

Molecular mechanisms of apoptosis induced by dexamethasone in chronic lymphocytic leukemia

Maria João Gomes Monteiro Lopes Baptista

ADVERTIMENT. La consulta d'aquesta tesi queda condicionada a l'acceptació de les següents condicions d'ús: La difusió d'aquesta tesi per mitjà del servei TDX (**www.tdx.cat**) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d'investigació i docència. No s'autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d'un lloc aliè al servei TDX. No s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (**www.tdx.cat**) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions: Spreading this thesis by the TDX (**www.tdx.cat**) service has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized neither its spreading and availability from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the TDX service is not authorized (framing). This rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate the name of the author.

MOLECULAR MECHANISMS OF APOPTOSIS INDUCED BY DEXAMETHASONE IN CHRONIC LYMPHOCYTIC LEUKEMIA

DOCTORAL THESIS Maria João Gomes Monteiro Lopes Baptista

PhD degree by the University of Barcelona

Thesis director: Francesc Bosch i Albareda, MD, PhD

Tutor: Emili Montserrat i Costa, MD, PhD

Department de Medicina de la Facultat de Medicina, Universitat de Barcelona

PhD program: Biology and Clinic of Cancer 2003-2005

Barcelona, 2012

The candidate performed the experimental work with a doctoral fellowship (SFRH/ BD/ 28698/ 2006) supported by "Fundação para a Ciência e a Tecnologia, Ministério da Educação e Ciência de Portugal", which has also funded the attendance of international meetings and the graphical execution of this thesis.

ACKNOWLEDGMENTS

It would not have been possible to write this doctoral thesis without the help and support of the kind people around me, only some of whom I can mention here today for obvious space limitations.

I will always be grateful to my PhD director Dr. Francesc Bosch, for allowing me onto his research group and for guiding me through this and other research projects. Thank you, Francesc, for your patience and for teaching me so much. Thank you for encouraging me in times of greatest need. Thanks to you, I am now writing these lines.

I am profoundly thankful to Prof. Emili Montserrat for giving me the honor of working in one of the world's leading institutions on leukemia and lymphoma research. It has been a privilege to have had Prof. Emili Montserrat as PhD tutor; a legendary name in hematology who fortunately turned out to be my mentor.

I would like to acknowledge the financial, academic, and technical support of the Department of Hematology of the Institut of Hematology and Oncology of Hospital Clinic Barcelona and its' staff. I would particularly like to thank Dr. Armando López-Guillermo, Dr. Francisco Cervantes, and Dr. Jordi Esteve for their pleasant and stimulating words.

I would also like to thank the academic and technical support provided by the Department of Pathology of the Hospital Clinic Barcelona, and especially give mention to the valuable advice and continuing assistance of Dr. Dolors Colomer, Dr. Neus Villamor, and Dr. Pedro Jares. Likewise, I would like to thank, Dr. Maria Rozman, Dr. Marta Aymerich, Dr. Mireia Camós, Dr. Antonio Martínez, Dr. Josep Lluís Aguilar, Dr. Luis Colomo, and Dr. Pedro Fernandez.

I'm particularly grateful to Dr. Susana Kalko from the Bioinformatic Unit, IDIBAPS Barcelona, for carrying out part of the microarray analyses, for teaching me all I know in the field of microarray analyses, and finally and most importantly, for becoming a great friend. I would like to dedicate some words to my laboratory colleagues and friends, Dr. Marta Crespo, Eva Calpe, and Eva Fernandez. You, who have been there every day, cheering me up and helping me in any way possible; how can I ever thank you?

I would also like to thank my colleagues from the Hospital Clinic and IDIBAPS for sharing your knowledge and happiness: Dr. Ana Muntañola, Dr. Carles Codony, Dr. Eva Giné, Dr. Olga Salamero, Dr. Pau Abrisqueta, Dr. Alfons Navarro, Dr. Gerardo Ferrer, Dr. Anna Gaya, Dr. Alejandra Martínez-Trillos, Dr. Gonzalo Gutiérrez-García, Dr. Marina Díaz-Beyá, Dr. Marta Pratcorona, Dr. Montserrat Torrebadell, Alba Navarro, Alexandra Valera, Dr. Ana Enjuanes, Dr. Ana Mozos, Cristina Royo, Dr. Gaël Roué, Dr. Ifigènia Saborit-Villarroya, Laia Risich, Dr. Laura Conde, Dr. Lluis Hernández, Dr. Magdalena Pinyol, Myriam Prieto, Dr. Monica López-Guerra, Dr. Patricia Pérez-Galán, Dr. Roberto Alonso, Sandra Cabezas, Dr. Silvia Bea, Dr. Silvia Marcé, Sílvia Xargay-Torrent, Dr. Teresa Cardesa-Salzmann, Dr. Verònica Fernandez, Dr. Cristina Mayordomo, Dr. Elisabet Ametller, Susana Garcia, Dr. Vanessa Almendro, and so many others.

Years ago, my PhD started in the University of Salamanca, more precisely, in the "Centro de Investigación del Cáncer" as part of the research group led by Prof. Alberto Orfão. Those were stimulating years, that I shall and will never forget. Thank you so much Prof. Alberto Orfão, Dr. Andrés García-Montero, Dr. Arantxa Rodriguez-Caballero, Dr. José María Sayagués, Dr. Julía Almeida, Dr. Lilia Suárez, Dr. María Jara, Dr. María Almeida, Dr. Mª Lurdes Martín, Dr. Mª Luz Sanchez, Dr. Martin Pérez-Andrés, and Dr. Sergio Matarraz.

Going back even further in time, I would like to remember my stay in the "Serviço de Imuno-hemoterapia, Instituto Português de Oncologia de Francisco Gentil, Centro Regional do Porto, Portugal" where I started to do research on hematology, supervised by Dr. Isabel Leal Barbosa and Dr. Francisco Pacheco. The years of my MSc degree were the foundation of my vocation and ten years later, I still have a great need to thank to all the fabulous people I have worked with. My first experience in research commenced in 2000, working for the "Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid". I must deeply thank Prof. Antonio Sillero and Dr. María Antonia Sillero for taking me under their wing me in their laboratory as an Erasmus student. They gave me the discipline I have today, and have taught me that serious hard work always pays off.

Recently, I had the fortune of be included within the staff of another institution of excellence in hematology. I must express all my gratitude to Prof. Evarist Feliu, for trusting me and for giving me the opportunity to join the Josep Carreras Leukemia Research Institute / "Hospital Universitari Germans Trias i Pujol". To my new "bosses" Dr. Tomás Navarro and Dr. Fuensanta Milla, I have no words to thank you for the all support, the understanding, and the friendship you have shown me. Without doubt, you and all "our" team make me feel like a part of a big family, and have given me the strength to finish this thesis, thank so much to you all.

I should also give thanks to all my friends; you have celebrated the good times, and you have given me the energy and many a shoulder to cry on throughout the bad ones as well. What would my life be like without you? Thank you "girls": Alexandra Cabral, Candida Pestana, Cristiana Bastos, Cristina Braga da Cruz, Diana Massada, Federica Dimateo, Francisca Fernandes, Lara Castro, Liz McFarland, Jane Boogaard, Joana Gomes, Joana Martinez, Joana Trindade, Emma Guinart, Elena Gonzalez, Ester Calvo, Ilaria Rossetti, Margarett Lovece, São José Nascimento, Sofia Soares, Sónia Carvalho, Susana Castro, Susana Rossi, Suzel Coelho... and thank you "boys": Alberto Arenales, Álvaro Gonçalves, Ariel Piera, Emmanuel Barbarit, Fabrício Machado, Gerret Veldkamp, Gregory Rohmer, Henrik Slotta, José Rodrigues, Pedro Cardoso, Pedro Maia, Pedro Paiva, Pedro Silva, Rafael Dominguez, Ruben Mateus, Stefano Boifava... I wish to thank my family, my big, noisy, and close family, for providing a loving environment for me. To my brother, Filipe Baptista, thank you for being my best friend throughout my life, for being there no matter what happens, no matter where we are.

Lastly, and most importantly, I wish to thank my parents, Candida Baptista and Américo Baptista. They raised me, supported me, taught me, loved me, and... they are still doing it! To them, I dedicate this thesis.

INDEX

Index

INDEX

ABBREVIATIONS	1
	11
1. Chronic Lymphocytic Leukemia 1	13
1.1. Biological characteristics of Chronic Lymphocytic Leukemia 1	13
1.1.1. Morphological features1	14
1.1.2. Immunophenotypic features 1	15
1.1.3. Genetic and molecular characteristics 1	16
1.2. Prognostic markers in Chronic Lymphocytic Leukemia 2	22
1.2.1. The immunoglobulin heavy variable genes and their	
mutational status analysis 2	26
1.2.2. ZAP70 expression 2	28
2. Corticosteroids	30
2.1. Classification: glucocorticoids and mineralocorticoids	30
2.2. Molecular basis of glucocorticoid action	32
2.3. Glucocorticoid physiological versus pharmacological activity	35
2.3.1. Physiological effects of glucocorticoids	35
2.3.2. Pharmacologic effects of glucocorticoids: anti-inflammatory	
and immunosupressive actions	37
3. Glucocorticoids use in lymphoid malignancies 4	46
3.1. Effects of glucocorticoids on apoptotic cell death 4	46
3.2. Mechanisms of glucocorticoid resistance to apoptosis 5	51
3.2.1. Upstream mechanisms of glucocorticoid resistance 5	52
3.2.2. Downstream mechanism of glucocorticoid resistance 5	53
3.3. Glucocorticoids in the therapeutic management of CLL 5	56

Index

HYPOTHESIS AND OBJECTIVES	59
1. Hypothesis	61
2. Objectives	62
MATERIAL AND METHODS	63
1. Patients selection and sample collection	65
2. Culture of CLL cells	66
3. Determination of cell viability	67
4. Treatment of cells with dexamethasone and evaluation of response	69
5. Protein analysis	70
5.1. Protein analysis by flow cytometry	70
5.1.1. Infiltration of tumor cells	70
5.1.2. Analysis of ZAP70 expression	71
5.2 Protein analysis by immunoblotting	74
5.2.1. Preparation of total protein cell lysates	74
5.2.2. Total protein cell lysates quantification: Bradford method	74
5.2.3. Protein separation and blotting	75
5.2.4. Immunostaining and analysis of ZAP70 and FKBP5	
expression	75
6. RNA extraction, quantification and quality control	77
7. Synthesis of complementary DNA	79
8. Determination of the mutational status of the IGHV gene	80
9. Quantification of BIM, GILZ, and FKBP5 by QRT-PCR	83
10. Gene expression profiling analyses	85
11. Statistical analyses	88

RESULTS	89
1. Analysis of the response of CLL cells to dexamethasone treatment according	
to the mutational status of the IGHV genes and the expression of ZAP70	91
2. Analysis of the response of CLL cells to dexamethasone treatment according	
to high-risk genetic abnormalities	95
3. Induction of BIM expression by dexamethasone	97
4. Gene expression profiling analyses of CLL samples treated with	
dexamethasone	101
4.1. Independent analyses of the gene expression profiling of the CLL	
groups defined by ZAP70 expression	103
4.2. Analysis of the genes with a significant differential regulation by	
dexamethasone	115
5. The expression levels of FKBP5 and the response to dexamethasone	120
5.1. FKBP5 gene expression and the treatment of CLL with	
dexamethasone for 6 hours	120
5.2. FKBP5 gene and protein levels at baseline	126
6. Response to dexamethasone and induction of GILZ expression	131
DISCUSSION	135
CONCLUSIONS	145
REFERENCES	149

APPENDIXES	173
1. Appendix 1	175
1.1. Probe sets up-regulated by dexamethasone in the high ZAP70	
group	175
1.2. Probe sets up-regulated by dexamethasone in the low ZAP70	
group	181
2. Appendix 2	186
2.1. Probe sets down-regulated by dexamethasone in the high ZAP70	
group	186
2.2. Probe sets down-regulated by dexamethasone in the low ZAP70	
group	190
3. Appendix 3	195
3.1. Probe sets with higher expression in the untreated cells of the low	
ZAP70 group	195
3.2. Probe sets with higher expression in the untreated cells of the high	
ZAP70 group	198
4. Appendix 4	202
4.1. Probe sets with higher expression in the treated cells of the low	
ZAP70 group	202
4.2. Probe sets with higher expression in the treated cells of the high	
ZAP70 group	206
5. Appendix 5	213
5.1. Manuscript published in Clinical Cancer Research	213

ABBREVIATIONS

Abbreviations

ABBREVIATIONS

4EBP1 HGNC gene symbol for eukaryotic translation initiation factor 4E binding protein 1

ADAM29 HGNC gene symbol for ADAM metallopeptidase domain 29

ALL Acute Lymphoblastic Leukemia

AKT alias PKB; HGNC gene symbol: AKT1

ANXA1 HGNC gene symbol for Annexin A1

AP1 Activator Protein 1

APAF1 HGNC gene symbol for apoptotic peptidase activating factor 1

APC Allophycocyanin

ATM HGNC gene symbol for ataxia telangiectasia mutated

AU Arbitrary Units

BAD BCL2-associated agonist of cell death

BAG1 HGNC gene symbol for BCL2-associated athanogene

BAK BCL2-Antagonist/Killer 1; HGNC gene symbol: BAK1

BAX HGNC gene symbol for BCL2-associated X protein

BAFF B-cell Activating Factor; HGNC gene symbol: TNFSF13B

BCL2 HGNC gene symbol for B-cell CLL/lymphoma 2

BCL2A1 HGNC gene symbol for BCL2- related protein A1

BCLXL B Cell Lymphoma-extra large; HGNC gene symbol: BCL2L1

BCR B Cell Receptor

BID HGNC gene symbol for BH3 interacting domain death agonist

BIM BCL2-like 11 (apoptosis facilitator); HGNC gene symbol: BCL2L11

BM Bone Marrow

BMF HGNC gene symbol for Bcl2 modifying factor

- CBG Corticoisteroid Binding Globulin; HGNC gene symbol: SERPINA6
- CCND1 HGNC gene symbol for cyclin D1

cDNA Complementary DNA

CDR Complementarity Determining Region

cIAP1 Baculoviral IAP repeat containing 2; HGNC gene symbol: BIRC2

cIAP2 Baculoviral IAP repeat containing 3; HGNC gene symbol: BIRC3

CLL Chronic Lymphocytic Leukemia

CLLU1 HGNC gene symbol for chronic lymphocytic leukemia up-regulated 1

COX2 Cyclooxigenase 2; HGNC gene symbol: PTGS2

CREB cAMP Responsive Element Binding proteins family of transcription factors

CTLA4 HGNC gene symbol for cytotoxic T-lymphocyte-associated protein 4

CXCR4 HGNC gene symbol for Chemokine (C-X-C motif) receptor 4

DDIT4 HGNC gene symbol for DNA-damage-inducible transcript 4

DIABLO HGNC gene symbol for Diablo, IAP-binding mitochondrial protein; alias: SMAC

DXM Dexamethasone

eNOS Endotelial Nitro Oxide Synthase; HGNC gene symbol: NOS3

EGF HGNC gene symbol for epidermal growth factor

ERK Extracellular-signal-Regulated Kinases; HGNC nomenclature: MAPK mitogen-

activated protein kinases

FAS HGNC gene symbol for Fas (TNF receptor superfamily, member 6)

FBS Fetal Bovine Serum

FBXO32 HGNC gene symbol for F-box protein 32

FC Fold Change

FCR Fludarabine, Cyclophosphamide and Rituximab

FCRL2 HGNC gene symbol for Fc receptor-like molecule 2

FDR False Discovery Rate

FISH Fluorescent In Situ Hybridization

FITC Fluorescein Isothiocyannate

FKBP4 HGNC gene symbol for FK506 Binding Protein 4, 59kDa

- FKBP5 HGNC gene symbol for FK506 Binding Protein 5
- FOXO1 HGNC gene symbol for forkhead box O1
- FOXO3 HGNC gene symbol for forkhead box O3
- FOXP3 HGNC gene symbol for forkhead box P3
- FR Framework Regions
- FSC Forward Scatter
- FYN HGNC gene symbol for FYN oncogene related to SRC, FGR, YES
- G6PC Glucose-6-phosphatase
- **GAPDH** HGNC gene symbol for glyceraldehyde 3-phosphate dehydrogenase
- GATA3 HGNC gene symbol for GATA binding protein 3
- GC Glucocorticoid
- **GEP** Gene Expression Profiling
- GILZ Glucocorticoid-Induced Leucine Zipper protein; HGNC gene symbol: TSC22D3
- **GITR** Glucocorticoid-Induced TNFR-Related protein; HGNC gene symbol: TNFRSF18
- GLUT4 Glucose Transporter 4; HGNC gene symbol: SLC2A4
- **GMCSF** Granulocyte-Macrophage Colony Stimulating Factor; HGNC gene symbol: CSF2

COL

- GO Gene Ontology
- **GR** Glucocorticoid Receptor
- **GRE** Glucocorticoid Responsive Elements
- GSK3 Glycogen Synthase Kinase 3; HGNC gene symbols: GSK3A and GSK3B
- GUS Glucoronidase Beta; HGNC gene symbol: GUSB
- HCLS1 HGNC gene symbol for hematopoietic cell specific Lyn substrate 1
- HGNC HUGO Gene Nomenclature Committee
- HIP Hsp70-Interacting Protein; HGNC gene symbol: ST13
- HOP Hsp70/Hsp90-Organizing Protein; HGNC gene symbol: STIP1
- HSCs Hematopoietic Stem Cells
- HSP40 Heat Shock Protein 40kDa

- HSP70 Heat Shock Protein 70kDa
- HSP90 Heat Shock Protein 90kDa
- IAPs Inhibitor of Apoptosis family of proteins
- ICAM1 HGNC gene symbol for intercellular adhesion molecule 1
- ICAM2 HGNC gene symbol for intercellular adhesion molecule 2
- ICAM3 HGNC gene symbol for intercellular adhesion molecule 3
- IFNγ Interferon Gamma; HGNC gene symbol: IFNG
- IFIT2 HGNC gene symbol for interferon-induced protein with tetratricopeptide repeats2

Ig Immunoglobulin

- IGHM Immunoglobulin Heavy Constant Mu
- IGHG Immunoglobulin Heavy Constant Gamma
- IGHV Immunoglobulin Heavy Variable
- **IGF1** HGNC gene symbol for insulin-like growth factor 1 (somatomedin C)
- IL10 HGNC gene symbol for interleukin 10
- IL12 HGNC gene symbol for interleukin 12
- **IL17** HGNC gene symbol for interleukin 17
- IL1B HGNC gene symbol for interleukin 1, beta
- IL2 HGNC gene symbol for interleukin 2
- IL23 HGNC gene symbol for interleukin 23
- IL6 HGNC gene symbol for interleukin 6
- IL7R HGNC gene symbol for interleukin 7 receptor

 $IkB\alpha$ Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor,

alpha; HGNC gene symbol: NFKBIA

IKK IkB Kinase complex

- **IPA** Ingenuity Pathways Analysis
- **IRF3** HGNC gene symbol for interferon regulatory factor 3

ITGAM HGNC gene symbol for integrin, alpha M (complement component 3 receptor

3 subunit)

JAK Janus Kinase family of tyrosine kinases

JNK c-Jun N-terminal Kinases family

KMO HGNC gene symbol for Kynurenine 3-monooxygenase (kynurenine 3-hydroxylase)

LCK HGNC gene symbol for lymphocyte-specific protein tyrosine kinase

LPL HGNC gene symbol for lipoprotein lipase

LN Lymph Nodes

MCLL CLL case with mutated IGHV gene

WHO World Health Organization

MBL Monoclonal B cell Lymphocytosis

MAPK Mitogen Activated Protein Kinases family of proteins

MCL1 HGNC gene symbol for myeloid cell leukemia sequence 1 (BCL2-related)

MDM2 HGNC gene symbol for mdm2, p53 E3 ubiquitin protein ligase homolog (mouse)

MDR1 Multidrug Resistance protein 1; HGNC gene symbol: ABCB1

MEK MAPK/ERK Kinases or mitogen-activated protein kinase kinases

MHCII Major Histocompatibility Complex class II

MKP1 Dual specificity phosphatase 1; HGNC gene symbol: DUSP1

MYC HGNC gene symbol for v-myc myelocytomatosis viral oncogene homolog (avian)

MM Multiple Myeloma

mRNA messenger RNA

MURF1 Muscle-specific RING Finger protein 1, HGNC gene symbol: TRIM63

MYD88 HGNC gene symbol for myeloid differentiation primary response gene (88)

NFAT Nuclear Factor of Activated T-cells family of transcription factors

NFKB Nuclear Factor of Kappa light polypeptide gene enhancer in B-cells

NHL Non-Hodgkin Lymphoma

NK Natural Killer

NOXA word in Latin for damage; HGNC gene symbol: PMAIP1

- 7 -

NR3C1 HGNC gene symbol for nuclear receptor subfamily 3, group C, member 1

P23 Prostaglandin E Synthase 3 (cytosolic); HGNC gene symbol: PTGES3

PALM2-AKAP2 HGNC gene symbol for PALM2-AKAP2 readthrough

PARP Poly (ADP-Ribose) Polymerase family of proteins

PB Peripheral Blood

PBS Phosphate Buffered Saline solution

PBMC Peripheral Blood Mononuclear Cells

PCR Polymerase Chain Reaction

PE Phycoerythrin

PerCP-Cy[™]5.5 Peridinin chlorophyll protein-cyanin 5.5

PEPCK Phosphoenolpyruvate Carboxykinase; HGNC gene symbol: PCK2

PEST Peptide sequence rich in proline (P), glutamic acid (E), serine (S), and threonine

(T)

PI Propidium Iodide

PI3K Phosphatidylinositol 3-Kinases

PLA2 Phospholipases A2

PPID HGNC gene symbol for peptidylprolyl isomerase D; alias: cyclophilin 40

PTEN HGNC gene symbol for phosphatase and tensin homolog

PTP1B Protein-tyrosine phosphatase 1B; HGNC gene symbol: PTPN1

PUMA p53 Upregulated Modulator of Apoptosis; HGNC gene symbol: BBC3

QRT-PCR Quantitative Real Time Polymerase Chain Reaction

RAF Proto-oncogene serine/threonine-protein kinase; HGNC gene symbol: RAF1

RAFTK Related Adhesion Focal Tyrosine Kinase; HGNC gene symbol: PTK2B

RAS Small GTPase subfamily of proteins

RIN RNA Integrity Number

RPS6KB1 HGNC gene symbol for ribosomal protein S6 kinase, 70kDa, polypeptide 1

RT Room Temperature

SAMD9L HGNC gene symbol for sterile alpha motif domain containing 9-like

SD Standard Deviation

- SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis
- SF3B1 HGNC gene symbol splicing factor 3b, subunit 1, 155kDa
- **SHM** Somatic Hypermutation
- SLL Small Lymphocytic Lymphoma
- SSC Side Scatter
- **STAT** STAT family of transcription factors
- SYK HGNC gene symbol for spleen tyrosine kinase
- **TBX21** HGNC gene symbol for T-box 21
- TCR T Cell Receptor
- **TGF** β Transforming Growth Factor beta
- TMEM2 HGNC gene symbol for transmembrane protein 2
- **TNF** α Tumor Necrosis Factor α ; HGNC gene symbol TNF
- **TP53** HGNC gene symbol for tumor protein p53
- Tregs Regulatory T cells
- UCLL CLL case with unmutated IGHV gene
- VCAM1 HGNC gene symbol for vascular cell adhesion molecule 1
- VLA-4 Very Late Antigen-4, integrin dimer composed by CD49d and CD29
- **XIAP** HGNC gene symbol for X-linked inhibitor of apoptosis
- **ZAP70** HGNC gene symbol for zeta-chain (TCR) associated protein kinase 70kDa

Abbreviations

INTRODUCTION

1. CHRONIC LYMPHOCYTIC LEUKEMIA

1.1. Biological characteristics of Chronic Lymphocytic Leukemia

The World Health Organization (WHO) classification of hematopoietic neoplasias of 2008 describes the Chronic Lymphocytic Leukemia / Small Lymphocytic Lymphoma (CLL / SLL) as a lymphoproliferative disorder of small neoplastic B cell.¹ CLL occurs most frequently in persons older than 50 with a higher incidence in males.² In Western countries, CLL accounts for about 30% of all leukemias being the most frequent form of leukemia whereas in the Asian population it only constitutes 10% of all leukemias.³

The diagnostic criteria of CLL proposed by the WHO 2008 classification are the presence in peripheral blood (PB) of at least 5x10⁹ B cells per liter with a monoclonal weak expression of one of the light chain immunoglobulin (Ig) genes. Also the lymphocytosis must persist for at least 3 months; nevertheless CLL diagnosis can be made with lower numbers of B cells when disease related symptoms are reported or when patients exhibit cytopenias. Frequently CLL cells are found simultaneously in PB, bone marrow (BM) and lymph nodes (LN). The SLL term is normally applied to non-leukemic forms, more precisely to cases with LN involvement, without cytopenias and with PB lymphocyte counts below 5x10⁹ cells per liter.¹

Special attention should be given to the distinction between CLL and Monoclonal B cell Lymphocytosis (MBL), the latter also referring to cases of B cell monoclonal expansions in PB but with lymphocyte counts bellow 5x10⁹ cells per liter and no lymphoadenopathy, splenomegaly, hepatomegaly, cytopenias nor other type of symptoms.³ In the last years it has been hypothesized that MBL could be a precursor form of CLL since some MBL cases evolve to CLL at a rate of 1.1% of conversions per year.⁴

- 13 -

1.1.1. Morphological features

The CLL cells found on PB smears are characteristically small, mature, with a narrow border of cytoplasm, and a dense nucleus lacking discernible nucleoli and having a coarsely clumped chromatin (Figure 1). Many times, these typical CLL cells can be found mixed with cells presenting different features like cleaved cells, prolymphocytes, centrocytes, centroblasts and stimulated lymphocytes. Nevertheless, prolymphocytes only can represent up to 55% of the blood lymphocytes, otherwise, they will favor the diagnosis of B cell prolymphocytic leukemia. Another characteristic of CLL blood smears is the presence of Gümprecht nuclear shadows, or smudge cells, found as cell debris due to the fragile nature of CLL cells.¹

Figure 1. Morphological characteristics of CLL cells found in peripheral blood Typical CLL cells and Gümprecht nuclear shadows are shown.

In CLL, the BM infiltration is a common feature and normally CLL cells represent more than 30% of the total cell counts of BM aspirates. The BM CLL cells present the same morphologic characteristics of those described in PB. It is also important to mention that although BM aspirates or biopsies are not required for the diagnosis of CLL, the histological pattern of bone marrow infiltration was shown to have a prognostic value. On the other hand, it is recommended to perform a BM study before the onset of therapy.⁵

The patterns of BM involvement described in CLL are interstitial, nodular, diffuse and mixed.⁶ In the interstitial pattern, CLL cells infiltrate the BM in between the fat cells without affecting the normal BM architecture. The nodular pattern is the less frequent and it is characterized by the presence of nodules of small lymphocytes replacing the normal hematopoietic cells and the fat cells. The diffuse pattern is characterized by the complete destruction of BM architecture since CLL cells massively replace the normal hematopoietic cells and the fat cells. Finally, the mixed pattern is the combination of the interstitial and nodular infiltration. Mixed pattern and diffuse pattern are observed in patients with short survival.⁶

CLL can infiltrate LN, its pattern of infiltration is denominated pseudofollicular since pale areas on a dark background are observed. These pale areas are proliferation centers constituted by small to medium size cells, prolymphocytes, and by large cells called paraimmunoblasts. The dark background is formed by the typical small CLL cells. The mitotic activity of the CLL cells in LN is usually very low except in the pale areas.¹

The involvement of spleen by CLL is normally confined to the white pulp; nevertheless, red pulp can also be affected. As in LN, proliferation centers can be observed.¹

1.1.2. Immunophenotypic features

The CLL cells express pan B antigens like CD19, CD20, CD22 and CD79a on their surface. With the exception of CD19, the expression of these pan B antigens is characteristically dim when compared to normal B cells. The membrane expression of the immunoglobulin genes is also weak and normally CLL cells express IgM and IgD. In rare occasions, class switch occurs and CLL cells express IgG.⁷

- 15 -

Unlike normal B cells, CLL cells aberrantly co-express the T cell antigen CD5, as well as the CD23 and the CD43 antigens. Moreover CLL cells lack CD10 expression and usually lack the expression of FMC7, CD79b and CCND1 which are important features to distinguish CLL from the remaining lymphoproliferative disorders. Notwithstanding, the presentation of CLL cells not always accomplish the described immunophenotypic criteria.¹

1.1.3. Genetic and molecular characteristics

The pathogenic mechanisms of CLL are a subject of intense research and at the present multiple facets have been disclosed like genetic aberrations, antigen drive and other microenvironment interactions.

The molecular and genetic pathogenesis of CLL is unknown. The most frequently cytogenetic abnormalities found in CLL are the deletions of chromosomal regions in 13q14 (55%), 11q22-q23 (18%), 17p13 (7%), and 6q21 (6%) and the trisomy of chromosome 12 (16%).⁸ Interestingly, in CLL, genetic abnormalities do not involve the heavy and light chain loci of the immunoglobulin gene as observed in other B cell non-Hodgkin lymphomas (NHL). The genetic lesions of CLL were found to be clinically relevant since their presence at the time of diagnosis or their acquisition during the course of the disease, are correlated with survival and resistance to treatment.^{8,9} The study of the chromosomal loci affected by the genetic lesions allowed the identification of the genes involved: ataxia telangiectasia mutated (ATM) gene in chromosomal region 11q22-q23, TP53 in 17p13, and the micro-RNA genes MIR15A and MIR16-1 in 13q14.¹⁰⁻¹²

The 13q14 chromosomal deletions in CLL are associated with the downregulation of miR-15a and miR-16-1 and in mice models it has been reported that abnormalities in the MIR16 locus are related to B cell clonal proliferations with CLL

- 16 -

features.¹³ Moreover, a recent work has shown that the DLEU2 / MIR15A / MIR16-1 cluster controls B cell proliferation and that its deletion leads to CLL.¹⁴

Deletions in 11q22-q23 almost invariable comprise ATM which is implicated in the repair of DNA damage.¹⁵ As so, ATM-deficiency is thought to contribute to the CLL pathogenesis since it permits the accumulation of additional genetic lesions.

In CLL, the 17p13 chromosomal deletions always include the TP53 suppressor gene. 80 to 90% of the patients with deletion of one copy of the TP53 locus have a mutation in TP53 in the remaining copy, thus implying that almost all patients with CLL with 17p13 deletion have a non functional p53 pathway.¹⁶ In patients with CLL it has been reported that, at diagnosis, the incidence of 17p13 deletions is 5% whereas the incidence of TP53 mutations is 10%. Of these 10%, around 4.5% have TP53 mutations without 17p13 deletions.¹⁷⁻¹⁹ More importantly, both mutations in TP53 and 17p13 deletions have adverse prognostication value.¹⁷⁻¹⁹ The importance of p53 function is based on the fact that many chemotherapy agents produce DNA damage, thus inducing apoptosis in a p53 dependent manner (Figure 2).²⁰

Figure 2. DNA damage and p53 pathway (Adapted from¹⁰)

Interestingly, a regulator of p53, MDM2, is located on chromosome 12. MDM2 impairs p53 functions because it abrogates p53 transcriptional activity,²¹ and because it promotes p53 degradation in the proteosome.²² It has been hypothesized that CLL cases with trisomy 12 may show low levels of p53 expression, but since these cases have high CD20 expression, they present favorable overall survival in the Rituximab era.¹⁰ The MIR34A gene that is located on the chromosomal regions 1p36 and 11q23 and miR-34a has been shown to mediate some of the actions of p53 after the induction of DNA damage.²³ In summary, not only 17p13 deletions but also other cytogenetic abnormalities found in CLL cells seem to play a role in the apoptosis mediated by the p53 pathway.

In CLL, the presence of 17p13 deletions and TP53 mutations is dramatically increased in the refractory and relapsed patients most probably due to the selection of the 17p13 deleted and TP53 mutated cells.¹⁰ A report on patients refractory to fludarabine showed that 44% of the patients had 17p13 deletion and / or TP53 mutation: 25% of the patients had both abnormalities, 12% presented mutations in

TP53 only, and 7% had the 17p13 deletion solely.²⁴ The identification of 17p13 deletion (and TP53 mutation) is of major importance, and nowadays the treatment approaches for this patient group relies on non-genotoxic drugs like alemtuzumab, flavopiridol, lenalidomide, or glucocorticoids, alone or in combination with monoclonal antibodies.²⁵

As for most of the other malignant diseases, molecular biology has made possible the translation to clinical practice of recurrent observations with prognostic value for treatment approach. Technological advances continue to disclose new gene abnormalities in CLL. For example, recent works using next-generation sequencing analysis for whole genome sequencing have identified recurrent mutations in some genes, those being the most prevalent found in NOTCH1 (12.2% of patients with CLL),²⁶ SF3B1 (9.7 to 15% of patients with CLL),^{27;28} and MYD88 (2.9% of patients with CLL).²⁶

Mutations in NOTCH1 affect the functionality of the PEST domain leading to the accumulation of the protein and increasing signaling of NOTCH1 pathways.²⁶ Moreover, NOTCH1 mutations were found to be associated with clinically aggressive forms of CLL,²⁹ and they are an independent predictor of overall survival.³⁰ SF3B1 encodes a splicing factor and the mutations in this gene presenting in CLL cells have been shown to lead to altered splicing function thus pointing pre-mRNA splicing as a critical cellular process contributing to disease development.²⁸ MYD88 codifies for a protein involved in the signaling through IL1R and Toll-like receptors.³¹ Apparently, the MYD88 mutation found in CLL leads to increased secretion of cytokines responsible for the recruitment of macrophages and T lymphocytes, a milieu that favors CLL cells survival.²⁶ Interestingly the patients with CLL with MYD88 mutation are diagnosed at young ages as well as in advanced clinical stages.

Previous molecular biology studies like those of whole gene expression profiling (GEP) have provided data for a better understanding of CLL biology. Klein and colleagues have shown that the GEP of CLL cells was similar to that of mature B cells.³² Since that, CLL has been viewed as a malignancy originated from the

- 19 -

oncogenic transformation of a common cellular precursor that resembles an antigen experienced B cell. Moreover, it has been observed that CLL cells express B cell receptors (BCRs) with evidence of antigen experience, and more notably, BCRs from different individuals are homologous in their antigen binding regions.^{33;34} These findings allowed the delineation of subsets of stereotyped receptors and strengthens the notion that antigens play a critical role in pathogenesis of CLL.³⁵⁻³⁷

In the past, CLL was thought to be an accumulative disease and a consequence of a defect in the cell apoptosis machinery. The quiescent appearance of the CLL cells, their small size and condensed chromatin, and the lack of mitosis is evidence which sustains this theory. From a clinical standpoint CLL is considered an indolent disease, since the reported median survival of patients is around 10 years and disease treatment is only needed when the accumulation of cells compromises the life of the patient.^{38;39} Nevertheless, it is known that in some patients the disease course is aggressive and studies have shown significant levels of proliferation.^{40;41}

In the last years, there was a resurgent interest in CLL proliferative rates. Experiments using deuterium water or glucose have demonstrated a correlation between birth rates and disease activity, pointing out that proliferation seems to exist.^{42;43} Moreover, studies measuring the telomere length of CLL cells have shown that they were much shorter than those of B cells of age-matched normal donors, and that they were shorter in the CLL subgroup with worst prognosis according to the mutational status of the immunoglobulin heavy variable (IGHV) genes.^{44;45} Telomerase activity is known to be higher in the germinal center, corroborating that the aggressive clinic behavior of some patients with CLL must be due to an increase proliferative activity of its cells.

Recently, the proliferation rate of CLL cells was shown to be different according to particular phenotypes; CD38 positive, CD5 bright, and CXCR4 dim cell populations showed higher proliferation rates than those CD38 negative, CD5 dim, and CXCR4 bright.^{46;47} The results of these studies pointed to the existence of two subsets within

- 20 -

the leukemic clone, one corresponding to cells recently emigrating from the germinal centers and the other corresponding to resting cells. Moreover, they support the reasoning that extracellular signals are playing an important role in the proliferation and cell death of CLL cells.

Altogether, data has shown that the microenvironment plays an important role in CLL cell fate through the activation of signalling pathways, namely through BCR, Tolllike receptors, cytokine receptors, and chemokines receptors.

Finally, it is important to mention the interesting results of a recent work on CLL hematopoietic stem cells (HSCs). The existence of CLL HSCs have always been underscored since the CLL cells present BCR clonality suggesting that the lymphomagenic events followed VDJ recombination. Kikushige and colleagues have successfully engrafted immunodeficient mice with HSCs obtained from patients with CLL and these mice developed monoclonal or oligoclonal B cells simulating MBL.⁴⁸ MBL is thought to be the precursor phase of CLL, and the chromosome alterations found in CLL are probably the secondary events needed for disease development. CLL HSCs must accumulate oncogenic events like genetic and / or epigenetic mutations that are further responsible for their aberrant behavior. The results of the above work not only changed the knowledge of CLL biology but also support the lack of benefit of autologous stem cell transplantation in patients with CLL.
1.2. Prognostic markers in Chronic Lymphocytic Leukemia

The clinical course of CLL is heterogeneous, whereas most of the patients will not need therapy for years, others will eventually die due to disease related complications.^{38;39} Importantly, CLL remains an incurable disease, and treatment decisions require the assessment of the risk for each patient. The onset of treatment is usually based on the presence of active disease, although some patients would probably benefit from having earlier treatment. Thus, there is a need to identify clinical and biological features that allow the identification of patients prone to develop an aggressive form of the disease.

Clinical stages given by Rai and Binet systems are still considered the most important for prognostication, since they have been tested in many and large CLL series (see Table 1).^{49;50}

Stage system	Low risk	Intermediate risk		Highrisk	
Binet	A Hb≥10 g/dL Platelets≥100x10 ⁹ /L ≤2 sites involved*	B Hb \geq 10 g/dL Platelets \geq 100x10 ⁹ /L > 2 sites involved *		C Hb < 10 g/dL or Platelets < 100x10 ⁹ /L	
Rai	0 Lymphocytosis only	l Lymphocytosis and Lymphoadenopathy	II Lymphocytosis and Splenomegaly and / or Hepatomegaly	III Lymphocytosis and Hb < 11g/dL	Ⅳ Lymphocytosis and Platelets < 100x10 ⁹ /L

 Table 1. Clinical stages of CLL according to Rai and Binet systems

^{*}Sites involved are liver, spleen, lymph nodes (either unilateral or bilateral) in inguinal, axillary and cervical regions.

Both systems take into account the blood lymphocyte count, platelets count, hemoglobulin levels, organomegaly, and lymphoid areas involved. Advanced clinical stages III-IV / C (high risk) show fast progression and median survival of 4 years

- 22 -

whereas stages 0 / A (low risk) and I-II / B (intermediate risk) show variable evolution. Due to the performance of blood analyses for routine purposes, nowadays more than 80% of the cases of CLL are diagnosed in asymptomatic and early stage forms. Unfortunately, clinical stages according to Rai and Binet systems are not useful to identify those patients in early stage that are likely to progress. For these reasons, during the last 10 years, new prognostic markers have been identified, along with the classical ones, in order to predict the outcome of the patients with CLL.

Classical prognostic variables include age, sex, performance status,⁵¹ blood lymphocyte count, lymphocyte morphology in PB, blood lymphocyte doubling time, and BM infiltration pattern. In addition, some biological features have been added to the prognostic armamentarium: serum levels of lactate dehydrogenase, β -2 microglobulin, sCD23, and thymidine-kinase. It is important to mention that blood lymphocyte counts higher than 50x10⁹/L, blood lymphocyte doubling time lower than 12 months, and diffuse BM infiltration pattern were found to have an adverse impact in time to treatment and survival.²

Attempts have been made in order to create a prognostic scoring system in CLL⁵²⁻⁵⁴ as the ones applied in diffuse large B cell lymphoma (International Prognosis Index, IPI), in follicular lymphoma (Follicular Lymphoma International Prognosis Index, FLIPI), or in mantle cell lymphoma (Mantle Cell Lymphoma International Prognosis Index, MIPI). Nevertheless, no consensus has been reached so far and further studies are needed to validate and standardize the parameters to be used in the routine management of the patients with CLL.

Some biological prognostic markers were identified to be useful in predicting disease free survival and overall survival in early stage CLL. The most extensively studied are the mutational status of the IGHV genes,^{55;56} the immunophenotypic markers ZAP70 and CD38,⁵⁶⁻⁵⁸ and the cytogenetic abnormalities.⁸

In the 1990's, two papers written by Chiorazzi et al. and by Stevenson et al. disclosed that patients with CLL with unmutated IGHV genes have unfavorable

- 23 -

biological features in addition with a rapid clinical progression, treatment requirement, and short survival.^{55;56} Conversely, they showed that patients with mutated IGHV genes have favorable clinic and biological features, do not require therapy for long periods of time, and have a long survival. Importantly, the mutational status of the IGHV genes has prognostic value in patients with early stages of disease and does not change during the clinical course of the disease.

It has been shown that the usage of the IGHV3-21 gene has a poor prognostic value independently of the mutational status.⁵⁹ Further works demonstrated that not only V gene usage, but the configuration of the CDR3 of heavy chains, had prognostic implications and this is sometimes independent of the mutational status.^{36;37;60} An active line of research has been opened on IGHV genes usage, mutational load, and prognostic impact.

Along with the identification of the prognostic value of the mutational status of the IGHV genes, Damble *et al.* have demonstrated that the expression of CD38 was correlated with the unmutated status of the IGHV genes and with shorter survival.⁵⁶ Later, other studies have shown that although CD38 expression has independent prognostic value, this fact does not correlate with the mutational status of the IGHV genes, and that its expression changes during the course of disease.⁶¹⁻⁶³ However, it is now accepted that CD38 expression is an independent prognostic marker in CLL.^{64;65}

Studies on the molecular characteristics of CLL like the GEP studies provided evidence for the discovery of ZAP70 as an important prognostic marker.⁶⁶ ZAP70 was shown to be a surrogate marker of IGHV mutational status, since ZAP70 expression and the unmutated status of the IGHV gene had an excellent correlation.^{57;58} Later, the independent prognostic value of ZAP70 was unveiled.^{67;68} Unlike CD38, ZAP70 expression remains stable in time, and it also can be determined by flow cytometry. Efforts are currently being made to standardize the assessment of ZAP70 expression by flow cytometry (http://www.ericll.org/projects/ZAP70_CD38_harmonization.php). The International Workshop on CLL guidelines recommended ZAP70 expression

- 24 -

determination in clinical trials.⁵ Of note, ZAP70, CD38, and IGHV mutational status should not yet be taken into consideration for treatment decisions, as further studies are needed.

Cytogenetic abnormalities can be detected by interphase fluorescent in situ hybridization (FISH) in more than 80% of all CLL cases,⁸ and FISH studies are a current practice in the diagnosis and follow-up of CLL. The cytogenetic abnormalities most frequently found in CLL have independent prognostic relevance. As first reported by Dohner et al., deletion in 13q14 as sole aberration is associated with long overall survival; on opposite, deletion in 11g22-g23 and particularly those in 17p13 are associated with short overall survival.⁸ In addition, CLL cases with trisomy 12 or cases without the most frequently cytogenetic abnormalities found in CLL have intermediate overall survival. This allowed the construction of a hierarchical model for the prognostic impact of cytogenetic abnormalities in CLL: deletion 17p13 > deletion 11g22-g23 not including 17p13 deletion > trisomy 12 not including 17p13 deletion and 11q22-q23 deletion > no cytogenetic abnormalities > deletion 13q14 not including 17p13 deletion, 11g22-g23 deletion and trisomy 12 (descending order of adversity). Interestingly, the results of a clinical trial in the Rituximab era have shown that the presence of 11g22q23 deletion and trisomy 12 has been associated to a better progression free survival than the absence of cytogenetic abnormalities.⁶⁹

The prognostic impact of the cytogenetic abnormalities was shown to be independent of the mutational status of the IGHV gene.^{70;71} Interestingly, clonal evolution occurs more frequently in patients with unmutated IGHV genes and ZAP70 expression.^{72;73} Most importantly, cytogenetic abnormalities are the only prognostic markers with demonstrated importance for treatment decisions, namely the deletion in 17p13.⁵ Evidence sustained the inefficiency of fludarabine or alkylating based therapies in this setting. The standard CLL therapy, Rituximab / fludarabine / cyclophosphamide, shows very poor responses in the subgroup of patients with 17p13 deletion: 68% of overall response rate and 5% of complete response.⁶⁹ Thus, patients with CLL

- 25 -

presenting 17p13 deletion should be considered for alternative therapies and ultimately for allogenic stem cell transplantation.²⁵

Several other protein and gene levels have been further correlated with IGHV genes mutational status, though they all have the independent capacity to predict prognosis. These include, among many others, lipoprotein lipase (LPL) gene alone or LPL/ADAM29 genes ratio,⁷⁴⁻⁷⁶ integrin alpha 4 (CD49d) protein,⁷⁷ HCLS1 protein,⁷⁸ CLLU1 gene,⁷⁹ and FCRL2 gene.^{80;81}

The research on prognostic markers in CLL is intense, and with the introduction of immunochemotherapy schedules, many of the former markers have to be confirmed. In the future, new ones will probably arise and will allow a better management of patients with CLL. Importantly, biological features of the patients can be related to drug responses. As so, other characteristics like the presence of certain cell receptors and proteins could be correlated with treatment responses and thus be used in treatment decisions.

1.2.1. The immunoglobulin heavy variable genes and their mutational status analysis

The immunoglobulin is a part of the BCR which allows B cells to recognize foreign antigens. Immunoglobulins are composed of two identical heavy chains and two identical light chains. Functionally there are two main regions to considered, the N-terminal or variable domain, responsible for the antigen recognition, and the C-terminal or constant domain, with effector properties. The variable domains of the heavy chains are codified by 3 different types of genes, namely: V, D and J genes and the variable domains of the light chains are codified by the V and J genes. In both heavy and light chains, the limited repertoire of these genes are randomly assembled by DNA rearrangement giving rise to an enormous variety of immunoglobulins.⁸² In the variable

- 26 -

domains there are 4 relatively conserved framework regions (FR1 to 4) interspersed by 3 highly variable regions called CDR (CDR1 to 3).⁸³ FRs are responsible for maintaining the structure of the domain and CDR regions directly interact with antigens, CDR3 being the most important determinant of antigen specificity as well as the most variable, since it is located at the junction of the V, D, and J genes.

Another event responsible for the large diversity of immunoglobulins is the somatic hypermutation (SHM) process. Mature B cells can be stimulated by antigens through their BCR that, together with other microenvironment stimulus, lead to the organization of specialized structures called germinal centers in the secondary follicles of peripheral lymphoid tissues.⁸⁴ The SHM essentially takes place in germinal centers and is mediated by activation-induced cytidine deaminase. Basically, it consists in single base substitutions affecting the rearranged VDJ genes, sparing the constant domain. The mutations can be silent or result in the replacement of an aminoacid, and can occur both in FR and CDR. Typically, replacement mutations tend to localize in CDR thus increasing the antigen affinity. On the other hand in FR, they are counterselected since they would affect the overall structure of the domain, and as a consequence, enrichment in silent mutations is observed.^{85;86} In rare occasions, the SHM may introduce insertions (duplications of a neighboring nucleotide or sequence) or deletions within immunoglobulin rearranged sequences.⁸⁷

The study of the mutational status of the immunoglobulin genes may help to identify the origin of lymphoid malignancies along with the B cell differentiation pathway. Also, the mutation status of the immunoglobulin genes is a powerful prognostic marker in CLL as explained before. Traditionally, the analysis of the mutational status is confined to the IGHV and using the arbitrary cut-off value of 98% in homology to the germline IGHV gene. It has been found that around 40% of patients with CLL carry mutated IGHV genes.^{88;89} It is important to mention that although the mutational status of the IGHV genes does not change during clinical course, the use of the 98% cut-off may not reflect the real impact of mutations. In some instances, few or

- 27 -

even only a single nucleotide mutation can be introduced by SHM, and thus, it should be considered a real mutation.³⁷ These circumstances may lead to incorrectly assigned unmutated IGHV genes.

1.2.2. ZAP70 expression

ZAP70 is a tyrosine kinase of the Syk family initially isolated in T and natural killer (NK) cells where it plays a crucial role in the proximal signaling of T and NK cell receptors respectively.⁹⁰ More recently, ZAP70 expression has been reported in normal B cell precursors and in some subsets of activated B cells.^{91;92} ZAP70 expression has been also detected in some cases of B cell proliferative diseases like CLL, B acute lymphoblastic leukemia (ALL) and Burkitt lymphoma.^{57;92;93}

The importance of ZAP70 expression in CLL was disclosed in 2003 when it was found a correlation between the mutational status of the IGHV genes and the expression of ZAP70.^{57;58} The concordance between these two features is around 75-95% depending on the report.^{57;58;67;94} Later, studies have demonstrated that ZAP70 had a prognostic value of its own; ZAP70 expression levels allow the discrimination of patients in two groups with different prognosis. Patients with CLL who have high ZAP70 expression (\geq 20% positive CLL cells) have inferior overall survival,^{57;95;96} and have shorter time to progression or treatment.^{57;58} In addition, the high expression of ZAP70 was associated with a faster reappearance of detectable minimal residual disease and with a faster progression after immunochemotherapy.⁹⁷

Studies have been performed in order to address the biological role of ZAP70 in CLL cells. It has been found that CLL cells with high ZAP70 expression had increased signaling through BCR.⁹⁸ Moreover, ZAP70 expression has been associated with

- 28 -

increased ability to respond to migratory and survival signals.⁹⁹ In this line, a recent report has proved the direct implication of ZAP70 in the migration induced by CCL21.¹⁰⁰

In summary, in CLL cells, the high ZAP70 expression is associated with adverse biological features like unmutated IGHV genes and high CD38 expression, and is correlated with a poor clinical outcome. Importantly, ZAP70 expression can be easily determined by flow cytometry, and it retains prognostic value regarding time to progression in untreated stage A patients.

2. CORTICOSTEROIDS

2.1. Classification: glucocorticoids and mineralocorticoids

Corticosteroids are a class of compounds including both the steroid hormones produced in the adrenal cortex of vertebrates (endogenous corticosteroids) and the synthetic analogues of these hormones (synthetic corticosteroids). The synthesis of corticosteroids in the adrenal cortex is made from cholesterol and is controlled by the adrenocorticotropic hormone through long series of enzymatic mechanisms involving many oxidation reactions.¹⁰¹ The endogenous corticosteroids have 19 carbon atoms and show both mineralocorticoid and glucocorticoid activities.¹⁰² In its sense, the glucocorticoid activity is the corticosteroids role in the regulation of the glucose metabolism. On the other hand, the mineralocorticoid activity is the ability of corticosteroids to regulate the transport of ions.

The corticosteroids activities are explain by the existence of two different steroid receptors, namely the glucocorticoid receptor (GR) and the mineralocorticoid receptor.¹⁰³ Endogenous corticosteroids can bind both receptors thereby having overlapped glucocorticoid and mineralocorticoid activities. The power of each activity depends on the affinity of the glucocorticoid receptor and of the mineralocorticoid receptor for a particular corticosteroid. For example, if the affinity of the glucocorticoid activity will prevail. Endogenous corticosteroids normally bind strongly to one of the receptors and this was used to classified corticosteroids in glucocorticoids and mineralocorticoids were developed in order to increase the mineralocorticoid or the glucocorticoid activity, or even to abrogate one of them. These are the cases of dexamethasone and betamethasone that only show

- 30 -

glucocorticoid activity. Usually, the endogenous cortisol (or the synthetic analogue hydrocortisone) is used as a standard to calculate the glucocorticoid and mineralocorticoid activity of the different corticosteroids (Table 2).

	Table 2. Glucocorticoid and	mineralocorticoid	activity of the mo	ost used corticoisteroids
--	-----------------------------	-------------------	--------------------	---------------------------

Name	Glucocorticoid activity	Mineralocorticoid activity
Cortisol (hydrocortisone)	1	1
Prednisone	3.5-5	0.8
Prednisolone	4	0.8
Methylprednisolone	5-7.5	0.5
Dexamethasone	25-80	0
Betamethasone	25-30	0
Triamcinolone	5	0
Fludocortisone acetate	15	200
Deoxycorticosterone acetate (DOCA)	0	20
Aldosterone	0.3	200-1000

Glucocorticoids like methylprednisolone and dexamethasone are known to have antileukemic effects on CLL cells being both broadly used. Dexamethasone has higher anti-inflammatory activity than methylprednisolone but both drugs show similar antiproliferative and apoptotic effects.¹⁰⁴ The concentration of glucocorticoid necessary to obtain 50% of the maximal apoptotic effect (EC50) has been determined in previous studies and it is 10⁻⁷ M for methylprednisolone and between 10⁻⁸ and 10⁻⁷ M for dexamethasone.¹⁰⁴ Thus, dexamethasone and methylprednisolone have equivalent antileukemic effects and can be indistinctively administered to patients with CLL.

2.2. Molecular basis of glucocorticoid action

Glucocorticoids are lipophilic and for this reason they are transported in the blood in a reversible complex with proteins. Around 90% of the cortisol found in blood is bound to the corticoisteroid binding globulin (CBG) and it is generally accepted that the cortisol bound to CBG had a restricted access to target cells being active only the free cortisol.¹⁰⁵ Glucocorticoids passively diffuse across the plasma membrane into the cell cytoplasm where they encountered the GR.¹⁰⁶ However, evidence pointed towards an active role of CBG in glucocorticoid action through the binding of CBG-glucocorticoid complexes to cell membranes.¹⁰⁷

The GR is a member of the steroid hormone receptor family of proteins and its gene, NR3C1, is localized on chromosome 5q31-32. NR3C1 gene originates different transcript variants because it has alternative sites for the initiation of transcription, and because alternative splicing of mRNA occurs. Additional diversity in GR is due to post-translational modifications like phosphorylation, ubiquitination, and sumoylation.¹⁰⁸ There are several GR variants such as GR α , GR β , GR γ , GR-A, and GR-P, and they are expressed at different ratios in distinct cell types. The GR variants have been shown to be functionally different since they display diverse cytoplasm-to-nucleus trafficking patterns and distinct transcriptional activities. The major functional variant is the full length GR α and it consists of a N-terminal transactivation domain, a DNA binding domain with two zinc finger motifs, a hinge region, and a C-terminal ligand binding domain.¹⁰⁹

The GR resides in the cytoplasm forming a complex with co-chaperone proteins like heat shock proteins such as HSP90 and HSP70, and immunophilins like FKBP4, FKBP5, and PPID. These co-chaperones are inter-exchangeable and determine the conformation of the GR as well as its nuclear translocation.¹¹⁰ A model for hormonal activation of the GR was proposed.¹¹¹ In the cytoplasm and in the absence of glucocorticoids, the GR is mainly bound to FKBP5. The ligation of the glucocorticoid to

- 32 -

the GR causes the switch of FKBP5 by FKBP4. FKPB4 unlike FKBP5 has the ability to interact with dynein, a motor protein that furthers translocate the glucocorticoid-GR-complex to the nucleus. Once in the nucleus, this complex is able to trigger genomic effects by activating or repressing gene transcription. It can dimerize and bind to palindromic elements of the promoter region of target genes called glucocorticoid responsive elements (GRE), or as a monomer, it can interact with transcription factors already bound to the DNA.

The ligation of the glucocorticoid-GR-complex to GRE in general activates gene transcription through the recruitment of co-activactor proteins like histone acetyltransferases.¹¹² Although, the glucocorticoid-GR-complex can bind to negative-GRE and can abrogate gene transcription through the recruitment of co-repressor proteins like histone deacetylases. Moreover, the glucocorticoid-GR complex can bind to composite GRE. These types of GRE bind complexes composed by the glucocorticoid-GR and transcription factors. The ligation to composite GRE can either induce or inhibit gene transcription depending on the type of composite GRE. In addition, the glucocorticoid-GR complex can modulate gene transcription by interaction with transcription factors already bound to DNA, a process known as tethering. Depending on the transcription factor, the net result can either be the activation or the repression of transcription (Figure 3).¹¹²

- 33 -

GC- glucocorticoid; GR- glucocorticoid receptor; GRE- glucocorticoid responsive element TF- transcription factor.

Furthermore, glucocorticoids are able to produce cellular responses within minutes independently of *de novo* gene transcription, the so called non-genomic effects. Two mechanisms have been reported, one is mediated by the ligation of the glucocorticoid to GRs present in the cell membranes. The T cell receptor (TCR) is associated to membrane bound GR and once glucocorticoids bind GR, the association between the TCR and the GR is disrupted and signaling through the TCR is abrogated.¹¹² The other mechanism occurs in the cytoplasm and is due to the direct protein-protein interaction between the glucocorticoid-GR complex and proteins such as c-Jun N-terminal kinases (JNK), phosphatidylinositol 3-kinases (PI3K) or AKT.¹¹³

2.3. Glucocorticoid physiological versus pharmacological activity

Early studies on glucocorticoids in the 1930s were focused on their physiological role since they were found to enhance and mediate response to stress. Nevertheless in 1949, it was reported that glucocorticoids could also protect cells from exacerbated responses to stress, unveiling their anti-inflammatory action.¹¹⁴ Since then, the study of the glucocorticoids was redirected to their pharmacological properties. The dual behavior of glucocorticoids was difficult to interpret at the moment but nowadays it is known that this dichotomy depends on the type of receptor involved, on the concentration of the glucocorticoid, and on the time of exposure.¹¹⁵ However, it turns to be one of the major difficulties of glucocorticoids use in therapy, and side affects arise from the unwished interference in physiologic homeostasis. Importantly, different synthetic glucocorticoids were shown to induce different GR conformations and thus to have different gene regulatory properties. This has allowed the design of glucocorticoids that have the beneficial anti-inflammatory effects and few or none of the unwanted metabolic effects.

2.3.1. Physiological effects of glucocorticoids

Glucocorticoids have physiological effects since they control the metabolism of carbohydrates, proteins, and lipids, as well as the balance of calcium. Glucocorticoids induce glucose formation by different ways (Figure 4). They inhibit glucose uptake in fat and muscle cells by inhibiting several steps of the insulin signaling cascade and, by impairing the translocation of the glucose transporter GLUT4 from the intracellular vesicles to the cell surface.¹¹⁶ They also increase gluconeogenesis in liver and muscle cells. In the liver they induce the synthesis of enzymes involved in the gluconeogenesis like PEPCK and G6PC.¹¹⁷

- 35 -

Figure 4. Physiological effects of the glucocorticoids in the metabolism of glucose and proteins

aa- amino acid; GC- glucocorticoid; I- insulin; IR- insulin receptor.

Glucocorticoids interfere in the metabolism of proteins; they decrease the rate of protein synthesis, and they increase the rate of protein breakdown (Figure 4.).¹¹⁸ Glucocorticoids impair protein synthesis by several ways; they reduce the transport of amino acids into the muscle, and they inhibit the anabolic effects of insulin and of insulin-like growth factor 1 (IGF1). They also reduce the transport of amino acids to the cells. Moreover, through the inhibition of the AKT/mTOR cell signaling pathway glucocorticoids impair the activation of protein synthesis mediators like the translation initiation factor 4E binding protein 1 (4EBP1) and the ribosomal protein S6 kinase 1 (RPS6KB1).

On the other hand, glucocorticoids induce proteolysis through the activation of proteolytic systems like the ubiquitin-proteosome system.¹¹⁸ They activate MURF1 and FBXO32, two proteins of the ubiquitin-proteosome system. Glucocorticoids also

upregulate the expression of the transcription factors FOXO1 and FOXO3, which are thought to play a pivotal role in the ubiquitin-proteosome pathway.

Glucocorticoids increase the amount of fatty acids in circulation through the hydrolysis of circulating triglycerides by lipoprotein lipase. Subsequently, fatty acids are available to muscle cells, adipocytes, and hepatocytes.¹¹⁹ Glucocorticoids increase *de novo* lipid production in hepatocytes since they induce the expression of fatty acid synthase. Moreover, they regulate the metabolism of the adipose tissue and the differentiation of pre-adipocytes into mature adipocytes. The glucocorticoids facilitate lipolysis by inducing lipase expression as well as other lipolysis mediators.

Glucocorticoids also trigger effects on the phosphor-calcium mechanism.¹¹⁵ They decrease the intestinal absorption of calcium, and they promote the excretion of calcium in the kidney. Thus, they accelerate the negative calcium balance which induces osteoporosis.

Unfortunately, many of the glucocorticoids effects in the metabolism turn out to be the major problem of chronic treatments. Glucocorticoids are responsible among others for central adiposity, hepatic steatosis, dyslipidemia, muscle mass atrophy, insulin resistance, glucose intolerance, and in extreme situations, for the diabetes onset.¹²⁰

2.3.2. Pharmacologic effects of glucocorticoids: anti-inflammatory and immunosuppresive actions

The most explored pharmacological effects of the glucocorticoids are the antiinflammatory and the immunosuppressive ones.

Glucocorticoids impair several inflammatory mechanisms through the inhibition of inflammation mediators like for example prostaglandins and leukotrienes. The inhibition of the inflammation mediators is mainly achieved through the induction of

- 37 -

Annexin A1 (ANXA1) and MAKP phosphatase 1, and through the inhibition of NFKB and AP1 (Figure 5).

Figure 5. Major glucocorticoid targets involved in inflammation

ANXA1 can be induced by the glucocorticoids and it inhibits the synthesis of phospholipases A2 (PLA2).¹²¹ PLA2 hydrolyzes glycerophospholipids releasing arachidonic acid the precursor of the major inflammation mediators, prostaglandins and leukotrienes.

