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... 'Y tu para que quieres un barco, si puede saberse, fue lo que el rey pregunté
cuando finalmente se dio por instalado con sufrible comodidad en la silla de 1a
mujer de la limpieza, Para buscar la isla desconocida respondié el hombre, Qué
isla desconocida, pregunté el rey, disimulando la risa, como si tuviese enfrente a
un loco de atar, de los que tienen manias de navegaciones, a quien no seria bueno
contrariar asi de entrada, La isla desconocida, repitié el hombre, Hombre, ya no
hay islas desconocidas, Quién te ha dicho rey, que ya no hay islas desconocidas,
Estén todas en los mapas, En los mapas estan sélo las islas conocidas, Y qué
isla desconocida es la que tid buscas, Si te lo pudiese decir, entonces no seria
desconocida, A quién has oido hablar de ella, pregunté el rey ahora més serio,
A nadie, En ese caso, por qué te empeiias en decir que ella existe, Simplemente
porqué es imposible que no exista una isla desconocida, Y has venido aqui para
pedirme un barco, Y ti quén eres para que yo te lo dé, Y ti quién eres para
no darmelo, Soy el rey de este reino y los barcos me pertenecen todos, Mas les
perteneces ti a ellos que ellos a ti, Qué quieres decir, pregunté el rey inquieto,
Que td sin ellos nada eres, y que ellos sin ti, pueden navegar siempre. ...

José Saramago
El cuento de la isla desconocida.






e Ara que el tren s’ha aturat per un instants, em permet contemplar el
panorama d’aquest viatge que he realitzat en els darrers quatre anys. El
paissatge es mostra ample i dificil de descriure, en quatre anys passen moltes
coses i persones, totes formen part del mosaic d’impressions, sensacions, ex-
periéncies que em reflexa el mirall de I’experiéncia viscuda. Els miralls sén
sempre incomodes perqué reflexen el que veuen, no coneixen la cortesia. El
reflex del meu mirall, perd, no és cruel, és més aviat agradable.

Si resumir quatre anys de feina ja em resulta una tasca feixuga, encara ho
és més, agrair a tothom qui m’ha donat un cop de ma en aquest temps.

— El director del treball, en Xavi, a qui agraeixo la seva orientacié mai
autoritaria i sempre respectuosa amb la meva opinié. A més, senta
molt bé tenir un dire que de vegades et parli de coses alienes a la
feina!

— L’Antonio, Margarita i Josep Maria, que en diferents moments i cir-
cumstancies menys agradables han mirat de fer-me el major costat
possible. En Jaume, que em va concedir dret a taca propia tot i no
ser un habitual de I’hora del té. L’Albert que, sense saber-ho ell, em
va fer riure en algun que altre moment no tan alegre.

— Els meus companys del Tugurio. Les he passades de molt bones amb
vosaltres i espero poder continuar essent un dels fizes al café de les
10. Entre vosaltres hi ha gent molt especial que portaré sempre molt
aprop.

— A Perugia ho imparato tantissime cose (non soltanto scientifiche) ” dalle
chiachere” con tuttii” freghi” che ho conosciuto li. Mi siete tutti tanto
cari!

— Fora de la Facultat he passat moments d’alld més bons sobre tot amb
els amics en majiscules dels partidets i les farrikis del dissabte, sou
mogollén d’entranyables!

— La Rosanne, ningii coneix millor que ella els dies més amargs d’aquest
treball.

— Els amics i companys sén certament molt importants perd lorigen de
tot ha estat la familia. Estic fermament convengut que els meus pares
s6n els principals responsables d’aquest treball. Gracias Aitatxos!

— Voldria agrair el suport financer atorgat pels projectes financats dins el
"Programa Sectorial de Promocién General del Conocimiento” PB94-
0909 atorgat per la D.G.I.C.Y.T. i PB95-0598-C02-01 i PB97-0919
atorgats per la D.G.E.S. del ”Ministerio de Educacién y Ciencia”, aixi
com els projectes 1996SGR00040 i 1998SGR00008 del C.U.R. de la
Generalitat de Catalunya. Aquest treball ha estat possible merces a la
C.LR.LT., entitat financadora de la beca de Formacié d’Investigadors
F1/96 de la que he gaudit.






Resum

La present memoria vol reflectir la tasca realitzada dins del projecte de recerca
destinat a 'obtencié del Grau de Doctor en Quimica. El treball s’ha realitzat
en el Grup de Cinética i Dinamica de Reaccions elementals de la Universitat
de Barcelona. Per raons de conveniéncia, tot creient que aixi se’n facilita la
seva difusié, I'autor d’aquest treball ha decidit redactar el mateix en llengua
anglesa. Tanmateix, d’acord amb la normativa vigent per a la presentacié de Tesis
Doctorals a la nostra Universitat, i mostrant també una voluntat de difusié del
nostre treball, de la manera més entenedora possible, dins la comunitat cientifica
catalana, he redactat aquesta part del treball en catala.

El treball es presenta en forma de compendi d’articles que descriuen el gruix
de la feina realitzada. No obstant aixd, s’ha incldés una minuciosa introduccié
dels diversos fonaments tedrics que hem estudiat i assimilat préviament a la real-
itzaci6 d’aquests treball. Hem considerat oportuna la presentacié del compendi
d’articles perqué créiem que aixi es pot comprendre millor la unitat global de la
nostra feina que ha estat, més que Vestudi dinamic d’un sistema o d’una familia
de reaccions en concret, utilitzant metodologies ja existents, un estudi i apro-
fondiment en algunes de les metodologies que s’empren usualment a l'estudi de
la dindmica de reaccions, utilitzant com a exemples d’aplicaci6 sistemes d’interés
practic. Aixi, hem utilitzat tant técniques mecanoquantiques exactes i aproxi-
mades, com técniques classiques, tot i que aquestes darreres només de manera
col.lateral i per aixd no n’expliquem els seus fonaments. D’aquesta manera, els
treballs es presenten en els darrers tres capitols de la memoria, com a tres unitats
corresponents a la utilitzacié de metodologia quantica aproximada IOSA (capitol
7, articles 1, 2 i 3), al desenvolupament i aplicacié d’un nou metode aproximat
(capitol 8, articles 4,5,6 i 7) i a P’estudi mitjangant metodologia mecanoquantica
exacta (capitol 9, article 8).

Considerem que les principals innovacions que aporta el nostre treball s6n les
segiients: a) el fet de detectar fendmens de naturalesa quantica en un sistema on
es bescanvia un dtom pesat, com ara l'efecte tinel i les particularitats que mostra
la distribucié vibracional dels productes en la reaccié Mg+ FH — MgF + H, b)
el desenvolupament d’un nou métode de tractament mecanoquintic aproximat,
basat en la implementacié de potencials absorbents en la resolucié propagativa
del problema de dispersié reactiva, i c) 'estudi mecanoquantic exacte del sistema
Ne+ Hf — NeH* + H, mitjancant el métode hiperesferic. La importancia de
la segona aportacié recau basicament en Deficiéncia i fiabilitat que ha mostrat
el nou meétode, cosa que ha motivat critiques molt positives per a alguns dels
nostres treballs. Pel que fa a la tercera, la seva importancia recau no només en el
sistema reactiu en si, habitualment emprat en la fisica de plasmes, sin6 també en
el relativament escas nombre de calculs exactes que s’han realitzat fins el moment.



Introduccié

Quan hom estudia una reaccié quimica qualsevulga, habitualment té com a ob-
jectiu Pobtenci6é de dades quantitatives com ara la calor de reaccid, el rendiment
o, de manéra més general, la influéncia de les diverses variables sobre el sis-
tema. Aquests objectius s’assoleixen mitjancant dues disciplines de la Quimica:
la termodinamica i la cinética. Per a qualsevol quimic és ben conegut que la
termodinamica, tot i que és una eina basica a I’hora de conéixer la espontaneitat
d’una reaccid, resulta incapag de predir la velocitat amb que es donara. Per tant,
la informacié proporcionada per la cinética quimica resulta essencial per conéixer
completament qualsevol procés quimic.

Tanmateix, tant la cinética com la termodindmica, com a ciéncies basades en
Pexperimentacié macroscopica, resulten incapaces de proveir-nos d’una explicacié
del procés quimic basada en primers principis i, per tant, la seva capacitat pre-
dictiva es veu restringida a correlacions empiriques. Resulta evident la necessitat
d’una disciplina que estudii els mecanismes intims de la reaccié quimica en el seu
nivell més elemental. Aquesta és la tasca de la dindmica de reaccions.

La dinamica de reaccions és doncs una subdisciplina de la cinética quimica i
el seu objectiu és Pestudi dels mecanismes moleculars a través dels quals tenen
lloc els processos quimics. Per tant, es tracta d’una ciéncia que estudia les
col.lisions intermoleculars i els moviments intramoleculars. D’enca els seus inicis,
al comengament dels anys trenta, en els treballs de M. Polanyi, E. Wigner, H.
Eyring, E. Pelzer i altres, 'estudi dels processos quimics elementals ha esdevingut
un camp d’importancia creixent.

Des dels inicis de la dinamica quimica fins avui en dia, s’han dut a terme
nombrosos estudis de reacccions elementals en fase gasosa, importants tant per si
mateixes com per les seves aplicacions posteriors. Aviat es va recongixer que els
experiments de feixos moleculars oferien els mitjans més directes per estudiar la
dinamica de les reaccions quimiques elementals, permetent congixer les principals
caracteristiques de la distribucié de velocitat de productes, aixi com una série de
propietats inaccessibles a través dels métodes cinétics tradicionals. Tot i aixd,
com en un principi els experiments de dispersié quimics eren escassos, degut a
la dificultat que representava la seva realitzaci6, la interpretacié dels resultats
va haver d’esperar un ulterior desenvolupament i refinament tant dels aspectes
experimentals com dels teorics. Evidentment, a un métode que depenia tan for-
tament de la tecnologia li calia un periode d’evolucié. Gracies a la millora en
les tecnologies de detecci6 de senyals, técniques d’alt buit i 'us de computadores
digitals en totes les fases de realitzacié de 'experiment, aixi com al desenvolu-
pament de nous metodes tedrics per part del mon académic, ha estat possible
Pobtencié de resultats prou extensos com per poder establir generalitzacions en
el comportament quimic.

L’estudi d’una col.lisié simple és un problema fisic especialment adaptat a
les condicions d’un estudi teoric, degut a 'abséncia de forces perturbatives ex-
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ternes al sistema. Aix0 provoca que el nivell d’exigéncia que hom ha de tenir
en la comparacié de la teoria amb I'experiment sigui molt elevat. Els resultats
experimentals han de valorar la capacitat predictiva dels models tedrics i a la
vegada els resultats obtinguts per la teoria poden servir de guia per a la cerca de
determinats fendmens experimentals.

L’estudi teoric dels processos de col.lisié elemental, bé siguin reactius o no, es
poden realitzar emprant diversos métodes, la majoria dels quals tenen les seves
arrels en el camp de la fisica atdomica o nuclear. Aquests métodes es poden clas-
sificar genéricament en tres categories: métodes classics, quantics i semiclassics.
Aquesta classificacié correspon a la manera en qué els diferents métodes resolen
el moviment dels nuclis sotmesos a les forces exercides pel nuvol electronic i la
repulsié internuclear.

En els métodes anomenats classics, s’assumeix que I'evolucié dinamica dels
nuclis atomics té lloc d’acord amb les lleis classiques del moviment, sobre una
superficie d’energia potencial (PES) préviament calculada, i ens permet treballar
amb trajectories associades a la reacci6 elemental. Habitualment es procedeix
de manera que es calcula, resolent ’equacié de Hamilton, un nombre suficient
de trajectories de manera que es reprodueixin les condicions inicials de I’experi-
ment. Posteriorment es duu a terme un tractament estadistic sobre les trajectories
per tal d’obtenir els observables. Normalment, les equacions del moviment es
resolen de manera que les condicions inicials siguin compatibles amb la descripcié
quantica dels estats moleculars, en el que s’anomena ’aproximacié Quasiclassica.
Tot i que els resultats obtinguts mitjancant la metodologia clissica sén general-
ment bons per a les quantitats promitjades, no es poden obviar les limitacions
de la descripcié classica de la natura i per tant hom no hauria d’esperar poder
descriure correctament els fendbmens purament quantics amb aquests métodes.

Si el comportament microscopic de la matéria només es pot reproduir rigo-
rosament utilitzant la descripcié de la natura que ens proporciona la mecanica
quantica, ha de ser aquesta la metodologia més adient per estudiar una col.lisi6
quan o bé es desitja una descripcié molt acurada o bé els efectes quantics sén
molt importants. En els métodes quéntics, és 'equacié de Schrodinger correspo-
nent al moviment nuclear la que es resol sobre una SEP préviament determinada.
Malhauradament, la solucié exacta de les equacions resultants només és possible
des d’una perspectiva numérica. El tractament mecano-quantic de la reactivitat
presenta basicament dues dificultats principals:

- les dificultats que provenen de la mateixa natura del procés reactiu, que
no és sind una reorganitzacié de les particules components del sistema. Tal
procés de reordenament requereix una eleccié molt acurada de les coorde-
nades a utilitzar com a variables en la funcié d’ona nuclear del sistema.
En la practica, aquest problema es resol tractant de trobar un sistema de
coordenades que sigui capag de descriure tots els ordenaments possibles aix{
com la regi6 de forta interaccié.



- les dificultats que concerneixen essencialment els aspectes computacionals.
El fet que una reaccié quimica pugui involucrar un elevat nombre d’estats
vibro-rotacionals tant de reactius com de productes fa que les dimensions
del sistema d’equacions que s’ha de resoldre en la dinamica s’incrementi fins
el punt de impossibilitar el seu tractament exacte. Aquest fet ha motivat la
relativa proliferacié de models aproximats que redueixen la dimensionalitat
del sistema d’equacions. Els recents avengos tecnologics, aixi com el desen-
volupament de técniques algebraiques i analitiques més recents han permes
en els darrers deu anys la realitzacié dels primers calculs mecanoquantics
exactes sobre sisternes reactius.

La metodologia semicldssica se situa entremig de les dues anteriors. Gene-
ralment utilitza una barreja d’ambdues, tractant classicament alguns graus de
llibertat i altres quanticament. D’aquesta manera permet 1’estudi de fendmens
quantics i a la vegada permet relacionar-los amb imatges classiques.

Resultats i Conclusions

Estudis R-IOSA

Com ja hem dit, el sistema d’equacions diferencials acoblades a resoldre en el
plantejament mecanoquantic exacte és ben poques vegades resoluble de manera
exacta, degut a I’elevat nombre d’estats assolibles pel sistema quan es treballa a
les energies tipiques de col.lisi6. Aixi, per exemple, per al sistema F + Hj, calen
un total de 150 estats rovibracionals i unes 30 ones parcials per obtenir calculs,
completament convergits, de la seccié eficag integral a cada energia. Aixo implica,
com es veurd més endavant, resoldre per a cada valor del moment angular total
i de I'energia un sistema de 150 equacions diferencials acoblades; no cal dir que
per als sistemes que en aquest treball hem estudiat (Mg+ FH i B+ OH), en
ser molt més pesants, el nombre d’'estats rovibracionals necessaris per convergir
augmentaria considerablement.

Consegiientment, una gran part dels esforcos que s’han dut a terme en el camp
de la dinamica quimica han estat amb 1’'objectiu de desenvolupar simplificacions
de les equacions exactes basades en criteris fisics raonables. La primera aprox-
imacié consisteix en I'expansié de la funcié d’ona en un conjunt de funcions de
base corresponents a ’espectre discret de la molécula diatomica, que generalment
s’anomena aprozimacid close coupling. En un nivell inferior a aquesta aproxi-
maci6 es troba 'anomenada aproximaci6 centrifuga sobtada (CS) que suposa que
la col.lisi6 ve dominada pel potencial electrostatic i oer la rotacié molecular. Se
suposa que, essencialment, el terme d’energia cinética és prou gran com per a
que el valor exacte del terme centrifug no sigui important. Segons aquesta aprox-
imaci6 els estats rotacionals encara es consideren de manera exacta i s’elimina



Pacoblament entre els diferents valors del moment angular orbital. Per a major
detall, veure capitol 6. ‘

En el segiient nivell de teories aproximades trobem dues maneres de fer no
només diferents siné oposades. Ambdues aproximen el moviment rotacional del
sistema, una de les aproximacions suposa que els periodes rotacionals sén molt
més grans que els vibracionals i utilitza una aproximacié rotacional sobtada (ES)
i Paltra aproximacié es basa en que el moviment rotacional correlaciona amb una
vibraci6 de flexi6 en el cami de reacci6 i tracta adiabaticament el moviment de
flexi6. No anirem més enll en la segona aproximaci6é per que s’escaparia dels
objectius introductoris d’aquesta part del treball.

L’aproximacié utilitzada en aquest treball s’anomena aprozimacié reactiva
sobtada d’ordre infinit (R-IOSA) (Reactive Infinite Order Sudden Approxima-
tion) i es basa en combinar les aproximacions CS i ES a partir de les equacions
CC. Aquesta aproximacié té com a principal consegiiéncia V’orientacié fixada de
Parranjament atom-didtom. La vibracié es tracta aixi de forma exacta, excepte
per I'acoblament vibracié-rotacié i vibracié-orbita.

El métode IOSA es va formular, en el seu origen, per al cas inelastic amb la
idea de reduir la complexitat que provoca l'existéncia d’un elevat nombre d’estats
rotacionals per a cada nivell vibracional. Els bons resultats del métode van
fomentar la seva aplicacid a la dispersié reactiva.

L’equacié R-IOSA és de la forma:

»# F  HE+1 G+1

A —
MR TR 2 Fizg, (s, B, 65) = (1)
2p
= -’;f [V(T,\,R)‘, eA) - E] F‘;\Eﬁ,\

on £ indica el canal d’ordenament i ©, és un parametre que indica 1’angle d’ori-
entacié atom-didtom en 'ordenament. El procés d’integracié del sistema d’equa-
cions es duu a terme, en el nostre cas, expressant el Hamiltonia segons ’anomenat
sistema de coordenades circulars de collisi6 i fent servir el métode de la matriu
R per a resoldre la part radial de la solucié. El métode no s’explicard amb més
detall ja que ha estat exposat en anteriors treballs (veure capitol 6.1).

El notre grup de recerca ha treballat llargament amb aquest métode aproxi-
mat i per tant creiem que tenim suficient experiéncia amb el mateix. Com en
tots els metodes aproximats, la clau per a emprar-los adientment és conéixer en
profonditat les seves limitacions. El métode R-IOSA s’ha mostrat com un métode
relativament fiable per a la majoria de sistemes estudiats en el nostre grup, i de
manera especial quan V’efecte orientacional de la superficie és petit o es consideren
energies elevades.

D’aquesta manera, en el capitol 7 de la memoria es presenten els articles
que hem publicat referents a ’estudi sobre dos sistemes reactius, Mg + FH —
MgF + H i B+ OH — BO + H utilitzant el métode R-IOSA. En aquests
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articles, es pot comprovar com a 'estudi del primer sistema ens vam concentrar
en diferents aspectes de la seva dinamica que es van traduir en dues publicacions.
Pel que fa al segon sistema, vam trobar de prou interés I'estudi del patré de
ressonancies que presenta la reaccié utilitzant un model reduit com ara el R-
IOSA. '

El sistema Mg+ FH — MgF + H.

El sistema presenta diverses caracteristiques que van motivar el seu estudi. De fet,
qualsevol sistema que, com aquest, es compongui de masses relativament elevades
constitueix un repte per a un calcul mecanoquantic degut a I'increment en el
nombre d’estats a considerar. Per altra banda, el sistema es mostra especialment
adient per a un estudi IOS ja que les primeres inspeccions sobre la SEP van
indicar una certa isotropia a la regié de I'estat de transici6. Aquest fet afavoreix
clarament un estudi del tipus IOS doncs la restriccié d’orientacié fixa perdra
relevancia. Per tant, es va dur a terme un calcul R-IOS extensiu per un total
de 50 energies centrant-se principalment en la zona del llindar reactiu on es va
emprar un espaiat energétic de fins a 0.01 eV.

Es van realitzar dos estudis a partir d’aquests resultats, centrant-se en as-
pectes més aviat diferents. En un d’ells ens vam concentrar en el llindar energétic
per a la reacci6 i les peculiaritats que mostra la reactivitat a angle fixat. En el
segon, vam realitzar un estudi més general sobre les distribucions vibracionals
de productes (DVP) i els efectes de les masses isotdpiques. Per aquest segon
treball, vam haver de realitzar un elevat nombre de trajectories quasiclassiques
aixi com calculs R-IOS addicionals per d les variants isotdopiques de la reaccid,
on se substituia I’atom de hidrogen successivament per deuteri i triti.

La superficie de potencial emprada per realitzar els calculs es va ajustar a
punts ab initio utilitzant un funcional RBO. Sobre aquesta superficie, la reacci6
presenta una endoergicitat de 1.33 eV i una barrera endarrerida cap a productes
de 1.83 €V on la geometria de I'estat de transici6 és clarament plegada amb un
angle MgF H d’uns 72°. A més d’aquestes caracteristiques, la SEP presenta dos
pous, un de col.lineal que es troba 0.34 eV per sota de I'assimptota de reac-
tius i correspon al complex MgFH i un segon pou d’uns 1.30 eV per sota de
Passimptota, de geometria altament plegada (al voltant de © = 35°)que vam
anomenar complex d’insercié. Aquest segon pou, tot i que és profund, només es
pot assolir a través de la reorientaci6 del sistema, de manera que sera intranscen-
dent per a la reactivitat IOS, mentre que en el treball vam mostrar com juga
un paper qualitativament important en la reactivitat que mostren les trajectories
quasiclassiques. Diferents diagrames de contorn de potencial es mostren en la
figura 7.1. Segons la nostra opini6, la importancia d’aquests treballs recau en
el fet que s’hagin trobat efectes quantics notables en un sistema on és un atom
pesat el que es transfereix.

e Energy mode effectiveness and tunnelling in triatomic reactions: the energy
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threshold for the Mg + FH — MgF + H reaction. Chemical Physics
Letters 282 (1998) 91-99.

En aquest article, es presentaven alguns dels resultats de 1'estudi mecano-
quantic tridimensional aproximat sobre el sistema M g+F H per tal d’obtenir
coneixement sobre el llindar de reactivitat i de com es veia afectat princi-
palment per I’energia vibracional inicial de reactius. La reactivitat tridi-
mensional global presentava un acusada selectivitat per al mode vibracional
de I'energia, cosa que estad d’acord amb les regles de Polanyi. Tal i com es-
tableixen aquestes normes, per a reaccions amb barrera cap a productes,
la reactivitat es veu fortament incrementada en augmentar 'energia vi-
bracional inicial dels reactius. De totes maneres, a banda de les magni-
tuds tridimensionals, es van explorar les seccions eficaces a angle fixat per
tal d’obtenir alguna indicaci6 addicional sobre el mecanisme de la reaccid.
Aquest va resultar ser més complex del que semblava a partir de les corbes
tridimensionals. A partir d’aquest estudi a angle fixat vam poder establir
dos tipus de comportament diferents en el sistema. D’una banda, per niv-
ells vibracionals inicials de reactius baixos, la contribucié més important a
la seva reactivitat es troba per a angles propers al de la geometria de P'estat
de transicié. Per una altra banda, els nivells vibracionals més elevats de
reactius tendeixen inesperadament cap a una reactivitat col.lineal. A més,
d’ells corresponia a la corba per als reactius inicialment en el nivell vibra-
cional v = 3 i un angle fixat a v = 180°, llunya de la geometria de I'estat
de transicié. Aixd s’assolia a través d’una important contribucié de tinel.
Es tractava doncs de dos aspectes més aviat sorprenents, atés que el punt
més baix de la barrera de reaccié es trobava per un angle tancat, allunyat
de la col.linealitat.

Aquesta série de fets, més aviat inusuals, els vam poder explicar gracies a la
representacié dels camins de minima energia a angle fixat, que sén de fet els
camins que " veuen” els calculs I0S. En aquestes representacions vam poder
veure com, tot i que I'algada de la barrera augmentava en desplagar-se cap
a angles més oberts, el seu gruix disminuia encara més significativament
permetent d’aquesta manera un major efecte tinel. L’expressié analitica
de la permeabilitat per a un model senzill de barrera quadrada, ens va
permetre explicar el major efecte tinel per al nivell vibracional v = 3 per
a una mateixa energia total.

The influence of initial energy on product vibrational distributions and
isotopic mass effects in endoergic reactions: the Mg + FH case. Physical
Chemistry Chemical Physics, 1 (1999) 1133-1139.

‘En aquest segon treball, vam centrar la nostra atenci6 en un estudi detallat
de la distribucié vibracional de productes i una comparaci6 extensiva de
les seccions eficaces R-IOSA amb les corresponents obtingudes a través de
trajectories quasiclassiques realitzades també per nosaltres mateixos. Per



aquest treball, a banda dels resultats que ja teniem, es van realitzar calculs
addicionals sobre les variacions isotopiques D, T enlloc d’H, aixi com també
les QCT corresponents, per tal de tenir un marc de comparacié fiable.

Pel que fa a les DVPs, tot i que estan en acord general amb les regles de
Polanyi, mostren comportaments qualitativament diferents, depenent no
només de 'energia de col.lisié sin6 també del nivell vibracional de reactius.
Aquest és un camp que vam trobar interessant d’estudiar donat que podia
aportar conclusions interessants pel que fa a la selectivitat d’estats de pro-
ductes en les reaccions. D’aquesta manera, a energies de col.isié baixes la
DVP pels nivells vibracionals inicials per sota de v = 4 s6n estadistiques
mentre que la DVP corresponent al nivell v = 4 és més aviat adiabatica.
Quan hom es desplaca cap a energies més elevades, les DVP s’eixamplen,
com era d’esperar, perd a la vegada les distribucions corresponents a v < 3
tendeixen a desplagar els seus maxims cap a valors més elevats del nivell
vibracional final de productes (v') mentre que per v = 4 la distribucié es
comporta a la inversa, desplagant-se cap a nivells vibracionals de productes
menys excitats. Aquest comportament es va mirar de justificar en I'article a
través del paper que juguen els diferents valors del moment angular orbital,
representant les funcions opacitat.

A més a més, es van realitzar variacions isotopiques sobre I’atom lleuger
(H, D, T) per tal d’assolir un millor coneixement del mecanisme de la reaccid.
D’acord amb la selectivitat de la reaccié per al mode vibracional de I'en-
ergia, la seccid eficag per a una energia de col.lisi6 donada, per un mateix
nivell vibracional inicial, disminueix a mesura que s’augmenta la massa
de I’atom lleuger. Per tal de tenir un marc de comparacié practic, per
comprovar la fiabilitat dels nostres resultats, es van realitzar calculs QCT
sobre el sistema aixi com les variacions isotOpiques. L’acord entre les dues
metodologies va resultar satisfactori en general i el vam atribuir a una in-
fluencia relativament baixa en la reactivitat tridimensional tant dels efectes
quantics com orientacionals.

El sistema B+ OH — BO + H.

e Cross sections exhibiting quantum ressonances: the B+OH case. Journal

of Molecular Structure (Teochem) 463 (1999) 65-74

Les ressonancies sén un dels efectes més notables que hom pot trobar en la
dinamica de reaccions. Les ressonancies, que apareixen com pics lorentzians
en la probabilitat de reaccid, estan relacionades amb la formacié de sistemes
compostos metaestables i proporcionen informacié extremadament acurada
sobre l’estructura de la SEP. Aquest tipus de fendmens sén, doncs, quan
sén observables experimentalment, un marc de proves tnic per a millorar
els models tedrics. De totes formes, quan es prova de predir ressonancies
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tedricament a nivell de seccié eficag, hom es troba amb dues dificultats.
El primer inconvenient esta relacionat amb els temps de vida relativament
curts dels complexos de col.lisié habituals, que porten a pics de probabili-
tat amples que facilment desapareixen en acumular els diferents moments
angulars. Aquest problema pot ser, tanmateix, de menor importancia si
en el sistema reactiu es troben complexos relativament estables. La segona
dificultat té a veure amb el cost computacional elevat d’un calcul rigorés
de dispersi6 reactiva; per tal de superar aquest contratemps hom pot em-
prar models de dimensionalitat reduida, com ara el I0S, com a primera
estimacié de la importancia del patré de ressonancies d’un sistema reactiu.

