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LIST OF ABREVIATIONS 

 
CRC  Colorectal Cancer 

ACRC  Advanced Colorectal Cancer 

PS  Performance Status 

ALP  Alkalyne Phosphatase 

LDH  Lactate Dehydrogenase 

WBC  White blood cell 

CEA  Carcinoembryonic antigen  

OXL  Oxaliplatin 

IRI  Irinotecan 

5FU  5-Fluoruracil 
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FOLFOXIRI Oxaliplatin + Irinotecan + 5FU + Leucovorin 

i.v.  Intravenous Infusion 

BSC  Best Supportive Care 

US   Ultrasonography 

UNL  Upper Limit of Normal 

CT  Computarized Tomography 

LOH  Loss of heterozygosity  

TS  Thymidylate synthase  

TP  Thymidine phosphorylase 
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sFASL  Soluble FAS Ligand 



 7 

MMP-7  Matrix metalloproteinase 7 

EGFR  Epidermal growth factor receptor 

VEGF  Vascular endothelial growth factor 

VEGFR  Vascular endothelial growth factor receptor 

IGFR  Insulin growth factor receptor 

IGFBP-3 Insulin growth factor binding protein-3  

CTLs  Cytotoxic T lymphocytes  

HB-EGF Heparin binding epidermal growth factor  
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1 INTRODUCTION 

 
1.1 ACRC: DEFINITION AND EPIDEMIOLOGY 
Colorectal cancer (CRC) is the third most commonly diagnosed cancer, with a 

worldwide incidence of almost a million cases annually1 (see FIG.1). 
  

 
FIG. 1: Cancer incidence worldwide in 2005.  www.cancerresearchuk.org 

 

Conceptually, advanced colorectal cancer (ACRC) means that the disease is 

disseminated or shows metastasis to one or more organs. Despite of advances 

in screening, 11 to 27% of CRC patients show initially ACRC2 and up to 25-

50% of initially localized CRC patients are destined to metastasize during 

time3-6.  

Being metastasis the first cause of cancer death, it is understandable that ACRC 

stands worldwide as the fourth cause of cancer related deaths, just behind lung, 

stomach and liver. In western countries, ACRC is the third cause of cancer 

related deaths in both genders (see FIG.2). 
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FIG. 2: Mortality related to cancer in 2005.  www.cancerresearchuk.org 

 

Over the past decade, CRC incidence and mortality rates have modestly 

decreased. Incidence decrement could be explained due to early detection, 

while mortality should be due to improvement in ACRC management, 

including strategies and new therapies (see FIG.3).   

 
FIG. 3: U.S. CRC incidence and mortality. Source for incidence and mortality data: 

Surveillance, Epidemiology, and End Results (SEER) Program and the National Center for Health 

Statistics. Additional statistics and charts are available at  http://seer.cancer.gov/. 
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1.2 ACRC: METASTATIC PATTERNS  
Metastatic disease in CRC results from hematogenous, lymphatic and/or 

intracavitary dissemination of tumor cells. Dissemination can be explained by 

different ways: (1) spreading of tumor cells to lymph nodes via lymphatic 

system, (2) seeding through the peritoneal cavity and (3) spreading of tumor 

cells into venous blood leading to systemic hematogenic tumor cell 

dissemination7. Among patients with ACRC, the most frequent sites of 

metastases, based on different postmortem series, are: liver (36-81%), lungs 

(12-54%), pelvis (27-38%), regional nodes (25-59%), peritoneum (17-41%), 

adrenals (3-27%), small bowel (1-13%), bone (1-18%), thyroid (1-16%), 

pancreas (1-10%), ovary (1-18%) and brain (1-8%)8-11 (see FIG. 4)  

 

 
FIG. 4: Incidence and site distribution of metastases in CRC10  

 

Metastatic disease can be detected at the same time of primary CRC tumor. In 

this case we talk about synchronous disease. When metastatic lesions are 

detected after CRC resection, during the follow-up or surveillance period, we 

talk about methacronous disease. ACRC includes CRC patients having 

metastases in one or more organs and patients having minimal metastatic 

spreading to bulky disease. Disease growth kinetics can vary largely among 

ACRC.  Taking into account all these parameters and combinations, ACRC 

shows up as a really heterogeneous disease.  

ACRC metastatic pattern can be defined as the disease phenotype. It results 

from tumor-host interaction and reflects tumor biology. Different metastatic 
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patterns can be presented at ACRC disease onset. Interestingly, metastatic 

patterns change during disease evolution. 

 

1.3 ACRC: CURRENT DETERMINANTS OF PROGNOSIS 

AND RESPONSE TO THERAPY 
In general, ACRC has a grim prognosis. Median overall survival in all ACRC 

patients, just receiving best supportive care (BSC), stands about 5 to 6 

months12-14. Fortunately, especially during the last decade, new therapies and 

management strategies seem to have raised this media up to 15 to 18 months15-

17.  

ACRC disease outcome depends on different variables, as aggressiveness and 

sensitivity-resistance to administered therapies. Metastatic pattern somehow 

reflects disease aggressiveness. While long term metachronic ACRC affecting 

liver, with minimal disease, can even go for curation, synchronous, multi-

organ, bulky ACRC has a dismal outcome. Despite of that, patients with similar 

patterns can respond completely different to administered therapies. ACRC can 

be instrinsically sensitive or resistant to current therapies. First-line therapy 

aproaches gives up to 50% of responses, meaning that 50% of tumors show 

intrinsic resistance. Strickingly, almost all initially sensitive patients become 

resistant in less than 12 months.  

How to recognize which type of ACRC we are facing up? How do we know the 

way each ACRC is going to behave in terms of aggressiveness and response to 

therapy? 

 

As defined by the National Cancer Institute (NCI) Dictionary, a prognostic 

factor is a situation, condition, or a characteristic of a patient, that can be used 

to estimate the chance of recovery from a disease or the chance of the disease 

recurring. A predictive factor is a situation or condition that may increase a 

person's risk of developing a certain disease or disorder. Talking about response 
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to therapy, it would be a situation or condition that may increase a person's 

chance of responding to a certain administered therapy. 

 

In the lattest years, clinicians working in the ACRC field have intended to find 

determinants of prognosis and predictors of response in order to classify ACRC 

patients. Despite years of research and hundred reports on tumor marker, the 

number of determinants that have emerged as clinically useful is unexpectably 

small. There migth be different explanations for this situation. Altman and 

Riley18 suggested that there is an evident publication bias, but also inadequate 

reporting and an excess of retrospective studies. Studies suffer from general 

methodologic differences, poor design, assays that are not standarized or lack 

of reproductibility, and inappropiate or misleading statistical analyses that are 

often based on samples that are too small to draw meaningful conclusions. This 

condition often causes that, initially reported studies of a marker show great 

promise but subsequent studies on the same or related markers yield 

inconsistent conclusions or stand in direct contradiction to the promising 

results. To improve this situation, Guidelines for Reporting of Tumor Marker 

Studies (REMARK) have been developed by NCI19. Strategies such as clear 

hypothesis and end-points defininition, sample size calculation in accordance to 

hypothesis, establishment of variable cut-off according to its distribution and 

mutivariate analysis with other variables are recommended to be implemented. 

Homogenizing studies will help to achieve robust conclusions. Another 

explanation is the lack of an evidence-based approach to prognostic and 

predictive markers. Available studies barely provide acceptable levels of 

evidence. The majority of studies define prognostic and predictive factors 

retrospectively. Among them, few have already incorporated REMARK 

recommendations. A small amount of studies validate prognostic and predictive 

markers in a prospective manner. There is a surprinsing lack of studies 

randomizing ACRC patients to selected treatments according to predictive 

markers.          
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Until now, widely accepted prognostic factors in ACRC are performance status 

(PS), number of involved metastatic sites, serum alkaline phosphatase (ALP) 

levels, white blood counts (WBC) (these fourth conforming Köhne’s prognostic 

indicators), liver involvement or peritoneal carcinomatosis, serum lactate 

dehydrogenase (LDH) and carcinoembryonic (CEA) levels15-17, 20,21. Köhne et 

al. analyzed retrospectively a serie of 2549 ACRC patients treated with 5FU. 

Patients could be divided into at least three risk groups, depending on four 

baseline clinical parameters: PS, WBC count, ALP and number of metastatic 

sites. LDH was not considered for this classification. Low risk group, with a 

median survival of 15 months, included patients with PS 0/1 and only one 

tumour site; Intermediate risk group, with a median survival of 10.7 months, 

integrated patients with PS 0/1 and more than one tumour site and ALP<300 

U/l or patients with PS>1, WBC count  <10 x 109/l and only one tumour site; 

High risk group, with a median survival of 6.1 months, accouonted for patients 

with PS 0/1 and more than one tumour site and ALP 300 U/l or patients with 

PS >1 and more than one tumour site or WBC count >10 x 109/l. Authors 

validated the prognostic index in 1276 ACRC patients. The median survival 

times for the good, intermediate and high risk groups in the validation sample 

were 14.7, 10.5 and 6.4 months, respectively20.   

The utility of the above mentioned prognostic factors has never been 

prospectively validated in well-designed and powered clinical trials. 

Currently, despite clinicians’ intuition, there is quite a bit of controversy related 

to its value. There is also a general lack of implementation of these prognostic 

factors in clinical studies. The truth is that we still don’t know if these clinical 

prognostic factors do properly classify ACRC patients. 

 

Besides the mentioned clinical and biochemical variables, a number of 

biological and molecular characteristics (such as mutations of p53 and p21, K-

ras mutation, chromosome 18q loss of heterozygosity (LOH), MSI-related 

germline mismatch repair gene mutations, and high expression of thymidylate 

synthase (TS), thymidine phosphorylase (TP) and dihydropyrimidine 
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dehydrogenase (DPD), have been identified that may be of prognostic 

importance22-28.  

Also, some polymorphisms in thymidylate synthase, methylenetetrahydrofolate 

reductase, xeroderma pigmentosum group D (XPD), excision repair cross 

complementing group 1 (ERCC1), x-ray cross complementing group 1, x-ray 

cross complementing protein 3, uridine diphosphate glucoronosyltransferase 

(UGT1A1 *28) and glutathione S-transferases (GSTs) genes have been related 

to differences in progression free survival and thus outcome in ACRC 

patients29-32. Any of those prognostic factors has yet been validated in 

prospective clinical trials.   

Some molecular factors have been shown to be good predictors of response to 

therapies in ACRC. High expression levels of tumor TS, either measuring 

proteins or mRNA levels, correlate with poor response to fluoropyrimidines33-

35. Higher levels of TS were also found in abdominal metastases compared to 

liver, accounting for different responses to 5FU therapies usually seen36. Low 

levels of tumor TP and DPD, together with TS, have been shown to be 

independent predictors of response to fluoropyrimidines28,37.  

High Topoisomerase-1 gene expression has been suggested to predict for 

response to camptothecin (CPT-11) therapy39,40. High ERCC-1 gene expression 

levels, which are independent from TS expression levels, have shown to predict 

for response to Oxaliplatin. TS and ERCC-1 levels could be predictors of 

response to Oxaliplatin-5-FU based regimens in ACRC, as has been shown in 

gastric cancer41.  

Epidermal growth factor receptor (EGFR) staining intensity and percentage of 

expressing cells, which were initially believed to correlate to Cetuximab 

response, failed to produce any significative pattern42.  

Some polymorphisms in thymidylate synthase, methylenetetrahydrofolate 

reductase, xeroderma pigmentosum group D (XPD), excision repair cross 

complementing group 1 (ERCC1), x-ray cross complementing group 1, x-ray 

cross complementing protein 3, uridine diphosphate glucoronosyltransferase 

(UGT1A1 *28) and glutathione S-transferases (GSTs) genes have been linked 
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to responses to OXL/CPT-11/LV/5-FU in different studies29-32. These studies 

suggest that a pharmacogenetic approach may be an innovative strategy to 

establish predictive factors which might be of help in selecting ACRC patients 

for different therapies.  

A prospective phase II study, in which the choice of first-line chemotherapy 

with either 5-FU or a non-5-FU containing regimen was based on TS and DPD 

expression, has been conducted and has not confirmed higher response rates, as 

reported in retrospective studies38.  

To summarize, even many of the above mentioned factors have been identified 

as possible predictors of response in ACRC patients, none of them has succeed 

in being validated in prospective clinical trials. 

 

1.4 ACRC: MANAGEMENT 
Ideally, ACRC management should be different according to the ACRC type of 

disease, meaning according to prognostic factors and factors predicting 

response to therapies.  

Taking into account that there are no clearly validated prognostic/predictor 

factors, it is easy to guess that management is not optimized, and thus probably 

often not adequate. There is an increased need for re-define treatment strategies 

in patients with ACRC, according to prognostic and predictive factors. 

 

1.4.1 Management Algorithm  
According to our guidelines (2001), in our center ACRC management is based 

on disease metastatic pattern and prognostic factors at the time of disease onset. 

We had designed a management algorithm according to baseline metastatic 

patter and commonly used clinical prognostic factors and done estimations of 

overall survival rates. Roughly 25% of patients have favourable figures (only 

liver disease, PS 0,1 and LDH < upper limit of normal (ULN). Those patients, 

who could be classified as Early-Stage, are candidates for local, intended-to-

cure treatments. Despite being ARCR, they would show overall survival rates 
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between 40 to 60% at 3 years. Additionally, 15% of patients have poor PS or 

are severe disabled due to geriatric syndromes or/and co-morbid diseases that 

preclude any active treatment strategies different that supportive care. Those 

could be classified as End-Stage and would have a dismal outcome, with less 

than 10% overall survival after one year. The rest of patients, classified as 

Intermediate-Stage, are usually treated with palliative chemotherapy. They 

would show 2-year overall survival rates around 20 to 40% (see FIG.5). All 

data comes out from preliminary analyses in our series of ACRC patients. 

 

EARLY STAGE
Liver only, PS 0,1

ACRC

RADIOFREQUENCYRESECTION

CURATIVE TREATMENT (25%)
3-years survival 40-60%

PALLIATIVE CHEMOTHERAPY (60%)
2-years survival 20-40%

SYMPTOMATIC (15%)
1-year survival <10%

INTERMEDIATE STAGE
PS 0-2 with multiorgan spread 

or liver only if (>3 nodules or
> 5 cm)

CHT+/-SURG+/-RFA CHEMOTHERAPY+/-NEW AGENTS

Severe Associated
Diseases or/and
Fit elderly patients

>3 nodules or
>5 cm<3 nodules and

<5 cm

END STAGE
PS>2 or elderly
patients with frailty
criteria

 
FIG. 5: Management algorithm in ACRC. 

 

1.4.2 Staging Procedures 
The indication to have an accurate staging depends on clinical needs. In 

patients diagnosed at End-stage (fragile patients or PS >2), ultrasonography 

(US) provide enough information and any other techniques are necessary. 

Abdominal spiral computarized tomography (CT) and chest x-ray would be 
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appropriate staging in patients with widely metastatic spread. The value of 

thoracic CT or/and positron emission tomography (PET) or PET-CT in patients 

with liver metastases to rule out extra-hepatic disease, is currently being 

evaluated. 

 

1.4.3 Treatment 
Local treatments (surgery and radiofrequency) 

Surgery approaches are indicated for Early-stage patients showing good PS and 

resectability criteria. Approximately 20–30% of patients with metastatic 

colorectal cancer have disease that is confined to the liver and is potentially 

resectable43. Several recent large series on resection for CRC liver metastases 

have reported five year survival rates ranging from 25% to 44%, with 

peroperative mortality of 0–6.6%44-47. Ideally, margins of resection should be 

negative and surgery should include an intraoperative ultrasonograpy of the 

liver and discard peritoneal carcinomatosis. Despite resectable, elderly patients 

or patients with severe co-morbid associated diseases may not be good 

candidates for surgery48. Radiofrequency ablation (RFA) has been shown to be 

a safe and effective treatment for patients unsuitable for liver resection, 

especially due to bad PS49,50. However, its precise role in the management of 

hepatic colorectal metastases has yet to be defined and no studies have 

addressed its potential superiority over other treatment modalities in the setting 

of a randomized controlled trial. A recently published study confirms that 

patients with three or less nodules and less than 5 cm had better prognosis after 

RFA treatment51. Local recurrences rates vary depending on metastases size 

and follow-up duration. The RFA-related morbidity is less than 10%48, 52-54.  

Surgery or local treatments for metastatic lesions other than liver have also 

been performed. There is evidence from cohort studies with historical controls 

that survival can be improved by lung resection for technically suitable 

metastatic disease55. Long term survival has been reported for patients who 

undergo resection of pulmonary metastases when these have developed after 
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apparently curative resection of hepatic colorectal metastases47. Recent data 

suggest that if lung metastases of colorectal origin are resectable, five year 

survival following thoracotomy is similar to that observed in patients after 

resection of colorectal liver metastases56, 57. Long term survival following 

peritonectomy (with or without hyperthermia/ hyperthermia+ chemotherapy)58 

and resection of adrenal and splenic metastases have also been recorded59,60. As 

not reported better than systemic chemotherapy, these procedures should not be 

performed as a standard strategy. 

 

Best supportive care 

Palliation can be achieved without active treatment with systemic therapies, 

such as chemotherapy or biologic therapies. Best supportive care (BSC) 

consists on applying the best strategies and drugs for palliating sympthoms and 

improving quality of life. In patients with metastases to other organs than liver 

and bad PS, BSC should be indicated for symptomatic palliation61.  

