ELS BOSCOS DE *NOTHO FAGUS* DE LA TERRA DEL FOC COM A PARADIGMA DE DINÀMICA SUCCESSIONAL DEL NO-EQUILIBRI

Emilia Gutiérrez

Departament d’Ecologia, Facultat de Biologia, Universitat de Barcelona

INTRODUCCIÓ

Dues espècies planifòlies del gènere *Nothofagus*, família fagàcies, integren els boscors de la Terra del Foc al llarg dels darrers contraforts dels Andes. Les grans valls en forma de ∞U∞ i la morfologia de les muntanyes mostren els efectes de les glaciacions recents. L’algària mitjana de les muntanyes és d’uns 800-900 m snm i el límit superior del bosc se situa entre els 500-600 m snm (Dimitri, 1982). L’àrea de distribució dels boscors resta compresa entre els paral·lels 53° 30’ i 56° S. El fet que espècies planifòlies integrin els dos boscors principals és excepcional a latituds tan elevades. *Nothofagus pumilio* (Poepp. and Endl.) Krasser és la principal constituent del bosc caducifoli i *N. betuloides* (Mirb.) Oerst. del perennifoli. Aquest bosc es distribueix al llarg de la franja costanera i forma, a les parts baixes, el bosc mixt perennifoli amb *Drimys winteri* Forst. —winteràcia— i *Maytenus magellanica* (Lam.) Hook f. —celastràcia— a la subvolta; ambdues són també espècies perennifòlies. L’altitud d’aquest bosc mixt no supera els 180 m snm. El bosc caducifoli ocupa una extensió paral·lela entre l’estepa patagònica i el bosc magallànic sempre verd (fig. 1). El clima és fred-temperat amb una gran humitat a l’àrea costanera ocupada pel bosc perennifoli i amb degeneració estepària a l’àrea ocupada pel bosc caducifoli (Pisano, 1981). Altres característiques climàtiques importants de la zona són les petites oscil·lacions térmiques, menys de 8°C, i els forts vents. En relació amb la primera, la taxa de descomposició de la matèria orgànica del sòl és molt lenta, acumulant-se’n grans quantitats. Pel que fa al vent molts arbres són abatuts, fet que es veu afavorit per l’arrelament superficial d’aquestes espècies.

FIGURA 1. Mapa de localització dels boscos *Nothofagus* de la Terra del Foc i zones de mostrege a, àrea de distribució del bosc perennifoli. b, bosc caducifoli. c, estepa patagònica. (○) lloc de mostreig del primer i (⊙) del segon.

(Pisano, 1975). El meu objectiu és analitzar fins a quin punt això és cert, però per emprendre el tema és convenient distingir entre escales, tant temporals com espacials. Les dades històriques obtingudes a partir dels perfils de pol·len i altres registres geològics (Auer, 1956, 1960; Mercer, 1965; *inter alia*) que han permès elaborar una cronologia postpleistocènica (Pisano, 1975), mostren que l'àrea de distribució dels boscos ha variat considerablement d'uns períodes a altres. Però si la pregunta és de quina manera s'automantenen aquests boscos, caldrà encaminar els estudis donant a conèixer l'autoecologia de les espècies de *Nothofagus* i el règim de pertorbacions, ja que determinen en gran mesura l'estructura i la dinàmica de les comunitats (Pickett i White, 1985; Brubaker, 1986; etc.).

Hueck (1978) qualifica les espècies de *Nothofagus* de heliófils. Si això fos cert estariem davant d'unes espècies peoneres, cosa que, com tradicionalment es diu i segons Swaine i Whitmore (1988) i Whitmore (1989) exposen, significa que són capaces de tornar a començar la successió en grans clarianes produïdes per les pertorbacions. Per altra part, el nombre de llavors en el sòl no és alt (observació pers.). Evidentment tot això està en contradicció amb els arguments de Pisano (1975). Tractaré de subratllar i considerar d'una altra manera la relació entre les pertorbacions i l'estructura i la dinàmica dels boscos; alhora em remetré a l'autoecologia d'aquestes espècies amb l'objecte d'aclarir fins a quin punt depenen o no de les pertorbacions per a la seva regeneració, d'acord amb una
gradació menys dicotòmica del grau d’hieliofilia de les espècies (Martínez-Ramos et al., 1989). Convé, doncs, exposar la dinàmica dels elements, els mosaics, així com el conjunt d’aquests mosaics, que dóna lloc al paisatge. De tota manera, la relació causal entre pertorbacions, dinàmica i tipus de bosc no és clara. Caldriem estudis més precisos relatius al règim de pertorbacions de la zona però, en qualsevol cas, convé recordar que les causacions simples són, si més no, difícils de posar de manifest. Finalment, proposo l’aplicació de la teoria de la criticalitat autoorganitzada (Bak i Chen, 1991) al procés de successió, perquè considero que pot ajudar a comprendre alguns aspectes de la mateixa.

IDEES GENERALS

Mort i reclutament. Dinàmica

La formació d’espais buits en els boscos és un fenomen generalitzat que permet l’entrada de nous individus o el creixement dels ja existents en substitució dels que han mort. Aquesta dinàmica, aparentment senzilla, té enormes connotacions en l’estructura del bosc, en l’evolució de les poblacions i en la seva composició específica, depenent de com moren i el nombre d’arbres implicats. A les clariances del bosc s’instal·len noves cohorts i el resultat final es caracteritza per un conjunt de mosaics de dimensions variables, d’edats diferents i en fases d’evolució diverses. La repetició dels processos de mort i substitució assegura la continuïtat del bosc. També pot passar que morin molts arbres alhora, el vent, el foc o una tala poden produir aquesta situació. En aquests casos l’espai seria ocupat primer per aquelles espècies qualificades de peoners, en general més hieliofiles. Algunes espècies són característiques de les fases inicials de la successió, però poden estar presents en estadis tardans, si el bosc és mixt, juntament amb les espècies característiques de les fases més evolucionades, tardanes o clímàctiques. Assolida aquesta fase, tornen a formar-se espais buits per la mort dels arbres dominants, els quals són ocupats per nous individus, repetint-se el procés de successió dins de la successió, en una estructura fractal.

L’estudi de la successió és un dels temes centrals de l’ecologia. Sobre els mecanismes implicats, l’evolució i la fase final assolida, s’ha suscitat molta controvèrsia entre les diferents escoles i tendències des de començaments d’aquest segle. Recentment, la manera de produir-se la mort i el reclutament de nous individus, així com les dimensions de l’espai afectat per tals esdeveniments, és considerada sota la perspectiva del règim de pertorbacions.

Pertorbacions i processos de canvi. Mecanismes

Una pertorbació, segons White i Pickett (1985), és un esdeveniment discret en el temps que desorganitza i simplifica l’estructura de l’ecosistema, la comunitat, etc., produex canvis en els recursos, en la disponibilitat del substrat i en les característiques físiques de l’ambient. L’esca espacial ha de ser concretada en cada cas. Per caracteritzar una pertorbació, els paràmetres necessaris són la freqüència, l’interval de recurrencia i la intensitat; i si a més es disposa de l’espelce de per-torbacions, aleshores es tenen les dades necessàries per poder fer millors estimacions de la seva predictibilitat (White, 1979; Sousa, 1984; White i Picket, 1985). La mínima expressió d’una pertorbació és la causada per la mort d’un arbre dominant capaç de crear una clariana en el bosc; a l’altre extrem, una pertorbació de major intensitat, una catàstrofe (Haper, 1977), té efectes molt diferents per la major extensió afectada, els sistemes implicats i la dinàmica posterior de les comunitats. El resultat és una heterogeneïtat en l’espai que afecta l’estructura del bosc i la totalitat del paisatge. El terme anglès emprat de forma genèrica és el de patch dynamics (Pickett i White,
1985). Existeixen, tanmateix, algunes distincions respecto a la grandària de l’àrea afectada que, encara que arbitràries (Runkle, 1985), poden ajudar a delimitar el context i l’escala. Així, la dinàmica de clarianes o gap dynamics es refereix a l’estudi de clarianes de bosc generades per la caiguda d’àrrees; el seu estudi es fa, doncs, amb referència als arbres circumdants i correspon a la component autogènica de Watt que opera cíclicament (Watt, 1947, a White, 1979). La devastació de tot un estand per una pertorbació més intensa, és el que tradicionalment s’ha identificat com a successió secundària. Oliver i Larson (1990) es refereixen a aquest aspecte com a dinàmica d’estands o stand dynamics. Pertorbacions d’intensitats majors, catàstrofes, tenen un efecte uniformador i canvien la totalitat del sistema a una nova situació.