Glucocorticoids impair the activation of MAPK produced by inflammatory signals like virus, bacterias, and cytokines through the activation of MKP1. MKP1 desphosphorylates the activated MAKP proteins and consequently impairs MAKP cascades signaling.¹²² MAKP cascades are responsible for PLA2 activation. Thus, the activation of MKP1 by glucocorticoids inhibits the activation of PLA2 and the synthesis of the mediators of inflammation, prostanglandins, and leukotrienes. On the other hand, since MAKP cascades signaling activate JUN and the heterodimer JUN-FOS (AP1),

- 38 -

the activation of MKP1 also decreases the production of other mediators of inflammation that are regulated by AP1.

AP1 is a transcription factor that induces the expression of several inflammatory genes. Glucocorticoids can inhibit AP1 by direct interaction with the transcription factor, or indirectly, by inducing MKP1 that further inhibits AP1.¹²³ The inhibition of AP1 accounts for the anti-inflammatory action of the glucocorticoids since it impairs the production of the inflammation mediators regulated by AP1 like cytokines, chemotactic proteins, collagenases, and matrix metalloproteinases.

Glucocorticoids inhibit the transcription factor NFKB through its retention in the cytoplasm, mimicking IkBα inhibitory action.¹²⁴ Thus, glucocorticoids block the induction of the transcription of cyclooxygenase 2 (COX2) by NFKB. COX2 is responsible for prostaglandin synthesis hence NKFB inhibition accounts for the anti-inflammatory actions of glucocorticoids.¹²³ In addition, glucocorticoids were reported to interfere with other pro-inflammatory transcription factors such as IRF3, STAT, CREB, NFAT, TBX21, and GATA3.¹²⁵

Non-genomic effects in the regulation of inflammation have been described. For instance, in human endothelial cells the glucocorticoid-GR complex stimulates the activity of PI3K in a transcriptional independent manner. In turn, PI3K phosphorylates AKT, and AKT phosphorylates eNOS that once activated produces nitric oxide.¹¹³ Although nitric oxide is thought to be responsible for inflammation, mice experiments have shown that activation of the PI3K-AKT pathway by eNOS could have benefic repercussions.¹²⁶

A recent work has elucidated a novel non-genomic mechanism of action of glucocorticoids in T cells by its ligation to membrane-linked GR that further modulate signaling through TCR.¹²⁷ Glucocorticoids are able to abrogate the signaling through the TCR since they can dissociate the complex formed by TCR, LCK, and FYN.¹¹² The release of LCK and FYN suppress the phosphorylation of AKT, ERK , and other MAPK.

- 39 -

Many other effects on inflammation have been attributed to glucocorticoids like the inhibition of vasodilation, vascular permeability, and leukocyte migration. Moreover, glucocorticoids decrease the stability of the mRNA genes encoding pro-inflammatory proteins such as EGF and COX2.¹²⁸

The GR is expressed in virtually all cell types and thus glucocorticoid actions could be observed in immune cells (Figure 6).

Figure 6. Glucocorticoids effects in the immune cells

Colour arrows are used to point glucocorticoid mediated actions, green arrows represent positive regulation by glucocorticoid, and red arrows represent negative regulation by glucocorticoids.

Glucocorticoids can modulate both arms of the immune system, the innate and the adaptive.¹²⁹ The innate immunity provides a non-specific response, and is the first

line of defense against invading pathogens. The adaptive immunity is the result of the production of high-affinity antibodies and thus is antigen specific and follows innate responses. Immune responses are performed by immune cells and some are components of the innate immunity like the antigen presenting cells (monocytes / macrophages, dendritic cells, and B cells), neutrophils, and NK cells. On the other hand, others like T cells are components of the adaptive immunity.¹²⁹

Dendritic cells are able to take antigens by endocitosis and present them through their MHCII receptors to antigen specific T helper cells. Glucocorticoids exert effects on dendritic cells on many levels of their life cycle. They arrest dendritic cell maturation and suppress dendritic cell activation by reducing the expression of MHCII, cytokines, and other co-stimulatory molecules. Importantly, glucocorticoids generate dendritic cells with tolerogenic properties, enhanced expression of IL10, and increased phagocytic activity.¹³⁰ Tolerogenic dendritic cells were shown to induce T cell anergy, T cell suppression, and the generation of regulatory T cells (Tregs). Moreover, they were shown to protect against autoimmune diseases and allograft rejection.¹³¹

Macrophages are important cells of the innate immunity; they recognize pathogens through membrane receptors as, for example, Toll-like receptors. After the ligation of the pathogens to those receptors, macrophages become activated and release a large repertoire of cytokines. Glucocorticoids efficiently suppress classical macrophage activation because they induce the synthesis of the immunomodulatory cytokine IL10, and because they inhibit the release of pro-inflammatory cytokines like TNF α , IFN γ , and IL1B.¹³² Glucocorticoids activate GRE of genes like MKP1, and they interfere with transcription factors like NFKB, AP1, and IRF3.¹³³ Interestingly, glucocorticoids induce an anti-inflammatory phenotype in macrophages. They increase macrophage phagocytic capacity by induction of protein S-dependent phagocytosis.¹³⁴ This accounts for a powerful anti-inflammatory action of glucocorticoids since macrophages eliminate the apoptotic neutrophils from the inflammation site.

- 41 -

Neutrophils are attracted to inflammation sites by chemokines released by mast cells, endothelial cells, and other myeloid cells. Rolling, adhesion, activation, and transmigration through the blood vessel are required steps for neutrophil homing to tissues, and glucocorticoids can affect all these steps. The interaction between neutrophils and endothelial cells is compromised by glucocorticoids since they decrease the expression of L-selectin, leukocyte integrins β 1 (VLA-4), and leukocyte integrins β 2 (LFA-1 and ITGAM) in neutrophils.¹³⁵ They also decrease the expression of these molecules counterparts, E-selectin, P-selectin, VCAM1, ICAM1, ICAM2, and ICAM3 in endothelial cells. On the other hand, glucocorticoids contribute to neutrophil survival and proliferation because they induce the expression of both proliferation receptors (GMCSFR, LTB4R) and survival molecules.¹³⁶ As a consequence, glucocorticoids increase the release of neutrophils from the BM, a finding that is exploited in order to overcome neutropenias. Notwithstanding, glucocorticoids are powerful anti-inflammatory compounds since they impair neutrophil migration to the inflammation sites.

Glucocorticoids have been used for a long time in the treatment of B cell related diseases; nevertheless, the mechanisms behind their actions have not been properly investigated. Initial reports on glucocorticoids chronic usage have shown that they reduce B cell numbers in spleen and lymph nodes, impair the differentiation of early B cell progenitors, decrease IgG production, and increase IgE.¹³⁷ Studies in pre B cell lines demonstrated that glucocorticoids impair the synthesis of BCL2, an anti-apoptotic protein over-expressed in some B cell malignancies.¹³⁸ Also, glucocorticoids can reduce the levels of BAFF, a member of the tumor necrosis factor family of proteins implicated in major steps of B cell development.¹³⁹ BAFF regulates lymphocyte survival and maturation, immunoglobulin production, immunoglobulin class switching, and stimulation of T cells. Taken together, the decrease in BCL2 and BAFF expression induced by glucocorticoids is able to induce apoptosis but only in specific B cell populations.

- 42 -

The effect of glucocorticoids in T cells has been extensively studied and different actions have been reported depending on the analyzed T cell subpopulations: immature, mature CD8+, and mature CD4+. For example, it was observed a gradation in the power of glucocorticoids to induce apoptosis; the immature T cell subpopulation CD4+CD8+ is very sensitive to apoptosis, the mature CD4+ subpopulation is quite sensitive, despite that the mature CD8+ subpopulation is only moderate sensitive.¹⁴⁰ The mechanism by which glucocorticoids induce apoptosis is mediated by an increase in the expression of the BH3 only pro-apoptotic proteins BIM and PUMA.¹⁴¹

Naïve CD4+ T cells are stimulated by antigens and can then differentiate into different subtypes: Th1, Th2, Th17, and Tregs. Each of these T helper subtypes expresses lineage specific transcription factors which are instructed by specific microenvironment cytokines combinations. Since glucocorticoids alter the expression of cytokines, they are able to affect differentiation of T helper cells.¹⁴⁰ Furthermore, the cytokines produced by one subtype of T helper cell inhibit the differentiation of other types of T helper cells.

Th1 cells are driven by IL2, IL12, and IFN γ , and express the TBX21 transcription factor. Through the activation of STAT4, Th1 cells produce and release pro-inflammatory cytokines such as IL2, IL12, IFN γ , and TNF α . Th1 cells are major players in the inflammatory process since their cytokines stimulate CD8+ effector T cells, NK cells, and macrophages. Subsequently, Th1 cells are promoters of cellular immunity. It is important to mention that Th1 cells are the predominant subtype of T cells in autoimmune diseases.¹⁴²

Th2 differentiation is induced by IL4. Th2 lymphocytes express the GATA3 transcription factor that further induces STAT6 function leading to the production of IL4, IL5, IL10, and IL13. Th2 cells effectively induce humoral immunity by stimulating B cells to produce antibodies and by activating mast cells and eosinophils.¹⁴²

The cytokine combination responsible for Th17 differentiation is not fully elucidated but includes IL6, IL23, IL21, IL1 β , and TGF β . Th17 cells express the ROR γ T

- 43 -

transcription factor which is able to activate STAT3 that further leads the production of IL17, IL21, and IL22.^{142;143} Th17 cells have been implicated in autoimmune diseases; elevated levels of IL17, which the major producers are Th17 lymphocytes, were found in PB and in tissues of patients with inflammatory bowel disease, psoriasis, and rheumatoid arthritis. Today is accepted that both Th1 and Th17 lymphocytes are independently capable of induce autoimmune diseases.¹⁴³

T regulatory cells (Tregs) derive from naïve Th0 lymphocytes and are characterized by the expression of CD4, CD25, CTLA4, and GITR, and of the transcription factor FOXP3. The differentiation of Tregs depends more on the signals received through the TCR than on the signals driven from the cytokine milieu. Although, it was observed that Tregs counts are increased by IL10 that is released from the tolerogenic dendritic cells, which points that cytokines are also important in the expansion of Tregs. Also TGF β and IL4 were shown to influence Tregs activity.¹⁴⁴ Tregs are able to impair effector T cell actions through a cell-to-cell contact mechanism and through the production of TGF β .¹⁴⁵

At physiological doses, glucocorticoids cause selective suppression of the Th1 cellular immunity axis and a shift toward Th2 mediated humoral immunity since they stimulate the production of IL4 and IL13, while they decrease the production of IL2, IL12, and IFN γ .¹⁴⁶ Notwithstanding, at pharmacological doses, glucocorticoids inhibit both Th1 and Th2 immune responses.¹⁴² Glucocorticoids suppress TBX21 action and impair STAT4 activity affecting Th1 differentiation. Moreover, they inhibit the nuclear import of GATA3 and suppress the STAT6 function interfering with Th2 differentiation. Glucocorticoids direct effects in Th17 differentiation have not been extensively studied but their effects on the cytokine milieu indicate that glucocorticoids are likely to impair Th17 differentiation. For instance, glucocorticoids decrease the production of IL23 by dendritic cells which is needed for Th17 differentiation.¹⁴⁷ Also, it was reported that glucocorticoids reduce IL6, IL17, and TGF β , supporting that glucocorticoids are able to

- 44 -

abolish Th17 differentiation.¹⁴⁸ Conversely, glucocorticoids are able to induce the generation of Tregs. The glucocorticoids were shown to increase Tregs counts by inducing the formation of tolerogenic dendritic cells.¹⁴⁹ All in all, the immunessuppression induced by glucocorticoids is achieved by impairing Th1, Th2, and Th17 responses, and by increasing Tregs responses.

In summary, the anti-inflammatory and the immunosuppressive effects of the glucocorticoids are due to their interference in several molecular mechanisms of different cell types. Because some of these mechanisms are also involved in physiological signaling, the therapeutic effects of glucocorticoids are often accompanied by clinically relevant side effects.

3. GLUCOCORTICOIDS USE IN LYMPHOID MALIGNANCIES

3.1. Effects of glucocorticoids on apoptotic cell death

The first observation of glucocorticoids apoptotic activity was disclosed when studying the physiological action of glucocorticoids in the control of T cell homeostasis. Glucocorticoids mediate the positive and negative selection of T cells in the thymus.¹⁴⁶ Then, it was observed that glucocorticoids induced apoptosis of leukemia, lymphoma and multiple myeloma (MM) cells, making them one of the most used drugs in the management of hematological malignancies.

Apoptosis is an encoded suicide program shared by the differentiated cells of multicellular organisms. Apoptosis regulates the elimination of cells that are no longer needed, have developed improperly, or have sustained genetic damage. Apoptosis is defined by a series of molecular and morphological events like chromatin condensation and fragmentation, cytoskeletal disruption, cell shrinkage, membrane blebbing, compaction of cytoplasmic organelles, dilation of the endoplasmic reticulum, and generation of apoptotic vesicles.¹⁵⁰ Apoptosis culminates in the orchestrated disassembly and in the phagocytosis of the dying cell. Lymphocytes can undergo two distinct apoptotic pathways, the intrinsic and the extrinsic.¹⁵¹ In addition, some reports have put in evidence alternative pathways like the destabilization of lysosomal membranes which is induced by lysosomal stress, and is accompanied with the release of Cathepsin B and D.¹⁵²

The intrinsic pathway is initiated by cellular stress or through the high affinity ligation of antigen receptors during the negative selection of T cells in the thymus. This pathway is regulated at the mitochondria level by BCL2 family members.¹⁵³ Briefly, cellular stress signals activate pro-apoptotic molecules of the BH3 only family like BIM, BID, BAD, BMF, PUMA, and NOXA that in turn activate the multidomain family members BAX and BAK. Of note, this could be neutralized by the anti-apoptotic BCL2

- 46 -

family members, BCL2 and BCLXL, which are able to abrogate the signaling of the proapoptotic molecules. Once activated, BAX and BAK migrate to the mitochondria membrane where they induce the formation of pores in the outer membrane and the consequent release of cytochrome c and SMAC / DIABLO.¹⁵⁴ Cytochrome c together with caspase 9 and APAF1 originate the apoptosome. This multimeric complex activates the effector caspase 3 that in turn cleaves the inhibitory subunit of DNAses, activating their catalytic subunit that further fragments DNA. Caspase 3 also cleaves cytoskeletal proteins like foldrin and gelsolin, and induce the proteolysis of nuclear lamins, which in turn lead to cellular shape changes, nuclear shrinking, and budding. The release of SMAC / DIABLO in the cytoplasm allows its binding to IAPs like XIAP, cIAP1, or cIAP2 thus preventing the inhibition of caspase 3 and caspase 6 by these molecules.¹⁵⁵

The extrinsic pathway is initiated by the ligation of cell death receptors such as FAS (CD95).¹⁵⁶ The activation of these receptors subsequently activates caspase 8 that can directly activate the effector caspase 3. In some cell types, caspase 8 can also activate the pro-apoptotic BID leading to mitochondria destabilization and the initiation of cytochome c mediated activation of caspase 3.¹⁵⁶

Glucocorticoids are able to induce apoptosis through interference with several apoptotic stimulus and mediators, and its action is diverse according to cell types (Figure 7).¹⁵⁵

- 47 -

Figure 7. Glucocorticoids effects on apoptosis

Glucocorticoids actions in the intrinsic and extrinsic apoptotic pathways are marked with colored GC; green GC: positively regulated and red GC: negatively regulated.

Glucocorticoids can induce the intrinsic pathway. It has been reported that glucocorticoids induce the expression of the pro-apoptotic BIM, BMF and PUMA.¹⁵⁷ Of interest, the mechanism of apoptosis induced by the glucocorticoids through BIM is independent of TP53.¹⁵⁸ Cell treatement with glucocorticoid has been shown to lead to the activation of caspase 8, caspase 9, and effector caspase 3. Also glucocorticoids were shown to induce the degradation of XIAP and cIAP1 by the proteosome and thus to abrogate their inhibitory role in the activation of caspases. Because caspase 8 is an effector of the extrinsic pathway it cannot be ruled out that glucocorticoids activate the extrinsic apoptotic pathway. Nevertheless, evidence point to a minor role of extrinsic pathway in the apoptosis induced by glucocorticoids; first because glucocorticoids were

reported to impair the synthesis of TNF α , a ligand of the TNF receptor, and second because glucocorticoids are able to induce apoptosis in the absence of BID.¹⁴⁰

Glucocorticoids require functional GR to mediate apoptotic events, since these often are due to genomic mechanisms like the transactivation of gene expression and gene transrepression.¹⁵⁹ However, some events may also involve non-genomic mechanisms.

Glucocorticoids are able to bind GRE of genes, and thus induce their transcription. While this mechanism (transactivation) may account for several of the glucocorticoids actions, especially those related with the regulation of metabolism, it probably plays a secondary role in the induction of apoptosis, since so far no GRE have been identified in pro-apoptotic genes. Many studies have been performed in order to identify genes regulated by the glucocorticoids with a role in apoptosis in lymphoid malignancies, especially in ALL.¹⁶⁰⁻¹⁶⁴ Nevertheless, when compared the results between different studies, few genes were commonly targeted by glucocorticoids, and many did not play a direct role in the apoptotic pathways. It is thought, that the apoptotic effects of the glucocorticoids rely on the targeting of multiple pathways, many of them involved in cell survival. Since, glucocorticoids inhibit the transcription of several pro-inflammatory and survival genes, this may account for cell apoptosis.¹⁵⁹

Glucocorticoids bind the transcription factor AP1 blocking its transactivation activity, thus resulting in the inhibition of the transcription of growth factors, cytokines, and survival genes.¹²³

Glucocorticoids impair the activity of the transcription factor NFKB, an important mediator of cell survival, by several mechanisms.¹²³ Glucocorticoids induce the synthesis of the inhibitor of NFKB, IkBα, thus abrogating NFKB translocation to the nucleus. Also, the glucocorticoids compete with NFKB activators resulting in decreased NFKB activity. Finally, the glucocorticoids have the ability to directly bind to NFKB impairing its functions.

- 49 -

The transcription factor MYC regulates cell cycle and proliferation and it has been shown to be implicated in cell survival. Many leukemia and lymphoma cells show increased MYC expression, suggesting a role for MYC in the neoplastic transformation. The expression of MYC inhibits apoptosis and induces cell cycle arrest. In a variety of normal and malignant hematological cells, it has been reported that glucocorticoids are able to suppress MYC.¹⁵⁵ Moreover, it has been shown that the repression of MYC activity preceded the apoptosis induced by glucocorticoids.¹⁵⁵ MYC down-regulation may be directly involved in the initiation of apoptosis in leukemic cells. The mechanism by which glucocorticoids down-regulates MYC is still unknown.

Glucocorticoids induce GILZ expression by direct targeting since the promoter of GILZ possesses six GRE.¹⁶⁵ GILZ has been shown to possess anti-proliferative activity by negative regulation of RAS signaling.¹⁶⁶ GILZ associates with RAS and RAF impairing the phosphorilation of the downstream targets: ERK, AKT, and CCND1. GILZ was as well implicated in the inhibition of the transcription factors AP1 and NFKB.^{167;168}

It is important to mention that other events have been involved in the apoptosis induced by glucocorticoids like the production of hydrogen peroxide, the production of ceramide, the change in the intracellular levels of calcium and potassium, the inactivation of PI3K, and the induction of MKP1.¹⁵⁹ Of particular relevance, glucocorticoids have been shown to inhibit IL6 survival signaling.¹⁵⁹ Glucocorticoids not only impair IL6 production but they also activate RAFTK and repress signaling through STAT3, two molecules that are implicated in cell survival signaling mediated by IL6. Moreover, a crucial role for GSK3 has been reported in the transmission of the apoptotic signaling mediated by the glucocorticoids.¹⁶⁹ This kinase is associated with the GR in the absence of glucocorticoids being released upon binding. Once free, GSK3 interacts with BIM linking the GR with a pro-apoptotic effector.

- 50 -

3.2. Mechanisms of glucocorticoid resistance to apoptosis

Glucocorticoids are widely used in the treatment of lymphoid malignancies like ALL, NHL, MM, and CLL because of their ability to prevent the growth and to cause the apoptotic death of the malignant cells.¹⁷⁰ Glucocorticoids are included in the therapy protocols of ALL in combination with anthracyclines, vinca alkaloids, and asparaginase. Regimens composed by glucocorticoids, alkylating agents, anthracyclines, and vinca alkaloids are used in the management of NHL together with the anti-CD20 antibody in patients whose cells are CD20 positive. In MM, glucocorticoids are part of the front-line treatments: dexamethasone–vincristine-doxurobicin, prednisone-melphalan, dexamethasone-bortezomibe, dexamethasone-thalidomide, and dexamethasone-lenalidomid. In CLL, glucocorticoids are mainly included in second line therapeutic regimens and a particular interest is emerging on its use in 17p13 deleted cases.

In most of the patients, the treatment with glucocorticoids leads to a remarkable reduction of malignant cells. Notwithstanding, some tumors show primary resistance to glucocorticoids and others develop secondary resistance during treatment.¹⁷¹ The resistance to glucocorticoids can be absolute and irreversible, as for the case of non-functional GR, or it can be relative, translated in a decreased sensibility to the drug over time. In this case, it could be reverted by increasing the concentration of the glucocorticoid. Multiple mechanisms could lead to glucocorticoid resistance and they could be grouped in upstream and downstream mechanisms. The former implicates the glucocorticoid receptor and co-chaperone proteins, they are often associated with primary and absolute resistance; the latter are the most common and normally are acquired during treatment, and they are the result of defects in components of the glucocorticoid pathway, or of cross-talk from other signaling pathways that interfere with the glucocorticoid one.

- 51 -

3.2.1. Upstream mechanisms of glucocorticoid resistance

The upstream mechanisms of glucocorticoid resistance include: pre-receptor defects, impaired GR expression, and deficiencies in co-chaperone proteins of the GR. The term pre-receptor defect is applied to features that reduce the levels of the available glucocorticoid. The MDR1 gene encodes for P-glycoprotein 1, a transporter protein that pumps lipophilic drugs out of the cell. The MDR1 gene is frequently over-expressed in malignant cells and is responsible for glucocorticoids and other drugs resistance, since it impairs the concentration of lipophilic drugs within the cell.¹⁷² Another mechanism that reduces the levels of glucocorticoids is their inactivation by enzymes such as 11β-hydroxysteroid dehydrogenase. A recent report has shown that high levels of 11β-hydroxysteroid dehydrogenase are associated with the resistance of T-lymphoblastic leukemia cells to prednisolone.¹⁷³

The impaired expression of functional GR can result from insufficient GR expression, from loss of function of GR due to mutations, and from expression of GR variants with reduced activity. Early studies with ALL cell lines resistant to glucocorticoid induced apoptosis have allowed the identification of numerous mutations in the GR gene that lead to its loss of function. Nevertheless, mutations in the GR are rarely found in patients with primary or relapsed ALL.¹⁷⁴ No evidence of GR mutations in patients treated with combined chemotherapy has been reported, despite it is known that chemotherapeutic regimens are likely to induce gene mutations.¹⁷⁵ Intensive research has been made in order to ascertain the functionality of the different variants of the GR and their implications in the resistance to apoptosis, but no consensus has been reached so far. The major functional variant is the GR α , the other variants lack or present shorter transactivation and ligand binding domains. Both transactivation and alterations in ligand domains account for impaired GR activity. For example, the GR β lack transactivation activity and a deficient ligand binding domain, and it has been

- 52 -

implicated in resistance to glucocorticoids in lymphoblastic cell lines.¹⁷⁶ Conversely, other reports haven't found a correlation between the levels of GR β and the resistance to glucocorticoids.^{177;178} Importantly, the basal levels of GR α present in the cell as well as the auto-induction of the GR seem to be critical to the sensitivity to apoptosis induced by glucocorticoids. Although this remains to be elucidated, since in some models glucocorticoids do not up-regulate the GR.^{109;179}

The GR is present in the cytoplasm associated with co-chaperone proteins that regulate its proper folding, the binding to glucocorticoids, and subsequent nuclear translocation. Furthermore, in the nucleus, the GR may recruit co-factors necessary for its gene regulatory activities. The levels of the GR co-chaperone proteins have been studied in ALL primary cells and no relationship has been found between the levels of HSP70, HSP90, HSP40, HIP, HOP, FKBP5, FKBP4, PPID, BAG1, and P23, and the resistance or sensitivity to glucocorticoids.¹⁸⁰ Nevertheless, other studies have described that BAG1, HSP90, and HSP70 expression levels affected the ability of glucocorticoids to induce apoptosis.^{171;181;182}

3.2.2. Downstream mechanism of glucocorticoid resistance

Glucocorticoids induce apoptosis by interference with multiple signaling networks, and resistance can come from deregulated activity of any of the components of those networks. Importantly, resistance could result from over-expression of anti-apoptotic proteins or from increased signaling through survival pathways that counteract the apoptotic actions of the glucocorticoids.¹⁷¹

The expression of anti-apoptotic proteins is a frequent feature of leukemic cells and has been associated with resistance to glucocorticoids. For instance, overexpression of BCL2 in ALL cell lines has been shown to confer resistance to apoptosis.¹⁸³ BCLXL was suggested to play a role in the protection of leukemic cells to

- 53 -

undergo apoptosis. Also, BCLXL was thought to predict responses to glucocorticoid treatment of ALL patients.¹⁸⁴ Moreover, increased expression of MCL1 is frequently observed in the gene expression signature of glucocorticoid resistant cells.¹⁶² Although the status of the BCL2 rheostat influences the sensitivity to glucocorticoid induced apoptosis, the expression of the pro and anti-apoptotic BCL2 family members is altered during the glucocorticoid exposure, and some of the protective effects of the anti-apoptotic proteins could be reverted during long term treatments.¹⁷¹ In summary, the over-expression of anti-apoptotic proteins could influence the response to glucocorticoids, but the net result depends on the cellular context and of additional signals feeding into the BCL2 rheostat.¹⁵⁷

Glucocorticoids impair the signaling of several survival pathways like the ones mediated by PI3K / AKT / mTOR, RAS / RAF / MEK / ERK, and JAK / STAT. The increased activation of such pathways has been related to resistance to glucocorticoid induced apoptosis. The loss of PTEN, a negatively regulator of PI3K / AKT signaling, is a common venue of T ALL, and the hyperactivation of the AKT pathway is frequently observed.^{185;186} AKT prevents apoptosis by impairing the activity of BAD, caspase 9, and GSK3, and by increasing the activity of IKK and MDM2.¹⁸⁷ Importantly, AKT has been shown to antagonize the apoptosis induced by the glucocorticoids in T ALL, T cell lymphoma, and follicular lymphoma cells.^{169;188} The importance of mTOR in the resistance to glucocorticoids is disclosed in the finding that mTOR inhibitors like rapamycin are able to sensitize MM, T ALL, B ALL, and Burkitt lymphoma cells to glucocorticoid induced apoptosis.¹⁸⁹

The RAS / RAF / MEK / ERK survival pathway counteracts apoptosis induced by glucocorticoids. In glucocorticoid resistant cell lines from T ALL, MM, T cell lymphoma, and Burkitt lymphoma, inhibition of ERK renders the cells sensitive to apoptosis; the same was observed in ALL primary cells.¹⁸⁹ The treatment of ALL cells with inhibitors of MEK / ERK results in increased expression of BIM and activation of BAX.¹⁹⁰ The JAK / STAT pathway is activated by the ligation of IL6 to its membrane

- 54 -

receptor. In MM, the autocrine production of IL6 is correlated with a highly malignant phenotype and with resistance to dexamethasone induced apoptosis.¹⁹¹ Moreover, other components of this pathway, for instance STAT3, were shown to be constitutively activated in some hematological malignancies, whereas the inhibition of STAT3 had rendered the cells sensitive to apoptosis.^{192;193}

3.3. Glucocorticoids in the therapeutic management of CLL

Treatment of patients with CLL has dramatically changed during the last decade with the introduction of monoclonal antibodies. Chemoimmunotherapy regimens like FCR (fludarabine, cyclophosphamide and rituximab),^{69;194} FCR plus mitoxantrone,^{195;196} or FCR plus alemtuzumab,¹⁹⁷ have proved to be highly effective in the treatment of this disease. Despite the excellent overall response and complete response rates obtained with these regimens, patients with 17p13 deletion and / or TP53 mutations usually exhibit a lower response rate, shorter progression-free survival, and overall survival.^{8;69;198} Moreover, there are patients for whom purine analog-base therapies are inappropriate, namely for those suffering from renal dysfunction due to the fact that purine analogs are eliminated predominantly through the kidneys.

The activity of glucocorticoids on CLL cells and in patients with CLL has been reported for many years. In the early nineties, it was unveiled that glucocorticoids induce the death of CLL cells by apoptosis,¹⁹⁹ they were shown to induce DNA fragmentation.²⁰⁰ This process was mediated by caspases that were able to cleave PARP, a group of enzymes involved in DNA repair.²⁰¹ Afterwards, it was shown that the conformational changes induced by the glucocorticoids in BAX and BAK were associated with the induction of apoptosis. Importantly, these changes preceded the activation of caspases and were independent of p53.²⁰² By that time, it was already known that CLL cells show considerable variability in the sensitivity to glucocorticoids, yet neither the basal levels of BAX nor the levels of the anti-apoptotic protein BCL2 were found to be related.²⁰³ Furthermore, it has been reported that glucocorticoids up-regulate mRNA and protein expression of the pro-apoptotic BIM.²⁰⁴ This finding supported the involvement of the BCL2 rheostat in the apoptosis induced by the glucocorticoids and was in line with previous observations reporting the independence of p53.

- 56 -

Additional insights in the apoptotic mechanisms of action of the glucocorticoids were provided by synergistic studies of glucocorticoids with inhibitors of the proteosome, of phosphodiesterase 4, of BCL2, and of LCK.²⁰⁴⁻²⁰⁸ The combined use of glucocorticoids and BCL2 inhibitors led to an increase in apoptosis which underscored the role of the BCL2 rheostat in the induction of the apoptosis by the glucocorticoids.²⁰⁷ Furthermore, it has been observed that survival signals that activated AKT and ERK induced the phosphorylation and further degradation of BIM by the proteosome.²⁰⁴ For this reason, it was suggested that proteosome inhibitors were able to increase the apoptosis induced by the glucocorticoids through an increase in BIM levels. Importantly, a link between the levels of BIM and the activation of AKT and ERK pathways has been reported, pointing out that the survival signals mediated by those pathways are behind the sensitivity to glucocorticoids. A recent work correlated positively the levels of LCK with the response to glucocorticoids, and showed that inhibition of LCK synergizes with glucocorticoids.²⁰⁸ LCK regulates the BCR activity, and LCK is aberrantly expressed in CLL cells. All in all, the results of this study are indicative that signaling through BCR can affect the response to glucocorticoids, and that the impairment of survival signals mediated by the BCR may sensitize cells to apoptosis.

Of major interest was the finding that cell death induced by glucocorticoids is higher in CLL with unmutated IGHV genes / high ZAP70 expression than in cases with mutated IGHV genes / low ZAP70.²⁰⁹⁻²¹² Boelens *et al* explored the possible influence of ZAP70 expression in the different responses to glucocorticoids.²¹¹ They found that glucocorticoids decreased the expression of ZAP70 and SYK, a positive effector of the responses mediated by the BCR. They also observed that glucocorticoids induced the expression of PTP1B, an enzyme that dephosphorylates SYK. The inhibition of PTP1B restored the expression of ZAP70 and the phosphorylation of SYK, but it did not affect the response to glucocorticoids. The levels of ZAP70 and the activity of SYK *per se* were not responsible for different glucocorticoid sensitivity.

- 57 -
Introduction

From the therapeutic standpoint, glucocorticoids are a feasible therapeutic option for patients with refractory disease, particularly those with TP53 abnormalities. In some clinical studies glucocorticoids were used alone, and were administered to previously treated patients, most of them with TP53 abnormalities.²¹³⁻²¹⁶ More recent publications strengthen the benefit of the combination of glucocorticoids with monoclonal antibodies such as anti-CD20 and anti-CD52.²¹⁷⁻²²¹ Finally, because of their immunosuppressive properties, glucocorticoids are indicated for the management of autoimmune diseases associated with CLL like autoimmune hemolytic anemia, idiopathic thrombocytopenia, and pure red cell aplasia.

Preliminary data in a short series of patients with CLL obtained before the beginning of this project were in line with previous reports: the CLL cases with unmutated IGHV genes / high ZAP70 expression had better responses to dexamethasone than the cases with mutated IGHV genes / low ZAP70 expression.²⁰⁹⁻²¹² This finding prompted the study of the different effects of glucocorticoids in the CLL groups defined by the mutation load of the IGHV genes and the expression of ZAP70. Moreover, with the increasing use of glucocorticoids in refractory and TP53 deleted / mutated CLL cases, the understanding of the differential effects of glucocorticoids in patients with CLL gained further interest. In this line, the disclosing of the molecular mechanism responsible for different drug sensitivities could allow the identification of particular groups of patients prone to benefit from glucocorticoid based therapies.

- 58 -

HYPOTHESIS AND OBJECTIVES

Hypothesis and Objectives

HYPOTHESIS

Glucocorticoids are frequently included in the chemotherapy regimens administered to patients with CLL because they are potent immunosuppressant agents and because they are able to induce apoptosis in CLL cells. Although used from a long time, the molecular mechanisms by which glucocorticoids induce cell death in CLL cells are largely unknown. Interestingly, CLL cells from prognostic groups defined by the mutational load of the IGHV genes and the expression of ZAP70 seem to have different responses to glucocorticoids.

The hypothesis in this thesis is that in CLL, there are genes or proteins that determine the different response to glucocorticoids among the specific prognostic groups of patients. The identification of those genes would contribute to the general knowledge of the CLL biology and would direct the design of glucocorticoid based therapies to particular groups of patients.

OBJECTIVES

1. To explore the differential response to dexamethasone in different groups of CLL, defined by the mutational load of the IGHV genes and /or ZAP70 expression.

2. To analyze the role of BIM in the apoptosis of CLL cells induced by dexamethasone.

3. To study the molecular mechanisms regulated by dexamethasone responsible for the apoptosis of CLL cells in groups defined by the mutational load of the IGHV genes / ZAP70 expression.

MATERIALS AND METHODS

1. PATIENTS SELECTION AND SAMPLE COLLECTION

A group of 50 patients from our institution with CLL diagnosis was selected on the basis of the availability of frozen samples for biological studies. Informed consent from all patients was obtained according to the Declaration of Helsinki, and the study was approved by the ethic clinical research committee of the Hospital Clinic Barcelona, Spain. Peripheral blood mononuclear cells (PBMC) were isolated from peripheral blood by Ficoll-Paque Plus (Amersham Biosciences, Buckinghamshire, United Kingdom). For that, heparinized peripheral blood was diluted with equal volume of phosphate buffered saline solution (PBS buffer) 1x (Roche Diagnostics GmbH, Mannheim, Germany) and transferred to a Falcon tube with Ficoll (half of the diluted blood volume). Then, it was centrifuged at 2000 rpm for 20 minutes at room temperature (RT). The PBMC fraction was retrieved for other tube, and washed twice with PBS buffer 1x by centrifugation at 1500 rpm for 5 minutes. Finally, cells were resuspended in fetal bovine serum (FBS) (Gibco, Paisley, Scotland, UK) in a concentration of 20x10⁶ cells/ml.

CLL PBMC were frozen in DMSO (Sigma-Aldrich, Madrid, Spain) and stored at -180°C until analysis. Cryopreservation media consisted in a mixture of three parts of DMSO, one part of FBS, and one part of RPMI medium (Gibco). The same volume of cryopreservation media was added gently to the PBMC cells resuspended in FBS. Cells were immediately frozen at -80°C and further stored at -180°C.

- 65 -

2. CULTURE OF CLL CELLS

CLL PBMC were thawed at 37°C, placed in RPMI with 10% FSB, and immediately centrifuged at 1500 rpm for 10 minutes. Then, cell pellet was resuspended in culture media in a final concentration of 1x10⁶ cells/ml. PBMCs were allowed to recuperate from thawed one hour in incubator before any manipulation. After this period, cell viability was accessed by surface annexin V binding and propidium iodide (PI) staining flow cytometry analysis as described in continuation (point 3 of this section).

3. DETERMINATION OF CELL VIABILITY

Cell viability was determined by flow cytometry by means of surface annexin V binding and propidium iodide (PI) staining. Annexin V binds phosphatidylserine residues, and PI binds nucleic acids. Phosphatidylserine is normally present in the intracellular layer of the citoplamastic membrane of mammalian cells. Due to cell membrane reorganization during apoptosis, phosphatidylserine moves to the extracellular layer. Its detection on the extracellular layer is used as a marker of early-apoptosis. On the other hand, PI cannot pass the cell membrane and it is generally excluded from viable cells. Only cells with a damage cell membrane allowed the entry and further detection of PI. Thus, PI stains late-apoptotic or necrotic cells.

According to manufacturer procedure (rh Annexin V/FITC kit, Bender MedSystems, Vienna, Austria), 2.5x10⁵ to 5x10⁵ cells were placed in PBS buffer 1x and centrifuged at 2000 rpm for 5 minutes at RT. Supernatant was removed and 200 ul of cool annexin buffer were added, and cells were resuspended. Then, 0.5 ul of annexin V labeled with fluorescein isothiocyannate (FITC) were added to cell suspension, and were incubated for 5 minutes at RT. After that, 2 ul of PI were added, and cells were immediately acquired on a FACScan[™] cytometer (Becton and Dickinson, Qume Drive, San Jose, CA) using the CELLQuest[™] software (Becton and Dickinson). Analyses were made with the Paint-A-Gate[™] software (Becton and Dickinson) taken in consideration that: early apoptotic cells stain solely for annexin V, late apoptotic cells stain for PI and annexin V, necrotic cells stain only for PI, and live cells are negative for all the stains employed. As showed in Figure 8 cell viability was determined in the lymphocyte gate and was given as the percentage of live cells in the gate.

- 67 -

Figure 8. Cell viability determination by flow cytometry by means of surface annexin V binding and propidium iodide (PI) staining

(A) Lymphocytes were gated according to FSC/SCC characteristics. (B) In the lymphocytes gate, cells were further analyzed for annexin V and PI staining. Early apoptotic cells only stain for annexin V, red events. Necrotic cells only stain for PI, blue events. Late apoptotic cells stain for annexin V and for PI, purple events. Live cells do not stain for any of the employed dye, grey events.

The viability of the cells was determined after the recover from thawing in culture for 1 hour. Only CLL samples with more than 50% of live cells were further used.

4. TREATMENT OF CLL CELLS WITH DEXAMETHASONE AND EVALUATION OF RESPONSE

CLL cells were treated *ex-vivo* with the glucocorticoid dexamethasone (DXM; Merck Farma y Quimica SL, Mollet del Valles, Spain) at a concentration of 13.25 uM based on previous reports.²⁰¹ For that, CLL cells were split in two, for control, and for incubation with DXM. After 24 hours, cell viability of both treated, and control cells, was evaluated by flow cytometry by means of surface annexin V binding and PI staining. The response to DXM was calculated as the percentage of live cells after treatment with DXM relative to the percentage of live cells in the untreated cells (left with standard medium):

% of live cells in culture with DXM x 100

Response to DXM (%) =

% of live cells in untreated culture

5. PROTEIN ANALYSIS

5.1. Protein analysis by flow cytometry

The protein analysis by flow cytometry was performed in 5x10⁵ cells previously labeled. For that, 5x10⁵ cells were retrieved from the culture and washed with PBS buffer 1x by centrifugation at 1500 rpm for 5 minutes at RT. Then, they were resuspended in approximately 100 ul of PBS buffer 1x for further membrane or intracellular protein staining. The antibodies used are listed in Table 3.

Antibody	Source	Clone	lsotype	Fluorochrome	Supplier
anti-CD3	mouse	SK7	lgG + lgK	PE	Becton and Dickinson, San Jose, CA
anti-CD56	mouse	MY31	lgG + lgK	PE	Becton and Dickinson, San Jose, CA
anti-CD19	mouse	SJ25C1	lgG + lgK	PerCP-Cy5.5	Becton and Dickinson, San Jose, CA
anti-CD5	mouse	UCHT2	lgG + lgK	APC	BD Biosciences Pharmingen, San Diego, CA
anti-ZAP70	mouse	2F3.2	lgG2a		Upstate, Lake Placid, NY
anti-mouse	goat		F(ab')2	FITC	Dako, Glostrup, Denmark

Table 3. Antibodies used in flow cytometry determinations

5.1.1. Infiltration of tumor cells

The CLL cells express the pan B receptor CD19 and CD5 on opposite to normal mature B cells. Thus, CLL cells were identified by the concomitant expression of CD19 and CD5. 10 ul of anti-CD19 labeled with peridinin chlorophyll protein-cyanin 5.5 (PerCP-Cy[™]5.5) and 5 ul of anti-CD5 labelled with allophycocyanin (APC) were added to 5x10⁵ cells previously washed and resuspended in PBS buffer 1x. After incubation for 15 minutes at RT, the cells were washed with PBS buffer 1x and centrifugated at 1500 rpm for 5 minutes at RT. Them, they were immediately acquired in a BD FACSCalibur[™] cytometer (Becton and Dickinson) using the CELLQuest[™] software. Analyses were made with the Paint-A-Gate[™] software; lymphocytes were gated based on their forward scatter / side scatter (FSC / SCC) characteristics, and the percentage of CLL cells was determined as the percentage of double positive cells for CD19 and CD5 in the lymphocyte gate.

5.1.2. Analysis of ZAP70 expression

ZAP70 is an intracellular protein and for this reason, cells had to be fixed and permeabilized before staining. To 5x10⁵ cells previously washed and ressuspended in 100 ul of PBS buffer 1x, equal volume of solution A (Fix and Perm, Caltag Laboratories, Paisley, UK) were added, and the cells were incubated for 15 minutes at RT. Cells were subsequently washed with PBS buffer 1x at 1500 rpm for 5 minutes and ressuspended in 100 ul of PBS buffer 1x. Then, equal volume of solution B (Fix and Perm) and 1.5 ug of anti-ZAP70 were added, and cells were incubated for 20 minutes at RT. Cells were washed twice with PBS buffer 1x at 1500 rpm for 5 minutes. Subsequently, 1 ul of goat anti-mouse immunoglobulin FITC was added, and cells were incubated for 20 minutes at dark at RT. Cells were washed in PBS buffer 1x at 1500 rpm for 5 minutes. Subsequently, 1 ul of goat anti-mouse immunoglobulin FITC was added, and cells were incubated for 20 minutes at dark at RT. Cells were washed in PBS buffer 1x at 1500 rpm for 5 minutes at 1500 rpm for 5 minutes. Subsequently, 1 ul of goat anti-mouse immunoglobulin FITC was added, and cells were incubated for 20 minutes at dark at RT. Cells were washed in PBS buffer 1x at 1500 rpm for 5 minutes at 1500 rpm for 5 minutes and were incubated for 5 minutes with 5 ul normal mouse serum (Dako, Glostrup, Denmark) at RT. After this, the following antibodies were added: 10 ul of anti-CD3 phycoerythrin (PE), 10 ul of anti-CD56 PE, 10 ul of anti-CD19 PerCP-Cy5.5, and 5 ul of CD5 APC. Cells were allowed to incubate 15 minutes at dark at RT, were washed in PBS buffer 1x at 1500 rpm for 5 minutes, and were acquired in

- 71 -

a BD FACSCalibur[™] cytometer. At least 1000 cells CD56 / CD3 positive were acquired per sample, and both acquisitions and analyses were done with the CELLQuest[™] software.

The expression of ZAP70 in CLL cells was calculated as the percentage of positive cells, using the expression of ZAP70 in sample T lymphocytes and NK cells as internal positivity control.⁵⁷ Lymphocytes were gated according to their FSC / SSC characteristics. Further, T lymphocytes and NK cells (CD3 and CD56 positive cells) were gated, as well as CLL cells (CD19 and CD5 positive cells). Biparametric dot graphs were constructed for T and NK cells, and for CLL cells. In the T and NK cells graph, two populations were separated according to ZAP70 expression. The cut-off value that separate ZAP70 positive from ZAP70 negative cells in the former graph, was applied in the graph of the CLL cells allowing the identification of the CLL cells. CLL cases were considered to be positive for ZAP70 expression when the percentage of ZAP70 positive cells was above 20%.⁵⁷ More details of this analysis are provided in Figure 9.

Figure 9. Determination of ZAP70 expression by flow cytometry

(A) Lymphocytes were gated (R1) according to FSC / SCC characteristics. (B) R1 events were analyzed for CD3 and CD56 expression and positive cells (T and NK cells) were gated (R2). (C) R1 events were studied for CD19 and CD5 expression, the positive cells for both markers (CLL cells) were gated (R3). (D) T and NK cells (R2 and R1 events) were analyzed for ZAP70 expression, quadrant axis were defined based on the fact that both T and NK cells are positive for CD3, CD56, and ZAP70. (E) CLL cells (R3 and R1, and not R2) were analyzed for ZAP70 expression using the quadrant axis defined in D.

5.2. Protein analysis by immunoblotting

5.2.1. Preparation of total protein cell lysates

Total protein cell lysates were prepared from CLL samples. For that, 100 ul of lysis buffer (20 mM Tris pH 7.4, 1 mM EDTA, 140 mM NaCl, and 1% NP-40) supplemented with 1x proteases inhibitor cocktail (BD Baculo GoldTM, BD Bioscience Pharmingen, San Diego, CA) and 2 mM Na₃VO₄ were added to the pellet of $5x10^6$ cells, and were incubated for 30 minutes on ice. Then, the suspension was centrifuged at 14000 rpm for 2 minutes at RT, and supernatant (cell lysate) was recovered to another eppendorf.

5.2.2. Total protein cell lysates quantification: Bradford method

Protein quantification was based on the Bradford method by means of the Bio-Rad Protein Assay (Bio-Rad Laboratories, München, Germany). The dye reagent concentrate was diluted at 40% in distilled water. A stock solution of albumin at 0.1 mg/ml in water was prepared, furthermore, five standard dilutions of albumin (1, 2.5, 5, 7.5, and 10 ug/ml) were prepared. Then, 2 ul of lysis buffer were added to 488 ul of each standard dilution, and 2 ul of each total protein cell lysate were added to 488 ul of water. All solutions were mixed with equal volume (500 ul) of diluted dye reagent, and were incubated for 10 minutes. The absorbance of the solutions was measured at 595 nm.

The values of the concentration and the absorbance of the standards were used to construct a graph, and the linear regression curve obtained was used to extrapolate the value of the protein concentration of cell lysates.

5.2.3. Protein separation and blotting

Proteins were first separated by gel electrophoresis based on their physical proprieties and then transferred to a synthetic membrane. Accordingly, 25 ug of whole cell proteins were separated on a 10% SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis), and were transferred to an Immobilon-P membrane (Millipore, Bedford, MA).

The membranes were blocked for 1 hour at RT with TBST buffer solution (20 mM Tris pH 7.5, 150 mM NaCl, and 0.1% Tween 20) containing 5% of non fat dry milk (blocking buffer solution). The membranes were ready to be incubated with primary antibodies.

5.2.4. Immunostaining and analysis of FKBP5 expression

The FKBP5 protein has 51 kDa and GAPDH, the loading control, has 36 kDa. Hence, previous to the incubation with the corresponding primary antibody, the membranes were cut in two halves at the level of the 40 kDa proteins. The upper halves contained the higher mass proteins and were incubated over night at 4°C with the anti-FKBP5 antibody (Santa Cruz Biotechnology Inc, Santa Cruz, CA) diluted at 1:500 in blocking buffer solution. The lower halves were incubated over night at 4°C with anti-GADPH antibody (Abcam, Cambridge, UK) diluted at 1:1000 in blocking buffer solution.

After extensive wash with TBST buffer solution, the detection of the proteins was performed using peroxidase linked antibodies that further catalyzed a chemiluminescent reaction. The upper and the lower halves of the membranes were incubated 1 hour respectively with anti-goat IgG Horseradish Peroxidase secondary antibody (Dako, Glostrup, Denmark), and with anti-rabbit IgG Horseradish Peroxidase

- 75 -

secondary antibody (Dako, Glostrup, Denmark), in blocking buffer solution. Afterwards, the membranes were washed twice with TBST, and a third wash with TSB buffer solution (20 mM Tris pH 7.5, and 150 mM NaCl) was made. The chemiluminescent substrate ECL[™] Western blotting detection system (Amersham Bioscience, Buckinghamshire, UK) was added. Images were captured with LAS-3000 imaging system (Fuji Photo Film Co., Carrolton, TX) and analyzed using the Image Gauge V4.0 software (Fuji Photo Film Co.). The expression of FKBP5 was normalized to the expression of GAPDH, and was expressed in arbitrary units (AU).

6. RNA EXTRACTION, QUANTIFICATION AND QUALITY CONTROL

RNA was extracted from $5x10^6$ cells with Trizol reagent (Invitrogen Life Technologies, Paisley, Scotland, UK). The cells were washed with PBS 1x, and 1 ml of Trizol reagent was added to the pellet. Cells were disrupted and homogenized with a syringe and needle. Then, 200 ul of chloroform (Sigma-Aldrich Inc, St Louis, MO) were mixed vigorously with the homogenate. Two phases were distinctly separated after centrifugation at 11,400 rpm for 10 minutes at 4°C. The aqueous phase contained the RNA, and was collected to another eppendorf. The RNA was precipitated over night at -20°C with equal volume of 2-propanol (Sigma-Aldrich Inc, St Louis, MO), and was retrieved by centrifugation at 14,000 rpm for 10 minutes at 4°C. Afterwards, RNA was washed twice with 1 ml ethanol 75% (prepared by dilution of absolute ethanol (Merck, Darmstadt, Germany) in DEPC H₂O (Ambion, Foster City, CA)), and was dissolved in DEPC water. The RNA was immediately used, or stored at -80°C.

The quantification of the RNA was made in a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific Inc, Waltham, MA) at 260 nm. The quality of the RNA was accessed with an Agilent 2100 Bioanalyser (Agilent Technologies, Santa Clara, CA) (Figure 10). Briefly, the RNA samples were separated by electrophoresis in microfabricated chips, and the RNA fragments were visualized via laser induced fluorescence detection. Then, the software generated an electropherogram and a gel-like image that allowed the visualization of the integrity of the RNA samples. Moreover, the software calculated the ribosomal ratio (ratio between the ribosomal subunits 28S and 18S) and the RIN (RNA integrity number). The RIN algorithm attributed RNA samples a number from 1 to 10 to score their integrity, being 1 the most degraded and 10 the most intact.

RNA quality is of major importance in microarray analysis and only samples with RIN above 8 were processed.

- 77 -

Figure 10. Electropherogram and gel-like image obtained with the Agilent 2100 Bioanalyser

(A) Analysis of a high quality RNA sample with a RIN of 9.2. (B) Analysis of a partially degraded RNA sample with a RIN of 5.8.

7. SYNTHESIS OF COMPLEMENTARY DNA

Complementary DNA (cDNA) was synthesized from 1 ug of RNA. RNA was diluted in H₂O DEPC in a final volume of 19 ul, and subsequently denaturalized at 65°C for 5 minutes. Meanwhile, 21 ul of premade cDNA mix (85.5 ul of 25 mM dNTPs (Roche Diagnostics GmbH, Mannheim, Germany), 21.5 ul of 0.1 mM DTT (Invitogen, Carlsbad, CA), 64 ul Hexanucleotide mix 10x (Roche Diagnostics GmbH, Mannheim, Germany), 428 ul 5x First strand buffer (Invitogen, Carlsbad, CA) and 401 ul H₂O DEPC) were supplemented with 1.4 ul of 200 U/ul Moloney-murine leukaemia virus reverse transcriptase (Invitogen, Carlsbad, CA) and 0.72 ul of 40 U/ul rRNAsin (Promega, Madison, WI). After the denaturalization of the 19 ul of RNA, 21 ul of the completed cDNA mix were added and incubated for 1 hour and 40 minutes at 37°C. The reaction was then stopped by increasing the temperature to 65°C for 10 minutes.

8. DETERMINATION OF THE MUTATIONAL STATUS OF THE IGHV GENE

The IGHV gene rearrangements were studied by polymerase chain reaction (PCR) in six independent reactions, one for each of the 6 IGHV subgroups, using sense primers complementary to the corresponding leader regions. The antisense primer used was complementary to the constant region, and was the same in the 6 reactions. Since CLL cells preferentially express IgM and IgD, the antisense primer used was complementary to IGHM. In the CLL cases that express IgG, the amplification of the IGHV rearrangement was achieved with the antisense primer against IGHG (BIOMED-2 protocol ²²²) (Figure 11).

SENSE PRIMERS:					
IGHV1 and 7:	5'- CTC ACC ATG GAC TGG ACC TGG AG -3'				
IGHV2:	5'- ATG GAC ACA CTT TGC T(A/C)C AC(G/A) CTC -3'				
IGHV3:	5'- CCA TGG AGT TTG GGC TGA GCT GG -3'				
IGHV4:	5'- ACA TGA AAC A(C/T)C TGT GGT TCT TCC -3'				
IGHV5:	5'- ATG GGG TCA ACC GCC ATC CT(C/T) G - 3'				
IGHV6:	5'- ATG TCT GTC TCC TTC CTC ATC TTC -3'				
ANTISENSE PRIMERS:					
IGHM:	5'- GGA ATT CTC ACA GGA GAC GAG G -3'				
IGHG:	5'- CTG AGT TCC ACG ACA CCG TCA -3'				

Figure 11. Sense and antisense primers used in the amplification of the IGHV rearrangements.

The PCRs mixes consisted in 2.5 ul of cDNA, 0.8 pmol/ul of sense and of antisense primer (Sigma-Aldrich Inc, St Louis, MO), 0.2 mM of dNTPs (Roche Diagnostics GmbH), 1.5 mM of MgCl₂ (Genecraft, Cologne, Germany), and 0.075 U/ul of Taq DNA Polymerase (SupraTherm[™] Taq DNA polymerase, Genecraft, Cologne, Germany) in buffer solution (Reaction buffer solution, Genecraft), in a final volume of

25 ul. The PCRs were performed in an Eppendorf Mastercycler (Eppendorf, Hamburg, Germany); a denaturalization step of 1 minute at 95°C was made followed by 30 cycles of: 30 seconds at 94°C (denaturalization), 30 seconds at 55°C (annealing), and 30 seconds at 72°C (extension); a final step of extension of 7 minutes at 72°C was done. The PCR products were further analyzed in a gel of 2% in agarose in order to identify the IGHV subgroup in usage. The corresponding PCR product was subsequently purified with the PowerPrep[™] Express PCR purification kit (Origene, Rockville, MD) according to manufacturer instructions.

Finally, the purified PCR product was sequenced based on the Sanger method using the ABI Big Dye Terminator Cycle Sequencing Ready Reaction v3.1 (Applied Biosystems, Foster City, CA). The sequencing reaction mix consisted in 8 ul of the purified PCR product, 0.1875 uM of the corresponding IGHV subgroup leader primer, and 3 ul of the Big Dye premix (Applied Biosystems), in a final volume of 20 ul in BDT buffer solution (BDT buffer solution $5x = 400 \text{ mM Tris HCl} + 10 \text{ mM MgCl}_2$, pH 9.0). The sequencing reaction was performed in an Eppendorf Mastercycler (Eppendorf); an initial denaturalization step of 3 minute at 94°C was made followed by 25 cycles of: 30 seconds at 96°C (denaturalization), 15 seconds at 50°C (annealing), and 4 minutes at 60°C (extension). The sequencing reaction product was purified. For that, 5 ul of 125 mM EDTA and 60 ul of 100% ethanol were mixed and incubated for 15 minutes at 4°C. The mix was further centrifuged for 15 minutes at 14,000 rpm at 4°C, and the supernatant was discharged. Afterwards, 60 ul of 70% ethanol were added, and the mix was centrifuged for 5 minutes at 14000 rpm at 4°C. The supernatant was discharged, and the sequencing reaction product was allowed to dry in the dark. Subsequently, it was stored at -20°C until being sequenced in an ABI Prism 3130XL Genetic Analyser (Applied Biosystems).

The nucleotide sequences were visualized with the Chromas Lite software (Technelysium Pty Ltd, Tewantin, Australia), and the analyses were performed with the

- 81 -

IMGT/V-QUEST software (Centre National de la Recherche Scientifique, Montpellier, France).²²³

The IGHV mutational load was calculated as the percentage of germline identity, which means the percentage of the nucleotides in the sequence identical to the germline sequence. The sequences were studied from the FR1 to the FR3. The IGHV genes were classified as mutated (<98% germline identity) and unmutated (100% germline identity) according to previous works.⁷

9. QUANTIFICATION OF BIM, GILZ, AND FKBP5 BY QRT-PCR

The levels of mRNA of the gene BIM, GILZ, and FKBP5 were determined by quantitative real time polymerase chain reaction (QRT-PCR). The TaqMan[®] Probebase chemistry (Applied Biosystems) was used, and all probes were pre-developed TaqMan[®] assays. The assays for BIM, GILZ, and FKBP5 consisted in two unlabeled PCR primers and a FAM dye labeled TaqMan® MGB probe, and were respectively: Hs00197982_m1, Hs00608272_m1, and Hs01561001_m1. The Glucoronidase beta (GUS) gene was used as endogenous control, and its pre-developed assay consisted in two unlabeled PCR primers and a VIC dye labeled TaqMan® MGB probe. Of note, all the assays spanned an exon junction thus avoiding the detection of genomic DNA.

The QRT-PCR reactions were prepared in a final volume of 25 ul with 2 ul of cDNA, 12.5 ul of TaqMan[®] Universal MasterMix (Applied Biosystems, Branchburg, NJ), and 1.25 ul of the correspondent Custom TaqMan[®] assay. The QRT-PCR reactions were run in the ABI PRISM 7900HT sequence detection system (Applied Biosystems) and the following thermal cycling parameters were used: 2 minute at 50°C, 10 minutes at 95°C, and 40 cycles of 15 seconds at 95°C and 1 minute at 60°C.

For each cDNA sample, they were performed three QRT-PCR reactions for the gene of interest and two reactions for the control gene. The respective averages of the Ct values of the gene of interest and of the control were considered. Only the determinations with standard deviation (SD) of the Ct values below 0.2 were validated.

The Ct value is the fractional cycle number at which the fluorescence passes the fixed threshold (Figure 12). The relative quantification of gene expression was made applying the comparative Ct method ($\Delta\Delta$ Ct). Accordingly, the average Ct value of the gene of interest was normalized to the average Ct value of the endogenous control (Δ Ct = Ct (gene of interest) – Ct (GUS)). Then, the Δ Ct value of the sample in study was normalized to the Δ Ct value of a commercial sample (Human Reference

- 83 -

RNA, Applied Biosystems) used in all experiments ($\Delta\Delta$ Ct = Δ Ct study sample - Δ Ct commercial sample). The levels of mRNA expression were the result of the 2 - $\Delta\Delta$ Ct and were given as arbitrary units (AU).

The induction of gene levels (fold change) was determined as the ratio between the levels of mRNA expression in the cells treated with dexamethasone and the levels of mRNA expression in the untreated cells.

Figure 12. Analysis of the QRT-PCR data

 ΔRn is the fluorescence of the reporter dye divided by the fluorescence of the passive reference dye ROXTM minus the baseline. Threshold is the average standard deviation of ΔRn for the early PCR cycles, multiplied by an adjustable factor. The threshold is represented by the green line. The fluorescence emitted by the gene of interest is represented by the red line. (A) ΔRn is plotted against PCR cycle number. The Ct value of the gene of interest is the cycle number at which the fluorescence emitted exceeds the threshold. (B) log (ΔRn) is plotted against the PCR cycle number. This representation shows the exponential growth of the PCR product and the threshold set in the exponential zone.

10. GENE EXPRESSION PROFILING ANALYSES

Gene expression profiling analyses were performed with the GeneChip® Human Genome U133 Plus 2.0 arrays (Affymetrix Inc, Santa Clara, CA). These arrays allow the analysis of transcription over the entire human genome with a single measurement. They consist in more than 54,000 probe sets that recognized over 47,000 transcripts and variants, including approximately 38,500 well characterized human genes. This array uses small oligos of 25 bp, and only a sample is studied per chip. There are 2 types of oligos, perfect match oligos, their nucleotide sequence is 100% homologue to the gene sequence, and mismatch oligos, which have a nucleotide change in the middle of the oligo sequence and are used to identify unspecific hybridizations. Each probe set of the array is formed by eleven pairs of perfect match oligos / mismatch oligos.

The first step in the microarray analysis is the preparation of the samples and of the poly-A RNA controls (Eukaryotic Poly-A RNA Control Kit, Affymetrix Inc) (Figure 13). For the sample, 2 ug of total RNA were reverse transcribed using a T7-Oligo(dT) Promoter Primer (One-Cycle cDNA Synthesis Kit, Affymetrix Inc), and the first strand cDNA was obtained. Then, it was synthesized the second cDNA strand (One-Cycle cDNA Synthesis Kit, Affymetrix Inc), and the double strand cDNA was cleanup (GeneChip Sample Cleanup Module, Affymetrix Inc). Next, cDNA was transcribed in biotin-labeled cRNA by means of an in vitro transcription reaction in the presence of T7 RNA Polymerase and of biotinylated nucleotide analog / ribonucleotide mix (GeneChip IVT labeling Kit, Affymetrix Inc). The biotin-labeled cRNA was cleaned-up and quantified, and subsequently fragmented by metal-induced hydrolysis (GeneChip Sample Cleanup Module, Affymetrix Inc).

The second step in microarray analysis is the hybridization of the biotin-labeled cRNA samples and controls (GeneChip® Hybridization Wash and Stain Kit, Affymetrix Inc).

- 85 -

Further steps consist in the setting up of the fluidics station (Fluidics Station 450/250, Affymetrix Inc), the washing and staining of the probe array, and the scanning (GeneChip®Scanner 3000 7G, Affymetrix Inc). All of the procedures were performed according to manufacturer recommendations. The GeneChip® Operating Software (GCOS) and the Affymetrix® Expression Console® software (Affymetrix Inc, Santa Clara, CA) were used.

