise matrix;

Inner product associated to the CS

model;

or positive definite weight matrix

q Dimension

R Measurement noise matrix;

radius of the sun facing surface of a

spacecraft;

or positive definite weight matrix

r Range;

or position vector

S Sun facing surface of a satellite

s Time

t Time

Tm Time step between correction ma-

neuvers

Tt Time step between control maneu-

vers

u Control input;

or unitary vector

v A noise realization;

or the velocity vector

W Specific set of weights for the UKF

w Noise realization

x State vector. Depending on the con-

text, it may include the velocity

y, z Observation vector

Greek Symbols

α Angle;

or a positive scalar

β Brownian motion;

a positive scalar;

or the exponential coefficient of the

CS model

∆ Differential value

η Coefficient to account for the shadow

projected by the occulter spacecraft

to a surface point

Γ Deterministic matrix;

or half of the square of relative posi-

tions

Λ Half of the square of relative veloci-

ties

µ Mass parameter

ν Earth-shadow coefficient

Ω Right ascension of the ascending

node

ω Argument of perigee

∂ Partial derivative

π Partition of a time interval;

or Pi (≈ 3.1416)

σ Standard deviation;

or the offset coefficient of the CS

model

θ Angle

ϕ Coefficient to account for the shadow

projected by the occulter spacecraft

to the coronagraph spacecraft

Superscripts

UKFz Unscented Kalman Filter with resid-

uals modification
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NOMENCLATURE

UKF Unscented Kalman Filter

· Time derivative

∧ Estimated value

∧ Limit when t→∞

+ A posteriori estimation

− A priori estimation

T Matrix/vector transpose

(c) Relative to the covariance

(m) Relative to the mean

−1 Inverse operator

j Index

Subscripts

� Sun

⊕ Earth

θ Angle

H Hurwitz matrix

i, j Index

K KNV control

L LQR control

M Moon

max Maximum value

min Minimum value

0 Initial condition

angle Angle observations

B Barycenter of the constellation

CM Contribution due to the gravity con-

stant

cs Coronagraph spacecraft

c Control

distance Distance

drag Atmospheric drag contribution

k Iterate number;

or number of elements in the space-

craft formation

new Newer definition

os Occulter spacecraft

others Lower order contributions

range Range observations

ref, true Reference value

r Range

sh, n > 0 Contribution due to the spherical

harmonics of positive order (n > 0)

of the geopotential

SRP Contribution due to the Solar Radi-

ation Pressure

Other Symbols

′ Time derivative

0n Zero matrix of dimension n

N Natural numbers set

Rn State space

F Filtration

L·· Lie derivative

O Order of the error

X Sigma set of points of the UKF

Z Observations associated to the sigma

set X

⊗ Kronecker product

In Identity matrix of dimension n
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List of acronyms

AAS American Astronomical Society

AIAA American Institute of Aeronautics and Astronautics

B-EKF Bump-up Extended Kalman Filter

B-mtSOF Bump-up modified truncated Second Order Filter

B-UKF Bump-up Unscented Kalman Filter

CARE Continuous Algebraic Ricatti Equation

CLS Coarse Lateral Sensor

CS Cucker-Smale

CSA Canadian Space Agency

CSIC Consejo Superior de Investigaciones Cient́ıficas

DLR Deutsches Zentrum für Luft- und Raumfahrt

DWI Dual Wavelength Interferometer

ECEF Earth-Centered Earth Fixed

ECI Earth-Centered Inertial

EKF Extended Kalman Filter

EO-1 Earth Observing One

ESA European Space Agency
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LIST OF ACRONYMS

ESTEC European Space Research and Technology Centre

FCC Flight Control Computer

FF Formation Flying

FFTB Formation Flying Testbed

FFRF Formation Flying Radio Frequency

FLS Fine Lateral Sensor

GIF GPS interface

GNC Guidance, Navigation, and Control

GNSS Global Navigation Satellite System

GOD GPS Orbit Determination

GOP GPS Orbit Prediction

GPS Global Positioning System

GRACE Gravity Recovery and Climate Experiment

GRAPHIC Group and Phase Ionospheric Correction

GSF Gauss Second-Order Filter

GSOC German Space Operations Center

GSS GNSS Signal Simulator

GSTP General Support Technology Programme

H-C Hill-Clohessy-Wiltshire

HEO High Elliptical Orbit

HW Hardware

ICE Instituto de Ciencias del Espacio
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LIST OF ACRONYMS

IEEC Institut d’Estudis Espacials de Catalunya

IEEE Institute of Electrical and Electronics Engineers

IEKF Iterative Extended Kalman Filter

INS Inertial Navigation System

IRF Inertial Reference Frame

IUKF Improved Unscented Kalman Filter

JAXA Japan Aerospace Exploration Agency

JGCD Journal of Guidance, Control, and Dynamics

KF Kalman Filter

KNV Kautsky-Nichols-Van Dooren

LEO Low Earth Orbit

LISA Laser Interferometer Space Antenna

LOS Line of Sight

LQR Linear Quadratic Regulator

LQRI Linear Quadratic Regulator with the Integral term

LRKF Linear Regression Kalman Filters

LSQ Least Squares Filter

MAXIM Micro Arcsecond X-Ray Imaging Mission

MEO Medium Earth Orbit

MICINN Ministerio de Ciencia y Innovación

MIT Massachusetts Institute of Technology

MMS Magnetospheric Multi-Scale
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LIST OF ACRONYMS

MPC Model Predictive Control

MSR Mars Sample Return

mtSOF Modified truncated Second Order Filter

NASA National Aeronautics and Space Administration

NDI Non-Linear Dynamic Inversion

OBC Onboard Computer

PC Personal Computer

PID Proportional-Integral-Derivative

PF Particle Filters

PI Planet Imager

POE Planetary Orbital Environment

PPS Pulse Per Second

PROBA Project for Onboard Autonomy

RdV Rendezvous

RF Radio Frequency

RMS Root Mean Square

RTBP Restricted Three Body Problem

SAR Synthetic Aperture Radars

SOF Second Order Filters

SRP Solar Radiation Pressure

SW Software

TPF Terrestrial Planet Finder
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LIST OF ACRONYMS

UB Universitat de Barcelona

UKF Unscented Kalman Filter

UKFz Unscented Kalman Filter with residuals modification

XEUS X-ray Evolving Universe Spectroscopy

Y-A Yamanaka-Ankersen

ZRRAC Zero Relative Radial Acceleration Cones
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