En aquest context, vam considerar 1’estudi aproximat del patré de res-
sonancies presentat per al sistema B + OH. L’interés d'aquest sistema
recau en la importancia dels seus intermedis estables HBO i HOB, que po-
drien se importants en la formacié d’estats ressonants. El complex HBO és
conegut experimentalment i estudis teorics han predit una geometria lineal
per aquest minim. La geometria del segon minim HOB ha estat motiu de
més controvérsia, tot i que ajustant la SEP a una geometria col.lineal del
minim déna una millor descripcié de la reactivitat. Aix{ doncs, es va utilit-
zar un ajust emprant un funcional Sorbie-Murrell, prenent una geometria
collineal per a ambdés estats intermedis. Sobre aquesta SEP, la reaccié
resulta 3.60 eV exoergica i el seu canal alternatiu es va poder negligir a les
energies de treball, doncs resulta 1.75 eV endoergic. L’energia del complex
BOH es troba 6.4 eV per sota de I'assimptota de reactius i es troba en la
zona de reactius. Seguint el cam{ de minima energia, una barrera de 1.21
eV connecta aquest minim amb el de HBO, d’energia uns 4.9 eV per sota
de I'assimptota de productes.

En aquesta publicacié vam mostrar com la component ressonant de la reac-
tivitat global era prou significativa pel sistema en estudi. La representacié
grafica de les funcions opacitat i seccions eficaces diferencials van confirmar
aquest fet mostrant funcions opacitat accentuadament estructurades i sec-
cions eficaces diferencials molt simétriques. La significativa estructura que
sobreviu en la seccié eficag integral indica que la seva mesura experimental
podria resultar molt itil per al refinament del potencial d’interaccié per
aquest sistema.

Implementacié dels NIPs a la solucié propagativa del prob-
lema reactiu.

En aquesta part de la memoria es presenten els articles publicats respecte del nos-
tre treball en la implementacié de la técnica dels Potencial Negatius Imaginaris
(NIP, acronim de I’anglés) en un esquema propagatiu, en concret del tipus invari-
ant embedding i especificament ’anomenat métode de propagacié de la matriu



R. Alhora es va presentar la aplicacié d’aquesta nova metodologia a una familia
de sistemes reactius que cobreixen un ampli interval de casos possibles. Aques
treball s’ha reflectit, fins ara, en tres articles i una comunicacid, tots ells cobrint
diferents aspectes del desenvolupament i I’aplicaci6é del métode.

o On the accuracy of reactive scattering calculations with absorbing poten-
tials: a new implementation based on a generalized R-matrix propagation.
Chemical Physics Letters 291 (1998) 346-350
En aquest treball, la nostra intencié era notificar 1’exit de la implementacié
dels potencials absorbents a un métode de propagacio invariant embedding,
centrant-nos en la seva factibilitat i les bones prestacions del codi numéric.

La idea, com s’explica en la seccié 2.7, consisteix basicament en reduir un
problema de dispersio reactiva en un d’inelastic introduint convenientment
un potencial complex. Com s’explica a la memoria i a I'article, coneixent
la capacitat del NIP d’absorbir el flux associat a la funcié d’ona, si hom
col.loca tal potencial absorbent més enlla de la regié de Pestat de transici6,
on s’assumeix que les interaccions reactives ja ja han tingut loc, hom pot
aleshores atribuir la pérdua de flux que provoca el NIP a la component
reactiva. Per tant, introduint un NIP i realitzant un calcul inelastic, que en
principi resulta més senzill, hom pot obtenir probabilitats reactives globals.
Naturalment, ’esquema de propagacié va haver de ser modificat per tal de
tenir en compte la naturalesa complexa de les matrius d’interacci6, cosa
que es va explicar en una altra publicacid.

Enlloc de comprovar el nou métode amb reaccions prototipiques, vam tro-
bar que seria més interessant ’estudi col.lineal de la reaccié de bescanvi
Cl+ HCl — CIH + Cl, reacci6 per a la que disposavem de resultats exac-
tes que havien estat préviament publicats per altres autors. Els nostres
resultats van coincidir plenament amb els publicats, fins i tot en comparar
les fines estructures ressonants que presenta el sistema. A més a més, la
implementacié es mostrava més eficient que els nostres calculs previs util-
itzant una propagacid estandar de la matriu R, és a dir sense la introduccié
del NIP. '

e Comment in the 110 Faraday Discussion on Chemical Reaction Theory.
General Discussion. Faraday Discussion 110 (1998) 236-238
En aquesta comunicacié es presenta el comentari que vam aportar en la
Discusié General de la 110 Faraday Discussion. El nostre comentari feia
referéncia a un article presentat per Peng[69] en el que desacoblaven reactius
i productes. Varem creure que era interessant esmentar en aquest contexte
la implementacié dels NIP sobre la propagacié de la matriu R, que haviem
desenvolupat. En concret, virem mostrar els resultats obtinguts per al
cilcul de la seccié eficag del sistema Ne + HY — NeH* + H per unes
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200 energies entre 0.7 i 1.1 eV. Aquests resultats evidencien una reactivitat
molt estructurada.

The application of complex absorbing potentials to an invariant embed-
ding scattering method: I. Theory and computational details. Journal of
Chemical Physics 109 (1998) 5761-5769

En el citat article desenvolupem en detall 'extensié que vam realitzar dels
metodes mecano-quantics basats en el métode de propagacié de la matriu R
per tal de poder incorporar potencials complexos absorbents. Partint de la
base que no erem pioners en 1'is de potencials optics, si que ho hem estat en
implementar-los en un esquema propagatiu, i I'article mira de donar prime-
rament una revisié de I'us historic i desenvolupament dels potencials optics.
El principal objectiu del treball publicat era descriure en detall els aspectes
claus que havien estat modificats a ’esquema de propagacié de la matriu
R, de manera que pogués tenir en compte una matriu d’interaccié de nat-
uralesa complexa. Com ja s’explica en les seccions 2.7 i 8.1 de la memoria,
mitjancant la introduccié d’un potencial negatiu imaginari (NIP) hom pot
reduir el problema de dispersié reactiva en el que nosaltres vam anomenar
problema pseudo-ineldstic. Aleshores, es pot dur a terme un cilcul com si
nomsés es donés dispersi6 inelastica, que és molt més senzilla de tractar, i de-
" sprés assignar la pérdua de flux al flux reactiu. Aquest potencial absorbent
és, en el nostre cas, una rampa lineal negativa que depén de les coordenades
fisiques del sistema. La introduccié de tal potencial imaginari provoca que
la matriu d’interaccié esdevingui complexa. El métode propagacié de la
matriu R assumeix, tal i com es va formular originariament, que la matriu
d’interaccid és real i simétrica, cosa que ja no és el cas. Les modificacions
van implicar essencialment un generalitzacié de les solucions per al prob-
lema de potencial constant a cada sector, passant a un quocient de funcions
exponencials enlloc de les funcions trigonométriques i hiperboliques habit-
uals aixi com la inversié explicita d’algunes matrius de transformacié que
ja no sén real simétriques. L’assignaci6 assimptotica es va realitzar d’acord
amb la propagacié estandar de la matriu R pel cas inelastic i després es van
calcular les probabilitats inelastiques estat-a-estat.

Una vegada el métode de la matriu R havia estat generalitzat, vam em-
prar un Hamiltonid d’ordre infinit (IOS) (veure més amunt i seccié 6.1)
per tal d’obtenir una expressié més explicita de la matriu d’interacci6é. A
més, com que disposavem de resultats previs utilitzant la metodologia tradi-
cional R-I0OS, propagant la matriu R en les regions de productes i reactius,
vam pensar que seria una bona prova per a les prestacions del nou métode.
Aixi doncs, vam fer diversos calculs del codi NIP-IOS desenvolupat sobre la
reacci6 de bescanvi Cl+ HCl — CIH + Cl. La fiabilitat dels nostres resul-
tats ja havia estat comprovada en la comunicaci6 presentada anteriorment.
En aquest article vam mostrar D'estabilitat del métode, no nomsés pel que fa



als parametres del NIP sin tambe els pardmetres propis de la propagacid,
que resulten en unes prestacions superiors del NIP-IOS respecte el R-10S.

The application of complex absorbing potentials ot an invariant embedding
scattering method: II. Applications. Journal of Chemical Physics (in
press)

La publicacié de I'anterior treball ha estat seguida per la publicacié d’un
altre treball en el que s’aplica la nova implementacié a V'estudi dels sis-
temes Li+ FH, Mg+ FH i H+ F,. Amb I'estudi d’aquestes reaccions es
cobreixen diferents ergicitats i nivells de complexitat en la SEP, aixi com
diferents combinacions de masses. Aquest estudi el vam realitzar ja que,
tot i que les primeres aplicacions del métode semblaven indicar una millora
en el calcul de magnituds globals respecte I'anterior técnica R-IOS, vam
pensar que seria interessant disposar d’una prova addicional que establis
de manera definitiva el nivell de prestaci6 del métode. A més de provar
els NIPs per diverses condicions, preteniem aprofitar-nos d’un métode com-
putacionalment barat per tal d’aprofondir en la dindmica d’alguna de les
reaccions mencionades anteriorment.

Tot i que en principi, en el tractament I0S, hom hauria de necessitar difer-
ents parametres del NIP per cada angle d’orientacié diferent, a la practica
aix0 no és el cas habitual i hem estat capagos d’utilitzar un tnic conjunt
de parametres NIP per a totes les orientacions, excepte per les SEP alta-
ment anisotrdpiques, com ara la del H + Fy, on vam haver d’utlitzar dos
conjunts de parametres. Aquest fet, conjuntament amb la relativa facilitat
amb qué es troben els parametres dptims del NIP, mostra que el temps
consumit en obtenir el NIP convenient és negligible en comparacié amb el
temps estalviat.

La comparacio6 de les prestacions del métodes R-IOS i NIP-IOS va eviden-
ciar clarament el menor esfor¢ computacional del segon. Generalment, el
nombre de sectors translacionals es redueix a la meitat i la dimensié de la
base vibracional es veu significativament reduida. Ambdues reduccions es
tradueixen en un estalvi de temps de CPU. Mentre la reduccié de temps és
lineal amb la reduccié de sectors, com el procés de propagacié implica la
inversi6 explicita d’una matriu, Pestalvi de temps en la reduccié de la base
és proporcional a N3,

Tot i que en el treball publicat fins ara els métodes NIP-IOS i R-IOS mostren
un bon grau d’acord, hom no hauria d’esperar a priori una coincidéncia
exacte dels resultats, ja que no es tracta de métodes totalment equivalents.
Creiem que cal recalcar que el NIP-IOS només restringeix el moviment pel
que fa a Dorientacié fixada de reactius. No hi ha restriccions addicionals
més enlld de la zona de l'estat de transicié on s’absorbeix el flux. Aixd
no és aixi pel R-IOS on la solucié s’ha de propagar també en la regié de
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productes i per tant també es restringeix el seu moviment.

La relativament bona eficiéncia i fiabilitat del codi ens va empeényer a rea-
litzar alguns calculs addicionals en els que vam obtenir satisfactoriament
probabilitats cumulatives de reaccié amb un estalvi significatiu de temps.
La idea consistia en, dins un calcul NIP-IOS normal, realitzar I'assignacié
assimptotica poc després de la zona de forta interacci6 on, tot i que les
interaccions inelastiques encara sén importants, les reactives ja es poden
negligir. Aixd condueix, obviament, a probabilitats inelastiques estat-a-
estat erronies pero si I'objectiu és una magnitud global com ara la constant
de velocitat, la probabilitat cumulativa de reaccio és tot el que necessitem.

Calculs hiperesferics exactes.

¢ Exact quantum 3D cross sections for the Ne+H; — NeH™* +H reaction by
the hyperspherical method. Comparison with approximate quantum me-
chanical and classical results. Physical Chemistry Chemical Physics
1 (1999) 1125-1132
En aquest article vam publicar els primers resultats de I’estudi mecanoquantic
exacte del sistema Ne+ H} — NeH™* + H utilitzant el métode hiperesferic,

" tal i com esta explicat en la seccié 5.1. El relativament recent desenvolupa-
ment tecnologic, aixi com ’aparicié dels primers codis numerics realment
practics ha donat un nou impuls al clcul mecanoquantic exacte de la dis-
persié reactiva. Tanmateix, encara pocs meétodes s’han mostrat capagos de
realitzar calculs en condicions acceptables, pel que fa a recursos computa-
cionals. Un dels métodes més eficients i Ampliament utlitzat és el desen-
volupat per Launay i LeDorneuf, que nosaltres hem emprat en el treball
descrit en la publicacié.

En concret, hem estudiat un membre de la familia de sistemes X + Hj,
on X = He, Ne, Ar, per la qual hi ha una quantitat considerable de dades
experimentals. A més, la reacci6 en concret és pot trobar habitualment en el
camp de la fisica de plasmes on els dtoms de Ne sén introduits en plasmes
de H, per a refredar-los desactivant el H; . Les caracteristiques que fan
aquesta reaccié mereixedora d’estudi son principament dues: I'important
increment en la reactivitat que pateix el sistema amb 1'excitacié vibracional
dels reactius i elevada estructura que mostra la probabilitat de reaccid,
reveladora d’un probable espectre dens de ressonancies. Disposavem de
resultats preliminars préviament publicats que ens van estar de gran utlitat
a I’hora de trobar els parametres de convergencia, un pas més aviat critic
en qualsevol calcul numéric.

Es va descriure a I’article, doncs, amb relatiu detall la cerca dels parametres
optims de convergéncia. El procés de convergéncia va ser comprovat sobre la
probabilitat de reaccié per moment angular total nul (J = 0) utilitzant fins
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a 800 energies en un interval de 0.4 eV. El principals parametres convergits
van ser el valor maxim (assimptotic) de I'hiperradi, el nombre de sectors
i el tamany de la base interna. En concret, es va tenir especial cura a
la determinacié de ppmqs i els nostres resultats van confirmar els publicats
anteriorment. A continuaci6 es van establir les condicions de convergéncia
per al calcul de la seccié eficag, en concret del mixim valor del moment
angular total (J) que contribueix a la reactivitat aixi com el nombre de
projeccions de J que s’ha d’incloure en la propagacié.

Els resultats obtinguts van confirmar la important efectivitat del mode
vibracional de Penergia. La destacable estructura ressonant sembla que
sigui causa de complexes de llarga vida, més que d’efectes de la barrera
centrifuga. Vam comparar també els nostres resultats exactes amb altres
metodes aproximats com CS, R-IOS i QCT amb diferents nivells d’acord.
Mentre, com era d’esperar, els resultats CS eren els més propers als exactes,
els resultats obtinguts per QCT eren inespereradament equivocats, prob-
ablement degut a una violaci6 sistematica de la regla de conservacié de
I'energia del punt zero i a una contribucié molt important dels estats resso-
nants.
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Probably, one of the main goals when studying chemical reactions is the ac-
quaintance of quantitative data, such as the reaction heat, the reaction yield or,
more generally, the influence of relevant variables on the behaviour of the react-
ing system. This goal is usually achieved under the framework of two chemistry
disciplines, thermodynamics and kinetics.

In general terms, thermodynamics provides us information about the sense
in which the reaction will take place. The well-known general criterion for spon-
taneity is that the free energy variation between reactants and products has to
be negative. It is worth pointing out that this measure is expressed by means of
state functions; therefore their variation associated to the process depends only
on the initial and final state features. However, since thermodynamics cannot
provide information about the rate with which the reaction will occur, there can
be the case where a spontaneous process will not appreciably occur. It can there-
fore be said that, for the complete study of a chemical process, one needs as well
the information given by chemical kinetics, as the branch of science that studies
the rate of chemical reactions.

The thermodynamic and kinetic characterization of chemical processes is
known to be of great technological importance. It is also true, however, that
both disciplines, as sciences based on macroscopic experimentation, are not ca-
pable of providing an explanation of the chemical process based on first principles,
and therefore their predictive capability remains constrained to empirical correla-
tions. Given the enormous variety of behaviours that can be found in the chemical
world, an effort to extract the fundamental trends that characterize it appears
as essential. These trends have to be obtained from the microscopic study of the
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chemical species and the further connection to the macroscopically measurable
information through statistical mechanics, including both equilibrium (partition
functions, etc.) and non-equilibrium disciplines (microcanonical and canonical
rate constants, correlation functions, etc.).

Being more specific, chemical kinetics gives us an initial path to find out
the connection between the experimental behaviour, macroscopically observed,
and the corresponding microscopical foundings. Thus, a very usual result one
obtains, from a macroscopic kinetics study of a particular reaction, is the plot of
the concentration variation with time, for each of the chemical species taking part
in the process. The study of these variations leads to establishing empirically the
rate equation, that for a process such as:

aA+bB+cC+--->mM+nN+--.

has the general form:
v =k(T)[A]*[BP[MJ[N])” - -

where k(T') is the rate constant -usually T-dependent- specific for each reaction,
and a, 3, ... are generally positive or negative, integer or half-integer exponents.
For some other complicated cases, the rate equation can be more involved and
contain summations and/or other algebraic terms. Using this macroscopic rate
equation, a mechanism able to explain the whole process can be inferred. Actu-
ally, most of the processes usually formulated by a single chemical equation are
the global outcome of a series of elementary stages, some of them acting succes-
sively and others simultaneously, in which intermediate species happen to occur
and disappear.

The study of the concentration profiles, establishing the rate equation and
the mechanism, as well as the study of the influence of temperature and other
variables on the rate constant constitute the domains of the formal chemical
kinetics, macroscopic branch of chemical kinetics.

The main characteristic of the rate equations, corresponding to each of the
elementary stages of any mechanism, is that their mathematical form corresponds
to a simple case, since only reactants concentrations appear in them and their
exponents coincide with their respective stoichiometric coefficients. This allows
us to deduce that the reaction rate is due to a common factor, non intrinsic to
the system, namely concentrations, and an intrinsic factor, the rate constant. If
there would be no rate constant in the rate equation, the rate of all elementary
reactions with identical stoichiometry would be the same, disregarding the nature
of the chemical species undertaking the reaction. Nevertheless, experience tells
us the contrary, for if the concentration term plays the role of modifying the
number of collisions in a unit of time, the rate constant is found to characterize
the effectivity of these collisions.



1.1. Molecular Dynamics

The explicit quantification of how different factors modify the value of the
rate constant requires a microscopic explanation of the collisions between the
chemical species. These are the domains of molecular dynamics.

1.1 Molecular Dynamics

The scope of molecular dynamics is then the study of the molecular mechanisms
through which chemical and physical processes take place. It is, therefore, related
to the intermolecular collisions and the intramolecular motions. The understand-
ing of the dynamical behaviour of a system at a molecular level will then be the
clue for the interpretation of its macroscopic kinetics. This has been generally ac-
cepted ever since the kinetic theory of gases stated that intermolecular collisions
are the microscopic mechanism of all phenomena in which velocity is a relevant
magnitude. On the other hand, it is not far the time in which the development
of both theoretical and experimental techniques has allowed the first studies of
kinetic processes at a molecular level. Nowadays, the most intimate details of
a physical change or a chemical reaction are beginning to be experimentally ob-
served, as the result of a 75-year experience.

The first studies on elementary chemical processes can be dated on the publi-
cation of several works by M. Polanyi, E. Wigner, H. Eyring, E. Pelzer and others
in the beginning of the thirties. Molecular dynamics has become since then a new
aspect of science by itself and chemical dynamics appears as its most important
branch. This provides not only the foundings for macroscopic chemical kinetics,
but an important source of knowledge on the basic phenomena involved in the
elementary chemical event.

We can then say that the main goal of molecular dynamics is the study of
elementary chemical processes, i.e., the study of what goes on in a single collision
between reacting species. The fact we are studying a single collision will affect
the conditions under which the experimental measures will take place and make
the subject specially adapted to be treated from the theoretical point of view.

1.2 Interaction between experiment and theory

Since we are interested in simple collisions, the experiment will generally be free
of those factors that usually prevent the experimental results from being directly
comparable to the theoretical ones. Therefore, we will not care, in principle,
about external influences on the collision process and neither will we consider
the cooperative phenomena between species occurring in the condensed phase.
Experiments in the field of molecular dynamics basically concern the develop-
ment of molecular beams techniques, although other experimental techniques
have also provided some detailed information on elementary reactive processes
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-chemiluminiscence, photoionization, ion-imaging, photoelectron spectroscopy,
femtosecond laser spectroscopy , etc.-.

The fact that the experimental environment can be described in a relatively
simple way does not mean that the information to be extracted, or the corre-
sponding theoretical calculations, have to be simple as well. Nevertheless, the
absence of external disturbing factors makes that, wishing to have theory and
experiment at the same level, the theoretical methodology and the experimental
technique become complicated to really high limits. When this is achieved, the
theoretical treatments can predict the experimental behaviour and advances in
the experiment can confirm or discard the validity of these theoretical models.
On the other hand, when the acquaintance of experimental data is complicated,
theory can appear as a valuable ab initio source of data.

This mutual interaction can only be found in those fields of science where
theory and experiment are at comparable levels, being this the case in many of
the molecular dynamics applications.

1.3 Theoretical methods

The theoretical study of elementary collision processes that imply -atomic and/or
molecular systems, reactive or not, can be carried away using several methodolo-
gies that find their origin in the field of atomic or nuclear physics. The many
methodologies nowadays available are usually classified in three main categories:
classical, quantum and semiclassical. These refer to the way in which the motion
associated to the atomic nuclei, under the forces exerted by the the electronic
cloud and the internuclear repulsion, is solved.

In classical methods, it is assumed that the dynamical evolution of the atomic
nuclei occurs according to the classical laws of motion, over a previously calcu-
lated potential energy surface (PES), and allows us to deal with trajectories
associated to an elementary reaction. Solving the Hamilton equations, a number
of trajectories, sampling the set of initial conditions which are found to match the
experimentally controllable initial states, can be calculated. After a statistical
treatment of a large enough number of trajectories, the relevant observables can
be obtained. Usually, the equations of motion are solved in a way that the initial
conditions are compatible with the quantum description of molecular states, lead-
ing to the Quasiclassical approach. Although the results obtained are generally
satisfactory for averaged quantities, one has to be aware of the classical mechan-
ics limitations; therefore one should not expect purely quantum phenomena to
be treated correctly using this methodology.

Since the microscopic behaviour of matter can only be rigorously reproduced
using the description provided by quantum mechanics, this methodology must be
the most convenient for studying an elementary collision whenever high accuracy
is important or quantum effects dominate the reaction outcome. The Schrédinger
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equation corresponding to the nuclear motion over a previously determined PES,
is the one to be solved in that case. However, the exact solution of the resulting
equation is hard to be obtained even from a purely numerical perspective. This
has hindered its application for a long time, even for the simplest chemical sys-

tems.

The quantum-mechanical treatment of reaction dynamics has historically

presented two main difficulties:

firstly, difficulties arising from the fact that the nature of a rearrangement
process demands a careful selection of the coordinates to be used, in order
to describe the nuclear wavefunction of the system. Unlike elastic and in-
elastic processes, where, for instance, a three-body process can be described
as an effective 2-body problem, a rearrangement event forces the study to
remain under the three-body optics. In practice, this problem yields ma-
jor difficulties in the choice of the most appropriate coordinate system, i.e.
that capable of describing all the possible asymptotic arrangements and at
the same time capable of describing the close-interaction regions where the
triatomic ensemble is found.

a second difficulty concerns essentially computational aspects and arises
from the fact that a chemical reaction can involve a large number of vibro-
rotational states of both reagents and products. This increases dramatically
the dimension of the coupled set of differential equations into which the ini-
tial Schrodinger equation is usually transformed. This has caused efforts to
be put for a long time on the development of approximations that would
reduce the number of states involved and therefore ease the solution of the
nuclear equation. Fortunately, relatively recent technological developments
as well as new analytical and algebraic advances have provided us with pow-
erful calculating tools, which have made feasible rigorous reactive scattering
calculations.

The semiclassical methodology finds its spot in the middle of the classical
and the purely quantum mechanics. In some approaches, it employs a mixture
of both, treating classically some degrees of freedom and others quantally. This
allows the study of quantum phenomena and relates them to classical pictures.
Other well-known methodologies are the JWKB semiclassical approach (Marcus)
and the Path Integral which yields the classical-limit approach to the S-matrix
(Miller).
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In this chapter, a brief description of the collision processes, based essentially
on the formal aspects of the operator theory, is presented, since it provides a solid
theoretical framework on which the different methodologies have been developed.
Basically, the theory consists in an adaptation to the field of bimolecular elemen-
tary reactions of the particle dispersion formal theory. In the following, a general
overview of the formalism will be given. Firstly, the simple case of a structureless
and spinless particle under a scattering potential is discussed. This will be a way
to introduce the concepts of bound and scattering states, being the last respon-
sible for the reactive event. Next, the key operator to the quantum treatment
of scattering will be defined, the scattering operator. It will be proven how this
operator relates linearly the initial and final states of a collision process. Follow-
ing, the time-independent treatment will be introduced through the stationary
scattering states. It will be seen how the use of a stationary treatment essentially
saves one dimension (time) and modifies the boundary conditions of the problem.
Within this stationary frame the case of elastic scattering will be treated as an
example and used to introduce the concept of the partial wave expansion. We
will then proceed to describe the generalization of the scattering fundamentals
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to the case of more complex systems with more than two particles and therefore
with several different arrangement possibilities between its components. In this
context the central equation of the quantum mechanical treatment of elementary
reactivity, the close coupling equation set, can be developed.

2.1 Scattering operator for a single particle.

In this section, a brief description to most of the essential concepts that can be
found in scattering problems, such as the scattering operator, the Moller wave
operators or the cross section for the potential scattering will be given. We will
point out how the free motion of a particle prior to the collision can be related
directly to its free motion after the collision has taken place, through the unitary
scattering operator, S.

Let |y > be the state vector of a particle satisfying the time-dependent
Schrédinger equation

by >= g, > (2.1)

The solution to this equation will be of the form |y, >= U (#)|v >= ey >, as
it can be proven by direct substitution on 2.1, where U(t) = e~*H* is the so called
time evolution operator and |¢ > is a vector belonging to the spinless particle
Hilbert space. Each orbit, as we will call hereinafter U(t)|sp >, is univocally
labeled by the I > vector, which is the state vector for the system at time ¢ = 0.
Let’s suppose the particle is under a scattering potential so that H = H® + V,
where H® is the free particle Hamiltonian and V is a finite range scattering
potential. Considering that the orbit describes a scattering experiment, if we
would then follow it back to a time long before collision, this orbit would represent
a wavepacket localized far away from the scattering center.

U@y > == U°(t) [9n > (2.2)

where U°(t) is the time evolution operator associated to the free Hamiltonian H°,
Similarly, if we would follow the orbit evolution forward in time for the scattering
experiment, we would find as well a wavepacket localized far from the scattering
center

Uty > 22 U°(t) [Yhous > (2.3)

[¥in > and |they: > are called, respectively, the incoming and outgoing asymptotes
for the |4 > scattering state.

Of course, one should not expect all orbits to have asymptotes, for there will
be some orbits that will have asymptotes, and will correspond to scattering states,
and there will some other that will not and will correspond to bound states. In
this sense, the asymptotic condition establishes that, for any vector |, >€ H,
there is a solution to the Schrodinger equation that is asymptotic to the free orbit
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(7°(t)h/).‘,. > when ¢t — —oo0, and similarly for any |9, > when t — +oo. This
indicates that any incoming (and outgoing) asymptotic state is linearly related
to a scattering state. Thus, it can be written

U@l > ~U°() |9 > 250

since U is unitary,

[ > =T @)U (t) [9hin > 0

then . R A

[ >= lim T(t)T0°t)in >= Qiltfin > (24)
and analogously

[ >= lim UOT0)bout >= Q- [Youe > (2.5)

where Q+ and Q_ are called the Méller wave operators and are isometric op-
erators, i.e., their domain and range are not the same space. In other words,
they operate over the whole Hilbert space but their image is only found in the
scattering states subspace.

Next, two principles will be stated but they will not be proven, for a rigorous
proof see [1]. The orthogonality theorem establishes that the bound states space,
B, is orthogonal to the space formed by states that have an incoming asymptote,
R4, and to the space formed by those having an outgoing asymptote, R _.

BLR,
BLR.

The asymptotic completeness theorem establishes that the space of those states
with incoming asymptote and that of those with outgoing asymptote are actually
the same, R, =R_ =R. Thus, the Hilbert space (#) for a particle under a
potential can be divided in two orthogonal subspaces, B expanding the bound
states and R the scattering states.

H=BoR

According to the asymptotic completeness theorem, any scattering state has an
incoming and outgoing asymptote, and so these can be related:

I >= Q+J"r/1in > Pl >= Q_Iwm >
[Yout >= QT |y >= QT |y > ; S=0TQ,

it is the usually written: R

I"/)out >= Sl¢in > (26)
Thus, we call scattering operator (S‘) the operator relating the asymptotic states
of a particular scattering state. Since only the asymptotic states are observable in
the experiment, this magnitude will provide us with all the information necessary
in order to express the experimental measurable quantities in terms of more
fundamental ones.
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2.2 The S-matrix.