 

Systemic treatments 

Systemic therapies account for chemotherapies and biologic therapies, either 

administered per oral or endovenous. Different chemotherapies have been tried 

during the past two decades in order to obtain better responses in ACRC. For 

many years, until the early 1990s, intravenous (i.v.) bolus of 5-Fluoruracil (5-

FU) stood as the standard treatment for ACRC, either alone or modulated by 

Levamisole (LM) or Leucovorin (LV) (high or low doses). During 1990s, 

continous infusion showed superiority in responses and survival. In the past 

two decades, the onset of new drugs has changed the scenario. Those drugs 

have become the new standards in ACRC treatment as, in combination with 5-

FU/LV, they achieve high percentages of tumor reduction.  Oxaliplatin (OXL) 

in combination with 5-FU/LV (FOLFOX) or Irinotecan (IRI)/5-FU/LV 

(FOLFIRI) have increased responses up to 40-50%. Irinotecan and oxaliplatin 

have also shown to be active in patients refractory to 5-FU/LV15-17. Oral 

fluoropyrimidines such as Capecitabine (CAP) and Tegafur/Uracil (UFT)/LV 
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seem to have a comparable activity to intravenous bolus 5-FU/LV. Currently, 

new drugs, specifically what is called biologic therapies are under 

development. Epidermal growth factor receptor (EGFR) inhibitors and vascular 

endothelial growth factor (VEGF) and VEGF receptor (VEGFR) inhibitors, 

either alone or combined with standard chemotherapies are being tested to keep 

on improving these results. They hopefully might play a role in the future in the 

treatment of ACRC62-66 (see FIG. 6).  

 

 
FIG. 6: Hallmarks in CRC therapy. (Van Cutsem and Verslype, ASCO Educational Book, 

2002) 

 

Systemic treatments are used in different settings: neoadjuvant, adjuvant and 

palliative. The main goal of neoadjuvant approaches is obtaining high 

percentage of responses. In ACRC, neoadjuvant treatments are used in initially 

non-resectable liver metastasis to increase resectability and thus curability. It 

should only be used in liver only disease and in patients with good PS. Even it 

is clear that this approach improves responses and resectability, we still don’t 

have data about percentages of recurrence after radical surgery and moreover, 

there is a surprising lack of randomized studies showing disease-free and 

overall survival advantages67,68.  

In the ACRC subset, adjuvant approaches have their role after an intended-to-

cure surgery treatment. Reviewing all randomized studies available in the 

literature, adjuvant chemotherapy after liver metastasis resection has not 

showed a significant improvement in disease-free and overall survival69-71.   

The goal of palliative therapies is to delay the onset of disease related 

symptoms. Increasing the asymptomatic period usually translates into an 
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increment of quality of life. Often, these therapies also improve overall 

survival. In patients having extrahepatic metastases and good PS, systemic 

therapies are the option to improve survival and achieve palliation. 

Untreated patients with metastatic colorectal cancer have a median survival of 

5 to 6 months. Randomized studies have shown that chemotherapy with bolus 

of 5FU for ACRC prolongs survival and maintains or improves quality of life12-

14. Biomodulation of 5-FU with other drugs, including LM, methotrexate, and 

LV, have been investigated. LV administration, which increases the 

intracellular pool of reduced folate and stabilizes the FdUMP/TS complex, has 

been the most successful biomodulatory agent. Studies have shown that the 

addition of LV to bolus 5-FU improves response rates (23% v 11%) compared 

with single-agent 5-FU72. Several studies have shown a higher response rate 

and a lower toxicity for infusional 5-FU/LV regimens compared with bolus 5-

FU/LV regimens73-79. Median survival time for infusional regimens has not 

shown to be longer compared with bolus regimens. 

Recently, oxaliplatin (OXL)/5-FU/LV or irinotecan (IRI)/5-FU/LV have 

increased responses in first-line therapy up to 40-50% with median survival 

between 15-18 months. Still, 2-year overall survival remains less than 20%15-17. 

First-line combinations of 5-FU in continuous infusion and LV plus OXL 

(FOLFOX) or IRI (FOLFIRI and IFL) had higher activity in first-line therapy, 

when compared to 5-FU/LV. FOLFOX has been shown to be superior to IFL in 

terms of response and toxicity and therefore the later should not be probably 

considered as standard therapy in randomised trials with new drugs80. 

Combination of FOLFOX plus IRI (FOLFOXIRI) has recently shown better 

responses, progression-fee survival and overall survival than FOLFIRI alone in 

first-line therapy, but toxicity was also clearly increased in the experimental 

arm81.  

Capecitabine (CAP) and tegafur/uracil (UFT), both orally administered 

fluoropyrimidines, plus LV achieved at least equivalent efficacy compared with 

bolus FU/LV with the convenience of an oral administration and would be a 

logical approach for elderly patients82-85. New biologic drugs have proved their 
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activity in ACRC, alone or in combination with standard therapies, such as the 

antiangiogenic agents bevacizumab86-92 or Vatalanib (or PTK787)87,93-98 and the 

epidermal growth factor monoclonal antibodies inhibitors (Panitumumab99,100 

and Cetuximab101-104).   

Some of them are currently being evaluated in first and/or second line therapy 

in combination with standard therapies. Some of the most promising phase III 

studies ongoing are CRYSTAL study (FOLFIRI+Cetuximab vs FOLFIRI alone 

in first-line thepapy), PACCE study (FOLFOX4+Bevacizumab+Panitumumab 

vs FOLFOX4+Bevacizumab in first-line therapy), Study 20050203 

(FOLFOX+Panitumumab vs FOLFOX alone in first-line treatment), Study 

20050181 (FOLFIRI+Panitumumab vs FOLFIRI alone in second-line 

treatment).   

Until now, despite of increasing cost and toxicity, new agents have just offered 

improvements in progression-free survival, but not in overall survival. As 

suggested by Johnson KR last year in Lancet Oncology213, differences of less 

than two months in progression-free survival probably do not impact in overall 

survival. Despite not focusing on overall survival, which is the main criticism, 

the majority of the available large randomised trials with new agents have 

important differences between inclusion and exclusion criteria (including 

confounding factors, as Early Stage patients) and stratification criteria (see 

FIG) thus being difficult to conclude if benefits are due to drug activity or 

differences in trial design and patient selection (see FIG.7). 

 

Trial N Excluding 

Criteria 

Stratified 

Criteria 

End-point 

FUFOX/FOLFOX+/- 

Bevacizumab 

1400 PS 2 and 

ALP>5 

PS and  

Region 

PFS 

FOLFOX+/- 

PTK 787 

1168 - PS and 

LDH 

PFS 
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FOLFIRI+/- 

Cetuximab 

1200 - PS and  

Region 

PFS 

FOLFOX+/- 

Panitumumab 

 900 - PS and 

Region 

PFS 

FIG.7: Exclusion and stratification criteria can lead to misleading results in 

ongoing clinical trials with biologic compounds in ACRC. 

 

1.5 ACRC: NEED FOR NEW BIOLOGICAL MARKERS OF 

PROGNOSIS AND RESPONSE TO THERAPY? 
As noted above, currently “believed-to-be” prognostic and predictive markers 

in ACRC are not clearly defined, as they have not been prospectively validated 

in well-designed and powered clinical trials. This situation perpetuates the lack 

of implementation of prognostic and predictive factors in clinical studies as 

well as in daily clinical practice. It is clear that we are loosing the chance of 

selecting ACRC patients for optimizing treatment.       

This scenario points to different needs. First of all, currently supposed markers 

of prognosis and response to therapy should be prospectly validated, in order to 

do one step ahead in classifying ACRC patients. Secondly, once validated, 

clinicians should implement them in both clinical trials and routine practice. 

Third, there is a need of finding markers accurately reflecting ACRC 

aggressiveness and response to therapy, which means markers with prognostic 

and predictive value. But, as tumors change over time, aggressiveness and 

resistance to therapy can also vary. So, those markers should be able to reflect 

those values anytime during disease evolution. This fact implies that markers 

should be easy to obtain, through a non-invasive technique, such as 

venopuncture.    

 

In conclusion, there is a need of prospectively validating markers to determine 

ACRC behavior, in terms of aggressiveness and sensitivity/resistance to 
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therapies, and thus to classify ACRC patients, but also there is a need of finding 

novel markers accurately fulfilling this role anytime during disease history. 

 

1.6 NEW MOLECULAR MARKERS 

1.6.1 MMP-7 
Matrylisin or matrix-metalloproteinase 7 (MMP-7) (FIG.9) is a proteolytic 

enzyme belonging to Matrix Metalloproteinase (MMPs) family105-107 (FIG.8). 

 

 
FIG.8: Metalloproteinase family is composed by different subtypes. 

 

It is constitutively expressed in the ductal and glandular epithelium of many 

tissues108. In the lung and intestine it plays a role activating antibacterial 

peptides such as prodefensins109. 
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FIG.9: Metalloproteinase-7: domains and tridimensional structure. 

 

MMP-7 is synthesized and secreted by tumor epithelial cells as a 28-KDa 

proenzyme, that can be activated through proteolytic removal of a 9-Kda 

prodomain from the N-terminus. Soluble activated form binds to the tumor 

epithelial cell surface. Both active forms, soluble and membrane-bounded, have 

proteolytic activity. Its expression is regulated by transcription factors such as 

AP-1, PEA3 and β-catenin/ tcf4 complex110-112. EGFR activation has also been 

related to MMP-7 expression and activation113. By degrading elastin, laminin, 

proteoglycans, osteopontin, fibronectin and type IV collagen, MMP-7 gains the 

capacity to invade. Matrilysin can also promote tumor invasion by activating 

other MMPs (MMP-2, MMP-9), through ectodomain shedding of E-cadherin114 

and receptor activator of nuclear factor-kappa B ligand (RANKL115 or through 

cleavage of adhesion molecules, such as integrin β4116). MMP-7 is able to 

induce cell apoptotic impairment. It specifically cleaves critical proteins 

implicated in the extrinsic apoptotic pathway, such as FAS Ligand (FASL)117, 

118 and Tumor Necrosis Factor-alpha (TNF-α)119. FasL shedding is related to 

the acquisition of an apoptosis resistance phenotype120. 

Additionally, MMP-7 induces cell proliferation through cleavage of Heparin 

Binding Epidermal Growth Factor (HB-EGF) precursor121, a Disintegrin and 

Metalloproteinase family (ADAM) member, ADAM28122 and degradation of 

all six Insulin Growth Factor Binding Proteins (IGFBP-1 to -6), increasing the 

bioavailability of IGF, and thus favoring cancer cell growth and survival123, 124. 

Matrilysin can regulate angiogenesis either inducing a direct proliferative effect 

on vascular endothelial cells125 or producing angiogenesis inhibitors 
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(angiostatin, endostatin, neostatin-7)126 or enriching the variety of angiogenesis 

mediators, such as the soluble vascular endothelial growth factor (sVEGF)127. 

Immunoevasion due to MMP-7 would be related to FasL cleavage117, 118 or to 

IgG degradation128. 

 

1.6.2 FAS/FASL 
FAS receptor (FAS, CD95) and FAS ligand (FASL, CD95L) are cell surface 

proteins belonging to tumor necrosis factor (TNF) family. Apoptotic cell death 

response is triggered upon FASL and FAS binding. FAS/FASL interaction 

causes FAS receptor homo-oligomerization, recruitment of FAS-associated 

death domain (FADD) and procaspase-8 proteins, forming what is known as 

the death-inducing signalling complex (DISC). Procaspase-8 is activated at the 

DISC and in turn activates the downstream apoptotic extrinsic pathway effector 

caspase, procaspase-3, leading to the cleavage of structural proteins and 

causing apoptotic cell death. Caspase-8 can also activate the mitochondrial cell 

death pathway, in type II cells, through cleaving bcl-2 family members such as 

Bid129, 130 (see FIG. 10). A FASL-independent FAS-dependant caspase 

activation, related to FAS oligomerization domain, has also been described131. 

 

Soluble forms of FAS and FASL have been found. Soluble FAS (sFAS) comes 

in various different forms due to alternative splicing phenomena132, 133. The 

majority of these spliced forms maintain the oligodimerization domain which 

allows them to form homotrimers (between soluble forms) and heterotrimers 

(when joining transmembrane FAS receptors). A dual either proapoptotic or 

antiapoptotic role has been attributed to these soluble forms. When forming 

heterotrimers, they counteract the apoptotic signal134-136. While forming 

homotrimers they are capable of interacting with transmembrane FASL leading 

to a proapoptotic effect137. More convincing data comes from soluble FASL 

(sFASL) with a dominant antiapoptotic function, resulting from its cleavage by 

matrix metalloprotease-7 (MMP-7)138, 139 against a marginal proapoptotic 

effect140, 141.  
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FIG. 10: Diagram describing extrinsic and intrinsic apoptotic pathways. 
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1.7 ACRC: TUMORIGENIC PROCESS 
CRC is a genetically heterogeneous and complex disease. Initially, two major 

pathways were described as responsible for CRC tumorigenic process: the 

chromosomal instability pathway and the microsatellite instability pathway. 

The chromosomal instability or classical pathway accounted for 85% of the 

tumorigenic processes and was mainly characterized by the sequential allelic 

losses on chromosomes 5q (APC gene), 17p (TP53) and 18q (DCC/Smad4). 

The microsatellite instability pathway (MNI), also called the mutator 

phenotype, only accounted for 15% of the carcinogenic processes. Recently, it 

has been shown that colorectal carcinogenesis is much more complex, 

involving new pathways, as the serrated, the TGFβ/Smad and epigenetic 

pathways, and including infinity of non-pure or mixed pathways142-144. General 

mechanisms of tumorogenesis also include metastasis generation or 

metastagenesis145 (Nadal et al, WJG, 2007, in press). Different tumorigenic 

processes give rise to biologically diverse types of ACRC. Each type has 

differences in aggressiveness and sensitivity/resistance to treatments.   

 

1.7.1 MMP-7 
Matrilysin (MMP-7) has been found overexpressed in a variety of tumors, such 

as colorectal cancer146 (see FIG. 11).    

   
FIG. 11: Immunohistochemical staining for matrilysin in human CRC samples. 

Staining occurs in the cytoplasm and membrane of tumor cells147. (400x)  
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MMP-7 overexpression is thought to be an early event in the adenoma-

carcinoma pathway.  MMP-7 is regulated by APC/β-catenin pathway, which is 

often disrupted, as an early step during CRC tumorigenic process148-150 (see 

FIG. 12). It can be also regulated by Ki-Ras oncogenic activation151. 

 

 

FIG. 12: Matrilysin overexpression is an early event in CRC carcinogenesis150. 

 

There is substantial evidence that overexpression of MMP-7 in primary CRC, 

taking into account the measurement of both activated and pro-forms, is related 

to a more aggressive phenotype of tumor cells and a poorer prognosis. MMP-7 

overexpression has been correlated with invasion and to liver metastasis 

formation in non-metastatic CRC152-157. MMP-7 is also overexpressed in CRC 

liver metastases compared to normal liver155. MMP-7 ability to cleave FASL 

has been related to chemorresistance in CRC cell lines138. Its ability to release 

EGFligand cleaving HB-EGF increases EGFR pathway activation158. MMP-7 

progressive increment could be related to acquision of resistance in CRC.  

 

1.7.2 FAS/FASL  

The extrinsec apoptotic pathway seems to be physiologically compromised 

during colorectal cancer progresion. FAS/FASL system can be altered at 

different levels such as (1) functional blockade of FAS receptor (by FAP-1159 

and FLIP proteins160) (2) metalloproteinases activation (by MMP-2 and MMP-

7) leading to increment of soluble FAS/FASL fractions and reduction of 

membrane FAS/FASL138,139,150,161), (3) alternative splicing phenomena resulting 
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in the onset of soluble FAS fractions132, 133, (4) decoy receptor synthesis162 and 

(5) altered expression of FAS/FASL membrane-bound fractions. All these 

phenomena would be related to some of CRC tumorigenesic typical alterations, 

such as functional disruption of p53 tumor suppressor protein163-168, oncogenic 

activation of KRAS169-171, NFKβ activation/blockade148,172,173, activation of the 

TCF/βcatenin pathway148-150,173 and methylation of specific promoter regions174.  

Adenoma through carcinoma step has been shown to lead to FASL up-

regulation and FAS down-regulation175. Zhu et al. reported that in 53 cases of 

colon carcinomas, 23 cases (43.4%) expressed Fas which was significantly 

lower as compared to that in normal colonic mucosa (73.3%) (P<0.01), and 45 

cases (84.9%) of colon carcinomas expressed FasL, whereas only 2 cases 

(3.75%) in normal mucosa expressed FasL. Intensity and extent of positive 

staining varied within individual tumors176 (see FIG. 13). 

 

  
FIG. 13. Immunohistochemical staining of Fas and FasL expression in colon 

cancer cells. A: Low expression of Fas in colon cancer cells; B: high expression 

of FasL in colon cancer cells; and C: high expression of FasL in lymph node 

metastases from colon cancer cells176. 

 

FasL upregulation in primary CRC is related to lymph node spreading and 

distant metastasis177. FasL expression is progressively increased when 

comparing normal colonic mucosa to primary CRC to and to liver metastases178 

(see FIG. 14).    
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FIG. 14. (G and H) Immunoperoxidase staining of primary tumor of human 

colonic adenocarcinoma tissue (G), normal human colon mucosa (H) and 

hepatic metastatic lesion of human colonic adenocarcinoma tissue (E) with 

anti-FasL N-20 polyclonal antibody (×200). F is a higher magnification (×400) 

of E178.    

 

High levels of soluble FAS (sFAS) have been reported in ACRC, compared to 

those measured in healthy controls and localized disease179. Even not shown, it 

is suggested that mutated p53 would activate alternative splicing phenomena 

resulting in an augment of soluble FAS fractions180 (see FIG. 15). Soluble 

FASL (sFASL) levels have never been measured in CRC patients. 

 

CRC progression is related to the acquisition of a FAS/FASL apoptotic 

resistant profile, which means chemorresistance to all those drugs that induce 

apoptosis through the extrinsic pathway. It is also related to immunoescape176, 

181-184. 

 

1.7.3. Tumorigenic Model 
Together, MMP-7 and FAS/FASL are altered during CRC tumorigenic process. 

P53 mutations, RAS activation, NFkβ blockade/activation, TCF-b-catenin 

pathway activation and methylation of specific promoter regions have been 

direct or indirectly linked to some of these alterations. FAS expression is 

decremented and FASL incremented.  Moreover, FAS receptor is functionally 
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blocked, probably by proteins such as FLIP and FAP, but also due to KRAS 

induced increment of proapototic proteins. MMP-7 expression is progressively 

enhanced, posssibly due to altered APC/β-catenin pathway and K-RAS 

activation. MMP-7 activation leads to an increment of soluble FASL fractions 

and reduction of membrane FASL. Alternative splicing phenomena would be 

activated, resulting in an augment of soluble FAS fractions.  