Tradicionalment s’han reconegut dos processos de canvi: autogènisi i al-logènisi. Aquests dos conceptes, tan arrelats entre els ecòlegs i que tanta discussió han generat, perdien molta vigència en considerar-los, en relació amb el règim de pertorbacions, com als extrems d’un continuum (White, 1979). La causa última de la mort d’un arbre senescent pot ser el vent o una tala o qualsevol altre factor extern. A escales més grans ambdues componentes es manifesten igualment de forma conjunta en un gradient, segons les condicions del medi i l’ecologia de les espècies. Les critiques més fortes de l’autogènisi es produeixen en ser difícil observar la natura, la climax final que prediu. La idea de la comunitat com a un superorganisme en les relacions del mutualisme són les més importants, fou proposada per Clements a començaments d’aquest segle i criticat una mica més tard tant pels que no veien la monoclimax, sinó un policlimax per efectes de factors externs, clima, sòl, etc., com pels que argumentaven a favor del mecanisme de competència. L’exclusió competitiva va predominar després per explicar els canvis en la composició específica assumint igualment el procés de successió autogènica on es produeix la substitució gradual d’espècies fins que arriba a dominar l’espècie climaxàcia. El problema, com diu Margalef (1989), és que amb aquesta aproximació no hi ha lloc per a noves espècies.

Tractant d’evitar la dicotomia entre factors autogènics i al-logènics, Connell i Slatyer (1977) proposen tres mecanismes per explicar el canvi successional: el de tolerància, que es correspon amb el de competència citat abans, el de facilitació i el d’inhibició. Ara bé, evidències pel de tolerància són difícils de trobar i així ho reconeixen explícitament els seus autors. Basant-se en un bon recull d’evidències empíriques, els models de successió proposats per Oliver (1981, a Oliver i Larson, 1990) i Peet i Christensen (1987) pels boscos, generalitzen els processos de successió després d’una pertorbació, qualsevol que sigui la seva magnitud. Ambdòs es corresponen força bé amb el mecanisme d’inhibició proposat per Connell i Slatyer (1977). El model reconeix quatre fases en el procés de successió: després d’una pertorbació es produeix l’establiment de plantules i/o el creixement dels brots que ja existeixen, la segona fase o d’autotala es caracteritza per la mortalitat denso-dependent dels individus, a la tercera fase o de transició els arbres dominant van morint a poc a poc creant noves condicions per a la regeneració i la darrera etapa, o d’estadi estacionari, estaria caracteritzada per un conjunt de mosaics que poden estar en qualsevol de les etapes anteriors. La diferència fonamental respecte al procés de successió basat en els mecanismes de tolerància i facilitació és precisament que la mortalitat dels individus de les diferents espècies s’atribueix a les pertorbacions i als depredadors. La durada de cadascuna d’aquestes fases depèn de la intensitat de la pertorbació i de les espècies implicades, i es pot presentar qualsevol mecanisme segons l’ecologia de les espècies i les condicions de l’àmbit. Es considera igualment la mortalitat deguda a la competència pels recursos, però en aquests nous postulats (vegeu Picket i White, 1985, per a més referències) hom dona més èmfasi a les característiques de les espècies, com són el seu cicle de vida, la seva longevitat i taxa relativa de creixement, així com a l’efecte de les
pertorbacions sobre les mateixes. Els resultats, *inter alia*, de Farrell (1991) en comunitats intermareals, de Glitzenstein *et al.* (1986) pels boscos, evidencien que la successió és una conseqüència de les diferències de reclutament en el temps d’arribada després de la pertorbació, de la taxa relativa de creixement i de la persistència en la subvolta de les espècies. També apunten que existeix una tendència cap a la comunitat clímax representada, en el cas dels boscos, per les espècies menys tolerants a la radiació. Però les pertorbacions, sempre presents, han impedit que la comunitat clímax hagi estat predominant a la zona (Glitzenstein *et al.*, 1986), encara que en altres àrees la seva persistència sigui més llarga. Les pertorbacions d’intensitats mitjanes i severes, segons Oliver i Larson (1990, p. 201) són més freqüents que la durada de vida delsarbres, per la qual cosa els boscos normalment són interromputs abans que es produeixi cap convergència de les espècies. Per als boscos estudiats, els períodes entre pertorbacions són de 50 a 200 anys (Runkle, 1982), mentre que l’estat assolida pels arbres dominants en la majoria de boscos temperats sol ser entre els 300 i 500 anys. S’observa també en alguns autors una posició intermèdia: no rebutgen la construcció teòrica de clímax, malgrat que existeixin problemes pel que fa a la seva aplicabilitat, en concret a l’hora de formular models (perquè és difícil definir una escala espacial on aplicar el concepte de clímax). En general, hi ha consens en quant a la direccionalitat o tendència que presenta l’evolució de la successió, però les dificultats que es creen en considerar diversos aspectes pràctics i teòrics han conduit a diversos autors a un nou plantejament del paradigma de la successió com a conseqüència de la importància concedida a les pertorbacions.

Canvi de paradigma?

L’any 1971 Druri i Nisbet proposaren abordar l’estudi de la successió amb una perspectiva cinètica de la vegetació, sense considerar esta-
bles les condicions del medi ni tampoc l’estat final d’equilibri que assoliren, finalment, les comunitats. També s’ha anat excloent del procés de successió un desenvolupament progressiu de la vegetació al clímax o vers un estat d’equilibri. Molts estudis recents sobre la successió reflecteixen certament aquesta nova aproximació sota la convicció cada vegada més generalitzada que, per exemple, els boscos en equilibri encara s’han de descobrir fins i tot entre els considerats en estat pristi (Clark, 1986). Han estat justament els estudis de successió en els boscos els que han aportat les dades més precisas sobre el règim de pertorbacions; això és possible per la formació dels anells de creixement que permeten la datació de les pertorbacions i el seu estudi retrospectiu. Els treballs d’Henry i Swan (1974), Runkle (1981, 1982), Lorimer (1977,1980) i Veblen *et al.* (1979), *inter alia*, ens han portat a una nova reinterpretació de la teoria de la successió.

Les pertorbacions posen el contrapunt a la successió i al concepte de clímax, alhora que malmenten els esforços predictius sobre la seva evolució i l’estat final assolit per l’ecosistema. Les formulacions matemàtiques del procés de successió mitjançant models en equacions diferencials continuen emprant-se per explorar situacions sovint difícils d’observar a la natura, però també donen compte del caràcter determinista i del tractament donat a la dinàmica del sistema que es considera en equilibri amb les condicions del medi constants. Els models sobre la successió es milloren en introduir-hi la dinàmica de les clarines i cert grau de realisme en considerar l’heterogeneïtat espacial (Shugart i Seagle, 1985).

L’interès per les pertorbacions ve d’antic, però la seva importància s’ha manifestat a les darreres dues dècades en quantificar de manera explícita la seva intensitat i freqüència, i en comprovar que les pertorbacions són un fenomen general que afecta tots els nivells de l’organització ecològica (Wiens, 1976; Shorrocks i Swingland, 1990; Platt i Strong, 1989) i tots els ecosistemes (vegeu la recopilació de treballs de Pickett i White, 1985). Sobre els boscos tropicales,
els treballs de Martínez-Ramos et al. (1989), Denslow i Gómez (1990) i Brokaw (1985) poden servir de referència. No existeix cap teoria formal de les pertorbacions (Pickett i White, 1985; Brubaker, 1986) encara que siguin dues, possiblement, les hipòtesis que podrien ser la base del seu desenvolupament, segons Pickett i White (1985, p. 378). Una és la hipòtesi de les pertorbacions intermèdiars, segons la qual la riquesa específica seria més gran a les comunitats amb pertorbacions d’intensitat i freqüència mitjanes. La segona hipòtesi fa referència a la freqüència de les pertorbacions, també relacionada amb la riquesa d’espècies, i postula que si l’interval de recurrència és més gran que el temps necessari per manifestar-se l’exclusió competitiva, aleshores, es manté la diversitat d’espècies. De fet, tant una hipòtesi com l’altra són molt inespecífiques pel que fa als paràmetres o variables als quals es refereixen. Per altra banda, hi ha temptatives serioses de formalitzar les conseqüències ecològiques de l’heterogeneïtat (Wiens et al., 1985; Pickett et al., 1989; Kotliar i Wiens, 1990), que segons Williamson (1989) puntualitzen algunes de les idees de la teoria de MacArthur i Wilson. Justament basant-se en aquestes idees, Pickett (1976) introduïu de manera explícita certs aspectes evolutius en el context de la successió i, avui dia, el concepte de patchiness és fonamental en la teoria ecològica moderna.