As it has been shown, the S operator relates the motion of a free particle leaving
a collision to its initial asymptotic state. For large values of time, once the
interaction is over, a state |1,,; > is obtained belonging to the Hilbert space of
the free Hamiltonian (H°) eigenvectors, but does not have to be necessarily an
eigenfunction:

o0
[Yout >= Z lpi >< il Pout >
n=1
Taking into account equation 2.6 the expression can be rewritten in terms of the
incoming asymptotic states:

oo
W)out >= Z lﬁai >< Wi!sld)in >
n=1

Then, the probability for obtaining the state |p; > as a consequence of the inter-
action, starting from the |tin > state (for this, we can choose an eigenvector of
HO) is:
w(pi & Yin) = |< @3] S|thin >|2

Unfortunately, although those details that refer to the orbit state at time ¢ = 0,
labeled as the instant of the collision, have been eliminated, this quantity cannot
still be experimentally measured. This is due to the fact that the |p; > and
[%in > wavepackets cannot be univocally identified in practice. Only position and
momentum can be relatively known for {4, >, but not univocally. Regarding the
final state, generally the state is only detected in the experiment if the direction
of the outgoing motion is within the solid angle element, df}, around a particular
direction. Thus, instead of calculating the w (¢; + ¥;,) probability, one should
calculate w (d? « 1;,), which is the probability for, starting from an initial free
asymptotic state, the outgoing direction to be within the dQ element. The fact
that the precise incoming asymptotic is ignored, will just imply an averaging of
this probability over all the relevant |t/;, > states. This averaging process will
lead to the cross section concept.

As it has been stated in the previous section, the scattering operator is a
unitary operator, combination of two isometric operators, that acts and projects
onto the whole Hilbert space. One of the most important properties of this
operator is that it is energy conserving, as expected, since we are only considering
internal forces. For a time independent Hamiltonian the system is conservative
and therefore the expected energy value for any orbit is constant. Since the S
operator relates the free asymptotic states, one would expect it to commute with
HP rather than with H. Using the intertwining relation[2] of the Méller operators,
which states HQi =, H°, it can be seen that:

SH°=QTQ B = QTHQ, = B°OTQ, = A°S
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and therefore: o
[8, 8] =0 (2.7)

and consequently energy is conserved, < Vin H i >=< Yout] H®|thous >. Since
the free Hamiltonian and the scattering operator commute, a complete orthonor-
mal eigenfunction set common to both operators, can be constructed. Derived
from the wavepacket treatment, it has been considered as convenient to choose
the momentum representation,
Bp>=L|g>=Elp> ; E,=£
5> sothat P 7= P = plP > 5 e T o -
< IP >= Gryme i <pP>=6("-p)
Thus, we can express the matrix representation of the S operator in the momen-
tum representation. Using the latter commutation relation 2.7, we can establish
that:
0= (5'|[A°, 8] ) = (Ep - Ey) < 5'|SF > (28)

and then the matrix element is zero unless the energy of both states is the same.
We can then write that:

< §"|S|p >= 6(E, — E,) x otherterms

After some manipulations[3] of the expression in order to factorise elastic scat-
tering one obtains:

<PI8I5 >= b (7"~ ) + 5 —0(Ey — E))(# + ) (2.9)

where f(p’ + p) is called the scattering amplitude and is a smooth function, i.e.,
does not vary abruptly as the previous Dirac function. Its physical interpretation
will be given later on when dealing with the stationary treatment (see section
2.3).

Once the general characteristics of the scattering operator and its matrix
representation, the S matrix, have been stated, we are now ready to define the
cross section, probably the most important quantity in reaction dynamics. Let’s
consider a scattering state with asymptotes, ¥in(p) and Yo (p). The probability
for this state to emerge with linear momentum within the solid angle df? around
a particular direction dp is:

w (A2 — i) = d [ p*dp W) (2:10)

We will assume that 1, (p) is a well localized function over a particular momen-
tum, p;. Imagine a series of experiments where the incoming asymptotic state
is |in >= |, > where |p, > is obtained through random rigid shiftings of the
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|¢ > state (localized over p,) along r. This means that g, is a function of the
same shape as ¢ but its maximum probability peak is shifted by p.

, Pp(D) = e—iﬁ'ﬁ?’(ﬁ)
Suppose a whole series of experiments all with different small shiftings, the total
number of scattered orbits within the solid angle element d€2 around p will be,

N,o(d) = / AP Tiinew (A = )

where n;, is the density of incident states and can be considered as constant for
a random distribution. We then write:

Noc(dD) = e [ puw(dQ ¢ 9,) = Minc 0 (2 ) (2.11)
From this expression one obtains the differential cross section as,
o(dQ + ) = / Ppw(dQ + p,) (2.12)
taking into account equation 2.10, one can write

o(d ¢ ¢) = [dpd0 [ 1 dplous ()N’ (2.13)

and given that |teu: >= S|thin >, which written in the momentum representation
takes the form,

"/’wt(ﬁ) = /d3p’ < ﬁ]glﬁ, > "/’z’n(ﬁl)

considering 2.9 and substituting in 2.13, after some modifications where it is
assumed that the incoming wavefunction ¢(p) is well localized over pp and that
the measure is carried away far from the J, allows us to derive the differential
cross section expression:

o(dQ ) = dQ|f (7  po) [’ (2.14)

and o(p) = Jqo(dQ « ¢)dS is the expression for the integral cross section.

2.3 Stationary scattering states.

In the previous sections we have followed a time dependent description of the
collision processes. First we have described collisions in terms of the scatter-
ing operator, then we have decomposed the S matrix elements in terms of the
scattering amplitude, and we have finally seen the expression for the cross sec-
tion. However, for time-independent Hamiltonians it is possible to perform an
equivalent treatment based on the time-independent Schrodinger equation. This
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implies working with wavefunctions of definite energy, and therefore extended
over the whole configuration space, as well as considering the proper boundary
conditions, as it will be seen later on. The methods employed in the present work
follow a time independent treatment. The formalism is built on the basis of the
stationary scattering states |pZ > that we will briefly describe next.

Let’s define the following |+ > and {¢o— > states at time ¢ = 0 corresponding
to the to the incoming and outgoing asymptote |¢ > so that,

[t >=Qilp > p—>=Q_[p >

if the | > state is expanded in the momentum representation,

lp >= /d‘°'ps0(i>) |7 > (2.15)

we can proceed analogously for the state vector at ¢ =0

lpt+ >=Qyfp >= / &*pp(P) AP >= / &*p o () [P+ > (2.16)
We can then get to write the following linear relation:
[P+ >= Q4 |p > (2.17)

An immediate interpretation of the latter is that the |p+ > state at t = 0 has the
same expansion in terms of |p+ > as the asymptotic |¢ > state in terms of |7’ >.
If the |p > state is an eigenvector of the free Hamiltonian with corresponding
eigenvalue E,, then |[p+ > is an eigenvector as well, with the same eigenvalue,
but corresponding this time to the complete Hamiltonian.

H!p+ >= HQ+{p >= QP >= E,|p+ >
Ut)|+ >= e~ 7 |+ >

|+ > is, thus, a stationary state. We then have that, since {| >} is an or-
thonormal basis of #, according to 2.17 {|p+ >} will be an orthonormal basis
of R. We then have a state vector basis for the scattering states and if we add
to it a basis for the bound states subspace we will have a basis set for the whole
Hilbert space,

1=[lp><p|ldp=[dp+><p+| + Taln >< n]

= [Plp—><p—| + Tnln><n] (2.18)

It can be ;iroven that these stationary states have the following asymptotic form,
in the position representation, as the distance between the colliding species be-
comes infinity (or large with respect to the scattering center dimensions),

<l > g 67741 0 - 9 S| (219)
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where we find once more the scattering amplitude, f(pZ < £). It can be seen
that < Z|p+ > represents at the same time an incident beam and an infinite and
spherically scattered particle beam. It is on this boundary conditions that the
stationary treatment does actually reflect, since we are imposing, at an infinite
distance, the state of the system to be represented by an incident beam and,
at the same time, a spherically scattered beam. It can be seen as well that
< Z|p— > represents a plane wave and another wave that collapses spherically
and therefore has no direct physical meaning. Here we can clearly introduce the
physical interpretation of the scattering amplitude, f{pZ « 7), as the anisotropic
angular factor on the scattered beam.

It can be easily shown that the differential cross section of a collision process,
in its stationary interpretation, is defined as the quotient between the emitted
particle flux through a unit solid angle and the incident flux. The integral cross
section is correspondingly defined as the integration of the differential cross sec-
tion with respect to the solid angle. The different geometry of the reference
surface at which the flux is measured for each beam, a plane wave for the in-
cident and a spherical one for the emergent, causes the cross section to have
dimensions of area.

2.4 Scattering by a center of force. Stationary
treatment

In this section, the simplest collision process will be studied, the elastic scattering
between two spinless particles.

An elastic collision is one in which there is no change in the internal energies
of the colliding species. The collision process of two atoms, without changing
their respective electronic states, is the most important and simple example of
such processes from the theoretical point of view. Elastic scattering can be found
as well in molecular collisions, even if it is usually of secondary interest, since the
inelastic collisions, where there is change in molecular rotational and vibrational
energies, are much more frequent.

Adopting the center-of-mass coordinate system, the elastic process between
two species, atoms hereinafter, produces a change in the direction of the relative
velocity vector (#) but does not alter its magnitude. Therefore the scattering is
univocally determined by the change in the orientation of # and the two-particle
collision is formally reduced to the motion of a single particle with reduced mass
4 under a potential V(7), where 7 is the interparticle vector. Since we have
assumed we are dealing with atoms, the potential energy depends only on their
separation V'(r) and so we have a central force problem.

This central force problem is formally identical to the well-known case of the
electronic energy levels of the hydrogen atoms, the single but crucial difference
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relying on the boundary conditions, as we will see. As in the hydrogen atom, the
Schrodinger equation for this system is most easily solved using polar spherical
coordinates and factorising the wavefunction into a product of angular functions
{spherical harmonics) and radial functions.

As we have already said, the difference between our case and that of the
hydrogen atom spectrum lies not in the form of the Schrodinger equation but
in the boundary conditions applied to the solutions. For bound-state problems,
the wavefunction approaches to zero as r tends to infinity and this boundary
condition causes the quantization of the energy levels. As we have stated in
the stationary treatment of the scattering problem, our wavefunction will not
decay at infinity; rather we will have a wavefunction representing at the same
time atoms coming together initially along straight lines and departing from one
another in some angular pattern determined by the scattering amplitude.

Let’s start by considering the wavefunction that represents initially the stream
of particles moving with momentum kf in the positive direction of z.

eikz
This plane wave describes the incident beam in the idealized crossed beam ex-
periment. Once the collision has taken place and the atoms are away from the
collision region, we will have particles moving with the same velocity as the in-
cident beam but in all directions. If the particles were moving isotropically, this
would be represented by a wavefunction

eikr

r

i.e., a spherical wave. In the previous section we have seen that the scattering
amplitude f(#) introduces the anisotropic character of the scattering experiment,
s0 we represent the situation after the collision by:

f(e) eikr

r

Note that for the scattering amplitude only one angular variable is needed since
we are dealing with a central force problem and therefore the wavefunction is
independent of the polar angle ¢, due to the cylindrical symmetry of the problem
about the z axis.

We can now establish the boundary conditions as:

. tkr
\Il~e"”+-jlez'§—, T — 00 (2.20)

The form of the wavefunction remains unknown in the interaction region and to
find it out we must solve the Schrodinger equation with this boundary condition.
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Let’s formulate then the equation for a system of reduced mass p under a central
potential V(r) '

52
[-é%vf. + V(’r)} U(7) = EV() (2.21)
We can simplify this expression introducing the variables
2uE
k? = -%5- U(r) = 2270 (2.22)
then,
[VZ+ 82 -U@®] ¥ =0 (2.23)

We can obtain a completely general solution of this equation taking an ex-
pansion of the wavefunction in spherical harmonics functions, because this is a
complete set of functions for the description of any analytic function of the polar
angles:

oo £
‘Il(f’) = Z z Rtm(r)ylm(07 ¢) (2‘24)
£=0 mn=—¢
However, as we have already said, because of the cylindric symmetry around the
z axis, there is no ¢ dependence in the wavefunction and only m = 0 terms con-
tribute to the expansion. The functions Yy, are, apart from a multiplying factor,
the Legendre Py(cosf) functions. The expansion is therefore usually written as

W) = %fA,«p,(rm(caso) (2.25)

=0

which is called the partial wave ezxpansion. The -:- term is introduced in order to
get rid of the first derivative term of the radial Laplacian. Although mathemati-
cally convenient, this expansion is not always highly convergent.

If one substitutes the expansion 2.25 into 2.23, using the orthogonality of the
Legendre functions, one finds that the radial wavefunction ¢,(r) is the solution
of the radial equation

[+ )] wtr) =0 (2.26)

where U,(r), called the effective potential, combines the actual potential and the
centrifugal barrier:
€+1
Uitr) = Ur) + L5 1)
Since equation 2.26 is a second-order differential equation, there will be two
linearly independent solutions for each value of k? and £. However, these will be
physically acceptable only if they are regular at the origin, this is, the solution
being zero when r = 0.

(2.27)
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It is relatively easy to find solutions of 2.26 for any potential U{r} by nu-
merical integration, starting the wavefunction with zero amplitude at r = 0 and
integrating outwards to a value of r large enough for Ug(r) to be taken as zero.
When r reaches such a value the equation becomes

(% + k2> $(r) =0 (2.28)

and its general solutions can be written in the form
sin(kr + 1) (2.29)

where 17, is a phase which depends on k, ¢ and the form of the potential.

We have already seen in the previous sections that our interest is the asymp-
totic form of the function at r = oo, since it is from by which we obtain the cross
section. In this region the only feature that depends on the potential is the phase
7¢- We therefore see how important this phase is in the theory of elastic scatter-
ing. However, its value depends not only on the actual potential U(r) but on the
centrifugal barrier as well (see equation 2.27), and it is therefore usually conve-
nient to take as a reference value the phase that is obtained by the centrifugal
potential by itself, that is, the phase for a constant null potential U(r) = 0.

d?

dr?

Ly ____z(z:; D1 ) =0 (2.30)

The solutions for this equation are well known[4] and related to the spherical
Bessel functions j,(r) by the expression

1/)((7‘) = ij[(kT‘) (2.31)

which has the asymptotic form
12
e ~ sin (kr - —271) (2.32)

Therefore, the asymptotic form of the solutions of equation 2.26 can be then
defined to be

Yy ~ sin <kr - % + 61) (2.33)

where 6, = n, + % is called the phase shift. Note that for some potentials, such
as the Coulomb potential, the formula does not apply, since the potentials fall
more slowly than the centrifugal barrier and therefore cannot be neglected. The
dependence of & on £ is very interesting and reflects features of the potential.
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The relationship between the scattering amplitude and the phase shift can be
derived comparing the asymptotic expression obtained from substitution of 2.33
in 2.25,

U(r) ~ %Z Aysin (kr - %r_ + 6,) Py(cos$) (2.34)
=0

and the asymptotic expression 2.20. The result of this comparison[4] is known as
the partial wave expansion of the scattering amplitude:
1 00

10) =57

From the two terms of the central factor of the expression, the first, €%, is due
to the interatomic potential and the second, (—1), to the contribution from the
unscattered incident plane wave.

We can deduce the scattering cross section in its stationary interpretation from
the amplitudes of the incident and scattered waves in the asymptotic wavefunc-
tion expression. In the incident beam, the flux across unit area is proportional
to

(2€ + 1)(e*% — 1) Py(cos 8) (2.35)
=0

le#]2 =1 (2.36)

and in the scattered beam the flux across the unit solid angle is proportional to
f 9)etkr
1O o (237)

Since we are dealing with elastic phenomena, the momenta of the particles are
the same in the incident and the scattered beams and therefore the proportion-
ality constants in the respective fluxes coincide. We have defined the stationary
differential cross section as the ratio of the scattered flux per unit solid angle to
the the incident flux per unit area and we therefore have:

a(6) = f(O) (2.38)

If we replace the scattering amplitude by its partial wave expansion 2.35 we
obtain the following expression:

o0 o
o(©) = -4%2- 3 3 (20+1)(26' +1) (e —1)(€**¢ — 1) Py(cos 8) Py (cos §) (2.39)
=0£¢=0
Note that there are interference terms between £ and ¢ partial waves. On the
other hand, the expression for the corresponding integral cross section will be
rather simple, benefiting from the orthogonality properties of the Legendre poly-
nomials, so that only £ = # will perdure after integration over 6:

o0
o = .;Lzz(zeu)(e-wz —1)(¥ — 1) (2.40)
£=0
4r x 2
= p-z(ﬂ-}- 1) sin®é, (2.41)

=0
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2.5 Multichannel Scattering

Until now we have only dealt with processes that involved structureless particles.
Now let’s return to the more formal presentation of the scattering event but let’s
take a step forward as well in the complexity of the problem. From now on we will
consider inelastic and rearrangement processes, i.e. collisions between particles
with an internal structure. In this section a description will be given on how the
generalization of the latter expressions is obtained and a formal expression will
be obtained for the close coupling equations, which are the central equations for
the multichannel collisions treatment under a target states expansion,

Let’s consider a simple case where three spinless particles a, b and ¢ are
forced to move on a line, so that they can only lead to ac and bc bound systems,
which are usually called arrangements. For each arrangement the bound systems
can support several different states, called channels. Suppose that, at a given
collision energy, only the (bc), (bc)* and (ac) cases are possible, being (bc)* an
excited internal state of the bc arrangement. A table of the available channels for
a collision process will look like this:

channel 0 1 2 3
a+b+c a+(bc) a+ (bc)* b+ (ac)

The system Hamiltonian will therefore be of the form,
2 22
i a b c ) ) ¥ Fr0 )

==t} =4V Voe(Zac) + Vie(zpe) = H + V 2.42
om, + 2ms + 2. + Vab(Zap) + Vae(Tac) be(Tbe) ( )
where ., Tp., T, are the interatomic distances in the collinear arrangement.
Let’s consider the 0 channel, if one follows the orbit back to a time long before

the collision, one finds three infinitely separated particles

e—thhb >t‘""g° e-iHOt’win >

and the corresponding asymptotic states wavefunction is of the form < x|y, >=
X(Zq, Zp,z.) € Sp, where S, is the subspace of those asymptotic functions that
can label incoming or .outgoing asymptotes in the 0 channel, i.e., the dissociation
channel.

In channel 1, following the same procedure, one would find particle a infinitely
separated from the system bc which is in the bound state {bc),

e_,-mw) >t—>— e—iif'twm >
and therefore the Hamiltonian can be factorised as H = H! + V1, where V! is
the channel potential containing the V,; and V,. potentials that become zero as
a goes far away from bc and the system evolves into channel 1:
N 2

2 =2 N - A 7
B = e+ By Bt Vi) 5 V= V(@) + VaelZao)

— 2mg 2my,
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The asymptotic state wavefunction would be < z[tin >= X(Za, Zsc)P(oc)(Toe) €
8., where 8; is the subspace of those asymptotic functions labeling incoming or
outgoing asymptotes in channel 1, i.e., the channel in which b and ¢ form together
the fundamental bound state and a moves freely.

For the other channels one would proceed in a similar way, defining a partition
as H = H*+V*sothat V*isa potential that becomes zero as the system evolves
asymptotically into channel .

The asymptotic condition is generalized for the multichannel case establishing
that, for any function belonging to the S, asymptotic functions subspace, there
is a corresponding scattering state given by the corresponding Méller operator:

V|thin >€ S I > | e~ B|yh > e g, >
¥ >= Q% |[¢hin >

These new Moller operators are, as the former, isometric operators that map the
S, functions onto the scattering states space.

Concerning the orthogonality, it can be proven that all the subspaces of scat-
tering states with incoming asymptotes belonging to different channels are orthog-
onal and, at the same time, are orthogonal as well to the bound states subspace.

BL1RS LRY

The generalization of the asymptotic completeness theorem establishes that
the direct sum of all the spaces of states with incoming asymptote belonging
to any channel is coincident with that of the spaces of states with outgoing
asymptote belonging to any channel. Furthermore, the sum of this subspace to
that of the bound states generates the whole Hilbert space.

R=R1+®"‘@Rn+=R1_@"'®Rﬁ-; H-"‘—B@R

For the most general case of multichannel scattering, an orbit ought to be con-
sidered so that its incoming asymptote would be a linear combination of all the
n channels asymptotic functions,

Win >= {|¢h >, s[5 >} 5 Wi >EHu =S @---0 5"
the state at ¢ = 0 would then be expressed as:
[ >= Q% |[¥g, > +... + QYR >

In practice, however, initial conditions are selected so that there is only a single
asymptote on a channel and only the scattering on a single channel is measured
resulting

[in >= {0,...,|¢ >,...,0} ; |¢p>€S8,

[Yout >= {0, ..., [0" >,...,0} ; |’ >€ Sy
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The scattering state is then written as |¢) >= Q% |y > and [¢ >= 0%'|p’ > and
the probability for the system to evolve from a ¢ asymptote in channel o to a ¢’
asymptote in channel ¢ is:

) nNT 2
w(p'a (—(pa)=|<(p'| (Q’j) Q% e >, (2.43)

Since H,4, is the direct sum of each channel asymptotic functions subspaces, Sy,
we can obtain a basis set for this space combining the basis sets of each subspace.
Thus, since the {p, o > vectors are an orthonormal basis set for S, then the set
of vectors

{0,...,0,|p,a >,0,..0} «=0,...,n; Vp

is an orthonormal momentum basis set for H,,. From now on we will assume the
following abbreviation:

{0,..,0,|p,a>,0,..0} = |p,a> , <p,alp’,a’>=8aad(p—p’)

It can be seen(3] that the S matrix under this representation is of the form:
<P, lSIP, @ >= bou8(p'~P)~5-—8(E~E")o(P'~P)f (5'a’ - i) (2.44)

where p represents the n, linear momenta, P is the center of mass linear mo-
mentum and P represents the n, — 1 relative linear momenta.

The stationary scattering states are obtained for the multichannei case in a
similar way as performed previously (see section 2.3):

{g}‘a:&: >= Q‘;Jﬁa > ) (2.45)
Hlpat >= HQS|pa >= Q§ H*|pa >= EJ|pat > )
For the elastic and inelastics collisions, the stationary states wavefunction is
usually expanded in terms of target states, po(Ziar). As an example let’s consider
the channel 1 of the above example. The Hamiltonian can be then partitioned
as H = H'+ V1, where 2
' 14

A= ZT:La + Hpey

From this expression, where the Hamiltonian contains two independent terms, it
appears clearly that the following products can be used as eigenfunctions of H',

BaEe vel®)
where @q(3) labels any eigenfunction of ﬁ(bc) with corresponding eigenvalue, E,.
These states can be of two types, for there will be n bound states, and also the
continuum states, where the diatomic bc molecule dissociates. So, for a general
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channel ), the stationary states wavefunction can be expanded in the following
form:

< F, Tiar [Py A+ >= / Zna(f)goa(xm) (2.46)
a o

where the summation and integral signs indicate that their combination includes
all the bound and continuum target states and where 7, is responsible for the
asymptotic form when r becomes infinity:

1 iPE A e'rer
Na — '(27;__)3/'5 e 601 +f(pa.'lf <—p1) . (247)

taking into account the Hamiltonian factorization (H = H* + V?), substituting
2.46 into the Schrodinger equation , multiplying by ¢? () and integrating over
all internal coordinates one obtains:

2
2m

1@+ [ L Voo (@@ = (B~ Earal@® ~ (248)

where Vaa'(f) = fdztarﬂoa(xtar)vl\(i; xtar)()pa’(xtar)~

An infinite and continuous set of coupled integrodifferential equations is ob-
tained. If one eliminates the continuum target states from the expansion, one
obtains the close coupling (CC) equations. This approximation is valid for en-
ergies below the diatomic dissociation limit, which is always the case, for the
present work:

. v
[ 2m

+Vaa - (E - Ea):l Ua(ff) = Z Vaa'(f)na’(ﬁ) (249)

a'#a

Each of the so-called radial functions 7, satisfies a single-body Schrédinger equa-
tion in which the potential term couples all solutions together.

Briefly, the close coupling equations then have been established in a formal
rather than practical way. The goal of the following sections will be to establish
a more practical formulation of these equations for the triatomic case, where an
atom collides with a diatomic molecule. This will be achieved exploiting firstly
the fact that total angular momentum of the system is conserved. This will allow
us to expand the wavefunction in terms of the J? operator eigenfunctions, where J
is the total angular momentum. This will lead to a partial wave expansion similar
to that obtained in section 2.4. Then, an expansion in terms of the target bound
eigenstates of the diatomic molecule will render a more practical formulation of
the close coupling equations. Let’s begin then by expressing the conservation of
the total angular momentum as the commutation of its operator with the system
Hamiltonian:

[&, 7] =0 (2.50)
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so that the global wavefunction can be expressed as:

o0

U(Z, Tiar) = Y CsPs(E, Ttar) {2.51)

J=0

However, in order to build an expression of the close coupling equations that
can be numerically solved, we will need to express the wavefunction and the
Hamiltonian in an adequate coordinate system. This will be the subject of the
following chapters, although we will first consider some other cases which will
prove of interest later on.

2.6 Collinear inelastic scattering

The practical formulation of the close-coupling equations can be a cumbersome
task when considered in its full dimensionality, even for the atom+diatom case.
For this reason, we begin by considering a reduced dimensionality treatment,
which nevertheless contains all the essentials that we need[4]. This reduction in
dimensionality is obtained by forcing the system to move exclusively along the
axis defined by the diatomic molecule, i.e. considering only collinear geometries.

The collinear collision for an atom and a diatomic molecule was studied by
Jackson and Mott, as early as 1932, as a model for the exchange of energy in
the collision between an atom and a solid surface. A landmark paper in 1966
by Secrest and Johnson provided the first exact quantum mechanical results for
inelastic collisions and allowed comparison with earlier classical, semi-classical
and approximate quantum mechanical results. In this section we will give a brief
outline on the Secrest-Johnson treatment.

In this model it is assumed that an atom A interacts along the z axis with a
harmonic diatomic oscillator BC' of force constant k. The corresponding Hamil-
tonian, under the collinear restriction, is as follows:

: A A 0 12

H= T 5m, 027 9mp0ah  2mg 075 + '2'(130 Tpe) +Va-pe (2.52)
where 2gc = zp — Z¢, and 7% is the equilibrium bond length of BC. By
transferring to a center-of-mass coordinate system, where:

Iama +ZTgmg + Iome
2.53
Tpmp + TcMme
mpg -+ mg¢
Tp+z¢

m4 + mgp+me

Xem

o~ =
!
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the Hamiltonian becomes

. ___h2 62 _h2 32 _hz 62 k' . .
H=maxz,  mox gmgarz taV YV +Vase (259
where :
_ my(mgp + mg)  mam (2.55)
b= M y MBC = _LLmB+mC .

Since the center of mass motion is conserved, one can neglect the first term in
2.54. On the other hand, the interaction potential V4_pc couples the X and
Y motions. Moreover, if this was a function only of X, then even the X and
Y motions would be uncoupled. More realistically, for the case of an atom A
colliding collinearly to a an AB diatom from the B side, the interaction potential
can be viewed as a function, by now still undetermined, of the A — B distance.
This latter distance, in terms of the relative X and Y coordinates, is:

mch
—rg=X - — 2.
TA—ZIpg X mp + me ( 56)

The diabatic basis expansion, in terms of the target states, that will lead to the
corresponding close coupling equations, can be done using the harmonic oscillator
eigenfunctions

¥(X,Y)= Z ¥ (X)x;(Y) (2.57)
where 12
kY 411}3/&4 Q?
N —_— BC A -Q*/2
XJ (Y) [hl/zﬂ,1/22]] HJ(Q)e (2‘58)
and
kuBC e 0
being H;(Q) the Hermite polynomials. The basis set eigenvalues are
HANTA!
o_ (DR P
Ej (MBC) (] + 2) (260
The close coupling equations using this basis take the form
n? &
[ gDt BB+ V.-.~(X)] WX+ DV (080 =0 (261
where
1
Vii(X) T < (2.62)

«[L m@@eey (x- 2 ) dg
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e = —2LC ( s )1/2 (2.63)

" mp +me \ ks

and

The coupled set of second-order differential equations in 2.61 depend only on
one variable and can therefore be solved using the standard numerical techniques
available for the ordinary differential equations. These are usually propagative
techniques which. involve integration outwards from X = 0 or, in practice, a
value of X where the A — BC repulsive potential energy is high enough for all
the channel wavefunctions to be considered as zero. To start this integration one
must specify initial values for the derivatives ¢/(0).