 
FIG. 15: MMP-7 and FAS/FASL membrane-bounded and soluble forms. 

 

In conclusion, CRC tumorigenic evolution implies an increase of 

aggressiveness and acquisition of an apoptotic resistance phenotype and ability 

to immunoevade.    

An integrated model showing both alterations during tumorigenic evolution is 

described in a diagram below (see FIG.16).  
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FIG. 16: MMP-7 and Fas/FasL: ACRC tumorigenic model  
 

The above mentioned model has been built up with bits and pieces of what has 

been published in the literature. There are no studies validating it in ACRC 

series. We are currently evaluating FAS, FASL and p53 expression by 

immunohistochemistry in series of mucosa-CRC-lymph node metastases-liver 

metastases in a total of 30 ACRC patients (see FIG. 17 a, b and c).  We are also 

sequencing p53 exons (4 to 9) to establish a correlation between genetic 

alterations and FAS/FASL expression levels.  

 

FIG. 17a: Hematoxilin/Eosin staining of (A) human colonic mucosae , (B) 

primary CRC, (C) peritoneal metastases. (10x) FIG. 17b: p53 staining of (A) 

human colonic mucosae , (B) primary CRC, (C) peritoneal metastases. (10x) 

FIG. 17c: FAS staining of (A) human colonic mucosae , (B) primary CRC, (C) 

peritoneal metastases. (10x) FIG. 17d: FASL staining of (A) human colonic 

mucosae , (B) primary CRC, (C) peritoneal metastases. (10x) 
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Moreover, we are measuring expression and localizacion of Survivin, a protein 

related to apoptotic resistance, and MMP-7. Both proteins are regulated by the 

TCF/beta-catenin pathway (see FIG. 18)185, 186.  

 

1.8 CHEMOTHERAPY REGULATION OF FAS/FASL AND 
MMP-7  
Cytotoxic drugs can act by inducing apoptosis in sensitive target cells. The 

precise mechanisms of apoptosis mediated by chemotherapy have not been 

completely clarified. Membrane-bound forms FAS and FASL have been 

implicated in chemosensitivity through leading to apoptosis in response to 

DNA-damaging drugs187-193. Some reports have proposed that chemotherapies 

act through upregulation of FAS and FASL at the tumor cell surface. 

Upregulation would be secondary to activation of the two cell major sensors of 

DNA damage: p53 and NFκβ194-197. So, chemotherapy drugs could promote 

apoptosis by increasing FAS/FASL levels and thus favouring interaction and 

apoptosis. 

Commonly used chemotherapeutic drugs in colorectal cancer (OXL, IRI, 5FU) 

have shown to upregulate Fas and FasL levels “in vitro”. Experiments with 

HCT115 CRC cell line showed that treatment with different doses of 

Oxaliplatin (7-25 μM) induces an apoptotic response activating both the 

intrinsic and extrinsic pathway. Levels of membrane-bound forms of FAS and 

FASL were upregulated in all cases, after chemotherapy addition198. Shao et al. 

showed in HT-29 CRC cell line, that treatment with CPT-11, a topoisomerase I 

inhibitor, increased FAS and FASL levels199. Backus et al showed that CRC 

cell lines treated with a thymidilate synthase inhibitor, as 5-FU, upregulated 

FAS and FASL proteins, especially in p53 wild type cell lines200. In all cases, 

FAS/FASL upregulation appeared to be more intense between 12 and 72h after 

chemotherapy addition. 

Levels of membrane-bound forms of FAS and FASL have also been tested in 

other CRC cell lines (HT-29 and DLD-1) before and after administration of 

different chemotherapeutic regimens such as Doxorrubicin, Etoposide and 
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Cisplatin. The obtained data showed that there is a significant increase of FAS 

and FASL membrane protein levels 201-203. 

Non-CRC cell lines have also been shown to increase FAS and FASL levels 

after treatment with different chemotherapy drugs. 

The accumulated data suggest that upregulation of FAS/FASL membrane-

bound forms after chemotherapy treatment is possibly a general mechanism of 

regulation but depends specifically on the type of chemotherapeutic agent and 

cell line tested.  

Up to date, there is no published evidence of whether chemotherapeutic drugs 

have some effect in regulating FAS soluble fractions (sFAS and sFASL). Dr. 

Jordi Codony, working in Experimental Oncology Lab (IDIBAPS), has 

performed an experiment in HT-29 CRC cell lines to show whether 

chemotherapy drugs modify FAS/FASL soluble levels.   

To establish if chemotherapy regulates the expression of soluble forms “in 

vivo” we designed a pilot pharmacodynamic study in patients with ACRC 

receiving chemotherapy. We prospectively selected 20 patients with metastatic 

colorectal cancer (10 without prior chemotherapy, receiving an OXL-based 

treatment, and 10 before starting second-line therapy, receiving an IRI-based 

treatment) (see FIG. 18).  

 First line therapy 
(n=10) 

Second line therapy 
(n=10) 

Median Age (range) 67.5 (50-77) 66.5 (44-73) 
Sex   

Male 6 (60%) 4 (40%)) 
Female 4 (40%) 6 (60%) 

Median CEA (range) 133.3 (2.1-17121) 69.2 (4.8-295.8) 
Median LDH (range) 478 (333-1964) 409 (300-947) 
Median ALP (range) 438 (178-1156) 261 (138-1005) 
Median basal sFas 
(range) 15.3 (5.7-31) 24.3 (8.5-73) 

Median basal sFasL 
(range) 0.075 (0.07-0.34) 0.155 (0.07-0.45) 

Median basal ratio 
sFas/sFasL (range) 171.1 (21.1-391.3) 151.8 (40.5-791.4) 

FIG. 18: Patient characteristics stratified by therapy line. 
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Sequential blood extractions were performed before starting treatment and at 2, 

24, 48, 72, 96 and 168 hours after treatment. From the obtained serum we 

measured sFAS and sFASL by ELISA. Clinical data was recorded in a 

database. Our results were that following chemotherapy treatment, peaks of 

sFAS increment and sFASL decrement were observed. Statistically significant 

variations were seen between 24 to 72 hours compared to basal levels. Patients 

being treated with first-line therapy showed an increase in sFAS levels 48 hours 

after treatment while sFASL levels did not vary. Patients receiving second-line 

treatment showed no variation in sFAS levels 48 hours after treatment, while 

sFASL decreased. In both subsets of patients sFAS/sFASL ratio showed a 

significant increase after 48 hours (p=0.005) (p=0.009)  

(See FIG 19, 20, 21).  

 

 N  sFas sFasL Ratio p 

Basal 15.3 (5.7-
31) 

0.08 (0.07-
0.3) 

171.1 (21.1-
391.3) Primera 

línea 10 
48h 22.9 (12-

54) 
0.07 (0.07-
0.11) 

292.9 (168.8-
767.1) 

0.005 

Basal 24.3 (8.5-
71) 

0.16 (0.07-
0.45) 

151.8 (40.5-
791.4) Segunda 

línea 10 
48h 24.4 (6.4-

82) 
0.08 (0.07-
0.21) 

274.9 (30.5-
1041.4) 

0.009 

FIG. 19: sFAS, sFASL ad sFAS/sFASL ratio values according to therapy line. 
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FIG. 20: Median and range of SFAS levels determination (ngr/ml) (basal, 2h, 

24h, 48h, 72h, 96h and 168h after chemotherapy) 

 

 
FIG. 21: Median and range of SFASL levels determination (ngr/ml) (basal, 2h, 

24h, 48h, 72h, 96h and 168h after chemotherapy) 
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Our conclusion was that chemotherapy regulates FAS/FASL soluble fractions 

“in vivo”, especially between 24-72hours. We have noticed that sFAS/sFASL 

ratio increases after chemotherapy addition. This variation is due to sFAS 

increment and sFASL decrement in chemotherapy-naïve and previously-treated 

patients respectively (Nadal et al, publication pendant). Our main goal in this 

study was to perform an accurate pharmacodynamic description of how 

FAS/FASL soluble fractions vary when chemotherapy was added to patients. 

This pilot study constitutes the first evidence of FAS/FASL soluble fractions 

regulation by chemotherapy “in vivo”. We believe that our results deserve 

further investigation in properly adequate-size clinical trials, with 

chemotherapy or new emergent compounds. 

 

In the current literature there is a complete lack of data regarding MMP-7 

regulation by chemotherapy. Dr. Vanessa Almendro, also working in 

Experimental Oncology Lab has shown a clear increment of MMP-7 expression 

in OXL resistant HT29 CRC cell lines (ROXI), by ELISA, RT-PCR and 

immunofluorescence methods (Almendro et al, publication pendant). We are 

currently collecting data to see variation of MMP-7 levels during time in 

ACRC patients receiving chemotherapy.   
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2 HYPOTHESIS AND OBJECTIVES  
Current prognostic and predictive markers in ACRC are not clearly defined, as 

they have not been properly validated in well-designed, prospective and 

powered clinical trials.  

At the present time, we still do not know which type of ACRC we are facing up 

or the way it is going to behave in terms of aggressiveness and response to 

therapy. There is no way to determine patients who will not benefit from 

systemic therapies, or those who will rapidly progress after an initial response.  

 

This scenario points to different needs. First of all, suggested markers of 

prognosis and response to therapy should be prospectly validated, in order to do 

one step ahead in classifying ACRC patients. Secondly, once validated, 

clinicians should implement them in both clinical trials and routine practice. 

Third, there is a need of finding markers accurately reflecting ACRC 

aggressiveness and response to therapy, which means markers with prognostic 

and predictive value. As tumors change over time, aggressiveness and 

resistance to therapy can also vary. So, those markers should be able to reflect 

those values anytime during disease evolution. This fact implies that markers 

should be easy to obtain, through a non-invasive technique, such as 

venopuncture.    

 

In conclusion, there is a need of prospectively validating markers to determine 

ACRC behavior, in terms of aggressiveness and sensitivity/resistance to 

therapies, and thus to classify ACRC patients, but also there is a need of finding 

novel markers accurately fulfilling this role anytime during disease history. 

 

FAS and FASL are proteins that have been related to chemotherapy apoptotic 

response. ACRC show a FAS/FASL chemoresistant pattern, but the role of 

their soluble forms in chemoresistance has never been explored. MMP-7 has 

been related to an aggressive phenotype in ACRC, but also to chemorresistance 
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through FASL cleavage. Serum sFAS levels have been shown to be increased 

in ACRC patients. Serum measurements of sFASL and MMP-7 have never 

been done in ACRC patients. 

 

Our hypothesis is that serum levels of MMP-7, sFAS and sFASL in ACRC 

patients can be biologic markers estimating aggressiveness and 

chemoresistance. As a new concept there is the fact that biologic markers 

should be obtained not only at the time of diagnosis but anytime during disease 

history, as tumor biology changes. Also for these reason, they should be 

obtained in an easy and non-invasive way. MMP-7, sFAS and sFASL serum 

levels and their variation along time should be predicting ACRC 

chemorresistance anytime during disease history.    

 

The main objectives of this thesis can be summarized as follows: 

 

1- To determine basal levels of MMP-7 in serum of ACRC patients and 

establish its prognostic value  

2- To determine levels of sFAS and sFASL in serum of ACRC patients 

before and during chemotherapy treatment and establish its correlation 

to tumor response and thus its predictive value 

3- According to results, to design prospective trials to determine if serum 

MMP-7 and sFAS/sFASL, as new soluble markers of prognosis and 

predictors of response to therapy in ACRC, have clinical relevance  
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3 STUDIES 

3.1 Determination of MMP-7 soluble fractions basal levels in 

serum of ACRC patients and establish its prognostic value  

 

“Serum matrix metalloproteinase 7 (MMP-7) levels identifies 

poor prognosis advanced colorectal cancer patients”  

 

Int J Cancer, 2007 (Epub ahead of print); PMID: 17487834 

 

Joan Maurel1, Cristina Nadal1, Xabier Garcia-Albeniz1, Rosa Gallego1, Enric 

Carcereny1, Maribel Mármol1, Vanesa Almendro1, Elena Gallardo1, Josep 

Maria Augé2, Raquel Longarón1, Alex Martínez-Fernandez1, Rafael Molina2, 

Antoni Castells3 and Pere Gascón1. 
1Medical Oncology, Institut Malalties Hemato-Oncologiques, 2Biochemical and 3Gastroenterology 

Departments Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, Spain. 

 

Abstract 
Purpose 

Metalloproteinase 7 (MMP-7) plays an important role in tumor growth, 

invasion and dissemination, and is secreted to the media. Due to the close 

implication of MMP-7 in cancer biology, we sought to define the prognostic 

significance of serum levels of MMP-7 in metastatic colorectal cancer (CRC) 

and explore its possible impact in the daily clinical practice.  

Methods 

MMP-7 expression was determined by enzyme-linked immunoabsorbent assay. 

We assessed serum MMP-7 levels in 87 healthy controls, 96 patients with non-

metastatic CRC and 120 patients with advanced CRC. Clinical information was 

gathered from patient files. 
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Cox proportional hazards model was used to assess survival. MMP-7 and the 

variables associated with prognosis were entered and a backward elimination 

method was employed to adjust the model. Inclusion criteria was p≤0.05 and 

exclusion criteria was p≥0.10.  

Results 

Advanced CRC patients have a significant higher mean serum MMP-7 levels 

(13.4 ng/mL) than those in non-metastatic CRC (5.5 ng/mL; p<0.001) and 

healthy controls (4.2 ng/mL; p<0.001). In metastatic patients, after adjusting for 

other prognostic variables, MMP-7 (entered as a continuous variable) is 

associated with decreased survival (HR 1.016, IC 95% 1.002-1.031).  

Conclusions 

Serum MMP-7 levels are significantly elevated in patients with advanced CRC. 

MMP-7 is an independent prognostic factor for survival in advanced CRC. In 

our sample, the risk of death associated to MMP-7 increase is much higher than 

the risk of death associated to LDH elevation. 

 

Introduction 
Widely accepted prognostic factors in advanced CRC are performance status 

(PS), serum lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) 

levels1-4. Still, controversy related to their value and general lack of 

implementation in clinical studies points to the need of finding novel markers 

and useful prognostic indexes to better classify these patients for the clinical 

practice.  

Matrylisin (MMP-7) is a proteolytic enzyme belonging to Matrix 

Metalloproteinase (MMPs) family5, 7. It is constitutively expressed in the ductal 

and glandular epithelium of many tissues8. In the lung and intestine it plays a 

role activating antibacterial peptides such as prodefensins9. MMP-7 is 

synthesized and secreted by tumor epithelial cells as a 28-KDa proenzyme, that 

can be activated through proteolytic removal of a 9-Kda prodomain from the N-

terminus. The soluble activated form binds to the tumor epithelial cell surface. 
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Both active forms, the soluble and the membrane-bounded, have proteolytic 

activity. Its expression is regulated by transcription factors such as AP-1, PEA3 

and β-catenin/ tcf4 complex10-12. By degrading elastin, laminin, proteoglycans, 

osteopontin, fibronectin and type IV collagen, MMP-7 gains the capacity to 

invade. Matrilysin can also promote tumor invasion by activating other MMPs 

(MMP-2, MMP-9), through ectodomain shedding of E-cadherin13.and receptor 

activator of nuclear factor-kappa B ligand (RANKL)14 or through cleavage of 

adhesion molecules, such as integrin β415. 

MMP-7 is able to induce cell apoptotic impairment. It specifically cleaves 

critical proteins implicated in the extrinsic apoptotic pathway, such as FAS 

Ligand (FASL) 16, 17 and Tumor Necrosis Factor-alpha (TNF-α) 18. Its shedding 

is related to the acquisition of an apoptosis resistance phenotype19. 

Additionally, MMP-7 induces cell proliferation through cleavage of Heparin 

Binding Epidermal Growth Factor (HB-EGF) precursor20, a Disintegrin and 

Metalloproteinase family (ADAM) member, ADAM2821 and degradation of all 

six Insulin Growth Factor Binding Proteins (IGFBP-1 to -6), increasing the 

bioavailability of IGF, and thus favoring cancer cell growth and survival22, 23. 

Matrilysin can regulate angiogenesis either inducing a direct proliferative effect 

on vascular endothelial cells24 or producing angiogenesis inhibitors 

(angiostatin, endostatin, neostatin-7)25 or enriching the variety of angiogenesis 

mediators, such as the soluble vascular endothelial growth factor (sVEGF) 26. 

Immunoevasion due to MMP-7 would be related to FasL cleavage16, 17 or to IgG 

degradation27. 

Matrilysin has been found overexpressed in a variety of tumors, such as 

colorectal cancer28. There is substantial evidence that overexpression of MMP-

7 in CRC primary tumors, taking into account the measurement of both 

activated and pro-forms, is related to a more aggressive phenotype of tumor 

cells and a poorer prognosis. MMP-7 overexpression has been correlated with 

invasion and to liver metastasis formation in CRC non-metastatic disease29-34. 

As noted above, MMP-7 is secreted to the media. Both soluble MMP-7 forms, 

active and pro-active, can be measured in serum by a commercial ELISA Kit.  
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Due to the close implication of MMP-7 in cancer biology and the possibility to 

measure its soluble forms in serum, this study was performed with the objective 

to define the prognostic significance of serum levels of MMP-7 in metastatic 

CRC and explore its possible role in the daily clinical practice.  

Serum MMP-7 levels were also measured in healthy volunteers, non-metastatic 

and advanced colorectal cancer patients, to prove if they can be an indirect 

estimation of tumor MMP-7 expression and activity. 

 

Patients and Methods 
Patients 

The study was conducted as a serial collection of serum samples from 120 

patients with their first sign of advanced colorectal cancer from July 2001 to 

December 2004. The patients were in good performance (performance status 

<2) and were not initially suitable for liver resection (more than 3 liver nodules 

and/or > 5 cm). All patients had a medical history, clinical examination, full 

blood count, and a biochemical screen of renal and liver function. Levels of 

carcinoembryonic antigen (CEA) (Roche ® Germany) were measured using an 

Elecsys (Roche ®) automated analyzer. Lactate dehydrogenase (LDH) (Roche 

®, Germany) and alkaline phosphatase (ALP) (Bayer ®, USA) were measured 

using and ADVIA 2400 (Bayer ®, USA) automated analyzer. Staging was done 

with abdominal spiral computed tomography (CT) and chest radiography. 