Figure 13. Schematic representation of the steps of the genome wide expression analysis.

The intensity data generated from scanning was subsequently processed. In this study, it was used the *RMA* (*fRMA*) methodology, a package running on R platform, which only takes in account the fluorescence emitted by the hybridization to

the perfect match oligos.²²⁴ Initially, the probe intensities were corrected against the background. Then, the fluorescent intensities were normalized in order to remove variations due to the preparation and hybridization of the samples. This approach allows further comparisons of data from different arrays. At last, the probe set intensities were summarized into probe set expressions.

The matrix with the probe set expressions data was filtered out for the probe sets with expression levels above 5, and was subsequently analyzed with the TM4 Software Suite.²²⁵ The unsupervised hierarchical clustering analysis of the data, in which the probe sets were grouped into clusters according to their pattern of expression, was performed.

Further, the statistical differential expression analysis was made. This is a supervised analysis, the samples are previously assigned to a group, and statistical tests are applied in order to retrieve the probe sets differently expressed between groups. It was used the *limma* package from the Bioconductor project, *limma* applies the empirical Bayes method to moderate the standard errors of the estimated log-fold changes.^{226;227} Only the changes in gene expression with a false discovery rate (FDR) value lower than 0.05 and a logRatio>|0.75| were considered.

The online tool David was used for the functional annotation analysis based on Gene Ontology (GO).²²⁸ The lists of significant probe sets were also analyzed with IPA (Ingenuity® Systems, www.ingenuity.com).

- 87 -

11. STATISTICAL ANALYSES

For discrete parameters, in the descriptive statistics were included counts and frequency distributions. For quantitative variables, statistical measures included mean, medians, standard deviation, and range. The comparisons between groups were done with the Mann-Whitney test. Correlations between measures were performed using a parametric linear regression model, and Pearson correlation coefficients (R²) were recorded. For all comparisons, P-values were two-sided, and the type I error was set at 5%. Statistical analyses were done with the use of SPSS v18.0 software (IBM, Somer, NY) and GraphPad Prism v5.0 software (La Jolla, CA).

RESULTS

Results

1. ANALYSIS OF THE RESPONSE OF CLL CELLS TO DEXAMETHASONE TREATMENT ACCORDING TO THE MUTATIONAL STATUS OF THE IGHV GENES AND THE EXPRESSION OF ZAP70

Glucocorticoids are able to induce the apoptosis of CLL cells. Recent reports have shown that CLL cells from patients with unmutated IGHV genes / high ZAP70 expression show better responses to the in vitro treatment with prednisolone or methylprednisolone than cells from patients with mutated IGHV genes / low ZAP70 expression.²⁰⁹⁻²¹² Although it was expected that CLL cells treated with other glucocorticoids would show different response according to the mutational status of the IGHV genes or the expression of ZAP70, a series of CLL cases was study for the response to the *in vitro* treatment with dexamethasone.

Samples from 50 patients diagnosed with CLL were selected. The percentage of CLL cells in the PBMC samples and the viability of the cells were determined after the recover from thawing in culture for 1 hour. The mutational status of the IGHV genes was determined, and the expression of ZAP70 was accessed by flow cytometry. The CLL cells were treated with dexamethasone for 24 hours, and the response was evaluated. The main characteristics of the series are summarized in Table 4.

 Table 4. Clinic-biological characteristics and response to the treatment with dexamethasone of the series of patients with CLL

 Sample Conder Age 13q14 11q22-q23 17p13 trisomy ZAP70 IGHV CLL cells Cell viability Live cells Binet TRE

number	Gender	(vears)	deletion	deletion	deletion	12	(%)	category	(%)	(%)	(%)	stage	TPS
1	М	71	ves	no	no	no	6	MCLL	86	67	94	А	no
2	F	71	no	no	no	no	7	MCLL	80	85	96	А	no
3*	F	44	ves	no	no	no	6	MCLL	90	52	100	А	no
4	М	69	no	no	no	yes	2	MCLL	73	71	93	А	no
5	М	70	no	no	no	no	10	MCLL	53	60	81	А	no
6	М	60	yes	no	no	no	5	MCLL	85	78	78	А	no
7	М	64	yes	no	no	no	1	MCLL	84	86	94	А	yes
8	М	65	yes	no	no	no	4	MCLL	82	79	89	А	no
9*	М	71	no	no	no	no	2	MCLL	85	65	100	А	no
10	F	49	yes	no	no	no	11	MCLL	76	53	89	А	no
11	М	48	yes				0	MCLL	86	73	84	А	no
12	F	40	yes	no	no	no	6	MCLL	78	76	76	А	yes
13*	F	47	yes	no	no	no	2	MCLL	81	72	99	А	yes
14	F	50	no	no	no	no	6	MCLL	72	73	90	Α	no
15	М	41	yes	no	no	no	15	MCLL	90	76	49	В	yes
16	М	56	no	no	no	no	3	MCLL		83	78	Α	no
17	М	69	no	no	no	no	0	MCLL	73	77	75	А	no
18	М	62	yes	no	no	no	4	MCLL		75	74	А	no
19	М	45	yes	no	no	no	2	MCLL	93	90	86	С	yes
20*	М	63	no	no	no	no	3	MCLL		57	85	А	no
21*	М	68	yes	no	no	no	6	MCLL	78	78	91	А	no
22	М	56	no	no	no	no	1	MCLL	65	89	86	А	no
23	F	76	yes	no	no	no	12	MCLL	64	68	74	А	no
24	М	53	yes	no	no	no	13	MCLL	68	86	93	А	no
25	Μ	58	yes	yes	yes	no	77	UCLL	80	83	52	А	no
26*	Μ	30	no	no	no	no	73	UCLL	83	72	53	Α	yes
27*	F	60	no	no	no	no	35	UCLL	89	61	66	А	no
28	М	46	no	no	no	no	60	UCLL	64	80	83	В	yes
29	М	57	no	yes	no	no	64	UCLL	92	72	70	А	no
30*	М	55	no	no	no	yes	60	UCLL	83	72	64	А	yes
31*	М	54	yes	no	no	no	36	UCLL	81	87	52	А	no
32	М	72	no	no	no	no	30	UCLL	91	84	61	A	yes
33	М	74	no	no	no	yes	90	UCLL	89	70	89	Α	yes
34*	M	61	yes	no	yes	no	51	UCLL	88	83	42	A	yes
35*	M	61	yes	no	no	no	51	UCLL	95	84	56	A	yes
36	M	49	no	no	no	no	39	UCLL	87	80	79	A	no
37	F	70	no	no	no	yes	73	UCLL	84	65	86	A	no
38	F	48	no	yes	no	no	30	UCLL	82	53	50	В	no
39	M	48	yes	no	no	no	69	UCLL	84	80	64	A	yes
40	F	41	yes	no	no	no	70	UCLL	94	79	66	A	yes
41	M	46	no	no	no	yes	73	UCLL	83	92	68	A	yes
42	M	58	no	no	no	no	70	UCLL	94	89	97	A	no
43*	F	69	yes	no	no	no	75	UCLL	90	91	66	A	yes
44	M	45	yes	no	no	no	49	UCLL	95	83	75	В	yes
45	M	79					26	UCLL	90	90	67	A	no
46	M	82	yes	no	no	no	46	UCLL	80	88	83	В	yes
4/	IVI	56	yes	no	no	no	5	UCLL	87	84	79		
48'	F	63	yes	no	yes	no	1		94	89	80	А	yes
49	F	54	yes	no	yes	no	59		94	67	84	В	no
50	М	67	yes	no	yes	yes	30		64	87	69	A	no

M: male; F: female; MCLL: CLL case with mutated IGHV gene; UCLL: CLL case with unmutated IGHV gene; Live cells (%): percentage of live cells after treatment with dexamethasone relative to the percentage of live cells in the untreated cells; TPS: treatment prior to sampling; *CLL case selected for GEP analysis; [†] CLL case with 17p13 deletion, low ZAP70 expression, and poor response to dexamethasone.

Results

The median age at diagnosis was 58 years (range, 30-82 years), and there was a male predominance (72%). The mean percentage of CLL cells found in the PBMCs was 83% ±10 (mean percentage of CLL cells ±SD), and the mean percentage of cell viability after thawing in this series was 77% ±11 (mean percentage of cell viability ±SD). Binet clinical stage at diagnosis was known for 49 out of the 50 patients: 85.7% of the patients were stage A, 12.2% stage B, and 2% stage C. For 30 patients, samples were obtained before the onset of treatment. The ZAP70 expression was considered high in 48% of the patients. The IGHV mutational status was assessed in 47 cases, and 23 of them (49%) have unmutated IGHV genes (UCLL). All the cases having mutated IGHV genes (MCLL) had low ZAP70 expression, whereas only one UCLL case showed a low expression of ZAP70. Thus, and as described before,⁵⁷ the ZAP70 expression and the mutational status of the IGHV genes were correlated in this CLL series, R²=0.918. FISH analyses of the main CLL chromosomal abnormalities were performed in 48 out of 50 patients, at the time the samples were obtained. According to the hierarchical model,⁸ 45.8% of the patients showed isolated 13q14 deletion, 10.4% 17p13 deletion, 10.4% trisomy 12, 4.2% 11q22-q23 deletion, and 29.2% presented no abnormality.

After 24 hours of treatment with 13.25 μ M dexamethasone, the percentage of live cells relative to untreated cells ranged from 42% to 100%. Notably, UCLL cases (n=23) had a significantly better response to dexamethasone than MCLL cases (n=24) (mean percentage of live cells ±SD: 68% ±14.0 vs 85% ±11.3; P<0.001; Figure 14A). In agreement, the response to dexamethasone was also better in cases with high ZAP70 expression (n=24) than in those with low ZAP70 (n=26) (mean percentage of live cells ±SD: 68% ±13.9 vs 85% ±11.0; P<0.001; Figure 14B).

- 93 -

CLL cells were treated with 13.25 µM dexamethasone for 24 hours, and the percentage of live cells was determined by annexinV / PI staining. (A) Response to dexamethasone in UCLL and in MCLL. UCLL cases show significantly higher response to dexamethasone in terms of percentage of live cells than MCLL cases. (B) Response to dexamethasone in high and low ZAP70 expression groups. CLL cases with high ZAP70 expression have better response to dexamethasone than cases with low ZAP70. Horizontal bars represent the mean values of live cells.

2. ANALYSIS OF THE RESPONSE OF CLL CELLS TO DEXAMETHASONE ACCORDING TO HIGH-RISK GENETIC ABNORMALITIES

Deletions or mutations in TP53 are related with resistance to many chemotherapy agents since those agents induce apoptosis through DNA damage.²²⁹ Likewise, alterations in other components of the DNA damage response pathway like ATM, have been associated with treatment resistance.²²⁹

It has been shown that glucocorticoids induced apoptosis independently of the DNA damage response pathway,²⁰² thus CLL cells with deletions in 17p13 (TP53) and 11q22-q23 (ATM) should present equivalent responses to dexamethasone as the cells without those abnormalities. Remarkably, the cases with 17p13 and 11q22-q23 deletions (n=7) had even better responses to dexamethasone than the cases without these high-risk genetic abnormalities (n=41) (mean percentage of live cells ±SD: 64% ±16.2 vs 79% ±13.9; P=0.026) (Figure 15A).

Of note, the only case with 17p13 deletion and low ZAP70 expression disclosed a poor response to dexamethasone (sample number 48, Table 4). Moreover, after excluding the cases with high-risk genetic abnormalities (17p13 and 11q22-q23 deletions), ZAP70 expression retained its predictive value for the response to dexamethasone (mean percentage of live cells \pm SD: high ZAP70 (n=17) 71% \pm 13.1 vs low ZAP70 (n=24) 85% \pm 11.4; P=0.001) (Figure 15B).

- 95 -

CLL cells were treated with 13.25 µM dexamethasone for 24 hours, and the percentage of live cells was determined by annexinV / PI staining. (A) Response to dexamethasone in CLL cases with high-risk genetic abnormalities (17p13 and 11q22-q23 deletions) and in cases without high-risk genetic abnormalities (Other). CLL cases with high-risk genetic abnormalities show significantly higher response to dexamethasone, in terms of percentage of live cells, than the CLL cases without high-risk genetic abnormalities. (B) Response to dexamethasone in high and low ZAP70 expression groups of CLL cases without high-risk genetic abnormalities. CLL cases without high-risk genetic abnormalities and with high ZAP70 expression have better response to dexamethasone than cases without high-risk genetic abnormalities and with high ZAP70 expression have better response to dexamethasone than cases without high-risk genetic abnormalities and with high ZAP70 expression have better response to dexamethasone than cases without high-risk genetic abnormalities and with high ZAP70 expression have better response to dexamethasone than cases without high-risk genetic abnormalities and with high ZAP70 expression have better response to dexamethasone than cases without high-risk genetic abnormalities and with high-risk genetic abnormalities and with low ZAP70 expression. Horizontal bars represent the mean values of live cells.

3. INDUCTION OF BIM EXPRESSION BY DEXAMETHASONE

The expression of BIM has been reported to be induced by dexamethasone, at both mRNA and protein level, in different cellular models including in CLL cells.^{161;204;230-232} BIM is a BH3-only pro-apoptotic protein and a downstream mediator of dexamethasone induced cell death. Therefore, the magnitude of the response to dexamethasone and the degree of BIM induction should be related. To ascertain this reasoning, the degree of BIM induction was evaluated by QRT-PCR in 43 CLL samples after 24 hours of dexamethasone treatment. The response to dexamethasone was also determined after 24 hours by flow cytometry; results are shown in Table 5.

Sample number	ZAP70 category	IGHV category	Live cells (%)	BIM FC	Sample number	ZAP70 category	IGHV category	Live cells (%)	BIM FC
1	low	MCLL	94	1.77	24	low	MCLL	93	2.45
2	low	MCLL	96	2,55	25	high	UCLL	52	3.32
3	low	MCLL	100	2.06	26	high	UCLL	53	5.86
4	low	MCLL	93	1.88	27	high	UCLL	66	3.36
5	low	MCLL	81	1.89	28	high	UCLL	83	2.51
6	low	MCLL	78	3.53	29	high	UCLL	70	4.08
7	low	MCLL	94	3.39	30	high	UCLL	64	4.38
8	low	MCLL	89	3.1	31	high	UCLL	52	5.66
9	low	MCLL	100	1.72	32	high	UCLL	61	2.08
10	low	MCLL	89	2.5	33	high	UCLL	89	1.24
11	low	MCLL	84	2.2	34	high	UCLL	42	3.07
12	low	MCLL	76	2.33	35	high	UCLL	56	5.35
13	low	MCLL	99	1.37	36	high	UCLL	79	4.2
14	low	MCLL	90	2.53	37	high	UCLL	86	1.7
15	low	MCLL	49	3.92	38	high	UCLL	50	2.33
16	low	MCLL	78	1.78	39	high	UCLL	64	6.28
17	low	MCLL	75	2.99	40	high	UCLL	66	2.71
18	low	MCLL	74	3.46	42	high	UCLL	97	1.92
19	low	MCLL	86	3.68	43	high	UCLL	66	2.68
20	low	MCLL	85	2.14	44	high	UCLL	75	8.57
21	low	MCLL	91	2.22	47	low	UCLL	79	4.14
23	low	MCLL	74	3.01					

Table 5. Induction of BIM mRNA expression follow dexamethasone treatment

MCLL: CLL case with mutated IGHV gene; UCLL: CLL case with unmutated IGHV gene; Live cells (%): percentage of live cells after treatment with dexamethasone relative to the percentage of live cells in the untreated cells; BIM FC: BIM fold change. Sample number according to Table 4.

Results

The levels of BIM mRNA increased after the treatment of CLL cells with dexamethasone (range from 1.24 to 8.57) and the degree of BIM induction was higher in those cases with higher levels of cell apoptosis. An inverse correlation between BIM induction and the percentage of live cells was observed (P=0.001; Figure 16). It is important to note that in all cases the treatment with dexamethasone induced the expression of BIM, even in those with poor or null response to dexamethasone, evaluated at 24 hours of treatment.

Figure 16. Correlation between the induction of BIM and the response to dexamethasone CLL cells were treated with 13.25 μ M of dexamethasone for 24 hours and then both BIM fold change and response to treatment with dexamethasone were determined. The scatter-plot shows a linear correlation between induction of BIM and response to dexamethasone.

Moreover, the CLL cases with unmutated IGHV genes (n=20) showed higher levels of BIM induction than the cases with mutated IGHV genes (n=23) (mean BIM fold change \pm SD: 3.77 \pm 1.84 vs 2.54 \pm 0.71; P=0.018; Figure 17A). As well, the levels of BIM induction were higher in the group of CLL cases with high ZAP70 expression (n=19) than in the group with low ZAP70 (n=24) (mean BIM fold change \pm SD: 3.75 \pm 1.89 vs 2.61 \pm 0.78; P=0.042; Figure 17B). These findings are in agreement with the better response to dexamethasone observed in the CLL cases with unmutated IGHV genes and high ZAP70 expression.

CLL cells from 43 cases were treated with 13.25 µM of dexamethasone for 24 hours, and afterwards both BIM fold change and response to dexamethasone treatment were determined. (A) CLL cases with unmutated IGHV (UCLL) genes have a significantly higher induction of BIM than the cases with mutated IGHV genes (MCLL). (B) CLL cases with high ZAP70 expression have a significantly higher induction of BIM than the cases with low ZAP70. Horizontal bars represent the mean values of BIM induction.

The presented results were indicative that the different responses to dexamethasone observed among CLL cases are due to events occurring before BIM. In order to determine the best time point to identify the genes regulated by dexamethasone that acted upstream BIM, the kinetics of BIM induction was studied. For that, the levels of BIM mRNA were analyzed by QRT-PCR at different time points, in primary cells from 7 patients with CLL (Figure 18).

- 99 -

	BIM fold change								
Time (h)	LZ-CLL4	HZ-CLL26	HZ-CLL29	HZ-CLL30	HZ-CLL31	HZ-CLL34	HZ-CLL 35		
3	1.55	2.99	1.49	2.33	2.71	2.31	2.36		
6	1.82	4.86	3.48	2.97	4.17	2.5	3.07		
9	1.92	5.82		3.01	5.31	3.07	3.46		
24	1.88	5.86	4.08	4.38	5.66	3.07	5.35		

Figure 18. Time-course of the induction of BIM after treatment with dexamethasone

CLL cells from 7 cases were treated with 13.25 µM dexamethasone and BIM levels were evaluated at 3, 6, 9, and 24 hours by QRT-PCR. Results are expressed as the BIM fold change. HZ-CLL stands for high ZAP70 expression and LZ-CLL for low ZAP70 expression; the number after CLL is the sample number according to table 4 and 5. The induction of BIM is high in the initial hours of treatment with dexamethasone and stabilizes after 9 hours.

As early as after 3 hours of treatment, an increase in BIM mRNA was already detected. In five of the cases, levels kept increasing up to 9 hours, and then remained stable, whereas in the other two cases, an additional increase in BIM levels was observed from 9 to 24 hours. The time point 6 hours was selected for further studies since it preceded the highest levels of BIM induction observed after dexamethasone treatment.

4. GENE EXPRESSION PROFILING ANALYSES OF CLL SAMPLES TREATED WITH DEXAMETHASONE

GEP analyses were performed in a series of CLL samples to identify genes potentially implicated in the differential response to dexamethasone. For this, 7 CLL samples with high ZAP70 expression and 5 with low ZAP70 expression were selected (Table 4). Tumor cells were treated with dexamethasone or left with standard medium for 6 hours, and total RNA was extracted and further processed.

The unsupervised analysis of the expression data was performed using the 1,000 probe sets showing the highest variability. The sample pairs, treated and untreated cells from the same patient, clustered together. Moreover, two main branches were defined, one included the cases with high ZAP70 expression, and the other the cases with low ZAP70 expression (Figure 19). This indicated that the different responses to dexamethasone observed between the CLL cases with high ZAP70 expression and with low ZAP70 expression were reflected in GEP.

Figure 19. Unsupervised analysis of the 1,000 probe sets with the most variable expression

Dendogram representing the unsupervised analysis of the 1,000 probe sets with the most variable expression applying the hierarchical clustering algorithm. DXM stands for dexamethasone treated cells, and UNT stands for untreated cells. HZ stands for high ZAP70 expression, and LZ stands for low ZAP70 expression; the number after CLL is the sample number according to Table 4.

4.1. Independent analyses of gene expression profiling of the CLL groups defined by ZAP70 expression

The effect of dexamethasone treatment was independently analyzed in the high and low ZAP70 groups by means of supervised analysis. It has been found that dexamethasone treatment up-regulated the expression of 314 probe sets (153 genes) in the group with high ZAP70 expression, whereas in the low ZAP70 group a total of 226 probe sets (118 genes) resulted up-regulated (Appendix 1). Moreover, dexamethasone treatment induced the down-regulation of 219 probe sets (153 genes) in CLL cases with high ZAP70 expression, and of 222 probe sets (155 genes) in cases with low ZAP70 expression (Appendix 2).

The list of the probe sets up-regulated in the cases with high ZAP70 expression was compared with the list of probe sets up-regulated in the cases with low ZAP70 expression, and additional lists with the common and uncommon up-regulated probe sets were retrieved. The same approach was done with the lists of down-regulated probe sets. Next, these lists of probe sets were separately analyzed for functional annotation using gene ontology (GO) categories for "biological processes" allowing for the discovery of overrepresented categories of genes.

Functional annotation analysis of the up-regulated genes revealed that the most significant GO categories in the high and low ZAP70 groups were related to apoptosis, although the high ZAP70 group presented more probe sets (18 genes) in the terms related to apoptosis than the low ZAP70 group (15 genes) (Figure 20).

GO biological process	N genes	%	p-value	Benjamin
regulation of apoptosis	18	10.7	8.1x10 ⁻⁴	6.5x10 ⁻¹
regulation of programmed cell death	18	10.7	9.0x10 ⁻⁴	4.5x10 ⁻¹

Figure 20. Most significant biological processes targeted by the genes up-regulated by dexamethasone according to ZAP70 expression groups

Among the upregulated genes, 190 probe sets were shared by both ZAP70 expression groups, whereas 124 probe sets were only up-regulated in samples with high ZAP70 expression, and 36 probe sets were only up-regulated in samples with low ZAP70 expression. Interestingly, the analysis of the common 190 probe sets showed

Results

that the most enriched category was *regulation of lymphoid activation*, which included genes such as IL7R and CTLA4. Of note, analysis of the 124 probe sets solely upregulated in samples with high ZAP70 expression showed a significant enrichment in genes involved in *positive regulation of apoptosis*, whereas analysis of the 36 probe sets only up-regulated in cases with low ZAP70 disclosed that the most enriched GO category was related to *ion homeostasis*. This latter term includes genes that participate in any process involved in the maintenance of an internal steady state of metal ions at the level of a cell, thus the relevance of apoptosis was observed in the analysis of both high and low ZAP70 groups.

In summary, the treatment with dexamethasone induces the expression of more genes related to apoptosis in the cases with high ZAP70 expression, the ones with better response to dexamethasone. Moreover, the conjunctional analysis of the ZAP70 groups show that the genes up-regulated only in cases with high ZAP70 expression were related to apoptosis unlike the genes solely up-regulated in the cases with low ZAP70 expression.

GO analysis of down-regulated probe sets showed that in both high and low ZAP70 groups the most significant term was *immune response* (Figure 21).

GO biological pro	cess N genes	%	p-value	Benja	imin			
immune response	23	14.7	7.5x10 ⁻⁸	9.3x′	10 ⁻⁵			
response to virus	10	6.4	5.2x10 ⁻⁷	3.2x′	10 ⁻⁴			
219	GO biological pr immune response response to virus	oces	s Nga 3 1	enes 0 3	% p∙ 19.1 1.8 8.3 3.7	-value 3x10 ⁻¹² 7x10 ⁻¹⁰	Benjar 2.6x1(2.6x1(min 0 ⁻⁹ 0 ⁻⁷
L	high ZAP70	low	ZAP70				222	2
	87 132		90			C		
GO biologica	l process N ge	nes	% p-va	alue E	Benjam	in		
response to vi	rus 9	1	9.5 1.7x	10 ⁻ ′	1.7x10	4		
immune respo	nse 1	7	17.9 6.8x	10	3.4x10		Ţ	
GO biologica	l process		N genes	%	p-valu	e Benj	amin	
regulation of a	apoptosis		16	22.2	1.5x10	-° 1.4x	(10 ⁻³	
regulation of p	programmed cell de	ath	16	22.2	1.7x10	⁻ ° 8.1x	:10⁻⁴	
GO biological process	\$		Ng	enes	% p	-value	Benja	min

negative regulation of nucleic acid metabolic process	9	12.3	8.6x10 ⁻⁴	3.9x10 ⁻¹
negative regulation of nitrogen metabolic process	9	12.3	9.4x10 ⁻⁴	2.3x10 ⁻¹

Figure	21.	Most	significant	biological	processes	targeted	by the	genes	down-regulated
by dex	amet	thaso	ne accordir	ng to ZAP7	0 expressio	n groups			

Among all the down-regulated genes, again the majority of the probe sets were common in both groups. A total of 132 probe sets were shared by both ZAP70 groups, and a significantly enrichment in genes belonging to the terms *response to virus* and *immune response* was observed. 80 probe sets were exclusively down-regulated in the

high ZAP70 group, and the most significant term was *negative regulation of nucleic acid metabolic process*. The probe sets that were exclusively down-regulated in CLL cases with low ZAP70 expression (n=90) were significantly enriched in genes related to *regulation of apoptosis*. Of note, the majority of them were involved in the positive regulation of apoptosis (as for example BID and TNF).

In summary, the genes down-regulated by dexamethasone appear to play a minor role in the induction of apoptosis. Interestingly, the genes solely down-regulated in the low ZAP70 group were inducers of apoptosis, which is in line with the lower responses to dexamethasone observed in these cases.

The top 10 probe sets with the highest variation caused by the treatment with dexamethasone were selected for each ZAP70 group (Table 6). The comparison of theses probe sets lists showed that 3 genes were commonly up-regulated in high and low ZAP70 groups, namely FKBP5, DDIT4, and TMEM2. In addition, 4 genes were commonly down-regulated by dexamethasone in both ZAP70 expression groups: KMO, PALM2-AKAP2, IFIT2, and SAMD9L. Of note, FKBP5 was the most up-regulated gene in both ZAP70 groups, and was represented by three different probe sets.

Table 6. The top 10 most up-regulated and down-regulated probe sets in CLL groups withhigh and low ZAP70 expression caused by the treatment with dexamethasone

	high ZAP70 expression group		
	up-regulated		
Gene Symbol	Probe set	logRatio	FDR
FKBP5*	224856_at	3.247	3.49E-07
DDIT4*	202887_s_at	3.136	1.15E-07
FKBP5*	204560_at	3.073	7.45E-06
TMEM2*	218113_at	2.942	3.22E-08
TSC22D3	207001_x_at	2.790	9.49E-08
FKBP5*	224840_at	2.693	1.04E-08
TGFBR3	226625_at	2.525	9.77E-06
TGFBR3	204731_at	2.496	1.24E-04
C18orf1	242551_at	2.384	7.73E-09
	242406_at	2.314	1.74E-08
	down-regulated		
Gene Symbol	Probe set	logRatio	FDR
FCRL3	231093_at	-1.682	8.94E-06
KMO*	211138_s_at	-1.675	2.58E-07
AKAP2 /// PALM2-AKAP2*	226694_at	-1.639	4.50E-06
IFIT2*	226757_at	-1.628	3.15E-05
SETBP1	227478_at	-1.558	1.24E-05
AMIGO2	222108_at	-1.543	5.99E-06
BCL2A1	205681_at	-1.539	8.90E-06
КМО	205306_x_at	-1.522	1.97E-07
SAMD9L*	226603_at	-1.493	1.03E-05
AKAP2 /// PALM2-AKAP2*	202759 s at	-1.480	2.27E-05

	low ZAP70 expression group		
	up-regulated		
Gene Symbol	Probe set	logRatio	FDR
FKBP5*	224840_at	2.917	9.51E-08
CD72	215925_s_at	2.671	7.55E-08
FKBP5*	224856_at	2.664	3.77E-05
TMEM2*	218113_at	2.490	3.20E-06
FKBP5*	204560_at	2.325	9.84E-04
DNMBP	212838_at	2.229	9.13E-08
HIPK2	225116_at	2.096	3.10E-05
	215528_at	2.076	3.31E-07
DDIT4*	202887_s_at	2.005	1.30E-04
	241893_at	1.964	1.37E-04
	down-regulated		
Gene Symbol	Probe set	logRatio	FDR
CCL4	204103_at	-2.195	2.64E-06
AKAP2 /// PALM2-AKAP2*	202759_s_at	-1.726	6.46E-05
AKAP2 /// PALM2-AKAP2*	226694_at	-1.699	4.13E-05
ISG15	205483_s_at	-1.587	1.22E-03
SAMD9L*	226603_at	-1.516	1.01E-04
AKAP2 /// PALM2-AKAP2	202760_s_at	-1.494	7.21E-04
STAT1	AFFX-HUMISGF3A/M97935_MB_at	-1.406	1.81E-04
KMO*	211138_s_at	-1.395	2.70E-05
MIR21	224917_at	-1.392	1.90E-04
IFIT2*	226757_at	-1.379	1.27E-03

Genes are ranked according to their logRatio values calculated as the difference in log expression value using the untreated cells group as baseline. *common probe sets in high and low ZAP70 expression groups.

The lists of the significant probe sets were also analyzed with IPA. Two datasets were analyzed, the high ZAP70 expression group dataset and the low ZAP70 expression group dataset. Since IPA software is able to discriminate between increased and decreased expressions, the datasets included both up and down-regulated probe sets, and their respective logRatios (high ZAP70 group = 533 probe sets; low ZAP70 group = 448 probe sets).

The IPA software built networks that relate the genes present in the dataset with other genes based on extensive records maintained in the Ingenuity Pathways Knowledge Base (IPKB). The top IPA network obtained in the analysis of high ZAP70 group dataset had associated the functions of *cellular growth and proliferation, hematological system development and function,* and *tissue development* (Figure 22). This network included several of the top 10 most up-regulated and down-regulated probe sets, corresponding to the following genes: GILZ (alias TSC22D3), TMEM2, PALM2-AKAP2, IFIT2, and SAMD9L. Of note, some of these probe sets were also found in the top 10 most up-regulated and down-regulated genes of the low ZAP70 group (see Table 6).

Network 1 : up and down ZAPhigh - 2012-05-09 07:29 PM : up and down ZAPhigh : up and down ZAPhigh - 2012-05-09 07:29 PM

© 2000-2012 Ingenuity Systems, Inc. All rights reserved.

Figure 22. Top IPA network obtained in the analysis of high ZAP70 group dataset

IPA tool was used to connect the dataset of the 533 probe sets from the high ZAP70 group based upon a database of published observations. The probe sets were mapped to the corresponding gene within IPKB. The represented pathway is the IPA network that includes the highest number of queried genes. Query genes are represented as color nodes, and the genes added by the program are represented as empty nodes. Color gradations are based upon gene regulation at the logRatio level. Red color: up-regulated gene; green color: down-regulated gene.

It were analyzed the genes regulated by dexamethasone in the high ZAP70 group that belonged to the IPA *canonical pathway of the glucocorticoid receptor signaling* (Figure 23).

Sucocorticoid Receptor Signaling

D 2000-2012 Ingenuity Systems, Inc. All rights reserved.

Figure 23. Genes of the high ZAP70 group dataset belonging to the IPA *canonical* pathway of the glucocorticoid receptor signaling

IPA tool was used to retrieve the genes of the dataset of the 533 probe sets from the high ZAP70 group that belonged to the IPA *canonical pathway of the glucocorticoid receptor signaling.* The probe sets were mapped to the corresponding gene within IPKB. The represented pathway is a part of the IPA *canonical pathway of the glucocorticoid receptor signaling.* Color gradations are based upon gene regulation at the logRatio level. Red color: up-regulated gene.

The FKBP5 (alias FKBP51) gene was highlighted and it figured in the initial steps of the glucocorticoid pathway. FKBP5 gene codifies for a co-chaperone of the GR complex that maintains the receptor complex in the cytoplasm. After glucocorticoid binding, FKBP5 is replaced by FKBP4 which allows for the nuclear translocation of the GR complex.²³³

The previous analyses pointed that FKBP5 may play an important role in the response to dexamethasone. It was thought of interest to analyze the levels of FKBP5 in the untreated and in the treated cells of ZAP70 groups. For this, GEP of the untreated cells from the high ZAP70 group was compared with the GEP of the untreated cells from the low ZAP70 group by means of supervised analysis (Appendix 3). The GEPs of the treated cells from the high and low ZAP70 groups were also compared (Appendix 4).

The FKBP5 expression levels were higher in the untreated cells from the high ZAP70 group than in the untreated cells from the low ZAP70 group (Figure 24).

- 112 -

Figure 24. Expression levels of FKBP5 in the untreated cells

Graphic representation of the expression values of FKBP5 in the untreated cells of each CLL case studied. They are represented the FKBP5 expression values of the 3 probe sets of this gene previously found in the list of the top 10 most up-regulated probe sets in the CLL groups with high and low ZAP70 expression. FKBP5 expression values are given as arbitrary units (AU). HZ stands for high ZAP70 expression, and LZ stands for low ZAP70 expression; the number after CLL is the sample number according to Table 4.

Significant differences in the FKBP5 expression between the ZAP70 groups were observed for the probe set 224840_at (logRatio=0.958, FDR=0.0129). Moreover, the expression values of the probe sets 24856_at and 20560_at, tend to have highest expressions in the high ZAP70 group.

The comparison between the expression values of FKBP5 in the treated cells from the high ZAP70 expression group, and the expression values in the treated cells from the low ZAP70 group, revealed that the cells from the high ZAP70 group had higher levels of FKBP5 than the cells from the low ZAP70 group (Figure 25).

Figure 25. Expression levels of FKBP5 in the treated cells

Graphic representation of the expression values of FKBP5 in the treated cells of each CLL case studied. They are represented the FKBP5 expression values of the 3 probe sets of this gene previously found in the top 10 most up-regulated probe sets in CLL groups with high and low ZAP70 expression. FKBP5 expression values are given as arbitrary units (AU). HZ stands for high ZAP70 expression, and LZ stands for low ZAP70 expression; the number after CLL is the sample number according to Table 4.

The levels of expression of the probe set 224856_at were significantly higher in the high ZAP70 CLL cases than in the low ZAP70 cases (logRatio=1.068, FDR=0.0416). The probe sets 224840_at and 204560_at also showed higher expressions in the high ZAP70 group, although the differences between ZAP70 groups did not reach logRatio>[0.75].

In summary, these results led us to hypothesize that the levels of FKBP5 could be involved in the different responses to dexamethasone observed in CLL cases. Consequently, FKBP5 was selected for further studies in a large CLL series.

4.2. Analysis of the genes with a significant differential regulation by dexamethasone

A supervised analysis was conducted in order to retrieve the genes that had a significant differential regulation by the treatment with dexamethasone in the two ZAP70 expression groups. For this, the interaction term was calculated by assessing the difference between the genes induced/repressed by dexamethasone in the low ZAP70 expression group, and the genes induced/repressed by dexamethasone in the high ZAP70 group:

Considering P-values lower than 0.001, 45 probe sets (38 genes) were identified as differently regulated in the two ZAP70 expression groups (Figure 26).

Figure 26. Unsupervised cluster analysis of the 45 probe sets retrieved in the analysis of the interaction term.

For each probe set, changes in expression due to dexamethasone treatment are displayed as LogRatios. HZ stands for high ZAP70 expression, and LZ stands for low ZAP70 expression; the number after CLL is the sample number according to Table 4.

The unsupervised cluster analysis of the 45 probe sets differently regulated in the ZAP70 groups highlighted that the pro-apoptotic gene BIM (alias BCL2L11) clustered with GILZ (alias TSC22D3). This was indicative that the two genes were altered in a similar way by dexamethasone. It was performed the functional annotation analysis of the 45 probe set list. The GO analysis revealed a significant enrichment in genes related to *regulation of apoptosis*, which means that the two ZAP70 groups differently regulated genes involved in the apoptosis, in the consequence of the treatment with dexamethasone. This was in line with the results of the GO analyses of the individual probe set lists of the CLL groups defined by ZAP70 expression where it was observed that the high ZAP70 group presented genes related to apoptosis not present in the low ZAP70 group.

Moreover, the results of the GO analyses of the interaction term probe set list strengthened the observations made at the time of the comparison of the probe set logRatio values of the top10 most up-regulated probe sets lists, the high ZAP70 group had higher logRatios values than the low ZAP70 group for the common probe sets, and these differences were significantly higher.

Finally, the list of the significant probe sets was analyzed with IPA. The top IPA network obtained with the dataset of the probe sets of the interaction term had associated the functions of *cellular death*, *renal necrosis/cell death*, and *liver necrosis / cell death* (Figure 27). Again, it was observed that the genes differently expressed in the two ZAP70 groups were related to apoptosis / cell death.

Network 1 : interactua only probesets - 2012-05-09 08:29 PM : interactua only probesets.xlsx : interactua only probesets - 2012-05-09 08:29 PM

© 2000-2012 Ingenuity Systems, Inc. All rights reserved

Figure 27. Top IPA network obtained in the analysis of the probe sets differently regulated in the ZAP70 groups

IPA tool was used to connect the dataset of the 45 probe sets differently regulated in the ZAP70 groups based upon a database of published observations. The probe sets were mapped to the corresponding gene within IPKB. The represented pathway is the IPA network that includes the highest number of queried genes. Query genes are represented as grey nodes and the genes added by the program are represented as empty nodes.

Interestingly, GILZ (alias alias TSC22D3) was one of the genes included in the top IPA network and was represented interacting with BIM (BCL2L11). It was previously underscored in the unsupervised clustering analysis of the interaction term dataset that dexamethasone altered GILZ and BIM expression in a similar way.

Moreover, GILZ was one of the top 10 most up-regulated genes by dexamethasone, but only in the high ZAP70 group (see Table 6). Finally, GILZ is a direct target of the GR since its promoter contains six GRE.¹⁶⁵

The combine data suggested that GILZ may be implicated in the different response to dexamethasone observed in the ZAP70 expression groups, consequently GILZ was selected to be studied in a large CLL series.

5. THE EXPRESSION LEVELS OF FKBP5 AND THE RESPONSE TO DEXAMETHASONE

The GEP analyses revealed that FKBP5 was the most inducible gene by dexamethasone in CLL cells. Moreover, they have shown that the levels of FKBP5 were higher both in the untreated cells, and in the treated cells of the high ZAP-70 group. FKBP5 gene codifies for a co-chaperone of the glucocorticoid receptor complex thus it has been hypothesized that the levels of FKBP5 could influence the response of CLL cells to dexamethasone.

5.1. FKBP5 gene expression and the treatment of CLL with dexamethasone for 6 hours

To further analyze the relationship between FKBP5 and the response to dexamethasone in CLL samples, the expression of this gene was ascertained by QRT-PCR. A series of 43 CLL samples was studied; 20 samples had high ZAP70 expression and the remaining 23 had low ZAP70 expression. FKBP5 gene expression was determined in the cells treated with dexamethasone for 6 hours and in the untreated cells, and the induction of FKBP5 (fold change) was determined as the ratio between them. The response to dexamethasone was evaluated after 24 hours of treatment with the drug (Table 7).

Sample	ZAP70	Live cells	FKBP5	FKBP5	FKBP5
number	category	(%)	untreated (AU)	treated (AU)	FC
1	low	79		2.51	
2	low	100	0.08	1.17	15.14
3	low	98	0.15	2.16	14.12
4	low	94	0.25	0.91	3.63
5	low	97	0.24	2.22	9.25
6	low	86	0.11	2.84	25.11
7	low	89	0.15	1.1	7.57
8	low	92	0.16	2.24	13.93
9	low	85	0.43	2.56	5.94
10	low	95	0.17	1.19	7.06
11	low	76	0.21	2.55	11.96
12	low	86	0.35	1.57	4.5
13	low	93	0.45	2.72	6.02
14	low	83	0.14	1.22	8.69
17	low	74		1.55	
19	low	82	0.18	2.47	13.7
20	low	73	0.22	2.23	10.2
21	low	100	0.21	1.54	7.52
22	low	86	0.19	2.14	11.39
23	low	59	0.34	2.69	7.84
24	low	91	0.34	1.37	4.08
25	high	51	0.26	3.97	15.14
26	high	37	0.75	10.91	14.62
27	high	33	0.45	4.52	10.13
28	high	81	0.33	2.63	7.94
29	high	77	0.31	3.52	11.65
30	high	61	0.58	6.17	10.63
31	high	44	0.8	7.49	9.32
32	high	43	0.54	2.65	4.96
34	high	36	0.63	3.47	5.5
35	high	69	0.82	6.84	8.34
36	high	60	0.5	3.24	6.54
37	high	80	0.06	0.39	6.82
39	high	77	0.51	3.62	7.16
40	high	76	0.15	2.08	14.12
41	high	68	0.61	2.9	4.79
43	high	63	0.62	7.86	12.64
44	high	70	0.38	5.12	13.64
45	high	67	0.17	1.48	8.82
47	low	95	0.27	2.79	10.48
48	low	80	0.23	1.03	4.5
49	high	84	0.33	2.44	7.46
50	high	69	0.97	4.85	4.99

Table 7. FKBP5 gene expression in CLL samples treated with dexamethasone for 6 hours

Live cells (%): percentage of live cells after treatment with dexamethasone relative to the percentage of live cells in the untreated cells; FKBP5 FC: FKBP5 fold change. Sample number according to Table 4.

Results

In accordance with the results of the GEP analyses, the mRNA levels of FKBP5 in the untreated cells were significantly higher in the high ZAP70 group (n=20) than in the low ZAP70 group (n=21) (mean FKBP5 mRNA expression \pm SD; 0.49 AU \pm 0.24 vs 0.23 AU \pm 0.10; P<0.001; Figure 28).

CLL cells were treated with 13.25 µM of dexamethasone for 6 hours, and the levels of FKBP5 mRNA expression were determined by QRT-PCR after 6 hours in the cells left with standard medium. Untreated cells from the high ZAP70 group show higher levels of FKBP5 than cells from the low ZAP70 group. Horizontal bars represent the mean value of FKBP5 mRNA expression (AU).

The FKPB5 expression was highly induced after 6 hours of dexamethasone treatment. FKBP5 was induced 9.46 fold in mean, and did not differ between ZAP70 groups (FKBP5 FC \pm SD: high ZAP70 (n=20) 9.26 \pm 3.40 vs low ZAP70 (n=21) 9.65 \pm 5.00). In accordance, the levels of FKBP5 mRNA expression (mean FKBP5 mRNA expression \pm SD) were significantly higher in the treated cells (n=43; 3.04 AU \pm 2.12) than in the untreated cells (n=41; 0.36 AU \pm 0.22) P<0.001 (Figure 29).

CLL cells were treated with 13.25 μ M of dexamethasone, and the levels of FKBP5 mRNA expression were determined by QRT-PCR after 6 hours. Treated cells show higher levels of FKBP5 than untreated cells. Horizontal bars represent the mean value of FKBP5 mRNA expression (AU).

Results

The levels of FKBP5 reached after 6 hours of treatment with dexamethasone were significantly higher in the cases with high ZAP70 expression (n=20) than in those with low ZAP70 (n=23) (mean FKBP5 mRNA expression \pm SD: 4.31 AU \pm 2.51 vs 1.95 AU \pm 0.65; P<0.001; Figure 30).

Figure 30. FKBP5 mRNA expression levels in the treated cells according to ZAP70 groups

CLL cells were treated with 13.25 μ M of dexamethasone, and the levels of FKBP5 mRNA expression were determined by QRT-PCR after 6 hours in the treated cells. Treated cells from the high ZAP70 group show higher levels of FKBP5 than cells from the low ZAP70 group. Horizontal bars represent the mean value of FKBP5 mRNA expression (AU).

Since both the expressions of FKBP5 in untreated and in treated cells, were proved to be higher in the high ZAP70 group, the one with the better responses to dexamethasone, it was though that the gene expression levels of FKBP5 could be related to the magnitude of the response to dexamethasone. Indeed, an inverse correlation between FKBP5 mRNA expression levels in untreated cells and the percentage of live cells was observed (P<0.001; Figure 31A). As well, FKBP5 mRNA expression levels in treated cells were inversely correlated with the percentage of live cells (P<0.001; Figure 31B).

Figure 31. FKBP5 mRNA expression levels in untreated and in treated cells, and their correlation with the response to dexamethasone

CLL cells were treated with 13.25 µM of dexamethasone for 24 hours. Dexamethasone responses were determined at 24 hours. The levels of FKBP5 mRNA expression were determined by QRT-PCR at 6 hours. (A) Scatter-plot showing a significant negative correlation between the percentage of live cells and the mRNA expression levels of FKBP5 in untreated cells. (B) Scatter-plot showing a significant negative correlation between the percentage of live soft fKBP5 in treated cells.

Results

5.2. FKBP5 gene and protein levels at baseline

The FKBP5 determinations on untreated cells could present bias due to cell culture, and thus could not reflect baseline features. In order to discard possible bias, FKBP5 gene basal levels were determined by QRT-PCR. Furthermore, the baseline protein levels of FKBP5 were analyzed by immunoblotting. A total of 38 CLL samples were studied, of them, 16 had high ZAP70 expression. The response to dexamethasone was evaluated after 24 hours of treatment (Table 8).

Sample	ZAP70	Live cells	FKBP5 mRNA	FKBP5 protein
number	category	(%)	(AU)	(AU)
1	low	79	0.6	
2	low	100	0.25	
3	low	98	0.68	0.164
4	low	94	0.86	
5	low	97	0.93	0.101
6	low	86	0.59	0.119
7	low	96	0.3	
8	low	92	0.37	0.2
9	low	85	0.76	0.127
10	low	95	0.59	0.091
11	low	76	0.43	
12	low	86	0.45	0.325
14	low	83	0.33	0.329
15	low	40	0.76	0.476
17	low	74	0.58	0.276
19	low	82	0.87	0.149
20	low	73	0.76	0.149
22	low	86	0.25	
23	low	59	0.82	0.065
24	low	91	0.38	0.054
26	high	37	1.8	0.153
28	high	81	0.45	0.075
30	high	61	0.72	0.28
31	high	68	1.57	
32	high	43	1.48	0.633
34	high	36	1.04	0.625
35	high	69	1.17	0.844
37	high	80	0.3	
40	high	76	0.44	
41	high	68	0.62	0.633
42	high	96	2.31	
43	high	63	0.39	0.0819
44	high	70		0.635
45	high	67	0.82	0.578
46	high	83	0.75	
47	low	95	0.73	0.373
48	low	80	0.24	0.102
49	high	84	0.48	0.331
50	high	69	0.9	0.443

Table 8. FKBP5 gene and protein expressions in CLL cells at baseline

Live cells (%): percentage of live cells after treatment with dexamethasone relative to the percentage of live cells in the untreated cells. Sample number according to Table 4.

Results

The results of FKBP5 gene expression determined at baseline were equivalent to those obtained in the untreated cells. The levels of FKBP5 were higher in the CLL cases with high ZAP70 expression (n=16) than in the cases with low ZAP70 (n=22) (mean levels of FKBP5 mRNA expression \pm SD: 0.95 AU \pm 0.58 vs 0.57 AU \pm 0.22; P=0.032; Figure 32A). Moreover, FKBP5 baseline levels correlated with the response to treatment with dexamethasone (n=38; P=0.027; Figure 32B).

CLL cells were treated with 13.25 µM of dexamethasone for 24 hours. Dexamethasone responses were determined at 24 hours. The levels of FKBP5 expression were determined by QRT-PCR at baseline. (A) At baseline the cells from the high ZAP70 group show higher levels of FKBP5 than cells from the low ZAP70 group. Horizontal bars represent the mean value of FKBP5 mRNA expression (AU). (B) Scatter-plot showing a significant negative correlation between the percentage of live cells and the mRNA expression levels of FKBP5 mRNA at baseline.

The baseline levels of FKBP5 protein were analyzed in 28 CLL samples by immunoblotting (Figure 33) and subsequently quantified using the Image Gauge V4.0 software (Table 8). The response to dexamethasone was evaluated after 24 hours of treatment (Table 8).

Figure 33. Immunoblotting analyses of FKBP5 protein expressions in CLL cells at baseline

Example of the immunoblotting analyses of FKBP5 protein expression levels at baseline. FKBP5 expression levels were normalized to the expression levels of GAPDH.

The protein levels of FKBP5 were higher in the CLL cases with high ZAP70 expression (n=12) than in the cases with low ZAP70 expression (n=16) (mean levels of FKBP5 protein expression \pm SD: 0.443 AU \pm 0.254 vs 0.194 AU \pm 0.125; P=0.013; Figure 34A). Moreover, FKBP5 protein expressions were inversely correlated with the percentage of live cells (P=0.017; Figure 34B).

CLL cells were treated with 13.25 µM of dexamethasone for 24 hours. Dexamethasone responses were determined at 24 hours. The protein levels of FKBP5 were analyzed by immunoblotting at baseline. (A) The cells from the high ZAP70 group show higher levels of FKBP5 than the cells from the low ZAP70 group. Horizontal bars represent the mean value of FKBP5 protein expression (AU). (B) Scatter-plot showing a significant negative correlation between the percentage of live cells and the protein levels of FKBP5.

The results obtained for the FKBP5 protein were in line with the obtained for the FKBP5 gene. High levels of this co-chaperone of the GR were correlated with better responses to dexamethasone.

Results

6. RESPONSE TO DEXAMETHASONE AND INDUCTION OF GILZ EXPRESSION

GILZ is a transcription regulator directly targeted by the GR and negatively controls important mediators of cell proliferation.^{165;166} According to GEP analyses, GILZ was one of the top ten most inducible genes, but only in the high ZAP70 group (Table 6). Moreover, GILZ was one of the few genes differently regulated by dexamethasone in the two ZAP70 groups (interaction term; Figure 26).

To further assess the relationship between GILZ expression, ZAP70 expression, and the response to dexamethasone, the levels of GILZ mRNA were determined by QRT-PCR in 40 CLL samples with or without treatment with dexamethasone for 6 hours. The response to dexamethasone was evaluated after 24 hours of treatment (Table 9).

Table	9.	GILZ	mRNA	expression	in	CLL	samples	after	6	hours	of	treatment	with
dexam	eth	nasone	•										

Sample	ZAP70	Live cells	GILZ	GILZ	GILZ
number	category	(%)	untreated (AU)	treated (AU)	FC
2	low	100	37.77	120.18	3.18
3	low	98	53.78	213.63	3.97
4	low	94	30.46	167.61	5.5
6	low	86	31.1	116.08	3.73
7	low	89	84.98	240.35	2.83
8	low	92	24.89	96.84	3.89
9	low	85	43.94	149.86	3.41
10	low	95	26.86	114.36	4.26
11	low	76	92.99	261.2	2.81
12	low	86	30.68	139.97	4.56
13	low	93	14.5	58.79	4.06
14	low	83	54.53	178.4	3.27
19	low	82	75.01	214.67	2.86
20	low	73	37.47	112.79	3.01
21	low	100	22.75	78.66	3.46
22	low	86	32.88	163.03	4.96
23	low	59	29.84	127.91	4.29
24	low	91	20.95	98.29	4.69
25	high	51	68.55	351.89	5.13
26	high	37	13.54	164.16	12.13
27	high	33	16.42	66.6	4.06
28	high	81	23.74	107.56	4.53
29	high	77	80.86	234.98	3.03
30	high	61	29.19	134.13	4.6
31	high	44	19.39	178.22	9.19
32	high	43	26.89	156.39	5.82
34	high	36	10.76	73.39	6.82
35	high	69	17.24	110.47	6.41
36	high	60	63.96	295.91	4.63
37	high	80	10.19	44.91	4.41
39	high	77	23.25	125.28	5.39
40	high	76	69.02	243.71	3.53
41	high	68	14.41	91.71	6.36
43	high	63	24.89	153.01	6.15
44	high	70	28.99	178.22	6.15
45	high	67	27.65	121.85	4.41
47	low	95	29.43	159.68	5.43
48	low	80	34.27	146.93	4.29
49	high	84	57.64	144.91	2.51
50	high	69	27.65	180.89	6.54

Live cells (%): percentage of live cells after treatment with dexamethasone relative to the percentage of live cells in the untreated cells; GILZ FC: GILZ fold change. Sample number according to Table 4.

In untreated samples, the levels of GILZ were higher in the low ZAP70 group (n=20) than in the high ZAP70 group (n=20) (mean GILZ mRNA expression \pm SD: 40.45 AU \pm 21.46 vs 32.71 AU \pm 22.05; P=0.040; Figure 35A). In all CLL samples, cell treatment with dexamethasone led to the induction of GILZ (range 2.51 to 12.13). Conversely, and according to GEP results, GILZ was significantly more induced in samples with high ZAP70 expression (n=20) than in those with low ZAP70 (n=20) (mean GILZ fold change \pm SD: 5.59 \pm 2.16 vs 3.92 \pm 0.83; P=0.002; Figure 35B).

Figure 35. GILZ mRNA expression in untreated CLL cells and GILZ induction after treatment with dexamethasone according to ZAP70 groups

The levels of expression of GILZ were determined by QRT-PCR after 6 hours of treatment. (A) The untreated cells from the cases with low expression of ZAP70 show higher levels of GILZ mRNA than the cells from the cases with high ZAP70. (B) After 6 hours of treatment with dexamethasone, cases with high ZAP70 expression show higher induction of GILZ than cases with low ZAP70. In (A) and (B), horizontal bars represent the mean value of the y-axis units.

Results

Importantly, the induction of GILZ correlated with the response to treatment with dexamethasone (n=40; P<0.001; Figure 36A). The CLL cases with higher levels of GILZ induction at 6 hours of treatment presented higher levels of apoptosis at 24 hours. Moreover, it was observed a correlation between the induction of GILZ at 6 hours, and the induction of the pro-apoptotic BIM at 24 hours (n=34; P=0.001; Figure 36B). This finding reinforced the role of GILZ in the molecular mechanism of dexamethasone cell death and was in line with the clustering of GILZ and BIM in the GEP interaction term analysis.

Figure 36. GILZ induction correlations with the response to dexamethasone and BIM induction

CLL cells were treated with 13.25 µM of dexamethasone for 24 hours. Dexamethasone responses were determined at 24 hours. Fold change of GILZ and BIM expressions were determined by QRT-PCR respectively at 6 and 24 hours. (A) Scatter-plot showing a significant negative correlation between GILZ induction and the percentage of live cells after treatment with dexamethasone. (B) Scatter-plot showing a significant positive correlation between the induction of BIM and GILZ.

DISCUSSION

DISCUSSION

Glucocorticoids are part of the therapeutic armamentarium of CLL for a long time. Nowadays, there is a resurgent interest in the use of glucocorticoids in CLL because many of the CLL cells have, or acquire, TP53 abnormalities, and glucocorticoids induce cell death independently of p53.¹⁵⁸ Despite the broad use of glucocorticoids in CLL, there is scarce information regarding the mechanisms by which they induce cell death. This work aims to elucidate the molecular mechanisms behind the apoptosis induced by glucocorticoids in CLL cells, and to identify which groups of patients are prone to benefit more from the use of these drugs.

Recent studies showed that the degree of apoptosis induced by prednisone or by methylprednisolone in CLL cells *ex-vivo* is higher in patients with unmutated IGHV genes and / or high ZAP70 expression than in patients without these adverse prognostic markers.²⁰⁹⁻²¹² This observation was very interesting and made important the study of the response to dexamethasone in CLL cells according to IGHV mutational status and ZAP70 expression. The results from this thesis ascertain that, like as for other glucocorticoids, the response to dexamethasone is significantly higher in the CLL cases with the adverse prognostic markers unmutated IGHV genes and high ZAP70 expression.

The response to dexamethasone was compared between CLL patient groups defined by the presence or absence of high-risk cytogenetics, namely 17p13 and 11q22-q23 deletions. These deletions affect respectively the TP53 and ATM genes, and like unmutated IGHV genes and high ZAP70 expression, both have been shown to have adverse prognostic value.^{70;71} A very small number of patients with CLL in this work series has high-risk genetic abnormalities, and thus the finding that patients with CLL with high-risk cytogenetics have significantly higher responses to dexamethasone than patients without those abnormalities should be confirmed in larger studies. Notwithstanding, the results of this thesis corroborate the clinical experience on the use

- 137 -

of glucocorticoids in patients with high-risk cytogenetics.^{215;218} Furthermore, when analyzing the response to dexamethasone in patients with CLL without high-risk cytogenetics, it is observed that patients with high ZAP70 expression have higher responses to the drug than patients with low ZAP70. It can be concluded that ZAP70 expression has predictive value for the response of CLL cells to dexamethasone, independently of the presence of high-risk cytogenetics.

So far, the biological importance of ZAP70 in the induction of CLL apoptosis has not been uncovered. A recent report has shown that ZAP70 levels are reduced during treatment of CLL cells with methylprednisolone.²¹¹ The authors, although, have found that the inhibition of ZAP70 induction did not influence the response to the drug. Thus, it seems that signals mediated by ZAP70 have no relation with the apoptotic mechanisms induced by the glucocorticoids. The CLL cells with high ZAP70 expression must have other molecular characteristics that justify their different behavior to glucocorticoids.

The induction of BIM expression was shown to be implicated in the apoptosis induced by dexamethasone in ALL,^{161,230-232} and this protein appeared to be the unique pro-apoptotic protein involved in cell death induced by glucocorticoids in CLL cells.²⁰⁴ For these reasons, the expression of BIM mRNA was evaluated in CLL cells after the treatment with dexamethasone. The results of this thesis show that BIM is induced in all CLL cases after 24 hours of dexamethasone treatment, this correlating with the response to the drug. However, some cases do not respond to dexamethasone induced cell death, indicating either that additional pathways are involved in induction of apoptosis in these cells, or that the response to the treatment is delayed beyond the observed 24 hours. In addition, CLL cases with high ZAP70 expression, which are the best responders to dexamethasone, show significantly higher induction of BIM than cases with low ZAP70 expression. This observation suggests that the molecular mechanisms behind the different response to dexamethasone observed between CLL

- 138 -

groups defined by ZAP70 expression may reside upstream the pro-apoptotic BIM. Finally, since the pro-apoptotic mechanism of BIM has been demonstrated to be independent from p53,¹⁵⁸ the up-regulation of BIM could explain in part, the response to glucocorticoids observed in the CLL cases with TP53 abnormalities.

BIM expression is early induced after the treatment with dexamethasone, achieving the maximum peak after 9 hours of treatment in most of the cases. As a consequence, the time point at 6 hours after treatment was chosen to study the genes regulated by dexamethasone that could explain the different responses to this drug.

The comparison of gene expression profiling of CLL cells with high or low ZAP70 expression treated with dexamethasone reveals several interesting differences. Unsupervised analysis of the genes with the highest variation in expression, defined two main groups according to ZAP-70 expression, clustering together samples from the same patient with and without treatment. Of note, previous studies of GEP of CLL cells were not able to discriminate, by means of unsupervised analysis, the cases with unmutated IGHV genes / high ZAP70 expression from those with mutated IGHV genes / low ZAP70, and subsequent supervised analysis supported that CLL cells has quite a homogenous phenotype.^{32;66;234-237} This indicates that treatment with dexamethasone is able to induce enough changes in gene expression as to separate CLL cases according to ZAP70 expression.

The following steps of the analysis of the GEPs data were the identification and comparison of the genes induced and repressed by dexamethasone in the CLL groups defined by ZAP70 expression. The two CLL groups were studied separately, and by means of supervised analysis, the probe set lists with the genes up and down-regulated by dexamethasone were obtained. Further, different analysis approaches were performed in order to identify the differences in gene regulation between the two groups. First, by means of GO analyses, the biological processes overrepresented in the lists of probe sets generated were ascertained. In both ZAP70 groups, the induction

- 139 -

of gene expression plays a more relevant role in the apoptosis than the repression since, in general, the biological processes overrepresented in the up-regulated probe set lists are related to apoptosis, whereas in the down-regulated probe set lists, they are related to immune response. Moreover, the analyses of the common and uncommon probe sets up-regulated in ZAP70 expression groups show that the list of probe sets solely induced in the cells belonging to the high ZAP70 group has an enrichment in genes related to apoptosis, which is in line with the higher apoptotic effects observed in this group. Additionally, the low ZAP70 group solely down-regulated probe set lists is enriched in genes related to the regulation of apoptosis, and the detailed analysis of these probe sets shows that they recognize genes inducers of apoptosis. The down-regulation of apoptosis inducing genes in the low ZAP70 expression cases could in part explain the lower response to dexamethasone induced cell death observed in this group.

The second analysis approach to identify the differences in gene regulation between ZAP70 expression groups was the comparison of the top 10 probe sets with the highest variation between groups. It was observed that the top 10 probe set lists of the two CLL groups have many probe sets in common. Although, the degree of induction / repression of the common probe sets is higher in the high ZAP70 expression group, which is the CLL group with the superior responses to dexamethasone.

The third analysis approach was the analysis of the probe set list containing the up and down-regulated genes in the high ZAP70 group with the IPA tool. The top IPA network includes many of the top 10 most up and down-regulated genes and has associated the function of *cellular growth and proliferation, hematological system development, and function* and *tissue development.* Apparently, dexamethasone treatment interferes with cell growth and proliferation processes which can contribute to the induction of apoptosis. IPA tool was also used to highlight the genes regulated by

- 140 -

dexamethasone that are part of the *canonical pathway of the glucocorticoid receptor signaling* like FKBP5.

Supervised analysis was conducted to retrieve the genes differently regulated in the ZAP70 expression groups; the resulting probe set list includes few genes, and both GO and IPA analysis show an overrepresentation in genes related to apoptosis. Apparently, there are no other relevant biological processes behind the different response to dexamethasone observed between ZAP70 groups. Among this list of the differently regulated probe sets, special attention has been given to GILZ since it is present in the top IPA network, and its pattern of modulation by dexamethasone is similar to the observed for BIM.