The multichannel equations must be integrated outwards to a large enough
value of X so that all elements of the potential energy matrix can be neglected,
which means that the potential V' dies off at sufficiently large distances. At this
point the equations have the form

K &2
(*EHHE?—E) %i(X) =0 (2.64)

The general solutions of these equations, which are therefore the asymptotic
solutions to 2.61, can be derived analytically:

Pi(X) ~ AieiX 4 BiemiX (2.65)
where .
— EC

b = [2M(Eﬁ2 ,)] (2.66)

are called channel wave numbers. From 2.66 we see that if E > E?, the channel
wave numbers are real and it is possible for the system to emerge from the
scattering event in the ¢ channel; these are called open channels. On the other
hand, whenever E < E? the corresponding channel wave number is positive (by
convention) imaginary and the system is not physically capable of emerging in
the i channel; we say these are closed channels.

Thus, for the closed channels one must impose a B; = 0 boundary condition,
otherwise the asymptotic form 2.65 would be an exponentially increasing function
of X. This must be imposed to ensure that closed channels are not present at the
asymptotic limit.

If we are looking for a wavefunction that, under the stationary states frame-
work, represents the system in an initial internal state ¢, emerging in final states
7 (open channels), we then write the jth component of the wavefunction as

' K\
Pi(X) ~ Gz~ X — S5 (z‘) et (2.67)
J
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where the coefficients S;; are the elements of the S-matrix and its square modulus
represents the probability density for the system entering collision with incoming
asymptote 1; to leave the collision with outgoing asymptote ;. Introducing

1/2
the factors (%) / this -probability is converted to a flux. The S;; are evidently

related to the coefficients in 2.65 (see Appendix A).

2.7 The Optical Potential.

In section 2.5 we have seen that an expansion of the full wavefunction of the
collision process in terms of target eigenstates as

[ Z @) talziar) (2.68)

converts the original many-body problem into an infinite set of coupled one-
body equations. In the same section we have seen that it is a generally valid
approximation to retain the first N terms of this expansion, which correspond to
the first N eigenstates of the target’s discrete spectrum. However, it could be the
case where we would be interested in a certain subset of N’ (obviously N > N’)
channels, where it would no longer be a good approximation to simply ignore all
the other 7, to which our subset is coupled.

In this section we shall outline how, for any given choice of N’ channels, it is
formally possible to define an operator V,,, called the optical potential, so that
the N’ wavefunctions 7,(z) exactly satisfy N’ coupled equations with a potential
matrix given by V,,; (for proof see Appendix B or, alternatively, [5]). This will
establish the formal basis to introduce the complex absorbing potentials which
are one of the main scopes of the body of the work presented, particularly its
implementation in an invariant embedding propagation technique.

As an example, let’s consider the case of N = 1; that is, we consider just the
wavefunction 7;(z) which will then describe the elastic scattering in channel 1.
One can define a one-particle operator(3], Vop: so that 7:(z) exactly satisfies the
following one-particle equation:

h
(Q—M--V2 + V,,,,t) m(z) = (E - Ey)m(x) (2.69)
with the corresponding one-channel boundary condition,
132 (. gy
miz) — o (e’k + fuT) (2.70)

and the inelastic scattering is exactly reduced to an equivalent one-channel prob-
lem. ’
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Obviously, such an astonishing simplification of the multichannel problem
must have a price to pay. The price is the knowledge of the optical potential
which is a generally extremely complicated operator. In particular, it is nonlocal,
energy-dependent, and, for energies above the first inelastic threshold, it is not
Hermitian. This last characteristic is what one should expect ; if the Hamil-
tonian were Hermitian, the corresponding evolution operator would be unitary.
‘This would mean that solutions of the corresponding time dependent Schrédinger
equation would have constant norm or, equivalently, that the stationary wave-
function would have equal incoming or outgoing fluxes. This situation would not
allow for loss of flux due to inelastic processes. Nevertheless, if inelastic pro-
cesses occur (i.e. if E is above the inelastic threshold) and we are describing only
the elastic scattering using an optical potential, then the Hamiltonian has to be
non-Hermitian.

One can actually take profit from this property since, by calculating the flux
loss in the elastic calculation, one can indirectly obtain the flux towards inelastic
scattering. So, if one would be interested in knowing the inelastic flux regardless
of the specific outgoing state and the corresponding Vept would be at hand, it
would be a particular advantageous thing to do, to perform just the elastic scat-
tering calculation and attribute the loss of flux to the inelastic process. It has to
be stressed that this would lead to a state-to-all information of the inelastic pro-
cess. This, which might seem rather excentric for the inelastic case, could be, on
the other hand, of great advantage for reactive processes in which one would just
be interested in state-to-all magnitudes (e.g. cross sections) or directly the rate
constant. For such processes one would be able to constrain the calculation to a
much simpler inelastic (and elastic) scattering one by means of a non-hermitian
Hamiltonian where the V,,; would have been included and assign finally the flux
loss to the reactive event.

We would like to point out that this methodology could perfectly be included
in the family of effective potential methods, not necessarily complex. To this
family belong very well-known methods as Hartree-Fock or Kohn-Sham, for the
calculation of molecular systems electronic structure, where non local potentials
appear explicitly.

2.7.1 Approaches to the calculation of V,

Unfortunately, the optical potential is in practice far too complicated for an
exact calculation of it. Rather, the importance of what we have shown lies in the
knowledge of its existence, since it provides a reliable basis for the development
of approximate calculations of these optical potentials.

The first estimations of optical potentials were performed in the field of Nu-
clear Physics in the 50s[6]. They dealt essentially with the elastic scattering at
energies where inelastic and/or reactive channels were as well accessible. Con-
cerning its application to scattering processes in molecular systems, two rather
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well different stages might be distinguished.

The first, covers approximately a period from 1965 to 1985, and focused its
activity in elastic processes, this is, solving the close coupling equations for a
single term(7, 8]. '

On one hand, formal developments dealt with well-known problems associ-
ated with the use of NIPs as, for instance, the non-locality of the potential[9].
Adiabatic and decoupling approximations were also taken into account to sim-
plify the dimensionality of the problem[10]. Among other relevant works, that
of Wolken[11] can be pointed out, who devised a procedure for, given a numeri-
cally solved problem, extracting that optical potential which allowed reproducing
a desired S-matrix subset. This method was subsequently used by Truhlar and
coworkers[12] to study electron-atom collisions. The main results found were that
the sharp variations of the optical potential, found when the radial wavefunction
has a node, could be smoothed without significantly altering the results. On
the other hand, phenomenological approaches were also adopted for the form
of the NIP. Different ad hoc functional forms with adjustable parameters were
used by Marriot and Micha([13], Micha and Rotenberg[14] and Ross and cols.[15],
to successfully reproduce experimental information on elastic data by means of
parameterizing the absorption as a function of the orbital angular momentum.
Although some insights on the elastic behaviour of collisions in the presence of
inelastic and reactive phenomena were obtained, no systematic procedure became
available and the use of adjustable parameters limited its predictive capability.

The second stage which we distinguish in the development of the optical
potentials application to molecular systems begins in 1986, when Kosloff and
coworkers[16] considered the problem of artificial back-reflection of wavepackets.
This back-reflection usually takes place at the boundaries of the point grid defined
on the configuration space for time-dependent wavepacket propagations. They
proposed the use of empirical forms of negative imaginary potentials (NIP) to
solve this problem. In fact, it can be actually proven that a purely imaginary
potential absorbs or creates flux associated to a stationary wavefunction according
to whether this potential is negative or positive (see appendix C). This idea was
adopted by Neuhauser and Baer[17], and they used it to propose a linear NIP
ramp as a functional form that would allow perfect absorption conditions of the
wavepacket.

Shortly after, an extension of this idea allowed a wide spreading of the imagi-
nary potentials on the study of chemical reactivity. The authors[18, 19] proposed
to place the NIP, not at the limits of the grid but right after the transition state
region, at the beginning of the products arrangement channel. This change in the
NIP position allowed to consider that all the absorbed flux was that fiowing to-
wards products. As the authors claim in their article, one has to consider that the
probability flux that yields purely reactive transitions is that measured once well
crossed the transition state region. If this is accomplished, we are able to have
just the inelastic (and elastic) component of the scattered wavefunction treated
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exactly using a local, less energy- and system- dependent imaginary potential.
This results therefore in a rather simple and easy to implement approximation
to the optical potential.

The characteristic that differentiates the present approach from the previous
phenomenological derivations of optical potentials is that, in principle, the reac-
tive flux is completely apart from the inelastic and elastic ones, i.e., it takes place
in a different region of configuration space. So, a complex potential as a function
of physical coordinates will be able to select the reactive component from the
rest in the total flux. We can then study the reactive collision as a distorted in-
elastic process where the NIP is placed in the products rearrangement entrance.
Like this, using inelastic scattering propagative techniques, generalized to take
complex valued interaction matrices into account (see section 4.4 and chapter 8),
the corresponding inelastic probabilities are calculated and subtracting the sum
of these to unity one obtains reactive state-to-all probabilities. We stress the fact
that these are global probabilities, this means only state-to-all magnitudes can
be obtained through this methodology, as presently formulated.

The major methodological improvement of this approach relies on the fact that
almost no attention must be paid to the products arrangement characteristics.
This turns into a much simpler choice of coordinates and therefore the possibility
of using much simpler Hamiltonians. Moreover, the configuration space is approx-
imately halved with the corresponding saving in integration time. On the other
hand the technique presents basically two disadvantages: Firstly, as it has been
derived here, the method is not capable of yielding state-to-state reaction prob-
abilities. Secondly, the caleulation becomes involved from the numerical point
of view, because of the complex valued nature of the potential instead of being
real-valued, as usual. Nevertheless, we claim the advantages of the application
clearly overcome its disadvantages when dealing with the calculation of global
magnitudes such as state-to-all integral cross sections and, to a major extent,
reaction rates.

Different methods employing NIPs have recently proposed in the literature.
Among them, we would like to point out that by Manthe, Seideman and Miller[20],
that calculates the cumulative reaction probability using NIPs on both reactants
and products arrangement channels. The total flux is then obtained averaging
according to a Boltzmann distribution to yield directly the reaction rate. The
main advantage of this method is that rate constants are readily obtained sam-
pling a comparatively small part of configuration space. In particular, just a
small portion before and after the transition state has to be included to achieve
rate constant (i.e. cumulative reaction probability) convergence.

Baer and coworkers have continued developing the method originally proposed
by them. In particular, they have extended it to the calculation of state-to-state
probabilities[17] by means of a generalized variational procedure.
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In the previous chapter we have settled the basis for the quantum mechanical
description of the reactive event. Finally, a rather practical formulation of the
close coupling equations has been presented, but still in terms of two general
variables, £ and z4,,. It is now turn to give these variables an expression, to
choose the coordinate system in which we will express the wavefunction and the

Hamiltonian.

3.1 Electrons - nuclei system

The Quantum Mechanical study of collision processes essentially consists in the
description of an n-electron and N-nuclei system. Such system will be univocally

31
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described at a given instant ¢ by its associated wavefunction, ¥. The evolution
of the system will be governed by the corresponding time-dependent Schrodinger
equation :

- HYU(r,R,t) = ih-gt-\ll(r, R, 1) (3.1)

where the wavefunction is a function of all electronic (r) and nuclear coordinates
(R) as well as time. If one does not consider relativistic effects, one can write the
system Hamiltonian (H) as the sum of the nuclear and electronic kinetic energy
operators and the operators describing the interaction between them. Therefore,

the corresponding time independent Schridinger equation will be
[Tn(R) + Te(r) + Van (R) + Vne(R, 1) + Ve (r)] T(R,r) = E¥(R,r) (3.2)

where Tn(R), T.(r) are respectively the nuclear and electronic kinetic energy
operators, Vyy (R} is the electrostatic repulsion between the nuclei, Vy.(R,r)
represents the electron - nuclei interaction and V.(r) is the electronic repulsion.

The fact that the Hamiltonian contains a Coulombic interaction term between
nuclei and electrons, therefore mixing nuclear and electronic coordinates,

n i 2
VNe = —_— (3.3)
‘ ; k=1 |'f'{ - Rkl
does not allow the construction of a global wavefunction as the product of two
functions, each one depending on either one or the other type of coordinates.
However, attempts have been made to express the global wavefunction on a
basis that differentiates electronic and nuclear functions.

3.1.1 Adiabatic representation. Born - Oppenheimer App.

The common concept of a Potential Energy Surface arises from the recognition
that in a molecule the motion of electrons is much faster than that of the nuclei
since masses are so different but charges much more comparable, and therefore
these two types of motion can be in a fairly accurate way separated. We could
think of the electrons as being subject to a electrostatic field created by stationary
nuclei. On the other hand, the nuclei would be subject to a potential which is
the sum of the nuclear repulsion and the average field due to the electrons.

It is a strictly rigorous approach to expand the system global wavefunction
as the linear combination of direct products of a complete basis of electronic
functions, {¢;(r)} and a nuclear functions basis set:

¥(R,r) = ¥ x(R)p(r) (3.4)
ij

However, this would not be very efficient, since a much higher number of electronic
functions would be needed than if we would use another electronic functions basis
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set {®;(r; R)}, this parametrically dependent on the nuclear coordinates and the
nuclear wavefunction, x.

¥(R,r) = Z x;(R)®;(R,r) (3.5)
i

The parametric introduction of the nuclear coordinates in the electronic functions
allows to optimize the basis size even if it then implies a different, in principle,
electronic basis set for each nuclear configuration. These functions ®;(R,r) are
solution of the electronic Schrodinger equation :

[Te(r) + Vre(R, 1) + Ve (r)] @;(R, 1) = W;(R)®;(R, 1) (3.6)

This equation describes the motion of the electronic system for a given nuclear
configuration, R. Introducing the expansion 3.5 into equation 3.2, considering
3.6, pre-multiplying by ®; and integrating over all electronic coordinates leads to
the following expression[21]:

[TN + Ui(R) - E] Xi(R) + Z Cij(R’ P)Xj(R) =0 (3.7

where U; = W; + Vuy is the potential energy function for the ¢ state and the so
called non adiabatic coupling terms, cy; are

1
(R, P) =) A (AP Py + BY) (3:8)
k

The operator Py, is the nuclear momentum operator, My the mass of each nuclei
and the terms A;;, B;; represent

AP®) = [@1(R,) (-;;vk) (R, 1)dr (3.9)

—R2?
BY®R) = [ #i(Rur) (52 V2) 85(Rura (3.10)

For a stationary state the electronic wavefunction can be chosen as a real
function and therefore the diagonal A;; term can be set to zero and equation 3.7
is then rewritten:

[Tv + Ui(R) + Bs(R) — E] x;s(R) = — )_ ¢;;(R,P)x;(R) (3.11)
J#i
Generally the coupling terms are only important between a small group of states
{®;}, so that the expansion can be then truncated to a smaller electronic basis.
It can then be said that equation 3.11 is the nuclear Schrédinger equation .
In the adiabatic approzimation, the coupling terms c;; are taken as zero and
then equation 3.11 turns into

(Tn + Ui(R) + Bi(R) — E] xi(R) =0 (3.12)



34
Chapter 3. The accurate description of the Reactive System

The Born-Oppenheimer Approximation

The well-known and commonly used Born-Oppenheimer approzimation is a par-
ticular case of this adiabatic approximation. Consider the Schrédinger equation
for the global electrons-nuclei system (3.2). The Born-Oppenheimer approxima-
tion goes a step further in the adiabatic representation and the wavefunction, ¥,
is rewritten as the product of one electronic wavefunction depending parametri-
cally on the nuclear configuration and another nuclear wavefunction:

¥i(R,r) = xi(R)®:(R,r) (3.13)

Note the difference between this approximation and the rigorous basis expan-
sion of the adiabatic representation in equation 3.5, this arises from the fact of
expressing the wavefunction as a single product instead of the former adiabatic
basis expansion. As in the previous case, the electronic wavefunction is solution
of 3.6, the electronic Schrodinger equation. At its turn, x:(R) will be the solution
of:

[Tv + Ui(R) — E] xa(R) = 0 (3.19)
where U;(R) = VynvR)+W;(R) is known as the Potential Energy Surface (PES).
Notice that 3.14 differs from 3.12 only in the small adiabatic correction term,
Bi(R).

To realize to which extent the assumption in 3.13 is valid, let’s introduce the
expression into 3.2 (the index ¢ being dropped for the sake of clarity):

[Tn(R) + Te(r) + Vin (R) + Vive (R, 1) + Vee(r)] (R, r)x(R) = (3.15)
= E®(R,r)x(R)

Considering the form of the nuclear kinetic energy operators:
-1
TvR) = — Y —V? .16

where k runs over all nuclei. The application of operator 3.16 to the previous
expression of the wavefunction yields:

_ 2
Ty(R)B(R, )x(R) = $(R, 1) [%;Mikv:x(m] (3.17)
+x(R) [g% 3 -A;—kvgo(a, r)] |
-7 S TR}

Considering this expression in 3.6, it can be seen|[21] that equation 3.15 trans-
forms into 3.14 only when

B’ 1, R 1
X(R) [gﬁzk:mka(R, r)] - W;E{V@(R, r)}{ka(R)} =0 (3.18)
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Usually this terms can be neglected and therefore the approximation is valid.
For example, the first term contains the second derivatives of ® with respect to
the nuclear coordinates. These will be of the same order of magnitude as the
derivative with respect to the electronic ones. However, while the T,® is of the
same order of magnitude as the energy of one of the electrons, this term will then
be of the order of a7 and therefore negligible (m being the mass of the electron).

Among the work being done recently on non adiabatic transitions, i.e., pro-
cesses where the Born Oppenheimer approximation breaks down, stress has been
put on lately on those transitions caused by spin-orbit coupling. These have ap-
peared to be of a greater relevance than expected since, for instance, reaction
barriers had to be modified, when including the spin orbit interaction, in very ac-
curate calculations on both the PES and the dynamics of the F+ H, — FH+ H
system[22].

3.1.2 Diabatic representation

Let’s return to the complete basis expansion in 3.5. Whatever linear combination
of the adiabatic basis functions is used, it would not lead to any alteration of
the global wavefunction, ¥. Consider then a basis change that eliminates the
Aij, Bi; (equations 3.9 and 3.10) couplings between electronic states. Such a
process is known as diabatization and the resulting basis set is correspondingly
called diabatic basis. Obviously, the electronic Hamiltonian would not longer be
diagonal under this representation and its off-diagonal terms would represent the
new couplings.

3.2 Jacobi coordinates

From here on, we will assume the validity of the Born-Oppenheimer approxi-
mation. We are going to study then the nuclear Schrodinger equation, so we
therefore need to specify the set of nuclear coordinates{R} on which the nuclear
wavefunction depends. The number of coordinates needed for the complete de-
scription of a N-particle system is 3N. Considering that our study will concern
the motion and rearrangement of 3 nuclei (A + BC case), we can specify the
position of the three particles A, B and C using three position vectors of common
origin in a laboratory fixed frame, 7y, 75 and 7¢.

A first rigorous simplification can be performed by separating the motion of
the center of mass from the relative motion between the particles. This is done
introducing the vector:

- MAT4 + MpTy + MeTe
M= B C
maq+mp+me

(3.19)
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A

Xa

B

Figure 3.1: Mass-scaled Jacobi coordinate for the o arrangement

Thus, the nuclear wavefunction can be factorised in a part depending exclu-
sively on CM, which is simply a free particle wavefunction, and another part
depending on all the other internal degrees of freedom. This last part could be
expressed, for example, in terms of internuclear distances. However, this choice
would lead to a non-diagonal kinetic energy tensor and therefore great complica-
tions in the calculations.

The Jacobi vectors[23] show up to be a proper choice to overcome the problem
of the mixed derivative, being as well still tightly related the physical situation
of the process and therefore have become a coordinate set of great relevance.

Let’s consider the Jacobi vectors for a three particle-system (A,B,C) and in
particular, those related to the arrangement o = A + BC (figure 3.1):

X, =74 — mp’p + MoTc (3.20)
mpg -+ Mc
o= e — 5 (3.21)

where o indicates the particular arrangement, Z, is the internuclear vector
joining B and C, and X, is the vector joining the center of mass of the molecule
BC to atom A. Note that this procedure is completely general for the n-particle
case since the internal coordinates of n bodies can always be expressed in terms
of n — 1 Jacobi vectors. As it has been said before, the Jacobi vectors allow not
only the separation of the center of mass motion but also enable an expression
of the kinetic part of the nuclear Hamiltonian where no mixed derivative terms
appear. For example, for the latter o arrangement the Kinetic Energy Operator
reads: 52 52
2u4,8c 2pBc
Note that the kinetic energy operator expression on 3.22 depends explicitly on

: - mpm C . ma{mpimc)
two different reduced masses, ppc = ZETE - and papec = ST It can

PN 20
V‘ - Vfa

Xa

T=-

(3.22)
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be shown that, for the other two possible arrangements, AB + C and A + BC
(usually denoted by 8 and 7) two other different reduced masses appear respec-
tively, yielding six different reduced masses when considering the whole ensemble.
A remarkable reduction and simplification can be achieved by mass-scaling the
Jacobi vectors. The mass-scaled Jacobi coordinates relate to the unscaled ones
by a dimensionless factor:

d, = [1”;- (1 - -’1’1‘7)} v (3.23)

where 7 labels the particular arrangement (so that 7 = o, 8,y and m, = gfﬁ":n—ﬁ—g"n—fg
and so on) and y is the three-body reduced mass,

1/2
TAL”E’EQ] (3.24)

u= |
Employing these scaled coordinates the kinetic energy operator takes the fol-
lowing form:

7 horon 2
T=—§;(V L V) T=0a,8,7 (3.25)
where only a single reduced mass appears and therefore the expression is valid for

all three possible arrangements (the only changes are the transformation equa-
tions to the center of mass position vectors).

3.2.1 Kinematic rotations

It can be shown that transformations between different sets of scaled Jacobi
coordinates (usually corresponding to other possible arrangements) are the so-
called kinematic rotations,

Re Y _ R,
(1)-ma(¥) e
where T is the 6 x 6 matrix:
. _ [ cosxel  sinye,d
T(xer) = ( —sin xg; 1 €08 xgr1 ) (3.27)

These rotations involve terms depending only on the masses of the colliding
partners. The kinematic angles x,4:,, for a cyclic order (i.e. when 7 = @,
T+1=0,7+2=9,butif r =g, 7+1=17, 742 = a), are the negative, obtuse
angles defined by:

i
gy = P 3.8
008 Xr+1r drdy 1 Mryo ( )

and
Sin Xr41,r = - (3:29)
T dedeg
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3.2.2 Spatial rotations. Body Fixed Jacobi Coordinates.

Besides kinematic rotations, which mix the Jacobi vectors, we will need several
Body Frame (BF) axes systems, and therefore ordinary spatial rotations must be
introduced. Consider the rotation R(2 « 1) that carries some axes set 1 into
axes set 2,

R(2<-1)=(0R “R) , (23)=R(2<—1)(f§) (3.30)

where 0 is the 3 x 3 null matrix, 1 and 2 superindexes denote the vector compo-
nents on the two different axes set and R is a 3 x 3 matrix of Euler angles:

cosacosfcosy —sinasiny  sinacosBcosy + cos asiny —sin 3 cosy
R = | —sinacosfsiny ~sinacos+y —sinacos fcosy +cosacosy sinfBcosy
cos asin 8 sin acos 3 cos 3

where & = a3, 8 = 2, and~y = 75 are the Euler angles that carry axes system
1 into axes system 2.

Of particular interest is the case when 1 is the space-frame (SF) and 2 is the
BF. system (see figure 3.2) in which the BF 7 axis points along R,. This leads to
Qg = a; = @R, and By = f; = ¥g,, i.e., the spherical polar coordinates of R, in
the SF system, but leaves 9, = v, arbitrary. It is often convenient to choose the
third Euler angle +, so as to make r, lie in the BF, zz plane with a nonnegative
T component, therefore the vector in the new frame is expressed as:

0
R=|0 (3.31)
R,
7 r,8in 60,
=)o |= 0 (3.32)
27 7, Co8 O,

where ©; is the angle between the two Jacobi vectors.
Thus, the body-frames for = A, B and C all have a common y axis, and one
can transform from one to another by rotating about this common axis.

3.2.3 Close Coupling equations.

In this section we will derive the explicit expression of the close coupling equa-
tions, introduced in section 2.5, in the Jacobi coordinate system, firstly for the
inelastic scattering case and later for the reactive process.
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Figure 3.2: Space fixed (X,Y,Z) and body fixed (x,y,z) axis frames

Inelastic scattering.

Let’s assume we are dealing with an inelastic process within the A+ BC arrange-
ment. Jacobi coordinates are particularly adequate for describing this process,
the Hamiltonian being a function of R, and r,. Subscripts labeling the particu-
lar arrangement will be omitted throughout the section. One can clearly see how
adequate are the B — C distance and the distance from A to the BC center of
mass, as variables to describe the inelastic process and specially for the target
states basis expansion, since we will have functions for the target states that will
depend just on one vector, r (three variables). For the moment we will consider
we are using a Space Fixed reference frame and later we will transform to the
Body Fixed. The factorization of the system Hamiltonian that allows a target
basis set expansion in this arrangement has the form:

~

—— 2 A~
- _2_2_\731 + Hpo(P) + V(R T, 0) (3.33)

where, as explained in section 2.5, Hgc represents the BC' system Hamiltonian
(assuming a ¥ electronic state)

- 2
B V2 + Vael(r) (3.39)
2pupc

= = S22l N vy
2ugc r? arr ar + 2uper? + Vbe(r)

Hpe =

where j? is the BC system rotational angular momentum, whose eigenfunctions
are hyperspherical harmonics depending on the angular components of r, i.e.
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# = (J,,) in the SF frame. The target eigenstates satisfy the Schrodinger
equation : .

HBc‘I)j,, (7‘, f) = Ejv‘I)jv(T, f) (335)
and since we know the angular part eigenfunctions we can further decompose the
eigenstates as a product of radial and angular functions:

(Hsc — €v) $(r)5uYm; (7) = 0 (3.36)

The kinetic energy operator for the translational Jacobi coordinate, R can un-
dertake a similar transformation if we express it in a radial and angular part:

o R T Re Y oR T e (3.37)

where ¢ denotes the orbital angular momentum of A around BC. Similarly to
the rotational angular momentum case, eigenfunctions for the £ that depend
only on the angular components of R can be found in the spherical harmonics
that, in this case, will be Yy, (R), with R = (9g, ¢r). One can now couple the
two angular functions basis sets to build a basis set for the whole angular part
of 3.33. One will be then coupling the two angular momenta to obtain the total
angular momentum, J = j+ £. This is achieved by means of the Clebsch-Gordan
coeflicients:

J ¢
Y= 3 X C(GtS;mimeM)Yim;(7)Yem, (R) (3.38)
mij=—j my=~L

As it has been said at the end of section 2.5, since the total angular momentum
is conserved all along the process, its corresponding operator commutes with
the total Hamiltonian. One can therefore find a commeon eigenfunction basis set
{#’™} and build our wavefunction as their linear combination in what it is called
partial wave ezpansion

o0
U=y yM (3.39)
J=0
Each of these functions satisfies
Hy'™ = Ey'M (3.40)

These functions will be the product of the angular function, eigenstate of the
total momentum operator and its Z-axis projection in the SF frame, and two
radial functions, one which is the target vibrational function and the other which
will depend on the translational radial component.

¥ = DX T GO RV (R ) (3.41)
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Here we have written %G3,(R) for convenience, since a simpler expression for
the equations will be obtained. We identify the summation over v as the target
expansion explained in section 2.5. Substituting 3.41 into 3.33 and premultiplying
the resulting equation by

-%‘ w (1Y (R, 7),

integrating over r and the angular components of R and r, and benefiting from
the orthogonality properties of the spherical harmonics and the Clebsch-Gordan
coefficients, we obtain the following expression for the close coupling equations
using SF Jacobi coordinates:

[dd}; * (il;) (B =€) = f—(%ﬂ] Gjew(R) = (3.42)

= (3%) SE G Vi #0) Glenl)

where

(0 |V | jbv) = fo * r2qr / S ()Y (R, 7) x (3.43)
xV(R,1,0)Y;™ (R, #)¢;,(r)dRdi

Next, we will derive the expression of this equation set using Jacobi coordi-
nates as well, but this time under a Body Fixed frame, whose quantization axis
follows R along the rearrangement process. All there is to do is to perform the
rotation described in section 3.2.2 from the SF to the BF frames along polar and
azimuthal Euler angles of R in the SF frame. The orbital angular momentum
components in this axis frame will then be

t = —(pr)yR (3.44)
ey = _(pR)zR (3-45)
L =0 (3.46)

The Hamiltonian operator in BF Jacobi coordinates is written as:
2

ﬁ-l B2 e L fom + VR O) (3.47)
"R 0R* " R? Be ’ ‘

where the rotor angular momentum, jr, is included in the BC Hamiltonian and
£, the orbital angular momentum of atom 7 about the diatom. Remember that
the subscript labeling the particular arrangement is being omitted in this section.