Additional techniques such as abdominal ultrasound, chest CT or magnetic 

resonance imaging (MRI) were done if needed for further staging refinement. 

Serum samples were obtained before treatment, after written informed consent. 

Additionally serum MMP-7 was determined in 87 healthy patients without 

known renal or hepatic dysfunction, and 96 patients with histologically 

confirmed colorectal adenocarcinoma with non-metastatic disease, before 

surgical resection. To rule out metastatic disease in non-metastatic CRC 

patients, staging was done with chest radiography, and abdominal 
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ultrasonography or spiral CT. The study was approved by Hospital Clinic 

Ethical Committee.  

Sample Collection 

Before the initial treatment, venous blood samples were drawn into sterile 

vacuum tubes and left at room temperature for 30 minutes. After that, they 

were centrifugued at 1500 rpm for 15 minutes. Serum was immediately 

aliquoted and keeped at -80c, until assayed. The procedure has been performed 

exactly in the same way in all groups (healthy volunteers, CRC and ACRC). 

Serum samples and MMP-7 analysis 

MMP-7 (Quantikine®, USA) was determined using a quantitative solid phase 

sandwich Enzyme Linked Immuno Sorbent Assay (ELISA) (RnD Systems 

Inc®, USA) and tested in duplicate. MMP-7 technique can detect both pro- and 

active forms of recombinant human MMP-7. High concentrations of MMP-7 

were diluted with calibrator, to produce samples with values within the 

dynamic range of the assay. 

Statistical Methods 

Recorded variables were age, sex, date of birth, date of death or last follow-up, 

performance status, number and site of metastasis, previous chemotherapy 

received and sera levels of: CEA, LDH, ALP and MMP-7, as described above.  

Assuming a two-sided alpha error of 5% , with our sample size (n=120) and in 

18 months of follow-up, the power to detect the differences observed was of 

98%. Missing values (<2%) were not included in the multivariate analysis.  

Regarding multivariate analysis, overall survival was considered the dependent 

variable. It was calculated in patients with advanced colorectal cancer as the 

time from informed consent for biological analysis, to death or censoring data. 

The prognostic significance of the independent variables regarding survival 

was assessed using the Cox proportional hazards model as follows. 

Independent variables were selected sequentially. First, the variables Age, PS, 

Number of involved organs, LDH, ALP, CEA and MMP-7 were entered and a 

backward elimination method was employed to adjust the model. Inclusion 

criteria was p≤0.05 and exclusion criteria was p≥0.1035. To the best model 
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selected with this method, the excluded variables were added, one by one, 

checking for confusion (>10% variation of the HR of MMP-7) and for any 

increase of the power of prediction measured by the coefficient of 

determination36. The model without confusion and with the highest power of 

prediction according to the coefficient of determination was chosen. 

Quantitative variables were introduced as continuous in the model. Assumed 

proportionality of the multivariate model was checked plotting the logarithm of 

the cumulative estimated risk stratified by each independent variable selected. 

Assumed log-lineal relationship of the multivariate model was checked plotting 

the martingale residuals by each quantitative independent variable selected 37. 

Normality of the sample was assessed with the Shapiro-Wilk test. Due to the 

absence of normality, differences in serum MMP-7 levels between patients 

with advanced disease, non-metastatic disease and controls was analysed by 

Mann-Whitney U test. The Mann-Whitney U test was also used to test for 

associations between MMP-7 serum levels in patients with advanced disease 

and clinical characteristics. All p values were two-sided, and values <0.05 were 

considered significant. Survival curves were constructed using the Kaplan-

Meier method, assessing significance by the Log-Rank test. Division by 

quartiles was chosen for plotting. Statistical analyses were performed using 

SPSS software 12.0.  

 

Results 
Patient characteristics 

During the study period 301 patients with advanced colorectal cancer were 

visited in our Oncology Unit. 181 patients were not enrolled owing to: treated 

outside our Institution (6), poor performance status or elderly with fragility 

criteria (46), liver resection (61) or radiofrequency ablation (7) as first 

treatment and patient refusal to participate (61) (see figure 1).  
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Therefore patients enrolled in the study constitute 66% (120/180) of all patients 

with advanced disease, suitable for chemotherapy treatment diagnosed in the 

study period. Primary chemotherapy based on oxaliplatin-5-fluorouracil or 

irinotecan-5-fluorouracil was used to treat 92% (110/120) of patients. Patient 

characteristics are summarized in Table 1. Median age of the patients in our 

sample was 66 years, being male patients 62.5 % of them. 80 % of the patients 

were in good performance status (PS 0-1). 81 % of the sample had metastasis in 

only one organ and liver was affected in 76.7 % of cases. Most of the patients 

had not received adjuvant chemotherapy (77.5 %).    



 55 

 

 
Basal serum levels of MMP-7 in healthy controls, non-metastatic CRC 

and advanced CRC 

The mean and median serum level of MMP-7 for the advanced CRC patients 

(n=120) were 13.4ng/ml (SD 17.1) and 7.7ng/mL respectively (range 2 to 

126.6 ng/mL) and for the non-metastatic CRC (n=96) group were 5.5ng/ml 

(SD 3.2) and 4.9ng/mL (range, 1.2 to 19 ng/mL). The difference was 

statistically significant between these two groups (p<0.001). There was also 

a significant difference between serum MMP-7 levels in patients with 



 56 

advanced CRC (n=120) and healthy controls (n=87), being the mean and 

median serum level of MMP-7 4.2ng/m (SD 2.2) and 3.5ng/mL (range 0.5 to 

16 ng/ml, p=0.001) and between patients with non-metastatic disease (n=96) 

and healthy controls (p=0.001). Demographic characteristics between the 

three groups were stated in Table 2. 

 

 
Association between basal serum MMP-7 levels in advanced CRC 

patients and clinical characteristics 
Basal serum MMP-7 in advanced CRC patients was significantly associated 

with ECOG performance status (p<0.001), previous adjuvant treatment 

(p=0.007), LDH levels (p<0.001), ALP levels (p<0.001), CEA levels 

(p<0.001) and liver involvement (p=0.01) but not with other covariates such 

as age, sex or number of involved sites (Table 3). 

 

Association between basal serum MMP-7 levels in advanced CRC 

patients and overall survival 

The median survival for all patients was 17.8 months (range, 15.5 to 20.1). A 

total of 93 patients (77%) died during follow-up. In the univariate analysis 

the following variables resulted significant: PS, number of involved organs, 

LDH, ALP, CEA and MMP-7 (Table 4). Elaborating the multivariate model 

as described above, the most predictive model was the one containing MMP-
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7, PS, number of involved organs and LDH. HR of MMP-7 was 1,016 (IC 

95% 1,002 – 1,031; p=0,029). As MMP-7 was entered as a continuous 

variable, this result is best interpreted as follows: independently of the effect 

of other variables entered in the multivariate analysis, every increase of 10 

units of MMP-7 is associated with a 16% increase of the risk of dying. LDH, 

ALP and CEA were also treated as continuous variables, being their 

magnitude of association expressed in Table 3 as percentage of risk increase. 

Interpreting this in the same way, an increase of 100 units of LDH is 

associated with a 0, 9 % increase of the risk of dying. 
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Once established the prognostic significance of MMP-7 and the magnitude 

of this association, quartiles were chosen as a natural division for survival 

plotting. 

Quartiles of MMP-7 were 4.83, 7.50 and 15.92. The Kaplan Meier plot 

shows statistically significant difference between quartiles (Figure 2). 

Although the multivariate model provides a MMP-7 effect adjusted by LDH 

and other factors, as the latter is one of the most established parameters 

regarding prognosis, we plotted in Figure 3 survival according to MMP-7 

and LDH levels. This figure shows that when MMP-7 is higher than median, 

irrespectively of LDH levels, survival is worse than when MMP-7 is lower 

than median. This differences are statistically significant (p=0.003). 
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Fig.2. Survival curves showing the association between serum MMP-7 

concentration and overall survival.  

 
Fig.3. Survival curves according to MMP-7 and LDH levels. 
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Discussion 
The key finding of our study is that MMP-7 is an independent prognostic 

factor for survival in advanced CRC. Also, in our sample, the risk of death 

associated to MMP-7 increase is much higher than the one associated to 

LDH elevation. 

Our data confirm that high serum MMP-7 levels tend to correlate with 

clinical adverse parameters such as high LDH, ALP, CEA levels, liver 

involvement and poor performance status. Focusing on LDH and MMP-7, in 

our multivariate survival analysis they came as independent factors, even it 

is well known that their transcription can be regulated together under 

hypoxic conditions. Being LDH one of the most accepted clinical parameter 

to determine prognosis, we tested MMP-7 together with LDH, to determine 

the prognostic significance of different combinations. The Kaplan Meier 

curves show statistically significant difference (p=0,003) between curves 

expressing high and low MMP-7 levels, despite being associated with high 

or low LDH levels. Patients with high LDH and low MMP-7 levels seem to 

be associated to a slightly better prognosis, compared with those with both 

high LDH and MMP-7 levels. Those findings suggest that MMP-7 is 

possibly even more accurate that LDH in determining prognosis in the group 

of advanced CRC patients.  Interestingly, high serum MMP-7 also correlates 

with liver involvement during the metastatic spread. Further analyses in the 

group of liver-only metastases would be required.  

Levels of total MMP-7 can be measured in human serum and it is feasible 

using a simple ELISA technique, as it has been recently shown in few other 

studies42. Serum measurements of total MMP-7 can be considered as an 

indirect estimation of tumor MMP-7 expression. Other techniques, such as 

zymography, are useful to distinguish between activated MMP-7 and pro-

forms, and might be implemented in the near future for further analysis.  

Our work describes how MMP-7 serum level can distinguish between 

healthy controls, localized and metastatic CRC. Non metastatic CRC patients 

have significant lower levels of MMP-7 than metastatic CRC, and healthy 
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controls have also a significant lower level of MMP-7 than non metastatic 

CRC.  

Our results in controls (median MMP-7 level of 3.5, range 0.5 to 16 ng/mL) 

are consistent with previously published data, where healthy controls (n=28) 

had a mean MMP-7 serum level of 3, 2 μg/L; st. dv. 1, 5)43.Although median 

and mean are different parameters, due to the absence or normality in our 

sample the former was chosen for description. Both are measurements of 

central tendency and this conclusion seems to be appropriate.  

We have made the observation that serum MMP-7 determinations in 

advanced CRC are not always homogeneous. Not all patients with advanced 

colorectal cancer have elevated serum MMP-7 levels compared with healthy 

controls, suggesting that not all tumours secrete MMP-7 or the protein is 

secreted at a very low level. Protein levels may therefore reflect differences 

in the biologic characteristics of cancer cells. We speculate that possibly 

MMP-7 expression levels are also a qualitative marker in advanced CRC. 

Advanced CRC expressing high levels of MMP-7 would be related to more 

invasive, growing and metastatic tumours.  

Cancer progression and apoptosis, depends on the interplay between cancer 

cells, the immune system and the microenvironment. MMP-7 could work as 

a link between these three major actors. MMP-7 is activated by MMP-2 and 

MMP-9, both produced by stromal cells, and is also transcriptionally 

activated by the beta-catenin-tcf-4 complex and oncogenic mutations of 

Kras44 in tumor cells. Our group and others, have demonstrated that MMP-7 

blocks lymphocyte cytotoxicity, by cleaving of the NH2-terminal ‘’preligand 

assembly domain’’ of FAS membrane (FASm)45 and the extracellular 

surface of FASL membrane (FASLm)17 leading to a decreased sFAS/sFASL 

ratio46, and therefore escaping from the immune system and favoring 

resistance to chemotherapy. Recently, Wang et al.47 have demonstrated that 

MMP-7 increases resistance to Fas-mediated apoptosis and, the authors 

conclude that high MMP-7 tissue expression is a poor prognostic factor of 

patients with CRC. Vargo-Gogola T, et al48 have determined that FasL 
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cleavage from the cell surface by MMP-7 provides apoptosis resistance and 

subsequently leads to tumor formation in murine mammary glands. 

Moreover, in another study, specific cleavage of Fas by MMP-7 resulted in 

decreased sensitivity of HT-29 colon carcinoma cells to Fas-mediated 

apoptosis47. In the same study, the authors found a markedly increased 

susceptibility of these cells to Fas-mediated apoptosis when their MMP-7 

expression was suppressed by transient transfection of the antisense 

oligonucleotide for this proteinase. There is then a strong suggestion that 

increased levels of MMP-7 are associated with the development of 

refractoriness to chemotherapy agents. Although, this issue requires further 

clinical validation, in vitro and in vivo studies47, 48 are highly suggestive of 

this association which has great clinical implications. 

We have observed (unpublished data) that in patients with low MMP-7 but 

high LDH levels, MMP-7 values can increase during chemotherapy 

treatment, and would be therefore implicated in early acquired resistance, 

after initial response. Therefore, we speculate that MMP-7 would be 

implicated in primary chemo-resistance in the subgroup of patients with well 

known poor prognosis features, to an even more aggressive phenotype, or 

both. 

This study has some potential limitations. First, only patients suitable for 

chemotherapy treatment were selected for analysis. We could not rule out 

that, if patients with favorable characteristics (liver involvement only and, 

less than 4 nodules and less than 5 cm) or poor prognostic features 

(performance status >2 or fragility criteria) had been also included, results 

would have been different. Secondly, although Oxaliplatin-5-fluorouracil or 

Irinotecan-5-fluorouracil combinations have similar activity in randomized 

trials, it would be desirable to confirm these results in prospective large 

series with more homogeneous treatments. Third, we can not rule out MMP-

7 being an estimator of tumor burden, but it is clear that MMP-7 is correlated 

to but not a reflection of LDH, which up to date is the best, even not 

definitely proven, tumor burden estimator in colorectal cancer. We have 
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found 12% of patients with high LDH having low MMP-7 levels, which 

seem to be associated to a slightly better prognosis, compared with those 

with both high LDH and MMP-7 levels. This finding indicates that in our 

series, same tumor burden would be differently expressed by LDH and 

MMP-7. Moreover, in our work, high serum MMP-7 seems to correlate with 

liver involvement during the metastatic spread, but not with the number of 

involved organs. Finally, MMP-7 analysis has been done in serum and we 

have not included studies validating the correlation between MMP-7 

expression in primary and metastatic tissues and serum MMP-7. 

Detection of serum MMP-7 is feasible and done through a non-invasive 

technique. It is clearly a good tool not only to detect the subgroup of poor 

prognosis among de advanced CRC patients, but also it would be worthwhile 

to use it to evaluate serum MMP-7 levels as a potential marker of liver 

progression in non-metastatic colorectal cancer.  

In summary, the key finding of our study is that having increased MMP-7 

levels, in advanced CRC patients, is an independent prognostic factor for 

survival. This finding might imply a novel strategy for better classification of 

advanced CRC patients in prospective studies. This is to our knowledge the 

first time that such an association is reported in advanced CRC. Furthermore, 

these results represent the clinical confirmation of previous studies 

performed, either in human tissue samples or in preclinical studies, by other 

investigators. In our sample, high levels of serum MMP-7 indicate a poor 

prognosis phenotype, among advanced CRC patients, irrespectively of LDH 

values. Our results confirm the hypotheses of MMP-7 being a biologic 

marker selecting for a subset of advanced CRC patients with a qualitative 

aggressive phenotype. This poor prognosis phenotype can be related to 

increased ability to growth, invade and disseminate, but also to acquisition of 

chemoresistance. 
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3.2 Evaluation of FAS/FASL soluble fractions variation 

during time and its correlation to tumor response    

 

“FAS/FAS Ligand ratio: A marker of Oxaliplatin-based 

intrinsic and acquired resistance in advanced colorectal 
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Abstract  
Purpose 

Oxaliplatin-5-fluorouracil combinations have increased responses in first-

line therapy up to 40% in advanced colorectal cancer. Unfortunately, those 

patients who will respond are unknown and initially sensitive patients 

become rapidly resistant to current therapies. FAS (CD95) and FAS ligand 

(FASL; CD95L) have been implicated in chemosensitivity through leading 

to apoptosis in response to DNA-damaging drugs. Whereas the proapoptotic 

role of FAS and FASL is well characterized, the function of their soluble 

forms as predictors of chemosensitivity remains unknown. 

Patients and Methods 

Blood samples were obtained from68 patients with advanced colorectal 

cancer who received oxaliplatin-5-fluorouracil combinations in first-line 
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therapy. Computed tomographic scans were done every 3 months and 

responses were evaluated by Response Evaluation Criteria in Solid Tumors 

criteria. ELISA soluble FAS and soluble FASL analysis were done before 

treatment and every 3 months until disease progression. Ratios between 

soluble FAS and soluble FASL were established and its values and 

variations through time were related to treatment responses. 

Results 

We found a significant increase in soluble FAS levels and a significant 

decrease in FASL at 3 months compared with baseline (13.2 versus 10.02 

ng/mL; P = 0.0001; 0.07 versus 0.14ng /mL; P = 0.007, respectively). A 

significant increase in the soluble FASL levels up to 9 months (fourth to fifth 

extractions; 0.26 ng/mL) of therapy compared with first to third extractions 

(0.11ng/mL; P = 0.003)was also found. A random effect regression statistical 

model determined that >1.2-fold increase in soluble FAS/soluble FASL ratio 

was a marker of chemosensitivity (P = 0.001). 

Conclusions 

These data strongly indicate that an increment of soluble FAS/soluble FASL 

ratio after treatment could be an excellent marker of chemosensitivity in 

colorectal cancer. On the other hand, a decreased ratio after treatment can be 

a predictor of chemoresistance despite an initial response. 

