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Preface 
 

Current views in cognitive neuroscience assume that many high level cognitive 

functions, such as learning, language, or memory are anatomically widely distributed 

across the whole brain, interacting and overlapping with different large-scale functional 

systems. These functional specific brain networks are believed to be implemented in the 

brain by the segregation of different brain regions, that is, groups of neurons or cortical 

columns with common functional properties. It is the integration of these distal 

segregated regions, which might define the different cognitive processes. Moreover, 

these regions are also connected by the presence of specific neural pathways, which 

permits the information flow between areas. The lack of an anatomical support of these 

networks makes a direct functional connection biologically impossible. Indeed, unique 

afferent and efferent connections might define the connectivity patterns used to convey 

information to other cortical and subcortical regions. In this framework, it is the 

integration of the distributed neural network, linked anatomically and functionally in a 

precise way, which largely may define the brain’s function.  

 

The present dissertation is devoted to the study of how functional and structural 

information is integrated in the human brain by using in vivo and non invasive 

magnetic resonance imaging (MRI). More concretely, by combining functional MRI 

and diffusion tensor imaging (DTI) information, this dissertation aims to examine 

possible functional and micro-structural interactions in the human brain in order to 

reach a better understanding of the organization and dynamics of the distributed 

neural systems that subserve neural functions and human behaviour.
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In Chapter 1 the current main approaches used to characterize brain function and brain 

micro-structure are described. Derived from this introduction, five main approaches 

are proposed to investigate different aspects of brain dynamic and organization. These 

are summarized in five experiments on which we will focus in the next chapters. 

 

Chapter 2 responds to the standard univariate functional MRI approach, in which 

regionally specific effects are investigated. In this chapter, differences in functionally 

specialized areas are investigated using a reward-related task. This experiment is part 

of a big genetic project which has been developed in collaboration with the University 

of Magdebug and the Universtity of Tubingen (funded bv the VolkswagenStifftung 

Cognitive Neuroscience program). In this project, a large sample of 48 Spanish 

students (genetically characterized in several polymorphisms related to four 

dopaminergic genes) participated in a large neuroimaging protocol (including, 

electroencephalography, structural and functional MRI). MRI scanning was conducted 

in the Center of Advance Imaging (CAI, University of Magdeburg). In the first chapter, 

we report the effect interindividual variability in the dopaminergic system associated 

with genetic polymorphisms in reward processing. 

 

Chapter 3 goes a step further. The sole consideration of local regional activation is not 

enough to understand brain dynamics, as brain regions do not work in isolation. Thus, 

the cortical brain supporting a single function may involve many specialized regions 

whose union is modulated by the functional integration among them. With this 

proposal in mind, Chapter 3 introduces a new perspective to the reward processing 

question, revealing a differential pattern in the processing of positive and negative 

outcomes due to differences in interregional functional connectivity. 
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Chapter 4 presents the results of the work carried out during my research training in 

the Klinik für Neurologie II, Otto-von-Guericke-Universität Magdeburg, based on 

diffusion tensor imaging. This chapter aims to highlight the basics of the DTI 

technique. It brings new considerations to comparative longitudinal studies with voxel-

based analysis by revealing the patterns of variation of white matter with age. More 

concretely, it proposes a new mask procedure in order to distinguish between micro-

structural and global age-related changes. 

 

Once diffusion is introduced as a potential technique to study micro-structural brain 

organization, the next point to investigate is the interrelation between functional and 

structural information. With this objective, Chapter 5 is focused on the 

neurophysiological coupling between functional and structural properties by using a 

new combined functional MRI-DTI approach applied to the previously used reward-

related task.  

 

Nevertheless, it remains to be determined to what extent these functional-structural 

correlations interact with cognitive or behavioural performance measures. In 

particular, the similarity of the functional patterns observed with the micro-structural 

neural correlates associated suggests a tentative link for coupling neural activity at 

functional and structural level. 

 

Chapter 6 is devoted to the study of the interrelation between micro-structural white 

matter and individual differences in performance. DTI has emerged as a potentially 

powerful method for describing anatomical connectivity. According to the functional-

structural relationship, structural individual differences might also be able to explain 

differences in cognitive or behavioural performance measures. In this chapter, the 

correlation of true and false memory retrieval with micro-structural properties of 
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different white matter tracts is reported. The implication of white-matter structural 

differences is then highlighted as a fundamental key to the understanding of individual 

variations in cognitive functions.  

 

Finally, Chapter 7 gives an overview of the results presented. This chapter emphasizes 

the importance of integrating different brain levels in which functional and structural 

information interact with biological and performance variables. These levels include a 

combination of neurological, biological, psychological, physical and engineering 

factors, which, among others, are all necessary to the study of brain processing. 

 

This dissertation should not be considered as a treatise on functional and structural 

integration but rather as a launching point in order to begin to understand human 

functional and structural brain connectivity. 
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Chapter 1 

1. Introduction 
 

1.1. From neural to hemodynamic Activity  

Functional MRI (fMRI) is currently the most widely used neuroimaging method for 

brain mapping. The capacity to map brain functions non-invasively in vivo with fMRI 

has been critical for the success of cognitive neuroscience in the past decade. 

Nevertheless, the exact origin of the critical correlation between the physiological basis 

of the fMRI signal and neural activity still remains unclear.  

 

The MR signal can be made sensitive to local changes in the oxygenation of the blood 

(Blood Oxygenation Level Dependent effect, BOLD), which increases in activated parts 

of the brain (Ogawa, Lee, Nayak, and Glynn, 1990). Because neural activity consumes 

energy substrates, maintaining an adequate energy supply requires that an increase of 

blood flow occurs in the regions of the brain that are active.  

 

The energy demands of the brain, or the cerebral metabolic rate (CMR), is usually 

referred in terms of oxygen utilization (CMRO2). This reduction is possible because 

nearly a ca. 90% of the glucose (5 mg kg-1min-1) is aerobically metabolized, and thereby 

the amount of oxygen consumption is practically proportional to the CMR of glucose 

utilization and proportional to the neural activity. Although the brain represents only 

2% of the body weight, it receives 15% of the cardiac output, 20% of total body oxygen 

consumption, and 25% of total body glucose utilization (Buxton, 2002). Moreover, the 

oxygen consumption is four times greater in grey than in white matter. Accordingly, the 
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density of vascularization is not uniform across layers, in particular denser 

vascularization is observed where de highest concentrations of neural cell bodies are 

located. 

 

Thus, activity dependent changes in local deoxyhemoglobin levels are thought to result 

from changes in oxygen extraction, blood flow and blood volume regulation within the 

brain, all of which change in relation to several types of neural activity (Buxton, Wong, 

and Frank, 1998) (Figure 1.1).  

 

Stimulus Neural Activity CBF

CMRO2

CBV

BOLD signalStimulus Neural Activity CBF

CMRO2

CBV

BOLD signal

 

 
Figure 1.1: Neurovascular coupling. Schematic of the transformation of neural activity evoked 
by a stimulus to a hemodynamic response resulting in a BOLD signal. 
 

Indeed, the intrinsic spatial sensitivity of the MR-signal to detect local changes in 

perfusion1 and metabolism, provides the basis to map patterns of activation in the 

human brain. For a long time, the oxygen sensitivity of the MR signal from blood has 

been known. In particular, Thulborn et al. (Thulborn, Waterton, Matthews, and Radda, 

1982) demonstrated that the T2 signal decay was strongly dependent on the 

oxygenation of the haemoglobin. Later, Ogawa et al. (Ogawa et al., 1990) observed that 

rodent brains at high-magnetic field strengths (7 Tesla) showed MR signal changes 

related to blood oxygenation in regions in the vicinity to local blood vessels. More 

importantly, the MRI signal around veins decreased when the oxygen content of the 

                                                        

1 Perfusion is an indirect measure of the irrigation of the tissue via blood (the volume of blood 

that travels through a tissue mass over time). 
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inspired air was reduced, but the effect was inverted when the oxygen was returned to 

normal values. The reduction in the signal observed was extended in the tissue space 

around the vessels and not constrained to the blood itself. These results suggested that 

the T2* decay was affecting both intravascular and extravascular spaces.  

 

Further experiments demonstrated that the same effects were found in an ischemia 

model, in which a reduction of T2* with decreasing oxygenation of the blood was 

observed (Turner, Le, Moonen, Despres, and Frank, 1991). It was in 1992 when the first 

functional MRI results in the human brain after visual stimulation were obtained, using 

both an inverted recovery and gradient-echo EPI sequence in 1.5 Tesla MRI scanner 

(Kwong et al., 1992; Turner et al., 1991).  

 

Ogawa et al. (Ogawa et al., 1990) replicated these findings after observing changes in 

fMRI gradient-echo signal resulting from long duration visual stimulation. The fact that 

a signal increase was found after activation unexpectedly suggested that blood was 

more oxygenated with activation. Further experiments resolved this controversy. 

Deoxyhemoglobin produces magnetic field gradients around and through the blood 

vessels inducing a decrease in the MR signal. However, increases in the synaptic 

activity in the brain give rise to increase in the local cerebral blood flow, which increase 

much more than does the metabolic oxygen consumption. The result is that an increase 

in the oxygenated blood decreases the ratio of deoxyhemoglobin present and therefore 

the magnetic field distortions around the blood decrease. Thus, this change in 

susceptibility due to activity dependent changes in local deoxyhemoglobin levels, 

produces an increase in the local magnetic resonance signal and induces the BOLD 

signal in functional magnetic resonance imaging (Figure 1.2).  
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Figure 1.2: Schematic Spin-echo (SE) and gradient echo (GRE) pulse sequences. Both sequences 
are sensitive to BOLD signal changes. The GRE sequence does not include an 180º refocusing 
pulse or its accompanying slice selection gradient and therefore the TE (echo time) can be 
shorter. 
 

The hemodynamic response begins with an initial short dip of the BOLD signal and 

then shows a steep increase, with a maximum between 4-6 s after the onset of neural 

activity. The hemodynamic response to a given stimulus can last between 20 and 30 s 

until complete return to a baseline level, but this pattern can vary between regions and 

subjects (Aguirre, Zarahn, and D'Esposito, 1998). The initial dip in the BOLD response 

is thought to reflect a local increase in oxygen consumption that likely reflects an 

increase in neural activity (Malonek et al., 1997). This effect should be spatially highly 

specific, but it is unfortunately quite inconsistent across studies. Such a discrepancy 

might be due to the fact that the amplitude of the initial dip is much smaller than the 

main BOLD signal. It is necessary to use high magnetic fields in order to enhance the 

signal-to-noise ratio and observe the effect (Yacoub et al., 2001).  

 

Nevertheless, a major concern in the expanding field of functional MRI has been the 

absence of a quantitative link between BOLD signal and neural responses. Thus, 

Hegger et al. (Heeger, Huk, Geisler, and Albrecht, 2000) and Rees et al. (Rees, Friston, 

and Koch, 2000) provided the first direct evidence that fMRI responses were 

proportional to firing rates. Later, by simultaneously measuring and comparing local 
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field potential and multi-unit neural activity, Logothetis et al. (Logothetis, Pauls, 

Augath, Trinath, and Oeltermann, 2001; Logothetis, 2003) claimed that the local field 

potentials (LFP) were a slightly better predictor than multi-unit activity (MUA)2 for the 

fMRI signal. From these results, Logothetis therefore concluded that the BOLD signal 

mainly measures the input and processing of neural activity within a region and not the 

output signal transmitted to other brain regions (Logothetis, 2003). Importantly, 

Mukamel et al. (Mukamel et al., 2005) after recording the single unit activity and local 

field potentials in auditory cortex of two neurosurgical patients and compared them 

with the functional MRI signals of eleven healthy subjects during the presentation of 

identical movie segment, demonstrated that functional MRI signals could provide a 

reliable measure of the firing rate of human cortical neurons (but see Goense and 

Logothetis, 2008). 

 

1.2. Brain segregation and brain integration 

Since the early anatomic theories of Gall, the identification of a particular brain region 

with a specific cognitive function has become a central topic in neuroscience. Indeed, 

the major goal of functional MRI analysis is to capture the BOLD signal associated with 

a particular task-related neural activity and maps it into a particular brain localization. 

Functional segregation is achieved by identifying brain regions that are more activated 

by one task than another.  

 

                                                        

2 MUA and LFA reflect the dynamic interaction of different mechanisms. In particular, MUA 

reflects mostly the output of the neural population, while LFP provides a measure of the 

weighted average of synchronized dendro-somatic components of the input signal of a neural 

population. 
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Serial subtraction methods assume that the increase in neural activity observed in a 

region is elicited by the successive elaboration of a task by adding separable cognitive 

components. Based on the same subtraction logic first introduced to psychology by the 

Dutch scientist Donders, each cognitive component evokes an additional physiological 

activation that is the same irrespective of the cognitive or physiological activation 

context. However, it has been proposed that factorial designs are more powerful than 

subtraction designs in characterizing cognitive neuroanatomy, because they allow for 

interactions among the cognitive components of a task (Friston et al., 1996a; Mukamel 

et al., 2005). 

 

Cognitive processes, however, cannot be understood only at the functional regionally 

specific level, because brain regions do not act in isolation (Mesulam, 1990). In many 

functional MRI experiments, multiple areas are found to be coactivated during a given 

task. It is common thus to report that a task evokes simultaneous activity in multiple 

brain regions. For example, a working memory task triggered activity in the prefrontal 

and parietal cortex or the classical finger tapping tasks respond to the precentral gyrus 

contralateral to the movement and to the cerebellum. However, coactivations do not 

imply that a single function is shared between regions. In a task thereby that involves 

pressing a button when a flashing light appears on the screen, the motor and the visual 

cortices should be activated concurrently, even though they perform very different 

functions. Thus, the cortical brain supporting a single function might involve many 

specialized regions whose union is modulated by the functional integration among 

them. 

 

In light of this, two complementary fundamental principles of functional organization, 

functional integration and functional specialization, appear to be inherent to the 

human brain. This dissociation is observed in neurologically impaired patients. For 
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instance, studies of schizophrenic patients have shown an abnormal response in the 

frontal lobe in some contexts while they present normal activity in others (Price, 

Crinion, and Friston, 2006). Thus, abnormal functional integration in schizophrenia 

can be detected from the contextual activity pattern observed. Specifically, the frontal 

lobes might function normally when they interact with one set of regions but 

abnormally when they interact with another set (figure 1.3). 

 

In this framework, a complete understanding of brain processing requires both 

regionally specific activations and regionally specific interactions (see for a review, 

Camara et al., 2008). 

 

1.3. Functional brain connectivity 

One of the fundamental questions in cognitive neuroscience therefore, is to determine 

how such functionally specialized areas are integrated in a known functional network, 

and how these interactions depend on the cognitive context. The inherently 

multivariate nature of functional MRI allows the investigation of how anatomically 

distant brain regions interact during a specific cognitive task. 

 

Basically, it is assumed that those regions involved in a network should present 

strongly similar activity patterns among them. Indeed, correlation-based analyses are 

typically used to infer functional brain connections (Horwitz, Rumsey, and Donohue, 

1998; McIntosh et al., 1994). Nevertheless, it is important to bear in mind that neural 

activity changes within milliseconds but the temporal scale of the hemodynamic 

response is in the order of seconds. Therefore, a significant correlation simply implies 

that activity goes up and down together in distant regions.  
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B1

A2 B2

A1 A3

A2 A4

A1

Task 1 activates A1 and A2

Task 2 activates B1 and B2

Task 1 activates A1 and A2

Task 2 activates A3 and A4

Task 3 activates A1 and A3

Task 4 activates A2 and A4

Functional segregation Functional integration

 

Figure 1.3: Functional segregation and integration. Functional segregation (left side) refers to 
the segregation of different brain regions according to their function. In this illustration, regions 
A1 and A2 are activated by task 1, while regions B1 and B2 are activated by task 2. Damage to 
one region (e.g. A1 indicated by dotted lines) impairs performance on task 1 but not on task 2. 
Functional integration refers to functions that depend on how regions interact with one another. 
In the illustration, region A1 is involved in two different tasks: one that depends on its 
interaction with region A3. Damage to the connections between regions A1 and A3 will disrupt 
responses in A1 when the task requires regions A1 and A3, but not when the task requires 
regions A1 and A2 (adapted from Price et al., 2006). 
 

 

From such temporal correlations, the concepts of functional and effective connectivity 

were introduced by Friston et al. (Friston, Frith, Liddle, and Frackowiak, 1993) to 

identify functional networks. The important point of this distinction is based on the fact 

that functional connectivity refers simply to the presence of correlations between 

regions, but without considering what could be the causes. Contrary, effective 

connectivity according to some model of influences, describes differences between 

correlated regions based on the influences that one brain region exerts on another. 

Both concepts assume that temporal correlations in the BOLD signal reflect 

synchronous neural firing in the interacting regions. 
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1.3.1. Functional Brain Connectivity 

Functional connectivity studies describe the patterns of neuronal connections by 

measuring the degree in which spatially remote neurophysiological events express 

similar behaviour or statistical independence. For example, in multi-unit electrode 

recordings, functional connectivity can result from stimulus-locked transient responses 

evoked by a common afferent input, or might reflect stimulus-induced phasic coupling 

of neural assemblies, mediated by synaptic connections among brain areas (Gerstein 

and Perkel, 1969). However, functional MRI connectivity analyses do not make any 

direct assumption about the nature of the neural activity that may have contributed to 

the BOLD signal. It could even reveal direct or indirect connections mediated by 

unknown areas. 

 

Motivated by the idea that spontaneous firing of functional connected neurons might 

elicit correlation in the BOLD signal, several early explorations of functional 

connectivity were focused on inter-regional interactions during the resting states. The 

pioneering experiment in this field was reported by Biswal et al. (Biswal, Yetkin, 

Haughton, and Hyde, 1995), who demonstrated low frequency fluctuations between the 

left and right primary motor cortices, when the subject was not explicitly engaged in a 

cognitive task. Since then a number of resting state networks have been identified in 

humans (Salvador et al., 2005; Stein et al., 2000; Lowe, Mock, and Sorenson, 1998), 

and altered patterns of connectivity have been found in patients (Lowe et al., 2002). 

Then, studies began to investigate the correlation between two time series, during the 

continuous performance of a cognitive task as assessed in blocked design experiments. 

 

Basically, classical correlation analysis assesses the correlation between a small 

number of pre-selected regions or between voxels of interest,  
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where iX  and iY are two different voxels at the scanning volume i. The correlation field 

can be introduced as the matrix of all pair-wise correlation coefficients (auto-

correlation matrix), indicating those regions coactivated with a particular activation 

pattern. The auto-correlation matrix can also be transformed and thresholded applying 

a t-statistic test with m = n-1 degrees of freedom: 
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If images have previously been smoothed, p-values can be obtained and thresholded by 

applying a random field approach. Those regions showing large correlations are 

considered functionally connected regions with regard to the specific cognitive task 

(Rogers, Morgan, Newton, and Gore, 2007).  Simple correlation analyses, however are 

highly sensitive to the shape of the hemodynamic response function, such as onset-

delay, time-to-peak, and width which are regional-dependent due to the individual 

differences in vascular properties across regions (Bandettini and Cox, 2000; Buckner et 

al., 1996). Due to this sensitivity, correlation analyses are often restricted to block 

paradigms, which are less sensitive to the shape of the hemodynamic response 

function.  

 

Coherence-related parameters, in contrast, are invariant to differences in the 

hemodynamic response function, and consequently they provide a better approach for 
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studying connectivity in event-related paradigms, which can better exploit the temporal 

information provided by the signal. Thus, because the fMRI signal has a temporal 

dimension, the coherence BOLD-related information can be used to guide connectivity 

mapping. This approach has been used extensively in the measurement of high-

frequency oscillations in the EEG waveform after the brain regular oscillatory electrical 

potential patterns discovered by Berger et al. (Berger et al., 1920; see Marco-Pallares et 

al., 2008 for a review of data analysis in EEG). Coherence provides a measure of 

frequency-specific association between two time series, x and y, at frequency λ domain. 

It is defined as the cross-spectrum of two time series (fxy (λ)), normalized by the power 

spectrum (fxx (λ)) of each time series: 
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where the cross-spectrum fxy (λ) and the power spectrum fxx (λ) are defined as 
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and the cross-covariance function is then defined below for stationary time series, x 

and y  as: 

 

[ ] [ ] [ ] )})·({( yxxy utytxEuCov μμ −+−=
 

 



Tracing functional brain architecture: a combined fMRI-DTI approach 

  Chapter 1   

 

24 

 

E denotes the expected value, while µ refers to the mean time series value, highlighting 

the link between the coherence and correlation function. 

 

It is important to point out that the interregional covariance patterns do not allow a 

precise definition of functionally related networks. For example, two regions A and B 

may have a large correlation in activity, because they are directly linked anatomically 

and functionally. Alternatively, however, they might also both receive inputs from a 

third region C, which would also lead to high correlation values in spite of the fact that 

no direct interaction between the two regions takes place.  

 

To account for this situation, another statistical approach adopted in functional 

connectivity studies is to compute partial correlation coefficients. Specific associations 

between two regions are estimated to control and remove the contributions of pair-wise 

correlations that might arise due to global or third-party effects (Hampson, Peterson, 

Skudlarski, Gatenby, and Gore, 2002). However, the selection of the appropriate 

connections is always model-dependent. 

 

Partial coherence is a statistical parameter equivalent to the partial correlation, but in 

the time-domain (Sun, Miller, and D'Esposito, 2004), which can be calculated for each 

of the Fourier frequencies: 
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with f-1j,k (λ) corresponding to the (j,k)th element of the inverted spectral density 

matrix at frequency λ.  
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At this point, we have defined a general framework for the estimation of the main linear 

time/frequency-invariant relationship derived from the time series. In this context, 

coherence and partial coherence open a new perspective, which allows the detection of 

interactivity between the nodes of a selected task-related network and across tasks in 

blocked designs. The use of blocked design experiments clearly permits the distinction 

between task and rest periods. It has also the advantage of collecting a large number of 

temporally contiguous data points, which makes computations robust and sensitive to 

low frequency fluctuations. However, some cognitive processes could not be studied by 

block designs. For example, in action monitoring tasks aiming at the delineation of 

error-related activity, reward or in memory tasks trying to differentiate successfully and 

unsuccessfully remembered items, it is not possible to predict when an error or 

memory hit will be produced; hence, block-designs are not feasible. 

 

A new approach to characterize functionally interacting regions using event-related 

functional MRI data was introduced by Rissman et al. (Rissman, Gazzaley, and 

D'Esposito, 2004) based on the parameter estimates obtained in the context of the 

general linear model. Parameter estimates reflect how much of the data is explained by 

each regressor (main regressors are the experimental conditions). Thus, Rissman et al.  

(Rissman et al., 2004), in accordance with previous electrophysiological and fMRI 

coherence studies, found that bimanual motor coordination elicited larger correlations 

between motor regions of the two hemispheres compared to simple motor tasks. The 

beta series method uses a standard general linear model approach but adapts the model 

in such a way that separate beta values (general linear model  parameter estimates) are 

obtained in order to modulate activation changes for each component of each 

individual trial. With this approach, a series of parameter estimates can be extracted 

from a seed region, correlated across the brain and potentially identify specific 

networks. Statistical inferences can be made based on the correlation of the magnitude. 
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First, an arc-hyperbolic tangent transform is applied to normalize the correlation 

coefficients, which are therefore z- transformed. Finally, the z-tranformed correlation 

maps are spatially normalized and significance is inferred by applying a group level 

random effect t-test. 

 

Subjects’ brains (native space) differ markedly in their macroanatomical structure and 

consequently a direct comparison between brains is not possible. Normalization is a 

form of coregistration, which transforms all of the individual high-resolution images 

into a common stereotactic space (Ashburner and Friston, 1997). The most commonly 

used stereotactic space is the Talairach space (Talairach and Tournoux, 1988) derived 

from a single brain of an elderly woman. However, because it comes from a single 

brain, it is not representative of the population. Probabilistic stereotactic spaces which 

combine data from many individual brains provide a useful alternative. The Montreal 

Neurological Institute (MNI) template is the result of averaging 152 T1-weighted brain 

images after being transformed into the Talairach space. 

 

Other approaches of assessing functional connectivity have been described; in 

particular, some of them have been focused on the reduction of the number of regions 

involved in the correlation analysis. As the number of regions that we are interested in 

comparing increases, the covariance matrix becomes larger and larger and thereby 

computations become more complex and more difficult to interpret. Indeed, different 

statistical multivariate approaches have been used to overcome and simplify the model, 

such as multidimensional scaling, principal component analysis, independent 

component analysis, or principal least squares. These methods are very attractive in the 

sense that they do not require any previous hypothesis about the connectivity links of 

interest.  
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Singular Value Decomposition, for instance, seeks to reduce the dimensions of the 

correlation structure to a small number of orthogonal modes, “principal components”, 

multiplied by weights that vary randomly over time or subject (Worsley, Chen, Lerch, 

and Evans, 2005). Eigenimages are usually extracted using singular value 

decomposition (SVD) or related techniques. SVD transforms the original time-series 

(X), where each column represents a voxel and each row a scan of mean-corrected data, 

into two sets of unitary orthogonal matrices (v,u), and a s diagonal matrix of decreasing 

singular values, (t denotes transposition). 

 

[ ] }{,, XSVDvsu =  

tvsuX ··=  

 

SVD allows the extraction of eigenvalues and eigenvectors of both X·Xt and Xt·X. The 

first one is proportional to the voxel-by-voxel spatial covariance matrix, while the latter 

is equivalent to the scan-by-scan temporal covariance matrix. The eigenvalues are the 

same for both dimensions. That is, column of v defines the spatial components, 

representing a distributed brain system that can be displayed as an image (eigenimage). 

Column of u represents temporal or scan-order patterns accounting for the time-

dependent profiles associated with each eigenimage (eigenvariate). Eigenvalues are the 

singular values squared of the s matrix, estimating the relative amount of variance 

accounted for each principal component, allowing a qualitative assessment of the 

importance of each eigenimage/eigenvariate. Thus, the first eigenimage expresses the 

pattern over voxels that accounts for the greatest variability across all the scans, while 

the first eigenvariate is the temporal pattern that reflects the greatest variability across 

all voxels. Thus, those voxels with high eigenimage values co-vary together and 
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consequently are positively correlated. In contrast, voxels with components differing in 

sign are negatively correlated. 

 

When different methods used to compute functional connectivity are compared, 

slightly different results or information is obtained. Worsley et al. (Worsley et al., 2005) 

showed that in practice, correlations are highly sensitive and able to detect focal 

interactions while SVD are more prone to finding connections between more extensive 

regions. Nevertheless, the main drawback using SVD is to select the appropriate 

number of components involved, which should correspond to the number of networks 

that are of interest during a particular experiment. For instance, in the previously 

presented example, in which flashes of light were synchronized with hand squeezing, it 

is reasonable to suppose that two different networks (visual and motor) are playing a 

different role. More components will lead to a more complete but also more complex 

description of the system. Therefore, only a few principal components are typically 

selected and those components that only contribute minimally to the explained 

variance are neglected. The main advantage of correlation analysis over all other 

connectivity approaches is that it allows the quantification of the interactions by 

thresholding the correlations.  

 

Many other studies also have reported the use of  fMRI data to assess functional 

connectivity in healthy subjects during a specific task involving the motor system 

(Rogers, Carew, and Meyerand, 2004; He and Lian, 2002), language organization 

(Horwitz and Braun, 2004; Homae, Yahata, and Sakai, 2003; Hampson et al., 2002) 

and the visual and the auditory systems (Horwitz et al., 2004) or during resting 

conditions (Jiang, He, Zang, and Weng, 2004; Xiong, Parsons, Gao, and Fox, 1999; 

Biswal, Hudetz, Yetkin, Haughton, and Hyde, 1997), among others. 
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1.3.2. Effective connectivity 

Effective connectivity refers explicitly to the influence of one neural system on another, 

either at synaptic (i.e. synaptic efficacy) or population level (Friston et al., 1993). More 

concretely, it has been proposed that “the [electrophysiological] notion of effective 

connectivity should be understood as the experiment- and time-dependent, simplest 

possible circuit diagram that would replicate the observed timing relationships between 

the recorded neurons” (Aertsen et al., 1991). Indeed, the concept of effective 

connectivity takes a step further than functional connectivity, because it seeks to 

describe and quantify the influence of one brain area upon another. Thus, constraining 

the regions and connections of interest with a theoretical causal model might explain 

the neural activity patterns. Then, considering the brain as a dynamic system, from 

which certain physiological parameters can be observed over time (BOLD signal for 

example) and given particular inputs (experimental perturbations of the system), it is 

possible to estimate those parameters that yield the dynamics of the underlying states. 

In the following, we will describe the main three approaches used to capture effective 

connectivity, namely (i) psychophysiological interactions (ii) structural equation 

modelling, and (iii) dynamic causal modelling. 

 

In a psychophysiological interaction analysis (PPIs), the physiological response in one 

area of the brain is regressed on activity in all other voxels. Psychophysiological 

interactions can be understood as the modulation that one cerebral region exerts over 

another in a specific experimental context. That is, if we relate the activity of one region 

in terms of another, the slope of this regression reflects the influence of the second area 

over the first one. Friston et al. (Friston et al., 1997) illustrated this idea in a functional 

MRI study, in which participants were attending to a visual motion cue. Thus, by 

combining information about activity in the parietal region, which is assume that 

mediate attention to a particular stimulus, and information about the stimulus, they 
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identified regions that respond to that stimulus when activity in the parietal region was 

activated. Variations in the slope of such regressions model changes between 

experimental cognitive conditions. These regressors are used then to identify other 

regions in the brain where activity is significantly coupled with the specific 

psychological context.  

 

One of the main problems in connectivity analysis is the large number of possible links 

among regions to be analyzed. It increases exponentially with the number of areas that 

are involved and it is thereby, extremely difficult to provide unique reliable solutions to 

connectivity analyses. In virtue of the assumption that the presence of a structural 

connection makes a functional connection biologically meaningful and more likely to 

occur, analyses of anatomical connectivity opens a useful tool for restricting the 

number of functional connections to be analyzed. Additional anatomical information 

has long been considered as a tool for helping in the analysis and interpretation of 

functional neuroimaging data. Accordingly, in contrast to psychophysiological 

interactions, structural equation modelling and dynamic causal modelling constrain the 

connectivity analysis to a limited number of regions, based on some known anatomical 

connections or functional systems. 

 

Thus, structural equation modelling (SEM) is model-dependent, requiring the a priori 

specification of an aprioristic anatomical model, which graphically defines those 

anatomical connections considered functionally relevant (Goncalves and Hall, 2003). 

The connectivity model not only states which regions are connected one to another but 

also the direction of the connection. It is important to note that only a small number of 

regions can be included in such a model, because, otherwise, computational problems 

arise. Then, SEM estimates the connection strengths (path coefficients) that best 

predict the inter-regional covariances of the functional imaging data under the given 
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model. In practice, this is achieved by applying iterative methods that minimize the 

difference between the observed covariances (∑ obs ) and the predicted model 

(∑ pred ). Thus, the observed covariances are directly calculated by: 

 

∑ −
=

1
·
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where X  is a p x N matrix, where each column represents a voxel and each row a scan 

of mean-corrected data. One of the simplest models of effective connectivity is to 

consider the activation in a region as weighted sum of changes elsewhere. If we 

consider a model where the variables X reflect direct causal implications of a set of 

independent variables z, this can be defined as a set of variables X with residual 

influences z. 

 

zAXIX += ··  

 

where I corresponds to the identity matrix, and A is a matrix of the unidirectional path 

coefficients imposed by the model. This reduces X to 
1)·( −−= AIzX  and the 

covariance matrix predicted by the model can be expressed as follows: 

 

tt
pred AIBAIAIzAIz )·(·)())·(·())·(( 11 −−=−−= −−∑  

 

where B corresponds to the covariance matrix of the residuals z. Different SEM 

approaches may differ in the precise method used for the calculation of the correlation 

matrix (Horwitz, 2003). 
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A variety of fitting functions can be applied such as maximum likelihood (ML) or 

generalized least squares (GLS), the latter is used when non-linear interaction terms 

are considered. 

 

ptraceML predobsobspred −+−= ∑∑∑∑ − )·())log(det())log(det( 1

 

 

where p corresponds to the number of free parameters. ML follows a χ2 distribution 

and can be used to infer statistical significance of the model. 

 

Changes in effective connectivity are usually evaluated in SEM by comparing the fitting 

between two models. Thus, Mechelli et al. (Mechelli, Penny, Price, Gitelman, and 

Friston, 2002) for example, used a multisubject network to investigate intersubject 

variability in functional integration in the context of single word and pseudoword 

reading. They showed that differences between processing words and pseudowords do 

not simply lie in the degree of activation in one or more regions of the language system. 

Rather, such differences can be characterized in terms of context-sensitive interactions 

among brain areas. SEM also allows to compare changes in connectivity among 

different groups of subjects, such as patients and normal subjects.  

 

Dynamic Causal Modelling (DCM) shifts the focus from regionally-specific activations 

to interregional path-specific activations using a dynamic deterministic nonlinear 

model, in which different expressions of effective connectivity can be derived as special 

cases of DCM. Unlike SEM, the characterization of the interregional connection 

between brain areas is based on the rate of change of neuronal activity, and therefore, it 

does not depend on the units of activity per se, but rather the speed or rate of 

interregional coupling and how this is modulated by experimental conditions. The basic 

aim is to model the brain as a dynamic system, which is subject to inputs and produces 



Tracing functional brain architecture: a combined fMRI-DTI approach 

  Chapter 1   

 

33 

 

outputs in terms of parameters that represent the coupling between unobserved brain 

states. Thus, inputs modulated by the experimental conditions can either induce 

neuronal responses in specific anatomical regions, but they might also change effective 

connectivity by influencing the coupling between nodes.  