If one now expresses the orbital angular momentum as the difference between
the total and rotational angular momenta:

L=J-j (3.48)
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equation 3.47 may be rewritten as:
) 1 [-r* & (j:c _3z)2
% [’R’E}?R R

(y RJ”) ] + Hpelr) + V(R r,0) (3.49)

One can convemently introduce the ladder operators jy = j, + z],, {(and corre-
spondingly for Ji) and transform 3.34, knowing that J, = j,, into:

v 1 [-R* 82

A= [R sl (J'2+J -of-Jj - J ]+):' (3.50)

+H5(;(l‘) -+ V(R, T, 6)

To derive the close coupling equations in their BF Jacobi coordinates formula-
tion, one has to see the effect of a SF — BF rotation on the SF partial wave
wavefunctlon ¥ial. In the literature[25, 26], this is expressed as:

0
Pjno(R,1) = Ryja! = Z Dyjoxal (R, ) (3.51)
Q=-J
where {1 is the projection of the total angular momentum on the BF quantization
axis, z. Hereinafter, we will express the jfv set as (3. Substituting 3.51 into 3.50
and after some manipulations, the equation set becomes:

Hoo1x3% + Hoaxi* + Hn,n+1xilzi‘z =0 (3.52)
where
Hoo = —g (;ai;-r + %66—1;12) + 2—513 + (3.53)
+ 3 R2 [J(J +1)8% - 2R, + ] ] +V(r,R,0)
Hons = —5 R2 \/J(J +1) - QQ+1)7, (3.54)
If one then performs the target basis set expansion:
Xoi (R, T) = z—u;%? (R)®prax (r) (3.55)
where 1
Bper(r) = -0 (r) Ve () (3.56)

substituting equations 3.55 and 3.56 into 3.52, multiplying by (—4;) 4oy and
integrating over r, we finally obtain the close coupling equations, using Jacobi
coordinates, under a BF reference frame:

R qo_rtigy (R + hy qusfa (R) + by oy udf¥H(R) = (3.57)
= (6 |U| )
I
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where,
Mo = L k- [J(J+1)+J(y+1)——29’2]—— (3.58)
o drt P R?
Rsr = {J(J+1)—Q’2} G+ -QE@OEn}? R2 (3.59)
and

(B V15 = 25 [ 95(r) Vi)V (R, 7, O (Vs (F)drd? (3.60)

Reactive scattering.

To develop the close coupling equations for the reactive event in Jacobi coordi-
nates we will continue on the BF frame, and the treatment will be, in principle,
completely analogous to that of the inelastic scattering. Attention should be
paid now to the fact that we will be having as many BF frames as different ar-
rangements involved in the rearrangement process. Since we have to distinguish
between arrangements, the subindex labeling them has to be put once again and
therefore the nuclear Schrodinger equation:

1 [-r2 & et 2 0
— | == — — e 2 61
l:z“ (R,\ -——gaR’\R,\ Aarfr'\+r2 +'§,§\' + (3.61)
+Hiar(r) + V(R,7,0) — E] ¥Ry, 12) = 0

will be the Schrodinger equation expressed in Jacobi coordinates for a given
arrangement A. As in the inelastic case, the partial wave ezpansion can be per-
formed (the rearrangement obviously does not alter the conservation of total
angular momentum). Each SF partial wave can expressed in terms of Wigner ro-
tation matrices and BF), wavefunctions(note the arrangement subscript labeling
the Oz,yz, axis system),

J
‘/J'J\M(RA,I'A)z Z DKJmX?ﬂ,\ (3.62)
Qp=—J

where the quantum number 2, specifies the projection of J on the z, axis, or
equivalently on R,. This number will therefore depend on the specific arrange-
ment channel considered. Due to a treatment analogous to that for the inelastic
scattering, the BF close coupling equations can be obtained as:

(tayh, — B) Fliun, (Rama) + téﬁfaﬁlf“}bmﬂ(zzx,rn +  (363)

o0
JAja A A,
o8- Figa,-1(Bam) + 2{% le Flyau-1(Bam) =
Ia=Ren
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¢ =

Figure 3.3: The reactive event clearly evidences two radically different physical situations

J=0,1,2,... h=—-J-J+1,...,J j,\=fﬂ,\i,lﬂ,\’+1

where F}; o (Rx,r») are the functions depending on the radial components of
both Jacobi vectors. For derivation of the equations and explicit form of the
t{)i’(z\:\ terms refer to [26].

Note that the resulting equations have been expressed so that their solution
is a function that depends on both radial coordinates 7, Ry. This means that
no expansion of the total wavefunction has been carried away on the target’s
vibrational eigenfunctions. This is done so because this would result in a rather
inefficient formulation whenever dealing with a rearrangement process. As an
example, consider the particular case of a A+ BC reactive process. One would
solve the problem integrating the Schrédinger equation from the strong interac-
tion region to the reactants and products region. Suppose we want to express the
total wavefunction in terms of eigenstates in r,, the vibrational a-arrangement
Jacobi coordinate. The Schréodinger equation ought to be the integrated from
0 to a given value R™%, of the corresponding translational Jacobi coordinate.
From figure 3.3 appears clearly evident that a large number of eigenstates in 74
will be necessary to accurately describe the wavefunction for S-product arrange-
ment configurations, since now motion along r corresponds to a translation rather
than a vibration. This means that one attempts to describe a translational mo-
tion through an expansion in terms of vibrational eigenstates, which is the main
source of inefficiency. There would appear also difficulties in describing the strong
interaction region (there is a shift in the vibrational baricenter).

Several attempts have been made (some of them quite successful) to overcome
this problem remaining in Jacobi coordinates. In particular, in the present work,
Jacobi coordinates have been used for the study of reactive scattering under an
Infinite Order Sudden Approzimation (see section 6.1 and chapters 7 and 8).
There, the close coupling equations are solved employing the R-matrix method
of section 4.4. The problem is formulated in Jacobi reactant coordinates when
propagating in the reactants valley and in the corresponding Jacobi products
coordinates when in the products valley. In the strong interaction region a rela-
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tion between both sets of coordinates is established so that the equations can be
transformed from one set to the other[27)].

However, nowadays it is commonly accepted that Jacobi coordinates, as here
formulated, are not efficient enough to describe the reactive event and several
alternative coordinate systems have been developed.

3.3 Hyperspherical coordinates

The application of hyperspherical coordinates|28], introduced in Atomic Physics
around the thirties, and adopted in Molecular Physics and Kinetics in the be-
ginning of the sixties, has spreaded rapidly and successfully in the last twenty
years, showing up to be a powerful tool for the solution of the reactive problem.
Although it is by no means the only possible approach for the description of a
reactive process, it is undoubtly one of the most powerful and has already been
successfully tested.

Essentially, the hyperspherical description aims to transform the problem of
the three particles moving in a three-dimensional space into that of a single
particle evolving in a N-dimensional space. For the atom-diatom reactive process,
for example, the reactive event can be described (after CM motion separation)
in terms of a 6-dimensional hypersphere. Such a description, is capable of fully
describing the collective motion of the three atoms, even though it can give rise
to numerical difficulties, in terms of convergence, for the asymptotic situations.

Remembering how inefficient the particular Jacobi coordinates set of a given
arrangement was to describe the physical situation in a different arrangement, it
can be concluded that a general variable that cuts both valleys perpendicularly is
convenient for a good convergence. The people who developed the hyperspherical
coordinates found in curvilinear coordinates a good candidate and among them
the polar coordinates are the most simple choice,

p=/R2 +r? (3.64)

Xy = arctan R2/r2 (3.65)

Generalization of these equations to the tridimensional processes leads to the
hyperspherical coordinates. In the d-dimensional space (d = 3(NV — 1)) of the
mass-scaled vectors, the hyperradius {corner stone of the whole hyperspherical
approach) has the meaning of the radius of a hypersphere:

n—1
F=Y |al (3.66)
=1

D=2-2p=22 ;D=3p=zx2+3°
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For our case (N = 3), we can derive an expression in terms of the Jacobi
vectors

p= \/Rg+r§= \/R§+r§=\/R$+r?y (3.67)
Probably the most important characteristic of this quantity is that it is univer-
sal, i.e. invariant with respect to the Jacobi set considered. This makes the
hyperradius an ideal variable to follow the reaction evolution. Low values of p
label strong interaction situations while large values describe asymptotic (either
reactants or products) ones.

Another very important characteristics of the hyperradius is that it is an
almost separable variable. This means that separating the motion in the hyper-
radial coordinate from the rest of motions is a considerably good approximation,
having enabled considerable advances. This will be very helpful, for instance,
for propagative techniques, since we will be able to divide our integration region
into fixed p sectors where we will solve the Schrodinger equation for all the other
variables without significant loss of accuracy. We still lack, however, d — 1 other
variables to cover the full d-dimensional space and thus completely specify the
motion of the internal system. These variables are usually parameterized as the
hyperangles covering the hypersphere’s surface. There are many different param-
eterizations of these hyperangles. It can be shown that the many possible choices
correspond to different angular momenta coupling schemes. The key works in
this subject were performed by Smith[29, 30], who generalized the angular mo-
mentum to the hypersphere and thoroughly studied the motion of three particles
in a plane.

3.3.1 Asymmetric Parameterization. Fock coordinates.

One possible choice for the hyperangles corresponds to the so-called asymmetric
parameterization, which was introduced in the thirties and later Fock[31] gave
an ultimate impulse. In order to define the five hyperangular variables, let’s
refer to a mass-scaled Jacobi vector set, keeping in mind that these coordinates
allow the separation of the center of mass motion. We can then represent R, r
in a reference frame centered on the center of mass and its axes parallel to the
space-fixed frame.

Let’s define x as the 3 x 2 matrix containing the 6 cartesian components of
the Jacobi vectors for a given arrangement o and, alternatively, their expressions
in terms of spherical coordinates:

Txa HRxa ToSinY,, cosp,, R,sindg, cospg,
X=1 rya Ry, | =| rasind, sing,, Rysindg, sinpg, (3.68)
Tza Rza TaCOSY,, Ry cos g,

The fifth hyperangle is chosen from a direct extension of the polar coordinates:

Xa = arctan IRl ' (3.69)

|ral
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and consequently x, ranges from 0 to 7/2.

Although this set of coordinates has almost direct physical interpretation, has
the important disadvantage that all angles depend explicitly on the considered
Jacobi set. However, this set allows a simple description of the three-atom spatial
rotation, and an almost immediate construction of the nuclear angular momen-
tum eigenfunctions. On the other hand, an additional coordinate transformation
has to be introduced since the potential energy depends only on p, y and 6, be-
ing ©, is the angle formed between the two Jacobi vectors of the corresponding
arrangement:

€08 0, = cosJ,, cos Ig, + sind,, sindg, cos(vr, ~ ¢r,) (3.70)

These difficulties can be overcome using a rotating frame whose origin is
common to the preceding fixed frame. In order to specify the orientation of
the rotating system in space one needs the three Euler angles ¢, 8,7, which are
defined in a form which is dependent on the choice taken for the orientation of
the rotating axes. Schematically, the above rotation can be expressed as:

xyz @29 Yz (3.71)

For this case, z coincides with R while r lies on the zz plane. Therefore the new
3 x 2 matrix x’ containing the cartesian components is now:

r, 0O
x=] 0 0 (3.72)
r, R
and relates to x so that :
x = D(a, ,7)x’ (3.73)
this is,
rx Rx cosa —sina O cosf 0 sing
ry Ry | =1| sina cosaa O 0 10 (3.74)
rz Rz . 0 0 1 —sinf@ 0 cosf
cosy —siny 0 T2 0
siny cosy O 0 0
0 0 1 r, R

Introducing r, = rsin© and r, = rcos© and performing the matrix multi-
plications, it can be verified that:

o =g, (3.75)
B = Vg, (3.76)
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To this point the asymmetric hyperangular parameterization can be consid-
ered as completed. The six internal coordinates of the triatomic system have
been factorised in terms of the product of a rotation matrix function of external
coordinates (Euler angles ¢g,,Yr,,7) and a term which is function of the inter-
nal coordinates, p, x (from polar coordinates) and © (keep in mind that it is the
angle between the Jacobi vectors, whose range is [0, 71]).

3.3.2 Symmetric Parameterization. Smith coordinates.

One set of hyperangles which yields a coordinate system non-dependent on the
particular arrangement is that developed by Felix Smith for both the planar
(1962) and tridimensional (1967) cases[29, 30]. A later formal modification (1980)
by Johnson[32] is quite often used.

This coordinate set is defined as well on a rotating frame. In order to under-
stand as best as possible the path leading to these coordinates, let’s start from
the three-body inertia tensor[25]. This tensor is defined as

I=1tr(Z) - Z (3.77)

where Z = xX and x, as in 3.68 is the cartesian components matrlx of the Jacobi
vectors, with X its transpose. It can be seen that:

tr(Z) = p? (3.78}

The inertia tensor is then a 3 x 3 matrix that has all its components different
from zero in the center of mass fixed frame:

P —r% — R% "(TXTY + RxRy) —(rxrz+ RxRz)
I= —(’r‘y'l‘x + Rny) p - ’I‘y R2 —(ryrz +- Rsz) (3 79)
—('I‘sz -+ Rsz) —(Tz‘ry + RzRy) ,D2 - TZ RZ

Now, let’s introduce here as well the same rotating reference frame defined in
equation 3.73. Since the rotating system zx,y, z is related to the preceding by a
rotation function of the Euler angles, we can write,

Z = x% = Dx'#'D = DZ'D (3.80)

Keeping in mind that D is an orthogonal rotation matrix, we can obtain the
tensor of inertia in the rotating system with its z-axis along R:

) -1 0 —rr,
=BID=| 0o 2 o (3.81)
—rzr. 0 p?- R?

We can then choose a rotating reference frame in which the inertia tensor becomes
diagonal, finding the appropriate Euler angles a;, 8;,7; for which the matrix
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product ﬁ(a,, Br, y1)ID(ay, Br,7r) is diagonal. This is a crucial choice since we
are choosing a BF frame oriented along the principal axes of inertia. Since we are
dealing with a non-rigid body, these evolve in a natural way with the reaction,
changing from the initial arrangement to the final one, and so will do our reference
frame.

Also in this case, we can express in a compact form the relationship between
the cartesian components of the Jacobi vectors in the center of mass and those
of the new frame

rx Rx _ re R
ry Ry | =Dley,Bny)| 0 O (3.82)
Tz Rz T¢ R(
being £ and ¢ the labels for the new reference frame. We therefore have,
DID = p’1 - DZD (3.83)
where
_ re Ry
DZD=| 0 0 (;{f g ;C): (3.84)
T¢ R( ¢ ¢
7‘? + R? 0 TETC + R&R(
= 0 0 0
T{T( + R{R( 0 Tg + Rg

This, to be diagonal, requires: r¢r¢ + R¢R, = 0. This condition is immediately
satisfied defining:

re=psinOcos® 71, =pcosOsind {3.85)
Re = psin©sin® R; = —pcosOcosd (3.86)

which leads to the following transformed Z' matrix:
p’sin?@ 0 0
Z = 0 0 0 (3.87)
0 0 p’cos?O
and the tensor of inertia is
p*cos?® 0 0 L 00
I'=1rZ -7 = 0 o’ 0 =10 I, 0 (3.88)
0 0 p?sin?@© 0 0 &

these eigenvalues represent the principal moments of inertia of the system. Note
that 3 I; = 2p?; this relation allows us to establish the square of the hyperradius
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as a measure of the total inertia of the system. Furthermore, see that since the
three atoms evidently lie on a plane I, = I; + I3, and since © ranges in the
physical space from 0 to 7/4[29], I; is always smaller than I;. Therefore, in this
reference frame 7 and £ are respectively the maximum and minimum inertia axes.

We can find a physical meaning as well for the two internal angles (0, ®) of
the symmetric parameterization. It is evident that, since one can express © in
terms of p and the moments of Inertia (see 3.88), the variable is therefore not
altered if the set of Jacobi vectors is changed. In fact, we can easily verify that
© is tightly bound to the area (A) of the triatomic triangle.

Representation of the relationship
between the © hyperangular
coordinate and the area of the
triatomic triangle

At the same time, & (ranging [0, 2] see [29, 30]) labels the different forms
of the triangle with the same moment of inertia, i.e. distinguishes the different
possible arrangements.

In conclusion, the coordinates for the hyperspherical symmetric parameter-
ization of a reactive collision process are composed of three external variables,
such as the oy, 81, v Euler angles, and the internal variables p, ©, ®.

3.3.3 Hamiltonian.

In this section we will show the expression of the Hamiltonian using hyperspheri-
cal coordinates. In these coordinates the kinetic energy operator may be written

as
. —h? i) )

K= — —(d-1) ¥ (d-1) 7 —2A2 Q. 90

5 |” o T’ (Q4-1) (3.90)

where we do not introduce the explicit form of the hyperangular coordinates.

Therefore this expression applies to both previous parameterizations. Let’s con-

sider the tridimensional atom-diatom collision where we explicitly distinguish

between the external and internal hyperangles of the six-dimensional hypersphere
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by denoting Q5 = (&, @g) and let’s write the system Hamiltonian taking into ac-
count that, in the absence of external forces, the potential will depend only on
the internal hyperangles @,

H=—-10 Bp 5

o — +p72A% Q)| + V(p,@) (3.91)

Now, all that remains to know in order to write more explicitly the form of
the Hamiltonian is to introduce the hyperangular parameterization one is using.
This will not affect the hyperradial part of the kinetic energy operator, but will
definitely have an effect on A2(Qs), known as the Casimir operator.

Asymmetric Parameterization.

The form of the Casimir operator for the six-dimensional hypersphere, A%({)s),
can be found in the literature[33] as:

___L o 8 7¢r ) (‘PR,?9R)
AlSds) = - sin? 2y Ox oy o 2x6x+ cos? y + sin® (3.92)

where x is the polar angle defined in 3.69 and 7 and ¢ are, respectively, the
rotational and orbital angular momenta.
The eigenvalue equation for this operator read(34]:

A?Yye(€5) = —MA + 4)¥2e(Qs) (3.93)
where A is called the grand angular quantum number and takes the values
A=2n+j+4¢ (3.94)

where n takes all the integer values from zero to infinity and j and £ all the
integer values from zero to .

The eigenfunctions of this operator are the hyperspherical harmonics{33, 34]
and in the asymmetric parameterization have the following explicit form:

Y/\jl(X? PR, 19R7 Pry 191‘) = lX’ )‘3.7) £> 1/jm;,' ((pﬁ 191’)”771[(@83 0R) (395)

where |x; A; ;£ > is a Jacobi polynomial of order n conveniently weighted and
normalized[33].

Symmetric Parameterization.

Let’s now turn to the six-dimensional Hamiltonian in the symmetric parameteri-
zation which is the one we will be solving. In the corresponding section we have
seen how this parameterization corresponds to using hyperspherical coordinates
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in a reference frame which is parallel to the principal axes of inertia. This would
explain why Pack and coworkers[28] named these coordinates Adiabatically Ad-
justing Principal Axis Hyperspherical (APH) coordinates. In section 3.3.2 we
have derived the expression for these coordinates considering the orientation of
the solidary axis system, so that the z axis is oriented along the least inertia
principal axis, but we could have chosen alternatively z to be oriented along the
most inertia principal axis, i.e. that going out from the triatomic plane. Next
we will write down the expression of the Casimir operator for the two possible
choices.
If we consider the orientation in which z lies along the least inertia principal
axis, the Casimir operator can be written as[28]
1 0 0 1 82

2 — - v
A(Gs) = " 5in 40 66 6 it 4969 cos? 26 §%2

_2zsm2ej_6_+ J2 + J? J?
c0s220 “Yod  sin’© cos.2 26 T o2
According to Pack[28], it is often convenient to write this expression as a sum of
a hyperradial, rotational and Coriolis term:

(3.96)

A? = A2 + A2 4 A? - (3.97)
where,

- 1 a d 1 &

= 4 —_ .98
An " 5in 46 66 36 5" 666 cos? 20 002 (3.98)
. J2 J2 , 2
A = sin? © cos2 20 + cos2 © (3.99)
" 2i8in26 . 8 .
Ac = __658_2—2_9_Jy6_§ (3100)

where the Coriolis term typically couples the internal and global rotation motion
through a mixed derivative. This choice of orientation of the solidary BF frame
leads to a minimization of the Coriolis couplings[35]. Note that Ay, represents the
Casimir operator for the case of null total angular momentum.

On the other hand, choosing the BF z axis oriented along the maximum inertia
axis leads to a simpler expression of the Coriolis term in the Casimir operator:

i) d 1 &
2 ——
A(Gds) = 4e 56 14935 ~ co' 26 582 (3101)
2isin 29 . 0 J2 J? J?

" c0s?20 J’a—cp tn26 T o6 T o220
The expression for the Coriolis coupling is simpler because it includes J, instead
of J,, and the first has a much simpler expression:

J, = —id (3.102)

gl
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Unfortunately, unlike the asymmetric parameterization case, the eigenfunc-
tions of the Casimir operator in this parameterization are not known for the
case of total angular momentum greater than zero. Thus, in applications it is
commonly used an expansion as:

J
YoM(©,%,ar,B,7) = Y. Yaa(®, ®)Digles, B1,71) (3.103)
Q=—J

where § is the projection of J on the principal axis frame and the form of the
Yo (8, ®)Diiq(cr, Br,vr) functions will be shown in another section (see section
5.1).
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Chapter 4

Solution of the CC Equations.
The propagative approach
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Among all the methods that can be used for solving the close coupling (CC)
equations, in this work we have always used the propagative approach for the
time-independent Schrodinger equation associated to the nuclear motion. Propa-
gation essentially consists in solving the properly formulated close-coupling equa-
tions by dividing the scattering coordinate in several, small partitions, called
sectors. Within each sector, solutions for the internal problem, parametrically
dependent on the scattering coordinate, are obtained. This leads to an adiabatic
basis treatment throughout the sectors. Inside each sector, instead, the same ba-
sis is used to express the scattering part of the solution at one end in terms of that
obtained in the previous end. Thus, within a given sector, a diabatic approach is
used. The global procedure is sometimes termed as adiabatic intersector diabatic
intrasector. A common problem one encounters when trying to propagate the
whole set of close-coupling equations is that, as originally formulated, they are
what is called a stiff set of equations. The stiffness arises as a consequence of
the inclusion of closed channel solutions of the internal problem, necessary to en-
sure the proper convergence of the numerical solution. The resulting instability
originated from the exponentially growing nature of the closed channel solutions,

55
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which tend to dominate the whole solution -and destroy linear independence-, is
a consequence of the finite precision of the numerical solution algorithms.

®, ©®0 @

5 Ti-1 Ty IMm
Figure 4.1: Sectorization of the propagation region. The scattering (propagation) coordinate
is divided into small intervals where an internal eigenvalue problem will be solved. Its solutions
will serve as a basis for propagation.

Several procedures have been proposed to overcome these difficulties, which
are reviewed in the following sections. We shall pay special attention to the
specific methods used in the present work.

4.1 General formulation of the propagation. The
Cauchy propagators

Let’s consider the most general form of the scattering equations

[—(—l% +A(z) + B(x)] P(z) =0 (4.1)
where z is the scattering coordinate and the matrices correspond to the target
states expansion. The problem is usually formulated so that A=0. The solution
is obtained at an asymptotic value by propagating its value starting from an
initial value. By propagating, we understand the obtention of a function value
at a given point given the corresponding value at a preceding point.

The propagator of a function in an interval [z/,z"] is defined as a 2N x 2N
block matrix that connects values of any solution of 4.1, v, and its derivative, ¥,
at the endpoints z’ and z”. Such a propagator is called a Cauchy propagator|36]

_[h 2
o= (o o)
for which the defining relation takes the form

(42)-(2en m20)(4)  wy
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The existence of such propagators is guaranteed in all the intervals [z/, 2] where
the matrices A(r) and B(r) are continuous functions of z. The basic properties
of the Cauchy propagators are[36]:

Qa",z") = Uz",y)y, ') fory € [2',2") (4.3)
Q',2') = 1 (4.4)

In order to determine the expression of Q(z”, z') one needs to solve an appropriate
number of initial value problems for the system of equations 4.1.

4.2 Invariant embedding type propagators.

Besides the Cauchy propagators, there is a number of other types of propagators
which are involved with boundary value problems rather than initial value ones.
These are called invariant embedding propagators. The invariant embedding tech-
nique consists in solving a series of simple problems embedded in the space of
the complete problem. The inherent stability of these methods derives from the
fact that the bounded scattering amplitude is propagated through space, rather
than the wavefunction for the entire system. The so called reflection (Y*) and
transmission (Z*) matrices form the propagator originally formulated in ref.[36]
that satisfies the following relation for any solution :

b)) \ _ (Ve 2@ \ () (45)
¢($’I) - Z+(.'E’, .T”) Y—(xl’ z”) wl(z,ll) .
Other types of invariant embedding propagators can be formulated such as the

R-matrix or the log-derivative method, which we will see in the following sections.
For example, let’s consider an alternative expression of 4.5 where:

(46))- (B i) (4} g

The specific form of the boundary value problems can be established in the fol-
lowing form. Let’s call 4,4~ the two solutions of 4.1 and impose:

vA() = { o v = { ! (47)

Substituting in 4.6 we obtain:
Yt () LY L® 1
( ¢+'($n) = L® L® 0 (4.8)

(Z)-(m () e
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and therefore,
L0 = y¥(z) 1% =4~ (@)
LG = ¢+’ (:II") L@ = ,‘/)—’ (.’L‘")

Since solutions to particular boundary values do not always exist, all invariant
embedding type propagators fail to exist for some intervals [/, 2”]. This difficulty
can be however overcome.

Obviously these invariant embedding propagators are related to one another
as well as to the Cauchy operators. Consequently, the basic properties of the
standard Cauchy propagator can be expressed in terms of the properties of the
of any other propagator. In this way, the recurrence relations of the invariant
embedding propagators can be derived|36]:

(4.10)

L(z',2") = L[Q(z".z")] (4.11)

where L acts on a 2N x 2N block matrix
_[(C1 G
o= (2 &) w2

so that

-1 -1
~G G C; ) (4.13)

Licj= ( —CiC51C1+ G5 CiC?
acting on both sides of 4.3

Lz',a") = LI0" 2] = L{L7' Ly, a" )L (LG, 0)]}  (414)

after performing the necessary matrix operations(36]:

LY e") = LO(,y) - LO(,y) x (4.15)
(L9, 1) - LO(o,2")] ™ 1Oz, y)
l(xl,v’zll)
LA 2") = LOE, 1@, y,z") LD (y,2") (4.16)
L@, 2") = —-LO(y,z")1(z',y,z")L® (', y) (4.17)

L', 2") = LW(y,z")+ LO(y, z")1(z', y,2") L®(y, z") (4.18)

This recurrence relations can be converted to the following differential form[36]
in the (" — y) — 0 limit:

LI = ~LOE ) AWIOE,Y) (4.19)

%L‘” (@',9) = —LO(@,y) [Ai(y) + 42() LD, )] (4.20)
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%L@(x’,y) = [Au(w) -~ LU 1) 40)] L', y) (421)
d%f:““(x',y) = AW+ AWIOEY) - IO YA)  (4.22)

_L(4) (.’L‘,, y)A2(y)L(4) (‘T,’ y)

The A;,¢ = 1,2, 3,4 denote blocks of the coupling matrix in the system of first
order differential equations equivalent to the system 4.1:

A AN _ [ 0 1
(A3 A4)_(_.B _A) (4.23)
Let’s take a step forward and point out that the propagator whose properties

we have been developing is an extension of what is usually called a log-derivative
matrix Lp, which is defined by the relation

—

¥ (z) = Lpy(z)

where ¥ is a solution of 4.1 satisfying the initial ¥(z) = 0 condition. Indeed,
substituting 1 into 4.6 it can be seen that Lp = LY, which is enough for inelas-
tic scattering. This particular method of propagation will be developed from a
slightly different point of view in the next section.