 

Introduction 
Colorectal cancer is the most common cancer in western Europe, with f70 

new cases a year per 100,000 inhabitants. In spite of advances in screening, 

15% to 20% of patients show initially advanced disease, and 30% to 50% are 

destined to metastasize. Recently, oxaliplatin/5-fluorouracil (5-

FU)/leucovorin or irinotecan-5-FU/leucovorin have increased responses in 

first-line therapy up to 40%, with median survival between 16 and 20 

months, but 2-year overall survival still remains <20% (1, 2). Unfortunately, 

those patients who will benefit from first-line chemotherapy are unknown. 
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Furthermore, the initially sensitive patients become rapidly resistant to 

current therapies. 

The FAS (CD95) receptor is a cell surface protein that mediates apoptotic 

cell death on triggering by FAS ligand (FASL). This interaction causes FAS 

receptor homo-oligomerization and this leads to activation of the caspase 

cascade (apoptotic extrinsic pathway). A FASL-independent activation of 

the FAS receptor has also been described (3). 

Whereas proapoptotic role of FAS and FASL are well known, more 

conflicting data come from functionality of soluble forms. Various forms of 

soluble FAS (sFAS) have been described derived from alternative splicing 

phenomena (4). The majority of these spliced forms have an oligomerization 

domain, which allows them to form homotrimers (between soluble forms) 

and heterotrimers (when joining to transmembrane FAS receptor). 

A dual antiapoptotic or proapoptotic function has been advocate for these 

soluble forms. When they form heterotrimers, they are counteracting the 

apoptotic signaling (5). While forming homotrimers, they are capable of 

interacting with transmembrane FASL leading to a proapoptotic effect (6). 

More convincing data of an antiapoptotic function of soluble FASL (sFASL; 

resulting from the cleavage of FASL by metalloproteinase-7; ref. 7) or a 

marginal proapoptotic function (8) has been proposed. The extrinsic 

apoptotic pathway seems to be physiologically compromised during 

colorectal cancer progression. It has been shown that adenoma through 

carcinoma step leads to FASL upregulation and FAS down-regulation (9). 

sFAS levels have been proven to be elevated in serum of patients with 

colorectal cancer (10), whereas some colorectal cell lines have turned to be 

releasing sFASL (11). Together, all these data support the hypothesis of the 

acquisition of a FAS/FASL apoptotic resistance profile as well as an 

immunoescape capacity during colorectal cancer progression (12). 

Cytotoxicity due to 5-FU/leucovorin treatment in p53 wildtype colorectal 

cell lines can be mediated via FAS (13, 14). It has also been described that 

this stimulus can produce apoptosis in p53 mutant cells (15). In colorectal 
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cancer cells, there was an increased level of FASL and apoptosis induction 

during thymineless death after 5-FU treatment, via activation of nuclear 

factor-nB and activator protein-1 transcription factors (16), as well as in 

thymidylate synthase–deficient cells, after treatment with DNA-damaging 

agents (17). Other drugs, such as camptothecin, seem to induce cell death 

through recruitment of the FAS-FADD adaptor in a FASLindependent 

fashion (18, 19). Therefore, it seems that 5-FU (20), capecitabine (21), and 

antimetabolite therapies can restore the lost of apoptotic capacity of 

colorectal cancer cells in vitro, either p53 wild-type or mutant, through the 

extrinsic pathway by regulating FAS and FASL expression and/or function. 

Because of the mentioned chemotherapy capacity to modulate FAS/FASL, 

we hypothesize that these drugs could also modulate the soluble forms and 

therefore its role in regulating the apoptotic response through the extrinsic 

pathway as well as the immunologic ‘‘counterattack.’’ Because soluble 

forms (sFAS and sFASL) can have opposite effects, the ratio between them 

(sFAS/sFASL) could be a way to measure the final balance of apoptotic and 

immunoescape effect. This ratio and its variations along chemotherapy 

treatment could be therefore a useful variable to measure colorectal cancer 

chemosensitivity and chemoresistance. 

 

Materials and Methods 
Patients 

Blood samples were obtained from 68 patients treated for advanced 

colorectal cancer from July 2001 to September 2003. Patients received 85 

mg/m2 oxaliplatin on day 1, 200 mg/m2 leucovorin on day 1, and 3 g/m2 5-

FU on day 1 in 48-hour continuous infusion every 2 weeks for a maximum 

of 12 cycles (n = 55) as standard treatment in our institution. Thirteen 

patients were treated with other oxaliplatin-fluorouracil combinations in 

multi-institutional clinical trials: 85 mg/m2 oxaliplatin on day 1 and 2.25 

g/m2 5-FU on day 1 in 48-hour continuous infusion weekly every 2 weeks (n 
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= 3), 130 mg/m2 oxaliplatin on day 1, and 1,000 mg/m2 capecitabine on 

days 1 to 14 every 3 weeks (n = 3) or FOLFOX-4 (n = 7). Eligible criteria 

were stage IV histologically proven colorectal cancer, measurable metastatic 

lesions by Response Evaluation Criteria in Solid Tumors criteria, Eastern 

Cooperative Oncology Group performance status score of 0 to 2, no previous 

neoplasm in the last 10 years, normal liver and renal function, and no 

previous chemotherapy for advanced disease. All patients had chest X-ray 

and a helical computed tomographic (CT) abdominal scan before entry into 

study and underwent repeated evaluations at least every 3 months. Tumor 

response was assessed according to Response Evaluation Criteria in Solid 

Tumors criteria (22) as complete response, partial response, stable disease, 

and progressive disease. Each tumor measurement by CT scan was 

compared with previous CT scan. Therefore, patients with initial partial 

response in first evaluation (second CT versus initial CT) and with 

stabilization on the second evaluation (third CT versus second CT) were 

defined as stable disease instead of confirmed partial response. Only those 

patients with new partial response in second evaluation were defined again 

as partial response. Patients gave signed informed consent before treatment 

and the study was approved by the institutional ethics of research committee. 

Samples and assay 

Venous blood samples were drawn into sterile vacuum tubes before the 

initial treatment and every 3 months until disease progression for a 

maximum of five extractions (month 12). We have limited the number of 

extractions to 5 because >90% of the patients have progressed at that time. 

Blood samples were kept at 4C, centrifuged at 10,000 rpm for 15 minutes, 

and then immediately frozen at -80C until assayed. FAS and FAS ligand–

specific ELISA. A double-antibody sandwich ELISA was constructed to 

detect sFAS and sFASL in sera using a sFAS and sFASL ELISA kit 

(Oncogene Research Product, San Diego, CA). This assay uses FAS and 

FASL antibodies against two epitopes. Standard curves were constructed 

using serial dilutions of recombinant sFAS and sFASL. The maximum 
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detectable concentration of sFAS was determined as 100 ng/mL. The 

maximum and minimum detectable concentrations of sFASL were 

determined as 1.25 and 0.01 ng/mL, respectively. 

Statistical methods 

The Mann-Whitney test was used to assess significant associations between 

continuous variables (FAS and FASL levels) and dichotomous variables 

[sex, upper limit of normal lactate dehydrogenase (>1 versus <1), number of 

organs involved (1 versus >1), disease location (liver versus other than 

liver), adjuvant chemotherapy, previous radiotherapy, and initial Dukes stage 

(synchronic versus metachronic)]. The Wilcoxon test was also used to 

ascertain FAS and FASL variations during chemotherapy treatment. The 

Kruskal-Wallis test was used to assess significant differences in FAS and 

FASL levels within multiple groups (i.e., Eastern Cooperative Oncology 

Group performance status). Complete response and partial response were 

considered as ‘‘sensitive’’ and stable disease and progressive disease were 

considered as ‘‘refractory.’’ A random effect regression statistical model 

evaluated the effects of time/therapy on response. A univariate and 

multivariate analysis for all variables influencing on response was also done. 

Only variables with a borderline significance (P < 0.1) at univariate analysis 

were included in the multivariate regression model. 

 

Results 
Patients and tumor characteristics  

Demographic details on the 68 patients included in the study and tumor stage 

are shown in Table 1. 
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The median of received treatment cycles was 9 (range, 1-12). Twelve of the 

68 patients had undergone radical procedures after chemotherapy treatment 

(11 underwent surgical resection and 1 radiofrequency thermal ablation) but 

were fully evaluable for response. Two patients were not evaluable for 

response due to complications after first cycle (1p with pulmonary embolism 

and 1p with intestinal occlusion). 

FAS/FAS ligand levels 

Sera were obtained from 68 patients diagnosed with advanced colorectal 

cancer during the study period with a total of 160 extractions. From 66 

patients assessable for response, the average of extractions was 2.4 

(range, 1-5). Reasons for extraction discontinuation were per protocol (n = 

0.21; median, 3.4; range, 2-5), radical treatment after chemotherapy (n = 

0.12; median, 2.2; range, 1-3), patient withdrawal consent (n = 0.1; median, 

2), poor medical condition after rapid progression disease (n = 0.4; median, 

1), and finished study period (n = 0.28; median, 1.8; range, 1-4). There were 

no significant associations between sFAS and 
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sFASL levels and any of the following variables: sex (P = 0.24 and 0.38, 

respectively), previous chemotherapy treatment (P = 0.32 and 0.35, 

respectively), lactate dehydrogenase levels (P = 0.43 and 0.77, respectively), 

previous radiotherapy (P =0.39 and 0.9, respectively), synchronic or 

metachronic disease (P = 0.37 and 0.21, respectively), number of organs 

involved (P = 0.45 and 0.31, respectively), and liver involvement (P =0.42 

and 0.39, respectively). There were also no significant differences between 

sFAS and sFASL levels among patients with different performance status 

grades (P = 0.10 and 0.51, respectively; see Table 2).   

 

 
 

We found a significant increase in sFAS levels and a significant decrease in 

FASL at 3 months compared with baseline (13.2 versus 10.02 ng/mL; P = 

0.0001; 0.07 versus 0.14 ng/mL; P = 0.007, respectively). The median of 

FAS/FASL ratio increment was 1.2-fold. A significant increase in the sFASL 

levels up to 9 months (fourth to fifth extractions; 0.26 ng/mL) of therapy 
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compared with first to third extractions (0.11 ng/mL; P = 0.003) was also 

found (see Table 3). 

 

 
 

Response to chemotherapy 

The overall response rate was 45.6%. The levels of the FAS/FASL ratio 

increment in the group of complete response and partial response 

(i.e.,‘‘responding’’ tumors; mean, 14.2; range, 0.06-188.4) were significantly 

different from the levels in the stable disease and progressive disease group 

(i.e., ‘‘nonresponding’’ tumors; mean, 2.2; range, 0.02-29.2; P = 0.005, 

Wilcoxon test; Table 4).  

 

 
 

A random effect regression statistical model evaluated the effects of 

time/therapy on response. We determined that a >1.2-fold increase in 

sFAS/sFASL ratio was a marker of chemosensitivity (P = 0.001). In 

addition, we have found a predictor of chemoresistance in a subgroup of 

patients who, despite presenting a high ratio and an initial CT response, 

rapidly developed a decreased ratio during treatment, indicating the 

appearance of chemoresistance. In the univariate analysis of response, only 

performance status (P = 0.05) and age (P = 0.1), but not lactate 
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dehydrogenase (P = 0.7), previous adjuvant treatment (P = 0.38), 

carcinoembryonic antigen (P = 0.33), and number of organs involved (P = 

0.93), had a borderline significance. A multivariate regression analysis of 

response with the relevant clinical variables (age, performance status, and 

sFAS/sFASL ratio) was done, and only sFAS/sFASL ratio (P = 0.003) and 

age (P = 0.025) remain as independent factors predicting response. 

 

Discussion 
In the present study, the mean of sFAS/sFASL basal levels (sFAS, 10.02 

pg/mL; sFASL, 0.14 pg/mL) is similar to that reported previously (23–25). 

In accordance to some authors, we have not seen any significant relation 

between sFAS and/or sFASL levels and variables such sex, age, or 

performance status (23, 24). We have also observed a lower basal level sFAS 

(8.2 ng/mL), but without reaching significance (P = 0.37), in patients with 

metachronic compared with synchronic disease (10.6 ng/mL), in accordance 

with the well-known chemoresistance of this group of patients in randomized 

advanced colorectal cancer trials (2, 26). We also noted a higher basal levels 

of sFAS (12.2 ng/mL) in those patients with serum lactate dehydrogenase >1 

upper limit of normal compared with 8.5 ng/mL (P = 0.43), also a well-

defined, poor prognosis factor of survival in colorectal cancer (1, 2) and 

described previously in advanced melanoma (27). These data could explain 

previous reports associating poor prognosis with sFAS levels in gynecologic 

malignancies and melanoma (24, 25). Also in our knowledge, for the first 

time in the literature, we have shown a significant increase in sFAS levels 

after chemotherapy treatment (P = 0.0001). In addition, we have also noted 

that a ratio increment correlates with tumor response and the subsequent 

decrease is related to chemoresistance (P = 0.001). Despite these data, it is 

unclear how chemotherapy regulates, if it does, sFAS and sFASL functions. 

We hypothesize that, in advanced colorectal cancer, tumor production of 

soluble splicing variants (amount and type) leads to a proapoptotic action 
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(through transmembrane FAS interaction), much more than to an 

antiapoptotic one. Because in the advanced stages of the disease the matrix 

metalloproteinases (like matrix metalloproteinase-7) are more active (27–29) 

and lead to an increase of the sFASL fractions, it is plausible that these 

events may have a global antiapoptotic and immunoevading action. 

Supporting this theory, high levels of sFASL have been observed in 

metastatic pancreatic carcinoma, a notorious resistant neoplasm (30). In 

mammary tissues from multiparous matrilysin (matrix metalloproteinase-7)–

expressing mice, there was decreased FASL expression, suggesting that loss 

of FASL expression is at least one mechanism of matrilysin-induced 

resistance to apoptosis (31). Furthermore, CTLs trigger FASmediated 

apoptosis only after treatment with metalloproteinase inhibitors (matrix 

metalloproteinase-1). Matrix metalloproteinase-1 induces apoptotosis by 

increasing the surface expression of FASL and disappearance of sFASL 

(32). 

There have been multiple reports in the literature measuring basal levels of 

sFAS and sFASL in different neoplasms. However, this is the first study that 

reflects the dynamics of these soluble fractions during chemotherapy 

treatment. We conclude that a 1.2-fold increase of FAS/FASL ratio, after 

receiving chemotherapy, indicates chemosensitivity in colorectal cancer. In 

addition, a ratio decrease during chemotherapy treatment, despite the initial 

values, is related to accquired chemoresistance. We suggest that 

sFAS/sFASL ratio can be useful as a dynamic response predictor in 

colorectal cancer patients following chemotherapy. 
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4 DISCUSSION AND PERSPECTIVES 

Current prognostic and predictive markers in ACRC are not clearly defined, 

as they have not been properly validated in well-designed, prospective and 

powered clinical trials.  

At the present time, we still do not know which type of ACRC we are facing 

up or the way it is going to behave in terms of aggressiveness and response 

to therapy. There is no way to determine patients who will not benefit from 

systemic therapies, or those who will rapidly progress after an initial 

response.  

As Benson indicated in 2006 American Society of Clinical Oncology 

(ASCO) meeting, “innumerable challenges remain, the understanding of 

which will be essential to move from generic treatment strategies to 

principles of rational treatment selection driven by prognostic and 

predictive human biologic data.”  

This scenario points to different needs. First of all, suggested markers of 

prognosis and response to therapy should be prospectly validated, in order to 

do one step ahead in classifying ACRC patients. Secondly, once validated, 

clinicians should implement them in both clinical trials and routine practice. 

Third, there is a need of finding markers accurately reflecting ACRC 

aggressiveness and response to therapy, which means markers with 

prognostic and predictive value. As tumors change over time, aggressiveness 

and resistance to therapy can also vary. So, those markers should be able to 

reflect those values anytime during disease evolution. This fact implies that 

markers should be easy to obtain, through a non-invasive technique, such as 

venopuncture.    

 

FAS and FASL are proteins that have been related to chemotherapy 

apoptotic response. ACRC show a FAS/FASL chemoresistant pattern, but 

the role of their soluble forms in chemoresistance has never been explored. 

MMP-7 has been related to an aggressive phenotype in ACRC, but also to 
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chemorresistance through FASL cleavage. Serum sFAS levels have been 

shown to be increased in ACRC patients. Serum measurements of sFASL 

and MMP-7 have never been done in ACRC patients. 

Our first approach was based on establishing the role of sFAS/sFASL and 

MMP-7 serum levels as biologic markers of prognosis and predictors of 

response to therapy in ACRC. 

 

In the first work, we have shown that serum MMP-7 levels are significantly 

elevated in patients with ACRC, compared to non-metastatic CRC and to 

healthy controls. We have made the observation that serum MMP-7 

determinations in ACRC are not always homogeneous. Serum MMP-7 levels 

do not strictly correlate to LDH levels, which is the best estimator of tumor 

burden up to date. The fact that not all patients with ACRC have elevated 

serum MMP-7 levels suggests that not all tumours secrete MMP-7 or the 

protein is secreted at a very low level. According to MMP-7 serum levels, 

ACRC patients can be divided in two groups. Those with high levels tend to 

show a dismal outcome while those with low levels are more likely to have a 

more indolent disease. Protein levels may therefore reflect differences in the 

biologic characteristics of cancer cells. We speculate that possibly MMP-7 

expression levels are also a qualitative marker in ACRC. As it has been 

shown in CRC primary tumors, high levels of MMP-7 correlate to an 

aggressive phenotype and poorer prognosis152-157. Serum MMP-7 levels seem 

to be a good estimator of tumor agressiveness within ACRC patients.      

Our data confirm that high serum MMP-7 levels tend to correlate with 

currently used clinical adverse parameters such as high LDH, ALP, CEA 

levels, liver involvement and poor performance status. Being LDH one of 

the most accepted clinical parameter to determine prognosis, we tested 

MMP-7 together with LDH, to determine the prognostic significance of 

different combinations. The Kaplan Meier curves show statistically 

significant difference (p=0,003) between curves expressing high and low 

MMP-7 levels, despite being associated with high or low LDH levels. 
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Patients with high LDH and low MMP-7 levels seem to be associated to a 

slightly better prognosis, compared with those with both high LDH and 

MMP-7 levels. Moreover MMP-7 levels are more accurate in reflecting the 

risk of death than current used prognostic factors, such as LDH. In our 

sample, the risk of death associated to MMP-7 increase is significantly much 

higher than the risk of death associated to LDH elevation. Those findings 

suggest that MMP-7 is possibly even more accurate that LDH in determining 

prognosis in the group of ACRC patients.  