 

The main idea is to submit the system to different controlled experimental inputs, 

which directly generate variation in the outputs. By measuring the responses after 

perturbing the system, free model parameters can be estimated. Indeed, effective 

connectivity can be expressed following any nonlinear function characterizing the 

neurophysiological inputs related to a brain region in relation to other regions. DCM is 

also supported with a forward model, which transforms the neural responses to a 

measurable hemodynamic response, the output. The strength of the intrinsic 

connections infers the speed with which a change in activity in one region causes a 

change of activity in another region. A positive connection indicated that an increase in 

activity in one region results in an increase in activity in another region. In contrast, a 

negative connection assumes that an increase in activity in one region results in a 

decrease in activity in another. In general, DCM does not restrict the number of 

connections that can be modelled, consequently a large number of free parameters have 

to be estimated. Several constraints have to be imposed (for example, the neural 

activity cannot diverge exponentially to infinite values). A Bayesian framework is an 

appropriate approach to tackle such an analysis. A complete mathematical explanation 

of DCM can be obtained from Friston et al. (Friston, Harrison, and Penny, 2003).  

Additional approaches for connectivity mapping include multidimensional scaling 

(Welchew, Honey, Sharma, Robbins, and Bullmore, 2002) and hierarchical clustering 

(Stanberry, Nandy, and Cordes, 2003). These methods use dissimilarities rather than 

partial correlations allowing the use of complementary multivariate techniques. 
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1.4. Anatomical connectivity 

Currently, functional connectivity patterns have primarily been examined by using 

neurophysiological data collected from functional MRI. The pioneers who established 

structural–functional correlations by combining architectonic and neurophysiological 

observations in macaque and human brains were Brodmann (Brodmann, 1914) and 

Vogt et al. (Vogt and Vogt, 1919). Further studies have supported these findings, 

showing that the borders between cytoarchitectonic areas are functionally relevant. 

Thus, combining electrophysiological and architectonic studies in experimental 

animals has demonstrated that response properties of neurons are different at the 

border of two cytoarchitectonic regions (Luppino, Matelli, Camarda, Gallese, and 

Rizzolatti, 1991). In fact, currently cytoarchitectonic probabilistic maps represent the 

most appropriate tool for the precise localization of brain functions as obtained from 

functional imaging studies (Amunts, Schleicher, and Zilles, 2007).  

 

Recent studies have proposed that at macroscale level, interregional statistical 

associations in cortical thickness can also reveal functional connectivity information in 

the human brain (Lerch et al., 2006). Cortical thickness is an indirect composite 

measurement, which includes the size, density, and arrangement of cortical neurons, 

neuroglia, and nerve fibers, among others. The human cerebral cortex is a highly folded 

sheet of neurons in which regionally specific variations exist (Brodmann, 1909; Zilles, 

zur, Schleicher, and Traber, 1990). Thus, the thickness of the cortex is of great interest 

in both normal development and neurodegenerative and psychiatric disorders (Fischl 

et al., 2002).  Indeed, by examining a large cortical morphormetric database, Chen et 

al. (Chen et al., 2008) observed six different morphological patterns in cortical 

thickness that might be compatible with the intrinsic functional modularity of the brain 

network (visual, auditory, somatorsensory/motor, frontal/limbic). Importantly, this 
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study provides the first evidence of a modularized structural organization underlying 

the functional connectivity pattern of the human brain network and suggests a 

potential link between brain functional segregation and integration. This might result 

because cortical thickness and its interregional correlations may reflect the underlying 

cytoarchitecture and neural connectivity, conserving connections length (Sporns, 

Tononi, and Edelman, 2000), efficient recurrent processing within modules (Kotter 

and Stephan, 2003; Sporns et al., 2000), and efficient information exchange between 

modules (Latora and Marchiori, 2001).  

 

Conversely, cortical thickness analysis is limited to the cortex and therefore cannot be 

used to examine non-cortical grey matter or white matter connections itself. 

Anatomical connectivity traditionally refers to the study of the white matter fiber tracks 

those connecting different brain regions. Importantly, the lack of an anatomical 

support of these networks makes a direct functional connection biologically impossible. 

A deeper understanding of white matter pathways is thereby relevant in order to 

characterize brain connectivity and dynamics.  

 

Dendrites are the branched projections of a neuron that transmit the stimulation 

received from other neural cells to the cell body. In turn, axons act to conduct the signal 

to other neurons and allow greater extension of the connections. One neuron has only 

one axon but the axon may branch out to communicate with other brain regions. Axons 

with similar destinations frequently form bundles, which form the white matter tracts. 

According to the regions that these tracks connect, we distinguished U-fibers 

(connecting adjacent gyri), association fibers (between different lobes) or commissural 

fibers (between right and left hemisphere). Those connecting cortex and deep-brain 

regions are called projection fibers. 
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Long distance cortico-cortical connections for example, are particularly important in 

high level cognitive processes, such as attention, working memory or consciousness 

(Dehaene, Sergent, and Changeux, 2003), among others (Sporns et al., 2000). Briefly, 

cortico-cortico connections can be characterized based on their hierarchical 

organization, that is forward and backward connections. Forward connections (from a 

low to higher level), in particular, have sparse axonal bifurcations and are 

topographically constrained. They typically start in supragranular layers and finish in 

the layer VI. In contrast, backward connections, which are more abundant, present 

great axonal bifurcation and more diffused topography. Functionally, forward 

connections are more active, always eliciting a response given the appropriate pattern 

of inputs, while backward connections can also be modulatory showing slower 

dynamics (Salin and Bullier, 1995). 

 

In addition, classical morphometry studies have demonstrated functional-dependent 

local structural changes in the adult human brain. In particular, Maguire et al. 

(Maguire et al., 2000; Maguire, Woollett, and Spiers, 2006) suggested anatomical 

correlates for navigation in the anterior and posterior hippocampus, after comparing 

taxi drivers with controls. Gaser et al. (Gaser and Schlaug, 2003) found gray matter 

volume differences in motor, auditory, and visual-spatial brain regions when comparing 

professional musicians (keyboard players) with a matched group of amateur musicians 

and non-musicians. On the other hand, Draganski et al. (Draganski, Winkler, Flugel, 

and May, 2004) showed that learning a complex visuomotor task (jungle training) 

induced changes in the adult human brain.  

 

Traditionally anatomical connectivity has been studied using histological methods in 

animals. Different retrograde degeneration tracers, fluorescent retrograde tracers 

(Keizer, Kuypers, Huisman, and Dann, 1983) or trans-synaptic viral track tracing 
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techniques (Middleton and Strick, 2001) amongst others have long been used to trace 

individual axons with great precision. In contrast, the autoradiographic technique 

(Cowan, Gottlieb, Hendrickson, Price, and Woolsey, 1972) made it possible to delineate 

fiber pathways on a large scale. The main limitation of the autoradigrophaic technique 

is that it is restricted to animal experimentation (Beaulieu, 2002).  

 

This has changed with the development in vivo of neuroimaging techniques. 

Unfortunately, an accurate description of these interactions is not possible to attain 

because of the complexity of the brain and the great difference in scale resolution 

between neural and neuroimaging data. Some aspects however, can be overcome by 

using diffusion tensor imaging. 

 

1.5. Diffusion Tensor Imaging 

Specifically, the introduction of diffusion tensor imaging (DTI), a non-invasive 

technique that is sensitive to water-diffusion properties in the tissue, opens a suitable 

method for monitoring micro-structural changes, neural architeacture (Beaulieu, 2002) 

and plasticity-related processes (Tovar-Moll et al., 2007). Diffusion of water molecules 

in the brain is characterized by random translational motion, (Brownian motion), as a 

direct consequence of the thermal energy carried by these molecules. This random 

motion is statistically well described by a diffusion coefficient, derived from Einstein’s 

equation, which is related to the root mean square of the displacement of the molecules 

over a given time. However, the role of diffusion coefficient is that it depends only on 

the molecular weight, the temperature and the intermolecular interactions with the 

medium (actually, in MR imaging it depends also on diffusion acquisition parameters). 

In this way, knowing about diffusion-driven displacements, it is possible to assess a 

direct measure of micro-structure, in addition to a reflection of brain tissue integrity. 
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Nevertheless, it has to be considered that diffusivity is always a function of the window 

of time used. It means that only over a very short time diffusivity provides local 

intrinsic viscosity, and consequently local micro-structure patterns. Normally, 

diffusivity times are relatively long, and depend on the interactions of the diffusing 

molecules with the cellular micro-structure obstacles. The diffusion coefficient in MR 

imaging is mostly called apparent diffusion coefficient (ADC) because it is averaged 

over time and over a voxel volume.  

 

In brain parenchyma structures there are clear boundaries on a microscopic scale, for 

example axon membranes and myelin sheaths, forcing the diffusion propagation of 

water molecules in certain preferential directions. In other words, some structures 

present greater molecular displacements in one direction than others, the diffusion is 

anisotropic. In contrast, there are molecules which travel almost freely across the 

medium and are unconstrained by micro-structures, such as in cerebrospinal fluid. In 

this case the diffusion is isotropic (Figure 1.4). 

 

Figure 1.4:  An illustration depicting diffusion in two different types of sample, one which has 
similar molecular displacements in all directions (isotropic diffusion) and the other which has 
greater diffusion along one direction over another (anisotropic diffusion). The structure surfaces 
are impermeable in this cartoon for illustrative proposes only (Adapted from Beaulieu et al. 
2002). 
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Using the MR-signal-decaying effect of water diffusion in several directions, (Stejskal et 

al., 1965) it is possible to obtain diffusion images that allow the assessment of water 

diffusivity images and consequently obtain several diffusivity parameters (Figure 1.5). 

Thus, Apparent Diffusion Coefficient (ADC) for instance, expresses the directional 

average of the diffusion magnitude, and is related to the overall presence of obstacles to 

diffusion. Other scalar diffusivity indices have been used to characterize fibre 

architecture, describing how much molecular displacements vary in the space. That is, 

for instance, anisotropy indexes (e.g. fractional anisotropy (FA), relative anisotropy 

(RA) among others), which are related to the degree of directional dependency of the 

diffusion coefficient. These indexes reflect the presence and coherence of oriented 

structures, because of the dense packing of axons and their inherent axonal membranes 

that hinder water diffusion significantly perpendicular to the long axis of the fibers 

(Beaulieu, 2002).  

 

Figure 1.5: Schematic diffusion pulse sequences. Special diffusion weighted gradients (green) 
are used in order to increase the magnetic field in certain arbitrary directions. The phase of 
static spins is refocused by 180o RF pulse and the next diffusion weighted gradient. Diffusion 
spins stays diphase, and thereby diffusion-specific signal decay is obtained. 
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In particular, Moseley et al. (Moseley et al., 1990) reported the first systematic study of 

anisotropy water diffusion in the nervous system. They demonstrated that water 

diffusion was anisotropic in normal white matter of cat brain and spinal cord, while 

diffusion was isotropic in gray matter. The predominant direction of water diffusivity is 

linked with the orientation in the space of the structures. Thus, the axonal cytoskeleton 

of neurofilament and microtubes, and local susceptibility-difference-induced gradient, 

were confirmed to be the primary source of anisotropy in neural fibers (Beaulieu, 2002; 

Le, 2003). These explanations however, are clearly an oversimplification of the 

underlying biological complexity. The diversity of neurons, accompanied with the 

variability in axon dimensions, the thickness of myelin, extracellular axons, variable 

membrane permeability, amongst many others, may also play a specific role. In 

addition, multiple distinct compartments existing in an intra-voxel level where water 

can diffuse (intra-axonal, inter-axonal, extra-axonal, extra-cellular) and therefore 

similar diffusion patterns might mirror different tissue compositions. 

 

Given the interest in white matter maturation and demyelinating disease, and because 

the numerous lipid bilayers of myelin might limit the permeability to water, the 

hypothesis of myelin related to water diffusion is tentative. Indeed, it has been shown 

that myelin constitutes a significant barrier to the diffusion of water, and therefore 

myelin may modulate the degree of anisotropy but its role is minor (Gulani, Webb, 

Duncan, and Lauterbur, 2001; Beaulieu, 2002). Indeed, volumetric or density white 

matter estimates can be used as a full-brain approach to measure white matter integrity 

and evaluate and compare the degree of connectivity in a particular region or in the 

whole brain between subjects.  
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1.5.1. Region-of-interest analysis (ROI) 

Traditionally, the simplest approach used to compare local anatomical differences is 

commonly named region-of-interest analysis (ROI) in which a defined region is 

identified and statistical comparisons are made relating to its size or intensity value 

with a particular effect under study. Obviously, the crucial point is to delimit the 

studied region. Then, a mean value on the extension of such region can be extracted, 

compared between groups and then related to a particular effect. 

 

Some limitations however have to be considered regarding ROI analyses. ROI analyses 

are restricted to the (few) regions selected for analysis, usually derived from a priori 

hypotheses. In turn, possible bias might be introduced due to manual or semi-

automated definitions of the ROIs. Moreover, the additional averaging over a brain 

region also reduces spatial resolution, and some biologically meaningful differences 

that might be detected at the voxel-level might be missed (Virta, Barnett, and Pierpaoli, 

1999). Given these concerns, a voxel by voxel comparison between groups of subjects 

might be an attractive method to investigate local changes. 

 

 1.5.2. Voxel-based morphometry (VBM)  

Voxel-based morphometry (VBM) allows statistical inferences to be made at voxel-level 

for the whole brain, by estimating changes in local tissue concentrations and volumes. 

Some difficulties might appear in this procedure when micro-structural tissue 

properties are examined at a voxel level, as in structural diffusion data. In this case, 

identical brain coordinates have to be compared across the whole study population, 

discarding even mesoscopic structural differences. Thus, the main challenge facing 

voxel-based diffusion parameter analysis involves meeting the requirements for an 

optimal matching of the brains being compared. This is, however, usually quite difficult 
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to achieve. Indeed, traditionally, voxel-based analyses in diffusion data have only been 

treated as an exploratory tool. The development of complementary tools, bearing in 

mind the possible artifacts derived from these methodological constraints, converts 

voxel-based analysis into a very powerful approach also for diffusion data sets. 

 

1.5.3. Fiber Tracking 

DTI is currently the only approach that permits the tracking of white matter fibres, in a 

non-invasive way, through the human brain (Figure 1.6). Tractography is based on the 

assumption that the main diffusivity direction is aligned with the direction of the 

axonal fibre dominant within the imaging voxel (Pajevic and Pierpaoli, 1999). Elaborate 

fibre reconstruction algorithms manage to extrapolate the axonal fibre tracks, tracing 

the most favourable path between two predictable voxels. However, the complexities of 

connecting these macroscopic voxel-based vectors arise from the limitations imposed 

by using a microscopic technique to visualize macroscopic restrictions. Several 

approaches have been developed in order to make a continuous representation of the 

track. Many of them are focused on linear propagation algorithms (Conturo et al., 

1999), distinguishing them from one another, by the way in which they incorporate the 

information of the neighbouring voxels. That is, the path is defined by smoothing 

trajectories or minimizing the noise contributions. In contrast, global energy 

minimization approaches have also been used in order to find the energetically most 

appropriate track (Poupon et al., 2000). More complex algorithms use multi cellular 

compartment models or insert aprioristic anatomical knowledge, in order to improve 

the connectivity patterns obtained (Mori and van Zijl, 2002). Nevertheless, the main 

problem in fiber reconstruction occurs when multiple fibre bundles are present within a 

voxel.  
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Normally one voxel does not contain only one axonal population and multiple axons 

from individual cells may merge into or branch out from one voxel (Beaulieu, 2002). 

Therefore, it is difficult to distinguish the direction of the fiber tracts due to the 

branching, crossing and kissing of fibres. This then might generate false positive 

connections. Indeed, recent high-angular resolution imaging such as Q-ball imaging 

(Tuch et al., 2005b) has been introduced to overcome these limitations (Fonteijn, 

Verstraten, and Norris, 2007).   

 

 

Figure 1.6: DTI anisotropy maps.  Anisotropy images have sufficient resolution to segment white 
and gray matter (left). By incorporating DTI orientation information, white matter can be 
parcelled into various tract using colour-code maps (middle). The image resolution is sufficient 
to trace large white matter tracks using fiber-tracking algorithms (unpublished data). 
 

Nevertheless, the exact pathway of the axonal fibers is of less interest in most of the 

cognitive studies than the degree of connectivity. This is the reason why the use of 

probabilistic methods (Behrens et al., 2003) to determine the degree of connectivity is 

preferred, instead of line streaming approaches that are focused on the anatomical 

pathways of the fibers. 

 

At this time, fiber track reconstruction requires first the definition of a particular region 

of interest. Then, starting from points (“seed points”) selected within this region, the 
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tracing is carried out basically by following the spatially interpolated direction of 

maximum diffusion in neighbouring voxels (Kubicki et al., 2002). In this way, the use 

of the foci of functional activity as initial and ending tracking points, allows the 

connection between regions. This appears to be a very promising approach to 

integrating structural and functional information, which might be used to model the 

underlying neural network in a specific task. 

 

Indeed, some assumptions have to be made about how to link the neural functional 

focus detected by functional neuroimaging and the corresponding axonal pathways in 

white matter of the brain. Currently, it is not possible to follow axonal tracts into gray 

matter, the most common assumption is based on the hypothesis that the white matter 

adjacent to the gray matter is also connected to it. 

 

1.6. Combining DTI and functional data 

Structure–function relationships exist at many spatial scales and across different levels 

of brain organization in which anatomical, functional and effective connectivity become 

closely related to one another. On one hand, on a fine spatial scale, cytoarchitectonic 

mapping is relevant in the coupling of functional and structural properties. More 

concretely, changes in synaptic number (Anderson, Alcantara, and Greenough, 1996), 

dendritic volume (Green, Greenough, and Schlumpf, 1983), mitochondrial and vascular 

density (Anderson et al., 1996; Black, Zelazny, and Greenough, 1991), or glial volume 

(Sirevaag and Greenough, 1991) have been associated with motor skill learning among 

others. On the other hand, on a larger scale, functionally segregated cortical regions 

might be sustained by specific intrinsic (intracortical) and extrinsic (cortico-cortical) 

anatomical connections. More concretely, Passingham et al. (Passingham et al., 2002) 

have shown that each cortical region has a unique pattern of inputs and outputs called 
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connectional fingerprint, which represent the major determinant of the function of that 

region. Whereas the inputs provide the information on which the region operates, the 

outputs determine the areas on which it can exert an influence.  

 

Historically, the first study that collected simultaneously fMRI and DTI data was 

Werring et al. (Werring et al., 1998) in which a case report of a patient after a traumatic 

internal capsule injury was investigated. Within, both fMRI and DTI data were 

collected and compared side by side, highlighting the potential value of combining 

fMRI and DTI data to monitor the mechanisms of recovery and persistent deficits in 

injury patients. Werring et al. (Werring et al., 1999) again reported the first study in 

healthy subjects that combined both techniques in a visual task. They demonstrated the 

feasibility of integrating fMRI and DTI information to investigate the structural 

properties of activated brain regions compared to the white matter tracts using photic 

stimulation. Basically, they concluded that BOLD responses were higher in areas with 

lower cortical grey matter than in white matter regions. 

 

Since then, the number of studies where fMRI and DTI have been combined have 

rapidly increased. Most of them combine functional and structural measurement but 

only make qualitative inferences on single subjects based on clinical applications using 

fMRI block paradigms from either simple visual stimulation or motor activation (Au 

Duong et al., 2005; Walters et al., 2003). Others have been focused on studying the 

structural connectivity by creating the connectivity maps from the DTI images used as 

seed points  the focus of the functional activations (Guye et al., 2003). In particular, 

Johansen-Berg et al. (Johansen-Berg et al., 2004) parcelled grey matter from the 

connectivity profiles associated with different functional-related cortical regions while 

Dougherty et al. (Dougherty, Ben-Shachar, Bammer, Brewer, and Wandell, 2005) 

studied how different fiber pathways projected from visual field maps within visual 
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cortex. From another perspective, very interesting results were reported by Toosy et al. 

(Tossy et al., 2004) who after segmenting the optic radiation using a probabilistic index 

from a connectivity tractography algorithm, found significant correlation between the 

mean fractional anisotropy of the estimated tracts and the BOLD signal evoked by the 

visual cortex. Interestingly, this result addresses the hypothesis that the BOLD 

response might be constrained by the external anatomical connections. 

 

According to the previously presented ideas herein, function and structure become 

directly connected. Nevertheless, only considering the present results it is difficult to 

determine the physiological mechanisms underlying such coupling. Physiologically, 

oligodendrocytes, in the central neuron system (CNS) and Schwann cells, in the 

peripheral nervous system, have the unique capacity to synthesize large amounts of 

membranes that spiarilly wrap around the axons, and compact to form myelin,  

allowing the efficient and rapid propagation of action potentials. Although many of the 

factors affecting oligodendrocyte development are known, little is known about the 

mechanisms governing the onset of myelination. One factor that was suggested to 

induce the onset of myelination process by oligodendrocytes is electrical activity. 

Indeed, Demerens et al. (Demerens et al., 1996) investigated the influence of axonal 

electrical activity on myelinogenesis. They demonstrated that the inhibition of electrical 

activity in the optic nerve with the Na+ channel blocker tetrodotoxon prevented the 

initiation of myelinogenesis in a system of in vitro myelination using dissociated 

cultures from embryonic brain and in vivo. In contrast, simulation of neuronal activity 

by slowing Na+ channel inactivation increased myelination. Later, Stevens et al. 

(Stevens, Porta, Haak, Gallo, and Fields, 2002) showed that a release in adenosine at 

extrasynaptic after electrical stimulation of neurons, mediated by purinergic receptors 

in the oligodendrocyte progenitor cells induced the differentiation of the 

oligodendrocyte progenitor cells, eventually leading to an increase in myelination. 
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Ishibashi et al. (Ishibashi et al., 2006) went a step further by investigating whether 

neuronal activity influences the ability of more mature oligodendrocytes to myelinate. 

They found that the electrical activity of the neurons promoted myelination of mature 

oligodendrocytes through an activity-dependent release of ATP (Adenosine 

triphosphate). Adenosine, which regulated the proliferation and differentiation of 

oligodendrocyte progenitor cells, had no affect on the ability of mature 

oligodendrocytes to myelinate. Indeed, ATP only affected mature oligodendrocytes, not 

their precursors, suggesting that different signalling mechanisms are involved.  

 

After experimenting with different ATP-receptor agonists, Ishibashi et al. (Ishibashi et 

al., 2006) found that members of the leukimia inhibitory factor family were crucial to 

promote oligodendrocyte myelination from astrocytes. Specifically, they concluded that 

the myelination of an axon does not only depend on the axon itself and the 

oligodendrocyte attached to it, but also on the presence of astrocytes in its proximity. In 

contrast, Bugga et al. (Bugga, Gadient, Kwan, Stewart, and Patterson, 1998) had 

previously reported that deficient leukimia inhibitory factor mice females exhibited 

reduced amounts of astrocytes, but myelin could nonetheless still be formed. This 

result pointed out that although astrocytes and astrocyted-derived LIF appear to have 

an important function in CNS myelination, their role is modulatory in the processing, 

at least at the onset of myelination.  

 

Nevertheless, the possibility that the regulation of myelination in mature myelinated 

nerves is modulated by electrical activity is tempting (Spiegel et al., 2006). Astrocytes 

also have important functions in synapse, physiology, including synapses formation, 

the control of their number and in fine-tuning of synaptic strength (Volterra and 

Meldolesi, 2005). Although a variety of functions have been attributed to the 
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astrocytes, recent attention has focused on the role of astrocytes as a main intermediary 

between neural activity and increase of blood flow (Rossi, 2006). 

 

 

Figure 1.7: The astrocyte-neuron lactate model. In this model, glutamate released at the synapse 
following a change in membrane voltage (Vm) is quickly transported into an adjacent astrocyte 
where it is converted into glutamine for transport back to the neuron. The glutamate-glutamine 
conversion process is powered by one ATP from a fast anaerobic glycolysis process, which has 
two additional processes: lactate, which is realised into the extracellular space, and another 
ATP, which provides energy for the sodium-potassium pump at the astrocyte membrane 
(Adapted from Huettel, Song, and McCarthy, 2004) 
 

In particular, it has been shown that the activation of astrocytes induces local 

vasodilations, which increase volume and blood flow (Takano et al., 2006). By sending 

specialized processes both to arterioles (astrocyte endfeet) and to glutamatergic 

synapses, cortical astrocytes trace an anatomical link between structure (neurons) and 

the blood supply (functional) (Figure 1.7). More concretely, this neurovascular coupling 

predicts changes in the deoxyhemoblogin in capillaries, arterioles, venules and veins 

due to glutamatergic synaptic activity, that might account for the observed changes in 

the BOLD signal recorded by functional MRI (Bennett, Farnell, and Gibson, 2008). 
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This last piece of information opens a clear physiological link between function and 

structure. 

 

1.8. Research aims 

By combining fMRI and DTI information, this dissertation pretends to examine 

possible functional and micro-structural interactions in the human brain in order to 

better understand the organization and dynamics of the distributed neural systems that 

subserve neural functions and human behavior. Five experiments are presented in this 

dissertation, each of which is independent in itself and pretends to give complementary 

approaches in the study of the human brain. Each section has the following specific 

objectives (Figure 1.8): 

 

1.8.1. Experiment 1: Classical functional MRI approach. 

An interesting open question is the degree to which the interindividual variability 

observed in the reinforcement learning system is due to differences in the response of 

the DA system. Genetic polymorphisms associated to dopamine function have been 

proposed as an interesting alternative in order to explain this variability. In particular, 

two specific genes, the Catechol-o-methyltransferase (COMT) and the DA D4 receptor 

(DRD4), are investigated due to the recently attention because of its involvement in DA 

regulation. The aim of this experiment is to evaluate the influence of COMT and DRD4 

SNP-521 polymorphisms in reward processing by using a classical regional specific 

functional approach. 
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Figure 1.8:  Venn diagram representing the different approaches adopted in this dissertation in 
order to combine functional and anatomical data. 

 

 1.8.2. Experiment 2: Functional connectivity approach 

Whereas fMRI provides information about the cortical areas implicated in a given 

cognitive process, connectivity studies generate information on the structural/dynamic 

wiring that determines how the brain areas underlying a specific cognitive process are 

networked. There are controversial results about the neural mechanisms underlying 

reward and punishment processing. Broad evidence supports the fact that monetary 

gains and losses activate a similar fronto-subcortical-limbic network, but with a 

differential amount of activation. In contrast, recent studies also suggest that reward 

and punishment outcomes may be processed by different neural circuits. A complete 

understanding of the reward processing implies not only identifying the brain regions 

that are activated during a particular task, but also distinguishing how different regions 

interact with each other. We predict that the role of reward and punishment outcomes 

might be functionally differentiated by examining patterns of brain connectivity. 
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1.8.3. Experiment 3: Anatomical DTI  approach 

Functional networks should be anatomically segregated in specialised regions and 

sustained by the presence of specific neural pathways, which permits the information 

flow between areas. A deeper understanding of white matter pathways and diffusion 

imaging is relevant in order to characterize brain connectivity and dynamics. In that 

concern, the study of basic concepts such as diffusivity or anisotropy is absolutely 

necessary in order to interpret the DTI results. Methodological aspects on the data 

acquisition and analysis can critically affect the results on the analysis of diffusion 

tensor and with MRI technique. Accordingly, taking the proposal of learning about DTI 

and adding the novelty of the technique, we decided to concentrate our efforts in 

understanding this technique. This experiment result as a part of a DTI technique 

learning process, in which  a sample of diffusion weighted images (of different ages) 

was analyzed in detail; this analysis slowly took form as a distinct project that could be 

of interest. This explains the methodological focus that can be seen in specific parts of 

the study, and the wide range of ages studied made it natural that white matter changes 

in ageing became the nucleus of the study. The study intends to show the importance of 

the methodology used when interpreting the results, and reflects some of the uses DTI 

might have in future studies of ageing, where the changes in white matter are of utmost 

importance. 

 

1.8.4. Experiment 4: combined fMRI/DTI approach 

The relationship between the function of the brain and its structure is still a 

fundamental open question. Structure–function relationships exist at many spatial 

scales and across different levels of brain organization. In particular, considering the 

relationship between functional and structural connectivity, it is reasonable to expect 

that the strength of an anatomical connection is correlated with that of a corresponding 



Tracing functional brain architecture: a combined fMRI-DTI approach 

  Chapter 1   

 

52 

 

functional connection. Concretely, we predict that individual regionally FA differences 

might be underlying individual functional related BOLD responses. This experiment 

pretends to evaluate the potential applications of a new combined fMRI-DTI 

methodology in reward processing. 

 

1.8.5. Experiment 5: Anatomical connectivity approach. 

Many fMRI studies are focused on discovering patterns of brain activity that are 

associated with specific cognitive processes or behaviours. In particular, the coupling 

between individual task performance and the evoked BOLD response has been one of 

the most outstanding measures in fMRI studies, since individual performance can be 

used to predict BOLD-related signal changes, and thereby indirectly relate 

psychometric parameters to neural activity. It remains to be determined however, to 

what extent these behavioural/(functional) correlations are interacting with structural 

measures. Previous described cognitive and neurobiological associations evidence that 

at least some of the individual differences observed in performance monitoring can be 

predicted both at functional and structural level. In this experiment, individual 

differences in true memory and false memory retrieval were studied and related to 

differences in the organization of white matter connections. 
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Chapter 2♣ 

2. Classical univariate MRI approach:  
Double dissociation of the effects of COMT and dopamine receptor D4 

genotypes on brain activations related to valence and magnitude of 

rewards 

2.1. Introduction 

Before making a decision, the consequences of our behaviour are weighted from the 

positive and negative outcomes from similar decisions made in the past. In order to 

adapt our behaviour, we try to increase the probability of the occurrence of positive 

reinforcements and suppress the recurrence of aversive events (Daw, O'Doherty, 

Dayan, Seymour, and Dolan, 2006). In this regard, the reinforcement learning theory 

Sutton and Barto (1998) has proposed the existence of an internal error-prediction 

signal which is amplified when the outcomes of the behaviour are unexpected or worse 

than expected ones. Therefore, this learning signal will influence subsequent decisions 

optimizing the possibility of obtaining positive rewards in response to changes in the 

environment. 

 

                                                        

♣ Camara E.,  Krämer  UM.,  Cunillera T., Marco-Pallarés J, Cucurell D., Mestres-Missé, A., Nager 

W.,  Bauer P., Schüle-Freyer R., Schöls L., Tempelmann C., Rodriguez-Fornells A., Münte TF. 

Reward-related fMRI responses in the ventral striatum are dependent of 

dopaminergic genetic differences (COMT) (submitted). 
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In agreement with this theory, Schultz et al. (Schultz et al., 1998) has recorded phasic 

bursting activity of midbrain dopamine (DA) neurons from primates and showed that 

their signal amplitude changed according to the expectations of future salient and 

rewarding events. Specifically, phasic bursts of DA cell firing were associated with 

positive outcomes, whereas choices that did not lead to a reward evoked DA dips that 

fell below the baseline activity (Schultz, 2002). The projection from these mid-brain 

neurons through the mesocortical and mesolimbic DA tracts directly influences the 

function of several striatal-orbitofrontal and prefrontal regions involved in reward 

processing (Apicella, Ljungberg, Scarnati, and Schultz, 1991; Hikosaka and Watanabe, 

2000; Wise, 2002). In particular, the mesocortical neurons project primarily to the 

medial prefrontal cortex (PFC), anterior cingulate (ACC) and entorhinal cortex. The 

mesolimbic pathway directly innervates the nucleus accumbens (NAcc), septum, 

olfactory tubercle, amygdala and piriform cortex. Several functional magnetic 

resonance imaging (fMRI) studies have provided convergent evidences about the 

involvement of this neural network in reward processing (Breiter, Aharon, Kahneman, 

Dale, and Shizgal, 2001; Delgado, Nystrom, Fissell, Noll, and Fiez, 2000b; Delgado, 

Locke, Stenger, and Fiez, 2003; Knutson, Momenan, Rawlings, Fong, and Hommer, 

2001; Knutson, Fong, Bennett, Adams, and Hommer, 2003; McClure, York, and 

Montague, 2004; Tom, Fox, Trepel, and Poldrack, 2007; Yacubian et al., 2006). 

Moreover, a recent theory has highlighted the importance of the medial prefrontal 

cortex (ACC) and the ventral striatum in the adjustment of behaviour based on the 

reinforcement learning signals triggered from the midbrain regions  (Holroyd and 

Coles, 2002). 

 

In addition to this, the NAcc in the ventral striatum has emerged as a key region in 

reward processing and the regulation of addictive behaviors. The NAcc receives 
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synaptic inputs from the PFC [orbitofrontal cortex (OFC) and dorsolateral PFC, 

(DLPFC)] and limbic structures (hippocampus and the amygdala, (Groenewegen, 

Wright, Beijer, and Voorn, 1999) and is the target of dense dopaminergic innervations 

from the ventral tegmental area (Voorn, Jorritsma-Byham, Van, and Buijs, 1986), a 

region that has been repeatedly associated to learning and motivation (Schultz, 2007). 

Because of this rich interconnectivity, the NAcc has been proposed as an important 

region in the selection of appropriate responses and the modulation of goal-directed 

behaviour (Kelley and Berridge, 2002; Berridge and Robinson, 1998). This region 

shows increased blood oxygenation level-dependent (BOLD) activation in presence of 

positive reward outcomes (monetary gains) when compared to negative outcomes 

(monetary losses) (May et al., 2004; Delgado et al., 2003; Delgado et al., 2000b). These 

changes in NAcc BOLD signal have been interpreted as reflecting changes in 

postsynaptic D1 receptor activity due to dopamine release from DA neurons 

innervating this region (Knutson and Gibbs, 2007). Further experiments have also 

provided evidences for differential activation of the striatum for positive and negative 

feedback (Seger and Cincotta, 2005; Poldrack and Gabrieli, 2001; Elliott, Sahakian, 

Michael, Paykel, and Dolan, 1998). The ventral striatum activity has also been 

associated to the processing of the magnitude of rewards outcomes (Brown and 

Bowman, 1995) or the anticipation of larger rewards (Breiter et al., 2001; Gottfried, 

O'Doherty, and Dolan, 2003; Kirsch et al., 2003; Knutson, Adams, Fong, and Hommer, 

2001; Knutson et al., 2003; O'Doherty, Deichmann, Critchley, and Dolan, 2002; 

Yacubian et al., 2007). In a similar vein, striatal neurons in monkeys show larger firing 

responses in presence of preferred rewards (Hassani, Cromwell, and Schultz, 2001).  