In summary, GEP analyses reveal high similarities between ZAP70 groups in terms of genes regulated by dexamethasone, and indicate that the different response to dexamethasone may be due to a differential capacity to induce cell death while inducing / repressing the same genes.

GEP analyses results allowed the selection of genes with significant levels of modulation along with biological relevance in the glucocorticoid pathway for further studies in a larger series of patients. The most inducible gene after dexamethasone treatment in both ZAP70 groups is FKBP5, a gene that codifies for a co-chaperone of the glucocorticoid receptor.²³⁸ Moreover, GEP analyses show that FKBP5 expression is higher in patients with high ZAP70 expression than in patients with low ZAP70, and these both in the untreated cells and in the dexamethasone treated cells. Analysis of FKBP5 levels in a larger series of samples from patients with CLL demonstrated that the baseline levels of mRNA and protein of FKBP5 correlate with the extent of cell death, being FKBP5 levels higher in the cases with high ZAP70 expression.

The results of this thesis are in line with a previous report in MM cell lines where a correlation between higher initial levels of FKBP5 and the response to dexamethasone in terms of apoptosis, has been observed.²³⁹ Likewise, the levels of

- 141 -

GR have been correlated with the degree of induced apoptosis in a study performed in ALL.²⁴⁰ The importance of FKBP5 has been disclosed by the model for hormonal activation of the GR.^{111;233} This model puts forward that the GR is bound to FKBP5 in the absence of glucocorticoids, and that the binding of the hormone causes the switch of FKBP5 by FKBP4. FKBP4 unlike FKBP5 interacts with dynein thus allowing the translocation of the glucocorticoid-GR complex to the nucleus. The interchange between FKBP5 and FKBP4 is affected by the levels of both co-chaperones particularly by the ratio between them. Interestingly, in some cellular systems, like those using New World primates and squirrel monkey cells, an over-expression of FKBP5 has been related with a reduced transcriptional activity of the GR.^{241;242} The reported inhibitory action of FKBP5 can be explained by the ratio of FKBP5 / FKBP4 observed in those primates; it was 26 fold higher than the ratio observed in humans thus the substitution of FKBP5 by FKBP4 after the glucocorticoid binding would be compromised, and as a consequence, the glucocorticoid-GR complex translocation to the nucleus also. The GEP results of this thesis are indicative that, in CLL cells, the glucocorticoid-GR complexes moves to the nucleus since they are observed GR genomic effects like induction / repression of the transcription of several genes. Moreover, GEP results show that the cells of the cases with high ZAP70 expression have increased levels of up and down-regulation of gene expression, with respect to the cells of the cases with low ZAP70. The higher levels of FKBP5 observed in the CLL cases with high ZAP70 expression can be in part responsible for an increased signaling through the GR and thus for the better response to dexamethasone observed in high ZAP70 cases.

It cannot be ruled out that the higher responses to dexamethasone observed in the CLL cases with higher FKBP5 levels are also due to non-genomic effects like those mediated by the direct interaction of the glucocorticoid-GR complex with cytoplasmatic proteins. It has been reported that glucocorticoid-GR complex effects are not confined to the nucleus and that glucocorticoids are able to impair the phosphorylation of proteins like AKT and MAPK.¹²⁷. The PI3K-AKT signaling pathway is constitutively

- 142 -

active in some human cancers including in CLL, and it promotes cellular survival and resistance to chemotherapy.^{187;243;244} Activated AKT is able to inhibit apoptosis by phosphorylation and subsequent inactivation of pro apoptotic proteins like BAD and caspase 9.^{245;246} Thus in the cytoplasm, and before the replacement of FKBP5 by FKBP4, the glucocorticoid-GR complex could be mediating apoptotic signals through the inactivation of AKT.

GILZ is among the few genes identified in GEP analyses as differently regulated by dexamethasone in the ZAP70 expression groups. In continuation, GEP results were validated by QRT-PCR in a large CLL series; the GILZ induction is significantly higher in the CLL samples with high ZAP70 expression than in those with low ZAP70 expression. Moreover, these thesis results showed that the induction of GILZ correlates with the apoptotic levels induced by the treatment with dexamethasone, and the induction of the downstream apoptotic effector BIM.

Six GRE in the promoter of GILZ have been identified,¹⁶⁵ thus GILZ transcription can be directly regulated by the GR. GILZ has been previously reported to be induced by glucocorticoids in other related cellular systems like ALL and MM.^{164;247;248} Importantly, GILZ has been implicated in cell death after glucocorticoid treatment since its inhibition by siRNA impairs the apoptotic response in MM.²⁴⁸ So far, it has not been described a direct role for GILZ in the apoptotic pathway, however several pieces of evidence support that GILZ can induce cell apoptosis through the modulation of cell survival and cell proliferation pathways. Firstly, GILZ has been shown to associate with RAS and RAF reducing the activation of downstream RAS targets like ERK, AKT, and CCND1.¹⁶⁶ Moreover, GILZ has been shown to inhibit the NFKB and the AP1 transcription factors.^{167;168}

Activated AKT has been shown to inhibit cell death pathways by directly phosphorylation and consequent inactivation of pro apoptotic proteins like BAD and caspase 9.^{245;246} In addition, activated AKT has been reported to increase the activity of

- 143 -

IKK, which leads to the degradation of NFKB inhibitors such as IkBα.²⁴⁹ The degradation of IkBα results in the release of NFKB, from the cytoplasm to the nucleus, where it acts as a transcription factor. NFKB has been shown to promote cell survival and to inhibit apoptosis by inducing the expression of the apoptotic inhibitors IAPS, BCLXL, and BCL2A1.^{250,251} CLL cells have been shown to have high constitutive levels of AKT and NFKB activity, which are dependent of PI3K, and have been implied in the survival of CLL.^{244,252} The results of this thesis point toward a role of GILZ in the apoptosis induced by glucocorticoids in CLL, most likely by down-regulating cell survival and cell proliferation pathways like PI3K / AKT / mTOR and RAS / RAF / MEK / ERK. The higher response to dexamethasone observed in cases with high ZAP70 expression is probably attributable to an increased inhibition of survival and proliferation signals in cells of these cases.

In summary, this thesis provide the first 'gene / molecular fingerprint' of dexamethasone in CLL cells. These thesis results underscore the better responses to glucocorticoids of the CLL cells of patients from the poor outcome group with unmutated IGHV genes / high ZAP70 expression, and describe some genes associated to this differential response. In addition, these results can facilitate the development of predictive markers of response to dexamethasone, since the higher response observed in cases with UCLL / high ZAP-70 expression correlates with the baseline expression of FKBP5, a gene involved in the glucocorticoid pathway. Finally, among the genes regulated by dexamethasone, the identification of GILZ, a gene responsible for the inhibition of pathways like PI3K / AKT / mTOR and RAS / RAF / MEK / ERK contributes to highlight the importance of these cell survival and cell proliferation pathways in CLL cells.

- 144 -

CONCLUSIONS

Conclusions

Conclusions

CONCLUSIONS

1. CLL cases with unmutated IGHV genes / high ZAP70 expression show higher induced apoptosis by dexamethasone than cases with mutated IGHV genes / low ZAP70 expression.

2. CLL cases with high risk cytogenetic features like deletions in 17p13 and 11q22-q23 show high levels of apoptosis induced by dexamethasone.

3. The magnitude of the apoptosis induced by dexamethasone correlates with the induction of BIM, having CLL cases with high ZAP70 expression the highest levels of BIM induction.

4. The treatment of CLL cells with dexamethasone induces changes in the expression of many genes functionally related with apoptosis, cell survival and proliferation.

5. The different levels of apoptosis induced by dexamethasone observed in the CLL groups defined by ZAP70 expression translate into different profiles of gene expression. These differences are mainly quantitative; cases with high ZAP70 expression show higher levels of gene induction / repression than cases with low ZAP70 expression.

6. Baseline mRNA and protein expression levels of FKBP5, the co-chaperone of the glucocorticoid receptor, correlate with the extent of CLL cells apoptosis induced by the treatment with dexamethasone. Baseline FKBP5 levels are higher in samples from patients with high ZAP70 expression.

- 147 -

Conclusions

7. GILZ is differently induced by dexamethasone in ZAP70 expression groups of CLL, being higher in cases with high ZAP70 expression. Induction of GILZ correlates with induction of BIM and with the levels of apoptosis.

REFERENCES

REFERENCES

1. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues.: International Agency for Research on Cancer; 2008.

2. Leucemia linfática crónica. Madrid: Nova Sidonia, S.L.; 2005.

3. Montserrat E, Moreno C. Chronic lymphocytic leukaemia: a short overview. Ann.Oncol. 2008;19 Suppl 7:vii320-vii325.

4. Rawstron AC, Bennett FL, O'Connor SJ et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N.Engl.J.Med. 2008;359:575-583.

5. Hallek M, Cheson BD, Catovsky D et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008;111:5446-5456.

6. Rozman C, Montserrat E, Rodriguez-Fernandez JM et al. Bone marrow histologic pattern--the best single prognostic parameter in chronic lymphocytic leukemia: a multivariate survival analysis of 329 cases. Blood 1984;64:642-648.

7. Stevenson F, Sahota S, Zhu D et al. Insight into the origin and clonal history of B-cell tumors as revealed by analysis of immunoglobulin variable region genes. Immunol.Rev. 1998;162:247-259.

8. Dohner H, Stilgenbauer S, Benner A et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N.Engl.J.Med. 2000;343:1910-1916.

9. Dohner H, Fischer K, Bentz M et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 1995;85:1580-1589.

10. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat.Rev.Cancer 2010;10:37-50.

11. Migliazza A, Bosch F, Komatsu H et al. Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood 2001;97:2098-2104.

12. Calin GA, Dumitru CD, Shimizu M et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc.Natl.Acad.Sci.U.S.A 2002;99:15524-15529.

13. Raveche ES, Salerno E, Scaglione BJ et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 2007;109:5079-5086.

14. Klein U, Lia M, Crespo M et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010;17:28-40.

15. Cimprich KA, Cortez D. ATR: an essential regulator of genome integrity. Nat.Rev.Mol.Cell Biol. 2008;9:616-627.

16. Zenz T, Eichhorst B, Busch R et al. TP53 mutation and survival in chronic lymphocytic leukemia. J.Clin.Oncol. 2010;28:4473-4479.

17. Zenz T, Krober A, Scherer K et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 2008;112:3322-3329.

18. Malcikova J, Smardova J, Rocnova L et al. Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood 2009;114:5307-5314.

19. Rossi D, Cerri M, Deambrogi C et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin.Cancer Res. 2009;15:995-1004.

20. Johnston JB, Daeninck P, Verburg L et al. P53, MDM-2, BAX and BCL-2 and drug resistance in chronic lymphocytic leukemia. Leuk.Lymphoma 1997;26:435-449.

21. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992;69:1237-1245.

22. Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 1997;420:25-27.

23. Zenz T, Mohr J, Eldering E et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 2009;113:3801-3808.

- 152 -

24. Zenz T, Habe S, Denzel T et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood 2009;114:2589-2597.

25. Hallek M, Pflug N. State of the art treatment of chronic lymphocytic leukaemia. Blood Rev. 2011;25:1-9.

26. Puente XS, Pinyol M, Quesada V et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011;475:101-105.

27. Quesada V, Conde L, Villamor N et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat.Genet. 2011;44:47-52.

28. Wang L, Lawrence MS, Wan Y et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia

1. N.Engl.J.Med. 2011;365:2497-2506.

29. Fabbri G, Rasi S, Rossi D et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J.Exp.Med. 2011;208:1389-1401.

30. Rossi D, Rasi S, Fabbri G et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2011

31. O'Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat.Rev.Immunol. 2007;7:353-364.

32. Klein U, Tu Y, Stolovitzky GA et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J.Exp.Med. 2001;194:1625-1638.

33. Tobin G, Thunberg U, Johnson A et al. Somatically mutated Ig V(H)3-21 genes characterize a new subset of chronic lymphocytic leukemia. Blood 2002;99:2262-2264.

34. Potter KN, Orchard J, Critchley E et al. Features of the overexpressed V1-69 genes in the unmutated subset of chronic lymphocytic leukemia are distinct from those in the healthy elderly repertoire. Blood 2003;101:3082-3084.

35. Messmer BT, Albesiano E, Efremov DG et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J.Exp.Med. 2004;200:519-525.

- 153 -

36. Stamatopoulos K, Belessi C, Moreno C et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: Pathogenetic implications and clinical correlations. Blood 2007;109:259-270.

37. Murray F, Darzentas N, Hadzidimitriou A et al. Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood 2008;111:1524-1533.

 Rozman C, Montserrat E. Chronic lymphocytic leukemia. N.Engl.J.Med. 1995;333:1052-1057.

39. Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N.Engl.J.Med. 2005;352:804-815.

40. Dormer P, Theml H, Lau B. Chronic lymphocytic leukemia: a proliferative or accumulative disorder? Leuk.Res. 1983;7:1-10.

41. Themi H, Trepel F, Schick P, Kaboth W, Begemann H. Kinetics of lymphocytes in chronic lymphocytic leukemia: studies using continuous 3H-thymidine infusion in two patients. Blood 1973;42:623-636.

42. Messmer BT, Messmer D, Allen SL et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J.Clin.Invest 2005;115:755-764.

43. van GR, Kater AP, Otto SA et al. In vivo dynamics of stable chronic lymphocytic leukemia inversely correlate with somatic hypermutation levels and suggest no major leukemic turnover in bone marrow. Cancer Res. 2008;68:10137-10144.

44. Hultdin M, Rosenquist R, Thunberg U et al. Association between telomere length and V(H) gene mutation status in chronic lymphocytic leukaemia: clinical and biological implications. Br.J.Cancer 2003;88:593-598.

45. Damle RN, Batliwalla FM, Ghiotto F et al. Telomere length and telomerase activity delineate distinctive replicative features of the B-CLL subgroups defined by immunoglobulin V gene mutations. Blood 2004;103:375-382.

46. Calissano C, Damle RN, Hayes G et al. In vivo intraclonal and interclonal kinetic heterogeneity in B-cell chronic lymphocytic leukemia. Blood 2009;114:4832-4842.

47. Calissano C, Damle RN, Marsilio S et al. Intra-clonal complexity in chronic lymphocytic leukemia: fractions enriched in recently born/divided and older/quiescent cells. Mol.Med. 2011

- 154 -

48. Kikushige Y, Ishikawa F, Miyamoto T et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 2011;20:246-259.

49. Rai KR, Sawitsky A, Cronkite EP et al. Clinical staging of chronic lymphocytic leukemia. Blood 1975;46:219-234.

50. Binet JL, Auquier A, Dighiero G et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981;48:198-206.

51. Aaronson NK, Ahmedzai S, Bergman B et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J.Natl.Cancer Inst. 1993;85:365-376.

52. Wierda WG, O'Brien S, Wang X et al. Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood 2007;109:4679-4685.

53. Shanafelt TD, Jenkins G, Call TG et al. Validation of a new prognostic index for patients with chronic lymphocytic leukemia. Cancer 2009;115:363-372.

54. Wierda WG, O'Brien S, Wang X et al. Multivariable model for time to first treatment in patients with chronic lymphocytic leukemia. J.Clin.Oncol. 2011;29:4088-4095.

55. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999;94:1848-1854.

56. Damle RN, Wasil T, Fais F et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999;94:1840-1847.

57. Crespo M, Bosch F, Villamor N et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N.Engl.J.Med. 2003;348:1764-1775.

58. Wiestner A, Rosenwald A, Barry TS et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003;101:4944-4951.

- 155 -

59. Thorselius M, Krober A, Murray F et al. Strikingly homologous immunoglobulin gene rearrangements and poor outcome in VH3-21-using chronic lymphocytic leukemia patients independent of geographic origin and mutational status. Blood 2006;107:2889-2894.

60. Ghia P, Stamatopoulos K, Belessi C et al. Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood 2005;105:1678-1685.

61. Hamblin TJ, Orchard JA, Gardiner A et al. Immunoglobulin V genes and CD38 expression in CLL. Blood 2000;95:2455-2457.

62. Jelinek DF, Tschumper RC, Geyer SM et al. Analysis of clonal B-cell CD38 and immunoglobulin variable region sequence status in relation to clinical outcome for B-chronic lymphocytic leukaemia. Br.J.Haematol. 2001;115:854-861.

63. Hamblin TJ, Orchard JA, Ibbotson RE et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood 2002;99:1023-1029.

64. Matrai Z. CD38 as a prognostic marker in CLL. Hematology. 2005;10:39-46.

65. Tobin G, Rosenquist R. Prognostic usage of V(H) gene mutation status and its surrogate markers and the role of antigen selection in chronic lymphocytic leukemia. Med.Oncol. 2005;22:217-228.

66. Rosenwald A, Alizadeh AA, Widhopf G et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J.Exp.Med. 2001;194:1639-1647.

67. Rassenti LZ, Huynh L, Toy TL et al. ZAP-70 compared with immunoglobulin heavychain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N.Engl.J.Med. 2004;351:893-901.

68. Del G, I, Morilla A, Osuji N et al. Zeta-chain associated protein 70 and CD38 combined predict the time to first treatment in patients with chronic lymphocytic leukemia. Cancer 2005;104:2124-2132.

69. Hallek M, Fischer K, Fingerle-Rowson G et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 2010;376:1164-1174.

- 156 -

70. Oscier DG, Gardiner AC, Mould SJ et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 2002;100:1177-1184.

71. Krober A, Seiler T, Benner A et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 2002;100:1410-1416.

72. Shanafelt TD, Witzig TE, Fink SR et al. Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia. J.Clin.Oncol. 2006;24:4634-4641.

73. Stilgenbauer S, Sander S, Bullinger L et al. Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica 2007;92:1242-1245.

74. Nuckel H, Huttmann A, Klein-Hitpass L et al. Lipoprotein lipase expression is a novel prognostic factor in B-cell chronic lymphocytic leukemia. Leuk.Lymphoma 2006;47:1053-1061.

75. Mansouri M, Sevov M, Fahlgren E et al. Lipoprotein lipase is differentially expressed in prognostic subsets of chronic lymphocytic leukemia but displays invariably low catalytical activity. Leuk.Res. 2010;34:301-306.

76. Oppezzo P, Vasconcelos Y, Settegrana C et al. The LPL/ADAM29 expression ratio is a novel prognosis indicator in chronic lymphocytic leukemia. Blood 2005;106:650-657.

77. Gattei V, Bulian P, Del Principe MI et al. Relevance of CD49d protein expression as overall survival and progressive disease prognosticator in chronic lymphocytic leukemia. Blood 2008;111:865-873.

78. Scielzo C, Ghia P, Conti A et al. HS1 protein is differentially expressed in chronic lymphocytic leukemia patient subsets with good or poor prognoses. J.Clin.Invest 2005;115:1644-1650.

79. Buhl AM, Jurlander J, Geisler CH et al. CLLU1 expression levels predict time to initiation of therapy and overall survival in chronic lymphocytic leukemia. Eur.J.Haematol. 2006;76:455-464.

80. Li FJ, Ding S, Pan J et al. FCRL2 expression predicts IGHV mutation status and clinical progression in chronic lymphocytic leukemia. Blood 2008;112:179-187.

- 157 -

81. Nuckel H, Collins CH, Frey UH et al. FCRL2 mRNA expression is inversely associated with clinical progression in chronic lymphocytic leukemia. Eur.J.Haematol. 2009;83:541-549.

82. Hozumi N, Tonegawa S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. 1976 [classical article]. J.Immunol. 2004;173:4260-4264.

Lefranc M-P, Lefranc G. The Immunoglobulin FactsBook. London, UK: Academic Press;
2001.

84. McHeyzer-Williams LJ, McHeyzer-Williams MG. Antigen-specific memory B cell development. Annu.Rev.Immunol. 2005;23:487-513.

85. Di Noia JM, Neuberger MS. Molecular mechanisms of antibody somatic hypermutation. Annu.Rev.Biochem. 2007;76:1-22.

86. Maizels N. Immunoglobulin gene diversification. Annu.Rev.Genet. 2005;39:23-46.

87. Wilson PC, de BO, Liu YJ et al. Somatic hypermutation introduces insertions and deletions into immunoglobulin V genes. J.Exp.Med. 1998;187:59-70.

88. Oscier DG, Thompsett A, Zhu D, Stevenson FK. Differential rates of somatic hypermutation in V(H) genes among subsets of chronic lymphocytic leukemia defined by chromosomal abnormalities. Blood 1997;89:4153-4160.

89. Fais F, Ghiotto F, Hashimoto S et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J.Clin.Invest 1998;102:1515-1525.

90. Chan AC, Iwashima M, Turck CW, Weiss A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell 1992;71:649-662.

91. Nolz JC, Tschumper RC, Pittner BT et al. ZAP-70 is expressed by a subset of normal human B-lymphocytes displaying an activated phenotype. Leukemia 2005;19:1018-1024.

92. Crespo M, Villamor N, Gine E et al. ZAP-70 expression in normal pro/pre B cells, mature B cells, and in B-cell acute lymphoblastic leukemia. Clin.Cancer Res. 2006;12:726-734.

93. Carreras J, Villamor N, Colomo L et al. Immunohistochemical analysis of ZAP-70 expression in B-cell lymphoid neoplasms. J.Pathol. 2005;205:507-513.

94. Krober A, Bloehdorn J, Hafner S et al. Additional genetic high-risk features such as 11q deletion, 17p deletion, and V3-21 usage characterize discordance of ZAP-70 and VH mutation status in chronic lymphocytic leukemia. J.Clin.Oncol. 2006;24:969-975.

- 158 -

95. Del Principe MI, Del PG, Buccisano F et al. Clinical significance of ZAP-70 protein expression in B-cell chronic lymphocytic leukemia. Blood 2006;108:853-861.

96. Orchard JA, Ibbotson RE, Davis Z et al. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet 2004;363:105-111.

97. Bosch F, Ferrer A, Villamor N et al. Fludarabine, cyclophosphamide, and mitoxantrone as initial therapy of chronic lymphocytic leukemia: high response rate and disease eradication. Clin.Cancer Res. 2008;14:155-161.

98. Chen L, Widhopf G, Huynh L et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 2002;100:4609-4614.

99. Richardson SJ, Matthews C, Catherwood MA et al. ZAP-70 expression is associated with enhanced ability to respond to migratory and survival signals in B-cell chronic lymphocytic leukemia (B-CLL). Blood 2006;107:3584-3592.

100. Calpe E, Codony C, Baptista MJ et al. ZAP-70 enhances migration of malignant B lymphocytes toward CCL21 by inducing CCR7 expression via IgM-ERK1/2 activation. Blood 2011;118:4401-4410.

101. Simpson ER, Waterman MR. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu.Rev.Physiol 1988;50:427-440.

102. Feldman D. The role of hormone receptors in the action of adrenal steroids. Annu.Rev.Med. 1975;26:83-90.

103. Ashwell JD, Lu FW, Vacchio MS. Glucocorticoids in T cell development and function*. Annu.Rev.Immunol. 2000;18:309-345.

104. Longui CA, Santos MC, Formiga CB et al. Antiproliferative and apoptotic potencies of glucocorticoids: nonconcordance with their antiinflammatory and immunosuppressive properties. Arg Bras.Endocrinol.Metabol. 2005;49:378-383.

105. Siiteri PK, Murai JT, Hammond GL et al. The serum transport of steroid hormones. Recent Prog.Horm.Res. 1982;38:457-510.

106. Plagemann PG, Erbe J. Glucocorticoids--uptake by simple diffusion by cultured Reuber and Novikoff rat hepatoma cells. Biochem.Pharmacol. 1976;25:1489-1494.

107. Klieber MA, Underhill C, Hammond GL, Muller YA. Corticosteroid-binding globulin, a structural basis for steroid transport and proteinase-triggered release. J.Biol.Chem. 2007;282:29594-29603.

108. Gross KL, Lu NZ, Cidlowski JA. Molecular mechanisms regulating glucocorticoid sensitivity and resistance. Mol.Cell Endocrinol. 2009;300:7-16.

109. Sionov RV, Spokoini R, Kfir-Erenfeld S, Cohen O, Yefenof E. Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv.Cancer Res. 2008;101:127-248.

110. Pratt WB, Silverstein AM, Galigniana MD. A model for the cytoplasmic trafficking of signalling proteins involving the hsp90-binding immunophilins and p50cdc37. Cell Signal. 1999;11:839-851.

111. Wochnik GM, Ruegg J, Abel GA et al. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J.Biol.Chem. 2005;280:4609-4616.

112. Lowenberg M, Verhaar AP, van den Brink GR, Hommes DW. Glucocorticoid signaling: a nongenomic mechanism for T-cell immunosuppression. Trends Mol.Med. 2007;13:158-163.

113. Hafezi-Moghadam A, Simoncini T, Yang Z et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat.Med. 2002;8:473-479.

114. HENCH PS, KENDALL EC, . The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone; compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis. Mayo Clin.Proc. 1949;24:181-197.

115. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr.Rev. 2000;21:55-89.

116. Weinstein SP, Wilson CM, Pritsker A, Cushman SW. Dexamethasone inhibits insulinstimulated recruitment of GLUT4 to the cell surface in rat skeletal muscle. Metabolism 1998;47:3-6. 117. Jin JY, Dubois DC, Almon RR, Jusko WJ. Receptor/gene-mediated pharmacodynamic effects of methylprednisolone on phosphoenolpyruvate carboxykinase regulation in rat liver. J.Pharmacol.Exp.Ther. 2004;309:328-339.

Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy.J.Endocrinol. 2008;197:1-10.

119. Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 2011;60:1500-1510.

120. van Raalte DH, Ouwens DM, Diamant M. Novel insights into glucocorticoid-mediated diabetogenic effects: towards expansion of therapeutic options? Eur.J.Clin.Invest 2009;39:81-93.

121. Wallner BP, Mattaliano RJ, Hession C et al. Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature 1986;320:77-81.

122. Kassel O, Sancono A, Kratzschmar J et al. Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J. 2001;20:7108-7116.

123. De BK, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr.Rev. 2003;24:488-522.

124. Ray A, Prefontaine KE. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc.Natl.Acad.Sci.U.S.A 1994;91:752-756.

125. De BK, Haegeman G. Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol.Endocrinol. 2009;23:281-291.

126. Ortiz PA, Garvin JL. Cardiovascular and renal control in NOS-deficient mouse models. Am.J.Physiol Regul.Integr.Comp Physiol 2003;284:R628-R638.

127. Lowenberg M, Tuynman J, Bilderbeek J et al. Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood 2005;106:1703-1710.

128. Revollo JR, Cidlowski JA. Mechanisms generating diversity in glucocorticoid receptor signaling. Ann.N.Y.Acad.Sci. 2009;1179:167-178.

129. Zen M, Canova M, Campana C et al. The kaleidoscope of glucorticoid effects on immune system. Autoimmun.Rev. 2011;10:305-310.

130. Piemonti L, Monti P, Allavena P et al. Glucocorticoids affect human dendritic cell differentiation and maturation. J.Immunol. 1999;162:6473-6481.

131. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu.Rev.Immunol. 2003;21:685-711.

132. Rickard AJ, Young MJ. Corticosteroid receptors, macrophages and cardiovascular disease. J.Mol.Endocrinol. 2009;42:449-459.

133. Reily MM, Pantoja C, Hu X, Chinenov Y, Rogatsky I. The GRIP1:IRF3 interaction as a target for glucocorticoid receptor-mediated immunosuppression. EMBO J. 2006;25:108-117.

134. McColl A, Bournazos S, Franz S et al. Glucocorticoids induce protein S-dependent phagocytosis of apoptotic neutrophils by human macrophages. J.Immunol. 2009;183:2167-2175.

135. Pitzalis C, Pipitone N, Perretti M. Regulation of leukocyte-endothelial interactions by glucocorticoids. Ann.N.Y.Acad.Sci. 2002;966:108-118.

136. Stankova J, Turcotte S, Harris J, Rola-Pleszczynski M. Modulation of leukotriene B4 receptor-1 expression by dexamethasone: potential mechanism for enhanced neutrophil survival. J.Immunol. 2002;168:3570-3576.

137. Cupps TR, Gerrard TL, Falkoff RJ, Whalen G, Fauci AS. Effects of in vitro corticosteroids on B cell activation, proliferation, and differentiation. J.Clin.Invest 1985;75:754-761.

138. Alnemri ES, Fernandes TF, Haldar S, Croce CM, Litwack G. Involvement of BCL-2 in glucocorticoid-induced apoptosis of human pre-B-leukemias. Cancer Res. 1992;52:491-495.

 Moreaux J, Legouffe E, Jourdan E et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004;103:3148-3157.
Herold MJ, McPherson KG, Reichardt HM. Glucocorticoids in T cell apoptosis and function. Cell Mol.Life Sci. 2006;63:60-72.

141. Erlacher M, Labi V, Manzl C et al. Puma cooperates with Bim, the rate-limiting BH3-only protein in cell death during lymphocyte development, in apoptosis induction. J.Exp.Med. 2006;203:2939-2951.

- 162 -

142. Flammer JR, Rogatsky I. Minireview: Glucocorticoids in autoimmunity: unexpected targets and mechanisms. Mol.Endocrinol. 2011;25:1075-1086.

143. Steinman L. A rush to judgment on Th17. J.Exp.Med. 2008;205:1517-1522.

144. Chatenoud L, Bach JF. Adaptive human regulatory T cells: myth or reality? J.Clin.Invest 2006;116:2325-2327.

145. Wahl SM, Wen J, Moutsopoulos N. TGF-beta: a mobile purveyor of immune privilege. Immunol.Rev. 2006;213:213-227.

146. Elenkov IJ. Glucocorticoids and the Th1/Th2 balance. Ann.N.Y.Acad.Sci. 2004;1024:138-146.

147. Luther C, Adamopoulou E, Stoeckle C et al. Prednisolone treatment induces tolerogenic dendritic cells and a regulatory milieu in myasthenia gravis patients. J.Immunol. 2009;183:841-848.

148. Monari C, Bevilacqua S, Piccioni M et al. A microbial polysaccharide reduces the severity of rheumatoid arthritis by influencing Th17 differentiation and proinflammatory cytokines production. J.Immunol. 2009;183:191-200.

149. Hamdi H, Godot V, Maillot MC et al. Induction of antigen-specific regulatory T lymphocytes by human dendritic cells expressing the glucocorticoid-induced leucine zipper. Blood 2007;110:211-219.

150. Hengartner MO. The biochemistry of apoptosis. Nature 2000;407:770-776.

151. Opferman JT, Korsmeyer SJ. Apoptosis in the development and maintenance of the immune system. Nat.Immunol. 2003;4:410-415.

152. Michallet MC, Saltel F, Preville X et al. Cathepsin-B-dependent apoptosis triggered by antithymocyte globulins: a novel mechanism of T-cell depletion. Blood 2003;102:3719-3726.

153. Strasser A. The role of BH3-only proteins in the immune system. Nat.Rev.Immunol. 2005;5:189-200.

154. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004;305:626-629.

155. Frankfurt O, Rosen ST. Mechanisms of glucocorticoid-induced apoptosis in hematologic malignancies: updates. Curr.Opin.Oncol. 2004;16:553-563.

156. Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity. 2009;30:180-192.

157. Ploner C, Rainer J, Niederegger H et al. The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia. Leukemia 2008;22:370-377.

158. Paquet C, Schmitt E, Beauchemin M, Bertrand R. Activation of multidomain and BH3only pro-apoptotic Bcl-2 family members in p53-defective cells. Apoptosis. 2004;9:815-831.

159. Greenstein S, Ghias K, Krett NL, Rosen ST. Mechanisms of glucocorticoid-mediated apoptosis in hematological malignancies. Clin.Cancer Res. 2002;8:1681-1694.

160. Planey SL, Abrams MT, Robertson NM, Litwack G. Role of apical caspases and glucocorticoid-regulated genes in glucocorticoid-induced apoptosis of pre-B leukemic cells. Cancer Res. 2003;63:172-178.

161. Wang Z, Malone MH, He H, McColl KS, Distelhorst CW. Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. J.Biol.Chem. 2003;278:23861-23867.

162. Holleman A, Cheok MH, Den Boer ML et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N.Engl.J.Med. 2004;351:533-542.

163. Schmidt S, Rainer J, Riml S et al. Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia. Blood 2006;107:2061-2069.

164. Tissing WJ, Den Boer ML, Meijerink JP et al. Genomewide identification of prednisolone-responsive genes in acute lymphoblastic leukemia cells. Blood 2007;109:3929-3935.

165. Wang JC, Derynck MK, Nonaka DF et al. Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes. Proc.Natl.Acad.Sci.U.S.A 2004;101:15603-15608.

166. Ayroldi E, Zollo O, Bastianelli A et al. GILZ mediates the antiproliferative activity of glucocorticoids by negative regulation of Ras signaling. J.Clin.Invest 2007;117:1605-1615.

167. Ayroldi E, Migliorati G, Bruscoli S et al. Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor kappaB. Blood 2001;98:743-753.

- 164 -

168. Mittelstadt PR, Ashwell JD. Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. J.Biol.Chem. 2001;276:29603-29610.

169. Spokoini R, Kfir-Erenfeld S, Yefenof E, Sionov RV. Glycogen synthase kinase-3 plays a central role in mediating glucocorticoid-induced apoptosis. Mol.Endocrinol. 2010;24:1136-1150.

170. Lopez Sanchez R, Constans Cots M, Marcos P, Ribera Santasusana JM, Besses Raebel C. Pautas de quimioterapia en hemopatías malignas, FEHH.: Acción Médica; 2009.

171. Kofler R, Schmidt S, Kofler A, Ausserlechner MJ. Resistance to glucocorticoid-induced apoptosis in lymphoblastic leukemia. J.Endocrinol. 2003;178:19-27.

172. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATPdependent transporters. Nat.Rev.Cancer 2002;2:48-58.

173. Sai S, Nakagawa Y, Yamaguchi R et al. Expression of 11beta-hydroxysteroid dehydrogenase 2 contributes to glucocorticoid resistance in lymphoblastic leukemia cells. Leuk.Res. 2011;35:1644-1648.

174. Schmidt S, Rainer J, Ploner C et al. Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death.Differ. 2004;11 Suppl 1:S45-S55.

175. Soufi M, Kaiser U, Schneider A, Beato M, Westphal HM. The DNA and steroid binding domains of the glucocorticoid receptor are not altered in mononuclear cells of treated CLL patients. Exp.Clin.Endocrinol.Diabetes 1995;103:175-183.

176. Webster JC, Oakley RH, Jewell CM, Cidlowski JA. Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: a mechanism for the generation of glucocorticoid resistance. Proc.Natl.Acad.Sci.U.S.A 2001;98:6865-6870.

177. Haarman EG, Kaspers GJ, Pieters R, Rottier MM, Veerman AJ. Glucocorticoid receptor alpha, beta and gamma expression vs in vitro glucocorticod resistance in childhood leukemia. Leukemia 2004;18:530-537.

178. Tissing WJ, Lauten M, Meijerink JP et al. Expression of the glucocorticoid receptor and its isoforms in relation to glucocorticoid resistance in childhood acute lymphocytic leukemia. Haematologica 2005;90:1279-1281.
179. Kato GJ, Quddus FF, Shuster JJ et al. High glucocorticoid receptor content of leukemic blasts is a favorable prognostic factor in childhood acute lymphoblastic leukemia. Blood 1993;82:2304-2309.

180. Tissing WJ, Meijerink JP, Den Boer ML, Brinkhof B, Pieters R. mRNA expression levels of (co)chaperone molecules of the glucocorticoid receptor are not involved in glucocorticoid resistance in pediatric ALL. Leukemia 2005;19:727-733.

181. Kojika S, Sugita K, Inukai T et al. Mechanisms of glucocorticoid resistance in human leukemic cells: implication of abnormal 90 and 70 kDa heat shock proteins. Leukemia 1996;10:994-999.

182. Lauten M, Beger C, Gerdes K et al. Expression of heat-shock protein 90 in glucocorticoid-sensitive and -resistant childhood acute lymphoblastic leukaemia. Leukemia 2003;17:1551-1556.

183. Hartmann BL, Geley S, Loffler M et al. Bcl-2 interferes with the execution phase, but not upstream events, in glucocorticoid-induced leukemia apoptosis. Oncogene 1999;18:713-719.

184. Addeo R, Caraglia M, Baldi A et al. Prognostic role of bcl-xL and p53 in childhood acute lymphoblastic leukemia (ALL). Cancer Biol.Ther. 2005;4:32-38.

185. Silva A, Yunes JA, Cardoso BA et al. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J.Clin.Invest 2008;118:3762-3774.

186. Gutierrez A, Sanda T, Grebliunaite R et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 2009;114:647-650.

187. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat.Rev.Cancer 2002;2:489-501.

188. Nuutinen U, Postila V, Matto M et al. Inhibition of PI3-kinase-Akt pathway enhances dexamethasone-induced apoptosis in a human follicular lymphoma cell line. Exp.Cell Res. 2006;312:322-330.

189. Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E. Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk.Lymphoma 2010;51:1968-2005.

190. Rambal AA, Panaguiton ZL, Kramer L, Grant S, Harada H. MEK inhibitors potentiate dexamethasone lethality in acute lymphoblastic leukemia cells through the pro-apoptotic molecule BIM. Leukemia 2009;23:1744-1754.

191. Frassanito MA, Cusmai A, Iodice G, Dammacco F. Autocrine interleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis. Blood 2001;97:483-489.

192. Catlett-Falcone R, Landowski TH, Oshiro MM et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity. 1999;10:105-115.

193. Epling-Burnette PK, Liu JH, Catlett-Falcone R et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J.Clin.Invest 2001;107:351-362.

194. Tam CS, O'Brien S, Wierda W et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood 2008;112:975-980.

195. Bosch F, Abrisqueta P, Villamor N et al. Rituximab, fludarabine, cyclophosphamide, and mitoxantrone: a new, highly active chemoimmunotherapy regimen for chronic lymphocytic leukemia. J.Clin.Oncol. 2009;27:4578-4584.

196. Faderl S, Wierda W, O'Brien S et al. Fludarabine, cyclophosphamide, mitoxantrone plus rituximab (FCM-R) in frontline CLL <70 Years. Leuk.Res. 2010;34:284-288.

197. Parikh SA, Keating MJ, O'Brien S et al. Frontline chemoimmunotherapy with fludarabine, cyclophosphamide, alemtuzumab, and rituximab for high-risk chronic lymphocytic leukemia. Blood 2011;118:2062-2068.

198. Gonzalez D, Martinez P, Wade R et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J.Clin.Oncol. 2011;29:2223-2229.

199. Collins RJ, Verschuer LA, Harmon BV et al. Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br.J.Haematol. 1989;71:343-350.

- 167 -

References

200. McConkey DJ, Aguilar-Santelises M, Hartzell P et al. Induction of DNA fragmentation in chronic B-lymphocytic leukemia cells. J.Immunol. 1991;146:1072-1076.

201. Bellosillo B, Dalmau M, Colomer D, Gil J. Involvement of CED-3/ICE proteases in the apoptosis of B-chronic lymphocytic leukemia cells. Blood 1997;89:3378-3384.

202. Bellosillo B, Villamor N, Lopez-Guillermo A et al. Spontaneous and drug-induced apoptosis is mediated by conformational changes of Bax and Bak in B-cell chronic lymphocytic leukemia. Blood 2002;100:1810-1816.

203. Bosanquet AG, Sturm I, Wieder T et al. Bax expression correlates with cellular drug sensitivity to doxorubicin, cyclophosphamide and chlorambucil but not fludarabine, cladribine or corticosteroids in B cell chronic lymphocytic leukemia. Leukemia 2002;16:1035-1044.

204. Iglesias-Serret D, de FM, Santidrian AF et al. Regulation of the proapoptotic BH3-only protein BIM by glucocorticoids, survival signals and proteasome in chronic lymphocytic leukemia cells. Leukemia 2007;21:281-287.

205. Chandra J, Niemer I, Gilbreath J et al. Proteasome inhibitors induce apoptosis in glucocorticoid-resistant chronic lymphocytic leukemic lymphocytes. Blood 1998;92:4220-4229.

206. Meyers JA, Taverna J, Chaves J, Makkinje A, Lerner A. Phosphodiesterase 4 inhibitors augment levels of glucocorticoid receptor in B cell chronic lymphocytic leukemia but not in normal circulating hematopoietic cells. Clin.Cancer Res. 2007;13:4920-4927.

207. Mason KD, Khaw SL, Rayeroux KC et al. The BH3 mimetic compound, ABT-737, synergizes with a range of cytotoxic chemotherapy agents in chronic lymphocytic leukemia. Leukemia 2009;23:2034-2041.

208. Harr MW, Caimi PF, McColl KS et al. Inhibition of Lck enhances glucocorticoid sensitivity and apoptosis in lymphoid cell lines and in chronic lymphocytic leukemia. Cell Death.Differ. 2010;17:1381-1391.

209. Kivekas I, Tobin G, Thunberg U et al. Ex vivo drug and irradiation sensitivities in hypermutated and unmutated forms of chronic lymphocytic leukemia cells. Leuk.Res. 2003;27:337-341.

210. Aleskog A, Tobin G, Laurell A et al. VH gene mutation status and cellular drug resistance in chronic lymphocytic leukaemia. Eur.J.Haematol. 2004;73:407-411.

- 168 -

211. Boelens J, Lust S, Van BF et al. Steroid effects on ZAP-70 and SYK in relation to apoptosis in poor prognosis chronic lymphocytic leukemia. Leuk.Res. 2009;33:1335-1343.

212. Lindhagen E, Norberg M, Kanduri M et al. In vitro activity of 20 agents in different prognostic subgroups of chronic lymphocytic leukemia--rolipram and prednisolone active in cells from patients with poor prognosis. Eur.J.Haematol. 2009;83:22-34.

213. Bosanquet AG, McCann SR, Crotty GM, Mills MJ, Catovsky D. Methylprednisolone in advanced chronic lymphocytic leukaemia: rationale for, and effectiveness of treatment suggested by DiSC assay. Acta Haematol. 1995;93:73-79.

214. Thornton PD, Hamblin M, Treleaven JG et al. High dose methyl prednisolone in refractory chronic lymphocytic leukaemia. Leuk.Lymphoma 1999;34:167-170.

215. Thornton PD, Matutes E, Bosanquet AG et al. High dose methylprednisolone can induce remissions in CLL patients with p53 abnormalities. Ann.Hematol. 2003;82:759-765.

216. Xu W, Miao KR, Hong M et al. High-dose methylprednisolone can induce remissions in patients with fludarabine-refractory chronic lymphocytic leukaemia. Eur.J.Cancer 2010;46:2145-2149.

217. Pettitt AR, Matutes E, Oscier D. Alemtuzumab in combination with high-dose methylprednisolone is a logical, feasible and highly active therapeutic regimen in chronic lymphocytic leukaemia patients with p53 defects. Leukemia 2006;20:1441-1445.

218. Bowen DA, Call TG, Jenkins GD et al. Methylprednisolone-rituximab is an effective salvage therapy for patients with relapsed chronic lymphocytic leukemia including those with unfavorable cytogenetic features. Leuk.Lymphoma 2007;48:2412-2417.

219. Castro JE, Sandoval-Sus JD, Bole J, Rassenti L, Kipps TJ. Rituximab in combination with high-dose methylprednisolone for the treatment of fludarabine refractory high-risk chronic lymphocytic leukemia. Leukemia 2008;22:2048-2053.

220. Dungarwalla M, Evans SO, Riley U et al. High dose methylprednisolone and rituximab is an effective therapy in advanced refractory chronic lymphocytic leukemia resistant to fludarabine therapy. Haematologica 2008;93:475-476.

221. Pileckyte R, Jurgutis M, Valceckiene V et al. Dose-dense high-dose methylprednisolone and rituximab in the treatment of relapsed or refractory high-risk chronic lymphocytic leukemia. Leuk.Lymphoma 2011;52:1055-1065.

- 169 -

222. van Dongen JJ, Langerak AW, Bruggemann M et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003;17:2257-2317.

223. Lefranc MP, Giudicelli V, Ginestoux C et al. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res. 2009;37:D1006-D1012.

224. McCall MN, Bolstad BM, Irizarry RA. Frozen robust multiarray analysis (fRMA). Biostatistics. 2010;11:242-253.

225. Saeed AI, Bhagabati NK, Braisted JC et al. TM4 microarray software suite. Methods Enzymol. 2006;411:134-193.

226. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat.Appl.Genet.Mol.Biol. 2004;3:Article3.

227. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-140.

228. Huang dW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat.Protoc. 2009;4:44-57.

229. Zenz T, Mohr J, Edelmann J et al. Treatment resistance in chronic lymphocytic leukemia: the role of the p53 pathway. Leuk.Lymphoma 2009;50:510-513.

230. Erlacher M, Michalak EM, Kelly PN et al. BH3-only proteins Puma and Bim are ratelimiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 2005;106:4131-4138.

231. Bachmann PS, Gorman R, Mackenzie KL, Lutze-Mann L, Lock RB. Dexamethasone resistance in B-cell precursor childhood acute lymphoblastic leukemia occurs downstream of ligand-induced nuclear translocation of the glucocorticoid receptor. Blood 2005;105:2519-2526.

232. Lu J, Quearry B, Harada H. p38-MAP kinase activation followed by BIM induction is essential for glucocorticoid-induced apoptosis in lymphoblastic leukemia cells. FEBS Lett. 2006;580:3539-3544.

233. Davies TH, Ning YM, Sanchez ER. A new first step in activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 immunophilins. J.Biol.Chem. 2002;277:4597-4600.

- 170 -

234. Haslinger C, Schweifer N, Stilgenbauer S et al. Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status. J.Clin.Oncol. 2004;22:3937-3949.

235. Schroers R, Griesinger F, Trumper L et al. Combined analysis of ZAP-70 and CD38 expression as a predictor of disease progression in B-cell chronic lymphocytic leukemia. Leukemia 2005;19:750-758.

236. Huttmann A, Klein-Hitpass L, Thomale J et al. Gene expression signatures separate Bcell chronic lymphocytic leukaemia prognostic subgroups defined by ZAP-70 and CD38 expression status. Leukemia 2006;20:1774-1782.

237. Stamatopoulos B, Haibe-Kains B, Equeter C et al. Gene expression profiling reveals differences in microenvironment interaction between patients with chronic lymphocytic leukemia expressing high versus low ZAP70 mRNA. Haematologica 2009;94:790-799.

238. Baxter JD, Tomkins GM. Specific cytoplasmic glucocorticoid hormone receptors in hepatoma tissue culture cells. Proc.Natl.Acad.Sci.U.S.A 1971;68:932-937.

239. Rees-Unwin KS, Craven RA, Davenport E et al. Proteomic evaluation of pathways associated with dexamethasone-mediated apoptosis and resistance in multiple myeloma. Br.J.Haematol. 2007;139:559-567.

240. Gruber G, Carlet M, Turtscher E et al. Levels of glucocorticoid receptor and its ligand determine sensitivity and kinetics of glucocorticoid-induced leukemia apoptosis. Leukemia 2009;23:820-823.

241. Denny WB, Valentine DL, Reynolds PD, Smith DF, Scammell JG. Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding. Endocrinology 2000;141:4107-4113.

242. Scammell JG, Denny WB, Valentine DL, Smith DF. Overexpression of the FK506binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three New World primates. Gen.Comp Endocrinol. 2001;124:152-165.

243. Brognard J, Clark AS, Ni Y, Dennis PA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 2001;61:3986-3997.

References

244. Cuni S, Perez-Aciego P, Perez-Chacon G et al. A sustained activation of PI3K/NFkappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 2004;18:1391-1400.

245. Datta SR, Dudek H, Tao X et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91:231-241.

246. Cardone MH, Roy N, Stennicke HR et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998;282:1318-1321.

247. Bachmann PS, Gorman R, Papa RA et al. Divergent mechanisms of glucocorticoid resistance in experimental models of pediatric acute lymphoblastic leukemia. Cancer Res. 2007;67:4482-4490.

248. Grugan KD, Ma C, Singhal S, Krett NL, Rosen ST. Dual regulation of glucocorticoidinduced leucine zipper (GILZ) by the glucocorticoid receptor and the PI3-kinase/AKT pathways in multiple myeloma. J.Steroid Biochem.Mol.Biol. 2008;110:244-254.

249. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu.Rev.Immunol. 2000;18:621-663.

250. Stehlik C, de MR, Kumabashiri I et al. Nuclear factor (NF)-kappaB-regulated Xchromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J.Exp.Med. 1998;188:211-216.

251. Lee HH, Dadgostar H, Cheng Q, Shu J, Cheng G. NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc.Natl.Acad.Sci.U.S.A 1999;96:9136-9141.

252. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ. Modulation of NFkappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J.Immunol. 2000;164:2200-2206.

- 172 -

APPENDIXES

Appendixes

APPENDIX 1

Probe set	Gene symbol	LogRatio	FDR
224856 at	FKBP5	3.2471	3.49E-07
202887 s at	DDIT4	3.1364	1.15E-07
204560 at	FKBP5	3.0735	7.45E-06
218113 at	TMEM2	2.9422	3.22E-08
207001 x at	TSC22D3	2.7904	9.49E-08
224840 at	FKBP5	2.6932	1.04E-08
226625 at	TGFBR3	2.5250	9.77E-06
204731 at	TGFBR3	2.4958	1.24E-04
242551 at	C18orf1	2.3835	7.73E-09
		2.3142	1.74E-08
203221_at	TLE1	2.2437	1.60E-07
215528 at		2.1606	1.04E-08
238423_at	SYTL3	2.1119	1.20E-07
218346_s_at	SESN1	2.1059	1.28E-05
222281_s_at		2.1050	1.15E-07
1555372_at	BCL2L11	2.0714	1.25E-09
1562028_at	CCND3	2.0322	5.02E-09
1558143_a_at	BCL2L11	2.0129	3.04E-09
241893_at		1.9170	1.54E-05
208763_s_at	TSC22D3	1.8761	6.63E-08
225116_at	HIPK2	1.8409	7.64E-06
224839_s_at	GPT2	1.8373	6.64E-08
230381_at	C1orf186	1.8352	6.64E-08
219888_at	SPAG4	1.8256	5.52E-08
225606_at	BCL2L11	1.8085	3.04E-09
207651_at	GPR171	1.7556	7.07E-08
214238_at		1.7394	4.94E-07
219911_s_at	SLCO4A1	1.7106	1.96E-07
204618_s_at	GABPB1	1.6918	1.04E-08
221757_at	PIK3IP1	1.6875	3.96E-08
201700_at	CCND3	1.6849	1.95E-09
201367_s_at	ZFP36L2	1.6791	2.54E-04
203528_at	SEMA4D	1.6666	1.95E-09
212838_at	DNMBP	1.6665	7.95E-08
219753_at	STAG3	1.6661	2.43E-05
206173_x_at	GABPB1	1.6647	7.46E-08
221756_at	PIK3IP1	1.6507	6.63E-08
225767_at		1.6495	1.74E-04
228891_at	SEMA4D	1.6457	3.04E-09
212098_at	LOC151162 /// MGAT5	1.6380	1.59E-06
222334_at		1.6310	5.03E-07
205798_at	IL7R	1.6113	1.86E-07
226218_at	IL7R	1.6093	1.19E-07
231979_at		1.6088	3.04E-09
210785_s_at	C1orf38	1.6039	6.13E-06
225010_at	CCDC6	1.5902	1.33E-08
1568983_a_at		1.5891	2.69E-09

1.1. Probe sets up-regulated by dexamethasone in the high ZAP70 group

Probe set	Gene symbol	LogRatio	FDR
219812_at	PVRIG	1.5752	2.22E-07
203542_s_at	KLF9	1.5733	5.42E-07
229822_at		1.5670	2.52E-06
37966_at	PARVB	1.5592	6.90E-07
228759_at	CREB3L2	1.5563	1.74E-07
207571_x_at	C1orf38	1.5464	9.09E-07
225115_at	HIPK2	1.5427	2.81E-05
203543_s_at	KLF9	1.5365	5.65E-07
210117_at	SPAG1	1.5338	1.87E-07
242514_at		1.5323	1.16E-05
225368_at	HIPK2	1.5315	3.22E-06
244357_at		1.5235	4.01E-06
230599 at		1.5218	7.10E-09
223085 at	RNF19A	1.5075	3.12E-09
1562208 a at		1.5011	6.20E-03
225097 at	HIPK2	1.4752	2.71E-05
202239 at	PARP4	1.4733	2.49E-08
201369 s at	ZFP36L2	1.4683	3.69E-05
227406 at	LOC100129387	1.4650	7.83E-07
212345 s at	CREB3L2	1.4642	5.52E-08
212543 at	AIM1	1.4497	1.64E-05
1565701 at		1 4421	6 75E-05
237367 x at	CELAR	1 4405	6 64F-08
201161 s at	CSDA	1 4400	6 13E-06
216834 at	RGS1	1 4296	3 64F-07
201041 s at	DUSP1	1 4154	1.02E-06
201009 s at	TXNIP	1 4134	4 67E-05
239328 at		1 4115	7.07E-08
1561733 at		1 3890	2 71E-05
208485 x at	CELAR	1 3889	9 74F-09
211862 x at	CELAR	1 3833	1 04F-08
37965 at	PARVB	1.3726	3 22E-06
227312 at	SNTR2	1 3658	6 90F-07
211317 s at	CELAR	1 3591	7 10E-09
238393 at		1 3584	2 69E-05
200555_at	CCDC5	1 3532	1.255-06
242527 at		1 3429	2.88E-05
220285 at	EAM10881	1 3 2 5 8	9.60E-05
220285_at	TANIOSDI	1,3250	6 36E-07
209508 x at	CELAR	1.0102	2.06E-08
205500_A_at	LOC284801	1.2550	2.60E-00
220/83 s at	DNE19A	1.2074	3 175-06
220405_5_at	DADVR	1.2057	2.885-05
210205_5_6t	ITEKB	1.2010	2.000-05
20215_8	DTV2R	1.2703	2.230-05
231205 =+	F1K20	1.2730	7 175-06
231230_at		1.2042	1.255-07
243737_at	TVNID	1.2545	8.015-05
210564 v st	CELAD	1.2535	3.225-09
220504_X_81		1.2510	1.445-05
200009_dt	7NE210	1.2404	8,835,06
200021_5_dL 020700 =+	DNACETO	1.2402	1.245-05
1568042 st		1.2420	2.645-04
1000940_at	INFEDO	1.2423	2.046104

Probe set	Gene symbol	LogRatio	FDR
231873_at	BMPR2	1.2262	1.94E-06
225763_at	RCSD1	1.2260	3.81E-05
219028_at	HIPK2	1.2245	3.90E-03
202962_at	KIF13B	1.2086	2.68E-05
242946_at		1.2063	3.05E-06
235427_at		1.1991	1.62E-07
227551_at	FAM108B1	1.1981	1.33E-08
223028_s_at	SNX9	1.1957	1.20E-06
203331_s_at	INPP5D	1.1944	1.73E-04
1553096_s_at	BCL2L11	1.1918	1.82E-06
204995_at	CDK5R1	1.1916	2.18E-03
240260_at		1.1881	1.17E-05
205882_x_at	ADD3	1.1847	5.65E-07
210563_x_at	CFLAR	1.1840	6.64E-08
218935_at	EHD3	1.1799	1.31E-03
232583_at		1.1788	2.74E-06
223027 at	SNX9	1.1708	8.29E-06
50221 at	TFEB	1.1682	9.93E-07
235274 at		1.1562	6.90E-07
203085 s at	TGFB1	1.1561	2.05E-06
227510 x at	MALAT1	1.1515	9.17E-04
1562600 at		1.1452	1.60E-05
 232784 at		1.1446	1.46E-05
218638 s at	SPON2	1.1435	1.84E-05
241435 at		1.1429	2.01E-06
201752 s at	ADD3	1.1378	7.47E-07
228308 at	FKBP11	1.1354	7.07E-05
225827 at	EIF2C2	1.1345	7.18E-05
1557557 at	LOC100129196	1.1236	2.30E-05
 204546 at	KIAA0513	1.1207	1.09E-04
AFFX-M27830 M at		1.1200	1.01E-04
210214 s at	BMPR2	1.1193	2.22E-07
203574_at	NFIL3	1.1155	9.65E-05
203006 at	INPP5A	1.1149	3.33E-06
1557673 at		1.1148	2.54E-04
 236458 at		1.1144	3.29E-06
	BMPR2	1.1117	1.80E-06
232623_at	LOC100128751	1.1104	1.06E-04
1562265 at		1.1010	4.59E-05
226685 at	SNTB2	1.0962	6.18E-05
219371 s at	KLF2	1.0950	5.56E-05
226810 at	OGFRL1	1.0929	4.40E-04
1568997 at		1.0911	1.54E-05
		1.0856	7.26E-04
240410 at		1.0818	1.13E-03
203332 s at	INPP5D	1.0798	3.03E-04
243509_at		1.0763	3.59E-04
214486 x at	CFLAR	1.0756	2.22E-07
205315 s at	SNTB2	1.0746	4.59E-05
232007 at	AGPAT5	1.0689	2.91E-04
239388 at		1.0685	5.42E-07
225164_s_at	EIF2AK4	1.0654	6.13E-06
213370_s_at	SFMBT1	1.0650	4.12E-07

Probe set	Gene symbol	LogRatio	FDR
200681_at	GLO1	1.0640	6.64E-08
202716_at	PTPN1	1.0582	2.27E-05
229540_at	RBPJ	1.0570	1.72E-04
215147_at		1.0554	2.85E-06
238071_at	LCN10 /// LCN6	1.0543	5.53E-05
236341_at	CTLA4	1.0491	2.56E-04
242842 at		1.0483	1.24E-03
240665 at		1.0467	5.05E-05
208190 s at	LSR	1.0404	7.61E-04
217787 s at	GALNT2	1.0399	6.89E-06
203520 s at	ZNF318	1.0390	1.86E-04
210606 x at	KLRD1	1.0390	6.90E-07
230536 at	PBX4	1.0366	2.63E-04
213622 at	COL9A2	1.0259	2 52F-06
207785 s at	BBPI	1 0206	7.86F-04
242492 at		1.0200	2 44E-06
239054 at	SEMBT1	1.0200	6 36E-07
205510 s at	ELI10038	1.0122	1.04E-04
200010_5_80	1010038	1.0019	5 66E 06
244592_at	DIVECTR	1.0046	1.275.05
204484_dt	PINSC2D	1.0025	1.276-05
226002_at	GADI	1.0015	1.705.02
205002_at	AHDCI	0.9966	1.78E-03
1554569_a_at	CELF2	0.9951	3.24E-02
1555355_a_at	EISI	0.9940	3.35E-04
209678_s_at	PRKCI	0.9845	1.50E-04
209574_s_at	C18orf1	0.9818	1.72E-05
230740_at	EHD3	0.9783	4.40E-04
234362_s_at	CTLA4	0.9749	2.39E-03
232864_s_at	AFF4	0.9723	5.99E-07
1559739_at	CHPT1	0.9705	7.61E-04
241613_at		0.9700	3.25E-04
201753_s_at	ADD3	0.9684	6.42E-05
203111_s_at	PTK2B	0.9675	1.01E-04
219118_at	FKBP11	0.9675	1.24E-03
244026_at		0.9653	1.06E-03
202745_at	USP8	0.9639	6.58E-06
221866_at	TFEB	0.9596	1.31E-05
225282_at	SMAP2	0.9548	1.47E-05
234151_at		0.9538	9.29E-05
240690_at		0.9507	1.25E-03
232865_at	AFF4	0.9503	5.09E-06
226221_at	KIAA1432	0.9501	1.27E-05
213174_at	TTC9	0.9457	7.71E-05
209939_x_at	CFLAR	0.9452	2.57E-07
235683_at	SESN3	0.9439	2.37E-04
224681_at	GNA12	0.9414	6.31E-06
211974_x_at	RBPJ	0.9412	2.44E-06
236164_at	FL10038	0.9372	5.92E-05
204857_at	MAD1L1	0.9368	1.64E-04
	LOC100129196	0.9349	6.13E-06
211458_s_at	GABARAPL1 /// GABARAPL3	0.9346	8.51E-06
244358 at		0.9343	1.31E-05
	USP8	0.9323	1.13E-06