In conclusion, we have stated that basal determination of serum MMP-7 

in ACRC patients is an independent determinant of prognosis. 

 

For the first time, we have determined MMP-7 soluble fractions in the serum 

of ACRC patients. Levels of total MMP-7 can be measured in human serum 

and it is feasible using a simple ELISA technique, as it has been recently 

shown in few other studies204, 205. As MMP-7 is secreted to the media by 

tumor cells, serum measurements of total MMP-7 can be considered as an 

indirect estimation of tumor MMP-7 expression. Other techniques, such as 

zymography, are useful to distinguish between activated MMP-7 and pro-

forms, and might be implemented in the near future for further analysis.  

Our work describes how MMP-7 serum levels can distinguish between 

healthy controls, non-metastatic CRC and ACRC. Non-metastatic CRC 

patients have significant lower levels of MMP-7 than ACRC, and healthy 

controls have also a significant lower level of MMP-7 than non-metastatic 

CRC. Our results in controls (median MMP-7 level of 3.5, range 0.5 to 16 

ng/mL) are consistent with previously published data, where healthy controls 

(n=28) had a mean MMP-7 serum level of 3, 2 μg/L; st. dv. 1, 5)204, 205. 

Although median and mean are different parameters, due to the absence or 

normality in our sample the former was chosen for description. Both are 

measurements of central tendency and this conclusion seems to be 

appropriate.  
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Detection of serum MMP-7 is feasible and done through a non-invasive 

technique. It is clearly a good tool not only to detect the subgroup of poor 

prognosis among ACRC patients, but we were wondering if it also would be 

worthwhile to use it to evaluate serum MMP-7 levels as a potential marker 

of liver progression in non-metastatic CRC. Our work evaluating serum 

MMP-7 in a total of 176 non-metastatic CRC patients points out MMP-7 

beig a good marker to predict disease progression (“Serum matrilysin 

(MMP7) levels are associated with progression, in curatively resected 

colorectal cancer (CRC) patients” (2007 ASCO Meeting. Abs: 4124 P:N2; 

Martínez-Fernández et al.)  

This study has some potential limitations. First, only patients suitable for 

chemotherapy treatment were selected for analysis (Intermediate Stage). We 

could not rule out that, if patients with favorable characteristics (liver 

involvement only and, less than 4 nodules and less than 5 cm)(Early Stage) 

or poor prognostic features (performance status >2 or fragility criteria)(End 

Stage) had been also included, results would have been different. Secondly, 

although OXL-5FU or IRI-5FU combinations have similar activity in 

randomized trials, it would be desirable to confirm these results in 

prospective large series with more homogeneous treatments. Third, we can 

not definitively rule out MMP-7 being an estimator of tumor burden, but it is 

clear that MMP-7 is correlated to but not a reflection of LDH, which up to 

date is the best, even not definitely proven, tumor burden estimator in 

colorectal cancer. We have found 12% of patients with high LDH having 

low MMP-7 levels, which seem to be associated to a slightly better 

prognosis, compared with those with both high LDH and MMP-7 levels. 

This finding indicates that in our series, same tumor burden would be 

differently expressed by LDH and MMP-7. Moreover, in our work, high 

serum MMP-7 seems to correlate with liver involvement during the 

metastatic spread, but not with the number of involved organs. Finally, 

MMP-7 analysis has been done in serum and we have not included studies 

validating the correlation between MMP-7 expression in primary CRC tissue 
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and serum MMP-7. Despite of it, as MMP-7 is secreted to the media by 

tumor cells, serum measurements of total MMP-7 could be considered as an 

indirect estimation of tumor MMP-7 expression. Moreover, to our opinion, 

an accurate correlation between tissue and serum MMP-7 levels would need 

not only measurements in primary tumor but also in all metastatic lesions, 

which is not feasible.    

 

In the second work, we present determinations of FAS/FASL soluble 

fractions in the serum of ACRC patients. In our study, the mean of 

sFAS/sFASL basal levels (sFAS, 10.02 pg/mL; sFASL, 0.14 pg/mL) is 

similar to that reported previously in other malignancies206-208. In accordance 

to some authors, we have not seen any significant relation between sFAS 

and/or sFASL levels and variables such sex, age, or performance status206, 

208. We have also observed a lower basal sFAS level (8.2 ng/mL), but 

without reaching significance (P = 0.37), in patients with metachronic 

compared with synchronic disease (10.6 ng/mL), in accordance with the 

well-known chemoresistance of this group of patients in randomized ACRC 

trials16, 17. We also noted a higher basal levels of sFAS (12.2 ng/mL) in those 

patients with serum lactate dehydrogenase >1 upper limit of normal 

compared with 8.5 ng/mL (P = 0.43)15, 16. This data was previously described 

in advanced melanoma and could explain previous reports associating poor 

prognosis with sFAS levels in gynecologic malignancies and melanoma207, 

208.   

There have been multiple reports in the literature measuring basal levels of 

sFAS and sFASL in different neoplasms. However, this is the first study that 

reflects the dynamics of these soluble fractions during chemotherapy 

treatment. To our knowledge, for the first time in the literature, we have 

shown a significant increase in sFAS levels after chemotherapy treatment (P 

= 0.0001). In addition, we have also noted that a sFAS/sFASL ratio 

increment (>1.2-fold) after receiving chemotherapy, correlates with tumor 

response, and thus indicates chemosensitivity in ACRC. Also, sFAS/sFASL 
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ratio decrement, despite initial values, is related to chemoresistance (P = 

0.001). We suggest that sFAS/sFASL ratio can be useful as a dynamic 

response predictor in ACRC patients following chemotherapy. In conclusion, 

we have shown that variation of soluble FAS and FASL levels in serum of 

ACRC patients, during chemotherapy treatment, correlates with tumor 

response to treatment and thus we have established its predictive value.  

 

But how are sFAS/sFASL and MMP-7 related to each other?  

Cancer progression depends on the interplay between cancer cells, the host 

and the microenvironment. Serum MMP-7 and sFAS/sFASL could work as a 

link between these three major actors. MMP-7 is activated by MMP-2 and 

MMP-9, both produced by stromal cells, and is transcriptionally activated by 

the βcatenin/tcf-4 complex and oncogenic mutations of KRAS148-151 in CRC 

cells. Other groups have demonstrated that MMP-7 blocks lymphocyte 

cytotoxicity, by cleaving the NH2-terminal ‘’preligand assembly domain’’ of 

FAS membrane (FASm)209 and the extracellular surface of FASL membrane 

(FASLm)118. Furthermore, cytotoxic T lymphocytes (CTLs) trigger FAS-

mediated apoptosis only after treatment with metalloproteinase inhibitors210. 

All these mechanisms would favour CRC cells escaping from the immune 

system. Moreover, Vargo-Gogola T, et al 211 showed that in mammary tissues 

from multiparous matrilysin (MMP-7)–expressing mice, there was decreased 

FASL expression, suggesting that loss of FASL expression was at least one 

mechanism of matrilysin-induced resistance to apoptosis. Also, they 

determined that FasL cleavage from the cell surface by MMP-7 provides 

resistance to apoptosis and subsequently leads to tumor formation in murine 

mammary glands. Recently, Wang et al.139 have demonstrated that MMP-7 

increases resistance to Fas-mediated apoptosis in HT-29 CRC cell line. 

Authors also found a markedly increased susceptibility of these cells to Fas-

mediated apoptosis when their MMP-7 expression was suppressed by 

transient transfection of the antisense oligonucleotide for this proteinase. 
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There is then a strong suggestion that increased levels of MMP-7 are 

associated with the development of refractoriness to chemotherapy agents. 

MMP-7 is possibly implicated to therapy resistance by other mechanisms. 

As described in the diagram below (see FIG. 23), MMPs can cleave 

membrane-bounded proteins other than FAS and FASL, such as epidermal 

growth factor receptor (EGFR), insulin growth factor receptor (IGFR) or 

insulin growth factor binding protein-3 (IGFBP-3).  

 
FIG. 23: MMPs can cleave membrane-bounded proteins, such as FAS, 

FASL IGFBP-3, TGFα, E-Cadherin helping to malignant transformation148. 

 

Along with this line, our goup has observed that chemotherapy resistant 

CRC cell lines show a clear increment of MMP-7 expression, either 

measured by immunoflorescence, ELISA and RT-PCR methods (non 

published “in vitro” data by Almendro et al.).  

Analyzing non-published data from patients treated with OXL-based 

regimens (n=87), we also have noticed that those with initially high levels of 

serum MMP-7 (25%) show low response rates to chemotherapy, around 

20%, (median overall survival (MOS): 11 months), while those with low 

basal MMP-7 and LDH levels (55%) show high percentages of response, 

around 64% (MOS: 25 months). In patients with initial low MMP-7 but high 

LDH levels (20%), initial response rates are even higher, around 78%, but 
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MMP-7 values seem to increase quickly during treatment and those initially 

responders become rapidly resistant (MOS: 13 months) (see FIG. 24 below) 

 

EARLY STAGE
Liver only, PS 0,1

ACRC

RADIOFREQUENCYRESECTION

CURATIVE TREATMENT (25%)
3-years survival 40-60%

PALLIATIVE CHEMOTHERAPY (60%)
2-years survival 20-40%

SYMPTOMATIC (15%)
1-year survival <10%

INTERMEDIATE STAGE
PS 0-2 with multiorgan spread

or liver only if (>3 nodules
or >5 cm)

Severe Associated
Diseases or/and
Fit elderly patients

<3 nodules and
<5 cm

END STAGE
PS>2 or elderly
patients with frailty
criteria

MMP-7<
16 ng/ml

MMP-7>
16 ng/ml

LDH>1.5ULN*LDH <1.5ULN

55% Chemosensitive
(MS 25 m)

20% Chemosensitive
(MS 13 m)

25% Chemoresistant
(MS 11 m) 

  
FIG. 24: Data from ACRC patients included in the first study. 

 

Therefore, we speculate that MMP-7 would be implicated in both 

primary and acquired chemoresistance. Although “in vitro” and “in vivo” 

studies are highly suggestive of this association, this issue requires further 

clinical validation, as it has great clinical implications. 

 

Putting together all the data we have now risen up a novel theory. ACRC 

patients express different levels of MMP-7 (Maurel et al, Int J Cancer, 

2007)212. Our results confirm the hypotheses of MMP-7 being a biologic 

marker selecting for a subset of ACRC patients with worse prognosis. This 

poor prognosis can be related to increased ability to growth, invade and 

disseminate, but also to immunoevasion and therapy resistance, as 

expression of MMP-7 is related to FASL cleavage. Serum detection of high 
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soluble MMP-7 would be linked to increased levels of soluble FASL and a 

decrement of soluble FAS/FASL ratio, which is related to chemoresistance. 

As previously stated, an increment of sFAS/sFASL ratio would be related to 

chemosensitivity (Nadal et al, Clin Cancer Res, 2005)145.  A serum 

pattern with high MMP-7 and high sFASL would be then related to bad 

prognosis as well as to chemoresistance. ACRC patients with high 

MMP-7 and high sFASL, whether basal or during therapy, would show 

chemoresistance and a dismal outcome. ACRC patients showing high 

basal serum levels of MMP-7 and sFASL would show intrinsic or primary 

resistance to therapies. Those ACRC patients presenting this pattern during 

treatment would show accquired resistance (see an example below in FIG. 

25). Also patients showing an increment of sFAS/sFAS ratio after 

treatment, would show chemosensitivity.  

 

8-8-2002 LDH: 15864 UI/L
sFAS: 14.9 U/mL
sFASL: 0.01 ng/mL
sFAS/sFASL ratio: 1490
MMP-7: 5.2 ng/mL

7-3-2003 LDH: 443 UI/L
FOLFOX x 12 sFAS: 12.2 U/mL

sFASL: 0.15 ng/mL
sFAS/sFASL ratio: 81
MMP-7: 7.1 ng/mL

25-11-2002 LDH: 587 UI/L
FOLFOX x 6 sFAS: 11.2 U/mL

sFASL: 0.04 ng/mL
sFAS/sFASL ratio: 280
MMP-7: 7.8 ng/mL

6-6-2003 LDH: 1510 UI/L
sFAS: 16.6 U/mL
sFASL: 1,25 ng/mL
sFAS/sFASL ratio: 13
MMP-7: 12.1 ng/mL

 
FIG. 25: An example of a patient with initial low serum MMP-7 levels and 

high LDH. She was treated with chemotherapy for 6 month with a decrease 

of LDH levels and clinical response.  sFAS/sFASL ratio decreased 
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immediately after treatment. Three months after finishing treatment patient 

was asymptomatic and CT scan did not reveal a progression. But serum 

MMP-7 and sFASL were already increased. Two months after, disease 

progression was confirmed and patiet died within a month.      

 

As these considerations might imply a novel strategy for better prediction of 

response and outcome in ACRC patients, we have designed a prospective 

multicentric trial in order to clarify the role of serum MMP7 and 

sFAS/sFASL in intrinsic and accquired chemoresistance (HCB-05-1 Trial: 

“Estudio farmacodinámico evaluando el papel de MMP-7 y las formas 

solubles de FAS y FASL en pacientes tratados con Irinotecan y Cetuximab, 

en cáncer de colon metastático refractario a Irinotecan y Oxaliplatino”. 

In summary, we are determining MMP-7 and sFAS/sFASL serum levels in 

ACRC patients prior to receive a third line treatment with IRI+Cetuximab. 

(after failure to OXL and IRI). Serum is obtained before treatment, 48 hours 

after treatment (Nadal et al, publication pendant) at 2, 4, 6, 9 and 12 

month, or until disease progression. Response assessment is done by 

RECIST criteria. The study has been design to see that ACRC patient 

sensitive to IRI+cetuximab will present an increment of the ratio at 48h 

compared with the resistant phenotype. Up to date, the study has recruited all 

initially planned patients (74). Analysis will be performed shortly. We will 

also analyze if high serum MMP-7 and sFASL is related to intrinsic and/or 

acquired chemoresistance. 

We had also designed another prospective study to evaluate the role of basal 

serum MMP-7 and sFAS/sFASL as markers of therapy resistance in 

chemotherapy-naïve ACRC patients. It is a prospective, randomized and 

multicentric study by GEMCAD. Patients are randomized to receive up to 

six cicles of XELOX+Bevacizumab versus same schedule followed by 

Bevacizumab until disease progression. Primary end-point will be overall 

survival and secondary objetives will be progression-free survival and 



 85 

quality of life. MMP-7 and sFAS/sFASL serum levels will be recorded 

initially and latter correlated to response and outcome.        

As we pointed out before, there are no well-designed and powered studies 

prospectively validating prognostic and predictive markers in ACRC. Our 

goal is to analyze a complete ACRC database (GEMCAD database) and 

according to results, design and perform a prospective trial in order to 

validate prognostic and predictive markers.        

Our current work in basic research is based on the study of MMP-7 mediated 

mechanisms of resistance. We are mainly focusing on EGFR, RAS and 

IGFR/IGFBP-3 systems (DrCodony, Dra Almendro).   
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5 CONCLUSIONS  
In summary, we conclude that: 

-Basal levels of MMP-7 can be measured in serum and are an independent 

determinant of prognosis in ACRC patients. 

-Variation of serum sFAS/FASL levels in ACRC patients receiving 

chemotherapy correlates with tumor response 

 -Determination of a serum sFAS/sFASL ratio decrement, usually due to 

sFASL increment, is related to chemoresistance 

-Serum sFAS/sFASL ratio could be used as a dynamic predictor of response 

to therapy in ACRC patients and its value shoul be validated in prospective 

trials  

 -Our observations, in both clinic and basic fields, point to MMP-7 as being 

implicated in both primary and acquired chemoresistance in ACRC 

-A newly generated hypothesis is that a serum pattern with high MMP-7 and 

high sFASL, whether basal or during therapy, would imply chemoresistance 

and a dismal outcome. 

-MMP-7 and sFAS/sFASL, as new proposed soluble markers, can be easily 

detected through a non-invasive technique.  

-MMP-7 and sFAS/sFASL, as new proposed soluble markers, can be 

detected anytime during disease history, and dynamically reflect tumor 

biology, which changes over time.  

-According to exposed results and hypothesis, we have designed prospective 

trials to determine the clinical relevance of serum MMP-7 and sFAS/sFASL, 

as new soluble markers of chemoresistance in ACRC. 
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Abstract 
Even though liver metastasis account for the vast majority of all cancer deaths in patients with 

colorectal cancer (CRC), fundamental questions about the molecular and cellular mechanisms of 

liver metastasis still remain unanswered. Determination of gene expression profiles by 

microarray technology has improved our knowledge in CRC molecular pathways. However, 

defined gene signatures are highly variable among studies. Expression profiles and molecular 

markers have been specifically linked to liver metastases mechanistic paths in CRC. However, 

to date, any of the identified signatures or molecular markers has been successfully validated as 

a diagnostic or prognostic tool applicable to routine clinical practice. To obtain a genetic 

signature for liver metastases in CRC, measures to improve reproducibility, to increase 

consistency, and to validate results need to be implemented. Alternatives to expression profiling 

by microarray technology have kept on being used. In the recent past years, many genes 

codifying for proteins directly or indirectly involved in adhesion, invasion, angiogenesis, 

survival and cell growth have been linked to mechanisms of liver metastases in CRC.   



 123 

 
 
Key words:  Colorectal cancer; Liver metastasis; Genetic signature; Expression 
profile; Arrays 
 
 
Nadal C, Maurel J, Gascon P. Is there a genetic signature for liver metastasis in colorectal 
cancer? World J Gastroenterol 2006; 12( ): 
 
 
 
 
 
 
INTRODUCTION 
Colorectal cancer (CRC) is the third most commonly diagnosed cancer, with a worldwide 
incidence of almost a million cases annually, both in males and females[1]. Despite of 
advances in screening, approximately 25% of patients have initially detectable liver 
metastases (synchronous metastases), and further 25% of patients will develop liver 
metastases during the course of their disease (metachronous disease) [2]. From all patients 
who will die of advanced colorectal cancer (ACRC), 60% to 70% show liver metastasis[3]. 
Metastatic spread to the liver is the major contributor to mortality in patients with CRC. 