 

Furthermore, one of the attributes that boost the impact of reward is the degree of 

uncertainty that exists in the estimation of the action’s value. Indeed, reward 
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information becomes more relevant as the uncertainty of the reward prediction 

increases (Fiorillo, Tobler, and Schultz, 2003). In convergence with this idea, two 

recent fMRI studies have provided evidence that the NAcc response is larger when the 

reward obtained was less likely to occur (Abler, Erk, Herwig, and Walter, 2007; 

Yacubian et al., 2006). 

 

In addition to the interaction between the midbrain-NAcc and medial prefrontal cortex 

in the regulation of the reinforcement learning system (Holroyd et al., 2002), several 

prefrontal regions have also been shown to be involved in regulating learning and 

action selection in the presence of reward signals. An interesting theory has been 

proposed in order to understand the crosstalk between cortical and sub-cortical 

systems in reward and learning, hereafter referred as phasic-tonic dopaminergic 

coupling (Bilder, Volavka, Lachman, and Grace, 2004; Grace, 1991; Grace, Floresco, 

Goto, and Lodge, 2007). This theory proposes that (i) burst (phasic)-firing DA 

responses are evoked in the NAcc and striatum which are associated to reward related 

cues or stimuli and (ii) a constant DA background firing exists in the striatum and is 

regulated by a baseline DA neuron firing and the prefrontal glutamatergic afferents to 

the striatum. This theory directly predicts that the sensitivity of the reinforcement 

learning system might depend on the amount of phasic DA release, which is necessary 

to react to salient rewarding stimuli. As this activity is regulated by prefrontal tonic 

afferents to the striatum, a decrease of this tonic regulatory system might increase the 

sensitivity of the reinforcement learning system. Interestingly, this prefrontal-striatal 

coupling could be used to influence the output of subcortical responses via a top-down 

regulating system. For example, increasing the tonic firing level of the PFC cortex could 

be used to modulate or dampen the effect of positive and negative rewards. 
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An interesting open question is to which degree the interindividual variability observed 

in the reinforcement learning system is due to differences in the response of the DA 

system. For instance, it has been proposed that reduced levels of D2 DA receptors, 

either genetically or as a result of life experiences, may determine vulnerability of abuse 

and addictive behaviors (Volkow et al., 1999). Besides, genetic polymorphisms 

associated to dopamine function have been proposed as an interesting alternative in 

order to explain this variability (Yacubian et al., 2007; Frank, Moustafa, Haughey, 

Curran, and Hutchison, 2007). In particular, two specific genes, the Catechol-o-

methyltransferase (COMT) and the DA D4 receptor (DRD4), have recently received 

special attention because of its involvement in DA regulation.  

 

COMT is an enzyme involved in DA degradation, mostly present in the prefrontal 

cortex (Chen et al., 2004). Specifically, as a result of a valine to methionine (Val/Met 

158) substitution at codon 158/108 of a single nucleotide polymorphism (SNP) in the 

COMT gene, a three- to four- fold reduction of the enzymatic activity in the Met allele is 

obtained. Thus, Val alleles should express higher COMT activity in the prefrontal 

cortex, which presumably involves lower synaptic DA levels, and therefore an inhibition 

of the prefrontal functioning.  

 

More importantly, based on the phasic-tonic dopaminergic hypothesis, low prefrontal 

tonic levels in the ValVal group would predict increased striatal phasic activity and 

thereby, an increase in phasic responses and sensitivity of the reinforcement learning 

system (Bilder et al., 2004). In addition, it has been recently been demonstrated that 

the presence of the methionine allele in COMT leads to decreases in the efficiency of 

dopamine synthesis in the midbrain (Meyer-Lindenberg et al., 2005). In a recent study, 

Yacubian et al. (Yacubian et al., 2007) investigated how COMT and DAT (DA 
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transporter) genetic differences influence reward probability and magnitude during 

anticipation of reward in a gambling task. In particular, ValVal homozygotes showed a 

relative deactivation in prefrontal and striatal (putamen) regions compared with 

MetMet homozygotes, presumably because of the elevated prefrontal DA levels in the 

Met allele carriers. Additionally, based on the hypothesis of top-down regulation of the 

prefrontal cortex on striatal DA levels, a similar effect was found in the ventral striatum 

encoding the expected value as an interaction between the COMT-DAT genotypes. 

 

In a similar vein, a cytosine to timine (C/T 521) substitution in the DRD4 gene SNP-521 

entails two homozygote alleles as well. The T-allele has been associated with 40% 

inferior transcriptional efficiency when it is compared with the C-allele (Okuyama, 

Ishiguro, Toru, and Arinami, 1999; but see for a different results Kereszturi et al., 

2006). The -521 C/T SNP belongs to a series of polymorphisms identified in the 

promoter region of the DRD4 gene, including among others the 120 base pair 

duplication and other SNPs (-616 G/C,  -615 A/G and -1217 G insertion/deletion). The 

D4 receptor, which is a D2-like receptor (Strange, 1993), have received special attention 

because its shows the highest affinity for the atypical antipsychotic clozapina (Seeman 

and Van Tol, 1994) and it is expressed in several brain regions related to planning, 

motivation and reward (Ariano, Wang, Noblett, Larson, and Sibley, 1997; Mrzljak et al., 

1996; Meador-Woodruff, Damask, and Watson, Jr., 1994). Thus, compared to the 

distribution of COMT, DRD4 receptors are also present at mesolimbic (Matsumoto, 

Hidaka, Tada, Tasaki, and Yamaguchi, 1996) and at the striatum regions (Sanyal and 

Van Tol, 1997). However, the association of this polymorphism to psychological 

functions or traits remains elusive. Although some of the results in the literature are 

controversial (Mitsuyasu et al., 2007; Okuyama et al., 1999), the association between 

this DRD4 polymorphism and novelty seeking (Golimbet, Alfimova, Gritsenko, and 
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Ebstein, 2007; Okuyama et al., 1999; Ronai et al., 2001; Schinka, Letsch, and Crawford, 

2002) or addictive behaviors seems to be well established (Rubinstein et al., 1997; 

Ronai et al., 2001; Geijer et al., 1997).  

 

The aim of the present work is to evaluate the influence of COMT and DRD4 SNP-521 

polymorphisms in reward processing. With that purpose in mind, selected volunteers 

participated in a simple gambling task (Gehring and Willoughby, 2002; Marco-Pallares 

et al., 2008) (adapted from Gehring and Willoughby, 2002; see Marco-Pallares et al., 

2007), in which unexpected and larger monetary gains and losses (boost trials) were 

presented as well standard gain and loss trials (see experimental design at Figure 2.1). 

We specifically evaluated two predictions based on the phasic-tonic DA regulation 

model (Bilder et al., 2004). First, due to the reduced synaptic DA level in the PFC in 

ValVal homozygous, a diminished tonic activity is predicted and therefore, this group 

should show enhanced phasic DA activity in the striatum (NAcc) in the presence of 

rewards (standard and boost trials) (Bilder et al., 2004). In addition, considering the 

proposal that the medial prefrontal cortex (ACC) is involved in the evaluation of 

positive and negative feedback through the dopaminergic learning signals arising from 

the midbrain (Holroyd et al., 2002), we predicted that similar responses should be 

observed in the medial prefrontal cortex (ACC) coupled with the activation observed in 

the ventral striatum. More specifically, we expected that the medial prefrontal cortex 

and ventral striatum BOLD responses would show enhanced activation in the ValVal 

homozygous group during reward processing.  

 

Second, for the DRD4, considering its association between novelty seeking and the 

possible role in addiction, we expected to encounter differences in the activation of the 

reward-related system for the different groups (CC vs. TT). In a recent fMRI feedback 
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learning study, the A1 allele of the polymorphism (DRD2-TAQ-IA, Klein et al., 2007), 

which is associated with a reduction in D2 receptor density and associated with 

addictive behaviours, showed reduced feedback negative BOLD response when 

compared to the higher receptor density allele. Based on these findings and the fact that 

D4 and D2 receptors belong to the same D2-like receptor family, we expected to 

encounter reduced BOLD response in the TT group (possible lower density of D4 

receptors, Okuyama et al., 1999; but Kereszturi et al., 2006)  compared to the CC group.  

 

2.2. Materials and Methods 

2.2.1. Participants 

All procedures reported in this investigation were approved by the local ethical 

Institutional Review Board (IRB00003099) at the University of Barcelona. 

An initial pool of 656 students from the University of Barcelona (491 women; age range 

from 18 to 56, mean = 21.7, S.D. = 3.5) was genotyped by preparing DNA using 

standard techniques from two independent EDTA blood samples of each participant. 

Genotyping of the -521 C/T polymorphism in the dopamine D4 receptor gene (DRD4) 

promoter (Okuyama et al., 1999) as well as the catecholamine-O-methyl transferase 

(COMT) G to A polymorphism at codon 108/158 (short/long isoform) resulting in 

valine to methionine substitution (Lachman et al., 1996) was carried out using real-

time Fluorescence Resonance Energy Transfer (FRET) PCR. The region spanning the 

single nucleotide polymorphism (SNP) was amplified with the primers DRD4for (5’ 

CTG AGG GCC AGA GGC TG 3’) / DRD4rev (5’ GAG GAT CAA CTG TGC AAC GG 3’) 

and COMTfor (5’ GGG CCT ACT GTG GCT ACT CA 3’) / COMTrev (5’ TTC AGT GAA 

CGT GGT GTG AAC A 3’) respectively. The polymorphic nucleotide is covered by the 
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fluorescein labelled donor probe (DRD4sensor 5’ CGG GCG TGG AGG GCG CG-Fl 3’; 

COMTsensor 5’ ATT TCG CTG GCA TGA AGG ACA A-Fl 3’). The adjacent acceptor 

probe (DRD4anchor 5’ LCRed610-GAC TCG CCT CGA CC--TCG T 3’; COMT anchor 5’ 

LCRed610- GTG TGC ATG CCT GAC CCG TTG TCA-ph 3’) was labelled with 

LCRed640). Melting curve analysis of the matrix-probe duplex is allele-dependent and 

allows discrimination of the two SNP alleles. Primers and probes were designed and 

synthesized by Tib Molbiol, Germany. Amplification and melting analysis were carried 

out on a LightCycler©480 instrument (Roche Diagnostics, Germany). For PCR 

amplification the LightCycler©480 genotyping master (Roche Diagnostics, Germany) 

was used in a 384-well format with 10 µL reaction volumes. Cycling conditions with 

touchdown annealing temperatures from 65°C to 55°C over the first 10 cycles were as 

following: 10 min 95°C, 45 cycles with 20 sec annealing temperature, 20 sec. 72°C and 

20 sec 95°C followed by a high resolution melting curve from 50°C to 85°C with 

continuous fluorescence acquisition.  

 

From the overall sample 53 participants (36 women; age range: 18 – 34 years, mean = 

21.2) were selected for the fMRI experiment based on their DRD4 -521 and COMT 

alleles. Participants were homozygous for both polymorphisms to allow a two-by-two 

factorial design with the four groups TT-ValVal, TT-MetMet, CC-ValVal and CC-

MetMet. Two participants had to be excluded due to a genotyping error (TC-MetMet 

instead of TT-MetMet and TC-ValVal instead of TT-ValVal), one TT-MetMet 

participant was excluded because of a morphological abnormality of the brain. In 4 

participants (2 TT-ValVal, 2 CC-MetMet) were lost because of technical problems 

during their scanner session. This left 9 participants for the TT-ValVal group. The 

number of participants in the other groups was reduced to 9 as well in order to have ab 
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equal number of participants in each group. Therefore, the final sample comprised 36 

right-handed Spanish students (n = 9 per group; 24 women).  

 

Genotypes of participants selected for neuroimaging study were controlled in an 

independent second DNA sample by direct sequencing using the ABI PRISM BigDye 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, USA). 

Sequencing products were resolved on an ABI 3100 automated sequencer (Applied 

Biosystems, Foster) and analyzed using the Staden Package (Bonfield, Smith, and 

Staden, 1995). 

 

2.2.2. Design 

Several important modifications were made to a monetary gambling task designed by 

(Gehring et al., 2002, see also Marco-Pallares et al., 2007). Each trial began with a 

warning signal (“*”; 500 ms duration) followed by the presentation of two numbers (5 

and 25) displayed in white against a black background in the two possible 

combinations, [5 25] or [25 5]. Participants had to select one of the two numbers by 

pressing a spatially corresponding button with the left or right index finger (see Figure 

2.1). One second after the choice, one of the numbers turned green while the other 

turned red. If the number selected by the participant changed to red, the participant 

incurred a loss of the corresponding amount of money in Euro cent. In contrast, if the 

number turned into green, this indicated a gain.  

 

In addition to the standard trials described above (80%), two additional conditions 

were created to assess the brains responses to unexpected rewards and losses (see 

Figure 2.1). In 10 % of the trials (“boost unexpected trials”), an unexpected large gain or 

loss occurred: In these trials the number “125” appeared in either red or green signaling 
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the loss or gain of the corresponding sum in Euro cent (see Figure 2.1). This change in 

magnitude occurred equally often for “5” and “25” trial bets in order to avoid positive or 

negative biases in choosing “25” items. To control for the fact that boost trials were 

both, large and unexpected, in an additional 10 % of the trials (“similar unexpected”) 

the chosen number turned to either 7 (instead of 5) or 27 (instead of 25).  While these 

trials were unexpected, the magnitude of the gain or loss was virtually unchanged. 

Additionally, each run included 12 randomized fixation trials that lasted 20 seconds.  

Participants were provided of an initial sum 10 € and were encouraged to gain as much 

as possible. Patients had performed a similar event-related potential task (without 

unexpected trials) several weeks to months earlier and thus were familiar with the task 

in general. They were informed about the potential occurrence of unexpected trials. The 

experiment comprised four blocks, each one comprising 140 trials. The four possible 

outcomes for the standard trials ([25 5] [5 25] [5 25] [25 5]; italics = red = loss, bold = 

green = gain), for the unexpected similar trials ([25 7] [5 27] [7 25] [27 5]), and for the 

unexpected boost trials ([25 125] [5 125] [125 25] [125 5]) were presented in random 

order. These combinations were counterbalanced by condition, making the statistically 

expected outcome zero on each trial in order to avoid confounds of differential 

probability of gains or losses. At the end of each run, participants were informed about 

their accumulated amount of money at this point. At the end of the experiment, the 

participants were paid the final amount obtained (bank transfer).  

 

2.2.3. MRI scanning methods 

fMRI data were collected using a 3T whole-body MRI scanner (Siemens Magnetom 

Trio, Erlangen, Germany). Visual images were back-projected onto a screen using an 

LED-projector and participants viewed the images through a mirror on the head coil. 
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Magnet- compatible response buttons were used. Conventional high resolution 

structural images [magnetization-prepared, rapid-acquired gradient echoes (MPRAGE) 

sequence, 192 slice sagittal, TR = 2500 ms, TE = 4.77 ms, TI = 1100 ms, flip angle = 7°, 

1mm thickness (isotropic voxels)] were followed by functional images sensitive to blood 

oxygenation level-dependent contrast (echo planar T2*-weighted gradient echo 

sequence, TR=2000 ms, TE=30 ms, flip=80°). Each functional run consisted of 336 

sequential whole-brain volumes comprising 32 axial slices aligned to the plane  

 

Figure 2.1: A. Sequence of stimulus and response events in the gambling task. After a 
warning signal, a pair or numbers ([5 25] or [25 5]) was presented and participants 
were forced to select one of the two numbers by pressing the corresponding button at 
left or right hand (response choice). One second after the choice, one of the numbers 
turned red and the other green (feedback) indicating a gain (green) or loss (red) of 
the corresponding amount of money in Euro cent. B. In the frequent standard 
feedback trials participants gained or lost the same amount of money they betted. By 
contrast, in the unexpected boost feedback condition, the magnitude of the reward 
was much larger than the expected one (10 % probability). In the similar feedback 
condition the magnitude was changed only slightly. This allowed us to dissociate the 
effects of reward magnitude and reward probability. 
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intersecting the anterior and posterior commissures, 3.5 mm in-plane resolution, 4 mm 

thickness, no gap, positioned to cover all but the most superior region of the brain and 

the cerebellum. 

 

2.2.4. Image processing 

Data were analyzed using standard procedures implemented in the Statistical 

Parameter Mapping software (SPM2, http://www.fil.ion.ucl.ac.uk/spm). The 

preprocessing included slice-timing, realignment, normalization and smoothing. First, 

functional volumes were phase shifted in time with reference to the first slice to 

minimize purely acquisition-dependent signal-variations across slices. Head-movement 

artifacts were corrected based on an affine rigid body transformation, where the 

reference volume was the first image of the first run (e.g., Friston, Williams, Howard, 

Frackowiak, and Turner, 1996). Functional data were then averaged and the mean 

functional image was normalized to a standard stereotactic space using the EPI derived 

MNI template (ICBM 152, Montreal Neurological Institute) provided by SPM2. After an 

initial 12-parameter affine transformation, an iterative non-linear normalization was 

applied using discrete cosine basis functions by which brain warps are expanded in 

SPM2 (Ashburner and Friston, 1999). Resulting normalization parameters derived for 

the mean image were applied to the whole functional set. Finally, functional EPI 

volumes were resampled into 4 mm cubic voxels and then spatially smoothed with an 8 

mm full-width half-maximum (FWHM) isotropic Gaussian Kernel to minimize effects 

of inter-subject anatomical differences. 
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2.2.5. Data analysis 

The statistical evaluation was based on a least-square estimation using the general 

linear model by modeling the different conditions with a regressor waveform convolved 

with a canonical hemodynamic response function (Friston et al., 1998). Thus, an event-

related design matrix was created including the conditions of interest: Gain 5, Gain 25, 

Gain 7/27, Gain 125, Loss 5, Loss 25, Loss 7/27, Loss 125 and fixation.  

 

The data was high-pass filtered (to a maximum of 1/90 Hz), and serial autocorrelations 

were estimated using an autoregressive model (AR(1) model). Resulting estimates were 

used for non-sphericity correction during the model estimation. Confounding effects in 

global mean were removed by proportional scaling, and signal-correlated motion 

effects were minimized by including the estimated movement parameters. The 

individual contrast images were entered into a second-level analysis using a one-

sample t-test employing a random effects analysis within the general linear model. 

2.2.5.1. Main contrasts of interest  

First, in order to reveal brain regions responding selectively to gains and losses we 

created two contrasts: in standard trials the comparison Gain (25+5) vs. Loss (25+5) 

(and vice versa) reflected the effect of valence, while for the unexpected boost trials the 

corresponding contrast was Gain (125) vs. Loss (125) (and vice versa). 

 

Second, to investigate whether differences in the previous contrasts could be explained 

in terms of reward magnitude (both contrasts differ with regard to magnitude and 

probability), magnitude-related effects were assessed by contrasting maximum vs. 

minimum feedback for standard [25 (Gain+Loss) vs. 5 (Gain+Loss)] and unexpected 

trials [125 (Gain+Loss) vs. 7/27 (Gain+Loss)] conditions separately. Notice that the last 

contrast is not confounded by probability as 125 and 7/27 trials appeared with equal 
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(low) probability. Finally, potential interactions between valence and magnitude were 

tested for both standard and unexpected boost trials. 

 

The previous general contrasts were investigated in the entire sample (36 subjects) and 

were thresholded at P < 0.05, corrected for multiple comparisons at the whole-brain 

level by using a family-wise error (FWE) rate. The maxima of suprathreshold regions 

were localized by rendering them onto the mean volunteers’ normalized T1 structural 

images on the MNI reference brain. Maxima and all coordinates are reported in MNI 

coordinates, as used by SPM and labeled in line with the Talairach atlas. The specific 

contrasts performed in order to investigate the influence of COMT, DRD4 and their 

interaction on valence and magnitude are detailed in the following sections. 

2.3. Results 

2.3.1. Behavioural Data 

Overall, participants chose 25 more often than 5 (54.3 ± 11.8 % vs. 45.3 ± 11.7, t(35) = -

2.31, P < 0.05). No differences were observed in choice (25 or 5) between the different 

genetic groups (main effects of COMT and DRD4, F(1,32) < 1 and COMT x DRD4, F 

(1,32) = 1.7, P > 0.2). On average, participants lost 0.5 ± 3.0 €.  

 

Risk taking behaviour of participants was quantified by assessing the percentage of 

risky (25) decisions after unexpected boost trials. A significant interaction was 

encountered between DRD4 x condition (previous trial loss 125 vs. gain 125) (F(1,32) = 

4.5, P < 0.05). After losses, no group differences in choosing 25 were seen (CC: 55.3 % 

vs. TT: 55.6, t(34) < 1), whereas the CC group had a greater preference for 25 after 

boost wins (CC: 59 % vs. TT: 46.3, t(34) = -4.0, P < 0.001). This pattern of increased 

risk taking after boost wins by CC-participants differs from other studies, in which risk-
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aversive behaviour has been demonstrated after large wins (Gehring and Willoughby, 

2002; Riba et al., 2008). No differences in risk-taking were observed for COMT.  

 

2.3.2. Main effects of Valence and Magnitude in standard and boost 

trials 

Main effects of Valence and Magnitude were assessed using the multiple comparison 

correction approach (P < 0.05; see Table 1). The contrast gain (5 + 25) vs. loss (5 + 25) 

led to activation in the ventral striatum (NAcc) bilaterally, with the activity extending to 

the amygdala (see Table 1a and Figure 2a). No significant differences were found for the 

inverse contrast (loss vs. gain trials) corroborating previous studies (Nieuwenhuis et al., 

2005; Tom et al., 2007). With regard to the main effect of magnitude [i.e., 25 (Gain + 

Loss) vs. 5 (Gain + Loss)] there were no significantly activated brain regions at the 

specified threshold. Similarly, the assessment of the interaction between Valence and 

Magnitude did not reveal activated brain regions. 

 

The valence effect for the analogous analysis on the boost trials [gain (125) vs. loss 

(125)] activated roughly the same region in the ventral striatum as the analysis for the 

standard trials (see Table 2.1b and Figure 2.2b). No effect was seen for the inverse 

comparison. In contrast to the standard trials, magnitude-related activations were 

found for the unexpected trials [i.e., 125 (Gain+Loss) vs. 7/27 (Gain+Loss)] located in 

the right insular cortex, the right inferior parietal lobe, the rACC and right cuneus (see 

Figure 2.3a and Table 2.1c). No significant regions were observed for the interaction 

between Valence and Magnitude for the boost trials. 
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2.3.3. COMT and DRD4 effects in the NAcc 

At the locations of the peak activities observed in the contrasts mentioned above 

[valence effects: right and left ventral striatum (NAcc); magnitude effects only in boost 

trials: right insular cortex, inferior parietal lobe (IPL), rostral anterior cingulate cortex 

(rACC); see table 2.1], we reconstructed the BOLD event-related responses from the 

trial-specific evoked response depicted as a function of peristimulus time. First, 

peristimulus-time histograms were computed for each participant and voxel of interest 

within each session and then averaged over sessions and subjects. Finally the 

corresponding parameter estimates (β values) for each condition and individual were 

extracted and entered as dependent variables in various ANOVAs, using Valence or 

Magnitude as within-subjects factors and Genetic Group (COMT and DRD4) as a 

between-subjects factors.  

 

In the standard trials, the corresponding ANOVA for the left NAcc showed no 

differential recruitment of the NAcc as a function of genetic group (main effect of 

Valence, F(1,32) = 42.7, P < 0.001; Valence x COMT, F < 1; Valence x DRD4, F < 1). The 

other main effects and interactions were not significant. For boost trials, the 

corresponding ANOVA showed a significant Valence x COMT interaction (F(1,32) = 4.4, 

P < 0.05). The interaction reflected the fact that the ValVal group showed a larger 

activation difference between gain and loss trials than the MetMet group (see Figure 

2.2b). Further pairwise t-tests showed significant differences between COMT groups in 

loss (t(34) = 2.1, P < 0.04) but not in gain trials (t < 1). Indeed, Figure 2d shows a clear 

reduction in the BOLD response for the ValVal group in loss trials (left) resulting in an 

enhanced BOLD difference between gains and losses in this group (right). The 

remaining interactions or main effects, in particular those involving DRD4, were not 

significant. 



Tracing functional brain architecture: a combined fMRI-DTI approach 

Chapter 2   

 

 

70 

 

 

 

Figure 2.2: Valence effects. Coronal views of the group average Gain vs. Loss contrast 
superimposed on a group-averaged structural MRI image in standard stereotactic space (t-score 
overlays after multiple comparisons correction at the whole-brain level, P < 0.05). Both the 
standard trials (A) (peak x, y, z: -24, 4,-12 mm), and the boost trials (B), (peak, -8, 4, -8 mm), 
showed increased activity in the left and right ventral striatum. C. Reward-related activations for 
each boost condition (Gains and losses) and each COMT group. Notice the reduced activation in 
the boost loss condition for the ValVal group. D. BOLD time-course BOLD at the activation peak 
in the NAcc plotted separately for the COMT groups (left side). The difference between gain and 
loss boost conditions in each COMT group is shown on the right. E. Gain vs. Loss contrast for 
each COMT group (t-score overlays, P < 0.001 uncorrected). Notice the activation in this 
contrast in the NAcc, ACC and IPL in the ValVal which is largely missing in the MetMet group. 
 



Tracing functional brain architecture: a combined fMRI-DTI approach 

Chapter 2   

 

 

71 

 

To follow up the magnitude effect reported in boost trials we performed separate 

ANOVAs for right cuneus, right insula, rACC and rIPL (see Table 2.1c). A significant 

DRD4 x Valence x Magnitude interaction was revealed in the right insular cortex 

(coordinates 24, 20, -16; F(1,32) = 7.1, P < 0.012) ) and the rACC (8, 40, 24 mm; F(1,32) 

= 5.02 , P < 0.032; see Figure 3b). The decomposition of this interaction showed that 

the DRD4 x Magnitude effects were restricted to gains (gains, DRD4 x Magnitude, right 

insular cortex, F(1,34) = 12.26,  P < 0.001; rACC,  F(1,34) = 13.6, P < 0.001; loss trials, 

DRD4 x Magnitude, F < 1, in both regions). For the insular cortex, further pairwise t-

tests showed a significant difference between boost and similar gains in the CC 

genotype (t(17) = 6.15, P < 0.0001) but not in the TT group (t(17) = 1.526, P > 0.1). 

Also, CC and the TT groups differed for the boost gains condition (t(34) = -2.9, P < 

0.007) but not for the similar gains trials (t(34) < 1) (see Figure 2.3c). In the rACC, a 

significant difference between boost and similar gains was also observed in both the CC 

genotype (t(17) = 3.94, P < 0.0001) and the TT group (t(17) = 7.36, P > 0.0001). In this 

region, CC and the TT groups differed in the boost condition (t(34) = -2.8, P < 0.008) 

but not in the similar gains (t(34) = 1.3) (see Figure 2.3c). Moreover, for the insular 

cortex a significant DRD4 main effect was observed (F(1,32) = 4.3, P < 0.05) reflecting 

greater overall activity in the CC group (see Figure 2.3c). 
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Figure 2.3: A. Magnitude effects, reward sensitivity contrast (boost trials, maximum vs. 
minimum values) (t-score overlays after multiple comparisons correction at the whole-brain 
level P < 0.05). The main effects of magnitude were observed in the right insula (x, y, z:  24, 20, 
-16 mm), the ACC (8, 40, 24 mm) and the right IPL (44, -48, 40 mm). B. DRD4 difference (CC 
vs. TT) in the Max (Gain+Loss) vs. Min (Gain+Loss) boost contrast at the whole-brain level (t-
score overlays, P < 0.01, uncorrected). C. Left, time-course peak activation of the reconstructed 
hemodynamic response in the right insula (24, 20, -16 mm) in gain trials only. A larger 
amplitude of the response was observed in the CC group for maximum gains. A similar pattern 
was seen for the rostral ACC region (8, 40, 24 mm, right). 
 
 

2.3.4. Exploratory analysis: COMT modulations in the ACC and IPL  

The use of a very conservative threshold revealed only one significant region for the 

Valence contrast, i.e. the NAcc. In light of previous studies (e.g., Riba et al., 2008), 
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which have also found activity in medial prefrontal cortex, and because of theoretical 

accounts predicting a coupling between the ventral striatum (NAcc) and medial 

prefrontal cortex (ACC; Holroyd and Coles, 2002), we evaluated the SPM interaction 

contrast between COMT by Valence in boost trials (gain 125 > loss 125) at the whole-

brain level. A less conservative threshold was applied for this analysis (P < 0.001 

uncorrected, 20 voxels spatial extent; corrected for multiple comparisons at the cluster 

level, P < 0.01), which revealed two regions showing a COMT by Valence interaction 

(boost trials): the posterior medial prefrontal cortex (ACC) and the inferior parietal 

lobe (rIPL) (see Table 2.2a and Figure 2.4a-4b). We also reconstructed the 

corresponding BOLD event-related responses for both regions and carried out the 

corresponding ANOVAs.  As expected, the ValVal group showed a greater difference 

between gains and losses (see difference BOLD response, Figure 2.4, right panel). For 

the ACC, the corresponding ANOVA showed a significant interaction between Valence 

and COMT (F(1,32) = 22.3; P < 0.001; Valence main effect, F(1,32) = 10.3, P < 0.003). 

Further pairwise group comparisons showed that while there were no differences in the 

MetMet group between gains and losses in this region (t(17) < 1), this difference was 

highly significant in the ValVal group (t(17) = 6.2, P < 0.001). Figure 4c illustrates the 

contrast between unexpected gain and loss boost trials for ValVal and MetMet groups 

separately. The MetMet group did not show differential activation (see also time course 

of the BOLD difference).  

 

The pattern of activation observed in the rIPL was unpredicted but very reliable (see 

Figure 4b). A significant interaction was encountered in this region (Valence x Group, 

F(1,32) = 15.3, P < 0.001; Valence main effect, F(1,32) = 9.9, P < 0.003). Further 

pairwise comparisons showed that the COMT groups differed for the loss trials only (t 
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(34) = 2.6, P < 0.012; gains: t < 1; see Figure 2.4b). As it was the case for the ACC, no 

differential activation was seen in the MetMet group (see also Figure 2.4c).  

 

 

 

Figure 2.4: Sagittal views of the COMT difference (ValVal vs. MetMet) in the Gain vs. Loss 
contrast (boost trials) showing the main significant difference for the COMT alleles in the ACC 
(peak x, y, z: 4, 24, 48 mm) and left IPL (peak x, y, z:  44, -48, 40 mm) (t-score overlays, P < 
0.001, uncorrected). The middle panel shows the BOLD time course for boost reward conditions 
separately for each COMT genotype in the two regions. On the right the corresponding gain 
minus loss difference waves are shown. A larger difference was present in the ValVal group in 
both regions. 
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Table 2.1:  Main effects observed for Valence and Magnitude in standard and boost trials.  

A. Valence standard trials: Gain (5+25) vs. Loss (5+25) 

 Stereotactic coordinates 

Brain region ~BA n. voxels X Y Z 
T 

peak 
p 

value 

L ventral striatum  59 -24 4 -12 6.52 <0.0001 

   -12 8 -12 6.13 <0.0001 

R ventral striatum   28 -8 -4 6.22 <0.0001 

 

B. Valence boost trials: Gain (125) vs. Loss (125) 

 Stereotactic coordinates 

L ventral striatum  79 -8 4 -8 6.68 <0.0001 

R ventral striatum   16 8 -4 6.32 <0.0001 

R cuneus BA18 56 12 -88 16 6.81 <0.0001 

 

 

C. Magnitude in boost trials: 125 (Gain + Loss) vs. 7/27 (Gain + Loss) 

 Stereotactic coordinates 

R cuneus BA18 43 20 -95 0 7.62 <0.0001 

R INS  25 24 20 -16 7.01 <0.0001 

Rostral ACC BA32 80 8 40 24 6.65 <0.0001 

R IPL BA40 26 44 -48 48 6.02 <0.0001 

 

Notes: MNI coordinates and T value for the peak location in a particular identified anatomical cluster. 
p < 0.05; 20 voxels spatial extent corrected for multiple comparisons at the whole-brain level by using 
a family-wise error (FWE) rate. Reported also the p value for the peak of activation at cluster level 
corrected for multiple comparisons and the number of voxels in each cluster (n. voxels). BA = 
approximate Brodman’s area; L = Left hemisphere; R = Right hemisphere; INS=Insular cortex; 
ACC=Anterior cingulate cortex; IPL=Inferior parietal lobe. 
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Table 2.2: Interactions between COMT and Valence effects in the corresponding boost trial 

contrasts  

A. COMT x Valence [Gain (125) vs. Loss (125)] 

 Stereotactic coordinates 

Brain region ~BA n. voxels X Y Z 
T 

peak 
p 

value 
Posterior media PFC (ACC) BA8/BA32 27 4 24 48 4.77 <0.01 

R IPL BA40 55 44 -48 40 3.84 <0.001 

 
Notes: MNI coordinates and T-value for the peak location in a particular identified anatomical 
cluster. P < 0.001; 20 voxels spatial extent uncorrected for multiple comparisons at the whole-
brain level. Reported also the P value for the peak of activation at cluster level the number of 
voxels in each cluster (n. voxels). 
 

2.4. Discussion 

Consistent with our working hypothesis derived from the phasic-tonic account (Bilder 

et al., 2004), we encountered a larger differential increase in the NAcc activity for 

ValVal homozygous participants after the delivery of large and unexpected monetary 

gains (boost trials) when compared to the MetMet group (Figure 2c,d). A similar 

pattern was also seen in the posterior medial prefrontal cortex (ACC) and the right 

inferior parietal lobe (Figure 2). This pattern was observed in the boost but not in the 

standard trials. This result is compatible with the idea that subtle genetic differences 

might manifest themselves only in extreme or demanding conditions and thus 

corroborates previous work on COMT and working memory in which genetic effects 

were found only in the most taxing conditions (Egan et al., 2001; Bertolino et al., 

2006). Whereas the DRD4 polymorphism did not show an effect of valence, it 

modulated the brain’s sensitivity to the magnitude of the feedback stimulus, i.e. the CC-

group showed a larger activation in the boost (gain+loss) vs. unexpected similar 
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(gain+loss) contrast in two reward-related regions, the rostral ACC and the right 

insular cortex (Figure 2.3). 