204524_at PDPK1 0.9311 1.58E-04 214405_st 0.9300 1.08E-03 2009681_at SLC19A2 0.9272 2.07F-02 242268_at CELF2 0.9264 4.62E-04 239778_x_at 0.9219 1.36E-03 203315_at NCK2 0.9218 2.26E-05 231109_at 0.9180 1.64E-05 235568_at PRDM1 0.9113 7.24E-05 235568_at PRDM1 0.9110 3.9F-05 217788_s_at GALNT2 0.9102 6.15E-06 210786_s_at FL11 0.9093 3.52E-06 212400_at FAM102A 0.9083 4.37E-04 1564248_at 0.9071 1.24E-03 21725_at WASF2 0.9051 9.30E-05 213163_at HIPK2 0.9019 8.85E-04 215144_at 0.9014 9.5E-04 21316_x_at FKBP11 0.8831 1.24E-03	Probe set	Gene symbol	LogRatio	FDR
114405_at 0.9300 1.08E-03 209681_at SLC19A2 0.9272 2.07F-02 242268_at CEF2 0.9264 6.62E-04 239778_x_at 0.9219 1.36E-03 203315_at NCK2 0.9218 2.66E-05 225562_at RASA3 0.9133 7.24E-05 235668_at PRDM1 0.9114 5.02E-06 244220_at 0.9102 6.15E-06 210786_s_at FNIG7 0.9093 3.9E-05 210786_s_at FNIG7 0.9091 3.9E-05 211725_at WASF2 0.9019 8.85E-04 211725_at WASF2 0.9019 8.85E-04 213763_st HIPK2 0.9019 8.85E-04 21314_at GAB1 0.9033 1.25E-03 210655_s_at FOX03///FOX038 0.8817 2.14E-03 210642_at IFK0R2 0.8880 2.95E-04 211316_x_at CFLAR 0.8868 1.07E-07	204524_at	PDPK1	0.9311	1.58E-04
209681_st SLC19A2 0.9272 2.07F-02 242268_st CELF2 0.9264 4.62F-04 239778_x_st 0.9218 2.26F-05 231109_st 0.9218 2.26F-05 225562_att RASA3 0.9133 7.24F-05 235668_st PRDM1 0.9114 5.02F-06 244220_att 0.9100 3.9F-05 217788_s_att GALNT2 0.9021 5.2F-06 210786_s_at FLI1 0.9024 9.2F-03 229050_s_at SNH67 0.9091 3.5F-04 1564248_at 0.9071 1.24F-03 21775_sat WASF2 0.9051 9.30F-05 213763_sat HIPK2 0.9019 8.5F-04 219117_s_at FKBP11 0.8931 1.25F-05 219117_s_at FKBP11 0.9831 1.25F-03 201642_at IFNOR3 0.8812 1.24F-03 201642_at FKBP11 0.8831 1.25F-05	214405_at		0.9300	1.08E-03
242268_at CELF2 0.9264 4.62E-04 239778_x_at 0.9218 1.36E-05 231109_at 0.9180 1.64E-05 235568_at PRDM1 0.9114 5.22E-06 235568_at PRDM1 0.9110 3.39E-05 217788_s_at GALNT2 0.9100 3.39E-05 210786_s_at FU1 0.9021 6.5E-06 210786_s_at FU1 0.9024 92E-03 229050_s_at SNHG7 0.9091 3.52E-06 212400_at FAM102A 0.9083 4.37E-04 1564248_at 0.9071 1.24E-03 221725_at WASF2 0.9051 9.30E-05 213763_at HIFK2 0.9014 9.5E-04 219117_s_at GAB1 0.9003 1.25E-03 2101655_s_at FOXO3///FOXO3B 0.8917 2.14E-03 201642_at IFMGR2 0.8880 1.07E-07 201644_x_at DUSP1 0.8864 8.22E-04 <	209681_at	SLC19A2	0.9272	2.07E-02
239778_x_st 0,9219 1.36E-03 203315_at NCK2 0.9218 2.26E-05 225562_st RASA3 0.9133 7.24E-05 225562_st RASA3 0.9133 7.24E-05 235668_st PRDM1 0.9110 3.9F-05 217788_5_st GALNT2 0.9102 6.15E-06 210766_5_st FU1 0.9092 4.92E-03 220950_5_st SNHG7 0.9091 3.52E-06 212400_at FAM102A 0.9083 4.37E-04 1564248_st 0.9071 1.24E-03 221725_at WASF2 0.9051 9.30F-05 213763_st HIFK2 0.9034 4.75E-04 219117_s_at FKBP11 0.8931 2.14E-03 201642_at IFNGR2 0.8802 9.5F-04 211316_x_at CFLAR 0.8809 107F-07 201044_x_at DUSP1 0.8848 8.22E-03 242109_at SYTL3 0.8831 1.89F-04	242268_at	CELF2	0.9264	4.62E-04
203315_at NCK2 0.9218 2.26E-05 231109_at 0.9180 1.64E-05 225562_at RASA3 0.9133 7.24E-05 235668_at PROM1 0.9114 5.02E-06 244220_at 0.9110 3.39E-05 217786_s_at GALNT2 0.9102 6.15E-06 212005_s_at SNHG7 0.9091 3.52E-06 212400_at FAM102A 0.9083 4.37E-04 1564248_at 0.9011 2.24E-05 213763_at HIPK2 0.9019 8.85E-04 215144_at GAB1 0.9003 4.37E-04 219117_s_at FKBP11 0.8931 1.25E-03 210655_s_at FOXO3 /// FOXO3B 0.8917 2.14E-03 201642_at IFNGR2 0.8880 1.07E-07 201044_x_at DUSP1 0.8848 8.22E-03 242109_at SYT13 0.8831 4.42E-05 201044_x_at DUSP1 0.8864 8.27E-04	239778_x_at		0.9219	1.36E-03
231109_at 0.9180 1.64E-05 225562_at RASA3 0.9133 7.24E-05 235668_at PRDM1 0.9110 3.39E-05 217788_s_at GALNT2 0.9102 6.15E-06 210786_s_at FL1 0.9092 4.92E-03 229505_s_at SNHG7 0.9091 3.52E-06 212400_at FAM102A 0.9083 4.37E-04 1564248_at 0.9071 1.24E-03 221725_at WASF2 0.9019 8.85E-04 215144_at 0.9014 1.95E-04 221172_s_at FKBP11 0.8903 4.75E-05 210117_s_at FKBP11 0.8880 2.95E-04 2101642_at IFNGR2 0.8880 2.95E-04 2101642_at IFNGR2 0.8881 1.84E-03 2101642_at IFNGR2 0.8881 1.84E-03 2210144_x_at DUSP1 0.8864 8.22E-03 224577_at ERGIC1 0.8831 1.84E-04	203315_at	NCK2	0.9218	2.26E-05
225562_at RASA3 0.9133 7.24E-05 235568_at PRDM1 0.9114 5.02E-06 244220_at 0.9110 3.39E-05 217786_s_at GALNT2 0.9010 3.52E-06 210786_s_at FUI 0.9092 4.92E-03 229050_s_at SNHG7 0.9091 3.52E-06 212400_at FAM102A 0.9083 4.37E-04 1564248_at 0.9071 1.24E-03 211763_at HIPK2 0.9019 8.5E-04 213763_at HIPK2 0.9019 8.5E-04 21314_at 0.9014 1.95E-03 210655_s_at FOX3//FOX03B 0.8931 1.25E-03 210642_at IFNGR2 0.8801 1.07E-07 201642_at IFNGR2 0.8886 1.07E-07 201044_x_at DUSP1 0.8864 8.22E-03 242109_at SYTL3 0.8831 4.42E-05 204132_s_at 0.8812 1.88E-04	231109_at		0.9180	1.64E-05
235668_at PRDM1 0.9114 5.02E-06 244220_at 0.9110 3.39E-05 217788_s_at GALNT2 0.9102 6.15E-06 212005_s_at FUI 0.9021 3.52E-06 212400_at FAM102A 0.9033 4.37E-04 1564248_at 0.9071 1.24E-03 211725_at WASF2 0.9019 8.85E-04 215144_at 0.9014 1.95E-04 229114_at GAB1 0.9003 4.75E-05 219117_s_at FKBP11 0.8931 1.25E-03 210655_s_at FOXO3 /// FOXO3B 0.8917 2.14E-03 201642_at IFNGR2 0.8880 2.95E-04 211316_x_at CFLAR 0.8880 2.95E-04 211316_x_at CFLAR 0.8881 1.84E-03 242109_at 0.8831 1.84E-03 224577_at ERGIC1 0.8821 2.90E-03 1557555_at 0.8812 5.18E-04	225562_at	RASA3	0.9133	7.24E-05
244220_at 0.9110 3.39E-05 217788_s_at GAINT2 0.9102 6.15E-06 210766_s_at FLI1 0.9092 4.92E-03 22950_s_at SNHG7 0.9091 3.52E-06 212400_at FAM102A 0.9083 4.37E-04 1564248_at 0.9071 1.24E-03 221725_at WASF2 0.9051 9.30E-05 213763_at HIPK2 0.9031 4.75E-05 21917_s_at FKBP11 0.8901 1.25E-03 210655_s_at FOXO3 /// FOXO3B 0.8917 2.14E-03 201642_at IFNGR2 0.8880 2.95E-04 211316_x_at CFLAR 0.8869 1.07E-07 201044_x_at DUSP1 0.8831 1.84E-03 242109_at 0.8832 1.88E-04 244209_at 0.8831 4.2E-05 204132_s_at FOXO3 /// FOXO3B 0.8821 2.00E-03 1557555_at 0.8813 4.42E-05 <td>235668_at</td> <td>PRDM1</td> <td>0.9114</td> <td>5.02E-06</td>	235668_at	PRDM1	0.9114	5.02E-06
217788_s_at GALNT2 0.9102 6.15E-06 210786_s_at FLI 0.9091 3.52E-06 229050_s_at SNHG7 0.9091 3.52E-06 212400_at FAM102A 0.9083 4.37E-04 1564248_at 0.9071 1.24E-03 221725_at WASF2 0.9051 9.30E-05 213763_at HIPK2 0.9014 1.95E-04 229114_at 0.9014 1.95E-04 229114_at GAB1 0.9003 4.75E-05 219117_s_at FKBP11 0.8931 1.25E-03 210655_s_at FOX03 /// FOX038 0.8917 2.14E-03 201644_x_at DUSP1 0.8864 8.22E-03 242109_at SYTL3 0.8881 1.84E-03 224577_at ERGIC1 0.8831 4.42E-05 204132_s_at 0.8831 4.42E-05 204457_at ERGIC1 0.8832 1.88E-04 233291_s_at 0.8812 1.88E-04 <td>244220 at</td> <td></td> <td>0.9110</td> <td>3.39E-05</td>	244220 at		0.9110	3.39E-05
210786_s_at FLI1 0.9092 4.92E-03 229050_s_at SNHG7 0.9091 3.52E-06 212400_at FAMI02A 0.9083 4.37E-04 1564248_at 0.9011 1.24E-03 221725_at WASF2 0.9019 8.85E-04 213763_at HIPK2 0.9014 1.95E-04 229114_at GAB1 0.9003 4.75E-05 219117_s_at FKBP11 0.8931 1.25E-03 210655_s_at FOXO3 /// FOXO3B 0.8917 2.14E-03 201642_at IFNGR2 0.8860 1.07E-07 201044_x_at DUSP1 0.8864 8.22E-03 242109_at SYTL3 0.88381 1.84E-03 2442109_at 0.8812 5.18E-04 23321_s_at FOXO3 /// FOXO3B 0.8827 2.00E-03 155755_at 0.8812 5.18E-04 23321_s_at CTLA4 0.8695 1.59E-04 221331_x_at CTLA4 0.8695 1.59E-04	217788_s_at	GALNT2	0.9102	6.15E-06
229050_s_at SNHG7 0.9091 3.52E-06 212400_at FAM102A 0.9083 4.37E-04 1564248_at 0.9071 1.24E-03 221725_at WASF2 0.9051 9.30E-05 213763_at HIPK2 0.9019 8.85E-04 215144_at 0.9014 1.95E-04 229114_at GAB1 0.9003 4.75E-05 219175_s_at FKBP11 0.8931 1.25E-03 210655_s_at FOXO3 /// FOXO3B 0.8917 2.14E-03 201642_at IFNGR2 0.8880 2.95E-04 211316_x_at CFLAR 0.8809 1.07E-07 201044_x_at DUSP1 0.8848 8.22E-03 242109_at SYTL3 0.8831 1.44E-05 204132_s_at FOXO3 /// FOXO3B 0.8827 2.00E-03 155755_at 0.8812 1.89E-04 2433921_s_at CTLA4 0.8797 7.10E-04 213374_at CTLA4 0.8645 1.66E-04 </td <td>210786 s at</td> <td>FLI1</td> <td>0.9092</td> <td>4.92E-03</td>	210786 s at	FLI1	0.9092	4.92E-03
212400_at FAM102A 0.9083 4.37E-04 1564248_at 0.9071 1.24E-03 221725_at WASF2 0.9051 9.30E-05 213763_at HIPK2 0.9014 1.95E-04 229114_at GAB1 0.9003 4.75E-05 219117_s_at FKBP11 0.8931 1.25E-03 210655_s_at FOX03 /// FOX038 0.8917 2.14E-03 201642_at IFNGR2 0.8880 2.95E-04 211316_x_at CFLAR 0.8869 1.07E-07 201044_x_at DUSP1 0.8854 8.22E-03 242109_at SYTL3 0.8831 1.48E-03 244577_at ERGIC1 0.8831 4.42E-03 244429_at 0.8831 4.42E-03 204132_s_at FOXO3 /// FOXO38 0.8827 2.00E-03 1557555_at 0.8812 5.18E-04 233921_s_at CTLA4 0.8757 1.87E-03 21314_x_at CTLA4 0.8751 1.57E-04 </td <td>229050 s at</td> <td>SNHG7</td> <td>0.9091</td> <td>3.52E-06</td>	229050 s at	SNHG7	0.9091	3.52E-06
1564248_at 0.9071 1.24E-03 221725_at WASF2 0.9051 9.30E-05 213763_at HIPK2 0.9019 8.85E-04 215144_at 0.9014 1.95E-04 229114_st GAB1 0.9003 4.75E-05 219175_sat FKBP11 0.8931 1.25E-03 210655_5_at FOXO3 /// FOXO3B 0.8917 2.14E-03 201642_at IFNGR2 0.8860 2.95E-04 211316_x_at CFLAR 0.8861 8.22E-03 242109_at SYTL3 0.8838 1.84E-03 224577_at ERGIC1 0.8832 1.89E-04 244209_at 0.8812 2.00E-03 1557555_at 0.8812 5.18E-04 233921_s_at FOX03 // FOX03B 0.8827 2.00E-03 1557555_at 0.8812 5.18E-04 221331_x_at CTLA4 0.8750 1.87E-03 231994_at CTLA4 0.8651 1.59E-04 </td <td>212400 at</td> <td>FAM102A</td> <td>0.9083</td> <td>4.37E-04</td>	212400 at	FAM102A	0.9083	4.37E-04
221725_at WASF2 0.9051 9.30E-05 213763_at HIPK2 0.9019 8.85E-04 215144_at 0.9014 1.95E-04 229114_at GAB1 0.9003 4.75E-05 219175_s.at FKBP11 0.8931 1.25E-03 201642_at IFNGR2 0.8880 2.95E-04 211316_x_at CFLAR 0.8864 8.22E-03 201044_x.at DUSP1 0.8838 1.84E-03 224577_at ERGIC1 0.8831 4.42E-05 204132_s_at 0.8831 4.42E-05 204132_s_at FOX03 /// FOX03B 0.8827 2.00E-03 1557555_at 0.8811 4.42E-05 20112_s_at CTLA4 0.8770 1.87E-03 231794_at CTLA4 0.8695 1.59E-04 201010_s_at TXNIP 0.8651 1.66E-04 228153_at RNF144B 0.8619 5.85E-05 244646_at 0.8607 1.07E-04	1564248 at		0.9071	1.24E-03
213763_at HIPK2 0.9019 8.85E-04 215144_at 0.9014 1.95E-04 229114_at GAB1 0.9003 4.75E-05 219117_s_at FKBP11 0.8931 1.25E-03 210655_s_at FOX03/// FOX03B 0.8917 2.14E-03 201642_at IFNGR2 0.8880 2.95E-04 211316_x_at CFLAR 0.8809 1.07E-07 201044_x_at DUSP1 0.8864 8.22E-03 242109_at SYTL3 0.8831 1.84E-03 224577_at ERGIC1 0.8831 4.42E-05 204132_s_at 0.8831 4.42E-05 204132_s_at 0.8831 4.42E-05 204132_s_at CTLA4 0.8695 1.58E-04 233921_s_at CTLA4 0.8695 1.58E-04 231794_at CTLA4 0.8619 5.85E-05 244646_at 0.8619 5.85E-05 244646_at 0.8607 1.07E-04	 221725 at	WASF2	0.9051	9.30E-05
215144_at 0.9014 1.95E-04 229114_at GAB1 0.9003 4.75E-05 219117_s_at FKBP11 0.8931 1.25E-03 210655_s_at FOXO3/// FOXO38 0.8917 2.14E-03 201642_at IFNGR2 0.8869 1.07E-07 201044_x_at DUSP1 0.8864 8.22E-03 242109_at SYTL3 0.8831 1.44E-05 244129_at 0.8831 4.42E-05 204132_s_at FOXO3 /// FOXO38 0.8827 2.00E-03 1557555_at 0.8812 5.18E-04 233921_s_at 0.8812 5.18E-04 233921_s_at 0.8812 5.18E-04 233921_s_at CTLA4 0.8750 1.87E-03 211010_s_at TXNIP 0.8645 1.66E-04 22153_s_at CELF2 0.8645 1.66E-04 228153_at TXNIP 0.8607 1.07E-04 246464_at 0.8602 1.89E-04 <td>213763 at</td> <td>HIPK2</td> <td>0.9019</td> <td>8.85E-04</td>	213763 at	HIPK2	0.9019	8.85E-04
229114_at GAB1 0.9003 4.75E-05 219117_s_at FKBP11 0.8931 1.25E-03 210655_s_at FOXO3 /// FOXO3B 0.8917 2.14E-03 201642_at IFNGR2 0.8880 2.95E-04 211316_x_at CFLAR 0.8880 2.95E-04 210144_x_at DUSP1 0.8864 8.22E-03 242109_at SYTL3 0.8833 1.84E-03 224577_at ERGIC1 0.8832 1.89E-04 244429_at 0.8831 4.42E-05 204132_s_at FOXO3 /// FOXO3B 0.8827 2.00E-03 1557555_at 0.8812 5.18E-04 233921_s_at CTLA4 0.8750 1.87E-03 231794_at CTLA4 0.8695 1.59E-04 201105_s_at TNIP 0.8648 2.84E-04 20100_s_at TNIP 0.8619 5.85E-05 244646_at 0.8607 1.07E-04 214439_x_at BIN1 0.8602 2.67E-03 <td>215144 at</td> <td></td> <td>0.9014</td> <td>1.95E-04</td>	215144 at		0.9014	1.95E-04
219117_s_at FKBP11 0.8931 1.25E-03 210655_s_at FOXO3 /// FOXO38 0.8917 2.14E-03 201642_at IFNGR2 0.8880 2.95E-04 211316_x_at CFLAR 0.8869 1.07E-07 201044_x_at DUSP1 0.8844 8.22E-03 242109_at SYTL3 0.8831 1.44E-03 224577_at ERGIC1 0.8832 1.89E-04 244429_at 0.8831 4.42E-05 204132_s_at FOXO3 /// FOXO38 0.8827 2.00E-03 1557555_at 0.8812 5.18E-04 233921_s_at 0.8797 7.10E-04 2131794_at CTLA4 0.8695 1.59E-04 201010_s_at TXNIP 0.8645 1.66E-04 228153_at CELF2 0.8645 1.66E-04 228153_at RNF1448 0.8619 5.85E-05 244646_at 0.8602 1.67E-03 239930_at GALNT2 0.8585 1.05E	229114 at	GAB1	0.9003	4.75E-05
210655_s_at FOXO3 /// FOXO3B 0.8917 2.14E-03 201642_at IFNGR2 0.8800 2.95E-04 211316_x_at CFLAR 0.8869 1.07E-07 201044_x_at DUSP1 0.8864 8.22E-03 242109_at SYTL3 0.8838 1.88E-03 224577_at ERGIC1 0.8831 4.42E-05 204132_s_at 0.8831 4.42E-05 204132_s_at 0.8812 5.18E-04 233921_s_at 0.877 7.10E-04 2131794_at CTLA4 0.8797 7.10E-04 201010_s_at CTLA4 0.8750 1.87E-03 231794_at CTLA4 0.8695 1.59E-04 202158_s_at CELF2 0.8648 2.84E-04 201010_s_at TXNIP 0.8607 1.07E-04 214439_x_at BIN1 0.8602 1.66E-04 228153_at 0.8607 1.07E-04 214439_x_at BIN1 0.8602 2.67E-03 <	219117 s at	FKBP11	0.8931	1.25E-03
201642_at IFNGR2 0.8880 2.95E-04 211316_x_at CFLAR 0.8869 1.07E-07 201044_x_at DUSP1 0.8864 8.22E-03 242109_at SYTL3 0.8838 1.84E-03 224577_at ERGIC1 0.8831 4.42E-05 204132_s_at FOXO3 /// FOXO3B 0.8827 2.00E-03 1557555_at 0.8812 5.18E-04 233921_s_at CTLA4 0.8797 7.10E-04 221331_x_at CTLA4 0.8695 1.59E-04 20100_s_at CTLA4 0.8695 1.59E-04 202158_s_at CELF2 0.8648 2.84E-04 201010_s_at TXNIP 0.8619 5.85E-05 244646_at 0.8607 1.07E-04 214439_x_at BIN1 0.8602 2.87E-04 23971_at 0.8507 1.07E-04 214439_x_at BIN1 0.8602 2.67E-03 240538_at 0.8507 1.07E-04	210655 s at	FOXO3 /// FOXO3B	0.8917	2.14E-03
211316_x_at CFLAR 0.8869 1.07E-07 201044_x_at DUSP1 0.8864 8.22E-03 242109_at SYTL3 0.8838 1.84E-03 224577_at ERGIC1 0.8832 1.89E-04 244429_at 0.8831 4.42E-05 204132_s_at FOXO3 /// FOXO3B 0.8827 2.00E-03 1557555_at 0.8797 7.10E-04 221331_x_at CTLA4 0.8750 1.87E-03 231794_at CTLA4 0.8695 1.59E-04 201010_s_at TXNIP 0.8648 2.84E-04 201010_s_at TXNIP 0.8607 1.07E-04 214439_x_at BIN1 0.8602 1.89E-04 214439_x_at BIN1 0.8602 1.89E-04 214439_x_at BIN1 0.8607 1.07E-04 214439_x_at BIN1 0.8602 1.89E-04 239171_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 <td>201642 at</td> <td>IFNGR2</td> <td>0.8880</td> <td>2.95E-04</td>	201642 at	IFNGR2	0.8880	2.95E-04
DIST DIST DIST DIST 201044_x_at DUSP1 0.8864 8.22E-03 242109_at SYTL3 0.8838 1.84E-03 224577_at ERGIC1 0.8832 1.89E-04 244429_at 0.8831 4.42E-05 204132_s_at FOXO3 /// FOXO3B 0.8827 2.00E-03 1557555_at 0.8797 7.10E-04 233921_s_at CTLA4 0.8750 1.87E-03 231794_at CTLA4 0.8695 1.59E-04 202158_s_at CELF2 0.8648 2.84E-04 201010_s_at TXNIP 0.86645 1.66E-04 228153_at RNF144B 0.8619 5.85E-05 244646_at 0.8607 1.07E-04 214439_x_at BIN1 0.8602 2.67E-03 240538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 23930_at GALNT2 0.8456 8.17E-05	211316 x at	CELAR	0.8869	1.07F-07
242109_at SVTI3 0.8838 1.84E-03 224577_at ERGIC1 0.8838 1.89E-04 244429_at 0.8831 4.42E-05 204132_s_at FOXO3 /// FOXO3B 0.8827 2.00E-03 1557555_at 0.8812 5.18E-04 233921_s_at 0.8797 7.10E-04 221331_x_at CTLA4 0.8675 1.59E-04 20110_s_at CTLA4 0.8695 1.59E-04 202158_s_at CELF2 0.8648 2.84E-04 201010_s_at TXNIP 0.86645 1.66E-04 228153_at RNF144B 0.8607 1.07E-04 214439_x_at BIN1 0.8602 2.67E-03 240538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 23930_at GALNT2 0.8500 7.26E-06 242320_at 0.8530 5.10E-04 21718_s_at RNASET2 0.8426 8.17E-05 <	201044 x at	DUSP1	0.8864	8 22F-03
1 1	242109 at	SYTL3	0.8838	1.84F-03
1111 1111 1111 244429_at 0.8831 4.42E-05 204132_s_at FOXO3 /// FOXO3B 0.8827 2.00E-03 155755_at 0.812 5.18E-04 233921_s_at 0.8797 7.10E-04 221331_x_at CTLA4 0.8695 1.59E-04 201058_s_at CTLA4 0.8695 1.59E-04 202158_s_at CELF2 0.8648 2.84E-04 201010_s_at TXNIP 0.8607 1.07E-04 228153_at RNF1448 0.8619 5.85E-05 244646_at 0.8607 1.07E-04 214439_x_at BIN1 0.8602 1.89E-04 239171_at 0.8602 2.67E-03 240538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 217983_s_at	224577 at	FRGIC1	0.8832	1 89F-04
204132_s_at FOXO3 /// FOXO3B 0.8827 2.00E-03 155755_at 0.812 5.18E-04 233921_s_at 0.8797 7.10E-04 221331_x_at CTLA4 0.8750 1.87E-03 231794_at CTLA4 0.8695 1.59E-04 202158_s_at CELF2 0.8648 2.84E-04 201010_s_at TXNIP 0.8645 1.66E-04 228153_at RNF1448 0.8619 5.85E-05 244646_at 0.8607 1.07E-04 214439_x_at BIN1 0.8602 2.67E-03 240538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 221718_s_at AKAP13 0.8496 2.52E-06 201485_s_at RNASET2 0.8428 6.69E-06 217983_s_at RNASET2 0.8419 3.66E-04 </td <td>244429 at</td> <td></td> <td>0.8831</td> <td>4 42F-05</td>	244429 at		0.8831	4 42F-05
1577555_at 0.8812 5.18E-04 233921_s_at 0.8812 5.18E-04 221331_x_at CTLA4 0.8797 7.10E-04 221331_x_at CTLA4 0.8695 1.59E-04 202158_s_at CELF2 0.8648 2.84E-04 201010_s_at TXNIP 0.8645 1.66E-04 228153_at RNF144B 0.8607 1.07E-04 244646_at 0.8607 1.07E-04 214439_x_at BIN1 0.8602 1.89E-04 239171_at 0.8602 1.87E-03 246538_at 0.8602 1.87E-04 239171_at 0.8602 1.87E-03 240538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 221718_s_at RNASET2 0.8426 8.17E-05 217983_s_at	204132 s at	EOXO3 /// EOXO3B	0.8827	2 00F-03
233921_s_at 0.8797 7.10E-04 221331_x_at CTLA4 0.8797 7.10E-04 221331_x_at CTLA4 0.8797 1.87E-03 231794_at CTLA4 0.8695 1.59E-04 202158_s_at CELF2 0.8648 2.84E-04 201010_s_at TXNIP 0.8645 1.66E-04 228153_at RNF144B 0.8619 5.85E-05 244646_at 0.8607 1.07E-04 214439_x_at BIN1 0.8602 2.67E-03 240538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 221718_s_at AKAP13 0.8496 2.52E-06 217983_s_at RNASET2 0.8456 8.17E-05 217983_s_at RNASET2 0.8414 7.36E-05 217643_x_at 0.8311 1.15E-04	1557555 at		0.8812	5 18F-04
221331_x_at CTLA4 0.8750 1.87E-03 231794_at CTLA4 0.8695 1.59E-04 202158_s_at CELF2 0.8648 2.84E-04 201010_s_at TXNIP 0.8645 1.66E-04 228153_at RNF144B 0.8607 1.07E-04 214439_x_at BIN1 0.8602 1.89E-04 239171_at 0.8602 2.67E-03 2446538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 221718_s_at AKAP13 0.8496 2.52E-06 201485_s_at RCN2 0.8456 8.17E-05 217983_s_at RNASET2 0.8428 6.69E-06 217643_x_at 0.8419 3.66E-04 209920_at BMPR2 0.8442 6.9E-05 202931_x_at BIN1 0.8409 5.48E-06	233921 s at		0.8797	7 10F-04
231794_at CTLA4 0.8695 1.59E-04 202158_s_at CELF2 0.8648 2.84E-04 201010_s_at TXNIP 0.8645 1.66E-04 228153_at RNF144B 0.8607 1.07E-04 214439_x_at BIN1 0.8602 1.89E-04 239171_at 0.8602 2.67E-03 240538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 221718_s_at AKAP13 0.8496 2.52E-06 201485_s_at RCN2 0.8456 8.17E-05 217983_s_at RNASET2 0.8426 6.69E-06 217643_x_at 0.8419 3.66E-04 227222_at FBX010 0.8414 7.36E-05 209920_at BIN1 0.8409 5.48E-06 1560386_at 0.8361 1.24E-05	221331 x at	CTLA4	0.8750	1.87F-03
Dots Dots Dots Dots 202158_s_at CELF2 0.8648 2.84E-04 201010_s_at TXNIP 0.8645 1.66E-04 228153_at RNF144B 0.8619 5.85E-05 244646_at 0.8607 1.07E-04 214439_x_at BIN1 0.8602 1.89E-04 239171_at 0.8602 2.67E-03 240538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 221718_s_at AKAP13 0.8496 2.52E-06 201485_s_at RCN2 0.8426 8.17E-05 217983_s_at RNASET2 0.8441 7.36E-05 202931_x_at BIN1 0.8419 3.66E-04 209920_at BMPR2 0.8409 5.48E-06 1560386_at 0.8392 8.82E-04 <td< td=""><td>231794 at</td><td>CTLA4</td><td>0.8695</td><td>1.59E-04</td></td<>	231794 at	CTLA4	0.8695	1.59E-04
201010_s_at TXNIP 0.8645 1.66E-04 228153_at RNF144B 0.8619 5.85E-05 244646_at 0.8607 1.07E-04 214439_x_at BIN1 0.8602 1.89E-04 239171_at 0.8602 2.67E-03 240538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 221718_s_at AKAP13 0.8496 2.52E-06 201485_s_at RCN2 0.8456 8.17E-05 217983_s_at RNASET2 0.8428 6.69E-06 217643_x_at 0.8419 3.66E-04 22722_at FBX010 0.8414 7.36E-05 20931_x_at BIN1 0.8409 5.48E-06 1560386_at 0.8392 8.82E-04 224261_at 0.8361 1.24E-05	202158 s at	CELF2	0.8648	2.84E-04
228153_at RNF1448 0.8619 5.85E-05 244646_at 0.8607 1.07E-04 214439_x_at BIN1 0.8602 1.89E-04 239171_at 0.8602 2.67E-03 240538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 221718_s_at AKAP13 0.8496 2.52E-06 201485_s_at RCN2 0.8456 8.17E-05 217983_s_at RNASET2 0.8428 6.69E-06 217643_x_at 0.8419 3.66E-04 227222_at FBXO10 0.8414 7.36E-05 202931_x_at BIN1 0.8409 5.48E-06 1560386_at 0.8361 1.24E-05 217984_at RNASET2 0.8361 1.24E-05 210201 x at BIN1 0.8342 1.39E-04	201010 s at	TXNIP	0.8645	1 66F-04
244646_at 0.8607 1.07E-04 214439_x_at BIN1 0.8602 1.89E-04 239171_at 0.8602 2.67E-03 240538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 221718_s_at AKAP13 0.8496 2.52E-06 201485_s_at RCN2 0.8456 8.17E-05 217983_s_at RNASET2 0.8419 3.66E-04 227222_at FBX010 0.8414 7.36E-05 202931_x_at BIN1 0.8410 1.15E-04 209920_at BMPR2 0.8409 5.48E-06 1560386_at 0.8361 1.24E-05 217984_at RNASET2 0.8350 1.03E-05	228153 at	RNF144B	0.8619	5.85E-05
214439_x_at BIN1 0.8602 1.89E-04 239171_at 0.8602 2.67E-03 240538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 221718_s_at AKAP13 0.8496 2.52E-06 201485_s_at RCN2 0.8456 8.17E-05 217983_s_at RNASET2 0.8428 6.69E-06 217643_x_at 0.8419 3.66E-04 227222_at FBXO10 0.8414 7.36E-05 202931_x_at BIN1 0.8409 5.48E-06 1560386_at 0.8361 1.24E-05 217984_at RNASET2 0.8361 1.24E-05 217984_at RNASET2 0.8350 1.03E-05	244646 at		0.8607	1 07F-04
239171_at 0.8602 2.67E-03 240538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 221718_s_at AKAP13 0.8496 2.52E-06 201485_s_at RCN2 0.8456 8.17E-05 217983_s_at RNASET2 0.8428 6.69E-06 217643_x_at 0.8419 3.66E-04 227222_at FBXO10 0.8414 7.36E-05 209920_at BIN1 0.8409 5.48E-06 1560386_at 0.8392 8.82E-04 224261_at 0.8361 1.24E-05 217984_at RNASET2 0.8350 1.03E-05	214439 x at	BIN1	0.8602	1 89F-04
240538_at 0.8585 7.97E-04 1554676_at SRGN 0.8575 1.05E-03 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 221718_s_at AKAP13 0.8496 2.52E-06 201485_s_at RCN2 0.8456 8.17E-05 217983_s_at RNASET2 0.8428 6.69E-06 217643_x_at 0.8419 3.66E-04 227222_at FBX010 0.8414 7.36E-05 209920_at BIN1 0.8409 5.48E-06 1560386_at 0.8392 8.82E-04 224261_at 0.8361 1.24E-05 217984_at RNASET2 0.8350 1.03E-05	239171 at		0.8602	2.67E-03
1554676_at SRGN 0.8555 1.05E-03 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 221718_s_at AKAP13 0.8496 2.52E-06 201485_s_at RCN2 0.8456 8.17E-05 217983_s_at RNASET2 0.8428 6.69E-06 217643_x_at 0.8419 3.66E-04 227222_at FBXO10 0.8414 7.36E-05 209920_at BIN1 0.8409 5.48E-06 1560386_at 0.8392 8.82E-04 224261_at 0.8361 1.24E-05 217984_at RNASET2 0.8350 1.03E-05	240538 at		0.8585	7 97F-04
100 rol_at 0.0000 1.0000 239930_at GALNT2 0.8560 7.26E-06 242320_at 0.8530 5.10E-04 221718_s_at AKAP13 0.8496 2.52E-06 201485_s_at RCN2 0.8426 8.17E-05 217983_s_at RNASET2 0.8428 6.69E-06 217643_x_at 0.8419 3.66E-04 227222_at FBX010 0.8414 7.36E-05 209931_x_at BIN1 0.8409 5.48E-06 1560386_at 0.8392 8.82E-04 224261_at RNASET2 0.8350 1.03E-05 217984_at RNASET2 0.8350 1.03E-05	1554676 at	SRGN	0.8575	1.05F-03
242320_at 0.8530 5.10E-04 221718_s_at AKAP13 0.8496 2.52E-06 201485_s_at RCN2 0.8456 8.17E-05 217983_s_at RNASET2 0.8419 3.66E-04 227222_at FBXO10 0.8414 7.36E-05 209920_at BIN1 0.8409 5.48E-06 1560386_at 0.8392 8.82E-04 224261_at RNASET2 0.8350 1.03E-05 217984_at BIN1 0.8350 1.03E-05	239930 at	GALNT2	0.8560	7 26F-06
221718_s_at AKAP13 0.8496 2.52E-06 201485_s_at RCN2 0.8456 8.17E-05 217983_s_at RNASET2 0.8419 3.66E-04 217643_x_at 0.8419 3.66E-04 227222_at FBX010 0.8414 7.36E-05 209931_x_at BIN1 0.8409 5.48E-06 1560386_at 0.8392 8.82E-04 224261_at RNASET2 0.8350 1.03E-05 217984_at BIN1 0.8361 1.24E-05 217984_at BIN1 0.8342 1.39F-04	242320 at		0.8530	5 10F-04
201485_s_at RCN2 0.8456 8.17E-05 217983_s_at RNASET2 0.8428 6.69E-06 217643_x_at 0.8419 3.66E-04 227222_at FBX010 0.8414 7.36E-05 209931_x_at BIN1 0.8409 5.48E-06 1560386_at 0.8392 8.82E-04 224261_at RNASET2 0.8350 1.03E-05 217984_at RNASET2 0.8350 1.03E-05	221718 s at	AKAP13	0.8496	2 52F-06
201 05_5_ct Note 0.812 0 217983_s_at RNASET2 0.8428 6.69E-06 217643_x_at 0.8419 3.66E-04 227222_at FBXO10 0.8414 7.36E-05 202931_x_at BIN1 0.8410 1.15E-04 209920_at BMPR2 0.8409 5.48E-06 1560386_at 0.8392 8.82E-04 224261_at 0.8361 1.24E-05 217984_at RNASET2 0.8350 1.03E-05 210201_x_at BIN1 0.8342 1.39F-04	201485 s at	BCN2	0.8456	8 17F-05
217505_5_at 100012 0.0120 0.05120 217643_x_at 0.8419 3.66E-04 227222_at FBX010 0.8414 7.36E-05 202931_x_at BIN1 0.8410 1.15E-04 209920_at BMPR2 0.8409 5.48E-06 1560386_at 0.8392 8.82E-04 224261_at 0.8361 1.24E-05 217984_at RNASET2 0.8350 1.03E-05 210201_x_at BIN1 0.8342 1.39F-04	217983 s at	RNASET2	0.8428	6.69E-06
227222_at FBXO10 0.8414 7.36E-05 202931_x_at BIN1 0.8400 1.15E-04 209920_at BMPR2 0.8392 8.82E-04 224261_at 0.8361 1.24E-05 217984_at RNASET2 0.8350 1.03E-05 210201 x at BIN1 0.8342 1.39F-04	217643 x at		0.8419	3.66F-04
202931_x_at BIN1 0.8410 1.15E-04 209920_at BMPR2 0.8409 5.48E-06 1560386_at 0.8392 8.82E-04 224261_at 0.8361 1.24E-05 217984_at RNASET2 0.8350 1.03E-05 210201 x at BIN1 0.8342 1.39F-04	227222 at	FBXO10	0.8414	7.36F-05
209920_at BMPR2 0.8409 5.48E-06 1560386_at 0.8392 8.82E-04 224261_at 0.8361 1.24E-05 217984_at RNASET2 0.8350 1.03E-05 210201 x at BIN1 0.8342 1.39F-04	202931 x at	BIN1	0.8410	1.15E-04
1560386_at 0.8392 8.82E-04 224261_at 0.8361 1.24E-05 217984_at RNASET2 0.8350 1.03E-05 210201 x at BIN1 0.8342 1.39F-04	209920 at	BMPR2	0.8409	5.48F-06
224261_at 0.8361 1.24E-05 217984_at RNASET2 0.8350 1.03E-05 210201 x at BIN1 0.8342 1.39F-04	1560386 at		0.8392	8.82F-04
217984_at RNASET2 0.8350 1.03E-05 210201 x at BIN1 0.8342 1.39F-04	224261 at		0.8361	1.24F-05
210201 x at BIN1 0.8342 1.39F-04	217984 at	RNASET2	0.8350	1.03F-05
	210201 x at	BIN1	0.8342	1.39E-04

Probe set	Gene symbol	LogRatio	FDR
226982_at	ELL2	0.8330	8.27E-04
230970_at		0.8314	1.36E-03
227062_at		0.8314	2.69E-04
223991_s_at	GALNT2 /// LOC100132910	0.8258	8.17E-05
225998_at	GAB1	0.8244	7.55E-05
224563_at	WASF2	0.8229	1.41E-04
201200_at	CREG1	0.8213	1.65E-03
207734_at	LAX1	0.8190	2.96E-04
232542_at	COL9A2	0.8176	6.22E-06
227146_at	QSOX2	0.8154	6.36E-07
219574_at	MARCH1	0.8104	7.79E-05
210202_s_at	BIN1	0.8048	1.23E-03
227611 at	TARSL2	0.8025	3.28E-06
207996 s at	C18orf1	0.8016	9.69E-05
227178 at	CELF2	0.8014	1.38E-04
239232 at	MSI2	0.7985	1.30E-03
224562 at	WASF2	0.7983	3.78E-04
244453 at	ANKRD53	0.7972	3.55E-04
1562144 at		0.7969	2.96E-04
215925 s at	CD72	0.7956	3.88E-04
218997 at	POLR1E	0.7942	3.39E-05
221790 s at	IDIRAP1	0 7940	7 45F-06
202156 s at	CELE2	0.7933	3 18F-04
227999 at	PWWP2B	0.7907	4 22F-03
201160 s at	CSDA	0.7906	1.34F-06
208869 s at	GABARAPI 1	0.7887	3.88E-04
1560443 at		0.7883	5.81E-05
218971 s at	WDR91	0 7863	3 35F-04
201034 at	ADD3	0.7858	3 64F-05
232213 at	PFU1	0.7858	8 47F-04
225701 at	AKNA	0.7855	4.32E-05
226099 at	FLL2	0.7804	1.09E-04
224576 at	ERGIC1	0.7784	3.72E-03
225154 at	SYAP1	0.7762	8.33E-05
219256 s at	SH3TC1	0.7761	1 11F-03
1570165 at		0 7742	2 25F-05
203921 at	CHST2	0 7739	2 50F-04
225033 at	ST3GAL1	0.7707	3.87E-03
221737 at	GNA12	0 7702	4 43F-04
203206 at	FAM53B	0.7701	1 55E-05
204924 at	TI B2	0.7694	7 74F-03
1555831 s at	IRRC41	0.7693	1 15F-02
1558747 at	SMCHD1	0.7686	2 25E-04
229981 at	SNX5	0.7648	9.69E-05
237018 at		0.7643	5.86F-03
202967 at	GSTA4	0.7640	4.90F-04
1555392 at	LOC100128868	0.7610	2.30F-03
230526 at	LOC100131096	0.7608	4.17F-05
AFFX-M27830 5 at		0.7604	8.81F-03
223803 s at	ZCCHC10	0 7546	3 98F-05
239629 at	CELAR	0.7545	3.81F-05
229310 at	KI HI 29	0.7542	2.28F-04
212311 at	SEL1L3	0.7515	6.24E-04

Probe set	Gene symbol	LogRatio	FDR
223836_at	FGFBP2	0.7511	2.10E-03
205119_s_at	FPR1	0.7505	3.19E-03

1.2. Probe sets up-regulated by dexamethasone in the low ZAP70 group

Probe set	Gene symbol	LogRatio	FDR
224840_at	FKBP5	2.9170	9.51E-08
215925_s_at	CD72	2.6706	7.55E-08
224856_at	FKBP5	2.6640	3.77E-05
218113_at	TMEM2	2.4896	3.20E-06
204560_at	FKBP5	2.3253	9.84E-04
212838_at	DNMBP	2.2293	9.13E-08
225116_at	HIPK2	2.0960	3.10E-05
215528_at		2.0765	3.31E-07
202887_s_at	DDIT4	2.0048	1.30E-04
241893_at		1.9640	1.37E-04
1565701_at		1.9401	5.25E-05
210117_at	SPAG1	1.9361	3.31E-07
225115_at	HIPK2	1.8958	5.13E-05
218346_s_at	SESN1	1.8916	3.67E-04
203221_at	TLE1	1.8722	1.58E-05
221756_at	PIK3IP1	1.8420	3.53E-07
205798_at	IL7R	1.8074	9.74E-07
222281_s_at		1.7985	9.87E-06
1562028_at	CCND3	1.7855	3.31E-07
225097_at	HIPK2	1.7771	5.78E-05
207651_at	GPR171	1.7627	1.21E-06
238423_at	SYTL3	1.7625	1.26E-05
212098_at	LOC151162 /// MGAT5	1.7584	1.09E-05
241435_at		1.7551	3.75E-07
210785_s_at	C1orf38	1.7403	3.70E-05
207001_x_at	TSC22D3	1.7373	1.39E-04
218935_at	EHD3	1.7347	5.83E-04
221757_at	PIK3IP1	1.7217	4.47E-07
242406_at		1.6994	7.93E-06
207571_x_at	C1orf38	1.6617	7.93E-06
212543_at	AIM1	1.6048	7.63E-05
244592_at		1.6022	9.01E-07
230599_at		1.5987	8.98E-08
231979_at		1.5849	7.55E-08
201700_at	CCND3	1.5810	7.55E-08
244357_at		1.5796	3.81E-05
214238_at		1.5760	1.91E-05
1568983_a_at		1.5696	7.55E-08
226218_at	IL7R	1.5694	2.96E-06
	ETS1	1.5581	7.31E-05
 212345_s_at	CREB3L2	1.5486	4.24E-07
225368 at	HIPK2	1.5454	3.98E-05
219028 at	HIPK2	1.5415	6.18E-03
227406 at	LOC100129387	1.5002	9.94E-06
	KLF9	1.4986	1.31E-05

Probe set	Gene symbol	LogRatio	FDR
230740_at	EHD3	1.4892	1.27E-04
219911_s_at	SLCO4A1	1.4879	1.29E-05
202239_at	PARP4	1.4783	3.78E-07
201009_s_at	TXNIP	1.4766	3.26E-04
201008_s_at	TXNIP	1.4721	2.03E-04
219888_at	SPAG4	1.4502	9.30E-06
203543_s_at	KLF9	1.4382	1.68E-05
222334_at		1.4097	3.21E-05
232722_at	RNASET2	1.3876	5.51E-05
242514_at		1.3767	3.33E-04
235274_at		1.3561	2.64E-06
219574_at	MARCH1	1.3557	8.67E-06
228891 at	SEMA4D	1.3356	3.75E-07
223085 at	RNF19A	1.3337	2.10E-07
203528 at	SEMA4D	1.3320	2.10E-07
204618 s at	GABPB1	1.3204	2.64E-06
229822 at		1.3183	1.49E-04
242842 at		1.2627	2.56E-03
244026 at		1.2557	1.22E-03
216834 at	RGS1	1.2501	2.18E-05
204236 at	FLI1	1.2297	4.08E-05
225010 at	CCDC6	1 2 2 8 4	3 65E-06
209681 at	SIC19A2	1 2232	2 57E-02
230381 at	Clorf186	1 2205	5 72F-05
228759 at	CREB3L2	1 1986	3 77E-05
224839 s at	GPT2	1 1934	7 28E-05
229566 at	100645638	1 1926	6 41F-04
231109 at		1 1892	1.88E-05
213763 at	HIPK2	1 1873	9 27F-04
205510 s at	FU10038	1 1746	2 95F-04
220483 s at	RNF19A	1 1676	9 59E-05
239328 at		1 1631	9.30E-06
201161 s at	CSDA	1 1618	4.62E-04
242551 at		1 1583	1 33E-04
224833 at	FTS1	1 1563	9.87E-06
219812 at	PVRIG	1 1416	7 99F-05
206173 x at	GABPB1	1 1403	5 33E-05
227551 at	FAM108B1	1 1302	4 02E-07
227551_dt	MSI2	1 1 2 4 4	8 23E-04
2259202_dt	FIL2	1 1164	7 53E-04
22008 s at	SNYQ	1 1135	3.60E-05
223026_3_dt	DADVB	1 1007	2.44E-04
240665 at		1 1077	3 165-04
240005_at	STACS	1.1077	6 3/E-03
219755_dt	51465	1.0969	1.575-03
242268 at	CELE2	1.0960	1.105-03
1555270 st	BCI2111	1.0900	4 375-06
1555202 5+	100100128969	1.0909	1.375-02
201010 c st	TYNID	1.0873	2.375-04
50001 st	TEER	1.0873	3.605-05
220670 st	IFED	1.0702	7 295.05
225070_dt 231873 st	BMPP2	1.0536	9.905-05
2310/3_at	DIVIENZ	1.0530	9.500-05
232363_dt		1.0333	5.70E-05

Probe set	Gene symbol	LogRatio	FDR
228308_at	FKBP11	1.0521	1.26E-03
207734_at	LAX1	1.0483	3.66E-04
219117_s_at	FKBP11	1.0419	3.28E-03
230970_at		1.0409	2.16E-03
226099_at	ELL2	1.0403	9.28E-05
212400_at	FAM102A	1.0338	1.40E-03
208763_s_at	TSC22D3	1.0272	2.90E-04
230689_at		1.0225	8.68E-04
230536_at	PBX4	1.0155	2.68E-03
235385_at	MARCH1	1.0128	1.90E-04
236417_at		1.0118	2.53E-04
201367_s_at	ZFP36L2	1.0101	4.54E-02
217643_x_at		1.0100	7.93E-04
229383 at	MARCH1	1.0074	7.25E-05
237594 at		0.9981	6.43E-03
210786 s at	FLI1	0.9940	1.82E-02
1557558 s at	LOC100129196	0.9926	4.34E-05
242975 s at		0.9911	1.01E-02
231775 at	TNFRSF10A	0.9862	1.31E-03
229501 s at	USP8	0.9786	1.05E-05
214405 at		0.9769	5.90E-03
229274 at	GNAS	0.9760	1.89E-03
204716 at	CCDC6	0.9733	3.44E-04
237009 at		0.9690	2 08F-02
1560332 at		0.9682	3 28F-04
234151 at		0.9669	8 06F-04
1568943 at	INPP5D	0.9639	1.28E-02
211317 s at	CFLAR	0.9560	4.37E-06
223027 at	SNX9	0.9560	5.67E-04
1570165 at		0.9481	4.08E-05
1558143 a at	BCL2L11	0.9467	7.28E-05
213174 at	TTC9	0.9412	7.90E-04
219256 s at	SH3TC1	0.9407	2.21E-03
224576 at	ERGIC1	0.9391	7.74E-03
202745 at	USP8	0.9364	9.92E-05
236341 at	CTLA4	0.9361	5.05E-03
209508 x at	CFLAR	0.9344	9.87E-06
220612 at		0.9324	2.09E-02
231296 at		0.9298	1.17E-03
205882 x at	ADD3	0.9295	8.37E-05
211862 x at	CELAR	0.9267	9.87E-06
201160 s at	CSDA	0.9212	4 73E-06
208485 x at	CELAR	0.9205	9.87F-06
201369 s at	7EP36L2	0.9151	1 20F-02
215147 at		0.9147	1.32E-04
242827 x at		0.9138	1.04F-03
202931 x at	BIN1	0.9044	6.06F-04
210606 x at	KIRD1	0.9040	4.14F-05
242946 at		0.8964	5 29F-04
244646 at		0.8933	7.82F-04
1554676 at	SRGN	0.8916	6 13E-03
239171 at		0.8901	1 45E-02
221773 at	FLK3	0.8858	1.89F-03
222770_00	LENO	0.0000	2.050.00

Probe set	Gene symbol	LogRatio	FDR
225606_at	BCL2L11	0.8851	5.25E-05
219118_at	FKBP11	0.8850	1.55E-02
241838_at		0.8843	4.14E-03
203315_at	NCK2	0.8787	3.60E-04
201752_s_at	ADD3	0.8754	1.29E-04
1561733_at		0.8749	9.19E-03
225282_at	SMAP2	0.8740	3.59E-04
203006_at	INPP5A	0.8701	3.84E-04
201938_at	CDK2AP1	0.8689	4.26E-04
225144_at	BMPR2	0.8678	2.22E-04
201753_s_at	ADD3	0.8643	1.51E-03
232864_s_at	AFF4	0.8609	3.11E-05
225562 at	RASA3	0.8580	1.16E-03
1569380 a at		0.8570	5.47E-04
221193 s at	ZCCHC10	0.8557	2.61E-04
239388 at		0.8534	6.92E-05
210564 x at	CFLAR	0.8532	2.48E-05
1558747 at	SMCHD1	0.8528	9.13E-04
220285 at	FAM108B1	0.8487	1.92E-02
204484 at	PIK3C2B	0.8482	6.04E-04
201041 s at	DUSP1	0.8450	1.34E-03
227312 at	SNTB2	0.8439	7 93E-04
201413 at	HSD17B4	0.8437	5 69F-04
232865 at	AFF4	0.8429	1 75F-04
1568997 at		0.8420	1 46F-03
232007 at	AGPAT5	0.8376	1 29F-02
221737 at	GNA12	0.8353	2.08F-03
240452 at	GSPT1	0.8350	3 59F-03
214439 x at	BIN1	0.8349	2 16F-03
224681 at	GNA12	0.8346	2 22F-04
210201 x at	BIN1	0.8219	1.45E-03
235668 at	PRDM1	0.8195	1.49E-04
225164 s at	EIF2AK4	0.8189	7.05E-04
237018 at		0.8156	2 42F-02
203574 at	NFIL3	0.8144	9.00E-03
232623 at	100100128751	0.8133	9.37F-03
202158 s at	CELE2	0.8117	3 87F-03
1566825 at		0.8116	3.93E-04
236458 at		0.8108	6.88E-04
212677 s at	CEP68	0.8097	5.34F-03
240593 x at		0.8092	2 73E-02
243509 at		0.8090	1.89F-02
214486 x at	CELAR	0.8083	5.84F-05
223803 s at	ZCCHC10	0.8065	2 31E-04
1562600 at		0.8063	3.01E-03
232784 at		0.8051	2.85F-03
232542 at	COL942	0.8045	8 75F-05
226810 at	OGERI 1	0.8035	2 45F-02
244429 at		0.8020	9 84F-04
225763 at	RCSD1	0.8013	9 20F-03
233867 at		0.7924	2.21F-02
224577 at	FRGIC1	0.7904	3.82F-03
202912 at	ADM	0.7892	6.30E-03

Probe set	Gene symbol	LogRatio	FDR
235213_at	ITPKB	0.7860	9.25E-03
210563_x_at	CFLAR	0.7858	5.84E-05
213370_s_at	SFMBT1	0.7841	1.07E-04
235427_at		0.7836	1.41E-04
241837_at		0.7834	4.14E-03
237367_x_at	CFLAR	0.7814	3.45E-04
230590_at		0.7789	8.50E-03
203501_at	PGCP	0.7771	7.55E-03
219154_at	TMEM120B	0.7754	1.11E-02
1557557_at	LOC100129196	0.7746	4.44E-03
237426_at	SP100	0.7724	2.26E-03
222819_at	CTPS2	0.7659	7.28E-05
243395_at		0.7657	3.00E-03
241613_at		0.7654	1.34E-02
227146_at	QSOX2	0.7654	1.89E-05
211316_x_at	CFLAR	0.7647	8.80E-06
214157_at	GNAS	0.7626	2.24E-03
227999_at	PWWP2B	0.7608	3.13E-02
216253_s_at	PARVB	0.7593	1.39E-02
235421_at	MAP3K8	0.7556	2.07E-02
231794_at	CTLA4	0.7555	4.09E-03
235199 at	RNF125	0.7522	5.10E-03

APPENDIX 2

Probe set	Gene symbol	LogRatio	FDR
231093 at	FCRL3	-1.6818	8.94E-06
	кмо	-1.6749	2.58E-07
226694_at	AKAP2 /// PALM2-AKAP2	-1.6392	4.50E-06
226757_at	IFIT2	-1.6279	3.15E-05
227478_at	SETBP1	-1.5580	1.24E-05
222108_at	AMIGO2	-1.5426	5.99E-06
205681_at	BCL2A1	-1.5395	8.90E-06
205306_x_at	кмо	-1.5225	1.97E-07
226603_at	SAMD9L	-1.4927	1.03E-05
202759_s_at	AKAP2 /// PALM2-AKAP2	-1.4802	2.27E-05
204103_at	CCL4	-1.4703	8.65E-06
205483_s_at	ISG15	-1.4580	2.64E-04
219863_at	HERC5	-1.4481	3.77E-05
230036_at	SAMD9L	-1.4310	7.01E-06
202869_at	OAS1	-1.4115	5.12E-06
228599_at	MS4A1	-1.3955	3.71E-05
1569003_at	TMEM49	-1.3708	1.19E-04
216248_s_at	NR4A2	-1.3573	6.37E-06
209967_s_at	CREM	-1.3413	2.00E-06
202760_s_at	AKAP2 /// PALM2-AKAP2	-1.3194	2.10E-04
218986_s_at	DDX60	-1.3079	3.52E-05
230233_at		-1.2931	5.71E-06
207826_s_at	ID3	-1.2908	2.63E-06
224917_at	MIR21	-1.2863	3.72E-05
230511_at	CREM	-1.2804	3.52E-06
204622_x_at	NR4A2	-1.2656	1.20E-05
243271_at		-1.2629	8.01E-05
240498_at		-1.2555	2.08E-03
202086_at	MX1	-1.2553	3.81E-05
210279_at	GPR18	-1.2073	6.36E-07
200887_s_at	STAT1	-1.1927	5.42E-07
228617_at	XAF1	-1.1898	2.31E-05
202393_s_at	KLF10	-1.1896	1.42E-04
AFFX-HUMISGF3A/M97935_5_at	STAT1	-1.1804	3.57E-04
239544_at		-1.1770	1.76E-05
211192_s_at	CD84	-1.1680	6.90E-07
226142_at	GLIPR1	-1.1646	8.11E-06
203320_at	SH2B3	-1.1635	5.30E-05
200629_at	WARS	-1.1599	3.26E-05
228826_at		-1.1480	1.51E-05
209969_s_at	STAT1	-1.1421	5.30E-05
207630_s_at	CREM	-1.1414	3.23E-06
206126_at	CXCR5	-1.1343	5.77E-04
201560_at	CLIC4	-1.1320	2.85E-06
229968_at		-1.1318	1.14E-05
226748_at	LYSMD2	-1.1273	6.31E-07
AFFX-HUMISGF3A/M97935_MB_at	STAT1	-1.1256	1.23E-04