Encara que les pertorbacions posin en marxa una vegada i altra la successió, la manca d’estudis orientats a palesar els seus efectes no ha fet possible que fossin introduïdes en la teoria ecològica de manera formalment explícita (Pickett i White, 1985; Terradas, 1985), ni permetran prediccions fines fins que hom no disposi d’un estudi detallat de les seves característiques. Per això, tal com proposen Veblen (1990) i altres autors, caldria substituir el paradigma de l’equilibri pel del no equilibri. Aquesta darrera no suposa que les condicions de l’hàbitat a llarg termini siguin estables, per la qual cosa la successió respondria a les interaccions de les espècies de diferents característiques en els seus cicles de vida, la seva longevitat i la seva relació amb la disponibilitat dels recursos en un ambient fluïc tangisotmés als procés estocàstics de les pertorbacions, no considerades ja com un fenomen inevitable per a disminuir la competència entre els organismes, sinó que són consubstancials amb la dinàmica dels sistemes biològics. Segons aquest autor, per predir els canvis en la vegetació considerant que l’ambient no és estable, cal resoldre la qüestió de la migració de les espècies, de les característiques ecològiques d’aquestes i de l’efecte del clima sobre el règim de pertorbacions, atès que el clima pot canviar aquest règim abans que se superin els límits fisiològics de les espècies. Cal tenir presents altres qüestions com són el caràcter estocàstic i no estacionari de les pertorbacions a l’hora d’analitzar els règims de pertorbacions, la seva variància (Clark, 1989) i la història del sistema dins l’aparent regularitat que les pertorbacions més intenses són menys freqüents. En aquest marc de condicions inicials és possible que, com suggereix Margalef (1989), la successió assoleixi la taxa de renovació més baixa en el mínim temps.

ELS BOSCOS DE LA TERRA DEL FOC

Biomassa i producció

Els dos tipus de bosc, caducifoli i perennifoli, van ser mostrejats al llarg de dues toposequències (fig 1). Les localitats de mostreig, per ordre creixent d’altitud, foren Np6, Np5 i Np4 en el bosc caducifoli, on l’espècie arbòria dominant és N. pumilio, mentre que en el bosc perennifoli de N. betuloides foren Nb6, Nb5 i Nb4. La localitat Nb6 correspon al bosc mixt perennifoli. El mostreig es va portar a terme, sempre que fou possible, a través de parcel·les de 26 x 26 m. Es poden consultar detalls sobre el mostratge a Romáñà et al. (1989) i Gutiérrez et al. (1990).

Les característiques estructurals (Gutiérrez
et al., 1990) revelen que es tracta de boscos madurs si considerem els paràmetres que normalment s’empren per caracteritzar l’estructura dels boscos (taula i). La biomassa, així com la producció i altres aspectes dinàmics derivats del quocient entre ambdós paràmetres (taula ii) mostren que es tracta, en general, de boscos madurs, en les fases de transició o d’estat estacionari, amb una baixa productivitat i temps de renovació llarg. Aquesta situació, però, no és uniforme. A les parts altes de les muntanyes la rigorositat del clima evita el desenvolupament de fases evolucionades del bosc. Els arbres són més petits i tenen edats menors (taula i). De totes maneres cal matar la que implica posar l’etiqueta de bosc en fase de transició o en estat estacionari al costat de bosc madur. Si diem bosc madur perquè té una productivitat baixa, tots ells ho són, però si diem boscos en fase de transició o en estat estacionari per la grandària dels arbres, el bosc de N. pumilio a les parts altes no ho és, però sí pel que fa a la seva regeneració. D’això en parlarem més endavant. A zones més planeres, tal i com descriuen Schmidt i Urzúa (1982), el bosc es troba en diferents fases d’evolució per bosquerons o estands creant un mosaic.

El bosc caducifoli és més productiu que el perennifoli, el qual presenta una biomassa més gran i una edat dels arbres més alta. Normalment els arbres que viuen en condicions més extremes assoleixen una longevitat superior. En aquest cas el bosc perennifoli creix en sòls més pobres, on el reciclatge de matèria orgànica i nutrients és més lent (Romàna et al., 1989). El creixement anual mitjà (taula ii) també mostra que les seves condicions limitants pel creixement són més importants en el bosc perennifoli, malgrat ocupar la zona costanera que, en principi, proporciona un clima menys fred. La variabilitat del creixement min va amb l’alçària i el coeficient de

Taula I

<table>
<thead>
<tr>
<th>Localitat</th>
<th>Bosc caducifoli</th>
<th>Bosc Perennifoli</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Np6</td>
<td>Np5</td>
</tr>
<tr>
<td>Altitud (m)</td>
<td>260</td>
<td>375</td>
</tr>
<tr>
<td>Pendent</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Alçàries (m)</td>
<td>4-29</td>
<td>9-21</td>
</tr>
<tr>
<td>DBH Mitjà (cm)</td>
<td>22,5</td>
<td>26,7</td>
</tr>
<tr>
<td>(desviació std)</td>
<td>(20,1)</td>
<td>(12,0)</td>
</tr>
<tr>
<td>Densitat (arbre/ha)</td>
<td>799</td>
<td>1000</td>
</tr>
<tr>
<td>Edat (anys)</td>
<td>247</td>
<td>233</td>
</tr>
<tr>
<td>IF (m²/m²)</td>
<td>2,35</td>
<td>2,77</td>
</tr>
<tr>
<td>IF/ABA (m²/cm²)</td>
<td>0,125</td>
<td>0,136</td>
</tr>
</tbody>
</table>

Característiques dels llocs de mosteig referides a l’altitud i la pendent i paràmetres estructurals dels boscos mostrejats. Np6, Np5 i Np4 localitats de mosteig del bosc caducifoli de N. pumilio. Nb6, Nb5 i Nb4 localitats de mosteig del bosc perennifoli de N. betuloides. DBH, diàmetre dels arbres mesurat a 1,30 m de la base. IF, índex foliar. ABA, àrea basal d’albèca.
TAULA II

<table>
<thead>
<tr>
<th>Localitat</th>
<th>Bosc caducifoli</th>
<th>Bosc Perennifoli</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Np6</td>
<td>Np5</td>
</tr>
<tr>
<td>Creixement anual, x (mm)</td>
<td>1,39</td>
<td>0,80</td>
</tr>
<tr>
<td>Coef. variació (%)</td>
<td>43,3</td>
<td>29,5</td>
</tr>
<tr>
<td>Biomassa (Mg/ha)</td>
<td>283,8</td>
<td>265,1</td>
</tr>
<tr>
<td>Producció (Mg/ha/any)</td>
<td>8,9</td>
<td>5,7</td>
</tr>
<tr>
<td>P/B (1/any)</td>
<td>0,031</td>
<td>0,022</td>
</tr>
<tr>
<td>B/P (any)</td>
<td>31,9</td>
<td>46,5</td>
</tr>
</tbody>
</table>

Biomassa aèria, producció i quocients entre amèdòs paràmetres referits als boscos caducifoli de *N. pumilio* i al perennifoli de *N. betuloides*. Np6, Np5 i Np4 llocs de mosteig del primer i Nb6, Nb5 i Nb4 del segon per ordre creixent d'altitud.

variació, molt alt a les parts mitjanes i baixes, pot palesar una elevada heterogeneïtat del medi.

Regeneració i dinàmica de clarianes

Les àrees de bosc madur o en fase d'estat estacionari es caracteritzen per la presència de grans arbres emergents i regeneració a les zones on la volta no és contínua. Aquestes situacions estroben a les parts mitjanes i baixes dels vessants de les muntanyes. També s'ha pogut constatar que la regeneració en àrees, relativament grosses, que han estat cremades a començaments d'aquest segle (N. Goodall, comunicació personal) en el bosc monospecific de *N. betuloides*, i altres del bosc caducifoli extensament talades a les rodalies d’Ushuaia en els anys quanta (Hueck, 1978), encara no presenten signes de regeneració. Si aquestes espècies de *Nothofagus* fossin tan peoneres, les àrees pertorbades com les esmentades haurien de presentar alguna evidència clara de la seva regeneració. Atès que no és així, i sense excloure del tot aquesta hipòtesi, hom pot pensar que aquestes espècies de *Nothofagus* es regeneren millor en clarianes relativament petites, produïdes per la mort i caiguda dels arbres. L’estructura de diàmetres i d’edats, les corbes de creixement i la distribució en l’espai dels individus van ser examinats en sis parcel·les del bosc perennifoli i en sis del bosc caducifoli, amb l’objecte de caracteritzar aquesta dinàmica.

Estructures de grandàries i edats. Mortalitat

Com a variable representativa de la grandària dels arbres he considerat el seu diàmetre a 1,30 m de la base, DBH, mesurat a tots els arbres de més de 1,5 m d’alçària. De la distribució de freqüències de la grandària dels arbres hi ha dos aspectes interessants que cal destacar: el rang de grandàries, que a vegades pot mostrar les condicions del medi, i la forma de la distribució, que proporciona una primera aproximació a la història de l’estand; tanmateix, aquest aspecte cal matisar-lo molt més. El rang de grandàries de les distribucions reflecteix en el bosc caducifoli les diferències degudes a l’altitud (fig. 2); els
arbres són més petits a altituds més grans, mentre que la densitat augmenta (taula I). Aquest fet incideix en la productivitat, ja esmentada abans, dels diferents estands (taula II). La causa és amb molta certesa el clima, que és més inclement a altituds més grans, la qual cosa queda reflectida en altres aspectes, com la relació de l’índex foliar amb l’àrea conductora (taula I).