 

2.4.1. COMT effects on valence  

Whereas monetary gains and losses activated a similar fronto-striatal network for 

standard and boost trials, monetary gains elicited greater activation which replicates 

previous studies (van Veen et al., 2004; Nieuwenhuis et al., 2005; Marco-Pallares et al., 

2007). Additionally, BOLD activations were more sustained for gain, again replicating 

earlier studies (Delgado et al., 2000; Delgado et al., 2003; May et al., 2004). No 

modulation of valence effects by the DRD4 polymorphism was seen. In contrast, a 

profound effect of COMT genetic differences was observed, in that a greater gain/loss 

difference was seen for the boost trials in the ValVal group. To reiterate, the phasic-

tonic hypothesis advanced with respect to the differential effects of Met and Val alleles 

of the COMT polymorphism (Bilder et al., 2004) proposes that low prefrontal tonic 

levels of DA (associated to the Val allele) would lead an amplification of the phasic 

dopamine response in the NAcc.  

 

Critically, our conclusions are based on the significant interaction between condition 

(gain vs. loss) and COMT (MetMet vs. ValVal) in the NAcc and ACC reflecting mostly a 

decrease in activity to the loss trials for ValVal participants (see Figure 2d and 4a/b). 

Thus, it is crucial to our interpretation and the predictions of the phasic-tonic DA 

regulation model, whether this smaller response to losses in the ValVal group reflects 

diminished presynaptic input from the midbrain dopaminergic neurons. In a recent 

study, Tom et al. (2007) showed that the activation in the ventral striatum decreased as 

the size of a potential loss increased. Thus, the degree of suppression of the BOLD 
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response to losses appears to be related to the impact of the loss. This also is consistent 

with primate electrophysiological recordings showing decreased midbrain dopamine 

neural firing for negative events (Mirenowicz and Schultz, 1996). As the ventral 

striatum is one of the target regions of dopaminergic midbrain neurons, less 

dopaminergic input to the ventral striatum is expected after losses. This reduction of 

input to the NAcc could lead to a reduced or even negative BOLD signal. 

 

The present results complement a recent paper investigating the effects of COMT and 

dopamine transporter (DAT) polymorphisms on reward anticipation (Yacubian et al., 

2007). In this study the ventral striatum showed activation that scaled as a function of 

both, reward probability and magnitude. MetMet participants showed larger responses 

in the ventral striatum and the prefrontal cortex compared to ValVal carriers, i.e. an 

effect that is seemingly opposite to the one found in the current study. The pattern of 

results in the Yacubian et al. (2007) study was considerably more complicated, 

however. Overall, an increase in striatal activity was seen when anticipation of high 

probability large rewards was compared to low probability small rewards. When 

genotypes for both genes were examined in isolation, no effect was seen on the slope of 

this striatal activation increase. However, when MetMet homozygous participants were 

considered that were also carrying the 9R variant of DAT an increase of striatal activity 

was seen from low probability small to high probability large rewards, while ValVal / 

9R participants showed an opposite tendency. Interestingly, MetMet participants also 

carrying the 10R variant showed higher striatal activity for low probability small 

rewards than high probability large rewards, while, again, carriers of the ValVal / 10R 

combination showed an opposite effect. It is important to point out that Yacubian et al. 

(2007) studied reward anticipation, whereas the present study focused on the delivery 

of unexpectedly high reward outcomes and participants were not able to predict when 
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boost trials would appear. The differences between both studies might thus be related 

to differences in the neural mechanisms involved in anticipation and processing of 

reward outcomes. For example, reward anticipation has been shown to rely more on 

tonic dopaminergic activity (Fiorillo et al., 2003), whereas the processing of unexpected 

rewards is thought to be related to phasic dopaminergic activity (Schultz, 2002). As 

MetMet participants are thought to have higher tonic but blunted phasic dopaminergic 

response, this could explain their smaller response in the current study but greater 

response in the Yacubian et al. (2007) study.  

 

The greater ACC activation for boost gains in the ValVal group (Fig. 2e) is consistent 

with previous observations showing that this region is modulated by the valence of 

performance feedback (larger for positive than negative, Nieuwenhuis et al., 2005). 

This region has also been found to be activated in several reward studies (Elliott et al., 

1998; Knutson et al., 2000; Delgado et al., 2003; Rogers et al., 2004; Taylor et al., 

2006) and a number of recent investigations highlighted the interactions of the ACC 

and the ventral striatum (Lee et al., 2007; Walton et al., 2007; Rushworth and Behrens, 

2008). The larger differential activation observed in the ValVal group in conjunction 

with the greater effect in this group for the NAcc suggests that the reinforcement 

learning system functions at a higher gain in this group.  

 

The more pronounced activation in the right inferior parietal lobe for the ValVal group 

could be related to an increased salience of positive vs. negative outcomes in this group 

in boost trials, as this region has been shown to reflect allocation of attention resources 

(Corbetta et al., 2000). Also, the posterior parietal, as well as the cingulate cortex, have 

been associated to the desirability of an action in oculomotor tasks (Platt and Glimcher, 
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1999; Glimcher, 2003; Dorris and Glimcher, 2004; McCoy and Platt, 2005; Sugrue et 

al., 2004; Sugrue et al., 2005). 

2.4.2. DRD4 effects in the insular cortex and rostral ACC 

Two regions showed increased activity in the DRD4/CC homozygous participants 

relative to the TT group as a function of reward magnitude: the rostral ACC and the 

anterior insular cortex. Magnitude related activations in the insular cortex have been 

previously reported (Elliott et al., 2000; Knutson et al., 2000; Breiter et al., 2001; 

Delgado et al., 2003). The magnitude effect in the rostral ACC may be related to the 

role of this area in emotional processing (Devinsky et al., 1995; Bush et al., 2000). 

Interestingly, lesions in rats in the ACC impair the choice of a high-cost/high-reward 

option, without affecting the choice of a less-demanding and less-rewarding option 

(Walton et al., 2003). 

 

The modulation of magnitude-related activity by the DRD4 polymorphism in both 

regions suggests a role of the D4 receptor in the assessment of the magnitude or impact 

of outcomes. This may go hand-in-hand with the reported associations between this 

polymorphism and novelty seeking (Okuyama et al., 2000; Ronai et al., 2001; Schinka 

et al., 2002; Golimbet et al., 2007). This interpretation should be regarded tentative at 

this point due to the lack of knowledge about the transcriptional effects of this 

polymorphism (Ogawa et al., 1990; Kereszturi et al., 2006). The importance of genetic 

differences of D2-type receptors, to which the D4 receptor belongs, has been 

underscored by previous functional investigations, however. For example, Fan et al. 

(2003) studied the insertion/deletion of a guanosine residue at the upstream position -

1217 of the DRD4 gene and found greater conflict-related brain activity in the ACC in 

participants carrying the insertion variant of the polymorphism. Focusing on the 
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presence/absence of the A1 allele on the dopamine D2 receptor gene, Cohen et al. 

(2005) showed that this polymorphism predicted a significant amount of inter-subject 

variability in the magnitudes of reward-related, but not anticipation-related, 

activations. Moreover, Klein et al. (2007) demonstrated that presence of the A1-allele, 

known to lead to a reduced receptor density, is associated to a reduced BOLD response 

to negative feedback in the medial prefrontal cortex.  

 

2.5. Conclusions 

In the present study we demonstrate a double dissociation with regard to the impact of 

two dopaminergic polymorphisms on the processing of rewards: The COMT 

Val(108/158)Met polymorphism modulated valence related responses in the ventral 

striatum and the ACC for unexpectedly large gains/losses, whereas the C/T 

polymorphism at position -521 of the dopamine receptor D4 gene was associated to 

differential activity as a function of reward magnitude.  



Tracing functional brain architecture: a combined fMRI-DTI approach 

Chapter 2   

 

 

82 

 

  



Tracing functional brain architecture: a combined fMRI-DTI approach 

Chapter4   

 

 

83 

 

Chapter 3♣ 

3. Functional connectivity approach:  
Functional brain connectivity of reward processing in humans 

 

3.1. Introduction 

Bribing someone with cash or, alternatively, threatening him with a high penalty 

powerfully influences behaviour, as we try to adapt our actions in order to obtain the 

rewards and avoid punishments. Expectations of both punishment and reward also 

have an impact on future decisions, since we try to increase the probability of the 

occurrence of positive reinforcement and to minimize the recurrence of adverse events 

(Daw et al., 2006).  

 

The delineation of the neural circuits subserving the processing of rewards and 

punishments and their translation into action is therefore of great importance, but 

controversial findings have been reported. On the one hand, there is ample evidence 

indicating that monetary gains and losses activate a similar fronto-subcortical network 

but to a differential degree (Gottfried et al., 2003; van Veen et al., 2004; Nieuwenhuis 

et al., 2005; Dreher, 2007; Marco-Pallares et al., 2007; Tom et al., 2007). On the other 

                                                        

♣ Camara et al. Functional brain connectivity of reward processing in humans. (In 

preparation). 

 



Tracing functional brain architecture: a combined fMRI-DTI approach 

Chapter3   

 

 

84 

 

hand, recent studies suggest that reward and punishment outcomes may be processed 

by different neural circuits (Frank et al., 2004; Yacubian et al., 2006; Wrase et al., 

2007). For example, modelling work of Frank et al. (Frank et al., 2004) distinguishes 

between two excitatory/inhibitory pathways in the basal ganglia, which show 

differential modulation during positive and negative reinforcement processing. 

Dopamine release is typically evoked by positive outcomes, and in turn increases the 

activity in the excitatory pathway and suppresses the activity in the in the inhibitory 

connection. In contrast, negative events are associated with dips in dopamine levels, 

and thus show opposite effects. Drawing on neuroimaging results, Yacubian et al. 

(Yacubian et al., 2006) distinguish two systems involved in predictions made 

concerning either possible gains or losses: By this account the ventral striatum 

generates predictions based on possible gains and compares these to actual outcomes, 

whereas the amygdala is involved in the prediction of possible losses, again comparing 

these to actual outcomes. Furthermore, Wrase et al. (Wrase et al., 2007) showed that 

different neural systems adjust motor behaviour in response to differences in reward 

and punishment outcomes. 

 

Although there is a large body of neuroimaging literature concerning the regions 

involved in the processing of reward and punishments, the picture provided is rather 

static. In the present communication we therefore investigate the functional 

connectivity patterns between different cortical and subcortical regions in response to 

monetary gains and losses. Indeed, a complete understanding of reward processing 

requires not only to identify the activated brain regions, but also to distinguish how 

these regions flexibly interact in response to different outcomes. Previous results 

addressing other cognitive processes have shown that analyses of functional 

connectivity are not redundant when compared with standard analyses of brain 
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activation changes (Gazzaley et al., 2004; Rissman et al., 2004; Buchsbaum et al., 

2005; Ranganath, Heller, Cohen, Brozinsky, and Rissman, 2005; Fiebach and 

Schubotz, 2006). In particular, different functional connectivity patterns may reveal 

different brain networks that in turn might mediate various aspects of behaviour. For 

instance, Cohen et al. (Cohen, Heller, and Ranganath, 2005) demonstrated an increase 

of the estimated functional connectivity between the anterior cingulate (ACC) and the 

nucleus accumbens (NAcc), when comparing high-risk vs. low-risk gambling decisions. 

Cohen et al. (Cohen, Elger, and Weber, 2008) also reported recently that the 

microstructural properties of white matter tracts connecting the amygdala to the 

hippocampus, orbitofrontal cortex, and the ventral striatum predicted functional 

connectivity derived from fMRI time series and participants’ behaviour following both 

positive and negative feedback in a reversal learning task (Cohen et al., 2008).  

 

Which regions might interact in the processing of reward? The ventral striatum has 

been proposed to be involved in the selection of appropriate responses and the 

modulation of goal-directed behaviour (Berridge and Robinson, 1998; Kelley and 

Berridge, 2002). This region has shown increased activation in the presence of positive 

reward outcomes (monetary gains) when compared to negative outcomes (monetary 

losses) in several studies (Delgado et al., 2000; Delgado et al., 2003; May et al., 2004; 

Riba et al., 2008). More importantly, studies by Tom et al. (Tom et al., 2007) have 

recently shown that activation in the ventral striatum decreased as the size of the 

potential loss increased. The ventral striatum receives synaptic inputs from the 

orbitofrontal cortex (OFC), dorsolateral prefrontal cortex, (DLPFC), limbic structures 

such as hippocampus and amygdala (Groenewegen et al., 1999), and is the target of 

dense dopaminergic projections originating in the ventral tegmental area (VTA, Voorn 

et al., 1986).  The VTA has been repeatedly associated to learning and motivation 
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(Schultz, 2007). Taking into account this information, the ventral striatum is a key 

candidate in the study of functional connectivity in the context of reward processing.  

 

With this aim, healthy volunteers were involved in a simple gambling task adapted 

from Gehring and Willoughby (2002) and Riba et al. (Riba et al., 2008). In this task 

unexpected and large monetary gains and losses (henceforth boost trials) occurred 

infrequently in addition to frequent gain and loss trials of smaller magnitudes. We used 

the ‘‘beta series correlation’’ method proposed by Rissman et al. (Rissman et al., 2004) 

to examine event-related changes in whole-brain functional connectivity with the 

ventral striatum as a seed region and to compare reward and punishment functional 

connectivity patterns. The beta series bivariate method uses a standard general linear 

model approach but adapts the model in such a way that separate beta values (general 

linear model parameter estimates) are obtained in order to modulate activation 

changes for each component of each individual trial. With this approach, a series of 

parameter estimates can be extracted from a seed region, correlated across the brain to 

identify specific networks. If two regions are functionally interacting during a specific 

event, the fluctuation of BOLD activity of both regions across trials should be 

correlated. We predict that the role of reward and punishment outcomes might be 

functionally differentiated by examining patterns of brain connectivity. To our 

knowledge, no other study has directly compared functional connectivity with reward 

and punishment outcomes.  
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3.2. Materials and methods  

3.2.1. Participants 

Seventeen young adult students [10 women, 21.6 ± 2.6 (SD) mean age] from the 

University of Barcelona participated in the study. All participants were healthy, right-

handed native Spanish speakers with no history of neurological or psychiatric episodes. 

They all gave written informed consent to a protocol approved by the University of 

Barcelona ethics committee. 

 

3.2.2. Design 

Several important modifications were made to the monetary gambling task designed by 

Gehring and Willoughby, (2002). In the standard trials (80%) a warning signal was 

presented (“*”; 500 ms duration) followed by the presentation of two numbers (5 and 

25) displayed in white against a black background in the two possible combinations, [5 

25] or [25 5]. Participants had to select one of the two numbers by pressing a spatially 

corresponding button with the left or right index finger. One second after the choice, 

one of the numbers turned green and the other turned red. If the number selected by 

the participant changed to red, the participant incurred a loss of the corresponding 

amount of money in Euro cent. In contrast, if the number turned into green, this 

indicated a gain.  

 

In addition to the standard trials described above, two additional conditions were 

created in order to assess brain responses to unexpected rewards and losses. In 10 % of 

the trials (“boost unexpected trials”), an unexpected large gain or loss occurred. 

Independently of the chosen item (either 5 or 25) the feedback turned into 125 (125 € 
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cents) again having either green or red color indicating wins or losses. This change in 

magnitude occurred equally often for the “5” and “25” trial bets in order to avoid 

positive or negative biases in choosing “25” items. To control for the fact that boost 

trials were both, large and unexpected, in an additional 10 % of the trials (“similar 

unexpected”) the chosen number turned to either 7 (instead of 5) or 27 (instead of 25). 

While these trials were unexpected, the magnitude of the gain or loss was virtually 

unchanged. Additionally, each run included 12 randomized fixation trials that lasted 20 

seconds.  

 

Participants were provided with an initial 10 € sum and were encouraged to win as 

much as possible. They had performed in a similar event-related potential task (without 

unexpected trials) several weeks to months earlier and thus were familiar with the task 

in general. They were informed about the potential occurrence of unexpected trials. The 

experiment comprised four blocks of 140 trials each. The four possible outcomes for the 

standard trials ([25 5] [5 25] [5 25] [25 5]; italics = red = loss, bold = green = gain), for 

the unexpected similar trials ([25 7] [5 27] [7 25] [27 5]), and for the unexpected boost 

trials ([25 125] [5 125] [125 25] [125 5]) were presented in random order. These 

combinations were counterbalanced by condition, making the statistically expected 

outcome zero on each trial in order to avoid confounds of differential probability of 

gains or losses. At the end of each run, participants were informed about the 

accumulated amount of money. At the end of the experiment, participants were paid 

the final amount obtained.  

3.2.3. MRI scanning methods 

fMRI data was collected using a 3T whole-body MRI scanner (Siemens Magnetom Trio, 

Erlangen, Germany). Visual images were back-projected onto a screen using an LED-
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projector and participants viewed the images through a mirror on the head coil. Magnet 

compatible response buttons were used. Conventional high-resolution structural 

images [magnetization-prepared, rapid-acquired gradient echoes (MPRAGE) sequence, 

192 slice sagittal, TR = 2500 ms, TE = 4.77 ms, TI = 1100 ms, flip angle = 7°, 1mm 

thickness (isotropic voxels)] were followed by functional images sensitive to blood 

oxygenation level-dependent contrast (echo planar T2*-weighted gradient echo 

sequence, TR=2000 ms, TE=30 ms, flip=80°). Each functional run consisted of 336 

sequential whole-brain volumes comprising 32 axial slices aligned to the plane 

intersecting the anterior and posterior commissures, 3.5 mm in-plane resolution, 4 mm 

thickness, no gap, positioned to cover all but the most superior region of the brain and 

the cerebellum. 

 

3.2.4. Image processing 

Functional images were analyzed using standard procedures implemented in the 

Statistical Parameter Mapping software (SPM2, http://www.fil.ion.ucl.ac.uk/spm). 

First, functional volumes were phase shifted in time with reference to the first slice to 

minimize purely acquisition-dependent signal-variations across slices. Head-movement 

artefacts were corrected based on an affine rigid body transformation, where the 

reference volume was the first image of the first run (e.g., Friston et al., 1996). 

Functional data was then spatially smoothed with an 8 mm full-width half-maximum 

(FWHM) isotropic Gaussian Kernel.  

 

For the group-level analyses, realigned functional data was averaged and the mean 

functional image was normalized to a standard stereotactic space using the EPI derived 

MNI template (ICBM 152, Montreal Neurological Institute) provided by SPM2. After an 
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initial 12-parameter affine transformation, an iterative non-linear normalization was 

applied using discrete cosine basis functions by which brain warps are expanded in 

SPM2 (Ashburner et al., 1999). Resulting normalization parameters derived for the 

mean image were applied to the whole functional set. Finally, functional EPI volumes 

were resampled into 4 mm cubic voxels and then spatially smoothed with an 8 mm full-

width half-maximum (FWHM) isotropic Gaussian Kernel to minimize effects of inter-

subject anatomical differences. Notice that all statistical analyses, with the exception of 

the group statistics in the functional connectivity analysis (see below) were performed 

in native space (i.e., without spatial normalization). 

 

3.2.5. Data analysis 

3.2.5.1. Univariate fMRI analysis 

The statistical evaluation of our data was based on a least-square estimation using the 

general linear model by modeling the different conditions with a regressor waveform 

convolved with a canonical hemodynamic response function (Friston et al., 1998). 

Thus, an event-related design matrix was created including the conditions of interest: 

Gain 5, Gain 25, Gain 7/27, Gain 125, Loss 5, Loss 25, Loss 7/27, Loss 125 and fixation. 

Both native and normalized data was high-pass filtered (to a maximum of 1/90 Hz), 

and serial autocorrelations were estimated using an autoregressive model (AR(1) 

model). Resulting estimates were used for non-sphericity correction during the model 

estimation. Confounding effects in global mean were removed by proportional scaling, 

and signal-correlated motion effects were minimized by including the estimated 

movement parameters. 
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One of the attributes that boosts the impact of reward is the degree of uncertainty that 

exists in the estimation of the action’s value. Indeed, reward information becomes more 

relevant as the uncertainty of the reward prediction and the magnitude of the outcome 

increases (Schultz et al., 1997; Fiorillo et al., 2003). Accordingly, in order to focus on 

those conditions in which the impact of feedback in the reward processing system was 

largest, the analysis was constrained to the unexpected boost gain and loss trials. To 

compare these trials, we created two analogous functional contrasts: Gain (125) vs. 

Fixation and Loss (125) vs. Fixation. Second, brain regions responding selectively to 

gains and losses were defined by the Gain (125) vs. Loss (125) contrast reflecting the 

effect of valence in the unexpected boost trials.  

 

3.2.5.2. Region of Interest Analysis (ROI) 

A standard approach used for identifying functional networks requires the definition of 

an a priori region of interest, which is then used to determine which voxels throughout 

the whole-brain are functionally interacting with the selected ROI. Given the strong 

evidence concerning the main role of the ventral striatum in processing rewards and 

losses, functional ROIs were selected by applying a statistical threshold of P < 0.01 

(uncorrected) to the anatomically defined search space. Specifically, the left and right 

NAcc ROI was functionally defined for each participant in native space by identifying 

the statistically significant activation cluster in the Gain (125) vs. Loss (125) boost trials 

contrast.  

 

3.2.5.3. Functional connectivity analysis  

Functional connectivity analysis was performed using the method proposed by 

Rissman et al. (Rissman et al., 2004) using the parameter estimates obtained in the 
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context of the general linear model. The analysis was based on the hypothesis that if 

different regions are involved in a network, strongly correlated activity patterns should 

be observed among them and functional brain connections can thus be inferred. 

 

In particular, each specific trial was modelled as an independent covariate in the study 

design matrix, which allowed the assessment of a trial-to-trial parameter estimate for 

each condition. For each participant, the parameter estimates series obtained were 

sorted by conditions. For the conditions of interest [boost loss and boost gain], the 

corresponding parameter estimates were averaged across all voxels of the left and right 

NAcc ROI. Thereafter, individual native space correlation maps were generated for 

each participant and condition by correlating the seed region with the beta series of 

each voxel in the whole brain. To allow statistical inferences to be made based on the 

correlation magnitude, an arc-hyperbolic tangent transform was applied to normalize 

the correlation coefficients, which were then z-transformed. The z-transformed 

correlation maps were spatially smoothed with an 8 mm full-width half-maximum 

(FWHM) isotropic Gaussian Kernel to minimize effects of inter-subject anatomical 

differences. The resulting condition-specific connectivity maps were then normalized 

by applying the corresponding normalization parameters, which had been computed 

earlier. The individual contrast images were entered into a second-level analysis using a 

one-sample t test using a random effects analysis within the general linear model in 

order to characterize the networks involved in processing gains and losses. Maps 

thresholded at P < 0.00001, uncorrected for multiple comparisons, were used for 

further discussion. Thereafter, correlation maps were compared between the gain and 

loss contrast at the group level applying a paired samples t-test, using a P < 0.001 

uncorrected for multiple comparison threshold.  
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Finally, under the assumption that functional interactions between brain regions 

should reflect differential functional brain activations, we investigated how the 

differential connectivity profile observed between the gain and loss condition interacted 

with the functional activation pattern: group-level standard parameter estimates were 

averaged separately by condition and compared with each other in the statistically 

significant connectivity cluster. The connectivity cluster applied for testing the expected 

interaction was defined under the differential connectivity pattern, using a P < 0.05 

uncorrected for multiple comparison threshold. 

 

3.3. Results 

3.3.1. Univariate analysis for gain and loss trials 

In the present gambling task, we focus our analysis on the unexpected gain and loss 

boost trials. Standard functional univariate analysis was performed in order to compare 

the overall pattern of activity for gains and losses. This analysis revealed a very similar 

fronto-subcortical-parietal network when monetary gains or losses were incurred (see 

Table 3.1). To summarize the tabulated results, significant activations were observed in 

the cingulate cortex, the superior frontal cortex, the inferior parietal lobe, the insular 

cortex, parahippocampal regions, the thalamus, the caudate nuclei, and the ventral 

striatum. Indeed, and consistent with previous studies, monetary gains elicited greater 

activation compared to loss trials. The gain vs. loss contrast [i.e., gain (125) vs. loss 

(125)] showed bilateral activation in the ventral striatum (NAcc) in all participants 

(peak activity, MNI coordinates, x, y, z, left hemisphere, -16, 4, -4, t = 8.81, P < 0.002; 

right hemisphere, coord. 16, 8, -16, T = 8.62, P < 0.002; P-value at FWE voxel level 

corrected). Additionally, no significant differences were found in the inverse contrast 
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(loss vs. gain trials), even after lowering the threshold to P < 0.05 uncorrected. Overall, 

the analysis shows that positive and negative outcomes evoked very similar brain 

activity (see Figure 3.1).  

 

 

 

Figure 3.1: Coronal views of group average whole-brain univariate functional analysis 
superimposed on a group-averaged structural MRI image in standard stereotactic space (T-
score overlays). Depicted the Gain vs. fixation contrast (A) and the Loss vs. fixation contrast (B) 
using different statistical thresholds (p < 0.0001; p < 0.0005; p < 0.001). Positive and negative 
outcome patterns are simultaneously represented in (C): GAIN green; p < 0.001, LOSS (red; p 
< 0.001), and conjunction GAIN ∩ LOSS (yellow; p < 0.001 and p < 0.001). 
 

3.3.2. Functional  connectivity analysis 

Concerning functional connectivity, we used the ventral striatum (NAcc) identified 

above as a seed region to contrast gains vs. losses and to determine which brain regions 

significantly correlated with activity in the ventral striatum. First, functional 

connectivity was examined separately for gains and losses and then tested for 

significant differences in connectivity between both conditions. The list of the 

functional connectivity interactions reported in this paper is presented in Table 3.2. 
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An extensive network of regions including the hippocampus, insular cortex, and 

orbitofrontal cortex exhibited activity that correlated significantly with the activity seen 

in the ventral striatum in gain trials as well as in loss trials (see Figure 3.2). 

 

 

 

Figure 3.2: Coronal views of the group average whole-brain interregional interactions with the 
ventral striatum superimposed on a group-averaged structural MRI image in standard 
stereotactic space (t-score overlays). Functional connectivity is examined in the reward (A), and 
punishment (B) condition using different statistical thresholds (p < 0.0001; p < 0.0005; p < 
0.001). Gain and Loss connectivity patterns are simultaneously depicted in (C): GAIN green; p 
< 0.001, LOSS (red; p < 0.001), and conjunction GAIN ∩ LOSS (yellow; P < 0.001 and p < 
0.001). 
 

We also investigated which regions showed a significant difference in correlation with 

the NAcc for gain > loss trials. Whereas this contrast revealed no significant differences 

in connectivity, we found significant differences in the inverse contrast (i.e. loss > gain) 

in the medial orbitofrontal cortex (OFC, peak activity, -8, 24, -16). 
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Finally, in order to investigate the impact of the differential connectivity pattern 

observed in the functional domain, group-level standard parameter estimates were 

compared between conditions in the statistically significant connectivity cluster. 

Indeed, the differential connectivity pattern also revealed a differential functional 

activation pattern when the gain and loss conditions were directly compared (F (1,16) = 

5.3, P < 0.036, cluster size = 44 voxels extent). A clear increase in BOLD signal was 

observed for gains, whereas a decrease was seen for losses (see Figure 3.3). 

 

 

Figure 3.3: Group-level parameters estimates from the univariate analysis are compared 
between the gain and the loss condition in the OFC cluster identified in the functional 
connectivity analysis (contrast between gains and losses). The left panel plots the region of 
interest selected superimposed in the group-averaged structural MRI image in standard 
stereotactic space (A). The right panel shows a bar graph depicting the beta values (general 
linear model parameter estimates) for gains and losses (B). Error bars represent standard errors 
about the mean across subjects. 
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Table 3.1: Main effects for valence in standard functional analysis 

Gain (125) vs. Fix 

 Stereotactic coordinates 

Brain region ~BA X Y Z T 
peak 

p value 
FEW-

cor 

R IPL 40 36 -56 48 21.57 0.0001 

L IPL 40 -36 -52 52 14.17 0.0001 

SMA/ACC  4 24 52 14.58 0.0001 

L ventral striatum  -16 12 -12 12.24 0.0001 

R ventral striatum  8 4 -8 10.89 0.0001 

R Talamus  4 -16 8 10.13 0.0001 

L Talamus  -4 -12 8 9.28 0.001 

R Caudate  8 8 4 8.44 0.003 

R DLPC 46 44 36 28 10.49 0.0001 

R INS  36 20 -8 9.76 0.0001 

L FSG/pahip 37 -36 -56 -12 11.07 0.0001 

  -28 -64 4 10.30 0.0001 

Cu 18 -4 -50 -4 12.42 0.0001 

Loss (125) vs. Fix 

 Stereotactic coordinates 

R IPL 40 32 -56 48 12.65 0.0001 

L IPL 40 -36 -52 52 10.27 0.0001 

SMA/ACC  0 32 32 6.98 0.0001 

R DLPC 46 44 36 24 7.53 0.015 

L INS  36 20 -12 7.31 0.021 

  4 8 8 6.76 0.015 

  12 8 -8 6.12  

R pahip  24 -52 4 8.45 0.003 
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R FSG 20 36 -64 -12 7.71 0.0001 

L FSG/pahip 37 -36 -56 -8 10.12 0.0001 

Cu  12 -88 4 7.99 0.007 

 

Notes: MNI coordinates and T value for the peak location in a particular identified anatomical 
cluster. p < 0.0001; 20 voxels spatial extent uncorrected for multiple comparisons. Reported the 
p-value  FWE-corrected p-value at voxel-level. BA = approximate Brodman’s area; L = Left 
hemisphere; R = Right hemisphere; IPL= inferior parietal lobe; SMA=supplementary motor 
area; ACC=anterior cingulate cortex; DLPC= dorso lateral prefrontal cortex; INS=insula; 
FSG=fusiform gyrus; pahip=parahippocampus; Cu=cunneus; 
 

Table 3.2: Main effects for valence in the interregional interactions with the ventral 
striatum  
 
A. Gain-related interregional interactions with the ventral striatun 

 Stereotactic coordinates 

Brain region ~BA X Y Z 
T 

peak 

p value 

FEW-

cor 

L VLPC 11 -24 28 -12 7.86 0.012 

 11 -32 40 -12 7.18 0.034 

R VLPC 11 20 32 -8 6.9 0.049 

R INS  40 -12 -4 7.70 0.015 

R Cerebellum  32 -64 -32 7.32 0.028 

R Hippocampus  32 -24 -4 7.29 0.029 

R Amy  20 -16 -20 7.19 0.034 

L MTG 21 -48 -36 -16 7.16 0.035 

R  ventral striatum  16 -12 -16 7.04 0.041 

 

B. Loss-related interregional interactions  with the ventral striatun 

 Stereotactic coordinates 

L MTG 21 -52 -52 0 8.65 0.003 

 21 -52 4 -20 7.98 0.010 

L Hippocampus  -28 -24 -24 8.52 0.004 

  -32 -40 -16 4.86 0.019 

R MTG 21 52 -12 -8 8.28 0.006 
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R ventral striatum  20 16 -8 8.04 0.009 

L ventral striatum  -8 4 -4 6.97 0.05 

L ACC/OFC 34/10 -12 44 -8 7.85 0.012 

R ACC/OFC 34/10 12 40 -8 7.62 0.019 

L Amy  -24 4 -24 7.71 0.015 

R Amy  28 8 -16 7.02 0.046 

R INS  48 -24 0 7.45 0.023 

L Cerebellum  -8 -52 -40 7.02 0.047 

SN/TA  -12 -20 0 6.99 0.048 

 

C. Loss vs. Gain interregional interactions with the ventral striatun 

 Stereotactic coordinates 

Brain region ~BA X Y Z 
T 

peak 
p 

value 

Medial OFC 11 -8 24 -16 3.12 0.003 

 

Notes: MNI coordinates and T value for the peak location in a particular identified 
anatomical cluster. p < 0.0001; 20 voxels spatial extent uncorrected for multiple 
comparisons. Reported the p-value  FWE-corrected p-value at voxel-level. In the Loss 
vs Gain contrast p < 0.001 uncorrected for multiple comparisons. BA = approximate 
Brodman’s area; L = Left hemisphere; R = Right hemisphere; VLPC=Ventral Lateral 
Prefrontal Cortex; MTG=medial temporal gyrus; INS=Insular cortex; ACC=Anterior 
cingulate cortex; Amy= amygdala; SN/TA= substantia nigra/ventral tegmental area. 

 

3.4. Discussion 

Applying a recently developed functional connectivity procedure (Rissman et al., 2004) 

in an event-related fMRI experiment addressing the neural processing of monetary 

rewards and losses, we examined the extent to which the interregional interactions 

maintained by the ventral striatum (NAcc) can be used to characterize and, possibly, 

dissociate the processing of gains and losses. Standard univariate fMRI analysis 

revealed a very similar neural network to be active for gains and losses processing, 
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except for the larger activation observed in the ventral striatum in gain trials. This 

pattern agrees with previous fMRI studies that underscored the fundamental role of 

this neural network in the processing, encoding, updating, and maintenance of rewards 

and punishments (Delgado et al., 2000; Breiter et al., 2001; Knutson et al., 2001; 

Delgado et al., 2003; Knutson et al., 2003; McClure et al., 2004; Yacubian et al., 2006; 

Tom et al., 2007; Riba et al., 2008). 

The functional connectivity analysis using the ventral striatum as a seed region 

revealed a topographically distinct subcortical-limbic-anterior prefrontal circuit when 

compared to the previous standard fMRI analysis. Again similar response patterns were 

seen for gain and loss trials but the correlation between ventral striatum and the OFC 

was stronger in loss trials than in gain trials. This indicates a differential functional 

connectivity between both regions during the processing of gains and losses. In a more 

general way, the different neural network patterns observed between the standard 

analysis and the connectivity analysis stress the importance of studying functional 

connectivity as a complementary tool, as it has been successfully demonstrated in 

previous studies (Rissman et al., 2004; Gazzaley et al., 2004; Buchsbaum et al., 2005; 

Ranganath et al., 2005; Fiebach and Schubotz, 2006). 