2.1. Probe sets down-regulated by dexamethasone in the high ZAP70 group

228531_at SAMD9 -1.1195 1.64E-05 AFFX-HUMISGF3A/M97935_at STAT1 -1.1134 6.12E-06 239294_at 1.1009 2.28E-07 233085_5_at OBFC2A -1.0931 9.04E-07 214508_x_at CREM -1.0780 7.74E-07 202688_at TNFSF10 -1.0538 1.31E-04 201552_at PERC6 -1.0321 2.09E-03 214677_x_at CYAT1///IGLV1-44 -1.0323 3.38E-06 202465_s_at PLSCR1 -1.0323 3.38E-06 201559_s_at CLIC4 -1.0321 3.06E-03 223200_s_at PARP9 -1.0305 5.92E-05 203932_at BCI3 -1.0274 9.02E-05 204621_s_at NR4A2 -1.0274 9.02E-05 204621_s_at NR4A2 -1.0265 1.94E-04 204404_s_s_at CDB3 -1.0168 6.01E-04 213406_s_sat DBFC2A -1.0168 6.01E-04 224406_s_sat FCRL5 -1	Probe set	Gene symbol	LogRatio	FDR
AFFX-HUMISCF3A/M97935_3_at STAT1 -1.1134 6.12E-06 200628_s_at WARS -1.1009 2.28E-07 233085_s_at OBFC2A -1.0931 9.04E-07 214508_x_at CREM -1.0780 1.74E-07 202688_st TNFSF10 -1.0338 3.11E-04 205861_st SPIB -1.0332 3.12E-04 202446_s_at PLSCR1 -1.0332 7.24E-04 202446_s_at PLSCR1 -1.0323 7.24E-04 202446_s_at CVAT1/// IGU1-44 -1.0321 3.33E-06 201599_s_at CILC4 -1.0321 3.32E-05 203932_at BCL3 -1.0224 9.02E-05 204621_s_at BCL3 -1.028 5.92E-05 204403_s_at BCL3 -1.028 5.4E-04 204440_st -1.0274 9.02E-05 204461_s_st FCRL5 -1.0186 1.21E-06 204401_st CD83 -1.0186 5.4E+07 204440_st -1.0105	228531_at	SAMD9	-1.1195	1.64E-05
200628_s_at WARS -1.1046 3.01E-05 239294_at 1.0931 9.04E-07 214508_x_at CREM -1.0780 1.74E-07 202688_at TNFSF10 -1.0533 1.31E-04 205861_at SPIB -1.0322 3.9F-03 219352_at HERC6 -1.0322 3.31E-04 202466_s_at PLSCR1 -1.0322 3.33E-06 201559_s_at CLIC4 -1.0321 3.06E-03 203932_at HLA-DMB -1.0305 5.92E-05 203932_at HLA-DMB -1.0307 7.40E-06 204408_s_s.at BCL3 -1.0274 9.02E-05 204408_s_s.at BCL3 -1.0214 9.02E-05 204408_s_s.at BCL3 -1.0244 9.02E-05 204402_s_s.at RCR15 -1.0186 1.21E-06 204404_at C.0203 -1.0163 6.01E-04 204440_at C.0263 -1.0163 6.04E-07 203391_at CTB4 -1.0055 6.13E-	AFFX-HUMISGF3A/M97935_3_at	STAT1	-1.1134	6.12E-06
239294_at -1.1009 2.286-07 233085_s_at OBFC2A -1.0931 9.04E-07 214508_x_at CREM -1.0780 1.74E-07 202688_at TNFSF10 -1.0538 1.31E-04 203561_at SPIB -1.0392 2.39E-03 219352_at HERC6 -1.0321 3.58E-03 202446_s_at PLSCR1 -1.0321 3.58E-03 202446_s_at CVAT1/// IGU1-44 -1.0321 3.58E-03 20352_at CLIC4 -1.0321 3.58E-03 203932_at BCL3 -1.0228 3.58E-05 203932_at BCL3 -1.0298 2.63E-04 2044038_s_at BCL3 -1.0298 2.63E-04 2044615_s_at FCR15 -1.0186 1.21E-06 204461_s_at CD83 -1.0186 3.64E-07 235157_at -1.0186 6.01E-04 235157_at -1.0126 6.44E-07 203140_at BCB4 -1.0025 4.89E-05<	200628_s_at	WARS	-1.1046	3.01E-05
233085_s_at OBFC2A -1.0931 9.04E-07 214508_x_at CREM -1.0780 1.74E-07 202688_at TNFSF10 -1.0338 1.31E-04 205861_at SPIB -1.0332 3.31E-04 211952_at HERC6 -1.0362 2.19F-04 214677_x_at CYAT1/// (GV1-44 -1.0321 3.85E-03 202446_s_at PLSCR1 -1.0322 3.33E-06 203592_at CLIC4 -1.0321 3.06E-03 203932_at PARP9 -1.0030 7.40E-06 204908_s_at BCL3 -1.0274 9.02E-05 204401_s_s_at -1.0274 9.02E-05 204421_s_st NR4A2 -1.0205 1.94E-04 204440_st CD83 -1.0186 6.01E-04 224406_s_st FCR15 -1.0186 6.01E-04 2235157_at -1.0126 3.64E-07 20391_st CD84 -1.0055 6.13E-06 20391_st CD84 -1.0055 6.13E	239294_at		-1.1009	2.28E-07
214508_x_at CREM -1.0780 1.74E-07 202688_at TNFSF10 -1.0538 1.31E-04 205861_at SPIB -1.0392 2.39E-03 219352_at HERC6 -1.0362 2.19F-04 214677_x_at CYAT1///IGU1-44 -1.0331 1.58E-03 202446_s_at PLSCR1 -1.0322 3.38E-06 201559_s_at CLIC4 -1.0321 3.06E-03 203932_at HADMB -1.0032 5.92E-05 203932_at BCL3 -1.0274 9.02E-05 2046018_s_at BCL3 -1.0274 9.02E-05 204621_s_at NR4A2 -1.0025 1.94E-04 204747_at IFIT3 -1.0184 1.88E-02 224406_s_at FCRL5 -1.0186 3.64E-07 207339_s_at UTB -1.0110 5.49E-03 231418_at -1.0016 3.64E-07 207339_s_at CD84 -1.0055 6.13E-06 203031_at CD84 -0.0978 3.69E-	233085_s_at	OBFC2A	-1.0931	9.04E-07
202688_st TNFSF10 -1.0538 1.31E-04 205861_st SPIB -1.0396 2.39E-03 219352_st HERC6 -1.0362 2.19E-03 202446_s_at CYAT1///(GLV1-44 -1.0321 3.3E+06 202446_s_at PLSCR1 -1.0322 3.3E+06 201559_s_at CLIC4 -1.0321 3.0E+03 2023932_at PARP9 -1.0305 5.92E+05 203932_at BCL3 -1.0298 2.66E+04 213294_at -1.0274 9.02E+05 204621_s_at NR4A2 -1.0205 1.94E+04 204440_s_at CD83 -1.0186 3.64E+05 224406_s_at FCRL5 -1.0186 3.64E+07 207339_s_at LTB -1.01016 6.01E+04 22872_x_at OBFC2A -1.0126 3.64E+07 203140_at BCL6 -1.0035 8.9E+05 203140_at BCL6 -1.0035 8.9E+05 203140_at BCL6 -0.0398 2.60E+04 <td>214508_x_at</td> <td>CREM</td> <td>-1.0780</td> <td>1.74E-07</td>	214508_x_at	CREM	-1.0780	1.74E-07
205861_at SPIB -1.0396 2.39E-03 219552_at HERC6 -1.0322 2.19E-04 214677_x_at CYAT1/// IGLV1-44 -1.0331 5.58E-03 202446_s_at PLISCR1 -1.0322 3.38E-06 201559_s_at CLIC4 -1.0321 3.06E-03 223220_s_at PARP9 -1.0300 7.40E-06 203932_at HLA-DMB -1.0324 2.63E-04 213294_at -1.0274 2.02E-05 204408_s_at BCL3 -1.0274 2.02E-05 204401_at IFIT3 -1.0124 1.88E-02 204402_st CD83 -1.0186 1.21E-06 204440_at CD83 -1.0186 6.01E-04 2284206_sat ITB -1.0101 5.48E-05 235157_at -1.0128 6.64E-07 207339_s_sat LTB -1.0105 6.13E-06 203391_at CD84 -1.0055 6.13E-06 203391_at CD84 -0.0988 2.59E-04 <td>202688_at</td> <td>TNFSF10</td> <td>-1.0538</td> <td>1.31E-04</td>	202688_at	TNFSF10	-1.0538	1.31E-04
219352_at HERC6 -1.0362 2.19E-04 214677_x_at CYAT1 // /(GV1-44 -1.0331 1.58E-03 202446_s_at PLSCR1 -1.0322 7.24E-04 229629_at -1.0323 3.33E-06 201559_s_at CLIC4 -1.0321 3.06E-03 22320_s_at PARP9 -1.0300 7.42E-04 204908_s_at BCL3 -1.0274 9.02E-05 204621_s_at NR4A2 -1.0205 1.94E-04 204747_at IFIT3 -1.0186 1.21E-06 204440_s_at CD83 -1.0186 3.64E-05 235157_at -1.0163 6.01E-04 204340_st CD84 -1.0105 6.48E-05 235157_at -1.0106 5.64E-05 203140_st BCL6 -1.0055 6.18E-06 203340_at BCL6 -1.0055 6.18E-06 203593_st SETBP1 -0.9982 2.60E-04 205933_at SETBP1 -0.9820 3.04E-05<	205861_at	SPIB	-1.0396	2.39E-03
214677_x_at CYAT1/// IGLV1-44 -1.0331 1.58E-03 202446_s_at PLSCR1 -1.0322 3.35E-06 201559_s_at CLIC4 -1.0321 3.06E-03 223220_s_at PARP9 -1.0302 3.35E-06 203932_at HIA-DMB -1.0300 7.40E-04 204908_s_at BCL3 -1.0224 2.63E-04 213294_at -1.0274 9.02E-05 204402_s_at IFIT3 -1.0124 9.02E-05 204421_s_at IFIT3 -1.0124 9.02E-05 204440_st CD83 -1.0186 3.64E-05 235157_at -1.0168 6.01E-04 222872_x_at OBFC2A -1.0126 6.64E-07 203140_at BCL6 -1.0091 4.49E-03 203310_t BCL6 -1.0093 4.39E-05 203140_at BCL6 -1.0093 4.39E-05 20339_s_at SETBP1 -0.9983 2.59E-04 20503_s_at FAM113B -0.9820 3	219352_at	HERC6	-1.0362	2.19E-04
202446_s_at PLSCR1 -1.0323 7.24E-04 22962_at 1.0322 3.38E-06 201559_s_at CLIC4 -1.0321 3.06E-03 223220_s_at PARP9 1.03005 5.92E-05 203932_at HLA-DMB -1.0300 7.40E-06 204908_s_at BCL3 -1.0228 2.63E-04 213294_at -1.0274 9.02E-05 2044621_s_at NR4A2 -1.0205 1.94E-04 204440_at CDB3 -1.0186 1.64E-05 204440_at CDB3 -1.0186 1.64E-07 203315_at -1.0186 1.64E-07 207339_s_at LTB -1.0110 5.49E-05 231418_at -1.0126 3.64E-07 203391_at CDB4 -1.0055 6.13E-06 203391_at CDB4 -1.0055 6.13E-06 203391_at SETBP1 -0.9989 2.60E-04 205935_s_at IFIT5 -0.9882 4.26E-05	214677_x_at	CYAT1 /// IGLV1-44	-1.0331	1.58E-03
229629_at -1.0322 3.38E-06 201559_s_at CLIC4 -1.0321 3.06E-03 223220_s_at PARP9 -1.0305 5.92E-05 203932_at HIL-DMB -1.0300 7.40E-06 204908_s_at BCL3 -1.0274 9.02E-05 204621_s_at NR4A2 -1.0274 9.02E-05 204621_s_at FCRL5 -1.0186 1.21E-06 204440_at CD83 -1.0186 3.64E-05 235157_at -1.0163 6.01E-04 222872_x_at OBFC2A -1.0105 4.9E-03 203140_at BCL6 -1.0015 5.18E-06 203140_at BCL6 -1.0035 6.18E-05 203140_at BCL6 -1.0035 4.38E-05 205933_at SETBP1 -0.9983 2.59E-04 205033_s_at FAM138 -0.9827 7.07E-08 203927_at NFKBIE -0.9808 5.81E-05 202499_s_at FAM138 -0.9773 1.39E-04	202446_s_at	PLSCR1	-1.0323	7.24E-04
201559_s_at CLIC4 -1.0321 3.06E-03 223220_s_at PARP9 -1.0305 5.92E-05 203932_at HLA-DMB -1.0300 7.40E-06 204908_s_at BCL3 -1.0288 2.63E-04 213294_at -1.0274 9.02E-05 204621_s_at NR4A2 -1.0205 1.94E-04 204747_at IFIT3 -1.0166 1.21E-06 204440_s_at CD83 -1.0168 6.01E-04 222872_x_at OBFC2A -1.0110 5.49E-05 231418_at -1.0013 6.01E-04 20391_at CD84 -1.0015 6.13E-06 20391_at CD84 -1.0055 6.13E-06 205933_at SETEP1 -0.9982 2.60E-04 205933_at SETEP1 -0.9982 2.59E-04 205013_s_at ADORA2A/// CYTSA -0.9914 5.42E-07 203927_at NFKBIE -0.9823 2.59E-04 203005_at -0.9808 5.81E-05<	229629_at		-1.0322	3.33E-06
223220_s_at PARP9 -1.0305 5.92E-05 203932_at HLA-DMB -1.0300 7.40E-06 204908_s_at BCL3 -1.0228 2.63E-04 213294_at -1.0274 9.02E-05 204621_s_at NR4A2 -1.0205 1.94E-04 204747_at IFIT3 -1.0186 1.21E-06 204440_at CDB3 -1.0186 1.64E-05 204440_at CDB3 -1.0186 1.64E-05 204440_at CDB4 -1.0116 3.64E-07 207339_s_at LTB -1.0110 5.49E-05 231418_at -1.0035 6.13E-06 20391_at CDB4 -1.0035 4.89E-05 203140_at BCL6 -1.0035 4.89E-05 205933_at SETBP1 -0.9983 2.60E-04 203927_at NFKBIE -0.9882 2.60E-04 203927_at NFKBIE -0.9882 3.04E-07 203927_at NFKBIE -0.9882 </td <td>201559_s_at</td> <td>CLIC4</td> <td>-1.0321</td> <td>3.06E-03</td>	201559_s_at	CLIC4	-1.0321	3.06E-03
203932_at HLA-DMB -1.0300 7.40E-06 204908_s_at BCL3 -1.0298 2.63E-04 213294_at -1.0274 9.02E-05 204621_s_at NR4A2 -1.0294 1.94E-04 204747_at IFIT3 -1.0194 1.88E-02 224406_s_at FCRL5 -1.0186 1.21E-06 204440_at CD83 -1.0126 3.64E-07 207339_s_at ITB -1.0110 5.49E-03 20391_at CD84 -1.0091 4.49E-03 20393_at BCL6 -1.0035 6.13E-06 203140_at BCL6 -1.0035 4.89E-05 205933_at SETBP1 -0.9983 2.60E-04 203927_at NFKBIE -0.9882 4.26E-05 228298_at FAMI138 -0.927 7.07E-08 230805_at -0.9808 5.81E-05 202499_s_at SLC2A3 -0.9773 1.39E-04 226136_at GLIPR1 -0.9808 5.04E-04	223220 s at	PARP9	-1.0305	5.92E-05
204908_sat BCL3 -1.0298 2.63E-04 213294_at -1.0274 9.02E-05 204621_s_at NR4A2 -1.0205 1.94E-04 204747_at IFIT3 -1.0186 1.2E-06 224406_s_at FCRL5 -1.0186 3.64E-05 235157_at -1.0163 6.01E-04 22872_x_at OBFC2A -1.0126 3.64E-05 231418_at -1.0091 4.49E-03 230391_at CD84 -1.0091 4.49E-03 20593_at BCL6 -1.0035 6.13E-06 20513_s_at SETBP1 -0.9983 2.60E-04 20593_at FAM113B -0.9822 2.60E-04 203927_at NFKBIE -0.9882 3.04E-07 203927_at NFKBIE -0.9822 3.04E-05 203095_s_at -0.9808 5.81E-05 202499_s_at -0.9808 3.04E-04 203092_at -0.9808 5.81E-05 <	203932 at	HLA-DMB	-1.0300	7.40E-06
213294_at -1.0274 9.02E-05 204621_s_at NR4A2 -1.0205 1.94E-04 20477_at IFIT3 -1.0194 1.88E-02 224406_s_at FCRL5 -1.0186 3.64E-05 204440_at CD83 -1.0163 6.01E-04 222872_x_at OBFC2A -1.0126 3.64E-07 207339_s_at ITB -1.0110 5.49E-05 231418_at -1.0091 4.49E-03 230391_at CD84 -1.0055 6.13E-06 203140_at BCL6 -1.0035 4.89E-05 205933_at SETBP1 -0.9983 2.59E-04 205013_s_at ADORA2A///CYTSA -0.9914 5.42E-07 203927_at NFKBIE -0.9882 4.26E-05 228298_at FAM113B -0.9927 7.07E-08 230805_at -0.9808 5.81E-05 202499_s_at SLC2A3 -0.9790 6.69E-04 243798_at -0.9808 5.81E-05	204908 s at	BCL3	-1.0298	2.63E-04
204621_s_at NR4A2 -1.0205 1.94E-04 204747_at IFIT3 -1.0194 1.88E-02 224406_s_at FCRL5 -1.0186 1.21E-06 204440_at CD83 -1.0186 3.64E-05 235157_at -1.0163 3.64E-07 207339_s_at UTB -1.0101 5.49E-05 231418_at -1.0091 4.49E-03 230391_at CD84 -1.0055 6.13E-06 203140_at BCL6 -1.0035 6.48E-07 203595_s_at IFIT5 -0.9989 2.60E-04 203595_s_at IFIT5 -0.9983 2.59E-04 205013_s_at ADORA2A /// CYTSA -0.9914 5.42E-07 203927_at NFKBIE -0.9882 4.26E-05 228298_at FAM113B -0.9277 7.07E-08 2030805_at -0.9808 5.81E-05 202499_s_at SLC2A3 -0.9773 1.39E-04 226136_at GIIPR1 -0.9750 4.26E-0	213294 at		-1.0274	9.02E-05
204747_at IFIT3 -1.0194 1.88E-02 224406_s_at FCRL5 -1.0186 1.21E-06 204440_at CD83 -1.0186 3.64E-05 235157_at -1.0163 6.01E-04 222872_X_at OBFC2A -1.0106 3.64E-07 207339_s_at ITB -1.0101 4.49E-03 230391_at CD84 -1.0055 6.13E-06 203140_at BCL6 -1.0035 4.89E-05 205933_at SETBP1 -0.9989 2.60E-04 203595_s_at IFIT5 -0.9988 2.59E-04 203031_s_at ADORA2A /// CYTSA -0.9914 5.42E-07 203927_at NFKBIE -0.9882 4.26E-05 228298_at FAM113B -0.9820 3.04E-04 243798_at -0.9808 5.81E-05 202499_s_at SLC2A3 -0.9790 6.69E-06 201170_s_at BHLHE40 -0.9773 1.39E-04 226136_at GLIPR1 -0.9699 5		NR4A2	-1.0205	1.94E-04
224406_s_at FCRL5 -1.0186 1.21E-06 204440_at CD83 -1.0186 3.64E-05 235157_at -1.0163 6.01E-04 222872_x_at OBFC2A -1.0126 3.64E-07 207339_s_at LTB -1.0101 5.49E-03 231418_at -1.0091 4.49E-03 20391_at CD84 -1.0055 4.89E-05 203140_at BCL6 -1.0035 4.89E-05 205933_at SETBP1 -0.9989 2.60E-04 203595_s_at IFIT5 -0.9983 2.59E-04 205013_s_at ADORA2A/// CYTSA -0.9914 5.42E-07 203927_at NFKBIE -0.9882 4.26E-05 228298_at FAM113B -0.9277 7.07E-08 20805_st -0.9808 5.81E-05 202499_s_at SLC2A3 -0.9773 1.39E-04 226136_at GLIPR1 -0.9750 4.42E-05 208121_s_at PTPRO -0.9773 1.39E-04	204747 at	IFIT3	-1.0194	1.88E-02
204440_at CD83 -1.0186 3.64E-05 235157_at -1.0163 6.01E-04 222872_x_at OBFC2A -1.0126 3.64E-07 207339_s_at UTB -1.0101 5.49E-05 231418_at -1.0091 4.49E-03 230391_at CD84 -1.0055 6.13E-06 205933_at BCL6 -1.0055 4.89E-05 205933_at SETBP1 -0.9989 2.60E-04 205935_s_at IFIT5 -0.9983 2.59E-04 205013_s_at ADORA2A /// CYTSA -0.9914 5.42E-07 203927_at NFKBIE -0.9820 3.04E-04 230805_at -0.9820 3.04E-04 243798_at -0.9820 3.04E-04 243798_at -0.9820 3.04E-04 226136_at GLIPR1 -0.9773 1.39E-04 201170_s_at BHLHE40 -0.9773 1.39E-04 212636_at GLIPR1 -0.9698 5.90E-04 <td>224406 s at</td> <td>FCRL5</td> <td>-1.0186</td> <td>1.21E-06</td>	224406 s at	FCRL5	-1.0186	1.21E-06
235157_at -1.0163 6.01E-04 222872_x_at OBFC2A -1.0126 3.64E-07 207339_s_at LTB -1.0101 5.49E-05 231418_at -1.0091 4.49E-03 20391_at CD84 -1.0055 6.13E-06 203140_at BCL6 -1.0035 4.89E-05 205933_at SETBP1 -0.9983 2.69E-04 203595_s_at IFIT5 -0.9983 2.59E-04 203927_at ADORA2A /// CYTSA -0.9914 5.42E-07 203927_at NFKBIE -0.9820 3.04E-04 243798_at -0.9820 3.04E-04 243798_at -0.9808 5.81E-05 2021170_s_at BLLPE40 -0.9773 1.39E-04 226136_at GLIP1 -0.9750 4.42E-05 208121_s_at PTPRO -0.9731 1.39E-04 226136_at GLIP1 -0.9750 4.42E-05 208121_s_at PTPRO -0.9731 1.39E-04 <td>204440 at</td> <td>CD83</td> <td>-1.0186</td> <td>3.64E-05</td>	204440 at	CD83	-1.0186	3.64E-05
222872_x_at OBFC2A 1.0126 3.64E-07 207339_s_at LTB -1.0110 5.49E-05 231418_at -1.0091 4.49E-03 230391_at CD84 -1.0055 6.13E-06 203140_at BCL6 -1.0035 4.89E-05 205933_at SETBP1 -0.9989 2.60E-04 203595_s_at IFIT5 -0.9983 2.59E-04 205013_s_at ADORA2A/// CYTSA -0.9914 5.42E-07 203927_at NFKBE -0.9820 3.04E-04 243798_at -0.9820 3.04E-04 243798_at -0.9808 5.81E-05 202499_s_at BILHE40 -0.9773 1.39E-04 226136_at GLIPR1 -0.9750 4.42E-05 208121_s_at PTPRO -0.9731 1.39E-04 242907_at -0.9699 5.90E-04 238725_at IRF1 -0.9698 4.07E-05 235276_at EPST11 -0.9536 2.74E-06	235157 at		-1.0163	6.01E-04
207339_s_at LTB 1.0110 5.49E-05 231418_at -1.0091 4.49E-03 230391_at CD84 -1.0055 6.13E-06 203140_at BCL6 -1.0035 4.89E-05 205933_at SETBP1 -0.9989 2.60E-04 203595_s_at IFIT5 -0.9983 2.59E-04 205013_s_at ADORA2A /// CYTSA -0.9914 5.42E-07 203927_at NFKBIE -0.9822 4.26E-05 228298_at FAM113B -0.9827 7.07E-08 230805_at -0.9808 5.81E-05 202499_s_at SLC2A3 -0.9790 6.69E-06 201170_s_at BHLHE40 -0.9773 1.39E-04 226136_at GLIPR1 -0.9699 5.90E-04 238725_at IRF1 -0.9698 4.07E-05 205291_at IL2RB -0.9512 1.47E-04 242907_at -0.95918 8.10E-05 205291_at IL2RB -0.95018 8.10E-05	222872 x at	OBFC2A	-1.0126	3.64E-07
1010 1000 1000 149E-03 231418_at -1.0091 4.49E-03 230391_at CD84 -1.0055 6.13E-06 203140_at BCL6 -1.0035 4.89E-05 205933_at SETBP1 -0.9989 2.60E-04 203595_s_at IFIT5 -0.9983 2.59E-04 205013_s_at ADORA2A /// CYTSA -0.9914 5.42E-07 203927_at NFKBIE -0.9882 4.26E-05 228298_at FAM113B -0.9820 3.04E-04 243798_at -0.9808 5.81E-05 202499_s_at SLC2A3 -0.9790 6.69E-06 201170_s_at BHLHE40 -0.9773 1.39E-04 226136_at GLIPR1 -0.9709 4.42E-05 208121_s_at PTPO -0.9723 1.72E-04 242907_at -0.9698 4.07E-05 235276_at IRF1 -0.9540 4.85E-05 205291_at IL2RB -0.9512 1.47E-04	207339 s at	LTB	-1.0110	5.49E-05
200314 CD84 1.0055 6.13E-06 203140_at BCL6 1.0035 4.89E-05 205933_at SETBP1 -0.9989 2.60E-04 203595_s_at IFIT5 -0.9983 2.59E-04 205013_s_at ADORA2A /// CYTSA -0.9914 5.42E-07 203927_at NFKBIE -0.9882 4.26E-05 228298_at FAM113B -0.9827 7.07E-08 230805_at -0.9808 5.81E-05 202499_s_at SLC2A3 -0.9790 6.69E-06 201170_s_at BHLHE40 -0.9773 1.39E-04 226136_at GLIPR1 -0.9699 5.90E-04 238725_at IRF1 -0.9698 4.07E-05 205291_at IL2RB -0.9512 1.47E-04 221087_s_at ACP5 -0.9512 1.47E-04 221087_s_at ACP5 -0.9518 8.14E-04 204638_at ACP5 -0.9518 8.14E-04 204638_at ACP5 -0.9440 6.64E-04 </td <td>231418 at</td> <td></td> <td>-1.0091</td> <td>4.49E-03</td>	231418 at		-1.0091	4.49E-03
1000000000000000000000000000000000000	230391 at	CD84	-1.0055	6.13E-06
Display Display Display 205933_at SETBP1 -0.9989 2.60E-04 203995_s_at IFIT5 -0.9983 2.59E-04 205013_s_at ADORA2A /// CYTSA -0.9914 5.42E-07 203927_at NFKBIE -0.9882 4.26E-05 228298_at FAM113B -0.9827 7.07E-08 230805_at -0.9808 5.81E-05 202499_s_at SLC2A3 -0.9790 6.69E-06 201170_s_at BHLHE40 -0.9773 1.39E-04 226136_at GLIPR1 -0.9790 6.69E-06 208121_s_at PTPRO -0.9723 1.72E-04 242907_at -0.9699 5.90E-04 238725_at IRF1 -0.9698 4.07E-05 205291_at IL2RB -0.9512 1.47E-04 206638_at ACP5 -0.9512 1.47E-04 206133_at XAF1 -0.9438 8.14E-04 206133_at XAF1 -0.9458 1.35E-04	203140 at	BCL6	-1.0035	4.89E-05
Linking Linking <thlinking< th=""> <thlinking< th=""> <thl< td=""><td>205933 at</td><td>SETBP1</td><td>-0.9989</td><td>2 60F-04</td></thl<></thlinking<></thlinking<>	205933 at	SETBP1	-0.9989	2 60F-04
205013_s_at ADORA2A /// CYTSA -0.9914 5.42E-07 203927_at NFKBIE -0.9882 4.26E-05 228298_at FAM113B -0.9827 7.07E-08 230805_at -0.9820 3.04E-04 243798_at -0.9808 5.81E-05 202499_s_at SLC2A3 -0.9790 6.69E-06 201170_s_at BHLHE40 -0.9773 1.39E-04 226136_at GLIPR1 -0.9750 4.42E-05 208121_s_at PTPRO -0.9723 1.72E-04 242907_at -0.9699 5.90E-04 238725_at IRF1 -0.9698 4.07E-05 235276_at EPSTI1 -0.9540 4.85E-05 205291_at IL2RB -0.9536 2.74E-06 204638_at ACP5 -0.9512 1.47E-04 206133_at XAF1 -0.9440 6.64E-04 204238_s_at C6orf108 -0.9440 6.64E-04 204238_s_at C6orf108 -0.9440	203595 s at	IFITS	-0.9983	2.59E-04
203927_at NFKBIE -0.9882 4.26E-05 228298_at FAM113B -0.9827 7.07E-08 230805_at -0.9820 3.04E-04 243798_at -0.9808 5.81E-05 202499_s_at SLC2A3 -0.9790 6.69E-06 201170_s_at BHLHE40 -0.9773 1.39E-04 226136_at GLIPR1 -0.9750 4.42E-05 208121_s_at PTPRO -0.9723 1.72E-04 242907_at -0.9699 5.90E-04 238725_at IRF1 -0.9698 4.07E-05 235276_at EPST11 -0.9540 4.85E-05 205291_at IL2RB -0.9512 1.47E-04 221087_s_at ACP5 -0.9512 1.47E-04 206133_at XAF1 -0.9493 8.14E-04 206133_at XAF1 -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9426 3.00E-04	205013 s at	ADORA2A /// CYTSA	-0.9914	5.42E-07
228298_at FAM113B -0.9827 7.07E-08 230805_at -0.9820 3.04E-04 243798_at -0.9808 5.81E-05 202499_s_at SLC2A3 -0.9790 6.69E-06 201170_s_at BHLHE40 -0.9773 1.39E-04 226136_at GLIPR1 -0.9750 4.42E-05 208121_s_at PTPRO -0.9723 1.72E-04 242907_at -0.9699 5.90E-04 238725_at IRF1 -0.9540 4.85E-05 205291_at IL2RB -0.9536 2.74E-06 204638_at ACP5 -0.9512 1.47E-04 221087_s_at APOL3 -0.9501 8.01E-05 224701_at PARP14 -0.9493 8.14E-04 206133_at XAF1 -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9436 5.20E-04 209138_x_at IGL@ -0.9374 5.96E-04 </td <td>203927 at</td> <td>NEKBIE</td> <td>-0.9882</td> <td>4.26E-05</td>	203927 at	NEKBIE	-0.9882	4.26E-05
230805_at -0.9820 3.04E-04 243798_at -0.9808 5.81E-05 202499_s_at SLC2A3 -0.9790 6.69E-06 201170_s_at BHLHE40 -0.9773 1.39E-04 226136_at GLIPR1 -0.9750 4.42E-05 208121_s_at PTPRO -0.9723 1.72E-04 242907_at -0.9699 5.90E-04 238725_at IRF1 -0.9588 4.07E-05 205291_at IL2RB -0.9512 1.47E-04 204638_at ACP5 -0.9512 1.47E-04 20137_s_at PARP14 -0.9438 8.14E-04 206133_at XAF1 -0.9438 1.35E-04 1559776_at -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9438 5.42E-07 228152_s_at DDX60L -0.9374 5.96E-04 209138_x_at IGL@ -0.9374 5.96E-04 </td <td>228298 at</td> <td>FAM113B</td> <td>-0.9827</td> <td>7.07E-08</td>	228298 at	FAM113B	-0.9827	7.07E-08
243798_at -0.9808 5.81E-05 202499_s_at SLC2A3 -0.9790 6.69E-06 201170_s_at BHLHE40 -0.9773 1.39E-04 226136_at GLIPR1 -0.9750 4.42E-05 208121_s_at PTPRO -0.9723 1.72E-04 242907_at -0.9699 5.90E-04 238725_at IRF1 -0.9588 4.07E-05 205291_at IL2RB -0.9536 2.74E-06 204638_at ACP5 -0.9512 1.47E-04 221087_s_at PARP14 -0.9438 8.14E-04 206133_at XAF1 -0.9440 6.64E-04 206133_at XAF1 -0.9438 5.42E-07 228152_s_at DDX60L -0.9438 5.42E-07 228152_s_at DDX60L -0.9376 5.20E-04 209138_x_at IGL@ -0.9374 5.96E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03	230805 at		-0.9820	3.04E-04
202499_s_at SLC2A3 -0.9790 6.69E-06 201170_s_at BHLHE40 -0.9773 1.39E-04 226136_at GLIPR1 -0.9750 4.42E-05 208121_s_at PTPRO -0.9793 1.72E-04 242907_at -0.9699 5.90E-04 238725_at IRF1 -0.9588 4.07E-05 205291_at IL2RB -0.9536 2.74E-06 204638_at ACP5 -0.9512 1.47E-04 221087_s_at APOL3 -0.9501 8.01E-05 224701_at PARP14 -0.9438 8.14E-04 206133_at XAF1 -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9426 3.30E-04 204138_s_at IGL@ -0.9374 5.96E-04 209138_x_at IGL@ -0.9374 5.96E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9331 5.53E-05<	243798 at		-0.9808	5.81E-05
201170_s_at BHLHE40 -0.9773 1.39E-04 226136_at GLIPR1 -0.9750 4.42E-05 208121_s_at PTPRO -0.9723 1.72E-04 242907_at -0.9699 5.90E-04 238725_at IRF1 -0.9698 4.07E-05 235276_at EPSTI1 -0.9540 4.85E-05 205291_at IL2RB -0.9536 2.74E-06 204638_at ACP5 -0.9512 1.47E-04 221087_s_at APOL3 -0.9501 8.01E-05 224701_at PARP14 -0.9493 8.14E-04 206133_at XAF1 -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9438 5.42E-07 228152_s_at IGL@ -0.9374 5.96E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03	202499 s at	SLC2A3	-0.9790	6.69E-06
226136_at GLIPR1 -0.9750 4.42E-05 208121_s_at PTPRO -0.9723 1.72E-04 242907_at -0.9699 5.90E-04 238725_at IRF1 -0.9698 4.07E-05 235276_at EPSTI1 -0.9540 4.85E-05 205291_at IL2RB -0.9512 1.47E-04 221087_s_at ACP5 -0.9512 1.47E-04 221087_s_at APOL3 -0.9501 8.01E-05 224701_at PARP14 -0.9493 8.14E-04 206133_at XAF1 -0.9458 1.35E-04 1559776_at -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9426 3.30E-04 204138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03	201170 s at	BHLHE40	-0.9773	1.39E-04
District District District 208121_s_at PTPRO -0.9723 1.72E-04 242907_at -0.9699 5.90E-04 238725_at IRF1 -0.9698 4.07E-05 235276_at EPSTI1 -0.9540 4.85E-05 205291_at IL2RB -0.9536 2.74E-06 204638_at ACP5 -0.9512 1.47E-04 221087_s_at APOL3 -0.9501 8.01E-05 224701_at PARP14 -0.9493 8.14E-04 206133_at XAF1 -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9440 6.64E-04 209138_x_at IGL@ -0.9376 5.20E-04 209138_x_at IGL@ -0.9377 3.81E-03 219209 at IFIH1 -0.93311 5.53E-05	226136 at	GLIPR1	-0.9750	4.42E-05
242907_at -0.9699 5.90E-04 238725_at IRF1 -0.9698 4.07E-05 235276_at EPSTI1 -0.9540 4.85E-05 205291_at IL2RB -0.9536 2.74E-06 204638_at ACP5 -0.9512 1.47E-04 221087_s_at APOL3 -0.9501 8.01E-05 224701_at PARP14 -0.9493 8.14E-04 206133_at XAF1 -0.9458 1.35E-04 1559776_at -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9426 3.30E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03	208121 s at	PTPBO	-0.9723	1.72E-04
10000 10000 00000 238725_at IRF1 -0.9698 4.07E-05 235276_at EPSTI1 -0.9540 4.85E-05 205291_at IL2RB -0.9536 2.74E-06 204638_at ACP5 -0.9512 1.47E-04 221087_s_at APOL3 -0.9501 8.01E-05 224701_at PARP14 -0.9493 8.14E-04 206133_at XAF1 -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9426 3.30E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03	242907 at		-0.9699	5.90E-04
235276_at EPSTI1 -0.9540 4.85E-05 205291_at IL2RB -0.9536 2.74E-06 204638_at ACP5 -0.9512 1.47E-04 221087_s_at APOL3 -0.9501 8.01E-05 224701_at PARP14 -0.9493 8.14E-04 206133_at XAF1 -0.9458 1.35E-04 1559776_at -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9426 3.30E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03 219209 at IFIH1 -0.9311 5.53E-05	238725 at	IRF1	-0.9698	4.07E-05
205291_at IL2RB -0.9536 2.74E-06 204638_at ACP5 -0.9512 1.47E-04 221087_s_at APOL3 -0.9501 8.01E-05 224701_at PARP14 -0.9493 8.14E-04 206133_at XAF1 -0.9458 1.35E-04 1559776_at -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9426 3.30E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03 219209 at IFIH1 -0.9311 5.53E-05	235276 at	EPSTI1	-0.9540	4.85E-05
204638_at ACP5 -0.9512 1.47E-04 221087_s_at APOL3 -0.9501 8.01E-05 224701_at PARP14 -0.9493 8.14E-04 206133_at XAF1 -0.9458 1.35E-04 1559776_at -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9426 3.30E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03 219209 at IFIH1 -0.9311 5.53E-05	205291 at	IL2RB	-0.9536	2.74E-06
APOL3 -0.9501 8.01E-05 221087_s_at PARP14 -0.9493 8.14E-04 206133_at XAF1 -0.9458 1.35E-04 1559776_at -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9426 3.30E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03 219209 at IFIH1 -0.9311 5.53E-05	204638 at	ACP5	-0.9512	1.47E-04
224701_at PARP14 -0.9493 8.14E-04 206133_at XAF1 -0.9458 1.35E-04 1559776_at -0.9440 6.64E-04 204238_s_at C6orf108 -0.9426 3.30E-04 228152_s_at DDX60L -0.9426 3.30E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03 219209 at IFIH1 -0.9311 5.53E-05	221087 s at	APOL3	-0.9501	8.01E-05
206133_at XAF1 -0.9458 1.35E-04 1559776_at -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9426 3.30E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03 219209_at IFIH1 -0.9311 5.53E-05	224701 at	PARP14	-0.9493	8 14F-04
1559776_at -0.9440 6.64E-04 204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9426 3.30E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03 219209 at IFIH1 -0.9311 5.53E-05	206133 at	XAF1	-0.9458	1.35E-04
204238_s_at C6orf108 -0.9438 5.42E-07 228152_s_at DDX60L -0.9426 3.30E-04 244447_at -0.9396 5.20E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03 219209 at IFIH1 -0.9311 5.53E-05	1559776 at		-0.9440	6.64E-04
228152_s_at DDX60L -0.9426 3.30E-04 244447_at -0.9396 5.20E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03 219209 at IFIH1 -0.9311 5.53E-05	204238 s at	C6orf108	-0.9438	5.42E-07
244447_at -0.9396 5.20E-04 209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03 219209 at IFIH1 -0.9311 5.53E-05	228152 s at	DDX60L	-0.9426	3.30E-04
209138_x_at IGL@ -0.9374 5.96E-04 202871_at TRAF4 -0.9337 3.81E-03 219209 at IFIH1 -0.9311 5.53E-05	244447 at		-0.9396	5.20E-04
202871_at TRAF4 -0.9337 3.81E-03 219209 at IFIH1 -0.9311 5.53E-05	209138 x at	IGL@	-0.9374	5.96E-04
219209 at IFIH1 -0.9311 5.53E-05	202871 at	TRAF4	-0.9337	3.81E-03
	219209 at	IFIH1	-0.9311	5.53E-05

Probe set	Gene symbol	LogRatio	FDR
225415_at	DTX3L	-0.9306	7.79E-05
219471_at	C13orf18	-0.9276	7.69E-06
226879_at	HVCN1	-0.9233	8.94E-06
213379_at	COQ2	-0.9177	3.64E-06
238429_at	TMEM71	-0.9145	2.25E-03
209959_at	NR4A3	-0.9142	5.66E-04
228758 at	BCL6	-0.9141	3.88E-04
215379_x_at	IGLV1-44	-0.9138	1.45E-03
219433_at	BCOR	-0.9126	1.52E-04
1566428 at		-0.9124	5.05E-05
215121 x at	CYAT1 /// IGLV1-44	-0.9088	1.17E-03
202284 s at	CDKN1A	-0.9041	2.45E-05
227844 at	FMNL3	-0.8987	2.87E-05
1557166 at	PDCD4	-0.8972	5.85E-04
	TBC1D9	-0.8964	1.70E-03
AFFX-HUMISGF3A/M97935 MA at	STAT1	-0.8946	1.57E-03
238823 at	FMNL3	-0.8946	5.06E-05
205153 s at	CD40	-0.8939	6.72E-04
214669 x at	IGKC	-0.8935	1.43E-02
204994 at	MX2	-0.8927	5 12E-04
203879 at	PIK3CD	-0.8912	6 13E-06
219691 at	SAMD9	-0.8910	3.64F-04
235670 at	STX11	-0.8906	6 64E-05
210797 s at	OASI	-0.8897	3.07E-03
212594 at	PDCD4	-0.8840	1.03E-05
204972 at	0452	-0.8784	3 30E-03
223222 at	SIC25A19	-0.8771	1 24F-05
226459 at	PIK3AP1	-0.8770	1.67E-06
214056 at		-0.8753	1.04E-02
211190 x at	CD84	-0.8740	1 35E-04
211150	0453	-0.8731	6.52E-03
235170 at	7NE92	-0.8724	4 535-04
228828 at		-0.8707	1.04E-04
20020 <u>0</u>	GUPP1	-0.8698	3 38F-04
201252 at	SOPD	-0.8660	7 705-05
201505_at	EAM65B	-0.8648	1.00E-05
200707_x_at	C11orf17 /// NUAK2	-0.8599	3.605-04
220507_3_dt	BCADS	-0.8597	4 18E-04
204032_at	TCEA	-0.8586	6.025-05
228837_at	MEE2C	-0.8560	1.265-05
209200_at	0452	-0.0550	5.055-04
228007_at	IED2	-0.8535	6.69E-06
218011_at		-0.8509	8 12E-04
204222 s at	CUBP1	-0.8509	1 205-04
204222_5_81		0.0300	E 01E 0E
1557084 c =+	DDVDS	-0.8370	6.085-06
226568 st	EAM102P	-0.8370	1.085-04
220300_81	TAIWIT02D	-0.8222	7.125-05
227030_dt		-0.8323	1.120-05
22/305_dL		-0.0525	2 165 04
225045_dt	KIAA0040	-0.8304	7.815-04
200144_5_81	NOD2	-0.0294	3.545-02
220000_81	NUU2 ATES	-0.0202	5.605-04
204550_5_dt	ALLO	-0.0201	5.00L-04

Probe set	Gene symbol	LogRatio	FDR
220882_at		-0.8259	1.19E-06
216734_s_at	CXCR5	-0.8243	2.10E-03
203865_s_at	ADARB1	-0.8242	4.18E-04
225399_at	TSEN15	-0.8242	2.09E-06
214836_x_at	IGK@ /// IGKC	-0.8237	5.95E-03
241917_at		-0.8206	2.07E-04
208983_s_at	PECAM1	-0.8171	3.28E-04
205180_s_at	ADAM8	-0.8166	1.91E-04
228869_at	SNX20	-0.8162	1.21E-04
219258_at	TIPIN	-0.8160	6.42E-05
230052_s_at	NFKBID	-0.8146	2.88E-03
201631_s_at	IER3	-0.8144	3.58E-04
1561167_at		-0.8142	4.38E-04
212872 s at	MED20	-0.8130	3.45E-06
216250 s at	LPXN	-0.8106	1.44E-04
222808 at	ALG13	-0.8096	1.68E-05
1557966 x at	MTERFD2	-0.8083	2.98E-06
1557965 at	MTERFD2	-0.8079	2.54E-06
	PIGX	-0.8061	3.19E-03
209417 s at	IFI35	-0.8032	8.14E-04
212048 s at	YARS	-0.8021	1.02E-05
214085 x at	GLIPR1	-0.7989	7.71E-05
208981 at	PECAM1	-0.7980	6.14E-05
219387 at	CCDC88A	-0.7966	2.64E-04
202748 at	GBP2	-0.7952	8.00E-05
242563 at		-0.7916	2.37E-03
1559263 s at	PPIL4 /// ZC3H12D	-0.7892	4.59E-05
216041 x at	GRN	-0.7876	1.88E-04
227211 at	PHF19	-0.7872	3.16E-05
219099 at	C12orf5	-0.7869	6.89E-06
44790 s at	C13orf18	-0.7861	1.21E-05
215164 at		-0.7857	9.47E-05
206683 at	ZNF165	-0.7824	3.81E-05
227678 at	XRCC6BP1	-0.7819	1.36E-04
1554508 at	PIK3AP1	-0.7817	2.78E-03
209829 at	FAM65B	-0.7778	3.31E-04
230980 x at		-0.7754	9.38E-05
229074 at	EHD4	-0.7720	3.35E-04
213638 at	PHACTR1	-0.7714	2.00E-04
227807 at	PARP9	-0.7704	9.43E-04
225285 at	BCAT1	-0.7698	2.55E-03
209199 s at	MEF2C	-0.7692	3.81E-05
205205 at	RELB	-0.7679	9.52E-04
201761 at	MTHED2	-0 7677	6 95F-05
213537 at	HLA-DPA1	-0.7666	1.52E-04
226045 at	FRS2	-0,7663	5.16E-05
221671 x at		-0.7662	1.24E-02
200965 s at	ABLIM1	-0,7650	1.13E-03
207375 s at	IL15RA	-0,7648	3.76E-03
213224 s at	NCRNA00081	-0.7626	3.28F-04
226264 at	SUSD1	-0.7624	1.88F-04
208103 s at	ANP32F	-0.7609	2.31F-04
226841 at	MPEG1	-0,7606	1.00E-03

Probe set	Gene symbol	LogRatio	FDR
221651_x_at	IGK@ /// IGKC	-0.7595	1.13E-02
226117_at	TIFA	-0.7594	5.28E-06
230362_at	INPP5F	-0.7588	1.05E-04
215346_at	CD40	-0.7576	8.40E-04
205241_at	SCO2	-0.7576	4.34E-03
203046_s_at	TIMELESS	-0.7560	2.33E-05
208010_s_at	PTPN22	-0.7547	2.55E-03
206206_at	CD180	-0.7544	7.06E-05
242108_at		-0.7542	1.30E-03
212385_at	TCF4	-0.7538	5.77E-04
205019_s_at	VIPR1	-0.7518	2.36E-02
226784_at	TWISTNB	-0.7507	1.63E-03
1559391_s_at		-0.7504	1.12E-02

2.2. Probe sets down-regulated by dexamethasone in the low ZAP70 group

Probe set	Gene symbol	LogRatio	FDR
204103_at	CCL4	-2.1954	2.64E-06
202759_s_at	AKAP2 /// PALM2-AKAP2	-1.7259	6.46E-05
226694_at	AKAP2 /// PALM2-AKAP2	-1.6986	4.13E-05
205483_s_at	ISG15	-1.5873	1.22E-03
226603_at	SAMD9L	-1.5163	1.01E-04
202760_s_at	AKAP2 /// PALM2-AKAP2	-1.4944	7.21E-04
AFFX-HUMISGF3A/M97935_MB_at	STAT1	-1.4063	1.81E-04
211138_s_at	KMO	-1.3950	2.70E-05
224917_at	MIR21	-1.3921	1.90E-04
226757_at	IFIT2	-1.3785	1.27E-03
205681_at	BCL2A1	-1.3403	3.53E-04
205306_x_at	KMO	-1.3308	1.26E-05
230036_at	SAMD9L	-1.3059	1.90E-04
200628_s_at	WARS	-1.3030	7.41E-05
200629_at	WARS	-1.2985	1.27E-04
202086_at	MX1	-1.2960	2.99E-04
243271_at		-1.2921	6.55E-04
211192_s_at	CD84	-1.2843	4.73E-06
203751_x_at	JUND	-1.2737	2.52E-02
216248_s_at	NR4A2	-1.2637	1.39E-04
230805_at		-1.2627	3.64E-04
204908_s_at	BCL3	-1.2624	4.60E-04
205861_at	SPIB	-1.2445	5.24E-03
210279_at	GPR18	-1.2399	8.67E-06
1569003_at	TMEM49	-1.2388	2.39E-03
201559_s_at	CLIC4	-1.2384	6.59E-03
231093_at	FCRL3	-1.2332	1.41E-03
204747_at	IFIT3	-1.2217	3.75E-02
221239_s_at	FCRL2	-1.2185	1.00E-03
204415_at	IFI6	-1.2139	3.46E-02
202869_at	OAS1	-1.2081	2.44E-04
206126_at	CXCR5	-1.2062	3.00E-03
229629_at		-1.2032	1.05E-05
211190_x_at	CD84	-1.1983	8.90E-05

Probe set	Gene symbol	LogRatio	FDR
209969_s_at	STAT1	-1.1941	3.59E-04
AFFX-HUMISGF3A/M97935_5_at	STAT1	-1.1888	2.92E-03
AFFX-HUMISGF3A/M97935_MA_at	STAT1	-1.1727	1.73E-03
207826_s_at	ID3	-1.1653	8.75E-05
204622_x_at	NR4A2	-1.1645	2.81E-04
201631_s_at	IER3	-1.1634	1.75E-04
205241_at	SCO2	-1.1460	1.89E-03
208983 s at	PECAM1	-1.1431	1.90E-04
200965 s at	ABLIM1	-1.1393	4.37E-04
204858_s_at	TYMP	-1.1262	2.18E-03
200887 s at	STAT1	-1.1197	1.55E-05
207113_s_at	TNF	-1.1191	1.28E-03
AFFX-HUMISGF3A/M97935 3 at	STAT1	-1.1107	7.35E-05
210972 x at	TRA@ /// TRAC	-1.1086	3.73E-03
220987 s at	C11orf17 /// NUAK2	-1.1083	4.27E-04
223709 s at	WNT10A	-1.1032	7.93E-04
204972 at	OAS2	-1.0953	5.54E-03
	CD84	-1.0939	1.39E-04
218400 at	OAS3	-1.0863	1.14E-02
226879 at	HVCN1	-1.0860	2.61E-05
223220 s at	PARP9	-1.0806	3.93E-04
209671 x at	TRA@ /// TRAC	-1.0707	1.24E-03
219471 at	C13orf18	-1.0677	2.76E-05
228599 at	MS4A1	-1.0669	3 08F-03
226568 at	FAM102B	-1.0651	1.30F-04
203835 at	IBBC32	-1.0601	5 78F-04
204621 s at	NR4A2	-1.0435	1.46E-03
228617 at	XAF1	-1.0344	7.93E-04
230391 at	CD84	-1.0337	5.83E-05
204238 s at	C6orf108	-1.0303	3.78E-06
228055 at	NAPSB	-1.0255	1.44E-02
209417 s at	IFI35	-1.0232	1.10E-03
228826 at		-1.0222	4.58E-04
216734 s at	CXCR5	-1.0180	3.63E-03
201560 at	CLIC4	-1.0156	9.70E-05
202730 s at	PDCD4	-1.0151	3.51E-02
219863 at	HERC5	-1.0086	6.02E-03
206133 at	XAF1	-1.0086	7.69E-04
228837 at	TCF4	-1.0070	1.74E-04
224701 at	PARP14	-1.0052	4.25E-03
232375 at		-1.0039	1.97E-03
205291 at	IL2RB	-1.0010	2.44E-05
202531 at	IRF1	-0.9989	3.47E-03
214508 x at	CREM	-0.9912	7.93E-06
204440 at	CD83	-0.9900	4.62E-04
208981 at	PECAM1	-0.9876	9.59E-05
223222 at	SLC25A19	-0.9875	5.23E-05
207630 s at	CREM	-0.9852	1.50E-04
205599 at	TRAF1	-0.9786	4.17E-04
213294 at		-0.9773	1.29E-03
202688 at	TNFSF10	-0.9720	2.26E-03
204994 at	MX2	-0.9708	2.27E-03
216250 s at	LPXN	-0.9676	3.22E-04

Probe set	Gene symbol	LogRatio	FDR
205013_s_at	ADORA2A /// CYTSA	-0.9662	1.05E-05
228828_at		-0.9655	4.30E-04
235372_at	FCRLA	-0.9642	7.93E-06
216236_s_at	SLC2A14 /// SLC2A3	-0.9601	9.55E-03
218986_s_at	DDX60	-0.9600	3.93E-03
230511_at	CREM	-0.9592	5.69E-04
209967_s_at	CREM	-0.9492	5.53E-04
202446_s_at	PLSCR1	-0.9469	1.00E-02
205988_at	CD84	-0.9436	1.14E-04
239740_at	ETV6	-0.9432	1.70E-02
204638_at	ACP5	-0.9431	1.45E-03
202748 at	GBP2	-0.9399	1.90E-04
205205 at	RELB	-0.9385	1.75E-03
 239294 at		-0.9379	1.90E-05
201341 at	ENC1	-0.9296	1.33E-04
211269 s at	IL2RA	-0.9287	3.77E-03
203932 at	HLA-DMB	-0.9266	2.30E-04
208982 at	PECAM1	-0.9248	7.81E-05
212956 at	TBC1D9	-0.9245	1.00E-02
221671 x at	IGK@ /// IGKC	-0.9240	2.48E-02
221651 x at		-0.9240	2 19F-02
228298 at	FAM113B	-0.9231	2.64F-06
227030 at		-0.9221	2 96F-04
209670 at	TRAC	-0.9207	1.35E-04
203140 at	BCI6	-0.9186	1.02E-03
235276 at	EPSTI1	-0.9182	6 72F-04
242907 at		-0.9178	6.84F-03
222108 at	AMIGO2	-0.9157	4 66F-03
1554508 at	PIK3AP1	-0.9146	7 09F-03
212671 s at	HIA-DOA1 /// HIA-DOA2	-0.9136	3 01F-02
203143 s at	KIAA0040	-0.9129	2 97F-03
210797 s at	OASL	-0.9119	1.72E-02
215223 s at	SOD2	-0.9098	1.09E-03
201490 s at	PPIF	-0.9087	2 01F-03
219352 at	HERC6	-0.9041	5 17F-03
1554834 a at	BASSE5	-0.9008	2 03F-02
228056 s at	NAPSB	-0.8995	9 92F-03
202393 s at	KIF10	-0.8975	9.66F-03
224406 s at	FCRI 5	-0.8955	5.84E-05
215990 s at	BCI6	-0.8955	3 58E-03
204269 at	PIM2	-0.8940	1.39F-02
206759 at	FCFR2	-0.8933	1.83E-02
205153 s at	CD40	-0.8932	5.35E-03
207968 s at	MEE2C	-0.8889	8 38F-03
224193 s at	FCRI 2	-0.8829	3 26E-04
201601 x at	IFITM1	-0.8823	1.50F-02
221044 s at	TRIM34 /// TRIM6-TRIM34	-0.8809	2 12F-02
208010 s at	PTPN22	-0.8799	6 60F-03
219691 at	SAMD9	-0.8794	3 44F-03
202087 s at	CTSI 1	-0.8767	1 95F-03
227609 at	EPSTI1	-0.8763	2.22F-04
203072 at	MYO1F	-0.8757	9.59F-05
211/30 s at	IGH@ /// IGHG1	-0.8757	2 01F-02

Probe set	Gene symbol	LogRatio	FDR
228531_at	SAMD9	-0.8742	1.41E-03
202499_s_at	SLC2A3	-0.8739	2.22E-04
206760_s_at	FCER2	-0.8730	1.22E-02
214677_x_at	CYAT1 /// IGLV1-44	-0.8718	2.85E-02
203595_s_at	IFIT5	-0.8716	5.94E-03
209636_at	NFKB2	-0.8716	2.44E-02
1559776_at		-0.8702	9.00E-03
203471_s_at	PLEK	-0.8698	2.58E-04
205180 s at	ADAM8	-0.8666	1.10E-03
225447 at	GPD2	-0.8643	9.50E-04
235157 at		-0.8598	1.40E-02
235670 at	STX11	-0.8581	8.79E-04
1552497 a at	SLAMF6	-0.8559	4.79E-03
236280 at		-0.8558	3.60E-05
206341 at	IL2RA	-0.8532	1.70E-02
226748 at	LYSMD2	-0.8519	1.27E-04
211725 s at	BID	-0.8492	9.29E-05
203320 at	SH2B3	-0.8490	5.61E-03
239979 at		-0.8474	6.95E-04
216841 s at	SOD2	-0.8461	3.98E-04
206150 at	CD27	-0.8437	7.93E-04
213620 s at	ICAM2	-0.8435	9 17F-04
229968 at		-0.8386	1 53E-03
238725 at	IRF1	-0.8382	1 34F-03
1563674 at	FCRI 2	-0.8369	1.11E-03
224795 x at		-0.8366	4 40F-02
227807 at	PARP9	-0.8332	4 20E-03
200824 at	GSTP1	-0.8322	4 12F-03
208121 s at	PTPRO	-0.8308	4 87F-03
221087 s at	APOL3	-0.8308	2 21F-03
228518 at		-0.8303	4 67F-02
227478 at	SETBP1	-0.8282	1 54F-02
214836 x at		-0.8244	3 37F-02
1561167 at		-0.8237	3 39F-03
213261 at	TRANK1	-0.8221	7 72E-03
44790 s at	C13orf18	-0.8220	9 28F-05
209138 x at	161.00	-0.8215	1 12E-02
212960 at	TBC1D9	-0.8208	2 92F-02
228758 at	BCI6	-0.8173	7 10F-03
223903 at	TIR9	-0.8152	1 41F-03
221449 s at	ITEG1	-0.8149	1 98F-03
226117 at	TIFA	-0.8130	3.60E-05
209200 at	MEE2C	-0.8111	2 31E-04
203523 at	ISP1	-0.8093	2.00E-02
238823 at	EST 1	-0.8032	1 20F-03
201563 at	SORD	-0.8007	1.39F-03
224990 at	C4orf34	-0 7971	3 15E-03
201251 at	PKM2	-0.7969	1.78F-02
201105_at	IGAIS1	-0 7930	2.26F-03
201105_at	NEKBIE	-0 7918	2.41F-03
203045 at	NINI1	-0 7913	1.37E-03
212641 at	HIVEP2	-0 7884	1.095-03
204683 at	ICAM2	-0 7868	1 98F-03
201000_01	I WHITE	0.7000	2.562.05

Probe set	Gene symbol	LogRatio	FDR
211902_x_at	TRA@	-0.7853	7.51E-03
201761_at	MTHFD2	-0.7844	5.67E-04
214995_s_at	APOBEC3F /// APOBEC3G	-0.7840	2.95E-04
231769_at	FBXO6	-0.7810	6.79E-03
221078_s_at	CCDC88A	-0.7807	1.58E-02
226142_at	GLIPR1	-0.7806	2.56E-03
208680_at	PRDX1	-0.7771	2.19E-02
226408_at	TEAD2	-0.7760	2.94E-02
207419_s_at	RAC2	-0.7733	4.36E-03
211991_s_at	HLA-DPA1	-0.7723	1.04E-02
201649_at	UBE2L6	-0.7698	7.72E-03
224574_at	C17orf49	-0.7697	1.55E-03
220054_at	IL23A	-0.7684	1.80E-04
204882_at	ARHGAP25	-0.7682	4.87E-03
211189_x_at	CD84	-0.7649	7.52E-04
228152_s_at	DDX60L	-0.7629	1.17E-02
243798_at		-0.7625	3.87E-03
219690_at	TMEM149	-0.7613	1.56E-03
1554667_s_at	METTL8	-0.7602	5.58E-04
220066_at	NOD2	-0.7593	3.44E-02
38149_at	ARHGAP25	-0.7578	2.54E-03
222088_s_at	SLC2A14 /// SLC2A3	-0.7571	6.76E-03
225974_at	TMEM64	-0.7562	5.06E-03
201000_at	AARS	-0.7545	1.83E-03
210550_s_at	RASGRF1	-0.7540	2.36E-02
206060_s_at	PTPN22	-0.7539	1.04E-03
212998_x_at	HLA-DQB1 /// LOC100294318	-0.7522	7.83E-03
218966_at	MYO5C	-0.7513	2.98E-03
207535 s at	NFKB2	-0.7509	1.92E-02

APPENDIX 3

Probe set	Gene symbol	LogRatio	FDR
227082 at		3.1500	5.02E-05
212560 at	SORL1	3.0682	2.16E-03
213158 at		3.0415	4.41E-06
213156 at		2.9626	4.41E-06
227121 at		2.9399	5.44E-06
240216 at		2.8393	4.41E-06
205383 s at	ZBTB20	2.7978	4.41E-06
235150 at		2.7861	8.31E-03
203509 at	SORL1	2.7860	3.52E-03
235308_at	ZBTB20	2.7745	4.41E-06
215967_s_at	LY9	2.7478	6.64E-03
 226252_at		2.7173	1.78E-05
210370 s at	LY9	2.6964	4.26E-03
231124 x at	LY9	2.5399	8.95E-03
235683_at	SESN3	2.5228	7.43E-04
242134 at		2.4825	5.41E-04
209959_at	NR4A3	2.4748	5.44E-03
226250 at		2.4231	1.33E-04
214508 x at	CREM	2.1956	1.29E-03
243546 at		2.1808	6.10E-03
227613_at	ZNF331	2.1554	2.39E-03
209967_s_at	CREM	2.1382	6.22E-03
235213 at	ІТРКВ	2.1331	1.24E-02
203835_at	LRRC32	2.1037	2.44E-02
204334_at	KLF7	2.1000	3.38E-03
230511_at	CREM	2.0835	6.22E-03
207630_s_at	CREM	2.0617	2.16E-03
204621_s_at	NR4A2	2.0222	3.15E-03
219228_at	ZNF331	2.0104	8.13E-04
229566_at	LOC645638	1.9884	9.76E-03
216248_s_at	NR4A2	1.9072	3.52E-03
212609_s_at	AKT3	1.8483	2.89E-02
37145_at	GNLY	1.8150	2.13E-02
235739_at		1.7767	1.14E-03
226039_at	MGAT4A	1.7403	1.24E-02
204622_x_at	NR4A2	1.7305	5.85E-03
214657_s_at	NEAT1	1.7250	7.11E-03
227062_at		1.7068	1.76E-02
230536_at	PBX4	1.6184	1.87E-02
205495_s_at	GNLY	1.6130	3.23E-02
213915_at	NKG7	1.5472	3.56E-02
211458_s_at	GABARAPL1 /// GABARAPL3	1.5195	3.39E-03
238320_at		1.4963	3.89E-02
204761_at	USP6NL	1.4799	8.31E-03
214470_at	KLRB1	1.4744	1.94E-02
1554544_a_at	MBP	1.4742	8.19E-03
228528_at	LOC100286909	1.4304	3.94E-03

3.1. Probe sets with higher expression in the untreated cells of the low ZAP70 group

Probe set	Gene symbol	LogRatio	FDR
243918_at		1.4296	8.31E-03
241015_at		1.3993	4.51E-02
201422_at	IFI30	1.3932	3.31E-02
210136_at	MBP	1.3848	1.37E-02
209626_s_at	OSBPL3	1.3494	2.36E-02
212099_at	RHOB	1.3438	3.59E-02
212658_at	LHFPL2	1.3293	7.86E-03
210606_x_at	KLRD1	1.3219	2.11E-02
225252_at	SRXN1	1.2951	2.47E-02
212796_s_at	TBC1D2B	1.2951	9.04E-04
1560397_s_at	KLHL6	1.2914	1.24E-02
201041_s_at	DUSP1	1.2844	7.43E-04
210031_at	CD247	1.2803	3.57E-02
220132_s_at	CLEC2D	1.2798	3.99E-02
201466_s_at	JUN	1.2769	1.17E-02
208869_s_at	GABARAPL1	1.2729	9.65E-03
233899_x_at	ZBTB10	1.2431	2.97E-02
233500_x_at	CLEC2D	1.2013	2.99E-02
214446 at	ELL2	1.1940	1.75E-02
225553 at		1.1899	4.55E-03
207072 at	IL18RAP	1.1743	3.04E-02
224832 at	DUSP16	1.1723	2.59E-02
203723 at	ІТРКВ	1.1705	8.31E-03
212636 at	QKI	1.1668	3.62E-02
57540 at	RBKS	1.1583	1.04E-02
224566 at	NEAT1	1.1580	6.34E-03
201464 x at	JUN	1.1578	4.04E-02
219312 s at	ZBTB10	1.1538	3.23E-02
241985 at	JMI	1.1396	1.38E-02
206966 s at	KLF12	1.1313	1.58E-02
225123 at		1.1277	1.01E-02
201531 at	ZFP36	1.1170	2.03E-03
205590 at	RASGRP1	1.1117	3.88E-02
206917 at	GNA13	1.1115	2.16E-03
1554690 a at	TACC1	1.1047	3.67E-02
215707 s at	PRNP	1.0901	2.47E-02
202364 at	MXI1	1.0897	7.11E-04
1555827 at	CCNL1	1.0804	2.42E-02
202887 s at	DDIT4	1.0797	2.95E-02
214786 at	MAP3K1	1.0770	2.87E-02
212509 s at	MXRA7	1.0738	3.34E-03
225651 at	UBE2E2	1.0685	3.06E-02
226440 at	DUSP22	1.0676	3.98E-02
216976 s at	BYK	1.0589	4.80E-02
205434 s at	AAK1	1.0546	2.47E-02
204222 s at	GLIPR1	1.0539	8.19E-03
224978 s at	USP36	1.0316	1.65E-02
228167 at	KLHL6	1.0280	1.01E-02
239912 at		1.0174	3.36E-03
201465 s at	JUN	1.0165	3.21E-02
207001 x at	TSC22D3	1.0141	1.70E-02
226989 at	RGMB	1.0105	7.89E-03
201751_at	JOSD1	1.0104	7.43E-04