Al bosc perennifoli el gradient altitudinal no és tan clar. La causa més probable pot ser la topografia de la zona, que és més suau i amb grans torberes d’alçària que es despenyen i interconnecten pels vessants de menor pendent de les muntanyes. Així hom pot trobar arbres més grans existent bosc perennifoli amb més biomassa a altituds més grans, on el pendent és més suau que a les parts mitjanes de la muntanya (taula I). Però, com ja comentarem, el gradient es manté en altres aspectes de la dinàmica del bosc.

En els dos tipus de bosc els arbres més grans es localitzen als estands de les parts baixes.

Pel que fa a la forma de les distribucions de les grandàries, se solen considerar dues formes bàsiques que, per bé que poden usar-se com a punt de partida, acostumen a presentar-se molt més complexes. Aquestes formes bàsiques es refereixen a dos tipus d’estructures dels estands del bosc: estands coetanis i estands multititanis o formats per una o diverses cohorts (Oliver i Larson, 1990). Als estands formats per diverses cohorts o estands multi-cohort, en principi, cal esperar que hi siguin representades totes les grandàries (i edats) i hom suposa que hi ha una entrada contínua de nous individus. La forma típica de distribucions de grandàries és monòtona decreixent (Hett i Loucks, 1976), mentre que als estands d’una sola cohort la distribució és unimodal, com a conseqüència d’unes taxes mitjanes de creixement similars a la majoria dels individus. Tanmateix, sobre aquests esquemes bàsics es presenten moltes situacions que sols es poden aclairir d’acord amb altres dades, en particular considerant l’edat dels individus.

Una forma de distribució unimodal és la presentada per l’estand de la part alta del bosc caducifoli (Np4, fig. 2) i una forma monòtona decreixent podria ser l’obtinguda per la localitat Np6 (fig. 2) situada a la part baixa del bosc caducifoli. La forma de la distribució de grandàries del bosc perennifoli a la part baixa (N6b, fig. 3) podria considerar-se com a representant d’un bosc madur d’una sola cohort a les fases de transició o d’estat estacionari. A la resta de distribucions s’observa cert grau de bimodalitat (figs. 2 i 3). La bimodalitat a les distribucions de diàmetre sol ser una conseqüència de l’envelliment de la cohort, on un grup d’arbres es diferencien de la resta per un augment de mida en disposar de millors condicions per al creixement. Les distribucions bimodals són típiques de la fase d’autotala (Mohler et al., 1978) que és la segona fase en el model de Peet i Chistensen (1987) i Oliver (1981, a Oliver i Larson, 1990).

Però el reconeixement de la fase de desenvolupament del bosc a través de les formes d’aquestes distribucions de freqüència pot induir a errades. Si realment es tracta de cohorts en diferents fases d’evolució per aquelles localitats on la distribució de grandàries així sembla indicar-ho, aleshores l’estructura d’edats hauria de presentar un rang de variació relativament estret. A la figura 4 s’ha representat la relació entre la grandària i l’edat dels individus en les localitats mostrejades als dos tipus de bosc. Pot veure’s que, excepte a l’estand del bosc mixt perennifoli, existeix un elevat rang de variació de l’edat respecte als diàmetres i a l’invers, una variabilitat de diàmetres respecte a l’edat. És a dir, hi són representades, en general, totes les grandàries i edats dins dels rangs de grandària de cada estand.

El coeficient de determinació entre la grandària i l’edat en ajustar funcions al-lomètriques és força alt (taula III). L’enquadrament significatiu d’aquestes funcions té lloc als estands multi-cohort, la qual cosa passa a tots els estands excepte en el bosc mixt perennifoli. Així doncs, podem fer les primeres precisions respecte a l’estructura dels estands que s’han esmentat en relació a la forma de distribucions de grandàries. Hom pot demostrar que la bimodalitat de les
Figura 2. Distribució de la grandària dels arbres segons el seu diàmetre mesurat a 1,30 m, DBH. Espècie *Nothofagus pumilio*. Sobreposada s'ha dibuixat la freqüència dels arbres morts dempeus, ---. \(I \) és l'interval emprat per construir 12 classes de diàmetre.
Figura 3. Distribució de la grandària dels arbres segons el seu diàmetre mesurat a 1,30 m, DBH. Espècie *Nothofagus betuloides*. Sobreposada s'ha dibuixat la freqüència dels arbres morts dempeus. ——. l'interval emprat per a construir 12 classes de diàmetre.
distribucions és deguda a la contribució d’individus de diferents cohorts i no a una cohort en fase d’autotalla. Les situacions més clares d’aquesta dinàmica es produeixen a les localitats Nb4, Nb5 i Np5 (fig. 4). Els arbres més vells no són necessàriament els més grans, es tracta dels procedents de diferents cohorts que han sobreviscut, s’acumulen a les classes de grandàries més grans, a partir d’un determinat diàmetre, i amb un creixement molt lent. Respecte a això cal aclarir que aquestes tres són precisament les localitats on les condicions edàfiques són més limitadores (Romàñà et al., 1989). Com s’ha arribat a aquesta situació pot explicar-se, en part, per la mortalitat que és molt elevada a les classes de diàmetre més petit, mentres que és aproximadament constant per a les classes de diàmetre més gran (figs. 2 i 3). El conjunt pot ser descrit amb una funció potencial, perquè la mortalitat dels arbres canvia al llarg del temps (taula IV) (Hett i Loucks, 1976). Més endavant reprendrem aquest aspecte.

A les parts alta i baixa del bosc caducifoli l’estructura dels estands multi-cohort roman igualment reflectida en la relació edat-diàmetre (fig. 4, taula III). Ambdós estands tenen una mortalitat molt elevada a les primeres classes de diàmetre i una altra de constant per a les classes de diàmetre més gran (taula IV). Les diferències entre un i altre estand es reflecteixen en el nombre de cohorts que potencialment poden formar-los. A la localitat Np4, situada a la major altitud, és evident que està més limitada per la menor grandària i longevitat dels seus individus. Val aclarir que aquesta situació no és particular del lloc de mostratge, car estructures molt similars s’han donat en anteriors estudis (Gutiérrez et al., 1985).

Una situació diferent a totes les presentades és la que té lloc en el bosc mixt perennifoli. En aquest estand l’edat i la grandària no mostren cap relació (fig. 4), per la qual cosa es pot considerar un estand uni-cohort en estat senescent on el reclutament de nous individus no té èxit, malgrat que la densitat d’arbres de *N. betuloides* és molt baixa. La freqüència d’arbres morts dibuixada a la fig. 3 mostra que els arbres joves moren abans d’assolir grandàries superiors a 28 cm de diàmetre. En aquest estand les classes de grandària més petites es troben ocupades per les espècies acompanyants *D. winteri* i *M. magellanica*. Ambdues espècies constitueixen una subvolta molt densa que no permet el pas de la radiació i impossibilita el creixement de les

Taula III

<table>
<thead>
<tr>
<th>Localitat</th>
<th>a</th>
<th>b</th>
<th>R²</th>
<th>N</th>
<th>Espècie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb4</td>
<td>33,43</td>
<td>0,65</td>
<td>0,77 *</td>
<td>5</td>
<td>N. betuloides</td>
</tr>
<tr>
<td>Nb5</td>
<td>28,50</td>
<td>0,60</td>
<td>0,71 *</td>
<td>15</td>
<td>N. betuloides</td>
</tr>
<tr>
<td>Np4</td>
<td>35,40</td>
<td>0,41</td>
<td>0,62 *</td>
<td>7</td>
<td>N. pumilio</td>
</tr>
<tr>
<td>Np5</td>
<td>36,80</td>
<td>0,51</td>
<td>0,78 *</td>
<td>10</td>
<td>N. pumilio</td>
</tr>
<tr>
<td>Np6</td>
<td>5,30</td>
<td>0,90</td>
<td>0,76 *</td>
<td>14</td>
<td>N. pumilio</td>
</tr>
</tbody>
</table>

Valors dels paràmetres de les relacions obtingudes entre l’edat i el diàmetre a 1,30 m de la base. *, regressió significativa amb p < 0,05 (vegeu Fig. 4). Np6, Np5 i Np4 localitats de mostratge del bosc caducifoli de *N. pumilio*. Nb6, Nb5 i Nb4 localitats de mostratge del bosc perennifoli de *N. betuloides*.
Figura 4. Relació entre l'edat i la grandària dels arbres segons el seu diàmetre a 1,30 m, DBH. ▲, ● i ○, part baixa, mitjana i alta d’ambdós tipus de boce (vegeu taula III).
Taula IV

<table>
<thead>
<tr>
<th>Localitat</th>
<th>a</th>
<th>b</th>
<th>R²</th>
<th>N</th>
<th>Espècie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb4</td>
<td>4740</td>
<td>-1.42</td>
<td>-0.941 *</td>
<td>10</td>
<td>N. betuloides</td>
</tr>
<tr>
<td>Nb5</td>
<td>3756</td>
<td>-1.45</td>
<td>-0.925 *</td>
<td>10</td>
<td>N. betuloides</td>
</tr>
<tr>
<td>Np4</td>
<td>25,120</td>
<td>-2.44</td>
<td>-0.828 *</td>
<td>8</td>
<td>N. pumilio</td>
</tr>
<tr>
<td>Np5</td>
<td>6900</td>
<td>-0.88</td>
<td>-0.812 *</td>
<td>8</td>
<td>N. pumilio</td>
</tr>
</tbody>
</table>

Valors dels paràmetres de les funcions potencials negatives ajustades entre el nombre d'individus morts dempeus i la grandària dels diàmetres a 1,30 m, DBH. Nivell de significació *, p < 0,05 (vegeu Figs. 2 i 3). Nb6, Np5 i Np4 localitats de mostratge del bosc caducifoli de *N. pumilio*. Nb6, Nb5 i Nb4 localitats de mosterg del bosc perennifoli de *N. betuloides*.

plàntules i brots de *N. betuloides*. Possiblement, el mecanisme d'inhibició és el que actua en aquesta situació.