 

3.4.1. Functional connectivity analysis of gains and losses 

Connectivity analysis using the ventral striatum activation as a seed region revealed 

that the mesolimbic pathway, including the orbitofrontal cortex, the insular cortex, the 

amygdala, and the hippocampus, exhibited activity that correlated with the activity 

observed in the ventral striatum in the processing of gains and losses. In light of known 

functional and neuroanatomical data, we will consider the possible role of each of these 
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regions in the processing of feedback associated with positive and negative outcomes in 

the following paragraphs. 

 

3.4.1.1. The insular cortex 

The functional role of the insular cortex in the processing homeostatic information, in 

the conscious perception of interoceptive states and emotional information has been 

well established (Damasio et al., 2000; Craig, 2003; Preuschoff, Quartz, and Bossaerts, 

2008). The role of this region in drug craving has also been supported by several 

imaging studies (Wang et al., 1999; Garavan et al., 2000; Sell et al., 2000; Contreras et 

al., 2007). Anatomically, the insular cortex has bidirectional connections with many 

structures implicated in reward and decision making, including the orbitofrontal 

cortex, the ACC, the NAcc and the amygdala (Reynolds and Zahm, 2005). The anterior 

insula has also been related to reward-related uncertainty (Ernst et al., 2002; Sell et al., 

2000; Paulus, Rogalsky, Simmons, Feinstein, and Stein, 2003; Hsu, Bhatt, Adolphs, 

Tranel, and Camerer, 2005; Reynolds and Zahm, 2005; Contreras et al., 2007; 

Preuschoff et al., 2008) and risk aversion (Kuhnen and Knutson, 2005; Preuschoff et 

al., 2008). In fact, in order to determine the correct value of an uncertain outcome, it is 

necessary to evaluate the risk, which is then used to estimate the expectancy of a 

possible reward (Preuschoff and Bossaerts, 2007). In agreement with this view, our 

results suggest that interregional functional connectivity between the insula and the 

ventral striatum appears equally strong during the processing of gains and losses. This 

result is partially in disagreement with the idea that the insula is primarily involved in 

the processing of negative events (Phillips et al., 1998; Morris et al., 1999). Because of 

its extensive interconnectivity, the insular cortex might be crucial for integrating 

emotion-related and interoceptive information and to feed this information forward to 
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the orbitofrontal and anterior cingulate cortex, thus influencing decision making, as 

well as directly affecting other reward-related limbic regions like the amygdala and 

NAcc.  

 

3.4.1.2. Amygdala and Hippocampus 

The amygdala projects to a wide range of brain areas, among them the hippocampus 

(Braak, Braak, Yilmazer, and Bohl, 1996), the ventral striatum, (McDonald, 1998; 

Alheid, 2003) and the substantia nigra/ventral tegmental area (McDonald, 1998), 

which might exert reciprocal influences in reward and affect processing (Baxter and 

Murray, 2001). Traditionally, the amygdala has been associated with the processing of 

aversive states (Baxter and Murray, 2001; Yacubian et al., 2006). However, several 

studies have also proposed a central role for this structure in processing both aversive 

and pleasant emotions (Salinas and White, 1998; Hamann, Ely, Grafton, and Kilts, 

1999; Phan, Wager, Taylor, and Liberzon, 2004; Phelps and LeDoux, 2005).  

 

The present results did not show significant differences in the connectivity patterns 

associated with positive and negative feedback (i.e. gains and losses) between the 

amygdala or the hippocampus and the NAcc. The involvement of both structures in 

reward-related processing has been previously reported (Salinas and White, 1998). 

Interestingly, the interregional connectivity encountered between the NAcc and the 

hippoccampus converges with existing evidence about the involvement of this region in 

reward processing, which probably reflects the integration of contextual aspects related 

to reward processing (Moore and Price, 1999; Wittmann et al., 2005; Adcock, 

Thangavel, Whitfield-Gabrieli, Knutson, and Gabrieli, 2006). In agreement with this 

idea, the activation of the substantia nigra/ventral tegmental area, and hippocampus 
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have also been associated with facilitation of memory formation (Schott et al., 2004; 

Schott et al., 2006; Wittmann, Schiltz, Boehler, and Duzel, 2008).  

 

3.4.1.3. The role of the medial OFC in reward processing 

The medial OFC was differentially involved in the processing of loss compared to gain 

outcomes. Its role in the processing of rewards and punishment has been extensively 

documented (Rolls, 1996; Rolls, 2000). O’Doherty et al. (O'Doherty, Kringelbach, Rolls, 

Hornak, and Andrews, 2001) reported an increase in the activity of the medial OFC as a 

function of the magnitude of the reward or loss incurred. They showed a graded 

increase in the activation of this region in relation to reward, but also a decrease 

relative to baseline when a punishment was delivered, a pattern similar to the one 

documented in Figure 3.3 for the present study. The degree of the deactivation 

observed in the OFC for loss trials might reflect diminished presynaptic input from 

NAcc neurons. This idea is supported by reports that NAcc activity is suppressed after 

reward outcomes (Breiter et al., 2001; May et al., 2004) and when anticipated rewards 

are not obtained (Delgado et al., 2000; Breiter et al., 2001; Knutson et al., 2001; 

O'Doherty et al., 2002; Knutson et al., 2003). Moreover, Yacubian et al. (Yacubian et 

al., 2006) found higher deactivation in the NAcc during loss trials when the loss 

condition was less likely to occur and in Tom et al. (Tom et al., 2007) activation in both 

the ventral striatum and the medial OFC decreased as the size of the potential loss 

increased. This suggests that the BOLD decrease in the NAcc and the medial OFC 

responses is related to the impact of the loss outcome. The present study adds the 

important finding of a stronger functional connectivity observed in losses compared to 

gains between the OFC and the NAcc. 
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In contrast to results seen in the functional connectivity analysis, we did not observe 

significant differences in the univariate analysis in the OFC for gain and loss trials. This 

was not true when the ROI analysis was inspected, since a significant differential 

activity pattern was observed (larger activation in gains). An open question is to what 

degree functional connectivity information can be dissociated into functional 

activation. One possibility is that the OFC might exhibit an overall decrease in activity 

when the outcome is reached although selected populations of interconnected OFC 

neurons remain active during outcome delivery. The BOLD signal reflects the 

processing of the local cortical circuitry, which results from widespread neural activity, 

and therefore might not be able to discern activations of selected subpopulations. In 

contrast, the sensitivity of the beta correlation analysis might be sensitive enough to 

detect trial-to-trial fluctuations in the BOLD signal (Gazzaley et al., 2004). 

 

3.5. Conclusions  

Monetary gains and losses activated a similar frontal-striatal-limbic network when 

large monetary outcomes were delivered. Gains and losses were functionally 

differentiated in the medial orbitofrontal cortex for which greater functional 

connectivity was shown in loss trials. Overall, the present results suggest that a very 

similar neural network might be involved in the processing of both gains and losses. 

Moreover, it is necessary to highlight that even though the proposed method attempts 

to untangle positive and negative feedback processing, the analysis presented here is 

inherently correlational and thereby no strong statements can be made about the 

directions of influence of one region on another. Thus, while coactivity highlights the 

fact that different regions are related, the nature of this relationship is not considered. 
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Chapter 4♣ 

4. Anatomical univariate MRI approach:  
Age-related water diffusion changes in human brain: 

 a voxel-based approach 

 

4.1. Introduction 

Normal brain development is a complex and dynamic process exhibiting a high degree 

of variability across the lifespan. Existing age-related magnetic resonance imaging 

(MRI) volumetric studies have revealed an increase in sulcal volume and an 

enlargement of the lateral ventricles, accompanied by a shrinkage in brain tissue 

volume (Uylings and de Brabander, 2002) occurring predominantly in the prefrontal 

and parietal lobes (Resnick, Pham, Kraut, Zonderman, and Davatzikos, 2003b). 

However, these studies have focused mainly on macrostructural changes and, 

consequently, they are limited in resolution. In contrast, neuropathological studies 

have reported age-related deterioration in the micro-structure of white matter, 

                                                        

♣ Camara, E., Bodammer, N., Rodríguez-Fornells, A., Tempelmann, K. (2007). Age-

related water diffusivity changes: a voxel-based approach. Neuroimage, 34: 

1588-99. 
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including demyelination or axonal loss in the cerebral cortex (Aboitiz and Montiel, 

2003; Marner, Nyengaard, Tang, and Pakkenberg, 2003).  

 

Diffusion tensor imaging (DTI) has proved itself to be a suitable method for monitoring 

micro-structural changes, neural architecture (Beaulieu, 2002) and possibly plasticity-

related processes (Tovar-Moll et al., 2007). As such it is a promising tool for the 

quantitative estimation of brain organization and brain development (Moseley, 2002). 

 

At the microscopic level, brain parenchymal structures have distinct boundaries, 

including axon membranes and myelin sheaths, which constrain the diffusional 

propagation of water molecules and force the latter in certain preferential directions. 

Thus, the water diffusion averaged over the individual voxels, as expressed by the 

apparent diffusion coefficient (ADC), is reduced in accordance with the local 

occurrence of these membranes. According to the present anisotropy of cellular 

structure, this reduction in diffusion due to membrane hindrance is also angular-

dependent (Beaulieu, 2002). The degree of diffusion anisotropy can be specified using 

one of the anisotropy indices, e.g. the relative anisotropy index (RA) (Pierpaoli and 

Basser, 1996), which is calculated from the directionally dependent signal decay due to 

diffusion. As the diffusion properties ADC and RA are directly related to the micro-

structure of the medium studied, they can be used to characterize tissue and to detect 

possible histological changes due to physiological and pathological states. Both ADC 

and RA measures have been shown to reliably detect local white matter changes in 

normal aging (Nusbaum, Tang, Buchsbaum, Wei, and Atlas, 2001). Thus, the number 

of applications that DTI can offer in the study of aging and neurodegenerative disorders 

(Kubicki et al., 2002) has soared over the past several years. Most of the DTI aging 
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studies have focused on region-of-interest (ROI) (Sullivan and Pfefferbaum, 2003; Abe 

et al., 2002; Gideon, Thomsen, and Henriksen, 1994) or histogram analysis (Gideon, 

Thomsen, and Henriksen, 1994; Chen, Li, and Hindmarsh, 2001; Chun, Filippi, 

Zimmerman, and Ulug, 2000; Engelter, Provenzale, Petrella, DeLong, and MacFall, 

2000; Abe et al., 2002c; Sullivan and Pfefferbaum, 2003). However, these methods 

only permit the description of diffusion properties at the regional or global level, 

respectively, i.e., beyond the method-inherent averaging of micro-structural 

information over each voxel. Using ROI-based analysis, the spatial resolution provided 

by DTI is not exploited. In particular, region-of-interest analysis has several 

limitations, as for example, it is restricted to just the few regions chosen for analysis by 

a priori hypotheses. In this sense, the results obtained might be affected by the criteria 

chosen to define the ROIs because possible bias might be introduced due to manual or 

semi-automated definitions of the ROIs (Virta et al., 1999). The additional averaging 

over to some extent arbitrarily outlined regions also reduces spatial resolution. 

Therefore, ROI analysis might not be sensitive enough to detect some biologically 

meaningful differences which could be otherwise detected at the voxel level (Virta et al., 

1999). Finally, subvolumes of the ROI might be inherently influenced by partial volume 

effects associated with tissue loss, gliosis or by compaction. These morphological 

changes might influence the detection of white matter differences after averaging. 

Given these concerns, the benefits of voxel-based analysis become apparent as an 

attractive method to investigate local age-related white matter changes in the whole 

brain. Voxel-based analysis has previously been applied to DTI data in aging studies in 

a preliminary study using a small sample of healthy volunteers (Nusbaum et al., 2001) 

and in a study comparing young and old age groups (Head et al., 2004). Recently, it has 

been used as an exploratory tool for the whole brain by Salat et al. (Salat et al., 2005). 
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The main challenge facing voxel-based diffusion parameter analysis involves meeting 

the requirement for an optimal matching of the brains being compared. Thus, high 

demands are placed on the normalization procedure. By contrast, in the methodology 

related to voxel-based morphometry the objective is different, since in this case a 

slightly imperfect normalization is not only tolerable, it is even desired in order to keep 

anatomical differences on a mesoscopic scale (Ashburner and Friston, 2001). Standard 

normalization procedures, as provided, for example, by SPM, lead to a sufficient match 

between different brains at a macroscopic scale and remove global differences in 

anatomy. However, if the intention is to examine tissue properties at a voxel level, 

identical brain coordinates have to be compared across the whole study population, 

discarding even mesoscopic structural differences.  

 

Unfortunately, this goal is almost impossible to achieve. First, brain structures, in 

particular the sulcal-gyral pattern, show considerable diversity across different brains, 

which makes the finding of a perfect match even by non-linear 3-D transformations 

unfeasible. Furthermore, a high degree of exactness of the normalization procedure 

requires high-dimensional parameter spaces in which the brain warps can be expanded 

and optimised. Thus, more degrees of freedom incur more potential local minima, 

leading to possibly erroneous results in the registration of the brain images (Ashburner 

et al., 2001). However, in the case of a moderate number of warping parameters, even 

large-scale anatomical differences, such as different ventricular volumes, might not be 

fully compensated by normalization. Additionally, neighbouring tissue might be forced 

to follow highly contrasted edges due to the application of non-perfectly adjusted brain 

warps. Consequently, the named sources of anatomical mismatch might have a 

considerable impact on inter-subject comparisons. Hence, analyses using voxel-size 

resolution require optimised normalization protocols, including the creation of a 
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suitable internal-study brain template (Good et al., 2001), in order to minimize inter-

subject anatomical variations as well as possible. A standard normalization procedure 

might not solve potential problems owing to the systematic effects caused by brain 

atrophy, which correlates with age (Good et al., 2001). In this sense, Salat et al. (Salat et 

al., 2005) considered their voxel-based diffusion anisotropy maps of the whole brain as 

only exploratory measures, compared to ROI analysis. However, it is our belief that 

these maps do constitute a good starting point for a detailed analysis as long as 

additional checks are applied. The aim of the present study is to examine possible age-

related white matter changes in healthy subjects based on ADC and RA whole brain 

data. For this purpose, a voxel-based linear regression analysis was performed using an 

optimised normalization protocol in order to facilitate the characterization of micro-

structural differences at a voxel level. However, special care needs to be taken when 

interpreting the results obtained with ADC data, which might potentially be affected at 

the tissue/CSF interfaces, because in these regions morphological changes related to 

age seem to be relatively large and the normalization procedure might not properly 

match the brain structures. In the case of RA images, considerable morphology-related 

effects might be derived from potential displacements of fibres that are not properly 

fitted by the normalization procedure. In this vein, comparisons with age-related MR 

volumetric studies (Good et al., 2001) can be helpful in order to roughly identify 

regions prone to morphological changes with age. 

 

Therefore, it is essential to control any potential problems arising from the 

normalization procedure, especially in a study involving a large age range, where these 

systematic differences in brain structure may generate significant effects. For this 

reason, the combination of ROI analysis, which is not subject to normalization 

constraints, and voxel-based analysis could play an important role in validating the 
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data. Therefore, additional ROI analysis was performed in three anatomically defined 

brain structures (genu and splenium of the corpus callosum and the putamen) in order 

to confirm our voxel-based findings at the regional level and to compare them with ROI 

analysis results published elsewhere. 

 

An alternative method for detecting possible influences of non-perfect normalization in 

cross-sectional studies involves the introduction of tools designed to detect these 

artefacts. Here, we propose a mask procedure applicable to ADC images in order to 

distinguish morphologic involvement from real white matter changes. 

 

4.2. Materials and Methods  

4.2.1. Participants 

Fifty-four healthy volunteers underwent DTI brain examinations, 22 women and 32 

men (mean age 37.3 ± 17.0, range 19-71 years). Written informed consent according to 

the approval of the Local Ethical Committee was obtained from all participants before 

MR examinations. 

 

4.2.2. MRI scanning methods  

DTI was performed on a GE Signa Horizon LX 1.5 T neuro-optimised MR tomograph 

(General Electric Medical Systems, Milwaukee, WI, USA) employing a diffusion tensor 

spin echo EPI sequence. Diffusion weighting was conducted using the standard PGSE 

method. Images were measured using 3 mm thick slices, no gap, TR = 10 s, TE = 70 ms, 
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128 × 128 acquisition matrix, interpolated by zeropadding to 256 × 256, FOV 28 cm, 

39 axial slices. Four averages were acquired per slice and diffusion gradient direction. 

In order to obtain diffusion tensors, diffusion was measured along 12 non-collinear 

directions, chosen according to the DTI acquisition scheme proposed by Papadakis et 

al. (Papadakis, Xing, Huang, Hall, and Carpenter, 1999), and the values specified by 

Skare  et al. (Skare, Hedehus, Moseley, and Li, 2000) using a single b-value of 1000 

s/mm2. For each gradient direction, inverted diffusion gradient polarity was measured 

as well, again collecting four averages each. Hence, a total of 24 diffusion-weighted 

measurements were performed. They were divided into four blocks, each one preceded 

by a non-diffusion-weighted acquisition.  

 

4.2.3. Image processing 

4.2.3.1. Analysis of diffusion-weighted data 

First, raw diffusion-weighted data were corrected for eddy-current-induced distortions, 

taking advantage of the symmetrical deformations caused by opposite diffusion 

gradient directions (Bodammer, Kaufmann, Kanowski, and Tempelmann, 2004). 

Secondly, head motion correction was performed based on the non-diffusion-weighted 

images. The first non-diffusion-weighted image of each block was realigned with the 

first – likewise non-diffusion-weighted – image of the first series using the realignment 

algorithm provided by the Automated Image Registration (AIR) package (Woods, 

Grafton, Holmes, Cherry, and Mazziotta, 1998). Then the determined transformation 

parameters were applied to the remaining diffusion-weighted images of the respective 

block. 
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In order to extract diffusion tensor elements from an overdetermined set of 

diffusion-weighted images, singular value decomposition was used. Diffusion 

tensors were diagonalized extracting the eigenvectors and eigenvalues. Based on 

the eigenvalues, the ADC and RA diffusion parameters were calculated on a 

voxel-by-voxel basis. 

 

4.2.3.2. Optimized normalization protocol 

Normalization of all ADC and RA data sets to the same anatomical space was 

performed also based on the non-diffusion-weighted image volumes using a three-step 

processing scheme (Figure 4.1). These image processing steps were carried out with 

SPM2 (Wellcome Department of Cognitive Neurology, Institute of Neurology, UK). 

Special effort was made to create an optimised study brain template offering study-

inherent contrast and distortions, according to the applied sequence parameters and 

additionally including the averaged anatomical characteristics of all study participants. 

The detailed steps of the normalization procedure were as follows: 

 

(1) First, the non-diffusion-weighted images (b ≈ 0 s/mm2) were normalized using the 

EPI-derived MNI template (ICBM 152, Montreal Neurological Institute) provided 

by SPM. After an initial affine transformation, an iterative non-linear normalization 

was applied using a lower threshold of 25 mm for the spatial periods of the discrete 

cosine basis functions by which brain warps are expanded in SPM (Ashburner et al., 

1999). From the resulting normalized data sets a first preliminary study template 

was created by averaging. 
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(2) In a second run, the non-diffusion-weighted image volumes of all subjects were 

normalized again – but now using the study template that was created before in 

step (1). A second and final study template, which defines the anatomical space of 

the present study, was generated by averaging these newly normalized images after 

the extraction of only brain parenchyma. The extraction of brain tissue was 

performed by a three-class brain segmentation, i.e. segmentation of grey matter, 

white matter, and CSF/non-brain-tissue, retaining only voxels where the 

probability of belonging to GM or WM as assessed by SPM2 exceeded 0.8. The 

threshold was selected based on preliminary tests which showed that a lower 

threshold resulted less effective in removing non-brain voxels, whereas a higher 

threshold did not retain all brain parenchyma voxels.  

 

(3) In a third step, based on the optimized protocol first introduced by Good et al. 

(Good et al., 2001), individual native-space brain parenchyma maps were extracted 

from the measured non-diffusion-weighted images and normalized to the final 

extracted-brain template. Parameters of the previous non-linear transformation 

were reapplied to the ADC and RA maps without Jacobian modulation of the signal 

intensities, generating the unmasked ADC and RA maps set. Afterwards, 

normalized non-diffusion-weighted images were segmented. By merging of the GM 

and WM segments normalized binary brain mask images were created and applied 

to the ADC and RA maps. That is, a second set of masked ADC and RA images were 

obtained where only brain parenchyma was included. Moreover, a standard 

deviation (SD) map was computed from the binary mask images of the study 

participants.  
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4.2.3.3. Voxel-based analysis 

Linear regression analysis was carried out for both sets of images (masked and non-

masked images) using SPM99. Voxel-wise t-tests were performed to detect voxels 

where the slope of ADC or RA data against age as fitted by linear regression was 

significantly different from zero. 

In order to estimate the extent of the interfacial areas between CSF and brain 

parenchyma, the voxel-wise standard deviations of all participants’ binary mask images 

were calculated. The resulting standard deviation image varied between zero (the 

respective voxel corresponded to the same category for all subjects, i.e. either brain or 

non-brain) and 0.5 (for 50% of subjects the voxel corresponded to brain tissue, for 

another 50% to CSF or non-brain tissue). Thus, the standard deviation image presented 

its highest values in those voxels for which the probability over all the examined 

subjects to constitute the CSF/brain border was relatively high. Consequently, the 

standard deviation image allowed us to map potential CSF/parenchyma interfaces. 

Hence, we were able to use these maps to identify regions with noticeable 

normalization mismatch. 

 

In sum, two versions of the normalized ADC and RA maps were created, in order to be 

further used in statistical analysis: (i) one version in which they are reduced to the 

brain-parenchymal volume and (ii) the original parameter maps containing also non-

brain tissue and CSF. Finally, all individually normalized ADC and RA data sets were 

smoothed by convolving them with isotropic 8 mm and 4 mm FWHM (full width at half 

maximum) Gaussian kernels. We report only the 4 mm FWHM Gaussian kernel result 

because it preserved the same regional patterns as shown with the 8mm kernel size, but 

with better spatial resolution. 
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Figure 4.1: Flowchart describing the three-step normalization procedure used in this study. In 
steps 1 and 2 the study template is optimized. In step 3 the normalization itself is performed, 
normalization transforms are applied to the ADC and RA maps, and a map showing the SD of 
the normalized binary brain mask images over all study participants is calculated. ADC, RA 
maps and the SD map are highlighted by a white margin as these are the images which are 
further processed in statistical analysis or used as an indication for non-perfect normalization. 
Black-filled round-edged boxes represent images which only comprise one volume for the whole 
study, whereas grey boxes indicate series of individual image sets. 
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On the other hand, such brain boundary regions, where the normalization results were 

not optimal, should show considerable differences in the ADC-versus-age linear 

regression results dependent on whether binary brain masks were applied or not. This 

is due to the diffusion in CSF regions being reflected by high ADC values, when no 

masking is applied, whereas the application of binary masks converts these values to 

zero. Therefore, ADC correlation maps should be inverted in regions close to 

CSF/parenchyma borders if the correlations do not reflect real white matter changes 

but rather inaccurate normalization. This interrelation was used to estimate whether 

significant regression results might have been caused by morphological or micro-

structural causes. For the labelling of the white matter fibre tracts the DTI brain atlas 

by Wakana et al. (Wakana, Jiang, Nagae-Poetscher, van Zijl, and Mori, 2004) was used. 

 

4.2.3.3. Region-of-interest analysis 

Four regions-of-interest (ROI), namely the genu and splenium of the corpus callosum 

and both putamina, were marked out in each participant's brain using the semi-

automated procedure provided by MRIcro (Rorden C; University of South Carolina, 

Columbia, USA; http://www.sph.sc.edu/comd/rorden/mricro.html). These particular 

regions were chosen for this type of analysis because of their important role in diffusion 

tensor imaging and aging studies (Head et al., 2004; Moseley, 2002), (notably for the 

corpus callosum), their high statistical effect size as observed in the voxel-based 

analysis (in the putamen), and their vicinity to the ventricles, which means they are 

especially prone to imperfect correction in the normalization process. The outlines of 

these regions were identified in the RA maps, where they are easily isolated and 

differentiated. In order to minimize possible partial volume effects arising at the 
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borders of the selected brain sub-structures the outermost layer of each marked region 

was reduced. 

 

In the case of the corpus callosum, the segmentation of the genu and splenium ROIs 

was performed on non-normalized sagittally resliced RA images from 1 cm left to 1 cm 

right of the midsagittal plane. The genu was defined as the anterior 25% of the corpus 

callosum, while the splenium was the posterior 25%. Mean ADC and RA values were 

determined for each participant separately. 

 

The putamen ROIs were seen on 4-5 axial slices. They were delimited by the 

surrounding internal and external capsule fibre tracts on the RA images in native space. 

The globus pallidus was excluded as much as possible, selecting only the less intensive 

voxels that presented a putamen shape. Mean ROI ADC and RA values were extracted 

and correlated with age. Additionally, for the putamina, the combined mean of left and 

right putamen voxels was calculated. Significance was determined by using a standard 

one-tailed t-test analysis and Pearson’s correlation was used to determine the 

correlation coefficients. 

 

4.3. Results  

4.3.1. Voxel-based analysis 

Without the application of brain masks, voxel-based linear regression analysis showed 

regional decreases in relative anisotropy (RA) in midfrontal white matter regions, the 

corpus callosum, predominantly in the genu, and the anterior-posterior regions of the 
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corona radiata. The medial cerebral peduncle and bilateral hippocampal complex also 

showed a significant decline in RA (see Figure 4.2 and Table 4.1). 

 

 

 

Figure 4.2: Normalized and averaged axial RA maps with relative-anisotropy-index-related t-
score overlays. Figures show positive (red) and negative (blue) correlations.  
 
 

In contrast, positive correlations with age were found for regions surrounding the 

external part of the corpus callosum, bilateral inferior fronto-occipital fasciculus and 

the medial lemniscus. Surprisingly, a statistically significant increase in RA was also 

seen in putamina bilaterally. 
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Without the application of brain masks, voxel-based linear regression analysis showed 

positive significant correlations between the ADC and age in the midfrontal white 

matter regions and the corpus callosum. Notable increases were observed in 

periventricular regions, surrounding cerebral peduncle, bilaterally in insular regions, 

and in the periphery of the brain, mostly focused in frontal and parietal lobes. Regions 

with significant ADC declines with age were identified in the internal capsule 

bilaterally, surrounding the exterior part of corpus callosum and in the pontine cistern 

(see Figure 4.3a and Table 4.2). 

 

With brain masking, linear regression analysis found significant correlations in the 

same regions (see Figure 4.3b and Table 4.2). However, the sign of the correlation of 

ADC values with age was reversed in insular regions (bilateral), right inferior frontal 

plane, and in the periventricular area. In other regions where the ADC was correlated 

with age, the sign of the correlation coefficients was kept constant when brain masking 

was applied. Examples are the negative correlation in the genu and the posterior limb 

of the internal capsule as well as the pontine cistern. Positive correlations in both 

masked and unmasked ADC maps were found in the genu of the corpus callosum. 
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Figure 4.3: Normalized and averaged axial RA maps with apparent-diffusion-coefficient-related 
t-score overlays using unmasked data (a) in contrast to masked data (b). Figures show positive 
(red) and negative (blue) correlations. The main regions are labelled as posterior cerebellar 
cistern (pcc), pointine cistern (pc), middle cerebral peduncle (mcp), right internal capsule (ric), 
left internal capsule (lic), right insula region (rin), left insula region (lin), corpus callosum (cc), 
right periventricular region (rpv), left periventricular region (lpv), right inferior frontal region 
(rifr), left inferior frontal region (lifr), middle frontal region (mfr). Arrow colours represent 
positive correlation for unmasked data and negative for masked data (yellow), positive 
correlation only for unmasked data (purple), positive correlation for masked and unmasked data 
(blue), and negative correlation for masked and unmasked data (green). 
 



Tracing functional brain architecture: a combined fMRI-DTI approach 

Chapter4   

 

 

121 

 

 

 

Figure 4.4: Overlays on tri-planar standard deviation maps. Inverted patterns obtained 
using masked vs. non-masked analysis in ADC maps (a); fibre shifting in RA maps (b). 
Figures show positive (red) and negative (blue) correlations.  
 

4.3.2. Region-of-interest analysis 

4.3.2.1. Corpus callosum 

A significant negative correlation between RA and age was obtained in the anterior part 

of the corpus callosum, indicating a linear decrease of RA with age (r = -0.4, p < 

0.002). There was no significant correlation between age and ADC (r = 0.15) in this 
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region, although a positive tendency was observed. Nor were there significant effects on 

ADC (r = -0.08) or RA (r = -0.2) in the posterior corpus callosum (see Figure 4.5). 
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Figure 4.5: ROI-based analysis (corpus callosum); scatterplots of both RA-vs-age (a) and ADC-
vs-age (b). 

 

4.2.3.2. Putamen 

RA showed a significant increase in the putamina with age (r = 0.58, p < 0.001; see 

Figure 4.6a), both in each putamen and in the total mean value. No significant 

correlation was obtained in the putamina between age and ADC (r = -0.018), (see 

Figure 4.6b). 
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Figure 4.6: ROI-based analysis (putamina); scatterplots of both RA-vs-age (a) and ADC-vs-age 
(b). 
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Table 4.1: Locations and significance levels (t-value of the peak and corrected p-value for the 
cluster) of the main clusters with significant correlation between RA and age 
Relative Anisotropy 

 

 
 
 
 
 
 

 MNI coordinates 

 x y z t peak 
Cluster 

p 

Masked 
or 

unmaske
d 

POSITIVE CORRELATION  
 

      

Hemisphe
re 

Structure       

L  Putamen -25 -1 6 7.58 <0.0001 UM 

R  Putamen 22 2 3 7.49 <0.0001 UM 

R 
Border to genu of 
corpus callosum 

14 -46 20 7.29 <0.0001 UM 

R+L 
Border to medial 
lemniscus 

5 -29 -6 6.60 <0.0001 UM 

R Uncinate fasciculus 38 -6 -14 6.30 <0.0001 UM 

L Uncinate fasciculus -37 -3 -16 6.07 <0.0001 UM 

L Posterior thalamus -14 -24 9 5.79 <0.0001 UM 

R+L 
Anterior border to 
splenium of corpus 
callosum 

-4 35 5 5.67 <0.0001 UM 

 
NEGATIVE CORRELATION  

      

R Border to tapetum 27 -41 12 7.90 <0.0001 UM 

R Internal capsule 11 -7 13 7.22 <0.0001 UM 

L Border to tapetum -29 -38 12 6.45 <0.0001 UM 

L 
Anterior corpus 
callosum 

-18 31 -2 6.23 <0.0001 UM 

R  
Anterior region of 
corona radiata 

16 30 21 5.67 <0.0001 UM 

L  
Anterior 
hippocampus 

-32 -14 -15 5.61 <0.0001 UM 

R 
Fasciculus occipito-
frontalis 

17 23 27 5.38 <0.0001 UM 
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Table 4.2: Locations and significance levels (T-value of the peak and corrected P-value for the 
cluster) of the main clusters with significant correlation between ADC and age. 
 
      Apparent Diffusion Coefficient 

 

 MNI coordinates 

 x y z t peak 
Cluster 

p 

Masked 
or 

unmaske
d 

POSITIVE CORRELATION 
FOR UNMASKED DATA AND 

NEGATIVE FOR MASKED 
DATA 

      

Hemisphe
re 

Structure       

R  
Insula/Sylvian 
fissure 

49 -16 8 8.87 <0.0001 UM 

  39 -19 2 5.30 <0.0001 M 

R  
Border to lateral 
ventricle 

8 7 8 8.18 <0.0001 UM 

  6 11 2 5.30  <0.001 M 

L  
Border to lateral 
ventricle 

-10 5 12 7.44 <0.0001 UM 

  -15 6 23 4.95  <0.001 M 

L  
Border to splenium 
of  corpus callosum 

-21 -22 27 7.92 <0.0001 UM 

  -26 -36 20 6.05 <0.0001 M 

L 
Insula/Sylvian 
fissure 

-41 -14 14 7.47 <0.0001 UM 

  -43 -11 -8 5.07 <0.001 M 

R  
Inferior frontal 
region 

44 -17 48 7.28 <0.0001 UM 

  45 -16 50 6.08 <0.002 M 

POSITIVE CORRELATION 
ONLY FOR UNMASKED 

DATA 
      

L 
Posterior cerebellar 
cistern, surrounding 
tent cerebellum 

-9 -81 -22 6.32 <0.0001 UM 

R+L Midfrontal regions -1 22 38 6.16 <0.0001 UM 

NEGATIVE CORRELATION 
FOR MASKED AND 
UNMASKED DATA 

      

R Internal capsule 19 -14 -1 6.78 <0.0001 UM 
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4.4. Discussion 

Voxel-based analysis of tissue-water diffusion – akin to voxel-based morphometry – is 

a fully automated whole brain imaging data processing technique allowing for the 

identification of specific local differences in brain tissue properties on a voxel-by-voxel 

basis. In the present study, several brain areas were associated with aging on the base 

of tissue-water diffusion data, not only regionally as previously shown by studies 

focusing on ROI-based analysis, but also with voxel-size resolution. The voxel-based 

approach for the statistical analysis of diffusion parameter data allows whole-brain 

searches for significant effects without any need for a priori regionally selective 

hypotheses. However, our results show that the interpretation of each significant region 

has to be undertaken very carefully because the voxel-based statistical analysis in 

diffusivity studies may yield a mixture of different effects, particularly in the presence 

of atrophy. 

 

With voxel-wise linear regression analysis several regions showed significant 

correlations with age, reflecting histological changes accumulated over the lifespan. 

  19 -14 0 6.32 <0.002 M 

L Internal capsule -19 -10 0 5.44 <0.005 UM 

  -19 -10 1 4.86 <0.03 M 

 POSITIVE CORRELATION 
FOR MASKED AND 
UNMASKED DATA 

      

R  
Border to middle 
cerebral peduncle 

16 3 -12 9.06 <0.0001 UM 

  18 4 -11 8.73 <0.0001 M 

R 
Anterior corpus 
callosum 

17 5 28 7.53 <0.0001 UM 

  18 8 27 5.94 <0.0001 M 
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However, not all of them necessarily mirror real changes inside white matter regions. 