CRC is a genetically heterogeneous and complex disease. Initially, two major 
pathways were described as responsible for CRC tumorigenic process: the chromosomal 
instability pathway and the microsatellite instability pathway. The chromosomal 
instability or classical pathway accounted for 85% of the tumorigenic processes and was 
mainly characterized by the sequential allelic losses on chromosomes 5q (APC gene), 17p 
(TP53) and 18q (DCC/Smad4). The microsatellite instability pathway (MNI), also called 
the mutator phenotype, only accounted for 15% of the carcinogenic processes. Recently, it 
has been shown that colorectal carcinogenesis is much more complex, involving new 
pathways, as the serrated, the TGFβ/Smad and epigenetic pathways, and including infinity 
of non-pure or mixed pathways[4-6].  

General mechanisms of tumorogenesis also include metastasis generation. But, is the 
knowledge referred to CRC tumorigenic pathways extensible to metastasis generation? 
What do we really know about the molecular determinants of liver metastases formation 
in CRC?  
 
MECHANISMS OF LIVER METASTASIS 
Colorectal liver metastasis, or dissemination and colonization by colorectal tumor cells 
coming from the primary CRC to the liver, is a complex process and has many different 
steps. In order to metastasize, tumour cells detach from the primary tumor, invade and 
migrate through the stroma and intravasate into the lymphatic and/or venous vessels. 
Whichever is the vasculature entrance, cells will mainly end up travelling through the 
portal vein system. During transportation they manage to survive to mechanical stresses 
and escape from the immune system. Same stresses keep on acting once cells arrest in the 
liver capillaries. Some of those arrested cells manage to adhere to endothelial cells, contact 
the extracellular matrix and extravasate to the surrounding tissues. Kupffer cells, 
belonging to the monocyte-macrophage system, are a perfect barrier to unwanted hosts. 
Being in the liver parenchyma, tumor cells establish a crosstalk with the stroma and create 
a microenvironment. Only if this microenvironment is favourable to tumor cells, signals of 
proliferation and neoangiogenesis will lead to macroscopic liver metastasis formation[7-9]. 
Even though liver metastasis account for the vast majority of all cancer deaths in patients 
with colorectal cancer, fundamental questions about the molecular and cellular 
mechanisms of liver metastasis still remain unanswered. 
 

Genetic signatures: The breakthrough  
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The availability of DNA arrays technology, allowing genome-wide analyses of gene expression, 
has been providing new insights in the determination of gene expression or transcriptional 
profiles. Expression profiling studies in CRC have mainly been focusing on comparisons of 
normal mucosa, adenoma and primary carcinomas. Few studies have thrown light to differences 
between primary tumors and metastases. For this reason and, in contrast to the many molecular 
alteration involved in the CRC adenoma to carcinoma step characterized to date, comparatively 
little information is available on the possible mechanisms of metastases, even less for liver 
specific metastases[10]. 

Talking about metastases means referring to two different aspects: The metastatic 
ability and the tropism or organ-specificity. Metastatic ability accounts for the potential to 
establish a distant secondary tumor. Organ-specificity or tropism means the capacity of 
doing it in a specific tissue. The ability to metastasize together with the specificity to do it 
in an organ and not to another can be genetically marked by what is called a metastatic 
signature.Studies checking for mRNA or protein levels take into account facts as 
expression regulation, splicing mechanisms, epigenetic phenomena, and complexity of 
post-translational changes or modifications. Then, a metastatic signature is not a gene list 
but a translation of a functional status of gene expression. Metastatic signatures are gene 
expression patterns conditioned by both an intrinsic gene composition and phenomena 
regulating its expression. 

In order to determine metastatic signatures by microarray technology in CRC, three 
different strategies have been followed. (Table 1) 
First approach consists on comparing transcriptional profiles of primary CRC from metastases-
free patients to those affected by metastatic spread during a 5-year follow-up period. The main 
goal is finding gene expression profiles as prognostic markers of metastatic spread. 
Identification of a gene set capable of classifying CRC patients according to prognosis or 5-year 
survival rate was done by Bertucci et al[11]. A total of 219 and 25 genes were found to be 
respectively down- and up-regulated in metastatic samples when compared to non-metastatic. 
Moreover, a 46 gene set signature was isolated discrimining between CRC with and without 
lymph node metastases. Arango et al[12] checked the expression profile of Dukes C CRC and 
reported two different signatures according to survival. Barrier et al[13] built an accurate 30-gene 
tumor-based prognosis predictor for stage II and III colon cancer patients, based on gene 
expression measures. The group of Komuro et al [14] analyzed gene expression profiles in a total 
of 89 CRC. After stratifying by right and left locations, they were able to extract gene 
expression profiles characteristic of the presence versus absence of lymph node metastasis, with 
an accuracy of more than 90%. Kwon et al[15] analyzed the gene-expression profiles of 
colorectal cancer cells from 12 tumors. Sixty genes possibly associated with lymph node 
metastasis in CRC were selected on the basis of clinicopathological data. Wang et al[16] analyzed 
RNA samples from 74 patients with Dukes' B CRC. Gene expression profiling identified a 23-
gene signature that predicted recurrence. This signature was validated in 36 independent 
patients. The overall performance accuracy was 78%. D’ Arrico et al compared the 
transcriptional profiles of 10 radically resected primary CRC from patients who did not develop 
distant metastases within a 5-year follow-up period with those of 10 primary/metastatic tumor 
pairs from patients with synchronous liver metastases. The study was conducted on laser-
microdissected bioptic tissues. Arrays of 7864 human cDNAs were utilized. Non-metastasizing 
primary tumors were clearly distinct from the primary/metastatic tumor pairs. Of 37 gene 
expression differences found between the 2 groups of primary tumors, 29 also distinguished 
nonmetastasizing tumors from metastases. Gene encoding for mannosyl (alpha-1, 3-)-
glycoprotein beta-1,4-N-acetyl-glucosaminyl-transferase (GnT-IV) became significantly 
upregulated in primary/metastatic tumor pairs (P < 0.001), supporting the existence of a specific 
transcriptional signature distinguishing primary CRC with different metastatic potential[17].   

Second approach consists on comparing gene expression of primary tumors with their 
matched metastases. Studies comparing gene expression between primaries and corresponding 
metastases indicate that they show a high transcriptional resemblance. The above mentioned 
study found a striking transcriptional similarity between the primary tumors and their distant 
metastases[17]. Another study by Koehler et al[18] determined expression profiles from 25 CRC 
and 14 corresponding liver metastases using cDNA arrays containing 1176 cancer-related genes. 
Most primary tumours and matched liver metastases clustered together. A specific expression 
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signature in matching metastases was not found, but a set of 23 classifier genes with statistically 
significant expression patterns in high- and low-stage tumours was identified. Gene expression 
studies in breast cancer also support the notion that primary tumors genetically ressemble much 
more to their matched metastasis than to their primary counterparts[19]. Agrawal et al[20] found a 
signature of 11 markers of tumor progression when comparing gene expression among different 
stages, including liver metastases in a total of 60 samples. 

Utilization of CRC cell lines, with different metastatic potential, for expression profiling is 
another approach. Studies with cDNA microarrays have identified genes differentially expressed 
in primary versus metastatic CRC cell lines. Differential expression of 11 genes has been found 
between SW480 and SW620 CRC cell lines[21]. Unfortunately, metastatic signatures resulting 
from the above mentioned studies do not show too much in common. Gene expression patterns 
do not overlap enough to show consistency. Leaving patterns aside, few genes reported in at 
least two independent studies, have been linked to metastatic ability. (see Table 1 ***) 

It is interesting to remark that any expression profile has been specifically linked to 
liver metastases in CRC. Leaving aside gene expression profiling, other techniques such as 
genomic profiling has also been used to determine metastatic ability in CRC. Genomic 
analyses of primaries and their matched metastases[23] showed that CRC primary tumors 
resemble to their corresponding metastases. Array-based comparative genomic 
hybridization (CGH) was used to detect genetic alterations in CRC that predicted survival 
after liver resection[24]. Genome wide copy number analysis revealed the involvement of 
Cycline D3 in liver metastases formation in CRC[25].  
 
Genetic signatures: Handicaps and pitfalls 
When determining metastatic expression profiles or signatures by array technology, several 
confounders have to be taken into account. Studies have important methodological differences. 
Those can be due to the use of different array platforms (Affymetrix, cDNA nylon membranes) 
or experimental conditions. Tissue sampling is almost always an issue. Availability of frozen 
tissues is not the norm in many institutions. Formalin-fixed or paraffin-embedded tissues usually 
yield low quality RNA and/or DNA. Creation of frozen-tissue tumor banks is rapidly increasing. 
Also methodology for RNA isolation can lead to different results. The number of samples used 
varies enormously in different studies. Relatively small cohorts of tumors have been analyzed in 
the referred studies, especially if they include the analysis of matched metastases. Selection of 
homogeneous samples among tumor heterogeneity can often be a problem. Anatomical 
localization (right vs left sided, colon vs rectum) and genetic instability status (MSI/classical) 
may justify the variability of the CRC gene expression profile characterized to date. 
Macrodissection techniques include tumor tissue with both tumor cells but also tumor stroma 
and valid tissue samples should include at least 50% of tumor cells. One of the major criticisms 
to “metastatic signature”-seeking works is the fact that tumors are analyzed as a whole, mixing 
tumor cells with microenvironment and stroma components. Certainly, data coming from these 
experiments is a mixture representing gene expression of tumor cells, stroma cells as well as 
their interactions. Moreover, expression data can be highly conditioned by host genetic 
background. Resulting data can be highly interesting in terms of defining prognosis, but not to 
understanding the mechanisms of metastasis generation. Microdissection techniques help to 
avoid this problem. Laser capture microdissection (LCM) allows isolation of only tumor cells 
and is considered the gold standard in microdissection procedures[26]. It is a time-consuming 
technique and it is not available in all institutions. Other strategies include subtracting non-
tumor cells signatures from gene expression data [27]. It is still unclear whether the analysis of 
pure tumor cell populations will lead to an appropriate result in terms of indicating prognostic.  
Description of metastatic signatures has been done in the basis of the transcription 
analysis of tumors. Data coming from DNA microarray analysis is often overwhelming 
and mixed. After collection, this amount of data needs to be analyzed. Analysis of 
differentially expressed genes is often altered by different criteria to define low-quality 
spots, distinct normalization procedures, different baseline references for ratio 
calculations, and arbitrary criteria for cut-off values applied to fold-change and 
significance level. Commonly, quantitative levels of expression are the basis to filter the 
raw data. During filtering, information coming from qualitative data can be lost [10]. 
Moreover, final data has to be interpreted and integrated to have sense, in biological 
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terms. This step is highly subjective, and probably is often leading to unreal conclusions. 
Near all studies lack of internal and external validation tests for the generated lists of 
genes. Different selection algorithms should be tested in order to improve the accuracy of 
the classifier sets [10].  

In conclusion, to obtain a genetic signature for liver metastases in CRC, measures to 
improve reproducibility, to increase consistency, and to validate results need to be 
implemented. 
 
Genes involved in liver metastases formation in CRC 
Alternatives to expression profiling by microarray technology have also been used in the 
recent past years. Many genes codifying for proteins directly or indirectly involved in 
adhesion, invasion, angiogenesis, survival and cell growth have been linked to mechanisms 
of liver metastases in CRC[28]. (Table 2) 
 
Adhesion: Different proteins involved in adhesion/deadhesion processes have been linked 
to liver metastasis development in CRC. Deadhesion is a necessary step for tumor cells to 
detach from tumor and disseminate. Adhesion is needed for circulating cells to contact 
helping counterparts in the dissemination process. It is also needed to attach to the 
vascular endothelium, induce endothelial retraction, and subsequently bind to 
glycoproteins of the basement membrane to extravasate.  

E-cadherin/α-catenin is a cell to cell adhesion complex that keeps tumor cells together. 
Cells detaching from the primary CRC undergo an epithelial to mesenchymal transition, 
during which E-cadherin downregulatates in favour of other cadherins, such as N-
cadherin. This process is known as the “cadherin switch” and leads to acquisition of a 
mesenchymal phenotype that favours invasion and migration through the stroma and thus 
dissemination of tumor cells[29]. Downregulation of E-cadherin/α-catenin expression has 
been related to tumor aggressiveness[30,31] and metastatic potential[32,33] in gastrointestinal 
cancers. Low expression of α-catenin and E-cadherin in CRC patients has been associated 
to an increment of β-catenin[34-36], advanced stages[33,37,38] and acquisition of metastatic 
potential[39,40]. Immunohistochemical studies show that CRC metastasizing to liver have a 
significant (P = 0.014) reduction or complete absence of E-cadherin expression when 
compared to non liver metastases[34].  

Epithelial cell adhesion marker (EpCAM) is a widely expressed adhesion molecule. It 
has been found to present a more diffuse pattern and higher expression in CRC compared 
to non malignant tissues[41]. EpCAM has a role in modulating cadherin mediated cell-cell 
interactions[42] and its expression has been linked to downregulation of cadherin levels[43], 
suggesting that possibly this protein plays a role in ETM processes, facilitating migration 
and dissemination of tumor cells. Supporting this notion, isolation of EpCAM positive cells 
in blood samples of advanced CRC patients[44] has recently been achieved. All these 
preliminary data suggests that possibly EpCAM has a role in CRC cells dissemination. 
Whether there is or not liver specificity remains unknown.    

Sialyl Lewis X (sLex or CD15s) and A (sLea) are oligosaccharides commonly found in 
surface glycoproteins of metastatic tumor cells[45]. sLex and sLea are natural ligands for E-
selectin, a receptor which has been found to be expressed by activated endothelial cells. 
Interaction between sLex and sLea would induce endothelial adhesion of tumor cells and 
thus favour stasis, extravasation and metastases formation. sLex and sLea expression in 
primary CRC have been related to poor prognosis[46] and metastatic potential[46-48] in CRC 
patients. sLex and sLea stain significantly positive in vessel invasion CRC cells developing 
metastases compared to those that do not (71.4% vs 31%)[49]. sLex and sLea have been 
found to be present in the surface of tumor cells[50] in CRC patients developing liver 
metastases. In the same line, CRC liver metastases express sLex and sLea in a large 
proportion of tumor cells than in primary tumors[48,51]. E-selectin is overexpressed by 
endothelial cells from tumor and non-tumor vessels in CRC patients developing liver 
metastasis in contrast to those that do not[52,53]. In general, as it has been demonstrated in 
“in vivo” models, glycosilated ad syalilated mucins correlate to liver metastases 
formation[54]. Some proteins allow the adhesion of CRC cells to blood components, such as 
platelets and leukocytes. Among those proteins, P-Selectin and L-Selectin can be cited. 
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This interaction facilitates to tumor emboli formation favouring protection of tumor cells 
from immune attack and also enhancing their ability to contact blood vessels by 
mechanical factors. This interaction between tumor cells and blood cells also increases the 
contact with endothelial surface, facilitating stasis and thus enhancing chances of 
extravasation[55]. 

Carcinoembryonic antigen (CEA) is a cell surface glycoprotein containing significant 
amounts of sLex and sLea. Expression of (CEA) has been clearly correlated to generation 
of liver metastases in experiments transfecting CEA to CRC cell lines or administering 
CEA to animal models previous to CRC cell injection[56]. Initially it was speculated that 
CEA would act as an adhesion molecule, facilitating tumor cell aggregation and 
interaction to endothelial surface. However, studies with immunosuppressed mice show 
that administration of intravenous CEA results in an increase of hepatic colonization and 
retention of CRC cells, but not an increase of adhesion[57]. Kupffer cells, expressing a CEA 
receptor, bind to and degrade it, activating a signaling cascade that ends up releasing IL-1, 
6 and TNF-α which, in turn, facilitate CRC cells stasis and growth[58,59]. The ability to 
secrete CEA offers to CRC cells a selective advantage to form metastases in the liver. 

Integrins are molecules that can bind to many ECM components such as laminin, 
collagen, fibronectin and vitronectin. Cancer cells expressing those integrins are more 
likely to adhere to ECM components surrounding microvasculature. High expression of 
α6β4 and α5β3 integrins has been related to a more aggressive CRC phenotype[60,61]. 
Intravital fluorescence-video microscopy has been used to investigate liver metastases 
formation by CRC cells in animal models[62] and results have shown that αvβ5 integrin is 
useful as an adhesion molecule and its inhibition diminished liver metastases formation. 

Osteopontin (OPN) is a secreted phosphoglycoprotein capable of binding and 
inducing integrin-mediated cell survival, motility and anti-apoptotic intracellular 
pathways. OPN has been isolated in gene expression profiling studies as a candidate 
marker for CRC progression[20]. CRC liver metastases express OPN at higher ratios than 
primary CRC or normal mucosa[63]. OPN upregulation can occur due to TCF4/LEF 
transcription factor activation[64].  Mechanisms by which OPN promotes liver metastases 
formation in CRC is unknown, but can be related to up-regulation of Upa[65], c-Met 
receptor and integrins[66].       

Other adhesion molecules such as the intracellular adhesion molecule 1 (ICAM-1) and 
vascular cell adhesion molecule 1 (VCAM-1) have been measured in ACRC patients 
showing higher serum levels when compared to non-advanced CRC or healthy 
controls[67,68]. Despite of that, neither clinical nor physiological relation has been 
established with specific development of liver metastases.        

CD44 glycoprotein, more specifically v6 and v8-10 splicing variants, have been related 
to metastases and disease recurrence in CRC[69,70]. There is quite a bit of controversy in the 
real value of CD44 in liver metastases formation as plasma levels have not been linked to 
advanced stages of the disease[71] and immunohistochemical studies measuring CD44v6 
staining have not found significant differences when comparing CRC metastasizing to 
liver or not[34].    
 
Invasion: Invasion processes are crucial to explain liver metastases formation in CRC. 
Invasion occurs mainly due to basal membrane and extracellular matrix (ECM) 
degradation in both intravasation and extravasation steps. Some of the enzymes 
responsible for degradation are proteases. Among proteases, matrix metalloproteases 
(MMPs), cathepsines and plasminogen activators are the most relevant.  

