Chapter VII. Conclusions

The main objective of this Ph. D. Thesis work was to study the physicochemical properties of the inner membrane of mitochondria and the interaction of cyt c with model membranes. Suitable techniques were used to accomplish this objective: Langmuir and Langmuir Blodgett films, fluorescence spectroscopy, Brewster Angle Microscopy and Atomic Force Microscopy.

Main conclusions are based on the following facts:

Pure and mixed monolayers of POPE, POPC and CL form stable monolayers at 24 °C. While POPE-POPC and POPC-CL systems form ideal mixtures, the POPE-CL mixtures display partial immiscibility. More stable monolayers according to $\Delta_{mix}G$ data are POPE:POPC (0.6:0.4, mol:mol), POPC:CL (0.6:0.4, mol:mol) and POPE:CL (0.8:0.2, mol:mol). In the POPC:CL (0.6:0.4, mol:mol) system the proportion of CL is higher than in the mitochondria inner membrane, but the molar ratio in POPE:CL (0.8:0.2, mol:mol) coincides with the proportion found in the same membrane.

Pure POPE isotherm displays two transitions at temperatures below 37 °C. The first transition appears when molecules are oriented from second to first neighbours as confirmed from the C_s analysis. These C_s values are quite similar just before and after the transition. The second transition, less definite, corresponds to a transition to a more condensed phase. On one hand, this second transition towards more condensed structures is confirmed by BAM analysis where the condensed structures are unambiguously detected. On the other hand the resolution of this technique does not allow the visualization of the changes produced during the first transition perhaps the variation in the tilt of the POPE molecules during the transition is very small.
AFM visualization of LB films of pure and the more stable mixed monolayers provides information about the molecular organization at the air-water interphase. Pure POPC, POPC:CL (0.6:0.4, mol:mol) and POPE:POPC:CL (0.5:0.3:0.2, mol:mol) LB films display extended featureless films while pure CL LB film displays a monomolecular film showing a channel like structure at 30 mN·m⁻¹. The topography of the LBs of POPE at 20 mN·m⁻¹ and 30 mN·m⁻¹ is different. While at 20 mN·m⁻¹ flat surfaces are observed while at 30 mN·m⁻¹ many holes are observed in the monolayer surface. When the extraction surface pressure is increased, the LB film shows similar structure but with wider holes. The LB film extracted at a surface pressure over the first transition displays a taller and more condensed arrangement which is surrounded by other structures with holes that cover the whole expanded phase. The LB film of POPE:CL (0.8:0.2, mol: mol) at 30 mN·m⁻¹ shows different molecular organization in different region suggesting the existence of phospholipid lateral separation. Although this result is not conclusive because both regions do not present well defined limits, one region is quite similar to pure CL LB film extracted at the same surface pressure while the other is very similar to pure POPE LB film at 30 mN·m⁻¹.

Cyt c adsorption to monolayers reveals that _cyt c_ displays specific adsorption to pure CL as can be deduced from constant surface pressure experiments. _Cyt c_ shows moderate to low adsorption on pure zwitterionic phospholipids, POPE and POPC. In mixed monolayers _cyt c_ becomes integrated into the POPC:CL and adsorbs onto POPE:CL binary mixtures under study. In this last mixed composition CL domains have been identified as laterally segregated regions where _cyt c_ adsorbs preferentially and being promoted, in presence of POPE, the integration in the monolayer.

Variation of surface potential due to _cyt c_ adsorption on liposomes suggest that _cyt c_ exposes a particular binding site in pure CL and mixed POPE:CL (0.8:0.2, mol:mol) liposomes. The binding of _cyt c_ onto liposomes of POPE:CL (0.8:0.2, mol:mol) can not be exclusively attributed to the electric surface charge but to a specific lipid organization at the liposome interface, namely lipid phase segregation. Liposomes with POPC display negative $\Delta \psi$ values suggesting that _cyt c_ can penetrate deeper along the bilayer normal axis.
In response to temperature increases, SPBs of POPE:POPC (0.6:0.4, mol:mol) and POPC:CL (0.6:0.4, mol:mol) do not display laterally phospholipid phase segregation. Both systems form SPBs with macroscopic homogeneous topographies. In this case both systems are below their nominal T_m in liposomes when they are adsorbed onto the substrate. SPBs of POPE:POPC:CL (0.5:0.3:0.2, mol:mol:mol) display lipid segregation in response to changes in the temperature. At 24 ºC the SPB shows a flat featureless surface while at 4 ºC and at 37 ºC appear a tall and a short new lipid domain, respectively. The appearance of these new lipid domains are due to the progressively melting leaflet by leaflet of the SPB during temperate increase. The SPB of POPE:CL (0.8:0.2, mol:mol) displays a lateral segregated lipid domain, the high lipid domain, in the range of temperatures studied, suggesting that it is a lipid domain of different composition, a CL enriched domain. When temperature is increased from 4 ºC to 37 ºC the intermediate domain vanishes to give place to the low lipid domain. We can conclude that intermediate and low domains are thermal POPE enriched domains.

POPE:CL (0.8:0.2, mol:mol) samples exhibit different behaviour when a divalent cation, in our case calcium, is present in the resuspension buffer. DSC endotherm of the sample resuspended with calcium displays a sharp peak at similar temperature of pure POPE, while without calcium the DSC endotherm displays the main transition at a lower T_m. 31P-RMN spectra of POPE:CL (0.8:0.2, mol:mol) show that samples resuspended with calcium form H_{II} structures in solution while samples resuspended without calcium form vesicles.

In situ injection of cyt c on SPBs of POPE:POPC (0.6:0.4, mol:mol) and POPE:POPC:CL (0.5:0.3:0.2, mol:mol:mol) do not exhibit individual cyt c molecules on SPB surface neither in topographic nor in phase images. SPB height value decrease after cyt c injection can be caused by a destabilization of the SPB caused by cyt c adsorption into the SPB. Incorporation of cyt c molecules to the SPB of POPC:CL (0.6:0.4, mol:mol) produce a partial solubilization of the SPB forming small lipid aggregates on SPB surface. Phase image shows that some of them display different phase contrast than SPB surface which indicates they are cyt c aggregates. The adsorption of cyt c to SPBs of POPE:CL (0.8:0.2, mol:mol) has been observed in two
different ways: i) as protein aggregates in the margins of high lipid domain and ii) as individual cyt c molecules on high lipid domain.

The general conclusion of this Thesis is: “Calcium induces H_{II} phases in POPE:CL (0.8:0.2, mol:mol) samples in solution. This composition is the most stable mixed monolayer of both phospholipids and corresponds to the native molar fraction in the inner membrane of the mitochondrion. The extension of these inverted micelles forms planar bilayers on solid supports displaying lateral lipid segregation of CL enriched domains where cyt c can bind specifically. In this configuration POPC can remain as a spacer in POPE enriched domains forming the matrix of the membrane”. The inverse process would be a possible vindication to the release of cyt c from the inner membrane of mitochondrion during apoptosis.
Chapter VIII. References

- Andreyev, A.; Fiskum, G., Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver. *Cell Death and Differentiation* 1999, 6, 825 - 832.
References

Costa, J.M., *Magnituds, unitats i Símbols en Química Física*, 1st Ed.; Institut d'Estudis Catalans, Barcelona, **2004**.

186

Houslay, M. D.; Stanley, K. K., *Dynamics of Biological membranes, Influence on synthesis, structure and function*. Wiley and sons, New York, **1982**.

References

Nicholls, P., Cytochrome c binding to enzymes and membranes. *Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics* 1974, 346, (3-4), 261-310.

citation format: References