In periventricular regions, for example, the significant age-related changes in both ADC 

and RA values may well be due to the ventricular enlargement that occurs with aging. 

The impossibility of fitting all the ventricles perfectly by the normalization procedure 

suggests that, even after normalization, the ventricles of the younger volunteers remain 

smaller than those of their elder counterparts. If we accept this assumption, an increase 

in ADC would be due to the comparison of CSF voxels in the older participants with 

parenchyma in the younger ones, thereby reflecting both an increase in ADC and a 

decrease in RA values, as our results report. When a particular voxel near the 

ventricular regions is inspected, it tends to correspond to CSF in the case of the older 

participants and to parenchyma in the case of the younger ones. This clearly shows that 

a significant correlation in itself is not sufficient to infer that, in a particular region, 

age-correlated micro-structural changes are prominent. In fact, the CSF-brain 

interfaces and the outer boundaries of fibre tracts may be susceptible to morphologic 

involvement. Therefore, a further assessment is needed in order to ensure that the 

pattern observed is not due to morphological alterations arising from problems in the 

normalization procedure.  

 

Although these findings seem to indicate morphological origins, a similar pattern might 

result from coherence loss in white matter tracts or variations in other histological 

properties. Specifically, diffusivity and anisotropy may be affected by tissue 

characteristics such as the average tissue water content, the degree of myelination, the 

density of neuronal fibres or glial cells (Virta et al., 1999). In addition, the partial 

volume effects of white-matter and non-white-matter components may contribute to 

the diffusion parameters determined and, consequently, to the results reported in the 

statistical analysis (Head et al., 2004). 
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Given that the statistical inference may be affected by a wide range of possible causes, a 

method is needed in order to discriminate between them, i.e., a tool which can 

distinguish between micro-structural and global age-related changes. With this aim in 

mind, a mask procedure was applied to the ADC images in the present study.  

 

Using this mask procedure, inverted correlation patterns were obtained at 

periventricular borders, bilateral insular regions, the pontine cistern and right inferior 

frontal plane, indicating that these regions do not exhibit actual white matter changes, 

but rather morphological alterations with age. These regions coincided with those 

reported in a previous morphometric analysis which found age-related macrostructural 

changes (Good et al., 2001). Interestingly, our candidate regions for predominant 

morphological influence indicated by the mask procedure are in agreement with the 

results of Good et al. (2001). They reported a positive correlation with age in the 

Sylvian fissures and a negative correlation in the pontine cistern, corresponding to the 

sign-inverted correlations that our ADC regression analysis detected when comparing 

masked and unmasked results (see Figure 4.3 and 4.4a). 

 

Unfortunately, we cannot expect these inverted correlation patterns in the RA images. 

As masked and non-masked RA values both tend to yield low values in CSF and at CSF-

brain interfaces, the masking procedure here is of little use. Nevertheless, if the regions 

present an inversion of the ADC correlation maps, it is very likely that significant 

correlations found in RA maps with age in these regions are also involved in 

morphological alterations and are not due to real white matter changes. In addition, RA 

might reflect the effects of fibre displacement that has not been properly fitted by the 
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normalization procedure. In this case, the results might be affected by the mixing of 

fibre tracts with grey matter regions. Indeed, the patterns found in the areas 

surrounding both the pyramidal tracts and the corpus callosum support this idea. A 

positive significant correlation of RA with age was observed in the external part of the 

fibre, suggesting that in the elderly group the pyramidal tracts and the corpus callosum 

were displaced outwards by the enlargement of the ventricles. Confirmation of this idea 

was provided by a negative correlation in the internal part of the fibres. The pyramidal 

tracts and the corpus callosum appear to occupy a more internal location in the 

youngest subjects. Thus, although in the case of RA images the mask procedure does 

not allow us to disentangle the influence of normalization, the inverted correlations 

obtained with age at each side of the fibre tract could provide the key for detecting 

morphological fibre displacements misaligned in the normalization process (see Figure 

4b). 

 

While for many regions the correlation of ADC and/or RA must be attributed to 

morphological changes of the brain, there are still several candidate regions for true 

white-matter changes associated with aging. For example, in agreement with previous 

reports (Nusbaum, Tang, Buchsbaum, Wei, and Atlas, 2001c; O'Sullivan et al., 2001; 

Abe et al., 2002; Sullivan and Pfefferbaum, 2003), our voxel-based analysis revealed 

significant age-related increases in the ADC in the genu of the corpus callosum, 

accompanied by a significant decrease in the corresponding RA values. When ROIs 

were statistically analysed in native space (without applying a normalization 

procedure), our results indicated that the anterior fibre tracts are more markedly 

affected than their posterior counterparts. Recent DTI studies reported very similar 

results (Head et al., 2004), associating the decrease in anisotropy with axonal loss, 

demyelination, increased water content, and combinations of these factors. 
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Researchers have paid particular attention to both hippocampal and frontal regions 

and their implications in aging, mostly because of the involvement of these regions in 

episodic memory and executive functions. Regarding the medial temporal lobe 

structures, our analysis showed a positive correlation between ADC and age in anterior 

hippocampal regions, and a negative tendency between RA and age. These results may 

suggest the presence of real age-related physiological changes in this region. As no 

inverted patterns were obtained when the masked analysis was performed it is very 

unlikely that these changes were due only to morphological variations. In fact, 

volumetric studies tend to report a reduction in the volume of the hippocampus with 

aging (Good et al., 2001). However, not all studies have observed the same pattern of 

reduction associated with aging (Good et al., 2001). These discrepancies may be due to 

the methodological differences in the definition of the boundaries of the anterior 

hippocampal regions (Raz, Rodrigue, Kennedy, and Acker, 2004; Jack, Jr., Theodore, 

Cook, and McCarthy, 1995).  

 

Concerning the frontal regions, a number of histopathological and neuroimaging 

studies (Kemper, 1994; Resnick, Pham, Kraut, Zonderman, and Davatzikos, 2003; Salat 

et al., 2004; Head et al., 2004) indicate the vulnerability of frontal white matter in non-

demented aging. These results are in agreement with previous pathological reports that 

have associated this pattern with neuronal loss causing the expansion of the 

extracellular space (Meier-Ruge, Ulrich, Bruhlmann, and Meier, 1992), while other 

studies have described this process as a shrinkage of large neurons (Abe et al., 2002). 

Considering these studies in relation to the present study, our data show that central 

frontal areas exhibit highly significant positive correlations between age and ADC 

values. Moreover, this effect converges with the significant negative correlation 

obtained between age and RA in the same region. These results are also in agreement 
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with previous findings (Head et al., 2004; Salat et al., 2005). Therefore, it is very likely 

that this pattern of correlations is due to actual white-matter changes. The lack of an 

inverted pattern of correlations when the mask analysis was applied further supports 

this idea. 

 

However, a word of caution is in order, because frontal areas may also be prone to 

increased partial volume effects due to their susceptibility to macrostructural volume 

loss with age (Good et al., 2001); this would have a negative effect on the mask analysis. 

Furthermore, the high variability in sulcal boundaries between subjects makes it 

difficult to obtain a perfect fit at the micro-structural level. In principle, we cannot rule 

out the possibility that actual white-matter changes and morphological variations 

interact in the pattern of results observed. 

 

In agreement with the significant age-related decline of the fractional anisotropy in the 

internal capsule reported by Virta et al. (Virta et al., 1999), and Salat et al. (Salat et al., 

2005), our results replicated this negative correlation between anisotropy and aging. In 

addition, in the same region a significant negative correlation in ADC was found in both 

the masked and the unmasked analysis. It is difficult to determine the biological 

significance of this negative correlation between ADC and age, as in other parts of the 

brain the correlations observed between these two variables (which must be attributed 

to micro-structural changes) tend to be positive. However, our results suggest that 

actual white matter age-related changes in the internal capsule are responsible for this 

pattern of correlation. 

Finally, we were surprised to find a highly significant increase of the RA values in the 

putamen. This result is consistent with a recent study of ADC and RA age-related 
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changes in several brain regions (Bhagat and Beaulieu, 2004), in which the putamen 

was the only structure that showed a certain increase in anisotropy with age. However, 

the authors did not propose any pathophysiological explanation for this result. 

Additionally, in the entire lentiform nucleus, Abe et al. (Abe et al., 2002) observed a 

slight increase in diffusion anisotropy with age (p = 0.094). To the best of our 

knowledge, these are the only reports that provide explicit observations of ROI-based 

measurements of anisotropy in subcortical grey matter regions and its relationship with 

aging. Previous structural MRI studies revealed a reduction in the volume of the 

putamen with increasing age (Good et al., 2001). A very early pathological report 

(Bugiani, Salvarani, Perdelli, Mancardi, and Leonardi, 1978) found a significant 

negative correlation between age and cell count in the putamen. In a recent 

morphometric study, Brickman et al. (Brickman et al., 2003) reported a partial 

pervasion of the putamen by axonal projections. As a hypothetical explanation for the 

positive correlation observed between RA in the putamen and age, it appears that age-

related cell loss might affect isotropic cell structures to a higher degree than pervasive 

axons leaving a raised partial volume of larger anisotropy. However, this is only 

speculation and a microphysiological explanation is required. 

 

Thus far, we have emphasized the utility of voxel-based diffusion parameter analysis, in 

contrast to the ROI analysis. However, the role of smoothing data in terms of spatial 

resolution requires further discussion. Image volume data are frequently smoothed in 

statistical MRI data analysis so that they can be approximated to a Gaussian random 

field, which enhances the sensitivity of the statistical analysis and reduces the inter-

subject variance. This latter effect is particularly helpful when a non-optimized 

normalization process occurs, since the image blurring that is obtained reduces the 

inter-subject differences. The benefits to be derived from Gaussian kernel filtering on 
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the voxel-based diffusivity data have been discussed by Jones et al., (Jones, Symms, 

Cercignani, and Howard, 2005). However, if we adhere to the matched filter theorem, 

smoothing severely diminishes the resolution of diffusion analysis. Thus, because of the 

robust statistical effect encountered in our study the data were smoothed with a small 

Gaussian filter of 4 mm FWHM, which enabled us to analyse the present data at a 

micro-structurally meaningful level. However, further studies are needed to determine 

an optimal smoothing kernel value. Additionally, it is important to bear in mind that 

some regions, even after applying moderate levels of smoothing, might exhibit non-

normally distributed residuals and consequently, statistical parametric tests might not 

be the most adequate ones (Jones et al., 2005). Non-parametric analyses might be 

required in order to examine this issue more appropriately. 

 

4.5. Conclusions  

As noted above, the normalization process has certain limitations when conducting a 

voxel-based analysis. Given these limitations, great care must be exercised both in 

obtaining and in interpreting DTI data, in particular when analysing white matter 

changes and the effects of aging, where different underlying processes may co-occur. 

Anatomically defined regions-of-interest may be used to corroborate results from 

voxel-based analysis, allowing white matter to be tested without the influence of the 

normalization process (Salat et al., 2005). 

 

Furthermore, linear regression analysis may not be the only statistical approach for 

investigating white matter changes. Non-linear effects over age may also influence the 

results observed; if so, non-linear methods are needed to delineate the time course.  
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Despite these disparities in the possible interpretations given to the DTI analysis, it is 

clear that DTI is still a highly sensitive method for the evaluation of the underlying 

micro-structure of the fibre tracts. Therefore, as long as researchers are aware of 

possible artifacts arising from these methodological constraints, voxel-based analysis is 

a very useful approach for identifying and comparing age-related micro-structural 

white matter alterations in the whole brain. However, additional tools, such as the 

masking procedure described here, are needed in order to validate these results. In this 

direction, Smith et al. (Smith et al., 2006) have recently proposed a straightforward 

method to appropriately match previously skeletonised fibre structures and to carry out 

statistics only for those voxels that remain within the fibre skeletons. This method can 

be expected to be very important in future studies in order to compare white matter 

fibre tract changes across subjects but it would not detect systematic changes of 

diffusion properties in regions like the putamen. 

 

Finally, it is necessary to point out that although the proposed method attempts to 

disentangle actual changes in diffusivity from changes that are due to underlying 

morphological age-dependent differences, it does not reveal how age-related diffusivity 

changes can be affected by other tissue characteristics such as differences in average 

tissue water content, the degree of myelination and the density of neuronal fibres or 

glial cells. 
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Chapter 5♣ 
 

5.  Combined fMRI/DTI approach:  
Structural white matter brain differences predict functional hemodynamic 

responses in a reward processing task 

 

5.1. Introduction 

The relationship between the function of the brain and its structure is still a 

fundamental open question. Structure–function relationships exist at many spatial 

scales and across different levels of brain organization that range from synapses to 

neural populations. At a fine spatial scale for example, changes in synaptic number 

(Anderson et al., 1996), dendritic volume (Green et al., 1983), mitochondrial and 

vascular density (Anderson et al., 1996; Black et al., 1991), and glial volume (Sirevaag et 

al., 1991) have been associated with motor skill learning. At a larger scale, it has been 

reported that functionally segregated cortical regions are sustained by specific intra-

cortical and cortico-cortical anatomical connections (Passingham et al., 2002). 

Unfortunately, an accurate description of these interactions is still not possible to 

achieve because of the complexity of the brain. However, certain aspects of the 

                                                        

♣ Camara et al. Structural white matter brain differences predict functional 

hemodynamic responses in a reward processing task (In preparation). 
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relationship between structure and brain function can be investigated combining 

functional (fMRI) and diffusional (DTI) information. This type of research should be 

able to highlight the existing relationship between brain micro-structure (e.g., white-

matter interconnectivity and the integrity of the corresponding white-matter bundles) 

and the individual differences observed in the BOLD response in specific cognitive 

tasks.  

 

With this aim, we conducted a functional MRI/ DTI study in which a large sample of 35 

subjects performed a reward-processing task. We predicted that individual white 

matter differences (using Fractional Anisotropy, FA) might be associated to individual 

differences observed in BOLD responses.  

 

5.2. Materials and methods 

5.2.1. Participants 

Thirty-five young adult students [10 women, 21.8 ± 2.2] from the University of 

Barcelona participated in the study. All participants were healthy, right-handed native 

Spanish speakers and with no history of neurological or psychiatric episodes. They all 

gave written informed consent to a protocol approved by the University of Barcelona 

ethics committee. 

 

5.2.2. Functional Design 

Several important modifications were made to the monetary gambling task designed by 

(Gehring et al., 2002). Each trial began with a warning signal (“*”; 500 ms duration) 
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followed by the presentation of two numbers (5 and 25) displayed in white against a 

black background in the two possible combinations, [5 25] or [25 5]. Participants had to 

select one of the two numbers by pressing a response button with the left or right index 

finger. One second after the choice, one of the numbers turned green while the other 

turned red. If the number selected by the participant changed to red, the participant 

incurred a loss of the corresponding amount of money in Euro cent. In contrast, if the 

number turned into green, this indicated a gain.  

 

In addition to the standard trials described above (80%), two additional conditions 

were created to assess brain responses to unexpected rewards and losses. In 10 % of the 

trials (“boost unexpected trials”), an unexpected large gain or loss occurred: In these 

trials the number “125” appeared in either red or green signaling the loss or gain of the 

corresponding sum in Euro cent. This change in magnitude occurred equally often for 

“5” and “25” trial bets in order to avoid positive or negative biases in choosing “25” 

items. To control for the fact that boost trials were both, large and unexpected, in an 

additional 10 % of the trials (“similar unexpected”) the chosen number turned to either 

7 (instead of 5) or 27 (instead of 25).  While these trials were unexpected, the 

magnitude of the gain or loss was virtually unchanged. Additionally, each run included 

12 randomized fixation trials that lasted 20 seconds.  

 

Participants were provided with an initial 10 € sum and were encouraged to win as 

much as possible. Participants had performed a similar event-related potential task 

(without unexpected trials) several weeks to months earlier and thus were familiar with 

the task in general. They were informed about the potential occurrence of unexpected 

trials. The experiment comprised four blocks, each one comprising 140 trials. The four 
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possible outcomes for the standard trials ([25 5] [5 25] [5 25] [25 5]; italics = red = 

loss, bold = green = gain), for the unexpected similar trials ([25 7] [5 27] [7 25] [27 5]), 

and for the unexpected boost trials ([25 125] [5 125] [125 25] [125 5]) were presented 

in random order. These combinations were counterbalanced by condition, making the 

statistically expected outcome zero on each trial in order to avoid confounds of 

differential probability of gains or losses. At the end of each run, participants were 

informed about the accumulated amount of money. At the end of the experiment, 

participants were paid the final amount obtained.  

 

5.2.3. MRI scanning methods 

All scans were performed on using a 3T whole-body MRI scanner (Siemens Magnetom 

Trio, Erlangen, Germany) employing an eight channel phased array head coil. Each 

subject underwent the following scans. 

 

5.2.3.1. fMRI acquisition 

fMRI data was collected  while visual images were back-projected onto a screen using 

an LED-projector and participants viewed the images through a mirror on the head 

coil. Magnet-compatible response buttons were used. Conventional high resolution 

structural images [magnetization-prepared, rapid-acquired gradient echoes (MPRAGE) 

sequence, 192 slice sagittal, TR = 2500 ms, TE = 4.77 ms, TI = 1100 ms, flip angle = 7°, 

1mm thickness (isotropic voxels)] were followed by functional images sensitive to blood 

oxygenation level-dependent contrast (echo planar T2*-weighted gradient echo 

sequence, TR=2000 ms, TE=30 ms, flip=80°). Each functional run consisted of 336 

sequential whole-brain volumes comprising 32 axial slices aligned to the plane 

intersecting the anterior and posterior commissures, 3.5 mm in-plane resolution, 4 mm 
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thickness, no gap, positioned to cover all but the most superior region of the brain and 

the cerebellum. 

 

5.2.3.2. DTI-MRI acquisition  

Diffusion weighting was conducted using the standard TRSE (twise refocused spin 

echo) sequence. Images were measured using 2 mm thick slices, no gap, TR = 8200ms, 

TE = 85 ms, 128 × 128 acquisition matrix, FOV 256mm x 256mm, 64 axial slices. In 

order to obtain diffusion tensors, diffusion was measured along 12 non-collinear 

directions, chosen according to the standard Siemens DTI acquisition scheme using a 

single b-value of 1000 s/mm2. Two signal averages and three runs were acquired per 

slice and diffusion gradient direction. Each run preceded by a non-diffusion-weighted 

acquisition.  

 

5.2.4. Image processing 

5.2.4.1. Functional Preprocessing 

Functional images were analyzed using standard procedures implemented in the 

Statistical Parameter Mapping software (SPM2, http://www.fil.ion.ucl.ac.uk/spm). 

The preprocessing included slice-timing, realignment, normalization and smoothing. 

First, functional volumes were phase shifted in time with reference to the first slice to 

minimize purely acquisition-dependent signal-variations across slices. Head-movement 

artifacts were corrected based on an affine rigid body transformation, where the 

reference volume was the first image of the first run (e.g., Friston et al. (1996)). 

Functional data was then averaged and the mean functional image was normalized to a 

standard stereotactic space using the EPI derived MNI template (ICBM 152, Montreal 
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Neurological Institute) provided by SPM2. After an initial 12-parameter affine 

transformation, an iterative non-linear normalization was applied using discrete cosine 

basis functions by which brain warps are expanded in SPM2 (Ashburner et al., 1999). 

Resulting normalization parameters derived for the mean image were applied to the 

whole functional set. Finally, functional EPI volumes were resampled into 4 mm cubic 

voxels and then spatially smoothed with an 8 mm full-width half-maximum (FWHM) 

isotropic Gaussian Kernel to minimize effects of inter-subject anatomical differences. 

 

5.2.4. Data analysis 

5.2.4.1. Functional Data analysis 

The statistical evaluation was based on a least-square estimation using the general 

linear model by modeling the different conditions with a regressor waveform convolved 

with a canonical hemodynamic response function (Friston et al., 1998). Thus, an event-

related design matrix was created including the conditions of interest: Gain 5, Gain 25, 

Gain 7/27, Gain 125, Loss 5, Loss 25, Loss 7/27, Loss 125 and fixation.  

 

The data was high-pass filtered (to a maximum of 1/90 Hz), and serial autocorrelations 

were estimated using an autoregressive model (AR(1) model). Resulting estimates were 

used for non-sphericity correction during the model estimation. Confounding effects in 

global mean were removed by proportional scaling, and signal-correlated motion 

effects were minimized by including the estimated movement parameters. The 

individual contrast images were entered into a second-level analysis using a one-

sample t test employing a random effects analysis within the general linear model. 

 



Tracing functional brain architecture: a combined fMRI-DTI approach 

Chapter5   

 

 

141 

 

5.2.4.2. Main contrast of interest  

One of the attributes that boost the impact of reward is the degree of uncertainty that 

exist in the estimation of the action’s value. Indeed, reward information becomes more 

relevant as the uncertainty of the reward prediction increases (Fiorillo et al., 2003). 

Specifically, as the reward becomes increasingly predictable, it’s ability to elicit activity 

to the reward itself decline. Accordingly, in order to enhance reward-related activity, 

the analysis was constrained to the boost trials in which the unexpectancy and thereby 

the corresponding reward outcome activity was maxima. Thus, brain regions 

responding selectively to gains and losses were defined by the Gain (125) vs. Loss (125) 

contrast reflecting the effect of valence in the unexpected boost trials.  

 

The contrast was investigated in the entire sample (35 subjects) and was thresholded at 

p < 0.05, corrected for multiple comparisons (Ashburner and Friston, 1999; Worsley 

and Friston, 1995). The maxima of suprathreshold regions were localized by rendering 

them onto the mean volunteers’ normalized T1 structural images on the MNI reference 

brain. Maxima and all coordinates are reported in MNI coordinates, as used by SPM 

and labeled in line with the Talairach atlas. Main effects of Valence were encountered 

using this multiple comparison correction approach.  

 

5.2.4.3. Diffusion analysis: Fractional Anisotropy images 

At the microscopic level, brain parenchymal structures have delimiter boundaries, 

including axon membranes and myelin sheaths, which constrain the diffusional 

propagation of water molecules in certain preferential directions. Thus, the water 

diffusion averaged over the individual voxels is reduced in accordance with the local 

occurrence of these membranes. According to the present anisotropy of cellular 
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structure, this reduction in diffusion due to membrane hindrance is also angular-

dependent (Beaulieu, 2002). In particular, the degree of diffusion anisotropy can be 

specified using one of the anisotropy indices, e.g. the fractional anisotropy index, which 

is calculated from the directionally dependent signal decay due to diffusion (Pierpaoli 

et al., 1996). Indeed, FA approximates the degree to which water diffuses preferentially 

in one direction. FA index was calculated in each voxel at the whole-brain level, FA 

varies between 0, non preferential direction diffusion, and 1, in the case diffusion is 

constrained to only one direction. 

 

5.2.4.4. Analysis of diffusion-weighted data 

DTI data were movement corrected and eddy current-induced distortions were 

removed before to the estimation of the diffusion tensors. The first non-diffusion-

weighted image of each block was realigned with the first image of the first series. Then 

the determined transformation parameters were applied to the remaining diffusion-

weighted images of the respective block. Then, all the images were averaged across the 

3 runs. In order to assessed FA values, using  SPM2 diffusion toolbox 

(http://www.fil.ion.ucl.ac.uk/spm/), diffusion tensor elements were extracted from an 

overdetermined set of diffusion-weighted images. Afterward, diffusion tensors were 

diagonalized and thereby the eigenvectors and eigenvalues were obtained. Based on the 

eigenvalues, FA diffusion index was calculated on a voxel-wise basis. One subject was 

discarded due to movement artifacts. 

 

5.2.4.5. Optimized normalization diffusion MRI protocol 

Normalization of the FA data was performed based on the FA anisotropy images 

applying the same process reported at Camara et al. (Camara, Bodammer, Rodriguez-
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Fornells, and Tempelmann, 2007) by using SPM2 package (Wellcome Department of 

Cognitive Neurology, Institute of Neurology, UK) without Jacobian modulation of the 

signal intensities. Special effort was made to create an optimized study brain template 

offering study-inherent contrast and distortions, according to the applied sequence 

parameters and including the averaged anatomical characteristics of all studied 

participants. Briefly, first, FA images were normalized using the EPI-derived MNI 

template (ICBM 152, Montreal Neurological Institute) provided by SPM. From the 

resulting normalized data sets a first preliminary study template was created by 

averaging. Then, FA images were normalized again using the previously created study 

template. Thus, a second and final study template was created by averaging these newly 

normalized images after the extraction of only brain parenchyma. The extraction of 

brain tissue was performed by a three-class brain segmentation. Afterwards, individual 

native-space brain parenchyma maps were extracted from the initial FA images and 

normalized to the final extracted-brain template. Finally, all individually normalized FA 

images were smoothed by convolving them with isotropic 8 mm FWHM (full width at 

half maximum) Gaussian kernels. 

 

5.2.4.5. Voxel-based analysis 

Voxel-wise t-tests were performed to detect those voxels in which the slope of FA data 

against memory-related measures were significantly different from zero. With this aim, 

previously normalized FA images were independently regressed on the difference of the 

beta values derived from the Gain and Loss unexpected boost conditions by applying a 

simple regression SPM2 model. Locations and significance levels from the correlation 

analysis were restricted to significant thresholds, 0.001, and 0.01 (60 voxels spatial 

extent) with a p ≤ 0.05 corrected at cluster level were reported. The maxima of 
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suprathreshold regions were labelled by using the white matter fibre tracts from the 

DTI brain atlas by Wakana et al. (Wakana et al., 2004). Maxima and all coordinates are 

reported in MNI coordinates.  

 

5.2.4.6. Region-of-interest analysis 

Additionally, a region of interest analysis was performed in order to confirm voxel-

based findings. Therefore, from the main significant cluster FA value was averaged 

across the whole region of interest, and correlated with  the difference of the beta 

values derived from the Gain and Loss unexpected boost conditions. Significance was 

determined by using a standard two-tailed t-test analysis and Pearson’s correlation was 

used to determine the correlation coefficients. 

 

5.3. Results and Discussion 

Our main contrast of interest was the gain versus loss comparison. In order to enhance 

reward responses, analyses were focused on this contrast in the unexpected boost trials, 

as reward information becomes more relevant as the uncertainty of the reward 

prediction increases (Fiorillo et al., 2003). This contrast showed an increased response 

in the left ventral striatum (NAcc) after unexpected large gains of money when 

compared to unexpected large losses (peak coordinates: -8, 4, -8 mm; t = 6.68, p < 0.05 

FWE-corrected at whole-brain level; 20 voxels spatial extent) in the fMRI analyses. 

This result was in line with several fMRI studies providing convergent evidence about 

the crucial role of the NAcc in reward processing (Yacubian et al., 2006; Knutson et al., 

2001; Knutson et al., 2003; Delgado, Nystrom, Fissell, Noll, and Fiez, 2000a; Delgado 

et al., 2003).  In contrast, we did not find any area largely activated for loss against gain 

trials, neither in standard nor in boost, which suggests that the same brain network 
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seems to be involved in processing positive and negative outcomes, although with a 

differential amount of activation  (Tom et al., 2007; Dreher, 2007). 

 

Additionally, FA maps quantifying the degree of water diffusion anisotropy were 

created from the diffusion images in order to characterize micro-structural properties. 

Then, we performed a voxel-based whole-brain correlation analysis using an optimised 

normalization protocol (Camara et al., 2007) to relate individual brain FA measures to 

the difference of the beta values derived from the main peak of the previous Gain and 

Loss unexpected boost conditions. A negative correlation was found when regressing 

the functional pattern and the corresponding FA values at the whole brain (p < 

0.00001), (peak coordinates: 22, 11, -12; r = 0.65, t = 5.86, p < 0.05 corrected at cluster 

level; 60 voxels spatial extent) showing the coupling between functional and structural 

measures. Specifically, FA values at the right uncinate / inferior fronto-occipital 

fasciculus correlated with the hemodynamic response at the ventral striatum region 

acquired during the functional reward-processing task (Figure 5.1). This result was 

observed bilaterally and probably, this pattern might reflect the interconnectivity 

between orbito-frontal and ventral striatal regions (Ungerleider, Gaffan, and Pelak, 

1989).  

 

In this regard, frontotemporal regions mediated by the uncinate fasciculus have been 

described to encode the processing of the prediction error for monetary rewards 

(Ramnani, Elliott, Athwal, and Passingham, 2004). Accordingly, in a recent study, Tom 

et al. (Tom et al., 2007) showed that the activation in the ventral striatum decreased as 

the size of the potential loss increased, which directly points out to the idea that the 

amount of suppression observed in the BOLD responses is directly related to the 

impact of the loss outcome. More concretely, Tom et al. suggested that a single system 
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mediated by the ventral striatum and the prefrontal cortex might encode individual 

differences in the differential amount of activation observed between gain and loss 

outcomes.   

 

 

 

Figure 5.1: A. DTI-fMRI coupling pattern: Depicted the negative correlation obtained after 
regressing the difference of the beta values derived from the Gain and Loss unexpected boost 
conditions (panel B) and the corresponding FA values at the whole brain (P < 0.001), (peak 22, 
11, -12). t-scores are overlaid on a coronal view from the group-averaged FA image in MNI 
standard stereotactic space. B. Additional tri-planar views of the DTI-fMRI correlation are 
shown with a less conservative significant threshold (p > 0.01) for the sake of visualization of 
the underlying white matter tracts in the region of interest. t-scores are overlaid on the mean 
group FA image. The most important result is that FA values at the right uncinate (unc) / 
inferior fronto-occipital fasciculus (ifo) correlated with the hemodynamic response at the 
ventral striatum region acquired during the functional reward processing task. C. Scatter plot 
showing each individual beta value for the fMRI contrast (gain vs. loss) and the corresponding 
FA value averaged across for the whole region of interest at the unccinate / ifo cluster (r = 
0.613, p < 0.00001).  
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5.4. Conclusions 

Overall, by studying reward processing we have observed neurophysiological coupling 

between functional and structural magnetic resonance properties in humans. 

Specifically, we evidenced that micro-structural white matter brain differences 

correlated strongly with functional hemodynamic responses in a reward-processing 

task. However, considering the present results, it is difficult to determine the 

physiological mechanisms underlying such fMRI-DTI coupling. The causality of the 

observed relationship remains unclear, thus it is not possible to claim whether 

functional properties are modulated structurally or instead structure is functionally 

constrained. Further studies are required in order to clarify the physiological 

mechanisms underlying such pattern. These findings clearly suggest new prospects for 

the integration of individual micro-structural and functional properties in brain 

function and its dynamics. 
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Chapter 6♣ 

6.  Anatomical connectivity approach:  

False memories are related to micro-structure of brain white matter 

6.1. Introduction 

Memory distortions are common and therefore are not only of practical concern but 

also may allow further insight into the cognitive and neural architecture of the human 

memory system (Brainerd and Reyna, 2002; Schacter, Verfaellie, and Pradere, 1996) 

Unsurprisingly, false memories (FM) can be elicited easily in the laboratory (Roediger 

and McDermott, 1995). For example, in the Deese-Roediger-McDermott (DRM) 

paradigm, lists of semantically related words are presented during encoding (e.g., seat 

– sofa – stool – table etc.) with one prototypical exemplar of the category (“lure” word: 

chair) missing. Interestingly, the lure word is often produced in free recall or 

recognition tests. True memory (TM) recognition has been shown to rely on accurate, 

context-rich and vivid retrieval of an event (i.e., recollection), whereas FM recognition 

appears to reflect the feeling of knowing something without specific contextual details 

and the semantic gist of the list (Brainerd et al., 2002). Recollection and familiarity- or 

gist-based retrieval are qualitatively different processes subserved by different neural 

                                                        

♣ Fuentemilla L., Camara E., Kramer U.,  Cunillera T., Marco-Pallares J., C. Tempelmann, Münte 

T. F., Rodriguez-Fornells A. False memories are related to micro-structureof brain white matter 

(submitted). 
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structures (Sauvage, Fortin, Owens, Yonelinas, and Eichenbaum, 2008) and recently it 

has been shown that TM and FM retrieval in the DRM paradigm are mediated by 

different neural mechanisms (Kim and Cabeza, 2007). Specifically, highly confident TM 

recognitions have been shown to be supported by the medial temporal lobe, a structure 

that has been related to recollection, whereas highly confident FM recognition engaged 

frontoparietal regions, which are thought to mediate familiarity-based memory 

retrieval (Kim and Cabeza, 2007). 

 

The tendency to produce FM shows marked interindividual behavioural differences 

(Blair, Lenton, and Hastie, 2002; Gerrie and Garry, 2007; Watson, Bunting, Poole, and 

Conway, 2005) and is also associated with brain activation differences across the life-

span(Dennis, Kim, and Cabeza, 2008; Paz-Alonso, Ghetti, Donohue, Goodman, and 

Bunge, 2008). In children age-related increases in TM were associated with changes in 

the medial temporal lobe (MTL) activation profile, whereas increases in FM were 

related with activation changes in ventrolateral prefrontal cortex (Paz-Alonso, Ghetti, 

Donohue, Goodman, and Bunge, 2008). In older adults, on the other hand TM 

recognition led to weaker activity in the hippocampus compared to young controls, 

whereas FM was associated with increased activity in the left middle temporal gyrus, a 

region involved in semantic processing and semantic gist (Dennis, Kim, and Cabeza, 

2008).  

 

In the present investigation we asked, whether individual differences in TM/FM 

retrieval may be related to differences in the organization of white matter connections 

(defined as per fractional anisotropy (FA) values derived from diffusion tensor 

magnetic resonance images)  of the critical brain regions: Whereas the information 
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processed in the MTL thought to lead to TM, is predominantly sent through the inferior 

longitudinal fascicle (ILF), the frontoparietal network related to FM is connected by the 

superior longitudinal fascicle (SLF). FA ranges from 0 to 1 with larger values indicating 

that diffusion occurs predominantly along one direction as is the case for highly 

organized and directed white matter tracts (Le Bihan, 2003). To the extent to which the 

functioning of brain areas critical for FM and TM retrieval is dependent on the 

organization of their connecting fiber tracts we predicted that (i) better TM retrieval 

should be positively correlated to FA in the ILF supporting the functions of medial 

temporal lobe structures, whereas (ii) a greater susceptibility to FM recognition should 

be related to FA in the SLF.  