El fet que a la majoria de distribucions de freqüència les grandàries més petites no tinguin una representació elevada pot ser degut a un efecte del mostratge o a què ja han mort (figs. 2 i 3). Tanmateix, tampoc no estan ben reflectits en les distribucions dels arbres morts dempeus, possiblement perquè es descomponen més depressa i cauen. D'altra banda, la quantificació dels individus morts dempeus té algunes limitacions en fer-se d'aquesta manera. Es compten igual els que han mort fa un any i els que en fa alguns, i no es consideren els arbres que ja han estat abatuts. Les classes més afectades per aquesta circumstància són les més petites i les més grosses. En alguns casos es presenten freqüències baixes a les classes de mida més petita que són les de mortalitat més elevada; tot això impedeix una major elaboració de les dades. Malgrat tot es donen algunes regularitats importants. Ja he esmentat que la mortalitat (figs. 2 i 3) és, més o menys, constant per a les classes de mida gran a totes les localitats i, en conjunt, pot ser caracteritzada per una funció potencial negativa amb un grau d'ajustament que és més gran si despreciam la primera classe de grandària (taula IV). Aquests tipus de corbes (Harcombe, 1987; Hett i Loucks, 1976) indiquen un menor risc de mort amb l'augment de grandària que, en principi, està d'acord amb una mortalitat paulatina dels arbres i una formació de clarines també constant.

L'objecteció que hom pot fer aquí és que la distribució de grandàries dels arbres vius i morts potser hauria estat una altra si l'àrea de mostratge hagués estat més gran o en un altre lloc. Sigui com sigui, això no canviaria substancialment els resultats quan es tracta d'estands multi-cohort i confirma que el mostratge es va portar a terme amb la grandària apropiada (26 x 26 m i 25 x 40 m).

Així doncs, en ambdós tipus de boscens ens trobem amb estands multi-cohort, excepte a les parts baixes del bosc mixt perennifoli que està constituït per una sola cohort en considerar només *N. betuloides*. La terminologia tradicional es refereix als primers esmentats amb el nom d'estands multitetanis i als formats per una sola cohort com a coetanis. Però prefereixo emprar la terminologia proposada per Oliver i Larson (1990) per caracteritzar l'estructura demogràfica per edats, perquè la trobo molt més encertada i reflecteix millor la dinàmica dels boscens. Així, els estands multi-cohort són aquells on l'entrada
de nous individus es produceix a polsos de cohort entemps diferents, normalment després d’alguna pertorbació petita, com la mort d’arbres dominants. Mentre que els estands uni-cohort es desenvolupen després d’una pertorbació important malgrat que, com assenyala el mateix autor, el rang d’edats pugui variar des d’un any a unes dècades.

Estructura espacial i corbes de creixement

Un cop identificat el caràcter d’estands uni-cohort i multi-cohort, convé complementar alguns aspectes històrics referits a com i quan s’esdevé l’entrada de nous individus. Per això cal més informació sobre la història de l’estand (cf. Lorimer, 1985). Per abordar el primer aspecte es va cartografiar la posició de tots els individus a les parcel·les de mostratge, mentre que la història del bosc es veu més ben reflectida en les corbes de creixement anual dels seus components.

Les evidències sobre el terreny de les possibles pertorbacions, que han permès l’entreda de noves cohorts o el creixement dels individus ja existents en la subvolta, romanen reflectides en els troncs dels arbres caiguts i en el sòl que és remogut en diferent grau amb la formació de turons de diferent mida segons el nombre d’arbres implicats en cada esdeveniment. Quan la volta és més o menys contínua no es produceix regeneració (fig. 5). Així doncs, s’assumeix cert grau d’heliofilia de les espècies i la formació de clarianes per a la seva regeneració.

El reconeixement de les dimensions de les clarianes de bosc es va portar a terme de dues maneres: una a través de la mesura directa de les clarianes i l’altra per l’anàlisi de la distribució en

Figura 5. Aspecte que presenta el bosc caducifoli de *N. pumilio* a les parts baixes on va ser mostrejat, localitat Np6. Pot observar-se que no hi ha regeneració per sota de la subvolta i els troncs dels arbres caiguts. Al darrere, en un segon pla, l’abundància de brots en una clariana de bosc.
l'espai dels arbres que se situaren a les parcel·les de mostratge emprant quadrats de 2 x 2 m en un enreixat de 169 quadrats. L'estructura espacial fou analitzada mitjançant la tècnica dels quadrats jerarquitzats i el patró de distribució espacial s'expressa per l'índex de Morisita (Greig-Smicht, 1983). L'anàlisi de l'espai es va fer dues vegades: en una s'incloueren tots els arbres i a l'altra són els individus amb un diàmetre de més de 30 cm; es considera que els arbres d'aquesta grandària, que són dominants, conformen clarianes de bosc en morir-se. Els resultats es resumeixen a la figura 6. La distribució en l'espai dels arbres gossos és aleatòria, mentre que en incloure's tots els arbres la distribució és en agregats de fins i tot més de 100 m² a les parts mitjanes i baixes, excepte el bosc mixt perennifoli, i de fins a 32 m² a les parts altes en els dos tipus de bosc. Les diferències en la grandària de les clarianes que s’esdevenen a les parts altes i baixes es deu a la grandària més petita dels arbres a més altitud, però a més, entra en joc el tipus de regeneració, la qual a les parts altes la regeneració no és per llavors, sinó que és vegetativa. De la base dels troncs dels arbres surten els rebrots i d'aquí el tipus de distribució en l'espai. La regeneració vegetativa també té lloc en el bosc perennifoli, manifestant-se el gradient altitudinal.

Figura 6. Representació dels valors de l'índex de Morisita en funció de l'àrea en m². Els valors més grans de 1 corresponen a distribucions en agregats, igual a 1 aleatòria i menors de 1 regulars. — —, valors de l'índex inclouent tots els arbres. — —, són els més gossos de 30 cm de diàmetre. Les estrelles buides corresponen a D. winteri i les plenes a M. magellanica. Np6, Np5 i Np4 localitats de mostratge, per ordre altitudinal decreixent, del bosc caducifoli. Nb6, Nb5 i Nb4 idem del perennifoli. Les fletxes indiquen els valors significatius amb p < 0,05, aplicant el test de la F.
<table>
<thead>
<tr>
<th>Dècada</th>
<th>Nb6</th>
<th>Nb5</th>
<th>Nb4</th>
<th>Np6 i Np5</th>
<th>Np4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1740-1750</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1750-1760</td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1760-1770</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1770-1780</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1780-1790</td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1790-1800</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800-1810</td>
<td>X</td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1810-1820</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1820-1830</td>
<td>XX</td>
<td>XXX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1830-1840</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1840-1850</td>
<td>XX</td>
<td></td>
<td>X</td>
<td>XXXX</td>
<td></td>
</tr>
<tr>
<td>1850-1860</td>
<td>XXXXXX</td>
<td>XX</td>
<td>XXXX</td>
<td>XXXXXX</td>
<td></td>
</tr>
<tr>
<td>1860-1870</td>
<td>X</td>
<td>XX</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1870-1880</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1880-1890</td>
<td>XXX</td>
<td>XXXX</td>
<td>XXXXXX</td>
<td>XXXX</td>
<td></td>
</tr>
<tr>
<td>1890-1900</td>
<td>X</td>
<td>XXXXXX</td>
<td>X</td>
<td>XXXXXXXXXX</td>
<td></td>
</tr>
<tr>
<td>1900-1910</td>
<td>XX</td>
<td>XXXXXXXXXX</td>
<td>XX</td>
<td>XXXX</td>
<td></td>
</tr>
<tr>
<td>1910-1920</td>
<td>XXXXXX</td>
<td>XXXX</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1920-1930</td>
<td>XX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXXXX</td>
</tr>
<tr>
<td>1930-1940</td>
<td>X</td>
<td>XXXXXX</td>
<td>XXXX</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1940-1950</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XX</td>
<td>XXXXXXXXXX</td>
<td></td>
</tr>
<tr>
<td>1950-1960</td>
<td>XXXXXX</td>
<td>XXXXXXXXXX</td>
<td>XXXX</td>
<td>XXXXXX</td>
<td>XX</td>
</tr>
<tr>
<td>1960-1970</td>
<td>XX</td>
<td>XXX</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970-1980</td>
<td></td>
<td>XX</td>
<td>XXXX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980-1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 7. Freqüències absolutes dels augmentos de creixement comptabilitzades per dècades en les series de creixement anual dels arbres. Nb6, Nb5 i Nb4 localitats de mostratge del bosc perennifoli a la part baixa, mitjana i alta, respectivament. Np6, Np5 i Np4 en el bosc caducifoli.

que romania desdibuixat en la biomassa i altres característiques estructurals.