Probe set	Gene symbol	LogRatio	FDR
202255_s_at	SIPA1L1	1.0075	4.99E-03
226142_at	GLIPR1	0.9891	3.48E-02
224601_at		0.9886	3.11E-02
219222_at	RBKS	0.9844	4.03E-03
227539_at	GNA13	0.9663	6.50E-03
212676_at	NF1	0.9561	8.19E-03
244804_at	SQSTM1	0.9352	4.05E-02
215013_s_at	USP34	0.9343	2.47E-02
1558407_at	PLEKHG2	0.9302	9.16E-03
201653_at	CNIH	0.9287	9.26E-04
209331_s_at	MAX	0.9285	1.71E-02
202899_s_at	SFRS3	0.9262	9.75E-03
208868 s at	GABARAPL1	0.9086	8.95E-03
229312 s at	GKAP1	0.9040	4.05E-02
202466 at	PAPD7	0.9016	2.95E-02
221986 s at	KLHL24	0.9004	4.94E-02
226352 at	YMI	0.9002	3.15E-03
239845 at		0.8796	3.57E-03
209383 at	DDIT3	0.8787	7.86E-03
224565 at	NEAT1	0.8780	8.19E-03
207920 x at	ZFX	0.8751	2.18E-02
227093 at	USP36	0.8728	5 40F-03
237746 at	SERS11	0.8689	1.86F-02
214429 at	MTMR6	0.8677	1 29F-02
226136 at	GUPR1	0.8660	3.65E-02
202254 at	SIPATI 1	0.8652	3 91F-02
235536 at	SNORD89	0.8638	1 70F-03
1558111 at	MBNI 1	0.8618	1 94F-02
221985 at	KI HI 24	0.8532	1.59E-02
219507 at	RSRC1	0.8478	3 43F-02
1552611 a at	IAK1	0.8450	2 42F-02
208763 s at	TSC22D3	0.8396	1.06E-03
207351 s at	SH2D2A	0.8360	4.04E-02
223376 s at	BRIS	0.8337	1 75E-02
201471 s at	SOSTM1	0.8258	9 98F-03
201471_3_4t	STK4	0.8252	3 32E-02
1558517 s at	IPPCSC	0.8239	4.04F-02
206809 s at	HNRNPA3 /// HNRNPA3P1	0.8230	4.01E-02
200005_3_0t	SIC26411	0.8167	3 12F-02
211085 s at	STEA	0.8132	1.805-02
211085_5_8t		0.8086	1.695-02
211952_at	PPDM4	0.8060	6.225-02
207113 s at		0.8048	1.865-02
207115_5_at	KIE6	0.8020	1.875-02
202025 at	COM	0.8023	1.875-02
203925_dt	KIEG	0.7062	1.575-02
1556285 -+		0.7903	2.505-02
10085 -+	PPDM4	0.7545	8 105-02
10407 c -+	PCI11A	0.7747	0.19E-03
51242/2/gr	EZD	0.7720	4.400-02
200022_S_at		0.7739	4.305-02
20/405_X_dL	DINSAL	0.7719	3.00E-02
1002010_8	JANI	0.7694	7.00E-U3
212188 ⁻ at	ACAKIR	0.7620	6.05E-03

Probe set	Gene symbol	LogRatio	FDR
1557502_at	PCCB	0.7609	3.72E-03
201101_s_at	BCLAF1	0.7583	4.76E-02
210115_at	RPL39L	0.7583	5.91E-03
1555465_at	MCOLN2	0.7576	4.37E-02

3.2. Probe sets with higher expression in the untreated cells of the high ZAP70 group

Probe set	Gene symbol	LogRatio	FDR
233483_at	TBC1D27	3.1343	1.33E-04
205204_at	NMB	2.7659	4.04E-03
225285_at	BCAT1	2.5234	3.72E-03
226517_at	BCAT1	2.4014	5.91E-03
228532_at	C1orf162	2.2651	3.40E-04
215925_s_at	CD72	2.2206	3.57E-03
242572_at		2.1691	4.41E-02
219256_s_at	SH3TC1	1.8763	3.23E-02
212504_at	DIP2C	1.8061	9.65E-03
238559_at		1.7712	8.13E-04
207761_s_at	METTL7A	1.7661	1.95E-03
213839_at	CLMN	1.7425	8.13E-04
209732_at	CLEC2B	1.7348	4.81E-02
219518_s_at	ELL3 /// SERINC4	1.6656	7.43E-04
201850_at	CAPG	1.6430	2.18E-04
203186_s_at	\$100A4	1.6340	1.40E-02
202283_at	SERPINF1	1.5758	4.76E-02
226134_s_at		1.5707	9.33E-03
203711_s_at	HIBCH	1.5491	5.40E-03
230362_at	INPP5F	1.5461	8.22E-03
219517_at	ELL3 /// SERINC4	1.5344	4.75E-04
218100_s_at	IFT57	1.5225	1.39E-04
1555613_a_at	ZAP70	1.5139	8.23E-03
214032_at	ZAP70	1.5117	3.91E-03
205267_at	POU2AF1	1.5092	3.72E-03
216620_s_at	ARHGEF10	1.5091	2.18E-02
225240_s_at	MSI2	1.4918	8.78E-03
204135_at	FILIP1L	1.4898	3.99E-02
244050_at	PTPLAD2	1.4821	2.96E-03
230983_at	FAM129C	1.4747	1.55E-02
201037_at	PFKP	1.4718	5.07E-04
205081_at	CRIP1	1.4458	1.73E-02
208614_s_at	FLNB	1.4263	4.99E-03
210785_s_at	C1orf38	1.4130	9.26E-03
213374_x_at	HIBCH	1.4102	9.04E-03
210609_s_at	TP5313	1.4095	1.87E-03
1555379_at	FAM159A	1.4011	3.59E-02
210448_s_at	P2RX5	1.3972	7.43E-04
205677_s_at	DLEU1	1.3889	2.18E-02
230363_s_at	INPP5F	1.3817	3.15E-02
237400_at	ATP5S	1.3806	1.37E-02
220016_at	AHNAK	1.3737	4.99E-03

Probe set	Gene symbol	LogRatio	FDR
214366_s_at	ALOX5	1.3699	3.52E-03
226358_at	APH1B	1.3583	7.43E-04
207571_x_at	C1orf38	1.3582	8.23E-03
214238_at		1.3523	8.90E-05
229437_at	MIR155HG	1.3484	9.75E-03
235372_at	FCRLA	1.3381	4.99E-03
224990_at	C4orf34	1.3337	1.24E-02
224789_at	DCAF12	1.3267	7.06E-04
207339_s_at	LTB	1.3264	3.13E-02
232773_at		1.3248	8.31E-03
228056_s_at	NAPSB	1.3203	1.44E-02
236316_at	FAM3C	1.3199	3.64E-02
227052 at		1.2999	6.55E-03
225624 at	SNX29	1.2955	5.29E-04
1553906 s at	FGD2	1.2891	2.45E-03
236539 at	PTPN22	1.2796	1.86E-02
224989 at		1.2633	4.33E-02
	LMO7	1.2594	7.44E-03
229130 at		1.2594	3.94E-03
225757 s at	CLMN	1.2562	1.29E-03
201760 s at	WSB2	1.2451	8.22E-03
230131 x at	ARSD	1.2428	1.11E-02
225637 at	DEF8	1.2358	7.73E-03
1558185 at	CUU1	1,2329	2 97F-02
205801 s at	RASGRP3	1 2 2 8 5	1.87E-03
223553 s at	DOK3	1 1982	1 54F-03
219173 at	MYO15B	1.1926	3.80E-02
204446 s at	ALOX5	1.1917	3.52E-03
225164 s at	EIF2AK4	1.1886	1.40E-02
243154 at		1.1829	1.42E-03
207641 at	TNFRSF13B	1.1800	7.73E-03
225382 at	ZNF275	1.1726	7.73E-03
205462 s at	HPCAL1	1.1720	2.47E-02
206150 at	CD27	1.1634	1.51E-02
204257 at	FADS3	1.1634	3.41E-02
235459 at		1.1494	8.22E-03
224735 at	CYBASC3	1.1483	4.22E-04
216041 x at	GRN	1.1464	1.52E-02
59375 at	MYO15B	1.1455	2.90E-02
227182 at	SUSD3	1 1415	3 52F-03
226419 s at	FU44342	1.1349	2.47E-02
202942 at	FTFB	1 1349	4 50F-04
205547 s at	TAGIN	1 1324	6 50F-03
229958 at	CLN8	1 1145	3 34F-02
1552807 a at	SIGLEC10 /// SIGLEC12	1 1111	2 12F-02
212611 at	DTX4	1.0983	1.79F-02
209703 x at	METTI 74	1 0929	2 23E-03
1568658 at	C2orf74	1.0918	1.39F-02
200678 x at	GRN	1 0912	1.93E-02
205353 s at	PFRP1	1.0865	8 19F-03
236198 at		1.0856	8 22F-03
35974 at	IRMP	1 0818	2 30F-02
1558345 a at	100439911	1.0010	1 17F-02
2000040_0_00	200100011	2.07 40	2.272.02

Probe set	Gene symbol	LogRatio	FDR
212552_at	HPCAL1	1.0659	1.17E-02
225311_at	IVD	1.0519	8.56E-03
208613_s_at	FLNB	1.0480	1.69E-02
211284_s_at	GRN	1.0408	1.78E-02
210825_s_at	PEBP1	1.0331	5.85E-03
204445_s_at	ALOX5	1.0295	8.49E-03
221036 s at	APH1B	1.0251	4.70E-04
203921 at	CHST2	1.0217	6.11E-03
1565752 at	FGD2	1.0182	4.99E-03
205011 at	VWA5A	1.0169	2.47E-02
235512 at	CDKL1	1.0145	8.19E-03
204396 s at	GRK5	1.0114	1.40E-02
210944 s at	CAPN3	1 0114	3.52E-02
205718 at	ITGB7	1.0114	1.75E-02
213888 s at	TRAF3IP3	1.0103	4 47E-02
205484 at	SIT1	1 0054	4 03E-03
206060 s at	PTPN22	1.0021	2 79E-02
1565754 x at	EGD2	1.0016	6 34E-03
229803 s at	1902	0.0000	3.04E-02
223805_3_8t		0.0000	2.525-02
1570505 >+	ABCRA	0.9990	2.005.00
1570505_at	ABCB4	0.9941	3.06E-02
208998_81		0.9940	4.996-03
211986_at		0.9955	1.805-02
205901_at	PNOC	0.9917	7.54E-04
205297_s_at	CD/98	0.9885	3.40E-02
212913_at	CBOFT26	0.9879	2.13E-02
204401_at	KCNN4	0.9879	1.04E-02
223686_at	IPK1	0.9852	1.16E-02
221666_s_at	PYCARD	0.9839	3.90E-02
226333_at	IL6R	0.9694	3.22E-02
203607_at	INPP5F	0.9689	4.09E-02
222519_s_at	IFT57	0.9650	9.98E-03
210889_s_at	FCGR2B	0.9606	4.27E-02
226608_at	C16orf87	0.9595	8.55E-03
224840_at	FKBP5	0.9580	1.29E-02
1552634_a_at	ZNF101	0.9535	2.74E-02
229114_at	GAB1	0.9432	4.78E-02
216958_s_at	IVD	0.9401	1.24E-02
1553369_at	FAM129C	0.9332	2.60E-02
225383_at	ZNF275	0.9326	2.47E-02
203358_s_at	EZH2	0.9320	2.21E-02
204674_at	LRMP	0.9319	3.98E-02
227111_at	ZBTB34	0.9291	6.47E-03
228994_at	CCDC24	0.9280	3.52E-03
213734_at	WSB2	0.9277	4.58E-02
225387_at	TSPAN5	0.9254	4.52E-02
201029_s_at	CD99	0.9227	6.68E-03
218597_s_at	CISD1	0.9214	3.36E-03
227607_at	STAMBPL1	0.9211	4.99E-03
235580_at	ZNF141	0.9202	3.15E-02
210184_at	ITGAX	0.9187	2.23E-02
226673_at	SH2D3C	0.9041	9.65E-03
204929_s_at	VAMP5	0.9028	3.49E-02

Probe set	Gene symbol	LogRatio	FDR
223299_at	SEC11C	0.9024	8.62E-04
221782_at	DNAJC10	0.9010	1.86E-02
227198_at	AFF3	0.9003	3.72E-02
229214_at		0.8946	3.21E-02
221218_s_at	TPK1	0.8938	8.31E-03
207843_x_at	CYB5A	0.8843	3.61E-02
74694_s_at	RABEP2	0.8817	2.18E-02
242260_at	MATR3	0.8811	6.83E-03
229937_x_at	LILRB1	0.8710	3.08E-02
211941_s_at	PEBP1	0.8692	2.64E-02
1555724_s_at	TAGLN	0.8653	8.19E-03
226795_at	LRCH1	0.8622	1.11E-02
202329_at	CSK	0.8595	8.87E-04
213280_at	RAP1GAP2	0.8581	4.05E-02
227606_s_at	STAMBPL1	0.8563	2.16E-02
212605_s_at		0.8539	1.01E-02
201825_s_at	SCCPDH	0.8492	2.79E-02
221058_s_at	CKLF	0.8482	4.52E-02
238920_at		0.8415	4.81E-02
230708_at	PRICKLE1	0.8364	2.51E-02
229597_s_at	WDFY4	0.8363	3.34E-02
225723_at	C6orf129	0.8343	2.47E-02
222762_x_at	LIMD1	0.8298	4.04E-02
227840_at	C2orf76	0.8297	4.78E-02
202207_at	ARL4C	0.8259	2.66E-02
211890_x_at	CAPN3	0.8254	1.01E-02
203421_at	TP53I11	0.8125	7.88E-03
228869_at	SNX20	0.8123	9.65E-03
208690_s_at	PDLIM1	0.8066	3.43E-03
222942_s_at	TIAM2	0.8022	8.31E-03
213600_at	SIPA1L3	0.8003	8.19E-03
229750_at	POU2F2	0.7897	4.80E-02
201813_s_at	TBC1D5	0.7885	3.98E-02
201487_at	CTSC	0.7880	1.05E-02
204199_at	RALGPS1	0.7854	3.52E-03
205049_s_at	CD79A	0.7848	5.06E-03
242556_at		0.7847	2.30E-02
213857_s_at	CD47	0.7774	1.81E-04
218557_at	NIT2	0.7764	3.60E-03
206272_at	RAB4A /// SPHAR	0.7733	1.40E-02
203932_at	HLA-DMB	0.7731	5.82E-03
229681_at		0.7731	6.75E-03
215947_s_at	FAM136A	0.7702	1.91E-02
1563641_a_at	SNX20	0.7659	2.47E-02
217824_at	UBE2J1	0.7651	1.28E-02
223514_at	CARD11	0.7610	1.29E-02
213188_s_at	MINA	0.7608	4.52E-02
228956_at	UGT8	0.7577	1.15E-02
217478_s_at	HLA-DMA	0.7563	4.87E-03
225332_at	LOC729082	0.7507	4.17E-02
APPENDIX 4

Probe set	Gene symbol	LogRatio	FDR
227082_at		3.3666	1.21E-05
213156_at		3.1192	3.75E-06
213158_at		3.0209	3.75E-06
240216_at		2.8672	4.57E-06
209959_at	NR4A3	2.8387	1.02E-03
226252_at		2.7440	1.16E-05
212560_at	SORL1	2.7142	3.44E-03
215967_s_at	LY9	2.6743	5.26E-03
205383_s_at	ZBTB20	2.6490	9.39E-06
235308_at	ZBTB20	2.6056	9.39E-06
227121_at		2.5575	2.99E-05
229566_at	LOC645638	2.5304	1.02E-03
209967_s_at	CREM	2.5302	9.43E-04
226250_at		2.4515	6.33E-05
210370_s_at	LY9	2.4483	5.50E-03
230511_at	CREM	2.4047	1.22E-03
203509_at	SORL1	2.4019	6.13E-03
231124_x_at	LY9	2.3588	1.01E-02
214508_x_at	CREM	2.2824	5.03E-04
207630_s_at	CREM	2.2179	6.03E-04
201466_s_at	JUN	2.1147	9.01E-05
204334_at	KLF7	2.0830	2.07E-03
216248_s_at	NR4A2	2.0008	1.30E-03
204621_s_at	NR4A2	1.9991	1.93E-03
235683_at	SESN3	1.9448	3.91E-03
242134_at		1.9201	2.98E-03
212609_s_at	AKT3	1.8824	1.76E-02
204761_at	USP6NL	1.8709	8.40E-04
219228_at	ZNF331	1.8687	1.02E-03
202912_at	ADM	1.8640	4.08E-02
204622_x_at	NR4A2	1.8317	2.42E-03
227613_at	ZNF331	1.7724	6.13E-03
235739_at		1.7717	7.09E-04
1559421_at		1.7430	1.33E-02
243546_at		1.7354	1.68E-02
235213_at	ІТРКВ	1.6422	3.67E-02
230536_at	PBX4	1.5972	1.37E-02
230233_at		1.5334	3.35E-04
244026_at		1.4736	3.30E-02
239301_at		1.4725	2.20E-02
205590_at	RASGRP1	1.4560	5.14E-03
201464_x_at	JUN	1.4555	7.01E-03
205027_s_at	MAP3K8	1.4488	3.87E-02
57540_at	RBKS	1.4379	1.40E-03
212841_s_at	PPFIBP2	1.4203	1.74E-02
213488_at	SNED1	1.4030	2.33E-02
228097_at	MYLIP	1.4018	4.11E-02

4.1. Probe sets with higher expression in the treated cells of the low ZAP70 group

Probe set	Gene symbol	LogRatio	FDR
233899_x_at	ZBTB10	1.3954	9.93E-03
226039_at	MGAT4A	1.3927	2.99E-02
209626_s_at	OSBPL3	1.3832	1.37E-02
219734_at	SIDT1	1.3802	2.43E-02
226142_at	GLIPR1	1.3731	2.88E-03
214657_s_at	NEAT1	1.3647	2.03E-02
227062_at		1.3613	4.00E-02
201422_at	IFI30	1.3528	2.56E-02
228528_at	LOC100286909	1.3480	3.75E-03
219312_s_at	ZBTB10	1.3296	9.52E-03
36711 at	MAFF	1.2934	3.74E-02
211458_s_at	GABARAPL1 /// GABARAPL3	1.2903	6.35E-03
243918 at		1.2882	1.12E-02
224523 s at	C3orf26	1.2852	3.52E-02
244349 at		1.2797	4.31E-02
214470 at	KLRB1	1.2776	2.89E-02
212509 s at	MXRA7	1.2637	3.48E-04
202466 at	PAPD7	1.2628	2.15E-03
	YMI	1.2511	5.12E-03
204897 at	PTGER4	1.2358	2.03E-02
1559060 a at	FNIP1	1.2158	2.49E-02
207072 at	IL18RAP	1.2137	1.73E-02
1555827 at	CCNL1	1.2096	8.07E-03
212796 s at	TBC1D2B	1.2039	1.15E-03
218845 at	DUSP22	1.2011	1.65E-02
204222 s at	GLIPR1	1.2005	2.07E-03
1553133 at	C9orf72	1.1962	4.71E-02
210606 x at	KLRD1	1.1870	2.54E-02
225651 at	UBE2E2	1.1829	1.13E-02
214085 x at	GLIPB1	1.1588	2.10E-02
226136 at	GLIPR1	1.1575	3.99E-03
232929 at		1.1469	3.59E-02
214446 at	ELL2	1.1454	1.50E-02
211423 s at	SC5DL	1.1425	1.89E-02
1554690 a at	TACC1	1.1370	2.19E-02
210136 at	MBP	1.1357	2.87E-02
204896 s at	PTGER4	1.1267	1.19E-02
212636 at	QKI	1.1109	3.11E-02
226099 at	ELL2	1.1085	1.37E-02
212676 at	NF1	1.1033	1.80E-03
215013 s at	USP34	1.1023	5.84E-03
228167 at	KLHL6	1.0956	4.58E-03
1554544 a at	MBP	1.0800	3.31E-02
224250 s at	SECISBP2	1.0772	4.38E-02
218329 at	PRDM4	1.0729	2.80E-04
210077 s at	SFRS5	1.0719	3.94E-02
1566958 at		1.0717	2.05E-02
236139 at		1.0670	5.56E-03
204221 x at	GLIPR1	1.0655	3.32E-02
1566959 at		1.0579	3.33E-02
213793 s at	HOMER1	1.0573	1.54E-02
239978 at		1.0569	4.22E-02
226982 at	ELL2	1.0536	2.92E-02

Probe set	Gene symbol	LogRatio	FDR
227478_at	SETBP1	1.0491	2.85E-02
201751_at	JOSD1	1.0489	2.50E-04
208869_s_at	GABARAPL1	1.0481	2.22E-02
204821_at	BTN3A3	1.0461	2.78E-02
204137_at	GPR137B	1.0445	2.28E-02
219506_at	C1orf54	1.0418	1.07E-04
201465 s at	JUN	1.0415	1.92E-02
213281 at	LOC100288387	1.0400	2.30E-02
221986 s at	KLHL24	1.0394	1.63E-02
226440 at	DUSP22	1.0385	3.03E-02
222848 at	CENPK	1.0338	1.70E-02
	PRDM4	1.0278	4.84E-04
239912 at		1.0250	1.79E-03
227626 at	PAOR8	1.0231	1.46E-02
228967 at	FIF1	1.0143	1.14E-02
239845 at		1 0120	5 68F-04
225522 at	ΔΔΚ1	1 0048	2 65E-02
239163 at	LIBE2B	1.0014	3 49F-02
232134 at		1,0008	2 02F-02
201300 s at	PRNP	0.9967	4.62E-02
201300_3_4t	VTHDC1	0.9906	2 225-02
214014_01	IMV	0.9893	2.33L-02
220552_dt		0.9695	2 205.04
200056 c ot	SNORD89	0.9671	2.300-04
200900_S_at	KLF12	0.9810	2.576-02
1362280_at		0.9794	1.956-02
209237_5_at		0.9740	1.046-02
225919_s_at	C90H72	0.9735	9.885-03
230302_at		0.9617	2.8/E-02
219696_at		0.9525	3.305-02
201531_at	2FP36	0.9490	4.28E-03
224566_at	NEAT1	0.9483	1.49E-02
233952_s_at	ZNF295	0.9417	1.24E-03
239331_at		0.9407	1.45E-02
219222_at	RBKS	0.9384	3.57E-03
227100_at	B3GALTL	0.9383	9.00E-03
244341_at		0.9325	2.32E-02
212658_at	LHFPL2	0.9315	3.96E-02
202814_s_at	HEXIM1	0.9302	4.00E-02
229312_s_at	GKAP1	0.9229	2.45E-02
226026_at	DIRC2	0.9197	2.23E-02
210656_at	EED	0.9190	1.50E-02
228768_at	FNIP1	0.9181	1.97E-04
214696_at	C17orf91	0.9159	2.89E-02
205251_at	PER2	0.9145	3.33E-02
202364_at	MXI1	0.9132	1.91E-03
206917_at	GNA13	0.9126	5.84E-03
230494_at		0.9117	4.13E-02
202265_at	BMI1	0.9052	2.64E-03
1559119_at		0.9008	4.12E-02
227539_at	GNA13	0.8972	6.78E-03
228774_at	CEP78	0.8917	3.56E-03
242647_at	USP34	0.8916	9.59E-03
229699_at	LOC100129550	0.8902	4.39E-02

Probe set	Gene symbol	LogRatio	FDR
228603_at	ACTR3	0.8883	3.20E-02
218196_at	OSTM1	0.8858	9.56E-03
239405_at		0.8838	4.91E-02
217437_s_at	TACC1	0.8837	3.61E-03
225553_at		0.8814	2.03E-02
226679_at	SLC26A11	0.8693	1.48E-02
209383_at	DDIT3	0.8678	5.55E-03
207920 x at	ZFX	0.8660	1.59E-02
203243 s at	PDLIM5	0.8623	2.95E-02
242287 at	CLIP1	0.8583	3.91E-03
221985 at	KLHL24	0.8581	1.02E-02
227562 at	MAPKSP1	0.8533	3.41E-03
218772 x at	TMEM38B	0.8512	6.78E-03
214429 at	MTMR6	0.8508	9.93E-03
224601 at		0.8479	4.50E-02
208744 x at	HSPH1	0.8477	2.44E-02
1556121 at	NAP1L1	0.8464	9.59E-03
210793 s at	NUP98	0.8463	1.07E-02
1558407 at	PLEKHG2	0.8442	1.19E-02
239130 at	MIR101-1	0.8428	5 14F-04
1555785 a at	XRN1	0.8423	3 96E-02
203723 at	ITPKB	0.8417	3.86E-02
1555790 a at	TMEM192 /// 7NE320	0.8403	7 19F-04
218349 s at	ZWIICH	0.8329	2 28F-02
238707 at		0.8268	1 44F-02
212926 at	SMC5	0.8255	2.89E-02
226989 at	RGMB	0.8253	1.85E-02
200783 s at	STMN1	0.8232	8 08E-03
212119 at	BHOO	0.8228	3 59E-02
223513 at	CENPI	0.8211	9 27F-04
224978 s at	USP36	0.8187	3 88F-02
202899 s at	SERS3	0.8162	1 51F-02
202815 s at	HEXIM1	0.8150	3.24E-02
227433 at	KIAA2018	0.8146	8.58E-05
226589 at	TMFM192	0.8091	1 10F-02
228433 at	NFYA	0.8087	5.65E-03
202255 s at	SIPA1L1	0.8082	1.33E-02
221808 at	BAB9A	0.8045	7 21F-03
227337 at	ANKRD37	0.8045	4.74E-02
226651 at	HOMER1	0.8003	4.44E-02
208994 s at	PPIG	0.7980	3.46E-02
235980 at	PIK3CA	0.7958	9.53E-03
1553719 s at	ZNF548	0.7932	6.23E-03
1569380 a at		0.7893	1.87E-03
212218 s at	FASN	0.7874	2.26E-02
224956 at	NUFIP2	0.7873	1.42E-03
239826 at		0.7868	4.71E-02
1552611 a at	JAK1	0.7860	2.40E-02
243404 at		0.7856	4.57E-02
213379 at	COO2	0.7819	1.70E-02
228562 at	ZBTB10	0.7810	4.15E-02
234594 at	NCRNA00203	0.7786	3.83E-02
226423 at	PAQR8	0.7753	5.65E-03

Probe set	Gene symbol	LogRatio	FDR
222735_at	TMEM38B	0.7746	2.32E-02
1555247_a_at	RAPGEF6	0.7724	8.42E-03
213434_at	STX2	0.7711	1.49E-02
235919_at		0.7707	1.17E-02
242290_at	TACC1	0.7698	7.19E-03
201471_s_at	SQSTM1	0.7632	1.14E-02
210818_s_at	BACH1	0.7632	3.32E-02
231199_at		0.7618	6.47E-03
235198_at	OSTM1	0.7606	3.50E-02
223376_s_at	BRI3	0.7605	2.03E-02
208673_s_at	SFRS3	0.7588	4.41E-04
231975_s_at	MIER3	0.7570	8.84E-03
206976_s_at	HSPH1	0.7552	3.37E-02
218648_at	CRTC3	0.7514	4.57E-02

4.2. Probe sets with higher expression in the treated cells of the high ZAP70 group

Probe set	Gene symbol	LogRatio	FDR
204731_at	TGFBR3	3.6210	6.34E-04
233483_at	TBC1D27	3.5233	1.65E-05
226625_at	TGFBR3	3.3333	9.01E-05
205204_at	NMB	2.8912	1.80E-03
209732_at	CLEC2B	2.5529	3.11E-03
214836_x_at	IGK@ /// IGKC	2.4450	3.64E-02
206760_s_at	FCER2	2.0422	1.44E-02
226517_at	BCAT1	2.0379	1.07E-02
214916_x_at	IGH@ /// IGHA1	1.9926	2.31E-02
205081_at	CRIP1	1.9883	1.06E-03
242572_at		1.9788	4.65E-02
225285_at	BCAT1	1.9777	1.22E-02
207761_s_at	METTL7A	1.9628	3.48E-04
206759_at	FCER2	1.9505	1.43E-02
204135_at	FILIP1L	1.9413	5.56E-03
213839_at	CLMN	1.8813	2.18E-04
202283_at	SERPINF1	1.8703	1.28E-02
212504_at	DIP2C	1.8687	5.45E-03
203186_s_at	\$100A4	1.8664	3.80E-03
238071_at	LCN10 /// LCN6	1.7831	3.24E-03
238559_at		1.7778	4.53E-04
202096_s_at	TSPO	1.7777	1.46E-02
203508_at	TNFRSF1B	1.7331	1.75E-02
1554966_a_at	FILIP1L	1.7311	8.83E-03
219256_s_at	SH3TC1	1.7117	3.49E-02
203921_at	CHST2	1.7108	2.01E-05
225382_at	ZNF275	1.7106	1.47E-04
201850_at	CAPG	1.6997	7.83E-05
205462_s_at	HPCAL1	1.6902	1.24E-03
1555613_a_at	ZAP70	1.6856	2.62E-03
229437_at	MIR155HG	1.6524	1.44E-03
205353_s_at	PEBP1	1.6277	1.31E-04
218100_s_at	IFT57	1.6212	3.50E-05

Probe set	Gene symbol	LogRatio	FDR
226358_at	APH1B	1.6202	6.33E-05
230363_s_at	INPP5F	1.6046	8.82E-03
201037_at	PFKP	1.5906	1.07E-04
203711_s_at	HIBCH	1.5830	2.82E-03
205547_s_at	TAGLN	1.5752	1.97E-04
235372_at	FCRLA	1.5703	7.43E-04
224990_at	C4orf34	1.5669	2.80E-03
228056_s_at	NAPSB	1.5436	3.42E-03
206150_at	CD27	1.5423	1.24E-03
211941_s_at	PEBP1	1.5321	1.83E-04
214366_s_at	ALOX5	1.5283	7.32E-04
214238_at		1.5157	1.16E-05
225757_s_at	CLMN	1.5072	1.09E-04
214032_at	ZAP70	1.5044	2.62E-03
239893_at		1.5014	2.50E-02
208614 s at	FLNB	1.4824	2.43E-03
221036 s at	APH1B	1.4750	4.57E-06
204401 at	KCNN4	1.4500	2.50E-04
		1.4456	3.10E-03
210609 s at	TP5313	1.4435	8.33E-04
210825 s at	PEBP1	1.4417	1.46E-04
205267 at	POU2AF1	1.4414	3.24E-03
1565754 x at	FGD2	1.4354	1.31E-04
225164 s at	EIF2AK4	1.4351	2.64E-03
237400 at	ATP5S	1.4347	7.18E-03
210448 s at	P2RX5	1.4294	2.71E-04
216620 s at	ARHGEF10	1.4185	2.14E-02
225624 at	SNX29	1 4068	1 07F-04
219173 at	MYO15B	1.3978	1.03E-02
1555724 s at	TAGLN	1.3940	6.33E-05
229114 at	GAB1	1.3844	3.11E-03
226002 at	GAB1	1.3838	6.32E-03
222519 s at	IFT57	1.3835	2.95E-04
228055 at	NAPSB	1.3829	7.54E-03
220016 at	AHNAK	1.3823	2.91E-03
59375 at	MYO15B	1 3756	6 26F-03
235459 at		1.3730	1.36F-03
1555379 at	FAM159A	1.3704	2 70F-02
218280 x at	HIST2H2AA3 /// HIST2H2AA4	1 3660	8 21F-03
208997 s at	UCP2	1.3623	3.42E-03
211430 s at	IGH@ /// IGHG1	1.3613	4 59F-02
206255 at	BLK	1.3506	1.33E-02
1565752 at	FGD2	1.3474	2 16F-04
223991 s at	GALNT2 /// LOC100132910	1 3440	3 50F-02
207641 at	TNERSE13B	1.3421	1.85E-03
201028 s at	CD99	1,3420	5.65E-03
244050 at	PTPLAD2	1.3358	3.66F-03
214290 s at	HIST2H2AA3 /// HIST2H2AA4	1.3269	3.14E-02
230362 at	INPP5F	1.3205	1.50E-02
230381 at	C1orf186	1.3183	2.04F-02
219518 s at	ELL3 /// SERINC4	1.3160	3.43E-03
213374 x at	НІВСН	1.3136	1.00F-02
230983 at	FAM129C	1,2911	2.27E-02

Probe set	Gene symbol	LogRatio	FDR
1552667_a_at	SH2D3C	1.2891	2.94E-03
227052_at		1.2786	4.75E-03
212552_at	HPCAL1	1.2781	2.31E-03
210785_s_at	C1orf38	1.2767	1.24E-02
224989_at		1.2637	2.92E-02
230131_x_at	ARSD	1.2634	6.77E-03
226147_s_at	PIGR	1.2583	2.78E-02
205677_s_at	DLEU1	1.2529	2.56E-02
207571_x_at	C1orf38	1.2430	9.93E-03
205297_s_at	CD79B	1.2429	5.65E-03
225383_at	ZNF275	1.2361	2.62E-03
204257_at	FADS3	1.2265	1.75E-02
1553906 s at	FGD2	1.2191	2.42E-03
238376 at		1.2182	3.82E-02
236539 at	PTPN22	1.2131	1.75E-02
227607 at	STAMBPL1	1.2070	2.38E-04
208613 s at	FLNB	1.2027	4.58E-03
1552623 at	HSH2D	1.1962	9.83E-04
229597 s at	WDFY4	1.1872	2 42E-03
229021 at	MCTP2	1.1857	3.20E-02
224735 at	CYBASC3	1 1827	1.31F-04
214475 x at	CAPN3	1 1812	2.80E-03
203607 at	INPPSE	1 1718	9 52E-03
201760 s at	WSB2	1 1676	8.42E-03
204445 s at	410X5	1.1562	2 62E-03
236016 at		1.1526	2.02E 00
208998 at	LICP2	1 1513	8 58F-04
237033 at	FAM159A	1 1 4 3 8	2 51E-04
228532 at	C1orf162	1 1 4 3 3	3.03E-02
219282 s at	TRPV2	1 1361	2 04F-02
242722_at	IM07	1 1327	9 56E-03
200736 s at	GPX1	1 1 2 4 1	1.03E-02
211986 at	AHNAK	1 1 2 2 7 1	5 73E-03
228514 at	NCRNA00116	1 1107	1 33E-02
220014_0t	TAGAR	1.1157	2.21E-02
1553102 a at	000	1 11/1	1.025-03
202942 at	ETER	1 1 1 1 2 1	2 305-04
202342_at		1.1121	4 56E-02
220134_3_at	PNE41	1 1004	3.66E-03
201502_3_dt	SH2D3C	1.1094	1.40E-03
220075_at	DADVR	1.1091	2.925-02
228519 st		1.0966	2.020-03
220510_01		1.0935	1.015-02
212011_at	STANARDI 1	1.0949	2.905.02
227000_s_at	DTDNDD	1.0912	1 125 02
200000_5_dt	PTPNZZ DOUDED	1.0904	3 505 02
211//1_5_dt	NETTI 74	1.0887	3.50E-02
209705_X_dt		1.0002	1.000-00
220998_dl	DADI	1.0850	2.100-02
3/900_at	PARVD	1.0833	0.00E-U3
224512_S_8T	LSIVIDI	1.0829	1.21E-04
201901_2_3[KNF41	1.0794	1.13E-02
209800_at	HIST TH2BK	1.07/78	2.50E-02
2441/2_dt		1.0757	4.01E-02

155779_a_at CD79A 10693 5.14E-04 224856_at FKBP5 1.0678 4.17E-02 224789_at DCAF12 1.0661 6.55F-03 211890_x_at CAPN3 1.0632 9.48E-04 216958_s_at IVD 1.0663 3.61E-03 203523_at LSP1 1.0581 1.07C+02 221665_s_at PYCARD 1.0555 1.80E-02 210051_at RAPGEF3 1.0512 2.44E-02 229588_at CLN8 1.0491 3.80E-03 227134_at SVT11 1.0441 2.94E-03 153857_at IGSF22 1.0417 2.54E-02 218517_at ELL3///SERINC4 1.0403 6.67E-03 218231_at NAGK 1.0333 2.11E-02 205647_s_at CD79A 1.0297 2.38E-04 205049_s_at CD79A 1.0297 2.38E-04 205051_at PTPN6 1.0333 2.11E-02 205049_s_at CD79A 1.0297 1.38E-04	Probe set	Gene symbol	LogRatio	FDR
224856.at FKBP5 1.0678 4.17E-02 224789_at DCAF12 1.0661 2.65E-03 211890_x_at CAPN3 1.0582 9.48E-04 216958_s_at IVD 1.0680 3.61E-03 203522_at DEF8 1.0574 1.33E-02 221666_s_at PYCARD 1.0565 1.80E-02 220958_at CLN8 1.0491 3.02E-02 22958_at CLN8 1.0491 3.02E-02 22958_at SUSD3 1.0491 3.02E-02 22958_at GCN8 1.0493 3.02E-02 219517_at ELL3 /// SERINC4 1.0403 6.67E-03 21831_at NAGK 1.0394 4.32E-03 24759_at 1.0559 1.0277 206687_s_at PTPN6 1.0333 2.11E-02 20549_s_sat CD79A 1.0277 2.38E-04 205501_at PNOC 1.0107 1.65E-02 207819_s_at 1.0107 1.65E-02	1555779_a_at	CD79A	1.0693	5.14E-04
224789_at DCAF12 1.0661 2.65E-03 211890_x_at CAPN3 1.0632 9.48E-04 210553_s_at IVD 1.0530 6.5IE-03 203523_at LSP1 1.0581 1.70E-02 225637_at DEF8 1.0574 1.33E-02 221066_s_at PYCARD 1.0553 1.80E-02 227182_at SUSD3 1.0491 3.80E-03 227134_at SVT11 1.0444 2.94E-03 1553857_at IGSF22 1.0417 2.54E-02 218231_at NGK 1.0394 4.32E-03 24759_at 1.0559 1.07E-02 205649_s_at CD79A 1.0297 2.38E-04 205901_at PTN6 1.0333 2.11E-02 207319_s_at ABC64 1.0097 1.83E-04 227943_at 1.0107 1.65E-02 201828_x_at FAM127A 1.0097 1.83E-04 214084_x_at NCF1C 1.0002 1.60E-03	224856_at	FKBP5	1.0678	4.17E-02
211890_x_at CAPN3 1.0632 9.48E-04 216938_s_at IVD 1.06630 3.61E-03 225637_at DEF8 1.0574 1.33E-02 221666_s_at PYCARD 1.0581 1.07E-02 220958_at CLN8 1.0495 3.02E-02 227182_at SUSD3 1.0491 3.80E-03 227134_at STL1 1.0441 2.94E-03 1553857_at IGSF22 1.0417 2.54E-02 219517_at ELL3/// SERINC4 1.0403 6.67E-03 218231_at NAGK 1.0394 4.32E-03 2184759_at 1.0359 1.0167E-02 206687_s_at PTPN6 1.0333 2.11E-02 207819_s_at ABC64 1.0109 4.53E-02 207819_s_at ABC64 1.0109 1.63E-02 207819_s_at ABC64 1.0109 1.83E-04 216042_s_at NCF1C 1.0021 1.83E-04 2161404_s_s_at NCF1C 1.0022 1.0076	224789_at	DCAF12	1.0661	2.65E-03
216958_s_at IVD 1.0630 5.61F-03 203522_at LSP1 1.0581 1.70F-02 221666_s_at DEF8 1.0574 1.33F-02 221666_s_at PYCARD 1.0565 1.80F-02 220958_at CLN8 1.0495 3.02F-02 227132_at SUSD3 1.0491 3.80F-03 227134_at SUSD3 1.0491 3.80F-03 1535857_at IGSF22 1.0417 2.54F-02 219517_at ELL3///SERINC4 1.0494 3.26F-03 218231_at NAGK 1.0394 4.32F-03 205647_s_at PTPN6 1.0333 2.11F-02 205649_s_at CD79A 1.0297 2.38F-04 20590_at MUC2O 1.017 1.65F-02 207819_s_at ABCB4 1.0109 4.53F-02 207819_s_at ABCB4 1.0109 4.58F-02 20783_s_at FAM127A 1.0097 1.88F-04 210944_s_at NCF1C 1.0021 1.66F-03 <td>211890_x_at</td> <td>CAPN3</td> <td>1.0632</td> <td>9.48E-04</td>	211890_x_at	CAPN3	1.0632	9.48E-04
203523_at LSP1 1.0581 1.70E-02 225637_at DEF8 1.0574 1.33E-02 2210051_at RAPGEF3 1.0512 2.44E-02 229588_at CLNB 1.0495 3.02E-02 227134_at SUSD3 1.0491 3.80E-03 227134_at SVTL1 1.0441 2.94E-02 219517_at ELL3/// SERINC4 1.0403 6.67E-03 218231_at NACK 1.0359 1.07E-02 206687_s_at PTPN6 1.0333 2.11E-02 205049_s_at CD79A 1.0297 2.38E-04 2050501_at PNOC 1.0217 2.88E-04 207819_s_at 1.0109 4.58E-02 207819_s_at ABC84 1.0109 4.58E-02 207823_at FAM127A 1.0097 1.88E-04 214084_x_at NCF1C 1.0022 1.60E-03 20707_at PRKCSH 1.0002 1.60E-03 20707_at PRKCSH 1.0002 1.60E-03	216958_s_at	IVD	1.0630	3.61E-03
225637_at DEF8 1.0574 1.33E-02 221666_s_at PYCARD 1.0555 1.80E-02 210051_at RAPGEF3 1.0512 2.44E-02 229958_at CLN8 1.0491 3.80E-03 227134_at SVD03 1.0491 3.80E-03 227134_at SVT11 1.0441 2.94E-03 1553857_at IGSF22 1.0417 2.94E-03 218231_at NAGK 1.0394 4.32E-03 234759_at 1.0359 1.07E-02 206687_s_at PTPN6 1.0333 2.11E-02 20509_at PNOC 1.0217 2.83E-04 20509_at PNOC 1.0211 2.83E-04 20509_at PNOC 1.0211 2.83E-04 20501_at PNOC 1.0211 2.83E-04 207819_s_at 1.0107 1.65E-02 207819_s_at FAM127A 1.0021 1.60E-03 20707_at PRKCSH 1.0002 1.60E-03	203523_at	LSP1	1.0581	1.70E-02
221666_s_at PYCARD 1.0565 1.80E-02 210051_at RAPGEF3 1.0512 2.44E-02 227182_at SUSD3 1.0495 3.20E-02 227184_at SUSD3 1.0491 2.94E-03 155857_at IGSF22 1.0417 2.54E-02 219517_at ELL3///SENINC4 1.0403 6.67E-03 218231_at NAGK 1.0394 4.32E-03 234759_at 1.0359 1.07E-02 206687_5_at PTPN6 1.0333 2.11E-02 205049_s_at CD79A 1.0297 2.38E-04 206687_s_at MUC20 1.0178 1.23E-02 207819_s_at ABCB4 1.0109 4.53E-02 207819_s_at ABCB4 1.0097 1.83E-04 21622_at MUC20 1.0178 1.23E-02 201828_x_at FAM127A 1.0097 1.83E-04 214066_at NSMCE1 1.0003 1.79E-03 201707_at PRKCSH 1.0009 6.67E-03	225637_at	DEF8	1.0574	1.33E-02
210051_at RAPGEF3 1.0512 2.44E-02 22958_at CLN8 1.0495 3.02E-02 227182_at SUSD3 1.0491 3.02E-02 227134_at SYTL1 1.0441 2.94E-03 1553857_at IGSF22 1.0417 2.54E-02 219517_at ELL3///SERINC4 1.0403 6.67E-03 218231_at NAGK 1.0394 4.32E-03 234759_at 1.0333 2.11E-02 205049_s_at CD79A 1.0297 2.38E-04 205901_at PNOC 1.0211 2.83E-04 20591_at PNOC 1.0211 2.83E-04 207819_s_at ABC84 1.0109 4.53E-02 207843_at 1.0107 1.65E-02 2012828_x_at FAM127A 1.0097 5.14E-03 214084_x_at NCF1C 1.0022 1.60E-03 200707_at PRKCSH 1.0009 6.67E-03 214084_x_at NCF1///NCF1C 0.9891 4.39E-02 <td>221666_s_at</td> <td>PYCARD</td> <td>1.0565</td> <td>1.80E-02</td>	221666_s_at	PYCARD	1.0565	1.80E-02
229958_at CLN8 1.0495 3.02E-02 227134_at SUSD3 1.0491 3.80E-03 227134_at SYTL1 1.0441 2.94E-03 1553857_at IGSF22 1.0417 2.94E-03 219517_at ELL3 /// SERINC4 1.0403 6.67E-03 218231_at NAGK 1.0394 4.32E-03 234759_at 1.0359 1.07E-02 206687_s_at PTPN6 1.0333 2.11E-02 205049_s_at CD79A 1.0297 2.38E-04 20501_at PNOC 1.0211 2.88E-04 20501_at PNOC 1.0171 1.65E-02 207819_s_at ABCB4 1.0109 4.53E-02 212784_at 1.0107 1.65E-02 201828_x_at FAM127A 1.0097 1.88E-04 214084_x_at NCF1C 1.0022 1.60E-03 200707_at PRKCSH 1.0009 6.67E-03 214066_at NSMCE1 1.0009 1.88E-04	210051_at	RAPGEF3	1.0512	2.44E-02
227182_at SUSD3 1.0491 3.80E-03 227134_at SYTL1 1.0441 2.94E-03 1553857_at IGSF2 1.0417 2.54E-02 218231_at NAGK 1.0394 4.32E-03 234759_at 1.0359 1.07E-02 206687_s_at CD79A 1.0297 2.38E-04 205049_s_at CD79A 1.0217 2.38E-04 205049_s_at CD79A 1.027 2.38E-04 205049_s_at MUC20 1.0178 1.23E-02 207819_s_at ABCB4 1.0109 4.53E-02 207819_s_at 1.0107 1.65E-02 201828_x_at FAM127A 1.0097 1.88E-04 225723_at C6orf129 1.0076 5.14E-03 201070_at PRKCSH 1.0003 1.79E-03 214084_x_at NCF1C 1.0003 1.79E-03 212466_s_at NSMCE1 1.0003 1.79E-03 212466_s_at NCF1/// NCF1B /// NCF1C 0.9899 4.89E	229958_at	CLN8	1.0495	3.02E-02
227134_at SYTL1 1.0441 2.94E-03 1553857_at IGSF22 1.0417 2.54E-02 219517_at ELL3 /// SENINC4 1.0403 6.67E-03 218231_at NAGK 1.0359 1.07E-02 206687_s_at CD79A 1.0297 2.38E-04 205901_at PNOC 1.0211 2.88E-04 205901_at PNOC 1.0211 2.88E-04 20591_at ABCB4 1.0109 4.53E-02 207819_s_at ABCB4 1.0109 4.53E-02 207819_s_at FAM127A 1.0097 1.88E-04 225723_at C6orf129 1.0076 5.14E-03 214084_x_at NCF1C 1.0022 1.60E-03 200707_at PRKCSH 1.0009 6.67E-03 21286_s_at MGC29506 0.9983 4.39E-02 239233_at CCDC8AA 0.9941 4.39E-02 239233_at CCDC8AA 0.9941 4.39E-02 2039916_at DHTKD1 0.9869 4.38E-03 <td>227182_at</td> <td>SUSD3</td> <td>1.0491</td> <td>3.80E-03</td>	227182_at	SUSD3	1.0491	3.80E-03
1553857_at IGSF22 1.0417 2.54E-02 219517_at ELL3 /// SENINC4 1.0403 6.67E-03 218231_at NAGK 1.0394 4.32E-03 234759_at 1.0333 2.11E-02 206687_s_at PTPN6 1.0333 2.11E-02 205049_s_at CO79A 1.0297 2.38E-04 205901_at PNOC 1.0117 8.28E-04 206828_x_at MUC20 1.0178 1.23E-02 207819_s_at ABCB4 1.0109 4.53E-02 207819_s_at ABCB4 1.0107 1.65E-02 201828_x_at FAM127A 1.0097 1.88E-04 225723_at C6orf129 1.0076 5.14E-03 214084_x_at NCF1C 1.0002 1.60E-03 200707_at PRKCSH 1.0009 6.67E-03 221286_s_at MGC29506 0.9983 4.39E-02 23523_s_at COC288A 0.9941 4.39E-02 23555_s_at DOK3 0.9869 4.38E-03	227134_at	SYTL1	1.0441	2.94E-03
219517_at ELL3 /// SERINC4 1.0403 6.67E-03 218231_at NAGK 1.0394 4.32E-03 234759_at 1.0359 1.07E-02 206687_s_at PTPN6 1.0333 2.11E-02 205049_s_at CD79A 1.0297 2.38E-04 20502_at MUC20 1.0178 1.23E-02 207819_s_at ABCB4 1.0109 4.53E-02 207823_at 1.0107 1.65E-02 201828_x_at FAM127A 1.0097 1.83E-04 225723_at C6orf129 1.0076 5.14E-03 214084_x_at NCF1C 1.0002 1.60E-03 200707_at PRKCSH 1.0009 6.67E-03 221286_s_at MGC29506 0.9983 4.39E-02 239233_at CCCC88A 0.9941 4.33E-03 204961_s_at NCF1// NCF1B // NCF1C 0.9891 2.31E-02 204961_s_at NCF1// NCF1B // NCF1C 0.9891 3.3E-02 204951_s_at DCK3 0.9869	1553857_at	IGSF22	1.0417	2.54E-02
218231_at NAGK 1.0394 4.32E-03 234759_at 1.0359 1.07E-02 206687_s_at PTPN6 1.0333 2.11E-02 205049_s_at CD79A 1.0297 2.38E-04 205901_at PNOC 1.0211 2.83E-04 226622_at MUC2O 1.0178 1.23E-02 207819_s_at 1.0107 1.65E-02 201828_x_at FAM127A 1.0097 1.83E-04 225723_at C6orf129 1.0076 5.14E-03 214084_x_at NCF1C 1.0022 1.60E-03 200707_at PRKCSH 1.0003 1.79E-03 221286_sat MGC29506 0.9983 4.39E-02 1570505_at ABCB4 0.9931 4.38E-03 204961_s_at NCF1// NCF16 0.9899 2.80E-03 204961_sat NCF1// NCF16 0.9899 1.32E-02 225508_at SNX29 0.9844 6.33E-05 204465_sat AUX5 0.9869 4.82E-03	219517_at	ELL3 /// SERINC4	1.0403	6.67E-03
234759_at 1.0359 1.07E-02 206687_s_at PTPN6 1.0333 2.11E-02 205049_s_at CD79A 1.0297 2.38E-04 205901_at PNOC 1.0178 1.23E-02 207819_s_at ABCB4 1.0109 4.53E-02 207819_s_at ABCB4 1.0109 4.53E-02 207819_s_at Goorf129 1.0076 5.14E-03 210828_x_at FAM127A 1.0097 5.14E-03 214084_x_at NCF1C 1.0022 1.60E-03 200707_at PRKCSH 1.0009 6.67E-03 2212866_s_at NSMCE1 1.0003 1.79E-03 221286_s_at MGC29506 0.9981 4.39E-02 239233_at CCDC88A 0.9941 4.39E-02 2404961_s_at NCF1//NCF1B ///NCF1C 0.9899 2.80E-03 223553_s_at DOK3 0.9869 4.38E-03 209916_at DHTKD1 0.9859 1.32E-02 225608_at SNX29 0.9844 <	218231_at	NAGK	1.0394	4.32E-03
206687_s_at PTPN6 1.0333 2.11E-02 205049_s_at CD79A 1.0297 2.38E-04 20501_at PNOC 1.0111 2.88E-04 226622_at MUC20 1.0178 1.23E-02 207819_s_at ABCB4 1.0109 4.53E-02 201828_x_at FAM127A 1.0097 1.83E-04 225723_at C6orf129 1.0076 5.14E-03 214084_x_at NCF1C 1.0021 1.60E-03 200707_at PRKCSH 1.0003 1.79E-03 224666_at NSMCE1 1.0003 1.79E-03 221286_s_at MGC29506 0.9983 4.39E-02 239233_at CCDC88A 0.9941 4.39E-02 204961_s_at NCF1//NCF1B //NCF1C 0.9869 4.38E-03 209916_at DHTKD1 0.9869 4.38E-03 209916_at DHTKD1 0.9869 4.38E-03 2008010_s_at PTPN22 0.9762 2.88E-03 200102_s_at CD29 0.9762	234759 at		1.0359	1.07E-02
205049_s_at CD79A 1.0297 2.38E-04 205901_at PNOC 1.0211 2.83E-04 226622_at MUC20 1.0178 1.23E-02 207819_s_at ABC84 1.0109 4.53E-02 227943_at 1.0107 1.65E-02 201828_x_at FAM127A 1.0097 1.83E-04 225723_at C6orf129 1.0076 5.14E-03 214084_x_at NCF1C 1.0022 1.60E-03 200707_at PRKCSH 1.0003 1.79E-03 221286_s_at MGC29506 0.9933 4.39E-02 239233_at CCDC88A 0.9941 4.39E-02 23923_at CCDC88A 0.9941 4.39E-02 204961_s_at NCF1///NCF1B ///NCF1C 0.9869 4.38E-03 209916_at DHTKD1 0.9859 1.32E-02 225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 201029_s_at CD99 0.9762 2.88	206687 s at	PTPN6	1.0333	2.11E-02
Description PNOC 1.0211 2.83E-04 226622_at MUC20 1.0178 1.23E-02 207819_s_at ABCB4 1.0109 4.53E-02 207819_s_at 1.0107 1.65E-02 201828_x_at FAM127A 1.0097 1.83E-04 225723_at C6orf129 1.0076 5.14E-03 214084_x_at NCF1C 1.0022 1.60E-03 200707_at PRKCSH 1.0009 6.67E-03 221286_s_at MGC29506 0.9983 4.39E-02 239233_at CCDC88A 0.9941 4.39E-02 239233_at CCDC88A 0.9941 4.38E-03 204961_s_at NCF1/// NCF1B /// NCF1C 0.9899 2.80E-03 223553_s_at DOK3 0.9869 4.38E-03 209916_at DHTKD1 0.9859 1.32E-02 225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 201029_s_at CD99 0.9762 <t< td=""><td>205049 s at</td><td>CD79A</td><td>1.0297</td><td>2.38E-04</td></t<>	205049 s at	CD79A	1.0297	2.38E-04
226622_at MUC20 1.0178 1.23E-02 207819_s_at ABC84 1.0109 4.53E-02 227943_at 1.0107 1.65E-02 201828_x_at FAM127A 1.0097 1.83E-04 225723_at C6orf129 1.0076 5.14E-03 214084_x_at NCF1C 1.00021 1.60E-03 200707_at PRKCSH 1.0003 1.79E-03 224666_at NSMCE1 1.0003 1.79E-03 221286_s_at MGC29506 0.9983 4.39E-02 239233_at CCDC88A 0.9941 4.39E-02 23553_s_at DOK3 0.9869 2.88E-03 209916_at DHTKD1 0.9859 1.32E-02 225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 208010_s_at PTPN22 0.9762 2.88E-03 201209_s_at CDD9 0.9760 2.24E-02 201209_s_at CDD65 0.9739 1.50E-02	205901 at	PNOC	1.0211	2.83E-04
207819_s_at ABCB4 1.0109 4.53E-02 227943_at 1.0107 1.65E-02 201828_x_at FAM127A 1.0097 1.83E-04 225723_at C6orf129 1.0076 5.14E-03 214084_x_at NCF1C 1.0022 1.60E-03 200707_at PRKCSH 1.0009 6.67E-03 224666_at NSMCE1 1.0003 1.79E-03 221286_s_at MGC29506 0.9983 4.39E-02 239233_at CCDC88A 0.9941 4.39E-02 204961_s_at NCF1/// NCF1B /// NCF1C 0.9899 2.80E-03 209916_at DHTKD1 0.9859 1.32E-02 20508_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 208010_s_at PTPN22 0.9762 2.88E-03 212886_at CCDC69 0.97762 2.88E-03 212886_at CCDC69 0.9768 2.22E-02 200678_x_at GRN 0.9658 <t></t>	226622 at	MUC20	1.0178	1.23E-02
227943_at 1.0107 1.65E-02 201828_x_at FAM127A 1.0097 1.83E-04 225723_at C6orf129 1.0076 5.14E-03 214084_x_at NCF1C 1.0022 1.60E-03 207070_at PRKCSH 1.0009 6.67E-03 2242666_at NSMCE1 1.0003 1.79E-03 221286_s_at MGC29506 0.9983 4.39E-02 239233_at CCDC88A 0.9941 4.39E-02 204961_s_at NCF1/// NCF1B /// NCF1C 0.9899 2.80E-03 223553_s_at DOK3 0.9869 4.38E-03 209916_at DHTKD1 0.9859 1.32E-02 225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 201029_s_at CD99 0.9762 2.88E-03 201029_s_at CD99 0.9762 2.88E-03 21886_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.	207819 s at	ABCB4	1.0109	4.53E-02
201872_1 20187 201872_x_at FAM127A 1.0097 1.83E-04 225723_at C6orf129 1.0076 5.14E-03 214084_x_at NCF1C 1.0022 1.60E-03 200707_at PRKCSH 1.0009 6.67E-03 224666_at NSMCE1 1.0003 1.79E-03 221286_s_at MGC29506 0.9983 4.39E-02 239233_at CCDC88A 0.9941 4.39E-02 1570505_at ABC84 0.9931 2.13E-02 204961_s_at NCF1/// NCF1B /// NCF1C 0.9899 2.80E-03 2029916_at DOK3 0.9869 4.38E-03 209916_at DHTKD1 0.9859 1.32E-02 225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 201029_s_at CD99 0.9762 2.88E-03 2121807_s_at TRABD 0.9760 2.48E-02 201029_s_at CD200 0.9647 1.92E-02 202	227943 at		1.0107	1.65E-02
Dissip Dissip Dissip 225723_at C6orf129 1.0076 5.14E-03 214084_x_at NCF1C 1.0022 1.60E-03 200707_at PRKCSH 1.0009 6.67E-03 224666_at NSMCE1 1.0003 1.79E-03 221286_s_at MGC29506 0.9983 4.39E-02 239233_at CCDC88A 0.9941 4.39E-02 204961_s_at NCF1 /// NCF1B /// NCF1C 0.9899 2.80E-03 203916_at DOK3 0.9869 4.38E-03 209916_at DHTKD1 0.9859 1.32E-02 225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 208010_s_at PTPN22 0.9782 4.60E-02 201029_s_at CD99 0.9760 2.24E-02 212886_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200578_s_at GRN 0.9653 2.88E-03 <tr< td=""><td>201828 x at</td><td>FAM127A</td><td>1.0097</td><td>1.83E-04</td></tr<>	201828 x at	FAM127A	1.0097	1.83E-04
214084_x_at NCF1C 1.0022 1.606-03 200707_at PRKCSH 1.0009 6.67E-03 224666_at NSMCE1 1.0003 1.79E-03 221286_s_at MGC29506 0.9983 4.39E-02 239233_at CCDC88A 0.9941 4.39E-02 1570505_at ABC84 0.9931 2.13E-02 204961_s_at NCF1 /// NCF1B /// NCF1C 0.9889 4.38E-03 209916_at DOK3 0.9859 1.32E-02 225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 208010_s_at PTPN22 0.9782 4.60E-02 201029_s_at CD99 0.9760 2.24E-02 212886_at CD206 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200578_s_at RRN 0.9653 2.88E-03 217478_s_at HLA-DMA 0.9633 2.83E-04 20785_s_at RBPJ 0.9611 2.2	225723 at	C6orf129	1.0076	5.14E-03
Initial Initial Initial 200707_at PRKCSH 1.0009 6.67E-03 224666_at NSMCE1 1.0003 1.79E-03 221286_s_at MGC29506 0.9983 4.39E-02 239233_at CCDC88A 0.9941 4.39E-02 1570505_at ABCB4 0.9931 2.13E-02 204961_s_at NCF1/// NCF1B /// NCF1C 0.9899 2.80E-03 223553_s_at DOK3 0.9869 4.38E-03 209916_at DHTKD1 0.9859 1.32E-02 225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 208010_s_at PTPN22 0.9782 4.60E-02 201029_s_at CD99 0.9760 2.24E-02 212886_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200578_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 <	214084 x at	NCE1C	1 0022	1 60F-03
1000000000000000000000000000000000000	200707 at	PRKCSH	1 0009	6 67F-03
221286_s_at MGC29506 0.983 4.39E-02 239233_at CCDC88A 0.9941 4.39E-02 1570505_at ABCB4 0.9931 2.13E-02 204961_s_at NCF1///NCF1B ///NCF1C 0.9899 2.80E-03 223553_s_at DOK3 0.9869 4.38E-03 209916_at DHTKD1 0.9859 1.32E-02 225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 208010_s_at PTPN22 0.9782 4.60E-02 201029_s_at CD99 0.9762 2.88E-03 221807_s_at TRABD 0.9760 2.24E-02 212886_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200678_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 214354_x_at SFTPB 0.9609 4.38E-02 20578_s_at RBPJ 0.9611 2.23E	224666 at	NSMCE1	1.0003	1.79E-03
239233_at CCDC88A 0.9941 4.39E-02 1570505_at ABCB4 0.9931 2.13E-02 204961_s_at NCF1/// NCF1B /// NCF1C 0.9899 2.80E-03 223553_s_at DOK3 0.9869 4.38E-03 209916_at DHTKD1 0.9859 1.32E-02 225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 208010_s_at PTPN22 0.9782 4.60E-02 201029_s_at CD99 0.9762 2.88E-03 221807_s_at TRABD 0.9760 2.24E-02 212886_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200678_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 217478_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 1554574_a_at CYBSR3 0.9576 2.	221286 s at	MGC29506	0.9983	4.39E-02
1570505_at ABCB4 0.9931 2.13E-02 204961_s_at NCF1/// NCF1B /// NCF1C 0.9899 2.80E-03 223553_s_at DOK3 0.9869 4.38E-03 209916_at DHTKD1 0.9859 1.32E-02 225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 208010_s_at PTPN22 0.9782 4.60E-02 201029_s_at CD99 0.9762 2.88E-03 212807_s_at TRABD 0.9760 2.24E-02 21286_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200678_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 214354_x_at GRN 0.9633 2.83E-04 207785_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 1554574_a_at CYB5R3 0.9576 2.33E	239233 at	CCDC88A	0.9941	4.39E-02
204961_s_at NCF1/// NCF1B /// NCF1C 0.9899 2.80E-03 223553_s_at DOK3 0.9869 4.38E-03 209916_at DHTKD1 0.9859 1.32E-02 225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 208010_s_at PTPN22 0.9782 4.60E-02 201029_s_at CD99 0.9762 2.88E-03 21807_s_at TRABD 0.9760 2.24E-02 212886_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200678_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 214354_x_at SFTPB 0.9609 4.38E-02 21554574_a_at CYB5R3 0.9576 2.33E-02 201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9442 2.	1570505 at	ABCB4	0.9931	2.13E-02
223553_s_at DOK3 0.9869 4.38E-03 209916_at DHTKD1 0.9859 1.32E-02 225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 208010_s_at PTPN22 0.9782 4.60E-02 201029_s_at CD99 0.9762 2.88E-03 221807_s_at TRABD 0.9760 2.24E-02 212886_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200578_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 217478_s_at HLA-DMA 0.9633 2.83E-04 207785_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 1554574_a_at CYB5R3 0.9576 2.33E-02 201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 <td>204961 s at</td> <td>NCF1 /// NCF1B /// NCF1C</td> <td>0.9899</td> <td>2.80E-03</td>	204961 s at	NCF1 /// NCF1B /// NCF1C	0.9899	2.80E-03
209916_at DHTKD1 0.9859 1.32E-02 225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 208010_s_at PTPN22 0.9782 4.60E-02 201029_s_at CD99 0.9762 2.88E-03 221807_s_at TRABD 0.9760 2.24E-02 212886_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200678_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 217478_s_at RBPJ 0.9611 2.23E-02 207785_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 1554574_a_at CYB5R3 0.9576 2.33E-02 201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9494 2.75E-03 </td <td>223553 s at</td> <td>DOK3</td> <td>0.9869</td> <td>4.38E-03</td>	223553 s at	DOK3	0.9869	4.38E-03
225608_at SNX29 0.9844 6.33E-05 204446_s_at ALOX5 0.9802 8.22E-03 208010_s_at PTPN22 0.9782 4.60E-02 201029_s_at CD99 0.9762 2.88E-03 221807_s_at TRABD 0.9760 2.24E-02 212886_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200678_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 217478_s_at RBPJ 0.9611 2.23E-02 217478_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 1554574_a_at CYB5R3 0.9576 2.33E-02 202587_s_at AK1 0.9559 9.59E-03 201769_at CLINT1 0.9408 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9444 2.75E-03 <td>209916 at</td> <td>DHTKD1</td> <td>0.9859</td> <td>1.32E-02</td>	209916 at	DHTKD1	0.9859	1.32E-02
204446_s_at ALOX5 0.9802 8.22E-03 208010_s_at PTPN22 0.9782 4.60E-02 201029_s_at CD99 0.9762 2.88E-03 221807_s_at TRABD 0.9760 2.24E-02 212886_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200678_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 217478_s_at RBPJ 0.9611 2.23E-02 207785_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 1554574_a_at CYB5R3 0.9576 2.33E-02 202587_s_at AK1 0.9599 9.59E-03 201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9494 2.75E-03 223514_at CARD11 0.9485 1.80E-03 <td>225608 at</td> <td>SNX29</td> <td>0.9844</td> <td>6.33E-05</td>	225608 at	SNX29	0.9844	6.33E-05
DOBAGE DIRECTION 208010_s_at PTPN22 0.9782 4.60E-02 201029_s_at CD99 0.9762 2.88E-03 221807_s_at TRABD 0.9760 2.24E-02 212886_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200678_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 217478_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 21554574_a_at CYB5R3 0.9576 2.33E-02 201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9494 2.75E-03 22514_at CARD11 0.9485 1.80E-03 205718_at ITGB7 0.9471 1.75E-02	204446 s at	ALOX5	0.9802	8.22E-03
201029_s_at CD99 0.9762 2.88E-03 221807_s_at TRABD 0.9760 2.24E-02 212886_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200678_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 217478_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 21554574_a_at CYB5R3 0.9576 2.33E-02 201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9499 1.01E-02 211991_s_at CARD11 0.9485 1.80E-03 205718_at ITGB7 0.9471 1.75E-02 226419 s_at FLI44342 0.9464 4.28F-02	208010 s at	PTPN22	0.9782	4.60E-02
221807_s_at TRABD 0.9760 2.24E-02 212886_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200678_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 217478_s_at HLA-DMA 0.9633 2.83E-04 207785_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 21554574_a_at CYB5R3 0.9576 2.33E-02 202587_s_at AK1 0.9559 9.59E-03 201769_at CLINT1 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9494 2.75E-03 223514_at CARD11 0.9485 1.80E-03 205718_at ITGB7 0.9471 1.75E-02 226419 s at FLI44342 0.9464 4.28F-02	201029 s at	CD99	0.9762	2.88E-03
D1000 D1000 D1000 D1000 D1000 212886_at CCDC69 0.9748 7.32E-04 236496_at DEGS2 0.9739 1.50E-02 200678_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 217478_s_at HLA-DMA 0.9633 2.83E-04 207785_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 21554574_a_at CYB5R3 0.9576 2.33E-02 202587_s_at AK1 0.9559 9.59E-03 201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9494 2.75E-03 223514_at CARD11 0.9485 1.80E-03 205718_at ITGB7 0.9471 1.75E-02 226419 s at FLI44342 0.9464 4.28F-02	221807 s at	TRABD	0.9760	2.24E-02
236496_at DEGS2 0.9739 1.50E-02 200678_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 217478_s_at HLA-DMA 0.9633 2.83E-04 207785_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 1554574_a_at CYB5R3 0.9576 2.33E-02 202587_s_at AK1 0.9509 9.59E-03 201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9485 1.80E-03 205718_at ITGB7 0.9471 1.75E-02	212886 at	CCDC69	0.9748	7.32E-04
200678_x_at GRN 0.9658 2.56E-02 209582_s_at CD200 0.9647 1.92E-02 217478_s_at HLA-DMA 0.9633 2.83E-04 207785_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 1554574_a_at CYB5R3 0.9576 2.33E-02 202587_s_at AK1 0.9559 9.59E-03 201769_at CLINT1 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9494 2.75E-03 205718_at ITGB7 0.9471 1.75E-02 226419 s at FLI44342 0.9464 4.28F-02	236496 at	DEGS2	0.9739	1.50E-02
Dot of a control Difference 209582_s_at CD200 0.9647 1.92E-02 217478_s_at HLA-DMA 0.9633 2.83E-04 207785_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 1554574_a_at CYB5R3 0.9576 2.33E-02 202587_s_at AK1 0.9559 9.59E-03 201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9485 1.80E-03 205718_at ITGB7 0.9471 1.75E-02 226419 s at FLI44342 0.9464 4.28F-02	200678 x at	GRN	0.9658	2.56E-02
217478_s_at HLA-DMA 0.9633 2.83E-04 207785_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 1554574_a_at CYB5R3 0.9576 2.33E-02 202587_s_at AK1 0.9559 9.59E-03 201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9485 1.80E-03 205718_at ITGB7 0.9471 1.75E-02 226419 s at FLI44342 0.9464 4.28F-02	209582 s at	CD200	0.9647	1.92E-02
207785_s_at RBPJ 0.9611 2.23E-02 214354_x_at SFTPB 0.9609 4.38E-02 1554574_a_at CYB5R3 0.9576 2.33E-02 202587_s_at AK1 0.9559 9.59E-03 201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9494 2.75E-03 205718_at ITGB7 0.9471 1.75E-02 226419 s at FLI44342 0.9464 4.28F-02	217478 s at	HLA-DMA	0.9633	2.83E-04
101705_c_dt 1017 0.0011 1.00101 214354_x_at SFTPB 0.9609 4.38E-02 1554574_a_at CYB5R3 0.9576 2.33E-02 202587_s_at AK1 0.9559 9.59E-03 201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9494 2.75E-03 223514_at CARD11 0.9485 1.80E-03 205718_at ITGB7 0.9471 1.75E-02 226419 s at FLI44342 0.9464 4.28F-02	207785 s at	BBPI	0.9611	2 23E-02
Interference Interference Interference 1554574_a_at CYB5R3 0.9576 2.33E-02 202587_s_at AK1 0.9559 9.59E-03 201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9494 2.75E-03 223514_at CARD11 0.9485 1.80E-03 205718_at ITGB7 0.9471 1.75E-02 226419 s at FLI44342 0.9464 4.28F-02	214354 x at	SETPB	0.9609	4.38E-02
202587_s_at AK1 0.9559 9.59E-03 201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9494 2.75E-03 223514_at CARD11 0.9485 1.80E-02 205718_at ITGB7 0.9471 1.75E-02 226419 s at FLI44342 0.9464 4.28F-02	1554574 a at	CYB5R3	0.9576	2.33E-02
201769_at CLINT1 0.9508 1.16E-05 243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9494 2.75E-03 223514_at CARD11 0.9485 1.80E-03 205718_at ITGB7 0.9471 1.75E-02 226419 s at FLI44342 0.9464 4.28F-02	202587 s at	AK1	0.9559	9.59E-03
243699_at 0.9499 1.01E-02 211991_s_at HLA-DPA1 0.9494 2.75E-03 223514_at CARD11 0.9485 1.80E-03 205718_at ITGB7 0.9471 1.75E-02 226419 s at FLI44342 0.9464 4.28F-02	201769 at	CLINT1	0.9508	1.16E-05
211991_s_at HLA-DPA1 0.9494 2.75E-03 223514_at CARD11 0.9485 1.80E-03 205718_at ITGB7 0.9471 1.75E-02 226419 s at FLI44342 0.9464 4.28F-02	243699 at		0.9499	1.01F-02
223514_at CARD11 0.9485 1.80E-03 205718_at ITGB7 0.9464 4.28F-02 226419 s at FLI44342 0.9464 4.28F-02	211991 s at	ΗΙ Δ-ΟΡΔ1	0.9494	2 75F-03
205718_at ITGB7 0.9464 4.28F-02 226419 s at FLI44342 0.9464 4.28F-02	223514 at	CARD11	0.9485	1.80F-03
226419 s at FLI44342 0.9464 4.28F-02	205718 at	ITGB7	0.9471	1.75E-02
	226419 s at	FLI44342	0.9464	4.28E-02