 

To examine this hypothesis we tested 48 young native speakers of Spanish in a version 

of the DRM paradigm and subsequently obtained diffusion tensor images using a 3 

Tesla MR scanner. A voxel-based whole-brain level linear regression analysis was 

performed to relate FA to indices of TM and FM recall and recognition.  

 

6.2. Materials and methods 

6.2.1. Participants 

Forty-eight healthy, right-handed students [32 women, mean age 21.2 ± 2.8 (SD)] from 

the University of Barcelona gave written informed consent to a protocol approved by 

the University of Barcelona ethics committee prior to participation. 
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6.2.2. Design  

The memory paradigm comprised four lists of semantically related words  presented in 

a quite room via loudspeakers at a rate of 1 every 2 seconds. Critically, each list 

contained 14 semantic related Spanish words associated of one lure word that was not 

presented. The lists were taken from the original DRM study (Roediger et al., 1995). 

After each list, participants wrote down as many words as they could remember on an 

unmarked sheet of paper (recall test). After twenty minutes, as an additional test of 

memory, studied words, lure words and new words were presented and the participants 

had to make an old / new decision (recognition test). The recognition list comprised the 

first and eighth words of each of the study lists (studied words), the four words 

semantically associated to each list (lures) and four words neither presented during the 

study phase nor semantically related to any of the studied words (new words). In order 

to avoid possible biases when comparing lure words with other neural words (Gallo and 

Roediger, 2002), new words tested where lures in other lists in the original DRM 

experiment  (Roediger et al., 1995) which were not studied in the present experiment. 

 

In the case of “old” decisions, participants were instructed to make a Remember-Know 

judgement in order to have a subjective about the recognition judgement (Tulving, 

1985). Subjects were instructed to mark “Remember”, if they had a conscious and vivid 

recollection of the words from the study list, as for example, if they remembered what 

they were thinking about at the time the word was presented”, the order in which the 

word was presented” (neighbour words of the study list), or the physical characteristics 

associated to the presentation of the word. A “Know” judgement was encouraged in the 

case they were sure that the word was presented, but they could not recollect its actual 

occurrence or any related details. The experimenter ensured, before beginning the 
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recognition test that participants understood correctly the instructions addressing the 

distinction between remember-know judgements. 

Table 6.1: Study lists. 

Studied words 

Hilo Agrio Colina 

Alfiler  Azúcar  Valle 

Ojo  Amargo  Escalar 

Costura  Bueno  Cima 

Afilado  Sabor  Cumbre 

Punto  Dientes  Pico 

Pinchazo  Amable  Llanura 

Dedal  Miel  Glaciar 

Pajar  Chocolate  Cabra 

Espina  Bombón*  Bicicleta 

Lastimarse  Pastel  Escalador 

Inyección  Tarta  Cordillera 

Jeringa  Golosina  Escarpado 

Tela  Cariñoso*  Esquiar 

Non-studied words 

(possible lures) 

Aguja Dulce Montaña 

 

Percentage of recalled words was computed dividing the number of recalled items by 

the total amount of words in each list (14 words). The percentage of lures recalled was 

calculated in relation of the total amount of possible lures (4 possible lures). In the 

recognition phase, the percentage of recognized words was computed in relation of the 

total amount of studied words introduced in the list (8 words). The percentage of 

recognized lure words was computed based on the 4 lure words introduced in the list. 
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Percentage of recognized unrelated words was computed also in relation to the 4 

unrelated words introduced in the list.  

 

6.2.3. MRI scanning methods 

6.2.3.1. DTI-MRI acquisition  

DTI data were collected using a 3T whole-body MRI scanner (Siemens Magnetom Trio, 

Erlangen, Germany) employing an eight channel phased array head coil with parallel 

imaging (GRAPPA)  and an acceleration  factor of 2. Diffusion weighting was conducted 

using the standard TRSE (twise refocused spin echo) sequence. Images were measured 

using 2 mm thick slices, no gap, TR = 8200ms, TE = 85 ms, 128 × 128 acquisition 

matrix, FOV 256mm x 256mm, 64 axial slices. In order to obtain diffusion tensors, 

diffusion was measured along 12 non-collinear directions, chosen according to the 

standard Siemens DTI acquisition scheme using a single b-value of 1000 s/mm2. Two 

signal averages and three runs were acquired per slice and diffusion gradient direction. 

Each run preceded by a non-diffusion-weighted acquisition.  

 

6.2.4. Image processing 

6.2.4.1. Pre-processing of diffusion-weighted data 

DTI data were movement corrected and Eddy current-induced distorsion was removed 

prior to the estimation of the diffusion tensors. The first non-diffusion-weighted image 

of each block was realigned with the first image of the first series. Then, the determined 

transformation parameters were applied to the remaining diffusion-weighted images of 

the respective block. Subsequently, all images were averaged across the 3 runs. In order 

to assessed FA values, using the SPM2 diffusion toolbox 
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(http://www.fil.ion.ucl.ac.uk/spm/), diffusion tensor elements were extracted from an 

over-determined set of diffusion-weighted images. Diffusion tensors were diagonalized 

and thereby the eigenvectors and eigenvalues were obtained. Based on the eigenvalues, 

FA was calculated on a voxel-wise basis. Normalization of the FA data was performed 

based on the FA anisotropy images without Jacobian modulation of the signal 

intensities as reported previously (Camara et al., 2007). 

 

Briefly, FA images were first normalized using the EPI-derived MNI template (ICBM 

152, Montreal Neurological Institute) provided by SPM2. From the resulting 

normalized data sets a first preliminary study template was created by averaging. Then, 

FA images were normalized again using the previously created study template. Thus, a 

second and final study template was created by averaging these newly normalized 

images after the extraction of only brain parenchyma. The extraction of brain tissue 

was performed by a three-class brain segmentation. Afterwards, individual native-

space brain parenchyma maps were extracted from the initial FA images and 

normalized to the final extracted-brain template. Finally, all individually normalized FA 

images were smoothed by convolving them with isotropic 8 mm FWHM (full width at 

half maximum) Gaussian kernels. 

 

6.2.5. Data analysis 

Voxel-wise analysis was performed to detect those voxels in which FA correlated with 

memory-related measures. With this aim, previously normalized FA images were 

independently regressed on the proportion of true and false memory recall and 

recognition scores by applying a simple regression model in SPM2. The analysis was 

constrained to those voxels with FA > 0.15 in each single participant. This cut-off 



Tracing functional brain architecture: a combined fMRI-DTI approach 

Chapter  6   

 

 

156 

 

allowed to reliably isolating white matter from the rest of the brain(Jones et al., 1999). 

Locations and significance levels from the correlation analysis were restricted to three 

different uncorrected significant thresholds: p < 0.05, p < 0.01, and p < 0.005 (all of 

them with 60 voxels spatial extent). The use of this gradual threshold allows the 

visualization of the underlying white-matter path. However, only regions significant at 

cluster level (uncorrected p < 0.01, n = 60 voxels) were reported in Table 6.1 and 

discussed in the text. The maximum of suprathreshold regions was labeled using a 

white matter fibre DTI brain atlas (Wakana et al., 2004). Maxima and coordinates are 

reported in MNI space.  

 

6.2.5.1. Region-of-interest analysis 

Additionally, a region of interest analysis was performed in order to confirm voxel-

based findings. Therefore, from the main peak activity, FA values were extracted and 

correlated with memory-related measures. Pearson’s correlation was used to determine 

the correlation coefficients (see Results in figure 6.2) 

 

6.3. Results 

6.3.1. Behavioral data  

A robust FM effect was obtained: Lure words were falsely recalled 46% ± 26 of the time, 

whereas studied words (TM) were recalled in 74% ± 9 of the cases (TM vs. FM recall, t 

(47) = 6.53; p < 0.001). FM and TM recall were not correlated (r = 0.08; Pearson 

correlation coefficient) which is in line with the view that FM and TM are at least 

partially mediated by distinct retrieval processes (Brainerd et al., 2002b; Schacter et 

al., 1996b).  
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Similarly, the recognition test was associated with a high degree of FM (75% ± 27 false 

recognition of lure words) in the presence of almost perfect recognition of the studied 

words (94 % ± 9 ) (TM vs. FM recognition difference, t (47) = 4.61; p < 0.001). False old 

decisions to unrelated new words were rare (2% ± 7) (FM vs. unrelated new words, t 

(47) = 17.17; p < 0.001). For studied words, in 78% ± 20% of the cases participants 

opted for a Remember judgment, thus, they were able to consciously recollect a distinct 

and vivid memory experience. More important, a large percentage of the lure words 

that were considered old words were judged to be Remembered (58% ± 36) (TM vs. FM 

Remember, t (47)= 4.43; p < 0.001). This was not the case for unrelated new words (~ 

0 %). The large percentage of remembered experiences for FM demonstrated the power 

of the DRM paradigm in inducing memory illusions. Most importantly, these results 

also demonstrated the qualitative difference between this type of errors and normal 

false alarms: FM are normally accompanied by the subjective experience of having 

experienced an event that never occurred. 

 

6.3.2. Diffusion tensor imaging analysis 

Distinct patterns of correlation were obtained between FA and FM and FA and TM for 

both, recall and recognition tests (Table 6.2). Significant positive correlations between  

recall (respectively recognition) TM and FA were found bilaterally in regions coinciding 

with the ILF near medial temporal regions including hippocampus and 

parahippocampal structures which play a crucial role for recollection in animals 

(Sauvage, Fortin, Owens, Yonelinas, and Eichenbaum, 2008) and humans (Dennis, 

Kim, and Cabeza, 2008; Kim and Cabeza, 2007). This fascicle extends from the ventral 

and lateral temporal regions to the posterior parahippocampal gyrus and has been 
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associated to memory processes, as well as object and face processing (Schmahmann et 

al., 2007).  

 

Figure 6.1: Individual differences in true and false memory (TM/FM) free recall and recognition 
scores associated to white matter changes (Fractional Anisotropy, FA). (a) Significant white 
matter clusters that correlated with TM and FM recall overlaid on the FA mean image from all 
participants (p < 0.005, n = 60 voxels spatial extent). The same results are shown with a more 
liberal statistical threshold to visualize the white-matter pathway (p < 0.01; p < 0.05; n = 60 
voxels). (b) Depicted the mean FA value for each participant at two selected regions of interest 
for TM (right ILF, peak coordinates 46 -25 -13) and FM (right SLF, peak 17 -1 34). (c) Significant 
white matter clusters that correlated with the proportion of TM and FM recognition scores 
overlaid on the FA mean from all participants (p < 0.005; see also for white-matter tract 
visualization reduced statistical threshold images, p < 0.05; p < 0.01). (d) Mean FA value for 
each participant at two selected regions of interest for TM recognition (right ILF, peak 
coordinates 40 -46 -6) and FM recognition (right SFL, peak coordinates, 21 15 22). Red and blue 
lines represent regression lines for TM and FM recognition respectively. 
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Recall (respectively recognition) FM on the other hand was correlated with FA in 

several parts of the SLF (Figure 6.1a/c, Table 6.2). The SLF is the principal connection 

between frontal and postrolandic parietal and temporal (superior and medial) 

association regions (Schmahmann et al., 2007; Catani, Jones, and ffytche, 2005; 

Makris et al., 2005), lateral to the cingulum bundle. It thus connects several gray-

matter areas implicated in familiarity-based memory retrieval processes (Yonelinas, 

Otten, Shaw, and Rugg, 2005). Whereas recall FM yielded positive correlations for 

several parts of the SLF as well as for the ILF, correlations were restricted to the SLF 

for recognition FM.  

 

A further regression analysis was performed between memory scores and mean FA 

values extracted from the activation clusters found in the whole brain analysis at p < 

0.005. Each cluster associated to either FM or TM recall (response recognition) scores 

showed significant positive correlation (all p < 0.01), whereas no significant correlation 

resulted when clusters associated to TM where correlated with FM scores and vice 

versa (all p > 0.1; see Figure 6.2), thus further supporting the notion that FM and TM 

are supported by dissociable brain systems including their respective fiber tracts. 

Representative regression analyses for TM and FM scores are shown in figures 6.1b and 

6.1d. 
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Table 6.2: White matter changes associated to TM and FM recall and recognition. All peak 
values reported were significant at cluster level (P < 0.01, uncorrected; n = 60 voxels spatial 
extent). Correlation coefficients (r) were calculated with the voxels configuring each cluster (P < 
0.005). For slope measure FA/s, s refers to the regressed memory scores. Peak coordinates of 
each cluster are reported in MNI coordinates. 

Peak 

coordinate Cluster Side 

Cluster 

size 

(mm3) 

r 
Slope 

(FA/s) 

t 

valu

e x y z 

True Memories         

Recall         

ILF R 1486 0.39 0.08 3.75 46 -25 -13 

 L 631 0.39 0.11 4.22 -44 -25 0 

IFO/ILF L 983 0.44 0.12 3.98 -33 -76 -4 

         

Recognition         

ILF  R 5953 0.46 0.07 4.75 40 -46 -6 

  L 3818 0.35 0.06 4.86 -37 -52 -3 

False Memories         

Recall         

SLF Anterior R 829 0.43 0.07 3.91 9 21 15 

SLF Medial R 918 0.42 0.04 3.50 17 -1 34 

SLF Posterior L 1500 0.45 0.05 3.65 -18 -34 33 

IFO/ILF R 1569 0.33 0.03 3.93 45 -54 -8 

         

Recognition         

SLF Medial R 1052 0.41 0.05 3.16 21 15 22 

 

Notes: SLF = Superior longitudinal fascicle; ILF = inferior longitudinal fascicle; IFO = inferior 
fronto-occipital fascicle. 
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Figure 6.2: Results from the regions of interest analysis. Correlations between FA and TM or 
FM recall and recognition scores for the peak locations of the regions described in Table 6.1. 
While most of the peak locations corresponding to the ILF correlated with TM recall and 
recognition scores, no correlation was observed with FM scores. The reverse pattern was 
observed for SLF regions. 

 

6.4. Discussion  

To summarize, we have demonstrated, within a population of unselected healthy young 

adults, a significant variation of TM and FM and that this variation is associated with 

differences in the micro-structural properties of two dissociable fiber tracts. FA has 

been shown to reflect axonal micro-structure (e.g., axon size, extent of myelination) 

(Basser and Jones, 2002; Chepuri et al., 2002), which determines the quality of axonal 

transmission (Waxman and Bennett, 1972). Greater FA in the ILF, connecting MTL 

structures, is related to higher TM scores. This result dovetails nicely with functional 

imaging results of greater MTL activity for TM (Dennis, Kim, and Cabeza, 2008; Kim 
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and Cabeza, 2007). Greater FA in the SLF, connecting frontal and parietal structures, is 

related to increased susceptibility to FM, which again coincides with fMRI findings of 

greater activation in frontoparietal regions for FM decisions (Kim and Cabeza, 2007).  

 

The present results are also in agreement with previous neuropsychological findings, 

which indicate that medial temporal patients show reduced true and false recognition, 

while frontal patients show increased false recognition (LaVoie, Willoughby, and 

Faulkner, 2006; Verfaellie, Rapcsak, Keane, and Alexander, 2004; Schacter, Curran, 

Galluccio, Milberg, and Bates, 1996; Parkin, Bindschaedler, Harsent, and Metzler, 

1996).  

 

The involvement of prefrontal structures in memory illusions is further corroborated by 

the memory deficit known as confabulation which is associated to ventromedial 

prefrontal cortex lesions. These patients are characterized by displacing or 

misremembering the time and location of they own memories, resulting in bizarre 

stories and the lack of awareness about the improbability of the events recalled. A 

similar pattern of increased false recognition due to impaired monitoring has been 

encountered in Korsakoff amnesic patients, which show also concurrent frontal damage 

(Schacter, Verfaellie, Anes, and Racine, 1998). Age-related decay in the prefrontal 

cortex might also be related to the increased susceptibility encountered in older adults 

(Norman and Schacter, 1997). 

 

The association encountered between the SLF and FM in the present study, as well as 

previous neuroimaging and neuropsychological studies (Slotnick and Schacter, 2004; 

Schacter, Verfaellie, and Anes, 1997; Schacter et al., 1996; Kim and Cabeza, 2007) 

suggest a critical role of the prefrontal cortex in strategic monitoring and error-

checking process in post-retrieval phases. In this regard, FM may be due to a 
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breakdown of the monitoring system, which is in charge of differentiating highly 

associated lure words (due to spread activation from studied words or thematic-gist 

activation, (Brainerd and Reyna, 2002a) from the encoded studied words (Roediger, 

III, Watson, McDermott, and Gallo, 2001; Balota and Spieler, 1999). This action-

monitoring framework proposes a series of cognitive control processes (e.g., searching, 

monitoring, verification and organization) in charge of editing the output from medial 

temporal lobe structures.  

 

This processes should be able to avoid memory illusions and to dampen the strong 

feeling of familiarity associated to lure words. However, it is important to bear in mind 

that considering this post-retrieval monitoring account, one might have expected  

increased activation in the frontoparietal network and better white-matter integrity 

related to a  decrease on FM. However, the functional and structural results reported 

until now show the opposite relationship: increase activity in the frontoparietal system 

elicits higher confidence FM elicitation (Kim et al., 2007) as well as susceptibility to FM 

might be related to quality of the neural transmission in the SLF pathway (better white-

matter integrity in the SLF). Thus, these results cannot be accounted by the action-

monitoring account.  

 

In agreement with the fuzzy trace theory (Brainerd et al., 2002), we propose that the 

MTL and frontoparietal networks constitute two independent and parallel retrieval 

mechanisms which rely on different type of stored memory representations: (i) the 

MTL system – item-specific episodic information and (ii) the frontoparietal network – 

semantic gist information. According to this proposal, incoming stimuli are encoded 

into two qualitative different types of memory traces: a verbatim (or item-specific 

details, e.g. perceptual attributes, position in the list, etc.) and a gist-trace, which 
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represents episodic conceptual information (e.g., thematic similarity or conceptual 

overlap between the words presented in the list). This theory predicts that at the test 

phase, TM recognition might be based on item-specific episodic information (subjective 

experience of recollection), while FM might rely on semantic gist information (general 

meaning of the studied list) (subjective experience of familiarity). Thus, the increased 

processing efficiency of both networks and brain white-matter integrity of the 

underlying pathways might make more veridical and trustful the information retrieved 

either through the MTL-ILF system, which would elicit a TM, or through the 

frontoparietal-SLF network, which will end-up in a FM. The negative functional 

coupling reported between both systems (Kim et al., 2007) might prevent that the 

decisions are based exclusively on the information accrued though the frontoparietal 

network or familiarity based information and allows cross-talk between both retrieval 

systems. For example, retrieval through the MTL system (verbatim information) could 

inhibit FM retrieval neutralizing meaning or gist familiarity retrieval and preventing 

FM.  

 

At the same time, one could strategically decide not to accept any memory retrieval 

experience which it is not directly eliciting a detailed and vivid experience 

(recollection), thus aborting gist-based retrieval positive experiences and preventing 

false recall. However even this cognitive strategy will fail in those cases in which false 

memories induce clear vivid episodes (“phantom recollection”). Notice that in the 

present study app. 60% of the FM experiences were considered as “remember” items, 

thus participants reported having a conscious and vivid recollection of these lure words. 

These experiences tend to occur when thematic or gist-information retrieved is very 

strong as it is the case in the studied list of the DRM paradigm. In this regard, stable 

individual differences in the susceptibility to create FM should arise due to the long-
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term effects of differentially weighting and relying on the information conveyed by both 

retrieval routes. In these particular cases, strong gist or thematic trace recollection will 

overshadow verbatim or item-specific traces inducing to accept false memory retrieval 

experiences as true.   

 

As a caveat of the present study, we think that further additional empirical studies 

might be needed in order to disentangle the meaning of this positive correlation. As 

stated before, larger FA values could be initially interpreted as the extent of tract 

myelination and density of the axonal fibers comprising axonal bundles. In support of 

this idea, several evidences suggest that neural impulse activity may actually increase 

myelination (Bengtsson et al., 2005; Demerens et al., 1996) through the release of 

cytokine trophic factors that support oligodendrocytes (Fields, 2005; Ishibashi et al., 

2006; Demerens et al., 1996b; Bengtsson et al., 2005). However other factors might 

also contribute to increasing FA (e.g., microscopic deficits of axonal structures, 

decreases in axonal diameter, branching of axonal bundles or intravoxel fiber crossing) 

(Beaulieu, 2002). 

 

6.5. Conclusions  

To describe the relation between brain structure and function is a fundamental task of 

neuroscience. Prior work has mainly focused on cortical structures (Draganski et al., 

2004) but recently white matter micro-structure in circumscribed brain regions as 

reflected by FA has been shown to predict behaviour or functional brain activations in 

decision making (Boorman, O'Shea, Sebastian, Rushworth, and Johansen-Berg, 2007; 

Tuch et al., 2005a), language (Gold, Powell, Xuan, Jiang, and Hardy, 2007), and 

memory (Putnam, Wig, Grafton, Kelley, and Gazzaniga, 2008) tasks. At this point the 
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direction of such relations remains unclear. Innate differences in white-matter 

structure might explain differences in FM and TM retrieval processes in the current 

study.  

Alternatively, variations in experience or cognitive style might induce neural plasticity 

of white-matter tracts. FA values reflect axonal size and myelinization which may be 

susceptible to experience-dependent changes (Juraska and Kopcik, 1988; Demerens et 

al., 1996) and, indeed, changes in FA induced by long-term musical training have been 

observed recently (Bengtsson et al., 2005). 

 

The present study evidenced the relevance of studying the neural network 

interconnectivity in memory research and highlighted the implication of white-matter 

structural differences as a fundamental key to understand individual variations in 

cognitive functions. 
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Chapter 7 
 

7.  General Discussion and conclusions:  
New approaches to study brain functioning using MRI 

 

The relationship between brain function and structure is a fundamental question in 

cognitive neuroscience. However, this question has remained elusive due to the lack of 

a robust method for investigating non-invasively micro-structure differences in the 

working brain. Recently, the introduction of diffusion tensor imaging (DTI) combined 

with advanced functional MRI techniques opens a suitable method in order to 

interrelate brain circuitry and function (Rykhlevskaia et al., 2008).  

 

Different ways of combining structural and functional MRI have been described (see 

Table 7.1). Traditional functional brain imaging studies analyze each brain region 

separately by applying univariate statistical approaches, and then structural images are 

superimposed only for anatomical localization purposes (Table 7.1a). Advancements in 

imaging methods and analytical techniques permit relating brain function and 

structure by estimating the fiber path that connects functionally active brain regions 

(Table 7.1c). In turn, a multivariate analysis permits exploring and investigating 

interregional structural and functional relationships (Table 7.1b-7.1d). Indeed, the 

simplest approach consist of identifying the functional network, typically in terms of 

covariance analysis, and structural images are then overlaid as reference (7.1b). New 

approaches also integrate anatomical connectivity information by capturing the 
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underlying structural connectivity pattern from which should emerge the functional 

activations (7.1d). 

 
Table 7.1: Different ways for combining structural and functional brain imaging data (Adapted 
from (Rykhlevskaia et al., 2008). 
 

Functional imaging 
 

 
Regional approach 

 
Each region is analyzed 
independently by  using 

univariate analysis 

Interregional approach 
 

Regions are combined  
(analysis of covariances) 

Each region is analyzed 
independently 

 
(anatomy is used only as reference) 

a. Traditional functional brain 
imaging studies 

b. Functional connectivity 
studies seeded on the basis of 

anatomical information 
Structural 
Imaging 

Regions are combined  
 

(analysis of white  matter tracts) 

c.  Structural connectivity 
analysis paired with univariate 

functional analysis. 

d. Analysis of functional 
connectivity informed by 
structural connectivity. 

 

In this dissertation, functional and structural MRI information is combined by applying 

different neuroimaging analysis approaches in order to increase our understanding in 

the organization and dynamics of the brain circuits that engage neural functions and 

human behavior. With this proposal in mind, in Experiment 1 and Experiment 2 

regional (Table 7.1.a) and interregional (Table 7.1.b) functional patterns in reward 

processing were investigated. Anatomical information was then integrated in 

Experiment 4 after correlating functional and microstructural information in the same 

reward-related task. By studying and combining functional MRI and micro-structural 

DTI information these three experiments provided a new insight into the relationship 

between brain structure and function in the reward system. 

 

Moreover, the characterization of individual differences in brain architecture might be 

crucial in order to understand the way functional brain states arise from their 

underlying structural substrates. In Experiments 3 and 5 the focused was on the study 
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of anatomical connectivity and its interactions with biological (aging) and performance 

variables (memory task). In the Table 7.2 the different approaches and interrelation 

between all the experiments presented are summarized. 

 
Table 7.2: Summary of the main contents of this dissertation. The same gambling task has been 
used in Experiments 1, 2 and 4. In Experiment 1 regionally specific effects are investigated using 
a classical univariate approach. Experiment 2 investigates interregional functional connections, 
while Experiment 4 incorporates anatomical information. Experiments 3 and 5 study 
anatomical connectivity and its interactions with biological (aging) and performance variables 
(memory task). 
 

 Technique Variable Aim of study 

 DTI fMRI Approach Performance Biological Topic Object 

Exp 1  X Regional  X Rw/Exf Genetic 
Differenes 

Exp 2  X Interregional   Rw/Exf Functional 
Connectivity 

Exp 3 X  Regional  X Aging 
(BP) 

Microstructural 
Changes 

Exp 4 X X Interregional   
Rw/Exf 

(BP) 

Functional-
Structural 
coupling 

Exp 5 X  Regional X  
Mem/Exf 

(BP) 

ID in WM 
correlate with 
performance 

 
Note: DTI= Diffusion tensor imaging; fMRI= functional Magnetic resonance imaging; Exp= 
Experiment; Rw= Reward processing; Exf=Executive functions; BP=Brain Plasticity; Mem= 
Memory; ID=Individual Differences; WM=White matter. 
 

7.1 Combining structural and functional MRI in 

reward processing 

The same reward-related gambling task was used in Experiments 1, 2 and 4 to evaluate 

gain and loss feedback processing by using different approaches. In Experiment 1 a 

classical univariate analysis was applied. Monetary gains and losses activated a similar 

fronto-striatal-limbic network, in which main activation peaks were observed 

bilaterally in the ventral striatum. In particular, monetary gains systematically elicited 

greater activation than monetary losses, a finding that is in accordance with previous 
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studies (Nieuwenhuis et al., 2005). In Experiment 2 interregional functional 

connections were investigated using the same task. Interestingly, functional 

connectivity analysis using the ventral striatum as a seed region showed a distinct 

mesolimbic network when compared to the previous classical univariate analysis 

(Experiment 1). Similar responses in both Gain and Loss conditions were observed, 

however, stronger correlations were found in negative outcomes between the ventral 

striatum and the medial OFC when compared to positive reinforcements.  

 

The fact that different functional patterns were obtained with both analyses suggests 

that the brain activations observed in the classical approach might reflect different 

cognitive mechanisms were engaged when processing reward-related information, and 

stresses the importance of studying functional connectivity as a complementary tool to 

the standard fMRI analysis (Rissman et al., 2004; Ranganath et al., 2005; Gazzaley et 

al., 2004; Fiebach and Schubotz, 2006; Buchsbaum et al., 2005). Thus, setting the 

functional connectivity seed in the ventral striatum might isolate only one of the 

distinct neural networks involved in reward processing. In relation to this, O’ Doherty 

et al. (O’ Doherty and Bossaerts, 2008) recently argued that decision-making encodes 

at least four different neural networks related to (i) the representation of expected 

future rewards, (ii) the variance in the expected reward, (iii) the learning, updating and 

(iv) actions derived from these representations.  

 

It is usually assumed that neurons with common functional properties are locally 

grouped and present similar functional patterns. In standard fMRI analysis it is 

possible to distinguish the contributions of large-scale neurocognitive networks that 

subserve a specific psychological state or cognitive process (Mesulam, 1990). Besides, 

using functional connectivity local functional activation patterns can be identified that 
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respond similar to other distal regions and that might be anatomically connected 

through projection thalamocortical, cortico-cortical or cortico-subcortical (Innocenti 

and Price, 2005). It is important to highlight that anatomical connections constrain the 

flow of information between distal regions and the influence that one region can exert 

over others. In this regard, very interesting results have been recently obtained 

applying fiber-tracking reconstructions, which allow the detection of the most likely 

anatomical pathway connecting brain regions (Schonberg et al., 2006; Powell et al., 

2006; Kim and Kim, 2005). For example, Toosy et al. (2004), after individually 

tracking the path that connected the visual regions activated by a photic stimulation 

paradigm, found that the mean fractional anisotropy of the estimated tracts 

significantly correlated with the functional activation induced in the visual cortex.  

 

In Experiment 4 we directly evaluated the hypothesis that individual BOLD responses 

in the ventral striatum might be constrained by its extrinsic anatomical connections. 

Individual whole-brain FA measures were correlated with the differential BOLD 

response in the ventral striatum derived from the Gain minus Loss contrast in the 

gambling task. A negative significant correlation was found in the uncinate-inferior 

fronto-occipital fasciculus between both meaures. It has been suggested that the 

uncinate fasciculus reflects the interconnectivity between orbito-frontal and ventral 

striatal regions (Ungerleider, Gaffan, and Pelak, 1989). Accordingly, this 

neurophysiological coupling is consistent with the differential connectivity pattern 

obtained between the ventral striatum and the OFC when the Gain and Loss conditions 

were compared in Experiment 2. The strong correlation observed might also suggest 

that differences in functional interconnections are constrained by the strength of its 

anatomical connections.  
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Up to now, not many studies have reported a direct correspondence between micro-

structure and brain function (Rykhlevskaia et al., 2008; see for example Cohen et al., 

2008). An interesting further approach would be to estimate the tract that connects the 

ventral striatum with the medial OFC region. A detailed quantification of this tract 

might give more information about the nature of the mechanism that gives rise to this 

relationship observed between structure and functional response.  

 

7.2 Individual differences in functional and 

anatomical connectivity 

Understanding the relationship between biological variations that leads to individual 

differences in functional and structural circuits may also help to disentangle the nature 

of the underlying coupling. Individual differences in performance and its correlations 

with the activation of brain regions have long been used in order to infer the role of a 

specific region in a cognitive process. However, it is important to consider that other 

factors might also be affecting the individual differences observed in BOLD responses. 

For example, recent reports reveal that individual differences in BOLD response might 

also be explained based on genetic factors, particularly dopaminergic genes (Yacubian 

et al., 2007). In Experiment 1, we observed regional BOLD changes in several reward-

related regions associated with COMT and DRD4 dopaminergic genes.  

 

In a similar vein, changes in brain structure have been largely associated with 

individual differences observed in cognitive processes, mental or neurological disorders 

and developmental and aging processes. In this vein, in Experiment 3, it was observed 

that DTI can be sensitive to capture white matter changes across the lifespan. Indeed, a 

voxel-based analysis, which correlates the relative anisotropy and the apparent 
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diffusion coefficients with age, was performed by applying an optimised normalization 

protocol. Linear regression analysis revealed negative significant correlations with age 

in the corpus callosum, prefrontal regions, the internal capsule, the hippocampal 

complex, and the putamen. Nevertheless, not only should the developmental 

reorganization of neural pathways that depends on a single type of morphological 

modulation be considered, but also a combination of both developmental individual 

process as well as experience-related events.  

 

Another aspect that might influence individual differences in white-matter changes 

across life is the role of life-experiences which should directly shape brain plasticity.  

Indeed, the neural plasticity associated with learning and development is being 

increasingly studied using functional neuroimaging approaches (see for a review, 

Poldrack, 2000). Classical morphometry voxel-based analyses have shown functional-

related regionally structural correlates in the adult human brain with intensive trained 

cognitive skills or learning (Draganski et al., 2004; Gaser and Schlaug, 2003; Maguire 

et al., 2006). However, few reports until now have correlated microstructural-related 

parameters with cognitive or behavioural performance measures. For example, using 

an oddball task, Madden et al. (Madden et al., 2004) encountered a correlation 

between fractional anisotropy and behavioural reaction times in the anterior limb of 

the internal capsule for older healthy adults, whereas the fractional anisotropy in the 

splenium was a predictor of the reaction time for younger adult volunteers. Tuch et al. 

(Tuch et al., 2005a) found on a similar visual self-paced choice reaction-time task 

correlations between fractional anisotropy and reaction times in the thalamus and 

some of its porojection pathways. Recently, Gold et al. (Gold et al., 2007) also reported 

that fractional anisotropy correlated with the speed of lexical decision in both left 

parietal and frontal white matter regions.  
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More importantly, Bengtsson et al. (Bengtsson et al., 2005) compared white matter 

measures in professional pianists to age-matched controls. Professional pianists 

presented larger anisotropy in the posterior limb of the internal capsule compared to 

controls. A positive correlation was found between anisotropy and number of hours 

that they had practiced the instrument as a child, adolescent and adult, but in different 

fibre tracts, depending on the age that piano practice occurred. This result indicates 

that white matter changes were predicted in terms of the number of hours that each 

subject had spent in acquiring the skill rather than performance being predetermined 

by a limitation on white matter development. 

 

The previous studies showed that at least some of the individual differences observed in 

performance might be predicted at a micro-structural level. In Experiment 5, it was 

observed that microstructural properties of different white matter tracts quantified by 

fractional anisotropy were correlated with true and false memory retrieval. The former 

was correlated to diffusion anisotropy in the inferior longitudinal fascicle, the major 

connective pathway of the medial temporal lobe, while a greater proneness to retrieve 

false items was related to the superior longitudinal fascicle connecting fronto-parietal 

structures. This last piece of information provides evidence for the relevance of 

studying anatomical interconnectivity and highlights the implication of white-matter 

structural differences as a fundamental key to understand individual variations in 

cognitive functions. 
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7.3 Brain dynamics and organization 

A large body of literature and the results herein presented highlight that the 

relationship and interaction between brain function and structure is very complex, and 

brain dynamics and organization are altered on the basis of innate and developmental 

individual differences as well as experience-related changes. Considering only the 

present results, however, it is difficult to determine the physiological nature of the 

existing interrelation between brain function and structure.  