Saber quan s’esdevenen les clarianes en el bosc equival a preguntar-se quan miren els arbres, considerant que la mort individual no sempre produeix clarianes, ja que poden ser cicatrizades pel creixement lateral dels arbres veïns. L’objectiu és datar les obertures que fan possible l’entrada de noves cohorts. Una manera, quasi l’úica, d’abordar la seva datació es basa en les senyals enregistrades als anells dels arbres. Quan un arbre mor, els veïns, a la volta o a la subvolta, solen experimentar un augment del creixement en alliberar-se nutrients a l’espai i penetrar la radiació de manera més directa. Els augmentos bruscos del creixement permeten data les pertorbacions que s’han esdevingut. Per això, a partir de les corbes anuals de creixement, s’ha comptabilitzat per dècades els augmentos bruscos de creixement dels arbres de les localitats de mostratge (fig. 7). Dels resultats se’n treu que en determinades dècades es produiren clarianes de bosc; algunes són comunes a tots els estands i altres no (fig. 7). La dècada dels 50-60 és la més recent i comuna a tots els estands mostratjats. Per respondre a la pregunta de quan s’instal·len els plançons en aquestes clarianes es va portar a terme un mostratge en 9 d’elles en el bosc caducifoli, entre les localitats de la part baixa (Np6) i mitjana (Np5). A la fig. 8 s’ha representat l’estructura de grandàries de dues clarianes: una, en part, dins de parcel·la de mostratge, Np6,
i l’altra al costat de la mateixa. Les edats màximes, obtingudes comptant els anells a la base dels troncs, són de 32 i 34 anys per a una i altra clariana que és, aproximadament, el temps transcorregut des que es va obrir la clariana. Quan coincideix una regeneració quasi immediata després de l’obertura de les clarianes, l’edat dels plançons també pot emprar-se per datar-les. Però aquest no és un mètode del tot fiable, perquè l’establiment de plàntules no sempre és immediat.

El que no sabem és la contribució dels plançons ja existents en el bosc quan la volta no és del tot contínua. Les mostres de brots estudiades en aquesta situació a la localitat Np5, situada a la part mitjana del bosc caducifoli, van donar unes edats entre 12 i 26 anys. Aleshores, és possible que existeixi una contribució de plançons de la subvolta quan es formen clarianes. D’altres evidències provén que aquestes espècies de *Nothofagus* no són tan heliófils com sembla entendre’s a la literatura. En jutjar per les corbes de creixement anual (fig. 9), aquestes espècies poden viure a sota de les capçades dels arbres dominants, com a individus suprimits, durant molts anys. És fàcil observar l’augment de creixement després de passar els quasi 100 primers anys de vida en condicions d’arbres suprimits, amb manca de llum. El nombre d’arbres que mostraren aquest patró en el creixement anual fou més gran entre els individus de *N. pumilio* que entre els arbres mostrejats de *N. betuloides*. Però potser sigui un efecte del mostratge. Segons aquest criteri i els resultats, *N. pumilio* seria més tolerant a l’ombra que *N. betuloides*. A més, quan s’obren clarianes en el
bosc mixt de \textit{N. betuloides}, aquestes són ocupades per les dues espècies acompanyants. La seva distribució en l’espai (fig. 6) confirma l’entrada massiva de \textit{D. winteri} i \textit{M. magellanica} en grups de mida petita.

La regeneració en clarianes és la causa de l’estructura multi-cohort d’aquests boscos, excepte del mixt de \textit{N. betuloides}. L’entrada de noves cohorts pot repetir-se a una taxa constant segons la mortalitat dels arbres més grossos capaços de generar clarianes. La dinàmica de clarianes sembla ser suficient per automantenir aquests boscos de \textit{Nothofagus}. La situació és, però, diferent en el bosc mixt de \textit{N. betuloides}, on les pertorbacions haurien de ser més importants per tal de permetre un estat de regeneració adequat. Per això, caldria confirmar que els boscos formats tan sols per \textit{D. winteri} i \textit{M. magellanica} a altres parts de la Terra del Foc (Pisano, 1977) han desplaçat temporalment a \textit{N. betuloides}.

Dinàmica d’estands

Un dels exemples més clars de la dinàmica d’estands en els boscos de la Terra del Foc és el presentat per Schmidt i Urzúa (1982). El punt de vista de la investigació portada a terme per aquests autors es dirigeix a l’explotació forestal. La delimitació d’àrees de bosc per estands en diferents fases d’evolució (fig. 10) i la
quantificació de les seves característiques estructurals i dinàmiques (Schmidt i Urzúa, 1982), és el pas previ per a una gestió adequada que, segons la meva opinió, aquests autors han considerat molt encertadament. L'exemple l'he volgut incloure aquí per tal de contrastar-lo amb les situacions que he esmentat als apartats anteriors i profunditzar en alguns aspectes de com s'esdevé la regeneració dels boscos, en aquest cas de *N. pumilio*, per les implicacions pràctiques i teòriques que presenta.

Pel que expliquen els autors esmentats (Schmidt i Urzúa, 1982; 1989, com. pers.) i pel tipus de tractament que proposen per a una millor explotació del bosc, la causa de la formació dels estands és el vent. Convé no descartar altres factors que poden actuar de forma conjunta o no; em refereixo als fongs paràsits d'aquests arbres que els produixen una gamma variada de podridures en el xilema. En qualsevol cas, s'han de donar caigudes massives i sincròniques d'arbres senescents en els estands més vells o en estat estacionari i també, encara que en nombre menor, dels arbres en pitjors condicions dels estands en la fase de transició, si jutgem per la forma de les distribucions de grandària (Schmidt i Urzúa, 1982). L'efecte del vent en escombrar els estands en aquestes fases, fa caure selectivament els arbres senescents produint una homogeneització. Tanmateix, els seus efectes sobre els plançons i sobre els estands en fase de regeneració avançada és més minós. Un altre aspecte que recolza que la caiguda sigui massiva és el fet que aquests estands (Schmidt i Urzúa, 1982) siguin qualificats de coetans o uni-cohort podent ser més ampli el marge d'edats (Oliver i
Larson, 1990 p. 142), car l’entrada de nous individus es produirà sempre que hi hagi espai lliure. D’altra banda, malgrat que les pertorbacions més importants tinguen un efecte sincronitzador per a la majoria de les cohorts, als estands en la fase de transició i d’estat estacionari es va produir la formació de clarianes (fig. 11).

Un cop s’ha arribat a aquest punt cal preguntar-se per la importància de la regeneració a les clarianes sobre les quals es produeixi després una pertorbació més gran. Atès que no tinc dades, el que ve ara és una interpretació personal de les dades obtingudes per aquests autors. He esmentat abans que en àrees de la mateixa superfície o més petita talades arran o cremades no es produeix regeneració fins després de 50 i 80 anys. Així la importància de la regeneració a les clarianes de bosc és fonamental, i d’algunna manera pondera o esmorteix l’efecte de pertorbacions més importants. He exposat a través de les corbes de creixement que les espècies de Nothofagus, en especial N. pumilio, són menys heliófilies del que es pensava. La regeneració a les clarianes obertes molt grans compta, a més, amb la dificultat de l’efecte dessecador del vent. Schmidt i Urzúa (1982), bons coneixedors de la zona, proposen que es deïxi un dosser obert d’arbres grossos perquè es produeixi la regeneració. De fet, segons es dedueix de les dades d’aquests autors, l’àrea de bosc ocupada sols pels estands en fase de regeneració avançada és un 10 % del total. És possible que a la categoria de regeneració avançada Schmidt i Urzúa (1982) inclouguin també zones en fase d’autotala, ja que consideren arbres de fins a 12 m d’alçària. De la resta del bosc, el 46 % i el 44 % corresponen als estands en fase de transició i en estat estacionari, respectivament. Aquestes dimensions donen una idea força precisa de l’àrea en estat de regeneració que pugui ser absorbida pel bosc, de l’àrea susceptible de passar a la següent fase de la successió i de l’estat al qual passa i, finalment, de les possibilitats de rendiment del bosc. Faltaria per saber els temps de recurrència de les pertorbacions i la seva intensitat.