Probe set	Gene symbol	LogRatio	FDR
218312_s_at	ZSCAN18	0.9425	4.11E-02
1558345_a_at	LOC439911	0.9413	1.80E-02
214907_at	CEACAM21	0.9395	2.24E-02
216041_x_at	GRN	0.9376	3.13E-02
225441_x_at	LSMD1	0.9374	2.00E-05
203233_at	IL4R	0.9355	4.37E-03
205801_s_at	RASGRP3	0.9352	8.42E-03
221551_x_at	ST6GALNAC4	0.9345	2.24E-02
203454_s_at	ATOX1	0.9343	1.12E-02
229750_at	POU2F2	0.9340	1.34E-02
217728_at	\$100A6	0.9309	4.21E-02
212167_s_at	SMARCB1	0.9289	9.40E-03
209583_s_at	CD200	0.9282	1.91E-02
225311 at	IVD	0.9274	1.33E-02
219279 at	DOCK10	0.9266	9.44E-03
205213 at	ACAP1	0.9264	9.59E-03
226856 at	MUSTN1	0.9242	6.10E-03
	FER1L4	0.9218	5.59E-03
225294 s at	TRAPPC1	0.9166	3.56E-03
204929 s at	VAMP5	0.9120	2.24E-02
226482 s at	TSTD1	0.9119	4.99E-02
229050 s at	SNHG7	0.9116	5.09E-03
207655 s at	BLNK	0.9074	3.25E-02
210621 s at	RASA1	0.9069	1 92F-02
229681 at		0.9025	1 24F-03
232344 at		0.8989	1 47F-02
209441 at	RHOBTB2	0.8983	2 82F-03
225700 at	GLCCI1	0.8977	1 96F-02
205861 at	SPIB	0.8973	3 96F-02
208690 s at	PDUM1	0.8958	7 19F-04
202732 at	PKIG	0.8956	2 95F-02
221011 s at	IBH	0.8952	2.89F-02
223740 at	C6orf59	0.8952	2 20F-02
218164 at	SPATA20	0.8927	4.61E-02
230888 at	WDR91	0.8912	1 13E-02
200005_dt	CINSIA	0.8903	7.01E-03
1568658 at	C2orf74	0.8896	2 97F-02
1558105 a at		0.8887	2.37E 02
228264 at	ACCS	0.8825	3.86E-02
233167 at	SELO	0.8785	4 57E-02
223299 at	SECO SECULO	0.8753	7.095-04
223295_at	ECCP28	0.87/0	1.03L-04
210885_3_8t	CAPNS	0.8745	4.865-02
210544_5_0t	TPK1	0.8743	1.69E-02
223080_at	1581	0.8730	2.545-02
229130_dt	GPN	0.8715	3 145-02
222204_5_0		0.8602	4 44E-02
212350 >+	TRC1D1	0.8668	1.785-02
212330_at	PAR115ID4	0.8600	1.766-02
224402_5_dL	NADIIFIP'4	0.8612	1.210-02
22000_81		0.8507	4.875-02
214555_5_at	FLMO1	0.8567	1.855-02
214330 c st	MAPAKI	0.8547	6.015-02
214000_5_at	MUNCHINE.	0.0047	0.010-03

Probe set	Gene symbol	LogRatio	FDR
213600_at	SIPA1L3	0.8534	3.43E-03
201486_at	RCN2	0.8519	1.25E-02
213170_at	GPX7	0.8513	1.46E-02
205423_at	AP1B1	0.8477	3.80E-03
203421_at	TP53I11	0.8471	3.70E-03
227525_at	GLCC11	0.8463	1.07E-02
208714_at	NDUFV1	0.8449	1.33E-03
222859_s_at	DAPP1	0.8367	1.33E-02
206398 s at	CD19	0.8364	4.17E-03
224715_at	WDR34	0.8363	4.20E-03
221058_s_at	CKLF	0.8312	3.43E-02
237367 x at	CFLAR	0.8302	2.99E-05
203167 at	TIMP2	0.8289	3.76E-02
203236 s at	LGALS9	0.8288	3.48E-02
228943 at	MAP6	0.8288	4.42E-02
	RHBDD1	0.8248	2.91E-03
206296 x at	MAP4K1	0.8229	1.45E-02
210184 at	ITGAX	0.8185	2.80E-02
236198 at		0.8130	2.99E-02
205484 at	SIT1	0.8102	1.12E-02
205180 s at	ADAM8	0.8089	2.70F-02
222238 s at	POLM	0.8088	1.74F-02
211075 s at	CD47	0.8073	4 74F-04
201825 s at	SCCPDH	0.8061	2 46E-02
201025_5_dt	CTSC	0.8046	6 35E-03
201407_dt	EP400NI	0.8031	1 31E-02
235512 at		0.8028	2 27F-02
215688 at	RASGRE1	0.8024	4.30F-02
244220 at		0.8022	3 57E-03
219032 x at	OPN3	0.8020	2 92F-03
203555 at	PTPN18	0.7995	2.32E 03
2005555_dt	DPAGT1	0.7989	9.43E-03
238920 at		0.7978	4 32E-02
200520_dt	GATS	0.7978	4.37E-03
226948 at	PHBDD1	0.7969	3 75E-03
200483 at	ENO3	0.7969	3.66E-02
204485_81	PACS2	0.7962	5.00E-02
227947 at	PHACTR2	0.7950	2.495-02
227547_dt	LIGTR	0.7930	5 76E-02
228550_at	0018 ABHD14B	0.7949	3.375-02
224021_dt	SIC44A2	0.7930	8 50E-03
225175_5_dt	3LC44A2	0.7932	2.015-02
233427_at	ELOT2	0.7927	2.016-02
202252 c at	DNM2	0.7911	5.275-02
202255_5_81	CCDC24	0.7900	5.276-03
220554_dL		0.7000	2.565-02
22//45_dL	 C16orf97	0.7077	2.000-02
220000_dt	0100187	0.7050	1 525 02
242300_dL	 LDCU1	0.7840	1.355-02
220/95_dt		0.7840	2.415.02
210200_S_80	MAKVD CZasteo	0.7834	2.410-02
1004402_d_dl		0.7824	2.50E-02
2000250+	E740	0.7822	4.010-03
205556_S_at	EZEZ	0.7820	5.60E-02

Probe set	Gene symbol	LogRatio	FDR
209166_s_at	MAN2B1	0.7789	8.42E-03
217948_at	FAM127B	0.7773	5.91E-03
204205_at	APOBEC3G	0.7760	3.43E-02
214219_x_at	MAP4K1	0.7728	1.40E-02
206287_s_at	ITIH4	0.7724	4.23E-03
212935_at	MCF2L	0.7716	2.31E-02
229707_at	ZNF606	0.7688	2.80E-03
201350_at	FLOT2	0.7652	1.50E-03
221725_at	WASF2	0.7651	1.13E-02
201216_at	ERP29	0.7636	3.91E-03
224562_at	WASF2	0.7590	2.39E-02
202208_s_at	ARL4C	0.7538	2.03E-02
226878_at	HLA-DOA	0.7515	2.95E-02

APPENDIX 5

5.1. Manuscript published in Clinical Cancer Research:

Published OnlineFirst September 10, 2012; doi:10.1158/1078-0432.CCR-11-2771

Superior, Portugal. This work was supported by grants from Instituto de Salud Carlos III, Fondo de investigaciones Sanitarias FIS 05/213 and FIS 08/0211, and from Fundació Marató de TV3 05/1810

Corresponding author: Francesc Bosch, MD, PhD. Department of Hematology, University Hospital Vall d'Hebron, Pg de la Vall d'Hebron 119-129 (08035), Barcelona, Spain. Phone number: 0034934893806. Fax number: 003493489450. E-mail: fbosch@vhebron.net

Disclosures: The authors declare no competing financial interests Other: word count = 4190; total number of tables and/or figures = 6 Number of supplementary tables=2

Translational relevance

Some patients with chronic lymphocytic leukemia (CLL) are refractory to conventional treatments and in this setting one of the therapeutic options are the glucocorticoids. Herein we provide the first 'gene/molecular fingerprint' of dexamethasone in CLL cells. Our results corroborate the better response to glucocorticoids of CLL cells from patients from the poor outcome subgroup with unmutated IGHV genes/high ZAP-70 expression and describe some genes associated to this differential response.

The better understanding of the effect of dexamethasone in CLL cells can unveil new therapeutic targets for chemotherapy combinations and can facilitate the development of predictive markers of response to this drug.

ABSTRACT

Purpose

Glucocorticoids are part of the therapeutic armamentarium of chronic lymphocytic leukemia (CLL) where it has been suggested that cells with unmutated IGHV genes exhibit higher sensitivity. The mechanisms by which glucorticoids are active in CLL are not well elucidated. We aimed to ascertain the activity of dexamethasone in CLL cells according to prognosis and to identify the molecular mechanisms that are influencing the response to this drug.

Experimental design

Sensitivity to dexamethasone was analyzed *ex vivo* in 50 CLL and compared according to IGHV mutational status and/or ZAP-70 expression. The response was further compared by gene expression profiling (GEP) of selected cases. Expression of genes of interest was validated by quantitative reverse transcriptase PCR.

Results

Response to dexamethasone was higher in cases with unmutated IGHV/high ZAP-70 expression, and the levels of induction the pro-apoptotic Bim protein correlated with the degree of cell death. GEP analysis showed few genes differentially expressed after dexamethasone treatment between mutated and unmutated cases. However, functional annotation analysis showed that unmutated cases had significant enrichment in terms related to apoptosis. Specific analysis of genes of interest performed in a large series disclosed that in unmutated IGHV cells FKBP5 expression was higher at baseline and after

INTRODUCTION

Treatment of patients with chronic lymphocytic leukemia (CLL) has dramatically changed during the last decade with the introduction of monoclonal antibodies. Chemoimmunotherapy regimens like FCR (fludarabine, cyclophosphamide and rituximab)(1, 2), FCR plus mitoxantrone(3, 4), or FCR plus alemtuzumab(5) have proved to be highly effective in the treatment of this disease. Despite the excellent overall response and complete response rates obtained with these regimens, patients with 17p13.1 deletion and/or TP53 mutations usually exhibit a lower response rate, and shorter progression-free survival and overall survival (2, 6, 7). There is no standard salvage treatment for patients with refractory disease, particularly those with TP53 abnormalities, and therapeutic options are based on non-genotoxic drugs like alemtuzuMab(8, 9), flavopiridol(10-12), lenalidomide(13, 14) or glucocorticoids(15-17), alone or in combination with monoclonal antibodies(5, 18-21). Patients that respond to these salvage treatments are recommended to undergo allogeneic stem-cell transplantation(22).

The mechanisms by which glucocorticoids induce CLL cell death are still not well understood. Glucocorticoids bind to a multiprotein complex receptor present in the cytoplasm constituted by the receptor itself and several cochaperones(23). After binding, the glucocorticoid-receptor dissociates from some of the cochaperone proteins and translocates into the nucleus, where it acts as a transcription factor modulating gene expression(24). Several studies have been conducted to identify genes that are regulated by glucocorticoids and have the ability to trigger lymphoid cell death, particularly in acute lymphoblastic

leukemia(25-30). In CLL, it has been found that dexamethasone up-regulates mRNA and protein expression of the pro-apoptotic BH3-only gene Bim(31). Of note, cell death induced by glucocorticoids is higher in CLL with unmutated IGHV genes (UCLL)/high ZAP-70 expression than in cases with mutated IGHV genes (MCLL)/low ZAP-70 (32-35), although the molecular mechanisms that could explain these differences have not been uncovered.

With this background, we aimed to widely analyze the modulation of gene expression induced by dexamethasone in CLL cells according to the different IGHV mutational status/ZAP-70 expression groups. For that, genome-wide gene expression profile (GEP) analysis was performed after dexamethasone treatment and genes of interest were retrieved for further study.

MATERIALS AND METHODS

Patient selection and sample collection

A group of 50 patients diagnosed with CLL was selected on the basis of the availability of frozen samples for biological studies. Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-Paque Plus (Amersham Biosciences, Buckinghamshire, United Kingdom) density gradient and stored in liquid nitrogen until analysis. Informed consent from all patients was obtained according to the Declaration of Helsinki and the study was approved by the local clinical investigation ethical committee. The mean percentage of CLL cells (CD19+/CD5+ cells) in the series was $82.5\% \pm 9.7$.

Ex-vivo treatment with dexamethasone and evaluation of the response PBMCs from CLL patients were thawed at 37°C and resuspended in standard culture medium (RPMI-1640 medium (Gibco, Paisley, Scotland, UK) supplemented with 10% heat-inactivated FBS (Gibco), 100 U/ml penicillin, 0.1 mg/ml streptomycin (Lonza, Viviers, Belgium), 2 mM L-glutamine and 1 mM sodium pyruvate (Gibco)) and cultured at 37°C in a 5% CO2 atmosphere at a density of 1 x 10⁶ cells/ml. PBMCs were allowed to recover from the thawing process for one hour before manipulation. Samples were split in two for control and incubation with the glucocorticoid dexamethasone (Merck KGaA, Darmstadt, Germany) at a concentration of 13.25 µM based on previous reports of CLL treatment ex-vivo (36). After 24 hours, cell viability was evaluated by surface annexin V binding and propidium iodide staining assessed by flow cytometry (rh Annexin V/FITC kit, Bender MedSystems, Vienna, Austria). Cell viability was measured as the percentage of double-negative cells for annexin V and propidium iodide. Dexamethasone response was calculated as the percentage of live cells after treatment with dexamethasone relative to the percentage of live cells in the untreated cells (left with standard media).

ZAP-70 and IGHV mutational status analysis

Mutational status of the IGHV genes and ZAP-70 expression by flow cytometry were determined as previously described(37). Patients with more than 98% germline identity for IGHV genes were considered to be unmutated. CLL cases were considered to have high ZAP-70 expression when ZAP-70 was ≥20%(37).

Quantitative reverse transcriptase PCR (QRT-PCR)

Total RNA was extracted with Trizol reagent (Invitrogen Life Technologies, Paisley, Scotland, UK) according to manufacturer instructions. For QRT-PCR analysis, complementary DNA was synthesized from 1µg RNA. Expression of Bim (BCL2-like 11 (apoptosis facilitator)), FKBP5 (FK506 binding protein 5) and GILZ (glucocorticoid-induced leucine zipper) was analyzed using pre-developed TAQMAN assays (Applied Biosystems, Foster City, CA): Hs00197982_m1, Hs01561001_m1 and Hs00608272_m1, respectively; and the ABI PRISM 7900 sequence detector instrument (Applied Biosystems). The comparative Ct method ($\Delta\Delta$ Ct) for relative quantification of gene expression was used. β -Glucoronidase gene expression (GUSB, Applied Biosystems) was used as internal control, and mRNA-expression levels were given as arbitrary units (AU) refereed to a commercial standard mRNA (Control RNA (Human), Applied Biosystems). Fold change (gene induction) was determined as the ratio between expression in dexamethasone treated cells and expression in untreated cells.

Microarray analysis

Total RNA (2 µg) was converted into biotin-labeled cRNA and further fragmented and hybridized to oligonucleotide Affymetrix Human Genome U133 Plus 2.0 arrays (Affymetrix Inc, Santa Clara, CA). Expression measures were normalized and summarized using the frozen robust multiarray analysis (fRMA) methodology(38). Clustering and heatmaps were performed with the TM4 Software Suite(39). Gene expression data with log values lower than 5 were discarded. Differential expression analysis was carried out by a linear model

using empirical Bayes method to moderate the standard errors of the estimated log-Ratio changes with the limma package(40). The online tool David (41) was used for the functional annotation analysis using the BP_FAT category of Gene Ontology (GO). The GEP data has been deposited at the National Centre for Biotechnology Information's Gene Expression Omnibus (GEO ID: GSE33135).

RNA interference experiments

Small interference RNA (Dharmacon, Lafayette CO) targeting FKBP5, GILZ, non-targeting or rhodamine-labelled as positive control for transfection (mean at 48h 35%) was transfected to $5 \cdot 10^{5}$ primary CLL cells in 500µl RPMI-10%FBS. Briefly, 500nM of siRNA was mixed with 4.5 µl of Hiperfect Transfection Reagent (Qiagen, Hilden, Germany) and added drop wise to the cells after 10 minutes incubation at room temperature. The cells were used 48 hours posttransfection only when viability was superior to 50% as analyzed by annexinV-PI staining by flow cytometry. Gene silencing efficiency was analyzed by QRT-PCR.

Statistical analysis

Comparisons between groups were done using the Mann-Whitney test. Correlations between measures were performed using a parametric linear regression model. For all comparisons, P-values were two-sided and the type I error was set at 5%. Statistical analyses were performed with the use of SPSS v18.0 software (IBM, Somer, NY) and GraphPad Prism v5.0 software (La Jolla, CA).

RESULTS

CLL cases with unmutated IGHV genes and/or high ZAP-70 expression show a higher response to dexamethasone *ex-vivo*

Samples from 50 patients diagnosed with CLL were treated ex-vivo with dexamethasone and the response was evaluated after 24 hours. The characteristics of the series are shown in Supplementary Table 1. Briefly, median age at diagnosis was 58 years (range, 30-82 years) and there was a male predominance (72%). ZAP-70 expression was considered high in 48% of the patients. IGHV mutational status was assessed in 47 cases, 23 of them (49%) being considered as UCLL. All the MCLL cases had low ZAP-70 expression, whereas only one UCLL case showed a low expression of ZAP-70. FISH analysis for the main CLL chromosomal abnormalities was performed in 48 out of 50 patients at the time the samples were obtained. According to the hierarchical model(6), 45.8% of the patients showed isolated 13q14.3 deletion, 10.4% 17p13.1 deletion, 10.4% trisomy 12, 4.2% 11q22.3 deletion and 29.2% presented no abnormality. After 24 hours of treatment with 13.25 µM dexamethasone, the percentage of live cells relative to untreated cells ranged from 42% to 100%. Notably, UCLL cases (n=23) had a significantly better response to dexamethasone than MCLL cases (n=24) (mean of cell viability ±SD: 68% ±14.0 vs 85% ±11.3; P<0.001; Figure 1A). In agreement, response to dexamethasone was also better in cases with high ZAP-70 expression (n=24) than in those with low ZAP-70 (n=26) (mean of cell viability ±SD: 68% ±13.9 vs 85% ±11.0; P<0.001; Figure 1B). Remarkably, cases with 17p13.1 and 11q22.3 deletion (n=7) had a better response to dexamethasone than cases without

these high-risk genetic abnormalities (n=41) (mean of cell viability \pm SD: 64% \pm 16.2 vs 79% \pm 13.9; P=0.026). Of note, the only case with 17p13.1 deletion and low ZAP-70 expression disclosed a poor response to dexamethasone (Supplementary Table 1). Moreover, after excluding the cases with high-risk genetic abnormalities (17p13.1 and 11q22.3 deletions), ZAP-70 expression retained its predictive value for response to dexamethasone (mean of cell viability \pm SD: high ZAP-70 (n=17) 71% \pm 13.1 vs low ZAP-70 (n=24) 85% \pm 11.4; P=0.001). In absolute terms, the mean percentage of live cells after thawing in this series was 72% \pm 14, whereas after 24 hours of culture the mean viability was 56% \pm 15 for control cells and 44% \pm 16 for treated cells.

Induction of Bim expression by dexamethasone correlates with the extent of apoptosis in CLL cells

The expression of the pro-apoptotic BH3-only gene Bim has been reported to be induced by dexamethasone at both mRNA and protein level in different cellular models, including CLL cells (26, 31, 42-44). To study the kinetics of induction of Bim after treatment with dexamethasone, levels of Bim mRNA were analyzed by QRT-PCR at different time points in primary cells from 7 patients with CLL. As early as after 3 hours of treatment, an increase in Bim mRNA was already detected; in five of the cases, levels kept increasing up to 9 hours and then remained stable, whereas in the other two cases an additional increase in Bim levels was observed from 9 to 24 hours (Figure 2A). Furthermore, the relationship between the magnitude of the response to dexamethasone and the degree of Bim induction was evaluated in 43 CLL samples after 24 hours of

treatment. An inverse correlation between Bim induction and the percentage of live cells was observed (P=0.001; Figure 2B). Moreover, levels of Bim induction were higher in the subgroup of CLL cases with high ZAP-70 expression (n=19) than in the subgroup with low ZAP-70 (mean Bim fold change \pm SD: 3.75 \pm 1.89 vs 2.61 \pm 0.78; P=0.042; Figure 2C) which is in agreement with the better response to dexamethasone observed in this subgroup. Altogether, these results indicate that Bim may be part of the apoptotic pathway triggered by dexamethasone.

Gene expression profiling of CLL samples treated with dexamethasone

GEP analysis was performed in a series of CLL patients to identify genes potentially implicated in the differential response to dexamethasone. For this, we selected 7 CLL samples with high ZAP-70 expression and 5 with low ZAP-70 expression (Supplementary Table 1). Tumor cells were treated with dexamethasone or left with standard media for 6 hours; this time point was selected on the basis that it preceded the highest levels of Bim induction observed after dexamethasone treatment (Figure 2A).

The unsupervised analysis of the expression data performed using the 1,000 probe sets showing the highest variability defined two main branches of samples according to ZAP-70 expression (Figure 3A).

The effect of dexamethasone treatment was then independently analyzed in the high and low ZAP-70 groups by means of supervised analysis considering only those changes in gene expression with a false discovery rate (FDR) value lower than 0.05 and a logRatio>|0.75|. We found that dexamethasone treatment up-regulated the expression of 314 probe sets (153 genes) in the group with high

ZAP-70 expression, whereas in the low ZAP-70 group a total of 226 probe sets (118 genes) resulted up-regulated (Supplementary Table 2). Among upregulated genes, 190 probe sets were shared by both ZAP-70 expression groups. We conducted functional annotation analysis of genes differentially expressed using gene ontology (GO) categories for 'biological process'. This allows for the discovery of overrepresented categories of genes. Functional annotation analysis of up-regulated genes revealed that the most significant GO categories in the high and low ZAP-70 groups were related to apoptosis. Interestingly, the specific analysis of the common 190 probe sets showed that the most enriched category was regulation of lymphoid activation, which included genes such as IL7R and CTLA4. Of note, analysis of the 124 probe sets solely up-regulated in samples with high ZAP-70 expression showed a significant enrichment in genes involved in positive regulation of apoptosis, whereas analysis of the 36 probe sets only up-regulated in cases with low ZAP-70 disclosed that the most enriched GO category was related to ion homeostasis, a term that includes genes that participate in any process involved in the maintenance of an internal steady state of metal ions at the level of a cell, thus the relevance of apoptosis in this subgroup was less notorious. In conclusion, the enrichment in the apoptosis GO category observed in conjunctional analysis of high and low ZAP-70 groups was predominantly due to genes up-regulated only in cases with high ZAP-70 expression and better response to dexamethasone.

Dexamethasone treatment induced the down-regulation of 219 probe sets (153 genes) in CLL cases with high ZAP-70 expression and of 222 probe sets (155 genes) in cases with low ZAP-70 expression (Supplementary Table 2). Among

13

- 225 -

all down-regulated genes, a total of 132 probe sets were shared by both ZAP-70 groups. GO analysis of down-regulated probe sets showed that in both high and low ZAP-70 groups the most significant term was *immune response*. Of note, probe sets that were exclusively down-regulated in CLL cases with low ZAP-70 expression (n=90) were significantly enriched in genes related to *regulation of apoptosis*, being the majority of them involved in the positive regulation of this process.

The top 10 probe sets with the highest variation caused by the treatment with dexamethasone were subsequently selected (Table 1). Three genes were commonly up-regulated in high and low ZAP-70 groups, namely FKBP5, DDIT4 and TMEM2. In addition, 4 genes were commonly down-regulated by dexamethasone in both ZAP-70 expression groups: KMO, PALM2-AKAP2, IFIT2 and SAMD9L. Of note, FKBP5 was the most up-regulated gene in both ZAP-70 groups and was represented by three different probe sets. Interestingly, FKBP5 expression was also higher in the high ZAP-70 CLL group in both untreated (224840_at, logRatio=0.958, FDR=0.0129) and treated cells (probe sets: 224840_at, logRatio=0.734, FDR=0.0390 and 224856_at, logRatio=1.068, FDR=0.0416). The above mentioned results led us to hypothesize that the levels of FKBP5 could be involved in the differential response to dexamethasone observed in CLL cases.

Finally, we aimed to identify genes that had a significant differential regulation after treatment with dexamethasone in the two ZAP-70 expression groups. For this, the interaction term was calculated by assessing the difference between the genes induced/repressed by dexamethasone in the high ZAP-70 expression group and the genes induced/repressed by dexamethasone in the low ZAP-70

group. Considering P-values lower than 0.001, 45 probe sets (38 genes) were identified as differentially regulated (Figure 3B). GO analysis revealed a significant enrichment in genes related to regulation of apoptosis. Among these 38 differentially regulated genes we observed that TSC22D3 (alias GILZ) clustered with the pro-apoptotic gene BCL2L11 (alias Bim) (Figure 3B) indicating that the two genes were altered in a similar way by dexamethasone. In addition, only in the high ZAP-70 group, GILZ was one of the most up-regulated genes by dexamethasone (Table 1). These data suggested that GILZ may be implicated in the different response to dexamethasone observed in the ZAP-70 expression groups.

Increased levels of FKBP5 at baseline and after dexamethasone treatment correlate with enhanced apoptosis and high ZAP-70 expression

The GEP analysis revealed that FKBP5 was the most inducible gene by dexamethasone in CLL cells, its levels being higher in the high ZAP-70 subgroup. FKBP5 gene codifies for a cochaperone of the glucocorticoid-receptor complex which maintains the receptor complex in the cytoplasm. After glucocorticoid binding, FKBP5 is replaced by FKBP4 which allows for the nuclear translocation of the glucocorticoid-receptor complex(24). To further analyze the relationship between FKBP5 and the response to dexamethasone in CLL samples, we ascertained the expression of this gene by QRT-PCR in 46 CLL samples, 22 with high ZAP-70 expression, at baseline, at 6 hours after treatment with dexamethasone, and at 6 hours with media only. At baseline, levels of FKBP5 were higher in CLL cases with high ZAP-70 expression (n=16) than in those with low ZAP-70 (n=22) (mean levels of FKBP5 mRNA-expression

 \pm SD: 0.95AU \pm 0.58 vs 0.57AU \pm 0.22; P=0.032; Figure 4A). FKBP5 baseline levels correlated with an increased apoptotic cell death at 24 hours of treatment with dexamethasone (n=38; P=0.027; Figure 4B). Interestingly, and in accordance with the GEP results, FKPB5 expression was induced 10 fold in mean after 6 hours of dexamethasone treatment (mean FKBP5 mRNAexpression \pm SD: treated cells (n=43) 3.04AU \pm 2.12 vs untreated cells (n=41) 0.36AU \pm 0.22; P<0.001; Figure 4C). Of note, levels of FKBP5 reached after 6 hours of treatment were significantly higher in cases with high ZAP-70 expression (n=20) than in those with low ZAP-70 (n=23) (mean FKBP5 mRNAexpression \pm SD: 4.31AU \pm 2.51 vs 1.95AU \pm 0.65; P<0.001; Figure 4D).

GILZ expression highly correlates with the induction of apoptosis by dexamethasone in CLL

GILZ is a transcription regulator directly targeted by the glucocorticoid-receptor (45) which negatively controls important mediators of cell proliferation (46). We found that GILZ was one of the top ten most inducible genes only in the high ZAP-70 group (Table 1). Moreover, GILZ was one of the few genes differently regulated by dexamethasone in the two ZAP-70 subgroups (Figure 3B).

To further assess the relationship between GILZ expression, ZAP-70 expression and the response to dexamethasone, levels of GILZ mRNA were determined by QRT-PCR in 40 CLL samples with or without treatment with dexamethasone for 6 hours. In untreated samples, levels of GILZ were higher in the low ZAP-70 group (n=20) than in the high ZAP-70 group (n=20) (mean GILZ mRNA-expression ±SD: 40.45AU ±21.46 vs 32.71AU ±22.05; P=0.040; Figure 4E). Conversely, and according to GEP results, induction of GILZ after

treatment with dexamethasone was significantly higher in samples with high ZAP-70 expression (n=20) than in those with low ZAP-70 (n=20) (mean GILZ fold change \pm SD: 5.59 \pm 2.16 vs 3.92 \pm 0.83; P=0.002; Figure 4F). Moreover, we observed that this induction of GILZ correlated with cell viability (n=40; P<0.001; Figure 4G). Finally, and reinforcing that GILZ clustered with Bim in the GEP interaction term analysis, GILZ induction correlated with the increase of Bim expression (n=34; P=0.001; Figure 4H) determined after 24 hours of treatment with dexamethasone.

Inhibition of FKBP5 or GILZ expression by siRNA in primary CLL cells impairs response to dexamethasone treatment ex vivo.

In order to investigate if FKBP5 and GILZ are directly participating in the apoptotic response to dexamethasone observed in primary CLL cells, we analyzed the response to this treatment ex vivo after 48h of transfection with siRNA targeting FKBP5 or GILZ in four CLL cases. As can be observed in Figure 5, the percentage of live cells after 24 hours of treatment with 13.25 µM dexamethasone is higher in CLL cells transfected with siRNA targeting FKBP5 or GILZ as compared to cells transfected with non-targeting RNA. The mean downregulation of FKBP5 was 26% and of GILZ 32%, as assessed by QRT-PCR, which led to a discrete but consistent decrease in the response to dexamethasone in all the cases analyzed. These results indicate that both FKBP5 and GILZ are indeed involved in the apoptotic response of CLL cells to dexamethasone ex vivo.

DISCUSSION

Herein we report that the degree of apoptosis induced by dexamethasone in neoplastic B CLL lymphocytes *ex-vivo* is significantly higher in patients with UCLL/high ZAP-70 expression than in patients with MCLL/low ZAP-70 expression, which have a better prognosis. This is in agreement with what has been previously described using prednisone and methylprednisolone(32-35). Interestingly, we showed that IGHV unmutated genes/high ZAP-70 expression conferred higher susceptibility to dexamethasone independently of the presence of 17p13.1 or 11q22.3 deletion. These results corroborated the clinical experience on the use of glucocorticoids in patients with high-risk cytogenetics (17, 19).

Induction of expression of Bim protein has been shown to be implicated in apoptosis induced by dexamethasone in ALL(26, 42-44) and this protein appeared to be the unique pro-apoptotic protein involved in cell death induced by glucocorticoids in CLL(31). In our study, besides confirming the early upregulation of Bim expression on treatment with dexamethasone, we showed that dexamethasone-induced cell death positively correlated with levels of Bim induction. Altogether, these findings indicate that Bim is probably a downstream effector of dexamethasone in CLL. Since Bim pro-apoptotic mechanism has been demonstrated to be independent of p53 (47), its up-regulation could explain in part the response to glucocorticoids observed in some CLL cases with TP53 abnormalities(17, 19).

GEP analysis revealed high similarities between ZAP-70 subgroups in terms of genes regulated after dexamethasone treatment, indicating that the different

response to dexamethasone may not be due to an independent biological targeting of dexamethasone but to a differential capacity to induce cell death while inducing/repressing the same genes.

GEP results allowed us to select genes with significant levels of modulation along with biological relevance in the glucocorticoid pathway for further studies in larger series of patients. FKBP5, the cochaperone of the glucocorticoidreceptor(23), resulted to be the most inducible gene after dexamethasone treatment in both ZAP-70 subgroups. Moreover, we observed that baseline levels of expression of FKBP5 were higher in cases with high ZAP-70 expression by GEP and QRT-PCR experiments, the levels correlating with the extent of cell death. Interestingly, the downregulation of FKBP5 by siRNA decreased CLL cells sensitivity to dexamethasone. Our results are in line with previous studies performed in ALL, where the levels of glucocorticoid-receptor have been correlated with the degree of induced apoptosis(48). FKBP5 maintains the glucocorticoid-receptor in the cytoplasm in an active conformation(24), thus the higher levels of FKBP5 observed in cases of CLL with high ZAP-70 expression can be in part responsible for their better response to dexamethasone, however, in some cellular systems an overexpression of FKBP5 can actually reduce the transcriptional activity of the glucocorticoidreceptor, probably because of modification of the access of FKBP4 protein to the receptor, which allows nuclear translocation of the complex (24). Finally, GILZ, a previously know target of glucocorticoids (30, 49, 50) was identified in GEP analysis as differentially induced by dexamethasone, being higher in CLL samples with high ZAP-70 expression. Moreover, induction of GILZ was correlated with the induction of the downstream apoptotic effector Bim. GILZ

has been directly implicated in cell death after glucocorticoid treatment since its inhibition by siRNA impaired the apoptotic response in our and previous studies in multiple myeloma (49). Altogether these findings point toward a role of GILZ in apoptosis induced by glucocorticoids in CLL. In summary, the induction of apoptosis by dexamethasone was higher in the cells from patients with UCLL/high ZAP-70 expression, being the induction of Bim positively correlated with the extent of apoptosis. The increased response to dexamethasone observed in cases with UCLL/high ZAP-70 expression is probably attributable to differences in baseline expression and induction of genes involved in the glucocorticoid and apoptotosis pathways.

ACKNOWLEDGMENTS

We would like to thank the Genomics Core Facility platform at the IDIBAPS, University of Barcelona, Spain for technical assistance in the gene expression profile experiments.

REFERENCES

(1) Tam CS, O'Brien S, Wierda W, Kantarjian H, Wen S, Do KA, et al. Longterm results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood 2008;112:975-80.

(2) Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 2010;376:1164-74.

(3) Bosch F, Abrisqueta P, Villamor N, Terol MJ, Gonzalez-Barca E, Ferra C, et al. Rituximab, fludarabine, cyclophosphamide, and mitoxantrone: a new, highly active chemoimmunotherapy regimen for chronic lymphocytic leukemia. J Clin Oncol 2009;27:4578-84.

(4) Faderl S, Wierda W, O'Brien S, Ferrajoli A, Lerner S, Keating MJ. Fludarabine, cyclophosphamide, mitoxantrone plus rituximab (FCM-R) in frontline CLL <70 Years. Leuk Res 2010;34:284-8.</p>

(5) Parikh SA, Keating MJ, O'Brien S, Wang X, Ferrajoli A, Faderl S, et al. Frontline chemoimmunotherapy with fludarabine, cyclophosphamide,

²¹

alemtuzuMab, and rituximab for high-risk chronic lymphocytic leukemia. Blood 2011;118:2062-8.

(6) Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000;343:1910-6.

(7) Gonzalez D, Martinez P, Wade R, Hockley S, Oscier D, Matutes E, et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol 2011;29:2223-9.

(8) Lozanski G, Heerema NA, Flinn IW, Smith L, Harbison J, Webb J, et al. AlemtuzuMab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood 2004;103:3278-81.

(9) Stilgenbauer S, Zenz T, Winkler D, Buhler A, Schlenk RF, Groner S, et al. Subcutaneous alemtuzuMab in fludarabine-refractory chronic lymphocytic leukemia: clinical results and prognostic marker analyses from the CLL2H study of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol 2009;27:3994-4001.

(10) Byrd JC, Lin TS, Dalton JT, Wu D, Phelps MA, Fischer B, et al. Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood 2007;109:399-404.

(11) Lin TS, Ruppert AS, Johnson AJ, Fischer B, Heerema NA, Andritsos LA, et al. Phase II study of flavopiridol in relapsed chronic lymphocytic leukemia

²²

demonstrating high response rates in genetically high-risk disease. J Clin Oncol 2009;27:6012-8.

(12) Phelps MA, Lin TS, Johnson AJ, Hurh E, Rozewski DM, Farley KL, et al. Clinical response and pharmacokinetics from a phase 1 study of an active dosing schedule of flavopiridol in relapsed chronic lymphocytic leukemia. Blood 2009;113:2637-45.

(13) Ferrajoli A, Lee BN, Schlette EJ, O'Brien SM, Gao H, Wen S, et al. Lenalidomide induces complete and partial remissions in patients with relapsed and refractory chronic lymphocytic leukemia. Blood 2008;111:5291-7.

(14) Sher T, Miller KC, Lawrence D, Whitworth A, Hernandez-Ilizaliturri F, Czuczman MS, et al. Efficacy of lenalidomide in patients with chronic lymphocytic leukemia with high-risk cytogenetics. Leuk Lymphoma 2010;51:85-8.

(15) Bosanquet AG, McCann SR, Crotty GM, Mills MJ, Catovsky D. Methylprednisolone in advanced chronic lymphocytic leukaemia: rationale for, and effectiveness of treatment suggested by DiSC assay. Acta Haematol 1995;93:73-9.

(16) Thornton PD, Hamblin M, Treleaven JG, Matutes E, Lakhani AK, Catovsky
D. High dose methyl prednisolone in refractory chronic lymphocytic leukaemia.
Leuk Lymphoma 1999;34:167-70.

(17) Thornton PD, Matutes E, Bosanquet AG, Lakhani AK, Grech H, Ropner JE, et al. High dose methylprednisolone can induce remissions in CLL patients with p53 abnormalities. Ann Hematol 2003;82:759-65.

²³

(18) Pettitt AR, Matutes E, Oscier D. Alemtuzumab in combination with highdose methylprednisolone is a logical, feasible and highly active therapeutic regimen in chronic lymphocytic leukaemia patients with p53 defects. Leukemia 2006;20:1441-5.

(19) Bowen DA, Call TG, Jenkins GD, Zent CS, Schwager SM, Van Dyke DL, et al. Methylprednisolone-rituximab is an effective salvage therapy for patients with relapsed chronic lymphocytic leukemia including those with unfavorable cytogenetic features. Leuk Lymphoma 2007;48:2412-7.

(20) Castro JE, Sandoval-Sus JD, Bole J, Rassenti L, Kipps TJ. Rituximab in combination with high-dose methylprednisolone for the treatment of fludarabine refractory high-risk chronic lymphocytic leukemia. Leukemia 2008;22:2048-53.

(21) Dungarwalla M, Evans SO, Riley U, Catovsky D, Dearden CE, Matutes E. High dose methylprednisolone and rituximab is an effective therapy in advanced refractory chronic lymphocytic leukemia resistant to fludarabine therapy. Haematologica 2008;93:475-6.

(22) Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008;111:5446-56.

(23) Baxter JD, Tomkins GM. Specific cytoplasmic glucocorticoid hormone receptors in hepatoma tissue culture cells. Proc Natl Acad Sci U S A 1971;68:932-7.

(24) Davies TH, Ning YM, Sanchez ER. A new first step in activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 immunophilins. J Biol Chem 2002;277:4597-600.

(25) Planey SL, Abrams MT, Robertson NM, Litwack G. Role of apical caspases and glucocorticoid-regulated genes in glucocorticoid-induced apoptosis of pre-B leukemic cells. Cancer Res 2003;63:172-8.

(26) Wang Z, Malone MH, He H, McColl KS, Distelhorst CW. Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. J Biol Chem 2003;278:23861-7.

(27) Holleman A, Cheok MH, Den Boer ML, Yang W, Veerman AJ, Kazemier KM, et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 2004;351:533-42.

(28) Schmidt S, Rainer J, Riml S, Ploner C, Jesacher S, Achmuller C, et al. Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia. Blood 2006;107:2061-9.

(29) Wang Z, Rong YP, Malone MH, Davis MC, Zhong F, Distelhorst CW. Thioredoxin-interacting protein (txnip) is a glucocorticoid-regulated primary response gene involved in mediating glucocorticoid-induced apoptosis. Oncogene 2006;25:1903-13.

(30) Tissing WJ, Den Boer ML, Meijerink JP, Menezes RX, Swagemakers S, van der Spek PJ, et al. Genomewide identification of prednisolone-responsive genes in acute lymphoblastic leukemia cells. Blood 2007;109:3929-35.

²⁵
(31) Iglesias-Serret D, de FM, Santidrian AF, Coll-Mulet L, Cosialls AM, Barragan M, et al. Regulation of the proapoptotic BH3-only protein BIM by glucocorticoids, survival signals and proteasome in chronic lymphocytic leukemia cells. Leukemia 2007;21:281-7.

(32) Kivekas I, Tobin G, Thunberg U, Vilpo L, Sundstrom C, Rosenquist R, et al. Ex vivo drug and irradiation sensitivities in hypermutated and unmutated forms of chronic lymphocytic leukemia cells. Leuk Res 2003;27:337-41.

(33) Aleskog A, Tobin G, Laurell A, Thunberg U, Lindhagen E, Roos G, et al. VH gene mutation status and cellular drug resistance in chronic lymphocytic leukaemia. Eur J Haematol 2004;73:407-11.

(34) Boelens J, Lust S, Van BF, Van GM, Janssens A, Derycke L, et al. Steroid effects on ZAP-70 and SYK in relation to apoptosis in poor prognosis chronic lymphocytic leukemia. Leuk Res 2009;33:1335-43.

(35) Lindhagen E, Norberg M, Kanduri M, Tobin G, Saisanen L, Aberg M, et al. In vitro activity of 20 agents in different prognostic subgroups of chronic lymphocytic leukemia–rolipram and prednisolone active in cells from patients with poor prognosis. Eur J Haematol 2009;83:22-34.

(36) Bellosillo B, Dalmau M, Colomer D, Gil J. Involvement of CED-3/ICE proteases in the apoptosis of B-chronic lymphocytic leukemia cells. Blood 1997;89:3378-84.

(37) Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003;348:1764-75.

²⁶

(38) McCall MN, Bolstad BM, Irizarry RA. Frozen robust multiarray analysis (fRMA). Biostatistics 2010;11:242-53.

(39) Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, et al. TM4 microarray software suite. Methods Enzymol 2006;411:134-93.

(40) Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004;3:Article3.

(41) Huang dW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57.

(42) Erlacher M, Michalak EM, Kelly PN, Labi V, Niederegger H, Coultas L, et al. BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 2005;106:4131-8.

(43) Bachmann PS, Gorman R, Mackenzie KL, Lutze-Mann L, Lock RB. Dexamethasone resistance in B-cell precursor childhood acute lymphoblastic leukemia occurs downstream of ligand-induced nuclear translocation of the glucocorticoid receptor. Blood 2005;105:2519-26.

(44) Lu J, Quearry B, Harada H. p38-MAP kinase activation followed by BIM induction is essential for glucocorticoid-induced apoptosis in lymphoblastic leukemia cells. FEBS Lett 2006;580:3539-44.

TABLES Table 1. The top 10 most up-regulated and down-regulated probe sets in CLL groups with high and low ZAP-70 expression after treatment with dexamethasone Dene Symbo FROPS CO72 FROPS TMEM2* FROPS DNMBP HIPK2 bgRatic 3.247 8 3.138 3.073 2.942 4 2.750 2.693 2.693 2.693 2.695 2.498 2.384 2.384 5 FDR 3.40E-07 1.15E-07 7.46E-08 3.22E-08 0.40E-08 1.04E-08 0.77E-08 1.24E-04 7.75E-00 1.24E-04 7.75E-00 1.24E-04 Gene Symt FKBP5* DOIT4* FKBP5* TMEM2* Probe set 224840 at 215925 a at 224855 at 218113 at 2.917 2.671 2.694 2.400 2.325 2.229 2.008 2.008 2.005 9.51E-08 7.55E-08 3.77E-05 3.20E-08 224856 at 202887 s at 204560 at 218113 at 207001 x at 224840 at 228825 at 204731 at 242561 at 204560 4 212838 4 225118 4 215528 4 202887 5 4 REPS* 9.84E-04 9.13E-08 DDT4 Deal Syncol Deal Syncol Deal Syncol Deal Syncol Deal Syncol Deal Syncol AKAP2 II PAL INSANAP2 SMD01-AKAP2 II PAL INSANAP2 SMD02-HIT21 HIT21 HIT21 Yaled 3.10E-05 3.31E-07 1.30E-04 TOFBRO C18of1 241893 242408 # 2314 1.74E-0 1.984 1.37E-04 Pictor and EgPatic FDR 235102 gr -1692 £942-00 211138 gr -1675 2566-07 226957 gr -1699 4.502-02 22767 gr -1699 1562-05 227108 gr -1595 5.062-00 222108 gr -1595 5.062-00 205308 gr -1593 5.062-00 205308 gr -1592 5.062-00 205308 gr -1492 2.270-56 Probe set 202758 s at 202758 s at 229694 et 229695 s at 229605 et 229760 s at 200760 s at 200760 s at 2200761 s at 2200762 s at 200762 Cline Symbol FCRL3 KMO+ P2/I/ PALM2+ IFIT2* SETBP1 AMIGC2 2196 2845-06 -1728 64465-05 -1589 4.135-05 -1596 1.015-04 -1494 7.215-04 -1494 7.215-04 -1496 2.705-05 -1396 2.705-05 -1392 1.905-04 -1370 1.275-04 BCL2A1 HMO SAMDRU AFEX-HL PAL Genes are ranked according to their log Ratio values calculated as the difference in log expression value using the untreated cells group as baseline. 'common probe sets in high and low ZAP-70 expression groups. 29

FIGURE LEGENDS

Figure 1. CLL cases with poor prognostic factors show better response to treatment with dexamethasone. CLL cells from 50 cases were treated with 13.25 µM dexamethasone for 24 hours and the percentage of live cells was determined by annexinV/PI staining. (A) Response to dexamethasone in UCLL and MCLL. UCLL cases show significantly higher response to dexamethasone in terms of percentage of live cells than MCLL cases. (B) Response to dexamethasone in high and low ZAP-70 expression groups. CLL cases with high ZAP-70 expression have better response to dexamethasone than cases with low ZAP-70. Horizontal bars represent the mean values of live cells.

Figure 2. Bim is induced after treatment with dexamethasone and correlates with response and ZAP-70 expression. (A) Time-course of the induction of Bim after treatment with dexamethasone. CLL cells from 7 cases were treated with 13.25 μ M dexamethasone and Bim levels were evaluated at 3, 6, 9 and 24 hours by QRT-PCR. Results are expressed as the Bim fold change. HZ-CLL stands for high ZAP-70 expression and LZ-CLL for low ZAP-70 expression. The induction of Bim is high in the initial hours of treatment with dexamethasone and stabilizes after 9 hours. (B) Correlation of induction of Bim with the response to dexamethasone. CLL cells were treated with 13.25 μ M of dexamethasone for 24 hours and then both Bim fold change and response to treatment with dexamethasone were determined. The scatter-plot shows a linear correlation between induction of Bim and response to dexamethasone. (C) Induction of Bim in CLL cells with high or low ZAP-70 expression. CLL cells from 43 cases were

treated with 13.25 μ M of dexamethasone for 24 hours and then both Bim fold change and response to dexamethasone treatment were determined. CLL cases with high ZAP-70 expression have significantly higher induction of Bim than cases with low ZAP-70. Horizontal bars represent the mean values of induction of Bim.

Figure 3. Gene expression profile analysis of CLL cells treated with dexamethasone according to ZAP-70 expression. (A) Dendogram representing the unsupervised analysis of the 1,000 probe sets with the most variable expression applying the hierarchical clustering algorithm. DXM stands for dexamethasone treated cells and UNT stands for untreated cells; (B) Unsupervised cluster analysis of the 45 probe sets retrieved in the analysis of the interaction term. Changes in expression due to dexamethasone treatment for each probe set are displayed as LogRatios. HZ stands for high ZAP-70 expression and LZ stands for low ZAP-70 expression; in both (A) and (B) the number after CLL is the sample number according to Supplementary Table 1.

Figure 4. (A-D)FKBP5 levels at baseline and after treatment with dexamethasone correlate with higher response to dexamethasone and with ZAP-70 expression. CLL cells were treated with 13.25 µM of dexamethasone for 24 hours. Dexamethasone responses were determined at 24 hours. The levels of FKBP5 expression were determined by QRT-PCR. (A) At baseline, cases with high expression of ZAP-70 show higher levels of FKBP5 than cases with low ZAP-70. (B) Scatter-plot showing a significant negative correlation between the percentage of live cells after 24 hours of treatment with

dexamethasone and baseline FKBP5 levels. (C) After 6 hours, treated cells show higher levels of FKBP5 than untreated cells. (D) After 6 hours of treatment with dexamethasone, cases with high ZAP-70 expression show higher levels of FKBP5 than cases with low ZAP-70. In (A), (C) and (D) horizontal bars represent the mean value of the y-axis units.

(E-H)Induction of GILZ after 6 hours of treatment with dexamethasone correlates with the response to the treatment. The levels of expression of GILZ were determined by QRT-PCR after 6 hours of treatment. Fold change of Bim expression was determined by QRT-PCR at 24 hours. (E) The untreated cells from the cases with low expression of ZAP-70 show higher levels of GILZ mRNA than the cells from those with high ZAP-70. (F) After 6 hours of treatment with dexamethasone, cases with high ZAP-70 expression show higher induction of GILZ than cases with low ZAP-70. In (E) and (F) horizontal bars represent the mean value of the y-axis units. (G) Scatter-plot showing a significant negative correlation between GILZ induction and percentage of live cells after treatment with dexamethasone. (H) Scatter-plot showing a significant positive correlation between the induction of Bim and GILZ.

Figure 5. Inhibition of FKBP5 and GILZ by siRNA attenuates the response to dexamethasone. Primary CLL cells from 4 patients were transfected with siRNA targeting FKBP5, GILZ or with a non-targeting control. After 48 hours cells were treated with 13.25 μ M dexamethasone and the response was evaluated 24 hours later.

Supplementary table 1. Clinic-biological characteristics and response to the

treatment with dexamethasone of the series of patients with CLL

Sample number	Gender	Age	13q14.3	11q22.3	17p13.1	trisomy	ZAP70	IGHY	Live cells
		(years)	deletion	deletion	delation	12	(%)	category	(%)
1	M	71	yes	no	ho	no	6	MCLL	94
2	F	71	no	ne	no	no	7	MCLL	90
3*	F	44	yes	no	no	no	6	MCLL	100
4	M	69	no	no	no	yes	2	MCLL	93
5	M	70	no	ne	no	no	10	MCLL	81
8	м	50	yes	no	no	no	5	MCLL	78
7	M	64	yes	ne	no	10	1	MOLL	94
9	M	85	yes	no	no	no	4	MCLL	99
8,	M	71	no	no	10	00	2	MCLL	100
10	F	49	yes	no	no	no	11	MCLL	89
11	M	48	yes				0	MCLL	84
12	F	40	yes	no	ho	no	6	MCLL	70
13"	F	47	yes	ne	ne -	no	2	MOLL	99
14	F	60	no	no	no	00	6	MOLL	90
15	M	41	yes	no	no	no	15	MCLL	49
16	M	50	no	no	10	no	3	MCLL	78
17	M	69	ne	no	no	no	0	MCLL	76
18	M	62	yes	no	no	no	4	MCLL	74
10	м	45	Yes	ne	ne	no	2	MOLL	86
20*	M	63	no	ne	no	no	3	MCLL	85
21 ^x	M	68	ves	no	no	no	8	MCLL	91
22	M	56	no	no	no	no	1	MCLL	86
23	F	75	yes:	ne	ho	no	12	MOLL	74
24	M	53	yes	ne	no	00	13	MOLL	93
25	M	58	ves	ves	ves	no	77	UCIL	52
20"	M	30	no	no	no	no	73	UCLL	53
27*	F	60	no	no	no	no	36	UCLL	66
28	M	46	no	no	no	no	60	UCLL	83
29	M	57	110	y es	no	10	64	UCLL	70
30*	M	55	ne	ne	no	yes	60	UCLL	64
31*	M	54	yes.	no	no	no	36	UCLL	52
32	M	72	no	no	no	no	30	UCLL	61
33	M	74	no	no	no	yes	90	UCLL	89
34*	M	51	yes	no	yes	no	61	UCLL	42
35*	м	61	yes	no	50	50	51	UCLL	56
36	M	49	no	no	no	no	39	UCLL	79
37	F	70	no	no	no	yes	73	UCLL	85
38	F	48	no	yes	no	no	30	UCLL	50
39	M	48	yes	no	no	no	69	UCLL	64
40	F	41	yes	no	no	00	70	UCLL	60
41	M	46	no	ne	no	yes	73	UCLL	66
42	м	68	no	no	no	no	70	UCLL	07
43*	F	69	yes	no	ho	00	75	UCLL	00
44	M	45	Yes	no	no	no	49	UCLL	76
46	M	79					26	UCLL	67
40	м	82	yes	ne	10	00	46	UCLL	83
47	M	56	yes	ne	no	no	5	UCLL	79
40	F	63	VE	ne	ves	00	1		80
40	F	54	Ves	ne	ves	no	69		84
50	M	67	ves	no	ves	ves	30		66

M: male; F: female; * CLL cases selected for GEP analysis; * CLL case with 17 p13.1 deletion, low ZAP-70 expression and poor response to dexamethasone.