 

Some evidence support that neural impulse activity may actually increase myelination 

and alter white matter structure through the release of specific trophic factors that 

promote oligodendrocyte genesis (Demerens et al., 1996; Fields, 2005; Ishibashi et al., 

2006). Indeed, oligodendrocyte plasticity and myelin recovery are not simply a 

developmental process; they are modifiable structures that can influence axon 

connectivity which is critical for information processing. Many reports suggest that 

myelin may modulate the degree of anisotropy in a given tract; however, diffusion 

indexes reflect mainly indirect markers of white matter properties, such as axon 

diameter or axonal membranes that hinder water diffusion perpendicular to the long 

axis of the fibers (Beaulieau et al., 2002).  

 

These studies showing that the induced neural activity elicits long-lasting alterations in 

white matter structure open a clear physiological link between brain function and 

structure. Nevertheless, further studies are needed in order to clarify the physiological 

mechanisms for the observed correlation pattern. Importantly, the causality and the 

nature of the coupling observed remain unsolved. 
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7.4. Future directions  

Current views in cognitive neuroscience stress the importance of studying 

interconnectivity patterns and support the idea that most cognitive functions are widely 

distributed in the brain via interconnected distal segregated regions (Rykhlevskaia et 

al., 2008). Accordingly, traditional neuroimaging studies have shifted the focus on 

regionally univariate analysis to connectivity approaches.  

In this regard, multivariate analyses have evidenced the remarkably useful description 

of brain processing in terms of functional patterns by taking advantage of the 

functional information across the whole-brain instead of constraining the functional 

analysis of the time course of individual voxels. Many improvements have been made in 

recent years to describe and localize functional patterns (for a review see Rogers et al., 

2007).  

Some of the more advanced analysis techniques, such as dynamic causal modelling, 

model the brain as a dynamic system that is subject to inputs and produces outputs in 

terms of parameters that represent the coupling between brain states. Thus, 

experimental conditions modulate neuronal responses in specific anatomical regions, 

but they also change effective connectivity by influencing the interactions between 

regions (Friston et al., 2003). From a new perspective, pattern recognition methods, 

including support vector machine or linear discriminant analyses among others, 

promise to decode and predict brain function in terms of distributed activity patterns 

(Polyn et al., 2005; Grill-Spector et al., 2006; Haynes and Rees, 2006). These 

classification-based techniques train classifiers to capture the functional pattern that 

distinguishes each experimental condition, typically from a subset of the experimental 

trials in predefined regions. Then, according to the similarity of the activation patterns 
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obtained in the initial training and the remaining data set, the reliability of the 

classification method is evaluated. In contrast to standard functional analyses, in which 

data is averaged and sorted between conditions and main effects are obtained at the 

group level, the use of pattern recognition methods permits the prediction and 

generalization of specific functional patterns in a trial-by-trial based within individuals. 

 

However, until recently, most of the connectivity approaches are especially suited to 

study patterns of functional long-scale connectivity, but they do not tackle the fine-

grained details of functional and anatomical connectivity (Bressler and Tognoli, 2006). 

In this vein, fMRI faces the challenge of detecting smaller functional units in specific 

brain regions, typically enhancing spatial specificity by increasing magnetic field 

strength. Thus, the use of high (3.0-4.0T) or ultra-high (7.0-8.0T) magnetic fields 

accompanied with optimized pulse sequences and technical strategies such as parallel 

imaging (Lütcke et al., 2006), are likely to play an important role in the future, since 

they should enhance the spatiotemporal resolution in brain functional and structural 

localization. For example, high resolution functional MRI can improve the quality of 

brain mapping because of its sensitivity to detect the activation of smaller regions (e.g., 

< 1 mm3). As a smaller voxel size is explored the BOLD response should be captured 

with more precision. In particular, when the voxel size decreases, the average signal in 

the voxel remains constant, but the average noise decreases and therefore the BOLD 

response is measured with enhanced signal detection. Conversely, this is not true at 

neural population levels, because functional MRI is limited by the intrinsic physical and 

biological properties of the hemodynamic-based signal. The density of the vessels from 

which the BOLD signal is measured, is less than 3% of a voxel volume, while dense 

population of neurons, synapses and glia occupy most of the intervascular space 

(Logothetis, 2008). Accordingly, the point-spread function of the BOLD signal in 
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relation to the distance between neural specialized clusters constrains the localization 

of the evoked neural response (Logothetis, 2008; Grill-Spector, 2008). 

 

In contrast, white-matter micro-structural MRI or diffusion imaging apparently does 

not have these limitations (there are specific problems in terms of eddy currents and 

sensitivity to motion, see Le Bihan et al., 2006a) and will provide a powerful tool for 

progressively adding more information that could be used to inform about brain 

function and  mapping neural histoarchitecture in vivo. Accordingly, diffusion tensor 

imaging is already providing surprising correlations between behaviour or 

electrophysiological correlates and micro-structure, which represents a direct link 

between structure and brain function (Thakkar et al., 2008; Westlye et al., 2008).  

 

New insights in molecular diffusion of water are tentatively looking at brain activity 

through the intrinsic water physical properties during brain activation (Le Bihan et al., 

2006). In particular, it has been reported that water diffusion slightly slows down 

several seconds before the BOLD response is detected. It has been interpreted as an 

expansion of cortical cell membranes swelling during brain activation. This proposal 

reflects a very interesting approach to capture the neural activation mechanisms 

underlying brain processing (for a review see Le Bihan et al., 2007). 

  

However, the progress of diffusion tensor imaging has resulted largely from the rapid 

development of new analysis tools combined with improvements in coil design and 

pulse sequences that permits a detailed knowledge of the large-scale high-resolution 

structural network supporting higher-level brain functions (Hagmann et al., 2007). In 

particular, fiber-tracking algorithms allow the tractography of brain circuitry in vivo, 

providing visualizations that were not possible to obtain with any other non-invasive 
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method. However, methodological problems still exist regarding derived-fiber tracking 

pathways and the biological nature of the signal detected. In particular, the main 

limitation of fiber-tracking arises from the fact that confounding multiple fiber 

directions within a single voxel might create false positive connections and therefore 

misestimate the resulting fiber pathways. To overcome these limitations probabilistic 

fiber tractography and Q-ball imaging have been recently introduced (Dyrby et al., 

2007; Tuch et al., 2005b). The goal of probabilistic tractography algorithms is to create 

probabilistic maps of fiber connectivity between brain regions that can be used to trace 

fiber pathways into gray matter (Behrens et al., 2003; Parker et al., 2003). These voxel-

based connectivity maps may reflect, besides the integrity and coherence of white 

matter tracts, some additional information, such as tract geometry (Ciccarelli et al., 

2006). Q-ball imaging, in turn, is a high-angular resolution diffusion imaging that 

allows accurately the reconstruction of the orientation of the underlying fiber neural 

population after modelling it based on a spherical harmonic representation. A further 

decomposition of the diffusion orientation distribution profile succeeds in separating 

fiber bundles and crossing regions. In sum, we believe that one of the main goals of 

neuroimaging in the coming years might be the study of brain dynamics inferred from 

structural architecture.  

 

Nevertheless, considering the known limitations of tractography, post-morten studies 

combined with invasive neuron tract tracing techniques will be necessary in the future 

in order to validate the anatomical accuracy of fiber-tracking reconstructions. Post-

morten imaging permits using stronger magnetic fields and long scanning times as well 

as stronger magnetic fields. It significantly enhances both spatial resolution and signal 

to noise ration. In addition, motion artifacts are discarded (Dyrby et al., 2007). 
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The relationship between brain function and structure is also going to be a crucial issue 

in the future. More and more, MRI neuroimaging studies combine fMRI data with 

diffusion information, interrelating brain dynamics and organization. Indeed, the 

method of seeding fiber tracking algorithms in functionally active brain regions is 

currently the launch point for directly interrelating brain function and structure 

(Staempfli et al., 2008). However, due to low anisotropy in functional activated regions 

(gray matter), fiber-tracking has to be improved in the gray to white matter transition 

region in order to more reliably converge from functional MRI to diffusion information. 

This could be reached by improving both spatial resolution and diffusion sensitivity 

during data acquisition (Staempfli et al., 2008). From another perspective, in the same 

way that we proposed in this dissertation, functional and micro-structural information 

might be directly combined by correlating the functional activation from a seed region 

with DTI data. This kind of analysis pretends to explore the large-scale connections that 

emerge from a particular region. Further studies might explore whether functional and 

structural links might be better predicted in terms of regionally specific structural 

properties (anatomical connectivity) instead of long distal anatomical connections 

(Passingham et al., 2002). Thus, we would expect that a direct local microstructural 

comparison might better adjust the resolution of the functional/structural coupling 

compared to the long distance associations.  

 

It is important to bear in mind that any functional or DTI approach is self-serving. Up 

to here, the potential advantages of using functional and DTI information in order to 

tackle brain processing has been stressed, but a full understanding of brain dynamics 

and organization will require the combination of theories on the brain’s functional 

organization and several neuroimaging methods as well as development of technical 

approaches that facilitates the integration and accurate registration of information 
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from different modalities. Casanova et al. (Casanova et al., 2007), for instance, have 

developed a biological parametric mapping toolbox that facilitates the integration of 

information from other modalities by using a voxel-based multiple regression 

approach. Thus, the combination of different neuroimaging data (such as lesion 

studies, electrical measurements of brain activity, transcranial magnetic stimulation, 

optical imaging, developmental brain-behaviour relationships or modelling data, 

among others), will probably be the best strategy for tracing brain architecture and 

dynamics. For example, since combined hybrid PET/MRI devices are now available, 

other important developments will likely result from combining PET and MRI 

measurements in the same session. Such devices will allow researchers to investigate 

task-related molecular (e.g., receptor availability/binding) and blood flow changes 

simultaneously, thus providing an important link to the nature of the existing 

relationship between brain function and architecture. 

 

7.5. General conclusions 

Overall, two complementary fundamental principles of functional organization, 

functional integration and functional specialization, appear to be inherent to the 

human brain. By employing microstructural (DTI) and hemodynamic (fMRI) 

techniques both functional and structural information and their interactions with 

biological and performance variables by applying different neuroimaging analysis 

approaches have been explored. The strategies reviewed in this dissertation have 

enabled the demonstration of potential uses of micro-structural and functional 

information to infer functional and structural connectivity. We highlighted that 

functional segregation and functional integration cannot be studied independently. As 
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brain regions do not work in isolation, both regionally activation and its corresponding 

interrelations have to be considered.  

 

Finally, it should be emphasized that multimodal approaches are crucial in order to 

assess an accurate understanding of brain function and dynamics, in particular the 

integration of anatomical, functional and possible interactions with biological and 

performance variables might be crucial for further investigations. This dissertation 

clearly suggests new prospects for the integration of individual micro-structural and 

functional properties in brain function and its dynamics. A combined fMRI/DTI 

approach is important in order to understand the underlying functional brain 

architecture.  

 

Thus, the discussion began by investigating the functional neural correlates by 

assuming that they are an indirect measure of brain functioning in relation to 

cognition. From there, it has been suggested that an anatomical substrate should 

sustain the nature of the functional activity pattern. However, the micro-structural 

correlates encountered as functional associations would also reveal the structure of 

individual variations in cognitive functions. The causality of the coupling observed 

therefore remains unsolved and poses the question of the direction of the relationship 

between functional correlates and micro-structure.  

 

Is structure then functionally constrained or on the contrary are functional properties 

modulated structurally? 

 At this stage brain function and structure becomes ambiguous. 
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1. Summary (in Catalan Language) 

Introducció 
 

Un dels principals interessos de la neurociència cognitiva és la neuroanatomia 

funcional. Els estudis amb animals i pacients amb lesions cerebrals ja mostraven com 

dèficits en determinades funcions cognitives estaven relacionats amb la localització de 

la lesió cerebral. Posteriorment, els estudis de neuroimatge han permès identificar 

definitivament com funcions cognitives específiques s’ associaven amb diferents 

regions cerebrals. Molts dels avenços en aquesta direcció han sorgit gràcies a la 

ressonància magnètica funcional (fMRI) , tècnica no-invasiva que mitjançant el que es 

coneix com efecte BOLD (Blood-oxigenation-level-dependent) (Logothetis, 2003) 

permet relacionar mecanismes d’ activitat neuronal amb canvis locals en el consum d’ 

oxigen Combinant aquesta mesura induïda de l’ activitat neuronal amb dissenys 

experimentals enginyosos és possible determinar quines són les àrees del cervell 

involucrades en una tasca o procés cognitiu concret (Buckner et al., 1996). No obstant, 

malgrat la importància de poder localitzar diferents unitats funcionals a l’escorça 

cerebral, s’ha de tenir present que aquestes regions no participen aïlladament, i per 

tant, s’ ha d’ estudiar tant la ubicació d’ aquestes unitats funcionals així com la 

dinàmica i les complexes interaccions que suporten els sistemes neuronals del que 

aquestes en formen part (Catani and ffytche, 2005).  

 

En el cervell humà concorren dos principis complementaris d’organització funcional, 

segregació i integració. Les primeres teories anatomistes de Gall ja feien referència al 
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concepte de segregació funcional, on determinades funcions cognitives s’ubicaven en 

regions cerebrals concretes. Així, la mirada clàssica dels estudis funcionals és 

localitzacionista, és a dir, es centra en l’associació de funcions específiques segons la 

seva ubicació en el cervell. Tot i això, a partir d’estudis de lesions cerebrals i de registres 

d’activitat elèctrica cerebral, tant intracortical com en el cuir cabellut, s’ha pogut 

observar que aquestes regions no operen de forma independent, sinó que interactuen 

les unes amb unes altres creant circuits neuronals que depenen d’un context 

determinat.  

 

Un estudi més complert dels processos cognitius implicaria tant una descripció a nivell 

regional com la descripció de les interaccions que s’estableixen entre les diferents 

regions involucrades en el seu processament. La inherent naturalesa multivariant de la 

ressonància magnètica funcional permet tant la descripció tradicional modular 

utilitzant anàlisis univariants així com  l’estudi de les seves interaccions.  

 

Els estudis de connectivitat funcional assumeixen que aquelles regions que pertanyen a 

un mateix sistema funcional presenten patrons d’activació similars i per tant, a partir 

de mesures de covariància, es pot inferir la connectivitat funcional entre diferents 

regions. Per exemple, a partir de les correlacions (o correlacions parcials) entre 

diferents regions cerebrals podem explicar l’activitat d’una àrea determinada en funció 

dels altres elements del sistema (terme conegut com functional connectivity, (Friston 

et al., 1993).  

 

Tot i això, aquest estudis generalment no donen informació sobre la dinàmica existent 

entre les diferents àrees del cervell. En canvi, els estudis de connectivitat efectiva 

incorporen causalitat en l’ anàlisi, essent possible la descripció i la quantificació de les 
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influències que una regió exerceix sobre una altra. En particular, permet mesurar 

quines influències exerceix un sistema neuronal concret sobre un altre (effective 

connectivity, (Friston et al., 1993). Amb aquest propòsit s’han descrit diferents models 

per tal de poder avaluar les inferències causals existents entre les diferents unitats 

funcionals involucrades en les xarxes neuronals, com ara els models d’equacions 

estructurals (Goncalves and Hall, 2003) o de relacions dinàmiques causals (Friston et 

al., 2003). Tot i això, aquests darrers representen anàlisis de connectivitat cerebral que 

computacionalment són més complexos que els clàssics, però permeten modelar 

determinats processos cognitius des d’una vessant més pròxima, donant-li un punt de 

visat més biològic. 

 

No obstant, un model en el qual diferents unitats funcionals s’integrin a través de 

relacions causals requereix un suport anatòmic que permeti i moduli les interaccions 

entre les diferents regions. La connectivitat anatòmica generalment fa referència a 

l’estudi de la substància blanca, que és la que es pressuposa com a principal font de la 

connexió i unió entre les diferents regions. Malauradament, un estudi detallat 

d’aquestes connexions no és fàcil d’obtenir degut a la gran complexitat del cervell i la 

diferència espacial que hi ha entre els nivells neuronals i la resolució que s’ obté en els 

estudis de neuroimatge de forma no-invasiva. Tanmateix, la introducció i 

desenvolupament de les imatges de difusió suposa una nova aproximació, molt 

interesant i prometedora, per a l’estudi de l’ arquitectura neuronal que sustenta els 

diferents processons cognitius. 

 

Així, amb l’objectiu de conèixer l’estructura anatòmica subjacent a aquestes unitats 

funcionals, sorgeix la importància de la tècnica de Diffusion Tensor Imaging (DTI). A 

través del moviment tèrmic de les molècules d’aigua, aquesta tècnica, relativament 
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nova, ens permet obtenir informació estructural dels diferents teixits neuronals. A 

nivell microscòpic els teixits neuronals presenten estructures diferenciades, 

principalment generades per les membranes cel·lulars, que direccionen el moviment de 

les molècules d’aigua en funció d’aquestes barreres. El moviment de les molècules 

d’aigua flueix seguint preferentment l’orientació dels feixos neuronals, i per tant, el 

recorregut es veu modulat segons els obstacles que ofereix l’estructura tissular. Per 

exemple, presenten patrons isotròpics aquelles regions on l’aigua no segueix cap 

direcció privilegiada, mentre que aquelles regions que presenten una direcció preferent 

s’anomenaran regions anisotròpiques (Beaulieu, 2002). Així, una quantificació del 

moviment de l’ aigua, en funció dels índexs que mesuren les influències direccionals 

que exerceix el medi, permet caracteritzar diferents propietats tissulars. 

 

En aquest marc i mitjançant la combinació d’ imatges de fMRI i DTI, l’objectiu 

d’aquesta tesi doctoral és integrar funció i estructura cerebrals per tal d’obtenir un 

coneixement més acurat de les funcions cognitives. Per a tal fi, ens centrarem en 

l’estudi de les diferents unitats funcionals (efectes regionals i les seves possibles 

interaccions funcionals), així com de les possibles interaccions estructurals (relacions 

entre funció i micro-estructura).  
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Experiments 
 

La tesi doctoral consta de cinc experiments cadascun dels quals és independent per ell 

mateix i pretén donar visions complementàries en l’ estudi del cervell humà. 

Experiment 1: Aproximació funcional clàssica 

Double dissociation of the effects of COMT and dopamine receptor D4 

genotypes on brain activations related to valence and magnitude of 

rewards 

 

La teoria d’ aprenentatge per reforçament proposa l’ existència d’un sistema intern de 

predicció d’errors que s’amplifica en aquelles situacions on la resposta obtinguda és 

pitjor que l’ esperada. Aquest senyal influenciaria la nostra resposta en futures 

decisions modificant les expectatives associades a aquest estímul, i la nostra conducta s’ 

adaptaria a aquella que permetés una recompensa òptima (Sutton and Barto, 1998). No 

obstant, s’han descrit diferències individuals en aquesta resposta a l’error o al càstig.  

 

Una qüestió interessant que se’ns planteja al respecte és saber en quin grau les 

diferències individuals observades en el sistema de reforçament són degudes a 

diferències de la resposta del sistema dopaminèrgic. S’ha proposat que diferents 

polimorfismes associats a la funció dopaminèrgica podrien explicar parcialment la 

variabilitat observada (Yacubian et al., 2007). Concretament, dos gens específics, el 

Catechol-o-methyltransferase (COMT) i el receptor dopaminèrgic D4 (DRD4) s’han 

descrit com especialment rellevants en aquest processament, degut a la seva 
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importància en la regulació dopamina en les àrees associades a la recompensa 

(principalment àrees prefrontals i estriatals).  

En aquest marc, l’objectiu d’aquest experiment és avaluar possibles influències dels 

polimorfirmes COMT i DRD4 en el processament del sistema de recompensa a través 

d’imatges de ressonància magnètica funcional utilitzant una aproximació univariant en 

una tasca de joc d’apostes. Més concretament, a partir d’una tasca de joc on la 

recompensa (pèrdues i guanys) es produeix bàsicament a l’atzar, (tasca de gambling, 

Figura 1 adaptada de (Gehring and Willoughby, 2002), es va analitzar el processament 

de guanys i pèrdues així com possibles diferències individuals associades als 

polimorfismes COMT Val108Met i DRD4 SNP-521. 

 

 

Figura 1: A. Seqüència d’estímuls i respostes utilitzada en la tasca de gambling. Després d’un 
senyal d’ alerta, un parell de números ([5 25] o [25 5]) es presentaven en pantalla. Els 
participants havien de seleccionar una de les dues opcions prement el botó de la mà dreta o de 
la mà esquerra. Un segon després de l’elecció, un dels números es convertia en vermell mentre 
que l’altre es tornava verd (feedback) indicant un guany (verd) o una pèrdua (vermell) de la 
corresponent quantitat de diners en cèntims d’ Euro. B. En la condició de standard feedback els 
participants guanyaven o perdien la mateixa quantitat de diners que ells apostaven. En la 
condició inesperada de boost feedback la magnitud de la recompensa era molt més gran que la 
que ells esperaven (10 % probabilitat). En la condició de similar feedback la magnitud canviava 
lleugerament. Aquesta última condició permetia dissociar els efectes de magnitud i de la 
probabilitat de la recompensa.  
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Els resultats mostraren que sistemàticament, guanys i pèrdues, activaven el mateix 

circuit fronto-estriatal-límbic funcional. No obstant, les activacions eren més grans en 

la condició de guanys que en la de pèrdues, resultats que són congruents amb estudis 

previs (Nieuwenhuis et al., 2005). A nivell de diferències individuals associades a 

diferències genètiques, els efectes més importants es van trobar associats al 

polimorfisme COMT en diverses regions relacionades amb el sistema de recompensa 

(veure Figura 2). 

 

 

Figura 2: Efectes de valència. Talls coronals del promitjat de grup mostrant els contrast de 
Guany vs. Pèrdua sobreposat en una imatge estructural de grup en l’ espai estereotàctic (els 
valors de t  estan indicats després d’ haver estat corregit per comparacions múltiples a nivell de 
tot el cervell, P < 0.05). Tant els standard trials (A) (pic x, y, z: -24, 4,-12 mm), com els boost 
trials (B), (pic, -8, 4, -8 mm), mostraven un increment de l’ activitat en l’ estriat ventral dret i 
esquerre. C. Activacions relacionades al sistema de recompensa en la condició de boost (Guanys 
i Pèrdues) i cada grup COMT. Es mostra un efecte en la reducció de l’ activitat en la condició de 
pèrdua i boost pel grup ValVal. D. BOLD time-course en el pic d’ activació del nucli accumbens 
representat de forma separada pels dos grups COMT (costat esquerra). E. El contrast de Guany i 
Pèrdua per cada grup COMT (valor de t, P < 0.001 no corregit). Podem veure que en aquest 
contrast l’ activació en el NAcc, ACC i el  IPL en el grup ValVal és molt dèbil en el grup MetMet. 
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Experiment 2: Aproximació de connectivitat 

funcional 

Functional brain connectivity of reward processing in humans 

 

Mentre que els estudis univariants de ressonància magnètica funcional mostren 

diferències regionals relacionades amb un processament cognitiu concret, els estudis 

de connectivitat pretenen aportar informació sobre la dinàmica que sustenta i integra 

les diferents regions modulars activades. Estudis previs suporten la idea que el mateix 

circuit neuronal processa tant guanys com pèrdues però amb un nivell diferencial 

d’activitat (Nieuwenhuis et al., 2005). Per contra, altres línies d’ investigació 

suggereixen que són dos circuits diferenciats els que processarien les recompenses i els 

càstigs (Wrase et al., 2007; Yacubian et al., 2006).  

 

En aquest experiment, utilitzant la mateixa tasca de gambling que en l’ experiment 

anterior (Figura 1), es pretén estudiar el processament de guanys i pèrdues en funció 

de diferències en els patrons de connectivitat funcional utilitzant el mètode proposat 

per Rissman et al.(Rissman et al., 2004). 

 

L’ estudi clàssic univariant funcional mostra que un circuit molt semblant fronto-

subcortical-parietal s’ activa tant pel processament de guanys com pel de pèrdues. En 

canvi, examinant els patrons de connectivitat amb l’ estriat ventral s’ observa un cicuit 

subcortical-limbic anterior prefrontal diferenciat de l’ anàlisi clàssic modular. Ambdós 

patrons (guanys i pèrdues) presenten una distribució similar que difereixen en el 

còrtex orbito-frontal per la condició de boost (Figure 3). Aquest estudi mostra que els 

estudis de connectivitat funcional complementen els estudis funcional univariants. 
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Figure 3: Talls coronals de la mitjana de grup del cervell mostrant les diferents interaccions 
interregionals entre el estriat ventral i la resta del cervell sobreposat en una imatge estructural 
de grup en espai estereotàctic (valors de t mostrats). La connectivitat funcional s’ examina en el 
sistema de recompensa (A), i en el de càstig (B) utilitzant diferents nivells estadístics (p < 
0.0001; p < 0.0005; p < 0.001). Els patrons de guanys i pèrdues es mostren simultàniament a  
(C): Guany verd; p < 0.001, Pèrdua (vermell; p < 0.001), i conjunció Guany ∩ Pèrdua (groc; P < 
0.001 i p < 0.001). 
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Experiment 3: Aproximació anatòmica utilitzant DTI 

Age-related water diffusion changes in human brain: 

 a voxel-based approach 

 

Els circuits funcionals descrits en els dos experiments anteriors mostren com diferents 

unitats funcionals segregades anatòmicament participen en el processament de guanys 

i pèrdues. La presència de feixos neuronals específics que permetin el flux d’informació 

entre les diferents regions és, per tant, essencial per la seva integració. En aquesta 

direcció, un coneixement més detallat i exhaustiu sobre els feixos de substància blanca, 

tal i com ens permetria la tècnica de difusió, pot ser clau per la caracterització de 

l’arquitectura que conforma la dinàmica cerebral. En aquest context, l’estudi de 

conceptes com difusió i anisotropia són absolutament bàsics per tal d’interpretar els 

resultats obtinguts a partir de les imatges de DTI. Coneixements metodològics en 

l’adquisició de les imatges de DTI així com el seu anàlisi són també eines claus pel seu 

desenvolupament pràctic. 

 

Considerant la novetat de la tècnica i des d’ un punt de vista de familiarització, aquest 

experiment forma part del procés d’ aprenentatge de la tècnica de DTI. En aquest 

experiment es realitza un anàlisi morfomètric on es mostren correlacions significatives 

entre l’ edat i la substància blanca en diferents regions cerebrals (Figure 4).  

 

En aquest experiment s’ emfatitza la part metodològica que requereixen els anàlisis de 

difusió, així com la importància d’ un bon control tècnic a l’ hora de la interpretació de 

les dades. Mostrem la importància d’ un bon procés de normalització reportant efectes 

significatius deguts a problemes metodològics i alhora, es brinden noves consideracions 
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en les comparatives d’estudis longitudinals utilitzant un anàlisi vòxel a vòxel (voxel 

based). Concretament, es proposa un procediment d’ emmascarament per tal de poder 

distingir diferències micro-estructurals i morfomètriques globals en els estudis 

d’envelliment (Camara et al., 2007). 
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Figura 4: Correlacions entre anisotropia (RA) (a) i coeficient aparent de difusió (b) vs. l’ edat en 
dos regions del cos callós. 
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Experiment 4: Una aproximació combinada fMRI-

DTI en el processament del guany i la pèrdua 

Structural white matter brain differences predict functional hemodynamic 

responses in a reward processing task 

 

La relació entre funció i estructura és una qüestió fonamental en neurociència 

cognitiva, encara avui en dia oberta, ja que es coneix l’existència de relacions entre 

funció i estructura a diferents nivells d’ organització cerebral però es desconeix quin és 

el seu paper en l’expressió de les funcions cognitives. Noves línies d’ investigació 

suggereixen interaccions entre connectivitat funcional i estructural, suposant 

modulacions de les de la resposta funcional en funció de la natura de les seves 

connexions de substància blanca. 

 

En aquest experiment utilitzant, la mateixa tasca de recompensa que la corresponent 

als experiments previs (Figura 1), s’ avalua la hipòtesi que les diferències individuals en 

la resposta BOLD en l’estriat ventral podrien ser degudes a diferències en les seves 

connexions anatòmiques extrínseques. En aquest experiment, correlacionant la 

resposta diferencial BOLD entre guanys i pèrdues en l’estriat ventral amb les imatges 

d’anisotropia dels mateixos participants, es va trobar una correlació significativa 

negativa entre aquests dos paràmetres al fascicle uncinat inferior/ fronto-occipital 

(Figura 5).  
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El fascicle uncinat ja s’ havia relacionat prèviament amb el feix que connecta el còrtex 

orbito-frontal i l’estriat ventral (Ungerleider et al., 1989), donant consistència als 

resultats de connectivitat funcional prèviament mostrats. En aquesta línia, avui en dia 

no hi ha molts estudis que hagin reportat una correlació directa entre micro-estructura 

i funció (Rykhlevskaia et al., 2008; Cohen et al., 2008). Aquest experiment obre noves 

perspectives en l’ estudi de la integració entre funció i estructura. 

 

 

Figura 5:: A. Patró de correlació DTI-fMRI: Es mostra una correlació negativa obtinguda 
després de correlacionar la diferència dels valors de beta que se’n deriven del contrast guany i 
pèrdua en la condició de boost (panel B) i els corresponents valors d’anisotropia (P < 0.001), 
(pic 22, 11, -12). Els valors de t estan sobreposat en imatges estructurals coronals de grup en 
coordenades estereotàctiques MNI B. Imatges addicionals de la correlació entre DTI-fMRI 
correlacions amb nivells de significació menys conservadors (P > 0.01) C. Gràfic on es mostra la 
correlació entre el valor de beta i l’anisotropia en el mateix pic (r = 0.613, P < 0.00001).  
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Experiment 5: Una aproximació combinada fMRI-

DTI en la generació de falses memòries 

False memories are related to micro-structure of brain white matter 

 

Actualment, molts estudis investiguen possibles relacions funcionals associades a 

determinats processos cognitius. Així, la relació existent entre la resposta BOLD i 

l’execució de determinades tasques ha estat una de les mesures més emprades per tal 

de relacionar funció i cognició. En canvi, des d’un punt de vista micro-estructural 

aquests efectes no han estat tan estudiats. Tot i això, alguns estudis previs ja mostren 

que algunes diferències individuals a nivell d’ execució d’algunes tasques es pot explicar 

també a nivell micro-estructural (Toosy et al., 2004; Madden et al., 2004). En aquest 

experiment proposem que diferències individuals en la recuperació de memòria 

podrien estar sostingudes per correlats estructurals. 

 

A vegades tenim la sensació de recordar coses que realment no vam passar (falses 

memòries) (Loftus, 2003) i que no podem diferenciar d’aquelles que són un record real. 

Dos sistemes de recuperació de memòria diferenciats s’han relacionat en un i un altre 

procés. Així, s’ ha proposat que les memòries reals provindrien d’un accés directe a la 

informació recuperada, mentre que les falses memòries es generarien en un procés de 

recuperació semàntica (Brainerd and Reyna, 2002; Schacter et al., 1996). En aquesta 

mateixa línia, diversos estudis de fMRI han donat suport a  aquesta mateixa distinció 

mostrant que les memòries reals estarien representades per un circuit medial-

temporal, mentre que la recuperació de falses memòries tindria una codificació fronto-

parietal. (Dennis et al., 2008; Kim and Cabeza, 2007). Tot i això, actualment no hi ha 

evidències que diferències individuals en la recuperació de memòries viscudes i les 
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falses puguin ser explicades en termes de diferències anatòmiques. En aquest estudi 

mostrem que diferències micro-estructurals en els feixos de substància blanca 

permeten predir diferències en la generació de falses memòries. Concretament, el nivell 

d’ anisotropia del fascicle longitudinal inferior correlacionava amb la recuperació de 

memòries prèviament viscudes, mentre que els participants que presentaven més 

tendència a crear falses memòries presentaven valors d’ anisotropia més alta en el 

fascicle longitudinal superior. 

 

 

Figura 6: Diferències individuals en correctes i falses memòries (TM/FM) quan es recordaven 
lliurament i quan es reconeixien  associades a diferències en canvis de substància blanca 
(Fractional Anisotropy, FA). (a) Es mostren els conjunts de voxels que mostraven una correlació 
significativa entre substància blanca i TM i FM sobreposat amb la imatge d’ anisotropia mitjana 
de grup (P < 0.005). Els mateixos resultats es mostren amb una significació menys 
conservadora per tal de visualitzar el feix de substància blanca (P < 0.01; P < 0.05;). (b) Gràfics 
de la mitjana de FA per cada participant en les dues regions d’ interès per TM (dreta ILF, pic 46 
-25 -13) i FM (dreta SLF, pic 17 -1 34). (c) Els conjunts de voxels de substància blanca més 
significantiss estan correlacionats amb les puntuacions de reconeixement de TM i FM ( P < 
0.005; P < 0.05; P < 0.01). (d) Valor mig de FA per cada participant en les regions d’ interès més 
significants per TM (dreta ILF, pic 40 -46 -6) i reconeixement de  FM (dreta SFL, pic  21 15 22).  
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Conclusions 

En aquesta tesi hem pogut evidenciar com l’estructura cerebral, i sobretot, la 

interconnectivitat cerebral, esdevé un factor clau a l’hora d’interpretar, estudiar i 

caracteritzar el processament cognitiu. Les diferències funcionals observades entre els 

anàlisis regionals clàssics i els de connectivitat cerebral emfatitzen la importància 

d’utilitzar les dues informacions com a complementàries en l’ estudi dels correlats 

funcional.  A més a més, les correlacions anatòmiques observades tant amb la resposta 

BOLD com amb mesures conductuals i els nivells d’anisotropia, mostren la importància 

de traçar l’ arquitectura funcional cerebral.  

 

Creiem que els resultats que presentem aporten informació que serà clau a l’hora 

d’entendre el lligam entre les estructures cerebrals i la resposta funcional de 

determinades àrees del cervell, mesurada amb la resposta BOLD. Finalment comentar 

també que els resultats obtinguts en t ermes de diferències individuals obren noves 

línies d’exploració sobre la relació que existeix entre l’arquitectura cerebral i les 

funciones mentals.  

 

 
 