4.3 The log-derivative method

In 1973, B.R. Johnson briefly presented his, at that time, new method for prop-
agatively solving the multichannel equations[37]. The method is relatively popu-
lar, although no really transparent derivation of its algorithm was fully published
by the author. However, two different derivations of the method can be found
in the literature. One was published by Mrugala and Secrest[36], which has al-
ready proven useful as a basis for several improvements(38], which will be later
on outlined, and extensions [39, 40] to the original algortihm. However, this
derivation relies on a highly sofisticated form of invariant embedding, whose in-
troductory lines have been developed in the preceding section, and it is therefore
quite complicated to describe. Another simpler and more understandable deriva-
tion, based only on finite difference approximations, has been published by D.E.
Manolopoulos[38, 41].

In this section we will follow basically the derivation of the Johnson’s log-
derivative method from [38], since it will provide us a clearer introduction to the
Johnson-Manolopoulos method used in our work.

Let’s write the close coupling equations in matrix notation as

P(z) = W(2)¥(z), (4.24)
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where z is the propagation coordinate and
2
W(z) = —h—l;-V(a:) K (4.25)

The centrifugal term is assumed to be included in the potential energy matrix,
decaying as z tends to infinity. u is the collision reduced mass, and k is a diagonal
matrix of asymptotic channel wave vectors. The wavefunction ¥(z) is a square
matrix where each column is a linearly independent solution of the problem. In
principle, the expansion is infinite, but in practice it is always truncated at some
finite value, N. The log-derivative matrix is defined as:

Y(z) = ¥'(z) ¥ }(z) (4.26)

In the different log-derivative methods it is this matrix that is propagated, rather
than the wavefunction itself and its derivative. This eliminates the stability
problems arising whenever the integration is started deep inside the classically
forbidden region.

Differentiating 4.26 and using 4.24 to get rid of the second derivative we obtain

Y'(z) = W(z) - Y*(z) (4.27)

which is a Riccati matrix equation. In most inelastic scattering problems W is
a real and symmetric coupling matrix. Transposing this equation throughout,
one then finds that Y’'(z) is also a solution of the same first order differential
equation, as Y(z). Since its initial value will be symmetric and the solution is
unique, the log-derivative matrix will be symmetric for all z. This symmetry is
not essential but has computational advantages, particularly for matrix inversion.

From its definition in 4.26, it can be seen that the log-derivative matrix be-
comes undefined whenever the wavefunction determinant becomes zero. This
causes the standard numerical techniques of integration not to be applicable.
However, the log-derivative matrix may be safely propagated using a special form
of invariant embedding technique (section 4.2). Let’s define an embedding type
propagator, Y, on a interval [z’,z"] by

e = ED eR ] [ve)] ew

The blocks of this propagator are obtained solving appropriate boundary value
problems on the interval [z/,z"]. It is well known that solutions to particular
boundary value problems do not always exist, so J can also be undefined on
some intervals, this, however, does not cause any practical difficuities.

A recursion relation for the log-derivative matrix can be obtained post-multiplying
the upper part of the matrix equation in 4.28 by ¥~'(z') and the lower part by
¥~(z") and then eliminating ¥(2')®~*(z") One obtains:

Y(2") = Yu(a',2") — Vs(a', 2") [Y (&) + Wi (2, 2")] 7 Dol 2") (4.29)
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This recursion relation forms the basis of the log-derivative method. The inte-
gration range will be partitioned into a series of small intervals, as it has already
been explained, the propagator matrix Y constructed for each sector and the
log-derivative matrix propagated by recursive application of 4.29.

4.3.1 The Johnson-Manolopoulos method

First published by D.E. Manolopoulos(38], the method is based on the log
derivative method 4.3 of Johnson and it has widely proven to be highly competi-
tive for the majority of atomic and molecular collision problems. In particular, we
have employed this propagation method in our work for the exact solution of the
close coupling equations with the Hyperspherical method presented in chapter 9.
The method, as it will be seen, basically differs from the previous one formulated
by Johnson in the way in which the sector propagators are constructed.

The algorithm is presented as a means by which the log-derivative matrix can
be propagated across a single sector, [a, b]. The original sector is divided into two
half-sectors. It is then convenient to define the mid point ¢ and step size h by

b
= “;“, h=ts (4.30)

In what follows we shall use as well [z, z"] to denote both half-sectors [a, ¢] and
[c, b]. Then another basic step is introduced. Prior to obtaining the solution of the
complete CC equations, one solves first a simpler homogeneous problem, inside
each sector, defining a simple reference potential. This leads to propagators for
the homogeneous solutions. The global solution (and the global propagator) is
then obtained through the Green’s function method, as it will be explained below.
Let’s start by constructing the analytical solutions to a simple homogeneous
problem on the interval [a, b]. The equation has the form

8" (z) = W,ep(z)®(2) (4.31)

where the reference potential W,.¢(z) is continuous throughout the sector. In
the original log-derivative method W,,¢(z) was set to zero, but Manolopoulos
introduced instead a piecewise constant diagonal reference potential,

Wref(x)ij = Jijpfv re [aa b] (432)

Homogeneous equation 4.31 is easily solved analytically using this reference po-
tential. One can then define a propagator matrix y corresponding to the homo-
geneous solutions ®(z) analogously to 4.28. The blocks of this propagator for
the half-sectors [z', 2"] are also easily obtained as,

|p;| coth [p;lh, p3 >0,

4.33
pilcotiplh,  pb <0, (4.33)

n (1", 1‘")1‘;’ = y4(:t', fC")ij = 5ij {
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|pjleschlp;lh, p3 >0,

" "
vz, x )ij = ya(z',z )ij = { pj| csc |pjlh, P] <0.

These become undefined whenever its argument approaches an integer multiple
of 7 in a classically allowed region (pf < 0). However, the step size h is usually
small enough for this situation not to arise.

Equation 4.24 can be reformulated as an integral equation, through the use
of the Green’s function method[36] on the interval [a,b], with the homogeneous
part given by 4.31. Manolopoulos’ algorithm consists of discretizing the integral
equation using the same quadrature as in the original log-derivative method. The
residual coupling matrix is defined as,

U(zr) = W(z) — W, (2) (4.34)

which is the difference, at each sector end, between the true and the reference
potential. Then the quadrature contributions from the three grid points are given
by

(4.35)
[I———U ] ——U(c)

[I - Lot )] - 21(c)

O
—_—
)
N
1l
Wl b N = w|;~

Q) = U,

where the weights introduced are identical to those used in Simpson’s rule inte-
gration. To obtain the quadrature contributions from the original log-derivative
method one simply has to set W,e; =0 in 4.34.

Finally, the half-sector propagators for the solution of 4.24, Y(2', z”), may be
obtained. These contain both analytical contributions from the reference poten-
tial and quadrature contributions from the residual potential, which combine in
the following way:

3:’1(2', ") = yi(@,2") + Q) (4.36)
)32($’, II,‘”) = yz(l",l'”),
y3($’7x”) = y3(x17 x”)’

Di(a',2") = pala,z") + Q(a").

The log-derivative matrix is propagated from a to b across the sector by repeated
application of the recursion relation,

V(") = Du(', 2") - Ds(z',2") [P (') + Du(a', 7)) Sl a")  (437)
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where ¥ (a) = Y (a) and yields the log-derivative value at the end of the particular
sector

Y(b) = Y(b) + O(hY).

The authors call 5)(:::’ ,2") ‘effective propagators because the matrix Y (c) defined
when 4.37 is first applied, i.e. in the [2/,2"] = [q,¢], is not directly related to
Y(c), the log-derivative matrix evaluated at the center of the sector, a quite
simple explanation for this can be found in [38].

Once the recursion relation has been established, all that is left is to choose
the diagonal reference potential. Manolopoulos and his coworkers have usually
used the diagonal of the coupling matrix evaluated at the midpoint c:

pi = W(c)y (4.38)

Such a simple to implement choice has proven to give rapidly convergent results
with respect to the sector width. Since the reference potential changes from sector
to sector, the algorithm is somehow a function approach [36, 42] propagative
method, especially in regions where the coupling matrix is nearly diagonal. The
authors claim that improvement in convergence over the original method (purely
potential approach[36, 42]) relies on the improved homogeneous solutions in each
sector.

The log-derivative matrix may be propagated across any desired interval,
[Zminy Tmas], dividing the interval into a series of sectors. Usually Z,, is chosen to
be deep inside the classically forbidden region, and then a diagonal approximation
to the WKB initial value is used:

Y (Zmin)ij = Jijw(zmin);;/'z (4.39)

Zmaz Will be some large value of the propagation coordinate, beyond which the
interaction potential can be neglected. Once this region is reached, the asymptotic
log-derivative matrix will be used to calculate the scattering S matrix.

4.3.2 Asymptotic analysis.

The propagation of the log-derivative matrix instead of the wavefunction itself,
is found to ease as well the evaluation of the relevant asymptotic quantities.
It is so, due to fact that one can write the S-matrix (or, equivalently, the K-
matrix) directly in terms of Bessel and Neuman functions and the asymptotic
log-derivative. So, once one has obtained the asymptotic log-derivative matrix,
an expression can be derived for extracting the scattering matrix from it. To do
80, let’s first write the wavefunction considering the scattering coordinate is large
enough for all potential interactions, but the centrifugal; to be neglected:

Y(z) =J(z) +N(@)K, z—=00 (4.40)
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being J(z) and N(z) diagonal. For the open channels these matrlx elements will
be the Riccati-Bessel functions,

By = bki 5 (kye), (441)

IN@)y = 6k; iy, (k;z), (4.42)

and for the closed channels these are modified spherical Bessel functions of the
first and third kinds

F()y; = &i(kjz)™Y 21:,~+1/2(kj-7?), : (4.43)

N@)y = 8;(kiz) 2Ky 0(kjz), (4.44)

where k; is the channel wave number. Performing the log-derivative on 4.40, this

is, differentiating with respect to z and post-multiplying by the inverse, we get
(setting z = zq4,):

K = —[y(Zas)N(zas) — Nl(maa)]-l X [¥(%as)I (Tas) — J’(IL‘M)] (4.45)

This matrix K is the so called reaction matrix and contains elements connecting
closed and open channels. It can be shown that it can be factorised as into
open-open, open-closed, closed-open and closed-closed submatrices:

Koo Koc
K= 4.46
( Kco Kcc ) (4.46)

The scattering matrix can be obtained from the open-open submatrix using the
formula[37]:

S = —(I -+ iKoo)_l X (I- iKoo) (447)
The solution corresponding to the closed channels is an exponentially increas-
ing function (equation 4.44) and an exponentially decreasing function (equation
4.44). These, specially the first, can cause numerical trouble when evaluating
4.45. Johnson[37] proposed to eliminate this problem by the replacement of the
closed channel matrix elements by:

Fn)ls = 1, (4.48)
Fan)s = [Tz x [T(w))7t (4.49)

Expressions for N are obtained by substitution. Quite clearly, this leaves the
open-open submatrix Koo unchanged.

4.4 The R-matrix method

In 1976, J.C. Light, D.J. Zvijac and R.B. Walker presented in two consecu-
tive articles[44, 43] their new approach to the solution of close coupling equa-
tions by using the R-matrix method, originally presented by E.P. Wigner and
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L. Eisenbud[45]. The method is based upon a division of the dynamically ac-
cessible regions of configuration space into smaller regions (sectors), in each of
which a local matrix of the inverse log-derivative, called R-matrix, is determined
analytically. Then, these sector R-matrices are assembled recursively and yield a
R-matrix for the whole integration region. The scattering matrix can be obtained
from this global matrix.

Unlike the Johnson-Manolopoulos method, which we have just employed as
originally formulated by the authors, during this work we have got to work quite
deeply with this propagation method. So, we have generalized the formulation
of the approach in order to take complex potentials into account. This derivated
from the problems arisen when a complex absorbing potential was placed so as
to absorb all the flux towards products (see sections 2.7 and chapter 8). Due to
the use of this potential, a reactive problem was reduced to an inelastic one but
paying the price of a complex interaction matrix to be used for the propagation.
Then, the R-matrix propagation method had to be adapted in order to consider
complex valued interaction matrices. Details of the theory are fully given in the
next sections (see specifically section 8.3).
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5.1 The method of Launay and LeDourneuf

In the late 80s and beginning of the 90s, J.M Launay, M. LeDourneuf and cowork-
ers published a series of papers which, in our opinion, caused a major impulse
in the development of exact cross-section calculations of reactive systems. Rele-
vance of this work relies on the particularly intelligent partition of the Hamilto-
nian which allowed the practical calculation of reactive cross-sections, as we will
show later on.

5.1.1 The Hamiltonian.

Let’s consider we are studying an atom-diatom reactive collision using symmetric
hyperspherical coordinates, under a BF rotating solidary frame, whose z lies along
the least inertia principal axis. These have been called by some authors APH
coordinates[28] (see section 3.3.2). In constructing the APH Hamiltonian, one
minimizes the couplings due to rotation of the body frame at linear or near-linear
configurations. :
The expression of the Kinetic energy operator in APH coordinates, following
ref.[46), is:
1 0 ;0 A?

— + PG
2up5dp” Op  2up?
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+V(p,w) (5.1)
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where V is the interaction potential and A2, the Casimir operator, is the square
root of the grand angular momentum. Following Launay’s derivation we replace
the original Smith-Whitten hyperangle © by 6, which is its double, to allow a
familiar [0, 7 /2] range of variation, 0 corresponding to linear configurations and
7/2 to symmetric top configurations. The Casimir operator in 3.96 transforms
then into:

0 1 8 2isin@ ., 9

4 0

2 = e SN W — e 2P ] 2

M%) =~ 55656 Y% ~ o658 ot 55 (5.2)
2J? 4 2.J2

1—cosf cos2@ + 1+ cos@

This choice of the reference frame allowed Launay to introduce the following
partition of the Casimir operator:

AP=A%+ —F 4R (5.3)
s

where A% and R, which contains a part of the rotational kinetic energy and
Coriolis coupling, are given by

2 _ 4 0 . 0 1 &
= 52096 " Y55 ~ oot B (54)
2 _ 2 Jz . . r
_ J2-J2 7 2isinfJy 0 (5.5)

cos?10 ' cos?  cos? Oy

A% is the square of the grand angular momentum operator for J = 0 in the
principal axis frame.

For the sake of simplicity, from now on we will label globally the hyperangular
variables, the internal as @ (0, ¢) and the external as @y (the Euler angles).
One may then consider a (parametrically) p-dependent basis of five-dimensional
functions,

Bia T (03D, k) = P o @) NJM () (5.6)

where the symmetric top wavefunctions N,{M"(wg) of definite parity ¢; = +1
are linear combinations of Wigner rotation matrices:

JMep o \ 2J+1 Ix [ I+ pds  —
No™(@g) = \/m [D¥a@E) + er(-1)"* Dy _o@s)]  (5.7)

Here, J is the total angular momentum and M its projection on the space-frame
z axis, while {) > 0 is the absolute magnitude of its projection onto the body-
frame 2 axis. The index €p in (5.6) labels the symmetry of the wavefunction with
respect to the permutation of two identical atoms (or even more).
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The functions ©§’**?, also called surface states, are {)- and p-dependent solu-

tions of a two-dimensional Schrodinger equation at fixed hyperradius p:

H 0, )0y "™ (33 @) = €/ PP ;) (5.8)
1 40?2
Qf o=\ 2 L —
H (P, (.4)) - 2”’02 (AO + Sil’l2 0) + V(ﬂ: w) (59)

The consideration of a p-dependent basis will be very useful thanks to the near
separability of the hyperradius. Equation 5.8 can be solved within a {e1, 6,2}
symmetry block, following Launay’s approach, by variational expansion over
a primitive basis of orthogonal eigenfunctions {)} (pseudoharmonics), see ap-
pendix D.

5.1.2 Coupled hyperradial equations

Taking profit from the fact that the hyperradius is a near-separable variable and
that a parametrically p- and §)-dependent basis for a part of the Hamiltonian has
been obtained, the Schrodinger equation is solved using the diabatic-by-sector
method{47], in which the range of integration along p is divided into smaller
sectors [pp—1/2, Pp+1 /2] centered around pp- In each sector, the total wavefunction
is expanded on the basis defined at p,,

1 € — ere
WM (00,38) = o SO (i m T i) (5:10)
[21]

In practice, the expansion of the wavefunction is finite. In particular, we can
vary separately the number of k and ) components in the linear combination
5.10. For instance, the maximum value of  in the expansion will be denoted by
Qm. The functions f5'" {(Pp; p), called hyperradial functions, are solutions of the
following set of coupled second-order differential equations,

*

(i + 52 + <" (pp) — E) £ (093 0)
+ T Vit ™ (pg; £) SRS (i ) + (5.11)

0,

+357 Zer Rishsrer (0) fioeh ™ (03 p)
where the coupling matrix elements are given by (taking into account (5.6)):

Vilr® (o; ) =< 7" (0; @)V (0, D)0 0y @) >z (5.12)
Risiira (0) =< Oia'"F (0p; @, Te)|RIGLG 7 (0p; B, TE) >oms  (5.13)
The evaluation of these matrix elements is relatively easy since the basis

functions &y’ are factorized in 5.6 into an internal part w{'**® | which is
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independent of the total angular momentum J, and an external part. Firstly, the
potential energy coupling matrix V is independent of the total angular momen-
tum and connects states with the same projection Q. Therefore, the interaction
matrix elements are computed at the boundaries and the middle of each sector
and further evaluated inside each sector interpolating by means of a three-point
Lagrange interpolation scheme. Secondly, to what the R matrix elements con-
cerns, integrals over the 6, x coordinates are independent of J while J-dependent
integrals over the Euler angles, @g can be performed analytically. The authors
indicate that R is smooth and well behaved for linear configurations (§ = 0) and
can evaluated just at the middle of each sector, but diverges dramatically for
symmetric top configurations (# = m/2). Further comment has to made to point
out that R connects states with AQ = 0, £1, £2. Therefore, the kinetic coupling
leads to a pentadiagonal R matrix which will be propagated throughout the con-
figuration space. The A2 = 0, +1 terms arise from Coriolis couplings while those
with AQ? = +2 from rotational couplings.

The logarithmic derivative linearly independent solutions of the coupled equa-
tions (5.11) are propagated outwards in each sector using the Johnson[37] -
Manolopoulos{38] algorithm (see section 4.3). When the boundary of each sector
Pp+1/2 18 reached, a transformation to the basis of the next sector computed at
Pp+1, is performed. This is repeatedly performed from the first sector until the
last one (p,), this corresponding to the asymptotic region. The sector width is
an important parameter for controlling the accuracy and efficiency of the calcu-
lations.

5.1.3 Asymptotic matching

As the hyperradius p increases, the functions ¢; whose energy is lower than the
potential ridge tend to concentrate into the arrangement valleys, whereas the
atom-diatom interaction potential tends to zero, i.e. the system approaches the
asymptotic situation. The behaviour of the ¢i functions then becomes simple,
very close to the rovibrational target states into which we have expanded the
wavefunction in section 2.6. But this cannot be easily seen from (5.8), since the
Smith-Whitten coordinates there used are not suited to describe the atom-diatom
fragmentation region (they lead to the well-known large-p shrinkage problem[48]).
On the other hand, Fock asymmetric hyperspherical coordinates provide an op-
timal parametrization of the system at large hyperradius. It is therefore con-
venient, once one has got to the asymptotic hyperradius, to rewrite the Hamil-
tonian (5.9) in Fock internal coordinates ([31] and section 3.3.1). For a given
arrangement A the two Fock angles (x», ©,) are the hyperradial correlation angle
X» = arctanty/R, and the bending angle ©5 = arccos (£) - Ry). Using these
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coordinates, the Hamiltonian becomes

H(pix,0) = 52 (———-1-2—)5-5%12 2an-%) + (5.14)
+ ! 4 (—— L 9 sin O, o + @ >+
2up?sin® 2x» \ sin©), 40, 00,  sin’ O,
+ V(0% 03)

Moreover, inside each A-arrangement valley and at large enough hyperradius,
the potential becomes independent of the bending angle 7, and therefore can be
written as Vy(p, x»). Knowing this, it can be stated that the coupled equations
become separable in (x», ) coordinates. Thus, the " functions converge

to a rovibrational function vj in each arrangement A, separable in x, and ©,,
PEP% = Xawi (05 X2) PFH(B)). (5.15)

This separation can be seen as a factorization of the vibration (x;{p; x»)) and
the rotation (P{}(©,)) motions. The Pj{(0,) are associated Legendre functions
and the x,,; are the solutions of the one-dimensional equation

1 1 d 2, d 4J'(J'+1)) ]
—— | — e 2y ) ——— A e V) p; = (5.16
[2”/,2 ( 50 a0 20 g ) T e ) Xavj(Pixa) = (5.16)

€205 (P) X5 (03 X2)

where Vi (p, x») is the asymptotic potential in arrangement A.

After determination of the fragmentation vj quantum numbers, the total
wavefunction is projected onto the space-fixed basis functions, which can be
written as Xaw;(0g; Xo) Y1 (7, Rx) of each arrangement in order to obtain its
hyperradial components f ,\J,f;f” (Pqs Pas) and normal derivatives in that basis. This
projection involves two steps:

e firstly, a transformation that reorients the principal axis Z along R,, the

atom-diatom vector of arrangement A. This involves two-dimensional quadra-
tures in the (x», ©,) coordinates.

e secondly, a standard body-frame to space-frame projection is made using
analytical methods.

Regular and irregular asymptotic channel functions are expressed as spherical
Bessel functions of the radial variable R). The matching of the components
f,\J,f;f" (Pq» Pas) and of their normal derivatives to these asymptotic functions on
the p = p,, hypersphere yields the reactance K and the scattering 5 matrix, as

shown in chapter 2.
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Chapter 6

Approximate Close-Coupling
Methods

Contents

6.1.1 R-IOS Approximation equations. . . ... .... ... 7

Given the difficulty for obtaining reactive quantities from an exact quantum
mechanical description, a lot of effort has been historically put, and still is, on
the development of approximate methodologies and theories that may produce
in a reliable but much simpler way the desired results. The goal is then to de-
velop simplifications to the exact equations based on reasonable physical criteria.
The development of any approximate method demands a great deepening in the
understanding of the physical phenomena, involved in chemical reactions in our
case, since it is the understanding of the dependence on all factors that will give
the clues to individualize these factors and single out the role they play.

Thus, many approximate methods for the study of reactive scattering, based
on different levels of accuracy, can be found in the literature. Most of them
are checked with the exchange H + Hy — Hj; + H reaction which, although
being a chemically unrelevant reaction, was until recently the only reaction for
which one had relevant exact close coupling results at hand. However, many
other methods have been developed to study quite different reactions, i.e. non
collinearly dominated, and therefore comparison to experimental results has to
be carried. But in this case great care has to be taken in their interpretation,
since discrepancies could arise as well from inaccuracies in the potential energy
surface.

One of the principal difficulties in solving exactly the close coupling equa-
tions is the high dimensionality of the resulting equation set. Knowing the great
number of approximate theories that can be found in the bibliography, it is by
no means the intention of this chapter to give a detailed description to all of

73
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them. Nevertheless, we intend to give a brief description to some of them and
describe in more detail the particular approach that has been used in our work ,
the Infinite Order Sudden (10S) approximation.

Actually, working under the close-coupling (CC) framework, we have already
assumed a first approximation, since the CC expansion is not complete strictly
speaking (as discussed in section 2.5, the states belonging to the dissociation
continuum are excluded from the expansion) although generally acceptable when
working below the dissociation threshold. Assuming this approximation, the
most general one that is usually made is the so-called Centrifugal Sudden (CS)
approximation, that supposes the collision to be dominated by the electrostatic
potential and the molecular rotation. Essentially, this turns into assuming that
the relative kinetic energy term is large enough so that one can consider that
the orbital angular momentum to be constant along the collision. In this way,
the £ operator can be substituted by a fixed value Z(Z + 1) and the Coriolis
coupling is diagonalized. Thus, the CS approximation still treats the rotational
states exactly and therefore it is often called j, conserving or helicity conserving
approximation. To see how the CC equations simplify under this approximation
let’s rewrite the BF Jacobi coordinate CC equations:

J/\ A
( ﬂ,\{%‘,\ E) FJJ,\Q,\ R,\,T,\) + tﬂ,\ﬂ,\-{-lFJj)\ﬂ)‘-}-l(RA? TA) + (6’1)
JAj AL
+tn,\g)\—1F ],\n,\—l(RA7 7‘,\) ‘+’ % V’)«]AFJJ&Q:\_I (RA, TA) = 0
Jr= A

J=0,1,2,... h=—J,—J+1,....,J iHr=|U%]0% +1

Neglection of the Coriolis coupling corresponds to setting the Q-off-diagonal
blocks to zero:

tythar =0 (6.2)
and in the {2-diagonal term the orbital angular momentum operator is substituted
by a fixed value. We therefore obtain a CS-CC equation set:

o
(Fart, = B) o, (Bar) 3 ViR Flo, 1(Baum) =0 (6.3)

=i
e g R (8 8N\ Kh R+ (6.4)
MW" oy \ORE " 9r}) " 2ur? 2uR? ’

Although this approximation eliminates the coupling between different values of
(1, it still treats all rotational channels exactly and therefore the dimensionality
of the equation set is still high.

Quite evidently, to move on further from the CS approximation, one must es-
tablish approximations on the rotational motion of the target, since it is usually
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the source of the largest increase in the number of states of the close-coupling ex-
pansion. We would like to distinguish in the next level of approximation between
two different approaches, depending on how the rotational motion is treated. On
one hand, it is argued that since rotational periods are large in comparison to
vibrational periods, it is reasonable to use what is called a sudden rotational or
energy sudden (ES) approximation, for which the atom-diatom orientation re-
mains fixed for the motions in both reactants and products channels. On the
other hand, it could be argued that, since the rotational motion correlates with
a flexion-vibration along the reaction path, this flexion motion can be treated
adiabatically and correlate it statistically to the asymptotic rotational levels.

The first approximation is what is called Infinite Order Sudden (IOS) approx-
imation and it has been the approach employed in some of the calculations of this
work. Since it will be described in the following section, in particular its applica-
tion to reactive scattering, here we will just point out that the IOS approximation
reflects, in the BF Jacobi coordinates CC equations, as a parametrization of the
Jacobi orientation angle. Thus, the number of variables is reduced to two (Rx,7a)
and the third becomes a parameter (6,), the equation set is then solved for each
value of ©,, for a wide enough range of angles, to cover the whole reaction win-
dow.

The second approximation for the treatment of rotation in the scattering event
(once under the CS approximation) englobes a variety of methods which are called
generally Reduced Dimensionality Ezact Quantum (RDEQ) approaches. The dif-
ferent approaches differ from one another in the different degree of adiabaticity
with which the flexion motion is considered as well as other approximations to
the treatment of the centrifugal potentials. Full description of these methods can
be widely found in the literature[26].

The real behaviour observed in most of the systems is obviously a mixture of
both assumptions, sudden and adiabatic. The flexion dynamics for energies near
the threshold, is in fact adiabatic but at energies well above the system clearly
tends to a sudden behaviour.

There exist as well other approximate methods arising from rather different
assumptions than what we have seen up to now. One of them is based on the
distorted wave (DW) theory, which considers the reactive event as a small per-
turbation on the non-reactive collision dynamics. This consideration is based on
the fact that cross sections for inelastic or elastic processes are usually of some
orders of magnitude greater than the reactive ones. Thus, the reactive scattering
matrix can be approximated as a matrix element of a perturbative Hamiltonian
operator, using non-reactive wavefunctions of the reactants and products states.

Practical results using the DW theory showed that reaction is usually a per-
turbation much larger than first order, so that most of these methods were aban-
doned. However, more recently, Baer and coworkers set up a method which
shares some characteristics with the DW approach. It is based on dividing both
the Hamiltonian and the scattering solution in a reference problem plus a per-
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turbative part. The reference portion is defined so as to have a simpler solution
(elastic, average angle inelastic, complete inelastic or even average reactive col-
lisions have been taken as reference problems), while the perturbation, which is
included completely (not through perturbative methods), considers the remaining
interaction. Approximations are then flexibly built into the method, since it can
be considered separately both in the reference and the perturbation parts. The
solution to the whole problem is obtained by means of a generalized-Lagrange-
multiplier variational approach. The inclusion of absorbing potentials inside the
method gave a major impulse to it, so that it has been widely applied for the
approximate treatment of three-, four- and five-atom reactions[49].