Matrylisin (MMP-7) is a proteolytic enzyme belonging to MMPs family[72,73]. It is 
synthesized and secreted by tumor epithelial cells as a 28-KDa proenzyme, that can be activated 
through proteolytic removal of a 9-KDa prodomain from the N-terminus. The soluble activated 
form binds to the tumor epithelial cell surface. Both active forms, the soluble and the 
membrane-bounded, have proteolytic activity. Its expression can be regulated by epidermal 
growth factor through transcription factors such as PEA3[74] or AP-1 and β-catenin/ tcf4 
complex. By degrading elastin, laminin, proteoglycans, osteopontin, fibronectin and type IV 
collagen, MMP-7 gains the capacity to invade. Matrilysin can also promote tumor invasion by 
activating other MMPs (MMP-2, MMP-9), through ectodomain shedding of E-cadherin[75] and 
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receptor activator of nuclear factor-kappa B ligand (RANKL) [76] or through cleavage of 
adhesion molecules, such as integrin β4 [77]. 

Matrilysin has been found overexpressed in CRC [78]. MMP-7 overexpression in localized 
CRC disease has been correlated with invasion and to liver metastasis formation[79,80]. Colorectal 
liver metastases show intense expression of MMP-7 compared to normal liver, and differences 
are more evident when comparing the MMP-7 activated form, measured by zymography, 
emphasizing the role of MMP-7 in CRC liver metastases formation[81]. Testing liver metastasis 
formation in “in vivo” models, it has been shown that treating colorectal cancer cells with 
MMP-7 specific antisense oligonucleotide leads to a decrease[82], while adding active MMP-7 
results to an increase of liver metastasis generation[83]. 

MMP-9 and MMP-2 seem also to have a role in liver metastases formation in CRC. 
High MMP-9 and MMP-2 levels have been detected by immunohistochemistry in the 
tumor-stroma interface in both primary CRC and liver metastases[84,85]. Moreover, MMP-
2 and -9 activities seem to be higher in metastasis than in the originating primary 
tumor[86]. A close correlation between high MMP-9 RNA levels and worse survival and 
higher risk of liver relapse after surgery has also been established[81]. 

Cathepsines have equally been implicated in liver metastases formation in CRC. They 
are a family of proteolytic enzymes with a wide variety of physiological functions. They act 
as serin-proteases, cystein-proteases or aspartate-proteases. They are stored as proforms 
in cell lysosomes and secreted to the ECM secondarily to inflammatory and oncogenic 
stimuli[87].  

Cathepsins B, L and D are especially involved in ECM degradation in CRC. Their 
levels and activity[87-88] have been found to be elevated in the invasion edge of CRC. Still, 
Cathepsin B is the most valuable in determining invasion in CRC[89]. Cathepsin B degrades 
ECM directly or indirectly, by stimuling other proteases or blocking their inhibitors[87]. It 
can be detected in early stages of CRC but it is a good marker to determine metastatic 
disease[90,91]. High plasma and urine levels of Cathepsin B have been found in CRC 
patients[92]. “In vivo” experiments show that inhibition of Cathepsine B, by selective 
compounds, results in reduction of liver metastases formation up to a 60% and reduction 
of liver metastases burden up to an 80%[93]. A proteolytic profile, taking into account 
MMP and cathepsin expression, has been defined for CRC by some authors[94].  

Urokinase plasminogen activator receptor (uPAR) is a factor involved in metastases 
development in several cancers[95,96]. Its binding to urokinase plasminogen activator (uPA) 
enhances plasmin production which, in turn, degrades ECM and activates pro-MMPs. 
Inhibition of uPAR expression is associated to decreased motility and invasiveness in the 
human CRC cell line HCT116[97]. High uPAR expression in CRC has been related to low 
5-year survival[98]. Use of antisense uPAR mRNA in a nude mice model inhibited CRC 
liver metastases development[99].  

During invasion, apart from basal membrane and ECM degradation processes, cancer cells 
have to migrate through the stroma. Acquisition of a mesenchymal phenotype during ETM and 
ability to survive independently of the tumor cell population are the clues for succeeding. To 
gain the ability to disseminate, tumor cells have to detach from the tumor population 
overcoming anoikis and transiting from an epithelial to a mesenchymal phenotype. As a 
principle, cells need to be in contact with other cells in order to survive. If they loss contact or 
penetrate to ECM they undergo through anoikis. Overcoming anoikis, an apoptotic program 
related to tumor cell population detachment, is a necessary requirement to disseminate. Integrins 
are responsible for epithelial cancer cell cross-talk with the ECM in order to overcome anoikis, 
survive and migrate. 

 “In vitro” experiments have shown that activation of Src and Akt pathways are 
linked to decreased sensitivity of detached CRC cells to anoikis[100]. Downregulation of 
αvβ3 integrin has also been linked to resistance to anoikis in CRC cells[101,102]. Integrins can 
bind to many ECM components such as laminin, collagen, fibronectin and vitronectin. 
Cancer cells expressing those integrins are more likely to invade and migrate through the 
ECM[103,104]. High expression of α6β4 and α5β3 integrins has been related to more 
aggressive CRC phenotypes[60,61]. Intravital fluorescence-video microscopy has been used 
to investigate liver metastases formation by CRC cells in animal models[62] showing that 
αvβ-integrin inhibition did not affect migration within the liver parenchyma. The role of 
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integrins in the migration and invasion through the ECM in order to generate liver 
metastases has not been extensively explored.      
 
Angiogenesis: Different angiogenic factors have been related to metastasis formation, as 
they can promote primary tumor growth and increase tumor cell chances to contact blood 
and thus disseminate. But probably angiogenesis has a major role in metastasis generation 
regulating micrometastases outgrowth. Balance between angiogenic/antiangiogenic factors 
in the microenvironment of the metastatic tissue can promote metastases formation by 
directly stimulating tumor cell growth or by increasing blood vessels formation and 
supply. Even in quiescent tumor cells, alteration of angiogenic balance can induce 
metastasis formation. This phenomenon is known as “angiogenic switch” [105] and causal 
factors are still under investigation. 

Expression levels of vascular endothelial growth factor (VEGF) in the primary CRC 
have been related to a poor prognosis[106]. VEGF isoforms patterns have been defined 
using reverse transcription polymerase chain reaction (RT-PCR) analysis in 61 primary 
CRC. Patients developing liver metastases showed expression of VEGF121 + VEGF165 + 
VEGF189 at a significantly higher incidence (12 of 16, 75%) than those without liver 
metastasis (20 of 45, 44%) (P = 0.036)[107]. VEGF expression in primary CRC seems clearly 
associated to increased chances of dissemination. However, other studies support exactly 
the contrary[108]. When VEGF mRNA levels were measured in 31 pairs of primary CRC 
and corresponding liver metastases, no significant differences were detected (median value 
3.79 vs 3.97: P = 0.989). On an individual basis, there was a significant correlation in 
VEGF mRNA expression between primary CRC and matched liver metastases (r = 0.6627, 
P < 0.0001). VEGF mRNA levels of patients having two or more liver metastatic tumors 
were significantly higher than those of the patient who had solitary liver metastatic tumor 
in both primary cancer (5.02 vs 3.34: P = 0.0483) and liver metastases (4.38 vs 3.25: P = 
0.0358)[109]. Together these results indicate that VEGF is probably not more active in 
metastases than in primary tumors. Despite of that, increased blood supply and tumor 
vessel formation, as estimators of angiogenic activity, have been found to be higher in liver 
metastases that in primary CRC. Some molecular mediators have been though to fulfill 
this role, as angiopoietin-2 (Ang-2) [110]. 

Other distinctive molecules related to angiogenesis and liver metastatic progression 
are plateled-derived endothelial cell growth factor or thymidine phosphorylase (PD ECGF 
or dThdPase). Inhibitors of angiogenesis, such as angiostatin, endostatin and 
thrombospondin-1 (TSP-1), either secreted by the primary or the metastatic CRC cells, 
can also regulate liver metastasis growth. Frequency of hepatic recurrence was 
significantly higher in patients with TSP-1-negative primary CRC[111]. Angiostatin 
transfected cells developed liver metastases in lower proportion than controls, in 
experiments performed in animal models[112]. Removal of primary CRC resulted in an 
increase in metabolic activity in its liver metastasis, while a decrease in plasma levels of 
angiostatin and endostatin was seen. This finding indicates that primary tumor suppressed 
angiogenesis in its distant metastasis, and that removal of the primary lesion caused a 
flare-up in vessel neoformation and, thus, enhanced metabolic activity in its liver 
metastasis[113].  

Other molecules mentioned above, also contribute to liver metastasis formation through 
angiogenesis regulation. MMP-7 induces a direct proliferative effect on vascular endothelial 
cells[114], produces angiogenesis inhibitors (angiostatin, endostatin, neostatin-7) [115] and 
activators (sVEGF) [116]. MMP-2 and MMP-9 stimulate degradation of ECM increasing 
availability of angiogenic activators. E-selectin acts facilitating endothelial cell migration. α and 
β integrins play an important role sending survival signals for endothelial cells mantainance[117]. 
 
Cell growth: Once established in the liver tissue microenvironment and, in order to grow, 
micrometastases need growth factor stimuli. Degradation of ECM results in an increased 
availability of growth and inhibitory factors. The resulting balance will then determine 
micrometastasic growth. Extrapolation to a non-physiological situation can be highly 
illustrative. Liver tissue thermal ablation was performed in mice models bearing CRC 
liver metastases. After ablation, increased expression of FGF-2 and VEGF was detected in 
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the surrounding tissue. Latter on a greater amount of metastases occupied the regenerated 
thermal-ablated lobe compared with controls (55%±4% vs 29%±3%; P < 0.04) [118].  

Tumor cells growth factor receptors also seem to determine success in metastatic liver 
growth. Her-2/neu has been detected by immunohistochemistry in 5-50% of primary CRC[119]. 
The mechanism of overexpression seems not to be linked to gene amplification. Her-2/neu 
positive CRC were associated to higher postoperative non-liver specific recurrence rates (39.3% 
vs 14.6%, P = 0.013) and worse prognosis at 5 years (55.1% vs 78.3%)[120]. Other studies show 
that primary CRC with high c-erbB-2 expression (27%), determined by immunohistochemical 
techniques, develop liver metastases more often than CRC with low c-erb-2 expression (3%) 
[121].  

Epidermal growth factor receptor (EGFR) has been reported to be highly expressed and/or 
gene amplificated in metastatic CRC tissue samples in 72% up to 82%[122-124]. Some studies have 
reported that expression of EGF receptor in CRC is associated to aggressiveness and metastatic 
ability. EGFR status has been shown to express similarly when measured in primary CRC and 
corresponding liver metastases[125]. However, some authors have seen that its status in the 
corresponding metastatic site is not always the same[126,127]. Conventional 
immunohistochemistry technique has not been able to reveal any association between EGFR 
expression and outcome predicted by the biologic role of EGFR in tumor behavior[128].  

C-Src gene, codifying for pp60 tyrosine kinase, has been reported to be mutated and 
thus highly activated in CRC, implying an increase in the proliferative potential. High 
activation is present especially in those CRC that metastasize to liver[129,130]. Prostaglandin 
E2 (PGE2)-induced transactivation of the EGF receptor (EGFR) in colorectal carcinoma 
cells has been recently found to be mediated by β-arrestin 1, which acts as an important 
mediator in G protein-coupled receptor-induced activation of c-Src. Interaction of beta-
arrestin 1 and c-Src seems to be critical for the regulation of CRC metastatic spread of 
disease to the liver “in vivo” [131].  
 
Cell survival: CRC cells need molecular factors, specifically growth factors, in order to 
survive in the liver parenchyma. However, there is also the need to survive to the immune 
sytem action (immunoescape) and to overcome anoikis. 

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of the TNF 
family, is known to be expressed in human hepatic NK cells[132]. CRC cells expressing TRAIL-
receptor would undergo apoptosis upon triggering the ligand. Same would happen in CRC cells 
expressing tumor necrosis factor receptor FAS (Apo-1; CD95) when contacting its 
corresponding ligand FASL (Apo-1L; CD95L) expressing cells, as activated lymphocytes.  

During CRC tumorigenic process, cells tend to downregulate FAS receptor expression and 
upregulate FASL[133]. Fas expression is significantly down-regulated in liver metastasis 
compared with corresponding primary colorectal carcinoma[134]. The link between functional 
Fas status and malignant phenotype was investigated using a matched pair of naturally occurring 
primary (Fas-sensitive) and metastatic (Fas-resistant) human colon carcinoma cell lines in both 
in vitro and in vivo (xenograft) settings. Results showed that loss of Fas function was linked to, 
but alone was insufficient for, acquisition of a detectable metastatic phenotype. Also, showed 
that metastatic subpopulations pre-existed within the heterogeneous primary tumor, and that 
anti-Fas interactions served as a selective pressure for their outgrowth. Thus, Fas-based 
interactions may represent a novel mechanism for the biologic or immunologic selection of 
certain types of Fas-resistant neoplastic clones with enhanced metastatic ability[135]. Moreover, 
univariate and multivariate analyses revealed that Fas/CD95 expression in CRC resected liver 
metastases is a significant prognostic indicator of survival[136]. Increase in TRAIL sensitivity, 
due to changes in the balance between TRAIL receptors TRAIL-R1 and -R2 and "decoy" 
receptors TRAIL-R3 and -R4, has also been described during malignant progression in CRC. 
Still, studies measuring receptors by flow cytometry have not been conclusive[137]. 

Experimental metastases studies with a CRC cell line allowed the characterization of 
metastatic derivatives, showing that they were less susceptible for killing by syngeneic NK 
cells, due to a decreased sensitivity towards TRAIL- and CD95L[138]. Data suggest that 
CRC cells forming metastases acquire the ability to surpass immune surveillance through 
desensitization to FAS/TRAIL killing. As detailed before, integrins and Src activation may 
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contribute to CRC progression and liver metastasis in part by activating survival 
pathways that decrease sensitivity of detached cells to anoikis[100]. 

Other molecules related to liver metastatic spreading: k-ras (12p) activation, present in 40%-
50% of sporadic CRC[4], has been related to a decrease in overall survival and disease free 
survival in CRC[6,139,140]. p53 (17p) abolition, occurring in 70%-80% of CRC[4] and resulting in 
accumulation of abnormal protein detectable by immunohistochemistry, has been linked to a 
bad prognosis[6,141-143]. Deletion or mutation of DCC (deleted in colorectal cancer) gene has also 
been related bad prognosis tumours[144-147]. Even p53, Ras and/or DCC alterations have been 
linked to metastatic spreading in CRC, still there is no evidence specifically relating them to 
liver metastases formation. The human nm23 gene, consisting in two genes, nm23-H1 and 
nm23-H2, is a candidate metastasis suppressor gene. Its role in CRC is still confusing. Some 
authors claim that a reduced protein expression, secondary to gene alterations, is associated to 
metastases development[148,149]. Genetic alterations were detected in four among eight CRC 
associated with metastases in lymph nodes, lung, or liver, while no alteration was observed in 12 
additional CRC specimens without metastasis[150]. Others have found that gene overexpression is 
linked to higher recurrences, liver metastases and decreased overall survival[151,152]. This 
contradiction could be explained being overexpression of nm23 a reflection of a deletion in the 
nm23 gene, leading to accumulation of an altered protein product. However, more recent works 
have not been able to relate nm23 expression to prognosis[153-155]. PRL-3 protein tyrosine 
phosphatase gene gained importance in 2001 when an article was published in Science showing 
that it was expressed at high levels in each of 18 cancer metastases studied but at lower levels in 
nonmetastatic tumors and normal colorectal epithelium[156]. Latter on, new data came up 
establishing an unexpected and unprecedented specificity in metastatic gene expression profiles: 
PRL-3 was apparently expressed in CRC metastases to any organ but was not expressed in 
metastases of other cancers to the same organs or in nonmetastatic CRC[157]. At that time PRL-3 
was determined as a potential marker for liver metastasis of CRC with a negative impact in 
prognosis[158]. CRC specificity was objected in further studies. Some authors claim that PRL-3 
would act enhancing cell motility and thus facilitating extravasation into the liver tissue[159]. The 
mechanism of action is still under investigation but it has already been related to integrin α1[160] 
and the Rho family of small GTPases[161]. 

 
CONCLUSION 
Huge amount of experimental data points to the statement of tumor cells having a metastatic 
signature. This signature would codify not only for the ability but also for organ-specificity in 
forming metastases. DNA microarray technology has significantly improved efficiency allowing 
wide-range analysis of gene expression. Until now, many authors have provided gene 
expression profiles that have been related to CRC liver metastases. Despite of that, in order to 
obtain the real genetic signature for liver metastases in CRC by transcription profiling, measures 
to improve reproducibility, to increase consistency, and to validate results need to be 
implemented. Seeking for metastatic signatures through expression profiling is one more tool to 
fight cancer, but its indiscriminate use can be misleading. Advances in molecular assays on 
isolated cells and in the study of cell-cell and cell-stroma interactions will probably enable the 
dissection of the metastatic cascade. Genes codifying for proteins directly or indirectly involved 
in adhesion, invasion, angiogenesis, survival and cell growth have already been linked to 
mechanisms of liver metastases in CRC. The improvement in knowledge around the molecular 
pathways involved in development of colorectal liver metastasis will lead us to a better 
approach to prevention and treatment of this disease. 
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HCB-05-1

• ACRC patients treated in third-line therapy with irinotecan 180 g/m2 
and cetuximab after failure to OXL and irinotecan

• Serum were obtained before treatment at 48h and until PD 
(2,4,6,9,12 months)

• Evaluation of MMP-7, sFAS and sFASL.
• Study design (patient sensitive to cetuximab will present an 

increment of the ratio at 48h compared with the resistant phenotype)

 

HCB-05-01 Trial

74 patients treated
in third-line therapy

with CPT11-cetuximab

sFAS/sFASL increment
> median

sFAS/sFASL increment
< median

sensitive patients
>40% PFS at 4 months

refractory patients
<10% PFS at 4 months
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