Remetent-nos als aspectes pràctics, la gestió de boscos en el quals es formen estands unicoquets és molt més fàcil i rendible que la gestió dels boscos amb estands multicoheets. De fet, la majoria d’estudis s’han portat a terme en estands d’una sola cohort. El reconeixement de l’estructura del bosc multicoheet o unicoheet i de la formació de mosaics a base d’estands és el pas previ per prendre decisions adequades. Per això, si hom vol provocar una estructura del bosc en estands uni-coheet mitjançant la gestió, caldrà conèixer les seves dimensions, entre elles les mínimes que permeten la regeneració, i com actuen els factors externs i interns sobre la dinàmica del bosc en el seu conjunt. En general, el reconeixement del paisatge en mosaics és fonamental en la gestió de la conservació de la natura.

Bosc caducifoli-bosc perennifoli

Els estudis orientats a manifestar quins són els factors rellevants en la distribució en l’espai que presenten els dos tipus de bosc a la Terra del Foc, ens enfrontà amb alguns dubtes que sols (almenys així sembla desprendre’s de les dades) poden ser explicats en relació amb els efectes causats per les derreres superpertorbacions: glaciacions, erupcions volcàniques, etc.

En una primera aproximació, la distribució dels boscos de la Terra del Foc sembla respondre a causes climàtiques, N. pumilio, més resistent a les temperatures baixes, es localitza a la franja interior, mentre que N. betuloides ocupa la franja costanera. En aquesta zona la influència maritària evitaria descensos grans de la temperatura. La presència d’espècies de morfologia laurífolia, com D. winteri i M. magellanica, que es troben a les parts baixes constituint un bosc mixt amb N. betuloides, apunten en el mateix sentit. D’altra banda, les dades climàtiques ho confirmen (Zamora i Santana, 1979), malgrat que les diferències no són tan accentuades com per explicar per elles mateixes aquesta distribució. S’observa igualment una ràpida transició d’un tipus de bosc a un altre, creixent.
a més, juntes les dues espècies en algunes zones. Pisano (1977) assenyala que els factors edàfics poden tenir una gran importància en la localització d’un bosc o de l’altre.

Reprenent aquesta hipòtesi, vam portar a terme una caracterització dels sòls. Els resultats obtinguts mostren que en el bosc caducifoli el procés predominant és el de podzolització i en el bosc perennifoli el d’hidromorfia (Romañà et al., 1989). Les diferències fonamentals entre un tipus de sòl i l’altre es poden resumir de la següent manera. La taxa de descomposició de la matèria orgànica en els sòls hidromorfs és més lenta del que cal esperar a elevades latitudes, de manera que el reciclatge de nutrients és més lent, fet que limita el creixement de les espècies. Es creen condicions d’anòxia, l’activitat dels organismes és menor (vam observar un gran nombre de cucs de terra en el bosc caducifoli i molt pocs o cap en el bosc perennifoli, depenent del grau d’hidromorfia), la implantació de micorrizes és molt escassa, essent abundant en el bosc caducifoli. Les característiques dels sòls hidromorfs propiciarien, doncs, estratègies conservadores de les espècies respecte als nutrients i una eficiència més gran del seu ús per l’arbre que manté les fulles fins a 7 anys (Gutiérrez et al., 1990). D’aquesta manera, N. betuloides es mostra com una espècie més resistent enfront de les fluctuacions petites del medi. Aquesta característica pot deduir-se també de les corbes anuals de creixement (fig. 9). N. betuloides presenta oscil·lacions anuals més petites que N. pumilio.

Sembla ser, així doncs, que les condicions del sòl determinen en bona mesura la distribució en l’espai de les dues espècies de Nothofagus. Sigui com sigui, la importància geogràfica que d’aquesta manera s’atribueix als sòls pot ser també qüestionada en passar de l’escala local a la regional. Cal apuntar, però, que la distribució de N. betuloides coincideix amb la zona costanera més plujosa i més afectada pel glaciarisme, produint pendent sanaus on hi ha una major acumulació d’aigua. Si aquesta hipòtesi fos certa ens trobaríem davant d’un cas molt interessant en els efectes de les glaciacions recents condi-

ccionen l’àrea de distribució d’un tipus de bosc a partir d’una precipitació llindar.

Depèn el tipus de bosc del règim de pertorbacions?

La relació entre les pertorbacions i el tipus de bosc existeix, malgrat que sigui difícil assignar-li una causa única, perquè els factors que entren en joc són múltiples. A gran escala les superpertorbacions han determinat en gran mesura l’àrea de distribució actual. Auer (1956) va presentar de quina manera havia variat l’àrea ocupada pels boscos basant-se en estudis del pol·len, capes de cendres dels volcans i efectes de les glaciacions. La cronologia post-pleistocèica elaborada després per Pisano (1975) per a la Terra del Foc a partir de les dades d’Auer (1956, 1960) i Mercer (1965), demostra que l’extensió i la distribució dels boscos ha experimentat moltes variacions d’avançament i de retrocés d’un bosc respecte l’altre i d’ambdós respecte l’estepa patagònica. Des de la darrera gran glaciació n’han esdevingut d’altres de menor intensitat que han tornat a remodelar el paisatge, sobretot a la part sud de la Terra del Foc ocupada actualment pel bosc perennifoli de N. betuloides. En els dos boscos, caducifoli i perennifoli, integren les dues grans unitats de paisatge les quals, sigui quina sigui la seva grandària, han existit en un estat d’equilibri puntuat o de quasi-equilibri durant milers d’anys entre supercatastrofes, glaciacions o erupcions volcàniques, la darrera de les quals succeí fa 2200 anys (Auer, 1960). He pres de Frelich (1986) el terme de quasi-equilibri que empra per referir-se a la dinàmica dels boscos estudiat a l’Amèrica del Nord.

Dins d’aquest marc general configurat per esdeveniments a gran escala, el caràcter en mosaic del paisatge depèn igualment de la distribució en el temps i l’espai del règim de pertorbacions i la fracció de paisatge pertorbada depèn, alhora, de l’invers de l’interval de recurrenciència. Com a exemple es pot considerar la formació d’estands a causa del vent, esmentat en
Figura 12. A, relació entre l'interval de recurrència, IR, i la intensitat, I, de la pertorbació mesurada com l'àrea de volta desapareguda en %. $R^2 = -0.822$, $N = 7$. Dades de Fretich (1986) en boscos temperats. B, idem entre la freqüència de les pertorbacions, F, i la grandària de les mateixes en m$.^2$

apartats anteriors (fig. 10), i els constituts per erupcions volcàniques en els boscos de Nothofagus spp. a la part central de Xile (Veblen et al., 1979; Veblen, 1985). A escales més petites les pertorbacions mitjanes i petites determinen, en gran mesura, el tipus de bosc quant a la seva composició específica, el tipus de comunitat i les característiques de la seva dinàmica espai-temporal mitjançant la formació de claraines (Runkle, 1985; Glitzenstein et al., 1986; Oliver i Larson, 1990). Comentaré el cas del bosc mixt perennifoli, car la formació de claraines, com a exemple de pertorbacions petites ja ha estat exposada en apartats anteriors.

En el bosc mixt de N. betuloides de la Terra del Foc les claraines petites produeixen per la mort d'un o pocs arbres són ocupades per D. winteri i M. magellanica. Pisano (1977) informa de l'existència, en altres zones del territori, de boscos constituits sols per aquestes dues espècies dins de l'àrea de distribució del bosc perennifoli magallànic. No tinc informació de si aquest tipus de bosc ha desplaçat o no a N. betuloides. Però en el cas de ser així, caldrien pertorbacions més importants perquè N. betuloides poguess regenerar-se. Normalment, en els boscos mixtos les claraines petites són ocupades per les espècies més tolerant a l'ombra, mentre que les pertorbacions més notables afavoreixen l'establiment d'espècies heliòfiles o d'estats inicials de la successió. En aquest sentit, existiria una certa correspondència entre les característiques ecològiques de les espècies, el seu grau de tolerància i la magnitud de la pertorbació. El problema, com assenyala Runkle (1985), és esbrinar quines determinen a quines, en el sentit de si són les pertorbacions potencials les que fixen la vegetació o si són les espècies que, adaptades a un tipus de clima i sòl, condicionen el tipus efectiu de pertorbacions. Atès que la interacció funciona en els dos sentits, la relació causal és difícil de dilucidar.

Autoorganització i pertorbacions

Al procés de simplificació produït per les pertorbacions s'hi oposa el procés d'autoorganització. El primer és un canvi ràpid, mentre que el procés d'autoorganització és lent i augmenta la complexitat del sistema. En els boscos, el desenvolupament autoorganitzatiu acostuma a assolir un estat estacionari i de
maduresa (Oliver, 1981 a Oliver i Larson, 1990; Peet i Chistensen, 1987) condicionat, evidentment, al fet que no s’hi produït abans una nova reinicialització. En aquesta fase el bosc assoleix el seu estat crític. La formació de clarianes de diferent grandària s’esdevé constantment segons la mortalitat dels arbres dominants (figs. 2 i 3) en els boscos tropicals i en els temperats (vegeu referències bibliogràfiques ressenyades). Les regularitats empíriques observades del procés d’auto-organització han estat descrites i estudiades (Odum, 1969; Margalef, 1974) més sovint que les pertorbacions, encara que ambdues participen en el canvi asimètric característic de la successió i de tots els sistemes (Margalef, 1989).