6.1 R-IOSA

The I0S approach, initially formulated for the inelastic case, was introduced with
the aim of reducing the complexity that the great number of rotational states for
each vibrational state causes. Historically, the first works on this approxima-
tion date from the middle 50s to the middle 60s[50, 51}, but their formulations
resulted rather involved and not so easy to interpret. Curtiss[52], Pack[53] and
Secrest[54] extended the formulation and gave an almost ultimate practical form.
This development allowed Pack to perform the first applications[55]. Since then,
the method has been confronted with exact CC or other approximate results with
generally satisfactory conclusions.

The considerable good agreement found encouraged its application to reac-
tive scattering by three research groups almost simultaneously. The first arti-
cle published was a communication on the preliminary results by Bowman and
Lee[56] for the H + H,. Then followed the theoretical works by Khare, Kouri and
Baer([57, 58, 59] (KKB), Barg and Drolshagen[60] (BD) as well as that of Bowman
and Lee[61] (BL). Formulations by KKB and BL and essentially identical, since
both are based on the explicit use of the orbital angular momentum, while BD
formulated their own approximation based on the total angular momentum.

Major differences can be found, anyway, in how these approaches perform the
matching process between both rearrangement channels and how do they relate
the I0S parameters for reactants with those of products. In particular, since,
as we will see, the IOS motion is based on a constant atom-diatom orientation
angle along the collision, a criterion for a reactants-products orientation angle
correspondence must be established. To do this, the approaches of BL and BD
must introduce additional simplifications, while the KKB formulation is able to
base the whole matching process on a parameter B,,.

The KKB theory defines a surface to match both channels so that:

Ty = Buary

where the parameter allows to take into account the possible asymmetry of the
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two channels involved in the rearrangement process. On the other hand, BL must
introduce the approximation of centrifugal potential conservation in the reactants
to products transition which permits to write 6, = 7 — ©,. At their turn, BD
obtain the reactive equations only for the limiting case in which the central atom
mass can be considered as infinite. In the approach here followed we have used the
matching parameter of KKB and we have set this parameter so that transition
between both arrangement coordinate sets is done on the potential ridge, the
region where the reactive transition probability is a maximum[62].

As usual, the first applications of the method were performed on the H+H, —
H,+ H system([62, 63, 64]. Results were compared to exact data available on the
reaction and some of them appeared to be in rather good agreement, the cross
section not differing in more than 25%. On the other hand, in some other rather
sensible quantities as the differential cross section or the opacity function, greater
discrepancies were found.

The first application to a more asymmetrical system was done by Clary and
Drolshagen{65] on the D + HCl — DH + Cl system, in the context of the
Light-Heavy-Light (LHL) limiting case of an infinite central mass. Results were
in good agreement with those obtained by a less approximated technique[66],
mostly at high energies for both global and more detailed quantities. However, no
comparison was performed of this results with experimental or less approximated
data for this reaction nor the H(D) + HBr — H(D)Br + H studied later by
Clary([67] as well.

The 10S approach has been widely used in our research group(68] as well
as in the work presented here. We have used both the reactive and inelastic
applications of the IOS approximation. The first calculations were performed
using the R-IOS code as developed by Giménez et al.[26] on the Mg + FH —
MgF + H, with the purpose of studying the dynamics of this reaction. The
code propagates a IOS solution of the nuclear Schridinger equation using the R-
matrix propagation method. Other R-IOS calculations have been recently carried
away in the group as well on the B + OH — BO + H, in which we did some
calculations. Next, once the R-matrix was generalized to take complex values of
the interaction matrix into account, we were able to introduce Negative Imaginary
Potentials in our problem and formulate the reactive problem as a pseudo-inelastic
one (see 2.7); the R-IOS was modified to a NIP-IOS code which resulted of the
same accuracy of the previous code and generally of better efficiency. The new
implementation was tested on a wide range of systems showing a rich variety
of scattering dynamics, since they were characterized by heavy masses, varied
ergicities, involved PESs, ...

6.1.1 R-IOS Approximation equations.

As we have already said, the IOS approximation assumes that a possible form
of simplifying the rotational motion arises from the consideration that rotational
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periods are usually considerably large when compared to vibrational periods. It
is then reasonable to think that, as a limiting case, the orientation between the
atom and the diatomic molecule remains fixed in both rearrangement channels.
However, we must point out that, technically, this is not an assumption but rather
a consequence of how the approximation is constructed.

The I0S approximation is obtained by imposing simultaneously the centrifu-
gal sudden (CS) and energy sudden (ES) restrictions, which in practical terms
can be written as:

2 - Il+1) (6.5)
= JG+1) (6.6)

i.e., both angular momentum operators are substituted by fixed constant values.

In the expression we have derived for the Jacobi coordinates in the BF frame,
the rotational angular momentum j is found explicitly, but not the orbital angular
momentum £ . This leaves two possibilities: a) to find the condition equivalent
to 6.6 in the BF formulation or, b) change the representation frame so that the
centrifugal frame appears explicitly. We will refer to the first case as the J-labeled
I0S formulation and in the second to the £-labeled TI0S.

The J-labeled formulation was developed by Barg and Drolshagen[60] and
translates the 6.6 condition into the following approximations in the equation set
6.1:

fofyar = 0 (6.8)
However, this J-labeled formulation has proven to undergo some difficulties in
inelastic scattering[57]. In particular, when the potential is spherically symmet-
rical, physically senseless transitions are found between different levels m;. On
the other hand, the f-labeled formulation is exact at this limit.

It is therefore convenient to derive the R-IOS equations in their ¢-labeled
formulation. A direct way of doing this would be to employ the Jacobi SF close
coupling equations. However, transformation between different rearrangement
channels would still be much clearer under a BF frame, for which the procedure
followed[26] could be to integrate the SF equations in each channels and transform
them to the BF frame once it gets to matching both arrangements.

Both representations are related by the following unitary transformation:

2 26, +1\"? 2
LAY NEDY (2 11 ) (BOHZQIIN) Frpqn (ra, Ry) (6.9)
€,

and the inverse transformation will be given by:

\ 2t +1\V? \
Flypa R =3 (m) (BOHZUIIN) Fijog (ra Ra) (6.10)
4
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If one substitutes 6.10 into the Schrédinger equation 6.1, one obtains after
some manipulations and neglecting the Coriolis couplings:

2 2 I Pt
[(-‘—9— + —‘?—) BB+ A6 1} Flye(rnRa) = (611)

R ez TR R"’ 2
ZZ( MV |55 ) F ":" (2, Ry)
ll' J'A’

where now the kinetic energy term is diagonal and does not depend on J. On
the other hand the potential energy term contains much more coupling than in
the BF case:

20, +1)(2¢"
(&J&W’Ie’{j;')=2‘/( *(;J i_(l)” Y (B\073Q [T (6.12)

QI

(105101, 2 / Y1 (03,0)V (s, R, ©2) Yy, (B, 0) sin 0,6,

Note that this term depends explicitly on J. This equation can be simplified if
one introduces the following transformation:

20\ +1 . =
F}\zjﬁl\(T,\,R,\»el\) = Z —2._]/\_-#-7 (e’,\Oyf\ﬁ,\lJQ,\) (6.13)

65

Yy ﬁ)‘(eMO)F}j'ﬂ (ra, Ry, ©))

this allows us as well to define the function Fya,(r2, Ry, ©,) parametrically
depending on the angle ©,. Substituting 6.13 into 6.11, one obtains:

[5%}' ToR (R?\ - J(Jrg ]F 75, (1 B, ©3) = (6.14)
= 75‘ [V(ra, Bx, ©3) = E] Fjps.

This equation is known as the I0S Schrédinger equation since it gives the radial
solution for each value of the atom - diatom orientation angle. Note that the
terms in 6.14 still contain the A superindex labeling the arrangement. This is to
remind that, for rearrangement processes, we will have an equation as 6.14 for
each possible arrangement channel (A = @, 8,7). The solution of these equations
can be performed in many ways, but at a certain moment a matching proce-
dure must be carried away between the solutions from the different regions of the
configuration space. This matching procedure, as well as the asymptotic bound-
ary conditions, characterize the reactive process with respect to that elastic or
inelastic.

In this work, as well as in other works published by our research group, the
integration of the IOS coupled equations at each value of the orientation angle
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will be carried away employing natural circular coordinates and the R-matrix
propagation method. For the derivation of the I0S coupled equations using
these coordinates, see [26].
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In this chapter we will englobe the works we have done employing the R-IOS
approximate methodology. Our research group has worked for a long time using
this approach and we believe we have earned relative experience on it. As in
all approximate methods the clue to their adequacy is the knowledge in depth
of their restrictions. R-IOS has shown up to be a relatively reliable method for
most of the systems studied in our group[68], specially when the orientational
effect of the surface was small or when high collision energies were considered.

So, in this context we present the articles we have published concerning our
work on two reactive systems, namely Mg + FH — MgF + H and B + OH —
BO + H, employing the R-IOS code we had at hand as developed by ref.[26]. As
it will be seen, the study on the first system was carried away rather thoroughly
on many aspects and led to the publication of two articles, each of them focusing
on a different aspect we found interesting. Concerning the second system, we
found it worth studying the rather involved resonance pattern presented by the
system even at the three-dimensional level (cross section) employing a reduced
dimensionality model.

81
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7.1 The Mg+ FH — MgF + H system.

The system presents many interesting characteristics that motivated its study.
Any system composed by relatively high masses constitutes a challenge for a
quantum mechanical study due to the increase in the number of states that have
to be considered. Moreover, the present system evolves through a non collinear
transition state and this is not the usual case in the reactions commonly studied.
Besides, the system showed to be properly suited for a IOS study since simple
studies on the potential energy surface used proved that the transition state
region was rather isotropic as a function of the orientation angle. This fact
clearly enfavours a simpler I0S study where its fixed orientation restriction will
loose relevance. An extensive R-IOS calculation was thus carried away on the
title reaction calculating a total of 50 energy points, specially focusing on the
threshold region using an energy grid of up to 0.01 eV.

Two rather differenced studies were carried from these results, in one of them
we focused mainly on the energy threshold to reactivity and the curious char-
acteristics showed by the fixed angle reactivity. In the second a wider study
was performed concerning the product vibrational distribution (PVD) and the
isotopic mass effect. For this second study, extensive quasiclassical trajectories
calculation were run as well as additional R-IOS calculations for the title reaction
and their isotopic variations.

The potential energy surface employed for the calculations was fitted to ab
initio points using a RBO functional form. The reaction presents a 1.33 eV
endoergicity and a late barrier of 1.83 eV whose transition state geometry is
clearly bent with a MgF H angle of 72°. Besides these characteristics, two wells
characterize the surface, a collinear well 0.34 eV below reactants’ asymptote
corresponding to the MgF H complex and a second well 1.30 eV below reactants’
asymptote corresponding to a highly bent geometry (around © = 35°) which we
shall call insertion complex. This second well, although deep, can only be reached
through reorientation since the barrier for the fixed geometry is to high and will
therefore be unrelevant for the IOS reactivity while it will play a qualitatively
significant role in quasiclassical trajectories reactivity. Relevance of the works
presented relies, mainly, in our opinion, on the fact of having found noticeable
quantum effects in a system where a heavy atom is transferred. General features
of the PES here described can be observed in the contour plots of figure 7.1.

7.1.1 Energy mode effectiveness and tunneling in triatomic
reactions: the energy threshold for the Mg+ FH —
MgF + H reaction.

Chemical Physics Letters 282 (1998) 91-99.
In this paper, a three-dimensional approximate quantum mechanical calcula-
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© = 72°, which is the transition state geometry, lower-left to © = 105°, which is an intermediate
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84
Chapter 7. R-IOS studies.

tion on the Mg+ FH system was presented in order to get some insights on the
effects on the reactivity threshold and how it was affected mainly by the reactants
initial vibrational energy. The global three-dimensional cross section presented a
marked selectivity towards the vibrational energy mode, in agreement with the
Polanyi rules. So, accordingly to what these rules state for a late barrier, reacti-
vity was drastically enhanced by an increasing in the initial vibrational energy of
reactants. However, rather than the tridimensional magnitudes, the fixed angle
cross sections were explored in order to get some indications on the reaction mech-
anism which showed up to be more complex than it appeared from the 3D curves.
From this fixed angle study two well differentiated behaviours were stated. On
one hand, for low initial vibrational levels significant reactivity was found only for
angles close to that of the transition state geometry. On the other hand, higher
vibrational levels tended quite unexpectedly to collinear reactivity. Moreover,
studying the reactivity threshold we found that the lowest energy threshold to
reactivity was given by the v = 3 reactants initial vibrational level at a fixed
angle of © = 180°, far from the TS geometry. This was achieved by the system
through a significant tunneling contribution. These were two rather surprising
facts since the lowest point of the reaction barrier was located at a bent angle,
far from collinearity.

The key to the explanation of this rather unusual behavior was given by
the plots of the fixed angle Minimum Energy Paths (MEPs) where it could be
seen how, even if the barrier increased when moving towards open angles, its
width decreased even more significantly allowing then for a greater tunneling
probability. The analytic formula for permeability of a simple square barrier
model justified the higher tunneling effect for the » = 3 vibrational level, at the
same total energy.



7.1. The Mg+ FH — MgF + H system.

2 January 1998

Chemical Physics Letters 282 (1998) 9199

CHEMICAL
PHYSICS
LETT_RS

Energy mode effectiveness and tunnelling in triatomic reactions:
the energy threshold for the Mg + FH — MgF + H reaction

Fermin Huarte-Larrafiaga °, Xavier Giménez *, Margarita Alberti *,
Antonio Aguilar *, Antonio Lagana °, José Maria Alvarifio *!

Fisica, Universitat de Bar

Manti i Franques 1, 08028 Barcelona, Spain

* Departament de Quimi

® Dipartimento di Chimica, Universita di Perugia, Via Elce di Sono 8, 06130 Perugia, haly
Received 5 August 1997; in final form 7 October 1997

Abstract

An approximate three-dimensional quantum approach has been adopted to investigate threshold effects for the
Mg + FH — MgF + H reaction and their dependence upon reactants’ vibrational energy. The main results are: (a) vibrational
energy is the most effective mode (however, this switches from vibration at open angles to translation at bent angles); (b)
although a fairly heavy atom is transferred, the threshold is determined by the tunneling region, being dominant orientation
angles significantly differing from that of the saddle; (c) the threshold moves to lower energy values as the reactant
vibrational level increases. A rationale is given in terms of fixed orientation-angle minimum potential-energy profiles.

© 1998 Elsevier Science B.V.

1. Introduction

The accurate determination of reactive thresholds
is of key importance in studies of reaction dynamics
and chemical kinetics [1-3]. As an example, the
value of the rate constant of gas-phase elementary
reactions with a positive activation energy are, in the
usual temperature ranges, mainly controlled by the
amount of reactivity around the threshold. The value
of the threshold temperature is usually linked to the
value of some key structural parameters (like the
height of the barrier to reaction of the potential
energy surface (PES)) via the calculation of the cross
section (o) from which rate constants can be evalu-

! Permanent sddress: Departamento de Quimica Fisica, Univer-
sidad de Salamanca, Salamanca, Spain.

ated by integrating over energy. Most often, the
calculation of the rate constant is performed using a
simple classical transition state treatment (TST) [1,4],
which assumes reactions occur only at energies higher
than the saddle. Tunneling corrections, if any, are in
general introduced in a one-dimensional fashion
along the minimum energy path (MEP) of the PES
{1]. Only rarely, corner-cutting corrections are intro-
duced [5). To include the dependence of reactivity on
the collision angle (y), one can make use of a fixed
y TST treatment. As a result, one obtains a fixed y
contribution o () to the cross section and a fixed y
threshold energy (E,), whose dependence on the
collision angle has the same shape as the window to
reaction of the PES. This is in general also found
when performing a reactive infinite-order sudden
(RIOS) [6-8] calculation. Such a finding implies that

0009-2614 /98 /$19.00 © 1998 Elsevier Science B.V. All rights reserved.

Pil 50009-2614(97)01151-2
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tunneling effects do not change significantly with the
collision angle, as has been found previously in
calculations on a wide variety of atom—diatom sys-
tems [9-14]. However, this is not the case for the
Mg + FH reaction; for this reaction, the peculiar
features characterizing the PES of the system make
the value of y at which threshold energy is lowest
differ significantly from the one at which the poten-
tial energy barrier is minimal.

The well known Polanyi rules [2] state that the
reactivity of endothermic processes which have a
late barrier (i.e. a barrier displaced into the exit
valley) is more efficiently enhanced by vibrational
energy than by translational energy. This is also
found for the title reaction. However, factors similar
to those which lead to the different contribution of
tunneling to reactivity, as the collision angle varies,
also alter the relative importance of the various
energetic modes, resulting in a much more complex
picture of the reaction outcome as a function of the
collision angle.

The Mg + FH reaction has airead_ been investi-
gated theoretically. A reliable PES was developed
and three-dimensional (3D) quasiclassical trajectory
(QCT) calculations were performed on it [15~18].
The present quantum study focuses on some features
of the corresponding quantum results.

The Letter is organised as follows: in Section 2
the potential energy surface is briefly illustrated by
pointing out the features of the PES useful for
understanding tunneling effects. Section 3 describes
the main results obtained. In Section 4 the factors
determining both the enhancement of reactivity with
vibration and the amount of tunneling for the differ-
ent initial conditions are analyzed. Finally, in Section
5, the main conclusions are presented.

2. Potential energy surface and calculation method

As mentioned above, we used the Mg + FH —
MgF + H PES of Ref. [15], fitted to ab initio poten-
tial energy values using an RBO functional. The PES
is 1.33 eV endoergic and has a late barrier located
well inside the product channel, which is 1.826 eV
higher than the reactants’ asymptote for the bent
(y=72°) transition state geometry. In the strong
interaction region the MEP shows two minima: one,

collinear (y=180°), 0.34 eV deeper than the reac-
tants’ asymptote, is located just before the reaction
barrier and the other, 1.30 eV deeper than the reac-
tants’ asymptote, is located late in the products
channel. The second minimum corresponds to a
highly bent configuration (y = 35°) that can only be
reached through reorientation, since at y = 35° the
barrier interposed between the reactant asymptote
and the well is high. The two minima are separated
by a large barrier. Another important feature of this
PES (see solid line of Fig. 1) is that the fixed angle
barrier to reaction (that, as already noted, has a
minimum at y=72°) rises sharply on moving to
smaller values of y {more bent geometries) while it
rises slightly (about 0.2 eV in the range 74°< y <
115° and about zero from y=115° to y=180°
moving to larger values of the collision angle. As a
support to a TST rationalization of the angular de-
pendence of E,, we also plot in the same figure
(dotted line) the fixed y zero-point energy at the
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Fig. 1. Value of the fixed y barriers to reaction plotted as a
function of the collision angle . Continuous line: potential energy
values. Dotted line: potential energy plus zero-point energy {effec-
tive barrier).
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barrier (effective barrier) obtained from a RIOS
treatment.

As already mentioned, a program based on the
RIOS approximation was used for the calculations of
3D quantum reaction probabilities. For a detailed
description of the methodology, see [6-14]. A total
of 50 energy points were considered by paying par-
ticular attention to the threshold region, for which a
grid spacing of 0.01 eV was adopted. The computa-
tional parameters [9-14] leading to optimum conver-
gence are the following: 35 vibrational basis func-
tions, 390 sectors (240 for the reactants channel and
150 for the products channel), 16 values of the

orientation angle y (ranging from 45° to 180°) and
up to 200 angular momentum partial waves. The
calculation of the energy-independent part (potential
profiles, vibrational eigenvalues and eigenfunctions
and potential matrix elements for each sector and
overlaps between sectors) took approximately 25 s,
while propagation along the translational sectors, by
means of a standard invariant embedding R-matrix
method [19,20], for all relevant partial waves and all
orientation angles necessary to get converged 3D
cross sections, took an average of 15000 s, per
energy, on a single processor (R8000) Silicon Graph-
ics Power Challenge L. Workstation.

T T T T T T T
15F -
o~ i
yd
10~ / 5
< / -
° p/@ .
4-’0."‘ !
P"'"" _.,A‘-' g
5 B o “j > - N
‘. - =
¥ o e )
"0' ....... T e
a8 -8
R Py L
Ff gt R -
Y -t X L o
oL uietlggagagooe— " |
20 22 24 26 28 30 32 34
Total Energy /eV
Fig. 2. Vibrational state specific cross plotied as a fi of total energy for the first six reactant vibrational levels.
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3. Main features of the results

Vibrational state-specific cross sections (the rota-
tional state is always set equal to zero, in our study,
taking advantage of the fact that rotations are decou-
pled in the RIOS treatment) are plotted in Fig. 2, as a
function of total energy, for the first six reactant
vibrational levels. A first indication given by the
plots shown in the figure is that vibrational energy is
effective in promoting reaction, as expected from the
late location of the reaction barrier on the fixed y
MEPs. The reactive cross section becomes, in fact,
larger when v, the reactant quantum vibrational num-
ber, increases (saturation is observed only at much

higher energies). The effectiveness of vibrational
energy in promoting reaction is confirmed also by
the dependence of the E,; values on v, as shown by
the different curves plotted in Fig. 2: for reactant
vibrational levels asymptotically lying below the re-
action barrier (v =0, 1, 2 and 3), the threshold is
located basically at the same energy value (1.89 eV).
This means that for v =0, 1, 2 and 3 the coupling of
different degrees of freedom is adequate (although in
a different way) to allow reaction. Therefore, any
energy increase (either in translation or in internal
degrees of freedom) actively contributes to the over-
taking of the barrier, though with different effective-
ness. In other words, motions along all degrees of
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Fig. 3. Fixed-y vibrational state specific contributions to the cross sections plotied as a function of total energy for y= 75° (continuous line
and open circles), ¥ = 105° (dotted line and open squares), y = 180° (dashed line and full circles).
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freedom are open to reaction. For v =4 or larger,
the threshold energy coincides with the reactant vi-
brational energy (2.09 eV at v =4, 2.50 eV at v =5,
...) since the energy at which the channel opens is
higher than the reaction barrier. In addition, no effec-
tive barriers due, for instance, to vibrational adia-
baticity, come into play.

Although these results seem to indicate that the
reactivity determining feature of the PES is the
height of the effective barrier, that at y = 72° amounts
to 1.866 eV (see Fig. 1), fixed angle RIOS calcula-
tions provide a more complex picture of the reaction

95

mechanism. A decisive argument is offered by the
value of fixed-angle cross sections, plotted in Figs. 3
and 4 as a function of total energy, at initial vibra-
tional states ranging from v =0to v =5 and y =175,
105, and 180°. In Fig. 3, the curves are given for an
interval of total energy going from 1.8 to 2.8 eV at
three values of y relevant to reaction. In Fig. 4, an
enlargement of these curves over the threshold re-
gion is given by including also the cases of y=72°
and y = 95°. Plots of the two figures related to v =0
and 1 clearly show that, at low vibrational energy,
the most important contribution to the reactive cross
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section (top row of Fig. 3) comes from the y value
of the transition-state; it aiso determines the energy
value of the threshold (£, is 1.900 eV for v = 0 and
E,, = 1.896 eV for v=1). This is not clearly so at
v = 2, while it definitely does not apply to v=3.In
fact, at v = 2, although the largest contribution to the
cross section (central lhs panel of Fig. 3) comes from
=75°, the threshold energy is now determined by
the y = 180° contribution (as shown in Fig. 4, E,, =
1.880 eV for y = 180°, E, = 1.950 eV for y= 105°
and E, = 1.950 eV for y=75°). The central ths
panel of Fig. 3 also shows that at v = 3, the orienta-
tional angle contributing most to the overall reactiv-
ity is y= 180°, (o (180°) > (105°) > o (75°)). Re-
lated calculated energy thresholds are: E,(180°) =
1.922 < E,(105%) = 2.000 < E,(75°) = 2.10 eV. Re-
sults at higher v values are similar to those at v = 3,
However, the threshold energies are in this case
higher since they are determined by the opening of
the asymptotic energy levels.

In summary, the above data indicate that:

(1) the effectiveness of the reactants’ energy in
promoting product formation decreases when mov-
ing from open to bent collision angles. In relative
terms, translation is more effective at bent angles
while vibration is more effective at open angles.

(2) threshold energy decreases as both y and v
increase thanks also to non-classical (tunneling) con-
tributions.

4. Discussion

The first comment will be addressed to the effect
of varying the allocation of energy into the different
molecular modes of the reactants. It is, in fact,
generally true that for this reaction vibration en-
hances reactivity, as usual for processes having a late
barrier (MEPs of Fig. 5 evidence a late position of
the barrier at all values of the collision angle). At the
same time it is also true that, for bent orientation
angles (e.g. v = 75°), reaction is clearly favoured by
high translational energy, with initial vibrational en-
ergy being less effective than for open angle colli-
sions (although, absolutely speaking, vibration is
more effective than translation at all values of the
orientation angle). In contrast, at open orientation
angles reactivity is increasingly enhanced as vibra-

20 T T T =

1.5

10k (9

i i

[} ] 10
Traswlational coordinate/bohr

I
=3
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Fig. 5. Potential energy minimum energy path, as a function of the
(translationa)) circular collision coordinate of Ref. [10), at differ-
ent values of y (top panel y = 75°, central panel y = 105°, bottom
panel y = 180°).

tional energy increases. The above features indicate
that, in relative terms, insertion-like collisions (small
+y values) are favoured by translational energy, while
abstraction-like collisions (large y values) are
favoured by vibrational energy.

This can be rationalized as follows: in insertion-
like collisions, translational energy produces both the
effect of displacing H and bringing Mg closer to F.
Besides that, insertions are made more difficult by
high vibration since, in this case, the incoming atom
meets, on average, a large number of repulsive di-
atomic configurations as a result of the higher fre-
quency of the H-atom motion and of the strong
endothermicity of the MgH channel (4.692 eV). In
contrast, in collinear-like collisions the H-atom mo-
tion is less disturbing, for geometrical reasons and,
since the collision is gradually oriented towards the
F-atom end, it becomes benefited from the larger
F-atom kinetic energy as vibration is increased.

As a result, the overall reactive behaviour is
determined by the relative importance of the two
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mechanisms as the orientational angle is varied, in
agreement to what was found in previous studies of
triatomic reactions with a bent transition state and
following complex dynamics [9-14,21]. It is impor-
tant to emphasize here that the overall behaviour of
the Mg + FH reaction is more characterized by open
angle configurations than closed ones, contrary to
what one usually expects (i.e. that reactive collisions
are strongly characterized by the nature of the saddle
configuration). This is due to the ‘‘anomalous’’ fea-
ture of the saddle point of this system that allows
less reactive flux than the higher barriers of more
open configurations do.

A second reactive feature analyzed here is the
threshold location on the energy scale. Since thresh-
olds are in general associated with tunneling region
effects, one might found their analysis on one dimen-
sional (fixed y MEP) transition state models and
rationalize the observed behaviour in terms of tun-
neling through the barmrier of the fixed ¥ MEP.
However, as it has been commented before, such an
analysis would lead to the wrong conclusion that the
lowest fixed angle threshold is associated with the y
value of the transition state. This is not the case for
the Mg + FH reaction. since the main contributors to
the energy threshold (Fig. 4) are y values much
larger than that of the saddle point. Such a shortcom-
ing of the one dimensional tunneling model could be
eliminated by introducing a higher dimensionality
tunneling treatment. It is well-known, however, that
higher dimensionality tunneling models are rather
involved and difficult to implement [3,4]. For this
reason we choose here an approximate two-dimen-
sional analysis that includes the contribution of the
degree of freedom orthogonal to the reaction coordi-
nate (adiabat) in an step-wise fashion. To illustrate
the approach we first show in Fig. 5 the lowest
adiabat of the Mg + FH reaction as a function of the
(translational) circular collision coordinate [19,20] at
three values of the angle y. The plots evidence
shows two important features: (a) in agreement with
data shown in Fig. 1, the adiabatic bamier height
varies little with the orientation angie; (b) the barrier
width narrows as the orientation angle becomes
larger. This implies that tunneling may become larger
as collisions tend to collinearity. The model adopted
allows us to work out a more quantitative estimate of
the tunneling contribution. By fitting a rectangular

Table 1

G,(E): barrier permeabilities for the square-potential problem (see
text for definition) given as a function of the total energy E and
the initial vibrational level ¢, at total energies corresponding to the
threshold regions. The square potential features have been fitted
5o as to match as closely as possible the p ial energy profiles
comesponding t0 ¥ =72° (Ey e =1.8766 ¢V and Au=12
bohr) and ¥ =180° (E,,, .., = 1.9674 eV and Au=0.7 bohr),
shown in columns (a) and (b), respectively

Eo (eV) @y=72° (b) y = 180°
v=0 re=3 v=0 v=3
1.86 0.19 0.39 034 0.51
1.90 0.24 047 0.37 0.56
1.94 0.28 0.55 0.40 0.61

barrier to each adiabat, a siniple analytic expression
can be given for the barrier permeability G .(E) [3}:

G = (4ke,/kn)[(1 + ke, /ka, ) cos? (kg Au)

+(ka,/ka, + ke, /ka,) sin? (ko Bu)] ',

where Au is the barrier width and &, ,, kg, and k¢,
are the wavevectors associated with the entrance
(before the square barrier), intermediate (over the
barrier) and exit section (after the barrier), respec-
tively, of the reaction profile. Results for several
threshold energies and vibrational levels are given in
Table 1. Values reported in the table give a quantita-
tive grounding to the qualitative considerations pre-
viously described. In addition, using the same mode!
it is possible to illustrate why E, shifts to lower
positions as the initial vibrational number v in-
creases from O to 3. In fact, since when varying the
kinetic energy (comparisons are made at constant
total energy), the permeability is approximately pro-
portional to k¢, /k,, (k¢, is the wavevector associ-
ated to the asymptote past the collision (in our case,
the products region) and k,, the wavevector associ-
ated with the reactants region [3)), %, diminishes as
v is increased, so that tunneling will be larger at
larger initial vibrational energy, as observed in our
calculations.

