EFECTES DE LA INFECCIÓ PEL VIH I DELS FÀRMACS ANTIRETROVIRALS ENVERS EL MITOCONDRI: LES CÈL∙LULES MONONUCLEARS DE SANG PERIFÈRICA COM A MODEL D’ESTUDI

SÒNIA LÓPEZ MORENO

Tesi Doctoral
8. BIBLIOGRAFIA


Review.


Brinkman K et al. Mitochondrial toxicity induced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet 1999; 354: 1112-1115.


Chen D et al. HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim. EMBO J 2002 Dec 16; 21 (24): 6801-6810.


Chiappini F et al. Prospective evaluation of blood concentration of mitochondrial DNA as a marker of toxicity in 157 consecutively recruited untreated or HAART-treated HIV-positive patients. Lab Invest 2004; 84:908-914.
Christensen ER et al. Mitochondrial DNA levels in fat and blood cells from patients with lipodystrophy or peripheral neuropathy and the effect of 90 days of high-dose coenzyme Q treatment: a randomized, double-blind, placebo-controlled pilot study. CID 2004, 39:1371-1379.


Cossarizza A et al. Increased mitochondrial DNA content in peripheral blood lymphocytes from HIV-infected patients with lipodystrophy. Antiviral Therapy 2003, 8:315-321.

Cossarizza A et al. Mitochondrial functionality and mitochondrial DNA content in lymphocytes of vertically infected human immunodeficiency virus-positive children with highly active antiretroviral therapy-related lipodystrophy. J Inf Diseases 2002 Feb 1, 185(3):299-305


Divi RL et al. Mitochondrial damage and DNA depletion in cord blood and umbilical cord from infants exposed in utero to Combivir. AIDS 2004; 18:1013-1021.


Erol A. Retrograde regulation due to mitochondrial dysfunction may be an important mechanism for carcinogenesis. Med Hypotheses 2005 May 16.


F


Green A et al. Tumor necrosis factor increases the rate of lipolysis in primary cultures of adipocytes without altering levels of hormone-sensitive lipase. Endocrinology 1994;134:2581–2588.


Hammond E et al. Reduction of mitochondrial DNA and respiratory chain activity occurs in adipocytes within 6-12 months of commencing nucleoside reverse transcriptase inhibitor therapy. AIDS 2004; 18:815-817.


I-J


K


M


McComsey G et al. Analysis of the mitochondrial DNA genome in the peripheral blood leukocytes of HIV-infected patients with or without lipoatrophy. AIDS 2002; 16:513-518.

McComsey GA et al. Improvements in lipoatrophy, mitochondrial DNA levels and fat apoptosis after replacing stavudine with abacavir or zidovudine. AIDS 2005; 19:15-23.


Miró Ô et al. Mitochondrial DNA depletion and respiratory chain enzyme deficiencies are associated with lipodystrophy in HIV-infected patients on HAART. Antivir Ther. 2003; 8:333-338.


Moyle G et al. Early virological failure in persons with viral loads >100,000 cps/ml and CD4 counts <200 cells/mm3 receiving ddI/tenofovir/efavirenz as initial therapy: results from a randomized comparative trial. Program and abstracts of the 44th Annual ICAAC Meeting; October 30-November 2, 2004; Washington, DC. Abstract H-566.


Negredo F et al. Muscle biopsies to identify mitochondrial toxicity (MT) in HIV-1-infected patients. Libro de Abstracts de la 8th Conference on Retroviruses and Opportunistic Infections. Chicago, EE.UU., 2001; 244.


Nolan D et al. Contribution of nucleoside-analogue reverse transcriptase inhibitor therapy to lipoatrophy from the population to the cellular level. Antiviral Therapy 2003, 8:617-626.


Otake K et al. The carboxyl-terminal region of HIV-1 Nef protein is a cell surface domain that can interact with CD4+ T cells. J Immunol. 1994 Dec 15;153(12):5826-37.


Paredes R i col. Tratamiento de la lipodistrofia en pacientes con infección por el virus de la inmunodeficiencia humana. Med Clin (Barc) 2001; 116:469-475.


Q-R


Reiss P et al. Greater and more rapid depletion of mitochondrial DNA in blood of patients treated with dual (zidovudine+didanosine or zidovudine+zalcitabine) vs. single (zidovudine) nucleoside reverse transcriptase inhibitors. HIV Med 2004; 5:11-14.


Roge BT et al. Skeletal muscle mitochondrial function and exercise capacity in HIV-infected patients with lipodystrophy and elevated p-lactate levels. AIDS 2002; 16:973-982.


S


Shikuma C et al. Subcutaneous adipose tissue mitochondrial DNA analysis from individuals with HAART-associated lipodystrophy. Libro de Abstracts de la 8th Conference on Retroviruses and Opportunistic Infections. Chicago, EE.UU., 2001; 244.


Shitara H et al. Selective and continuous elimination of mitochondria microinjected into mouse eggs from spermatids, but not from liver cells, occurs throughout embryogenesis. Genetics 2000;156:1277-84.


Vigano A et al. HAART-associated lipodystrophy is not correlated to mitochondrial abnormalities in PBLs from HIV-infected children. Libro de Abstracts de la 8th Conference on Retroviruses and Opportunistic Infections. Chicago, EE.UU., 2001; 239.


Walker UA et al. Antiretroviral therapy with didanosine, stavudine, and zalcitabine is associated with depelition of mtDNA in the liver. Antivir Ther 2003,8:L15-L16.


Westendorp MO et al. HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state. EMBO J 1995 Feb 1;14(3):546-54.


Williams MD et al. Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J Biol Chem 1998; 273:28510-28515.


X


Y
e

Z