Una regularitat observada és que les grans pertorbacions són menys freqüents que les petites, seguint lleis d’escala ben definides. Aquesta regularitat ha estat analitzada i és típica dels sistemes dinàmics que espontàniament evolucionen i s’auto-organitzen fins a assolir un estat crític. Aquest estat crític es caracteritza en l’espai per la invariancia de les estructures que resulten de la dinàmica del sistema i en el temps per la resposta 1/f, això vol dir que es donen tots els senyals sense predominar-ne cap en concret (vegeu Bak i Chen, 1991, per a una explicació detallada, amena i clara sobre el tema). Les idees de criticitat autoorganitzada van ser exposades per primera vegada per Bak et al. (1987), essent l’exemple paradigmàtic emprat el d’una pila de grans de sorra. D’aleshores ençà, el debat sobre aquesta teoria ha millorat alguns aspectes (Kadanoff et al., 1989; Bak et al., 1988), i s’ha aplicat amb èxit als terratrèmols (Sornette i Sornette, 1989) i al «joc de la vida» (Bak et al., 1989), que per la seva similitud amb la dinàmica dels boscos, el pren dre com a exemple il·lustratiu. En el «joc de la vida» es simula la dinàmica d’un conjunt d’organismes repartits a l’atzar en un quadrat, que moren i neixen després de les pertorbacions produïdes en qualsevol punt. Bak et al. (1989) i Bak i Chen (1989) caracteritzen l’estat del sistema a través de la distribució de les mides dels agregats formats per conjunts d’individus, la distribució de la durada de les pertorbacions i el nombre de llocs actius en un radi r. En els tres casos el sistema respecta les lleis potencials d’exponents b = 1,4, b’ = 1,6 i b” = 1,7. Segons aquests autors, el fet que la dinàmica del sistema no respongui a funcions exponencials, cosa que provocaix un comportament caòtic, indica que els fenòmens de mort i reclutament de nous individus estan molt correlacionats en l’espai i en el temps, havent evolucionat el sistema cap a un estat crític. L’estructuració en mosaics (patchiness) i la configuració en l’espai dels llocs actius indica així mateix el caràcter fractal de la manera d’operar el «joc de la vida». Seguint el suggeriment de Bak i Chen en el sentit de la possible universalitat d’aquests resultats, s’han portat a terme recentment estudis teòrics i de simulació d’ecosistemes bacterians i de boscos (Solé et al., 1991a, 1991b). Aquests estudis preliminars han permès comprovar l’aparició d’aquesta dinàmica en aquests models i apunten a una connexió amb els estats finals de la successió.

Segons la meva opinió, la criticalitat autoorganitzada pot ser igualment aplicada als boscos. Sóc conscient que calen més estudis per comprovar-ho, però algunes dades de les quals disposo poden servir d’avançament. De fet, el mapat dels arbres (Gutiérrez et al., 1990) presenta una estreta similitud amb la configuració del «joc de la vida», la distribució de les freqüències de les pertorbacions i l’interval de recurrència s’ajusta a llov que proposen els autors de la criticalitat autoorganitzada, i les sèries anuals dels anells de creixement segueixen la llei empírica d’Hurts (Guardans et al., 1988; Feder, 1988, p. 153), característica dels senyals 1/f al llarg del temps. El sentit de tot això és la forta dependència de la dinàmica del sistema respecte als esdeveniments passats. Dissortadament, no disposo de les dades apropriades per caracteritzar la distribució de freqüències i la importància de les pertorbacions per als boscos.
de la Terra del Foc. Tanmateix, he recollit de la bibliografia les dades presentades per Frellich (1986) i Brokaw (1985) (fig. 12) i en els dos casos els exponents s’ajusten força bé als de Bak et al. (1989) i Back i Chen (1989).

Aleshores, si els boscos i el seu ambient, com en els terratrèmols estudiats per Sornette i Sornette (1989), evolucionen vers un estat crític o bé ja ho estan, el concepte d’equilibri estable, segons diuen Bak i Chen (1989), no té sentit car la natura està canviant continuament a través de configuracions crítiques metaestables o de quasi-equilibri puntuat, tot reprengent un llenguatge potser més familiar. Evidentment aquesta situació, per sobre o per sota de l’estat crític, ens donaria una idea de les possibles trajectòries del sistema envers l’estat crític. D’altra banda, els sistemes que presenten configuracions crítiques són feblement caòtics i això vol dir que són una mica més predictibles que els purament caòtics.

CONCLUSIONS

Els boscos de la Terra del Foc poden ser considerats boscos madurs segons es dedueix de la seva biomassa i regeneració. Ara bé, podem dir que en els estands estudiats es troben en un estat crític que s’automanté en base a unes pertorbacions que permeten la regeneració.

La regeneració dels boscos monoespecifics de Nothofagus a la Terra del Foc s’esdevé fonamentalment a les clarianes de bosc obertes per la caiguda d’arbres dominants. Aquestes pertorbacions es produeixen a una taxa constant i a l’atzar, i l’establiment de plàntules és per llavors a les parts mitjanes i baixes d’ambdós boscos. En el bosc mixt perennifoli es pot anticipar, si es vol, com a hipòtesi, que en absència de pertorbacions importants, N. betuloides pot ser desplaçada per les altres dues espècies acompanyants, D. winteni i M. magellanica. En situacions com aquesta el mecanisme que actua és el d’inhibició, les plàntules no assoleixen fases posteriors de desenvolupament. Així doncs, la dinàmica del bosc perennifoli és diferent, segons es tracti del bosc perennifoli mixt o monoespecific. En absència d’un bosc amb espècies, la dinàmica de regeneració del bosc caducifoli i del perennifoli és similar, i la dinàmica de clarianes condiciona l’estructura multi-cohort dels estands. Quan les condicions climàtiques són més rigoroses, com a les parts altes de les muntanyes, la regeneració es produeix per rebrots que neixen a la base dels troncs dels arbres dempeus d’acord amb la dinàmica de clarianes. La rigorositat del clima dificulta també el desenvolupament de fases molt evolucionades del bosc, el qual presenta una estructura i distribució dels seus individus en l’espai diferent a la dels boscos en estat estacionari de les parts mitjanes i baixes. No es descarta, doncs, que la regeneració per rebrot puguig haver predominat en les èpoques més fredes a la zona.

Les espècies de Nothofagus estudiades no mostren un grau alt d’heliòfília, si jutgem per les corbes de creixement que presenten fins quasi 100 anys de creixement anual suprimit. Per la mateixa raó tampoc no són bones colonitzadores d’espais oberts molt grans encara que en aquesta situació, altres factors, com el vent, poden privar la seva regeneració i desenvolupament posterior. Si cal classificar-les d’alguna manera es tractaria d’espècies mig tolerants, essent N. betuloides més heliòfila que N. pumilio.

Els boscos de Nothofagus de la Terra del Foc responen, en la seva estructura i en la seva distribució, a un règim de pertorbacions específic de la zona. L’heterogeneïtat del medi i el mosaic d’estands de diferents grandàries que presenta el paisatge en algunes zones del territori, mostren la magnitud o intensitat de les pertorbacions a què estan sotmesos. En escales de temps i espai majors, l’àrea ocupada per cada tipus de bosc depèn de l’intensitat que han mostrat les pertorbacions i de com han modelat l’àbitat, però això no implica la unidireccionalitat ni el condicionament de les espècies a l’àbitat creat. La distribució actual de les espècies de Nothofagus sembla respondre a efectes de pertorbacions de gran intensitat que, en haver modelat d’una manera determinada l’orografia,
condicionen l’èmbitat. *N. betuloides* ocupa les zones on l’òrografía ha estat més afectada per les glaciacions i/o aquelles on es produeix una precipitació llindant, a partir de la qual els límits de tolerància per a altres espècies de *Nothofagus* es sobrepassen.

Donades a conéixer algunes de les conseqüències de les pertorbacions, i per tant la no estabilitat de les condicions de l’èmbitat, potser moltes de les qüestions que resten per resoldre tindrien resultats més coherents des de la perspectiva del paradigma del no equilibri, tenint en compte que els boscos evolucionen i s’autoorganitzen envers un estat crític, amb estructures fractals configurades en un mosaic. La criticalitat auto-organitzada és, i així ho justifiquen els seus autors, una teoria holística que no depèn qualitativament dels mecanismes específics i, en general, les característiques del sistema no poden ser enteses a través de l’anàlisi dels seus components per separat. Aleshores, és molt apropriat prendre l’autoecologia de les espècies que, en bona mesura, determina les regles del joc.

AGRAÎMENTS

BIBLIOGRAFIA

Gutiérrez, E.; J. Ontivero; M. T. Sebastià (1985). «Es-
estructura de los bosques de Nothofagus pumilio, lenga, y N. betuloides, guindo, en los bosques de Tierra del Fuego», a Actas XII Reunión Argentina Ecología. p. 32.