§. Conclusions

In this work, a RIOS study of the Mg + FH —»
MgF + H reaction has been carried out, as a function
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of initial translation and vibrational energy. Particu-
lar attention has been paid to the threshold region
reactivity. The main conclusions are:

(a) The overall effectiveness of vibrational energy
in promoting reaction is consistent with the late
location of the reaction barrier, namely that vibration
is more cffective than transiation for enhancing the
reactivity of this type of reaction. It was found,
however, that this global effect results from two
different contributions to reactivity when the differ-
ent fixed-angle results are analyzed. Thus, on one
hand, for bent orientation angles, the reaction is
clearly favoured by high translational energy while
an increase of the initial vibrational energy is less
effective. On the other hand, the reactivity for open
orientation angles is enhanced by vibrational energy
while an increase of initial translational energy is
less effective. Such a behaviour has been put down
to the different effectiveness of translation and vibra-
tion in insertion and collinear like mechanisms.

(b) The threshold energy location was found to be
mainly due to tunneling. It was also found that the
threshold energy for fixed y contributions to the
cross section moves to lower values as y increases,
in spite of the fact that the transition state is bent
(small y). This behaviour was rationalized in terms
of fixed angle adiabatic curves. It was found that the
lowering of the threshold as v increases is caused by
a gradual decrease of the width of the effective
potential barrier, which ultimately leads to an in-
crease of tunneling reactivity.

{c) It was also found that the threshold shifts to
lower positions as the initial v increases from 0 to 3.
This effect can be understood in terms of analytical
permeabilities calculated for a model barrier. In this
case, the initial translational energy is inversely pro-
portional to the permeability, giving rise to an in-
crease of tunneling as vibrational energy is increased
(since, at the same total energy, translation corre-
spondingly decreases).

The importance of these findings lies in the fact
that the Mg + FH reaction implies a heavy atom
transfer, for which quantum effects are usually be-
lieved to be negligible [22). To evaluate these effects
we have used the approximate QM RIOS method.
This has the obvious disadvantage of ignoring the
bending degree of freedom in computing the tunnel-
ing reactivity, which would lead to important dis-

agreements if comparisons were made with experi-
mental or more accurate results. In this work, how-
ever, we have been mainly interested in comparing
tunneling reactivities at different orientation angles,
showing that, with particular PES topographies, re-
sults can substantially differ from those correspond-
ing to TST concepts. This comparison between dif-
ferent orientation angles has been made on an equal
theoretical footing, so as to ensure that the calculated
effects are due to special features the interaction
potential, the main conclusion of the present work.
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7.1.2 The influence of initial energy on product vibra-
tional distributions and isotopic mass effects in en-
doergic reactions: the Mg+ FH case.

Physical Chemistry Chemical Physics, 1999, 1, 1133-1139.

In this second work, we concentrated our effort on a rather thorough study
of the Products Vibrational Distribution and an extensive comparison of the R-
I0S results for the reactive cross section with those obtained by quasiclassical
trajectories performed by ourselves as well. For this work, besides the results we
already had, additional calculations were run on their D, T isotopical variations
as well as their corresponding QCTs in order to have a reliable benchmark.

Concerning the PVDs, although they are in general agreement with Polanyi's
rules, the distributions show qualitatively different behaviours depending not only
on the collision energy but also on the initial vibrational level. This is a field
which we found worth exploring since it could give some interesting conclusions
regarding the state-specificity of reactions. So, at low collision energies, PVD for
initial vibrational levels below v = 4 are statistical while PVD corresponding to
that level is rather adiabatic. When moving towards higher collision energies, the
PVD broaden as expected but those corresponding to v < 3 tend to shift towards
greater values of the final vibrational level (v') while that for v = 4 proceeds
inversely, shifting towards lower products vibrational levels. This we have tried
to justify in the article through the role played by the different values of the
angular momentum by plotting the opacity functions.

Besides, isotopic mass variations on the light atom were performed (H, D, T)
in order to get better knowledge of the reaction mechanism. Accordingly to the
reaction’s selectivity towards the vibrational energy mode, the cross section for
a given energy, at a given initial vibrational level, decreased as the light atom
mass was increased. In order to have a practical benchmark to test the reliability
of our results, QCT calculations were run on the title system and its isotopic
variations. Agreement between the two methodologies was generally good and
was attributed to a low influence of relatively both quantum and orientational
effects.
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Extended Quasiclassical Trajectory and quantum Reactive-Infinite Order Sudden calculations were performed
on a previously developed potential energy surface to investigate the dynamics of the endoergic (1.33 eV)

Mg + FH - MgF + H reaction. The study focused on both the product vibrational distributions and the
spectator-atom isotopic mass effect. In particular, their dependence upon varying, over a wide range, both
translational and vibrational energy of reactants was investigated in detail. It was found that an increase of the
translational energy shifts the maximum of the product vibrational distribution to a higher product vibrational
state (¢') when the reactant vibrational state (v) is low. However, the maximum of the product vibrational -
distribution is shifted to lower v’ values when v is high. At the same time, it was found that the vibrational
energy has less influence on the shape of the product distributions than does the translational energy, except
when several (four in our case) vibrational quanta are added. In this case, a product vibrational distribution
having a vibrational adiabatic-like shape was obtained. At high translational and vibrational energy, collisions
were found to be direct enough to allow for the kinematic heavy heavy-light constrictions to Jargely determine
the product vibrational distribution, as confirmed by the analysis of quantum state-to-state opacity functions.

t between g ! and quantum

Isotopically substituted reactions showed a generally good agr

results for all initial » values. Despite that, an unexpected shift of quasiclassical reactive thresholds towards
higher translational energies was found for the D and T isotopic variants at low vibrational energies. A

rationale for these and other dynamical effects is discussed.

1 Introduction

The basic mechanisms that lead to molecular energy
transfer have been the subject of extended studies during the
last few decades, with most of the work being focused on
inelastic collisions.! However, energy transfer is also inti-
mately connected to reactive processes. It is only because of
the additional difficulties that arise when dealing with reactive
processes that a systematic study has not yet been performed,
especially for those processes for which the energy flow
directly involves reactive modes. In spite of that, the key role
played by reactive processes in transferring energy has been
widely recognized, for instance, by the fluid dynamics and the
plasma physics communities, who have shown that a proper
inclusion of the reactive processes into the modelling greatly
enhances the accuracy of theoretical predictions.?

A great deal of theoretical work has already been performed
to understand the way energy is all d into product modes,

On the experimental side, Berg and Sloan® have measured
the product vibrational distribution (PVD) for exoergic reac-
tions and its evolution with lational energy. An inter-
esting observation made in their paper was that PVDs
measured for reactants in the ground vibrational state (v = 0)
differ from those predicted for exoergic reactions by collinear
calculations,® even when the minimum energy path of the
related potential energy surface (PES) is collinear. In particu-
iar, it was found that there is not the expected shift in the
PVD (v = 0) maximum to higher ¢ values when the collision
energy increases. On the contrary, a shift to lower v’ values
was found. A reactive-infinite order sudden (R-IOS) study was
also performed.!® It showed that the discrepancy between col-
linear and experimental findings may be rationalized, for the
above mentioned exoergic reactions, in terms of the different
range of angular momentum values that contribute to the

ction at different product v’ values, rather than in terms of

for a large number of elementary reactions, when reactants are
in Jow vibrational states. Conversely, relatively little is known
on the effect on product energy distributions of increasing
cither the vibrational excitation of the reactant molecule or

a weakening of the collinear nature of the reactive event.
More recently, Kalogerakis and Zare* performed a crossed-
beam study of the strongly heavy heavy-light (HHL)
Ba + HI - Bal + H reaction at several translational energies.

the translational energy of the system. Some of the availabl
results®~” indicate that product distributions may be drasti-
cally altered if initial conditions involve moderately or highly
excited vibrational states and/or large translational energies.
For these reasons, more work aimed at rationalizing these
effects is needed, especially if the passive control of chemical
processes, as it is currently termed, is to be reached.®

The product energy distribution showed a remarkable colli-
sion energy depend For inst the PVD at 5 kecal
mol~! is bell-shaped and peaks at ¢’ = 12, while at higher
energies a second maximum located at v' = 0 shows up. The
mechanisms controlling the observed behaviour were found to
be related to the angular momentum centrifugal barrier at low
energy and to energy conservation at high epergy. Related

Phys. Chem. Chem. Phys., 1999, 1, 1133-1139 1133
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arguments will be used here to rationalize some of the results
obtained for the title reaction.

Our investigation was motivated by the wish to know more
about the PVDs of endoergic reactions and about their
change in shape when initial conditions vary over a wide
range of values. The investigation focused on the
Mg + FH — MgF + H reaction, since this process is strongly
endoergic, has a clear HHL nature and allows an extended

. study of both selectivity and specificity of vibrational energy,
thanks to the small vibrational spacing in the product
arrangement and the existence of a reaction barrier (1.826 eV
from the reactants side) in the PES. Owing to the fact that the
key issuc of the paper is the investigation of the relationships
linking the vibrational modes and the reactive behaviour of
the system, the calculations were carried out using the
quantum time-independent R-IOS technique. The approach
provides, in fact, the whole fixed energy vibrational state-to-
state S-matrix by averaging over rotations.} -3

Using the same technique, the isotopic substitution of the
spectator H-atom was also investigated. The interest in this is
based on the fact that, in addition to aliowing an evaluation of
the kinetic isotope effect, the mass change allows also an addi-
tional comparison of the role played by vibrational energy.
Therefore, resuits from isotopic variants will be used as a com-
plement to those obtained by varying v. Furthermore, the iso-
topic variation of the constant of inertia of the reactant
diatom also allows a qualitative evaluation of the importance
of reorientation in determining reactivity. This means that
resuits ot d for the isotopic substitutes will be used not
only to gain a better knowledge of the reaction mechanism
but also to gather indications about the validity of the fixed
angle assumption of the R-JOS calculations.

Other theoretical investigations of the Mg + FH reaction
have been carried out in the past. A reliable PES'® based on a
bond order (BO) functional was developed. QCT and, more
recently, some quantum R-IOS calculations'®—2° were per-
formed on that PES to investigate the reactive properties of
this system. Particular attention was paid to the ratiopal-
ization of energy mode effectiveness and tunneling properties.
It was found that the energy mode more suited to enhance
reactivity switches from vibration (at open atom-diatom
orientation angles) to translation (at bent angles) and that the
threshold reactivity is largely determined by the tunneling at
angles different from that of the saddle geometry, in spite of
the fact that a fairly heavy atom is transferred during the
process.

This paper is organized as follows: the PES used and the
methodology adopted are briefly: described in Section 2.
Results are presented in Section 3 and their main features are
discussed in Section 4. Conclusions are given in Section 5.

2 Potential energy surface and computations

As mentioned above, we used for our calculations the
Mg+ FH - MgF + H PES,'¢ fitted to ab initio potential
energy values using an RBO functional. The PES is 1.33 eV
endoergic and has a late barrier placed well inside the product
channel. The barrier is 1.826 ¢V higher than the reactants’
asymptote. The transition state geometry is bent, with y (the
angle formed by the Jacobi vectors) being 72°. In the strong
interaction region the MEP shows two minima: one for the
collinear (y = 180°) geometry, which lies (.34 ¢V below the
reactants’ asymptote and is placed just before the reaction
barrier, and one for a highly bent (y = 35°) geometry, which
lies 1.30 eV below the reactants” asymptote and is placed late
in the product channel. There is also a large barrier inter-
posed between the two minima, being ca. 3.0 eV for the fixed-
angle energy path and gradually reduced through reorien-
tation. Another important feature of this PES is that the
fixed-angle barrier to reaction (which, as already noted, has a

1134 Phys. Chem. Chem. Phys., 1999, 1, 1133-1139

minimum at y = 72°) rises sharply on moving to smaller
values of y (more bent geometries) but rises very little (ca. 0.2
eV in the range 74 <y < 115° and ca. zero from y = 115 to
180°) on moving to larger y values.

As already mentioned, a program based on the R-IOS
approximation was used to obtain 3D estimates of the
quantum reaction probabilities. For a detailed description of
the methodology, see refs. 10-15 and 21-23. Owing to the
characteristics of the system (heavy particles, highly structured
PES), particular attention was paid to make the numerical
procedures highly accurate. A total of 50 energy values were
considered. The computational parameters'®~!> leading to
converged reactive probabilities are as follows: 35 vibrational
basis functions, 390 sectors (240 for the reactants channel and
150 for the products channel), up to 200 angular momentum
partial waves and 16 values of the orientation angle y (ranging
from 45 to 180°). The calculation of the energy-independent
part (potential profiles, vibrational eigenvalues and eigen-
functions and potential matrix elements for each sector and
overlaps between sectors) took approximately 25 s, while the
propagation along the reaction coordinate, by means of a
standard invariant embedding R-matrix method,?* for all rele-
vant partial waves and all orientation angles, took an average
of 15000 s per energy, on a single processor (R8000) Silicon
Graphics Power Chali L Workstation. Additional calcu-
lations were performed to estimate the isotopic mass effects at
10 energy values for each isotopic variant (D and T) of the
hydrogen atom. To ensure the proper convergency, all
numerical parameters were rechecked when varying the mass.
Only the dim of the vibrational basis ded to be
adjusted for cach isotope. In fact, b of the non-
negligible shrinking of the vibrational level spacing when
going from H to D and T (changes in the skewing angle and
scaling factors were found to be less important) the dimension
of the basis needed to be increased to 40 for D and to 45 for
T

Existing QCT results’*~!® were integrated by performing
further calculations aimed at compieting the range of initial v
values and translational energies already considered. A total
of 100000 trajectories were run for each set of initial condi-
tions. Equivalent calculations were performed also for the D
and T isotopic variants, at 10 energy values.

3 Results

Fig. 1 shows the variation of the PVD when plotted as a func-
tion of the total energy (E,) and the reactant vibrational
number (v). In the figure, the encrgy increases on going from
bottom to top panels and the reactant vibrational number
increases in going from left to right panels. In general—with
the exception of v =4-—an approximately statistical PVD,
having a maximum at ¢’ = 0, is obtained. Such a behaviour is
consistent with Polanyi rules: the late barrier of the endoergic
PES leads to a repulsive energy release, thus favouring the
population of the lowest product vibrational states. However,
several deviations were found, depending on both total energy
and the reactant vibrational state.

When the total energy increases, the distribution always
becomes wider, covering a larger interval of product vibra-
tional states. It was also found that for » <3 the PVD
maximum tends to shift towards higher v’ states as the energy
increases. In particular, this is apparent for v =0 and 2. At
v =1 this leads to the appearance of a local maximum that
peaks at v = 5. However, this is not the case of v=4. Its
PVD peaks at ¢ = 5 at low energy values (suggesting a ten-
dency to vibrational adiabaticity). In this case the maximum
moves towards lower v’ values (it is located at o' = 2 at E,,, =
3.00 eV) as the energy increases.

As for the isotopic mass effect, Fig. 2 compares QCT and
R-IOS cross sections of Mg + FH, Mg + FD and Mg + FT
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for the first six reactant vibrational states. The curves are
plotted as a function of translational energy. From the figure
the significant enhancement of the reactivity as the vibrational
energy is increased is clearly apparent, as is typical of endo-
ergic reactions with late barriers. This holds for all isotopic
variants when going from low to high v. However, at a fixed
initial vibrational level, the absolute value of the total cross

section decreases, on average, as the isotopic mass is
increased. Such a meult is in accord with the role played by
vibrati i in enh g the reactivity of endoergic
processes: as the isotopic mass mcreasw, the content of vibra-
tional energy for a given vibrational state decreases and so
does the reactivity. Such a result also agrees with transition
state theory (TST) predictions. The density of states of the
reactants increases on going from H to T. However, the
density of states at the transition state is almost unaffected by
the isotopic substitution. This is, in fact, essentially that of the
products since the endoergicity of the process causes the reac-
tion barrier to be located late in the product region. Accord-
ingly, the reactive probability, defined in TST as the ratio of
the two quantities, decreases in the same sense.

According to the shrinking of the vibrational spacing, the
value of translational energy at the threshold shifts gradually
upwards when going from H to T, for both QCT and R-10S

lations. On the average, the agreement between QCT
and R-IOS results is good for all initial vibrational levels and
isotopic variants. In previous papers!®~1* this agreement has
been shown to be essentially owing to the rather weak varia-
tion of the PES with the orientation angle and to the HHL
nature of the reaction. As a matter of fact (see Fig. 2), the
agreement is particularly good at v =2, 3 and 4 for H, D and
T, respectively. These arc the vibrational states which at
threshold lead to an approximately equal amount of trans-

lational energy for the three isotopes. At larger v values, QCT
reactivity is always higher than that of R-10S, while the
opposite is true for smaller » values. It has also to be men-
tioned that, for the lowest v values, the QCT and R-IOS
threshold energies differ significantly. The difference increases
with the mass of the isotope while it decreases with v,
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the total energy and the reactant vibrational energy may be
obtained from a detailed analysis of the R-JOS state-to-state
opacity functions, since they single out the role played by indi-
vidual orbital angular momentum contributions to the reac-
tive probability. The state-to-state opacity functions, from the
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initial vibrational states v = 0 and 4 (cach taken as a represen-
tative of the two types of PVDs found) to several product
vibrational states are shown in Fig. 3 and 4, at E,;, = 2.24 and
3.00 eV (for low and high total energy, respectively).

4.1.1 Low transiational energy. At low energy, the shape of
the opacity function is sufficiently close to a step function.
What makes the difference between v = 0 and v = 4 results is
the range of allowed orbital angular momentum (¢) values
(0-70 for v =0 and 0-40 for v =4) and the height of the
platicau. However, the range of angular momentum values
that contribute to the reaction changes negligibly as a func-
tion of the final vibrational state considered. This means that
for a given v value the final shape of the PVD depends only
on the height of the opacity function plateau. The reason why
the allowed angular momentum range becomes larger when
the initial vibrational state becomes small resides in the larger
initial translational energy available. This causes larger ¢
values come into play. For these / values, however, orbital
angular momentum barriers are larger and generate a cen-
trifugal repulsion sufficient to prevent collision partners from
coming close enough to react.

412 Low translational energy and high vibrational

broadening of the PVD in the high v’ region. PVDs calculated
at various values of ¥ do not differ significantly from that for
y = 75° though collisions occurring at open angles show a
tendency to lead to larger populations at high ¢ states. This
means that a correlation between open angles and vibrational
excitation can be established. Such a behaviour was first
singled out by Blais and Truhlar?® and then confirmed by
others.!* Its relevance, for the present case, is owing to the
dominance of open angle contributions in the characterization
of the integral quantity. In fact, for this reaction, an increase
of the translational energy brings in contributions from PVDs
caiculated at all values of the orientation angle.

4.1.3 High translational energy. As already mentioned, an
increase in the total energy makes the calculated PVDs change
markedly. A result of increasing total energy is the widening
of the range of angular momentum values {(about 0-140 for
both v = 0 and 4) that appreciably contribute to reaction. For
v = O the height of the opacity function calculated at different
v’ values varies significantly when going from low to high
translational energy. This causes a shift of the PVD maximum
towards larger v’ values as translational energy is increased.
At v =4, however, the situation is slightly more complex

vibrationally adiabatic PVDs. The particular behaviour found
at low energy for v =4 can be understood in terms of the
conditions for adiabaticity discussed by Light and co-
workers.?® In a series of studies cmploying an adjustable
potential, they found that a process is vibrationally adiabatic
when some requirements on the local kinetic energy along the
translational coordinate on the curvature of the reaction path
and on the vibrational spaciag and its variation along the
translational coordinate are fulfilled. These requirements are,
indeed, matched by the Mg + FH reaction at high vibrational
excitation and low total energy, as is the case for v =4 and
E = 224 ¢V. In agreement with the findings of Light and
co-workers, an increase in translational energy tends to
weaken the adiabaticity of the PVD.

The way vibrational adiabaticity is enforced needs,
however, a comment. In the previous quantum study of the
Mg + FH reaction,2® the reaction mechanism was found to
depend significantly upon the orientation angle. It was seen,
for instance, that tunneling contributions to the reaction differ
significantly when the collision angle varies from bent to open.
Other examples of the angular dependence of reactivity are
given in Fig. 5. In the figure, the fixed angle PVDs for v = 0
and 4 at E,, =224 and 2.73 are shown. The v =0 PVD is
determined by the y = 75° one (it well represents the situation
at the transition state). This is strictly the case at low energy,
while at E,, = 2.73 eV there is a significant contribution from
collisions occcurring at more open angles, which causes the
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Fig. 3 R-10S state-to-state opacity functions, at initial v = 0, E_, =
2.24 eV (first column) and 3.00 eV (second column), for v/ = 0, 1, 2 and
3 {from bottom to top row, respectively). Note the change of scale
between the first and the second columns.
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b of the different energy disposal associated with low
and high orbital angular momentum collisions. Contrary to
the v = 0 case, in fact, at v = 4 and E,, = 3.00 eV the height of
the specific opacity function at low angular momentum values
little differs from that at E,, = 2.24 eV. This means that, at
least qualitatively, the probability of populating the various
product vibrational states is essentially unaffected by an
increase in transiational energy. On the contrary, at large ¢
values the opacity function changes from a flat into a struc-
tured profile, owing to the appearance of a maximum. This
maximum shifts towards higher angular momentum values
and becomes higher as v’ decreases. Since high angular
momentum terms significantly contribute to the cross section
due to the 27 + 1 factor, this makes the PVD peak shift
towards lower v/ values as the total energy increases.

Such behaviour is typical of HHL systems exhibiting direct
dynamics.272® It can be understood in terms of the propen-
sity of HHL systems to keep the product translational energy
constant (translational energy is mainly stored in heavy
atoms) and to allow a quantitative transfer of / to the product
rotatonal quantum number j. For this process, the state-to-
state opacity function shows a maximum for a given v’ state
when the conservation of total energy is satisfied by means of
a complete conversion of reactant orbital into product rota-
tional energy, ie. a suitable condition for the above-
mentioned kinematic rules to hold. Despite this, the opacity
function has inequivocal HHL characteristics only when both
vibrational and total energies are sufficiently large. This fact
indicates that the PES structure plays a key role in determin-
ing the reactive behaviour of Mg + FH and allows a limiting
kinematic behaviour to become dominant only when the
energy is large and it is allocated to the appropriate reactant
mode (vibration in this case).

42 R and i

The general good agreement between QCT and R-IOS cross
sections for all initial vibrational levels and H-atom isotopic
masses, as shown in Fig. 2, provides, in principle, a rather
direct insight into the importance of initial energy in deter-
mining the accuracy of the infinite order sudden approx-
imation (IOSA). It is well known, from its use in inelastic
collisions, that the IOSA becomes more accurate as trans-
lational energy increases. However, as alrcady mentioned, the
features of the PES characterizing the reactive process make
additional factors to come into play. For instance, it has been
repeatedly found that the anisotropy of the PES favours reori-
entation of the collision partners and the coupling of angular

pic mass effects
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Fig. 4 Siate-to-state opacity functions, for initial v = 4, at E,, = 2.24
eV (first column) and 3.00 eV (second column), for v’ =2, 3,4, 5and 6
{from bottom to top rows). Note the change of scale between the first
and the second columns.

motions. On the other hand, when the variation of the PES
with the orientation of the target molecule is sruall, the frozen
collision angle approximation holds better. This is also the
case of the Mg + FH reaction, since its PES shows little varia-
tion for a wide angular range (70-180°} and in the remaining
angular range it is repulsive enough to not contribute to reac-
tivity.

421 Low transiational energy—high initial » states. At suf-
ficiently low translational energies, QCT cross sections are
larger than R-IOS ones. This is owing to the fact that, when
the velocity is sufficiently low, reorientation of the target moi-
ecule from an initial unfavourable orientation to a more
favourable one is easier. This leads to an enhancement of the
3D reactivity with respect to the fixed-angle coliision one.

A reorienting effect—and not only a decrease in vibrational
energy—plays a key role in determining the decrease of the
cross section as the isotopic mass increases. However, since it
is known that FD and FT molecules reorient themseives less
promptly than FH, low transiational energy QCT reactivity
becomes smaller when the hydrogen isotope becomes heavier,
as confirmed by the decreasing difference between QCT and
R-IOS results as the H-mass increases (Fig. 2). In particular,
the spike foun. in the low translational energy region of the
QCT excitation function of Mg+ FH at v=5 may be
explained in terms of reorientation effects. This is confirmed
by the fact that both QCT and R-IOS results do not exhibit
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any peak for FD and FT. In other words, the sharp maximum
is obtained only when the isotope is light enough and the
computational approach correctly takes into account reorien-
tation effects.

422 High translational emergy—low initial v states. The
observed behaviour changes markedly when low initial vibra-
tional states are considered. First, for all isotopes high trans-
lational energies are necessary to obtain appreciable cross
sections. This result is in accord with the enhancing role
played by vibration in promoting reactivity and the less effec-
tive role played by translation. Second, the QCT reactivity is
found to be smaller t an the R-IOS one, wt t seffect eng

hanced by an i of the isotopic mass. The smaller
QC. rea tivity is ..__ t. _e .a_se. .y an _n.xp_.t__ __t
significant upwards (along the transiational energy scale) shift
of the threshold energy for the isotopically substituted QCT
cross sections, at low v values. The energy shift is much larger
than the decrease in vibrational energy associated with the
isotopic substitution of H by D and T.

To find a rationale for the observed behaviour, it was sug-
gested that, below a certain content of vibrational energy, the
reaction mechanism may become complex.!® A later
paper!? shows, in fact, that under certain conditions the reac-
tion may occur vig an insertion of Mg into HF. We have
investigated the rate of occurrence of complex collisions as a
function of the initial vibrational level and of the isotopic
mass. The results of this study are shown in Figs. 6-8. An
inspection of the figures makes it clear that the anomalous
shift of the QCT results takes place at the same vibrational
Jevel that (as one goes from high to low v values for each
isotope) is the first to show a relevant contribution of complex
collisions to the total cross section. It is important to empha-
size here that for higher vibrational ievels the contribution of
complex collisions to the integral cross section vanishes. Then,
it is perfectly legitimate to conclude that the shift in threshold
energy for QCT results is due to the accessibility of insertion
pathways when not enough energy is put into the enbancing
mode (vibration). This causes a decrease of the reactivity
because when a collision complex is formed energy redistri-
bution may take energy away from the reaction mode and
allocate it 10 other modes that are less effective in promoting
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Fig. 6 Contributions of simple and complex trajectories (see text) to
the total cross section, for Mg+ FH and initial 0=0, 1 and 2
¢ ) Total cross section. (— — — -) Contribution of complex trajec-
tories. (-----) Contribution of simpie traj ies
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E, . /kcat mol”!

Fig. 7 Contributions of simple and complex trajectories (sec text) to
the total cross section, for Mg + FD and initial v=1, 2 and 3.
( ) Total cross section. (-~ — - -} Contribution of complex trajec-
tories. (~----] ) Contribution of simple trajectories.

reaction. However, when enough enmergy is put into the
enhancing mode, the system reacts via a direct abstraction.

In summary, for this endoergic reaction, when the fixed
angle constraint (typical of the R-IOS approach) is released in
favour of a full 3D motion, reactivity is penalized for
insertion-like mechanisms, while it is enhanced for abstraction
{with reorientation) ones. The reason is that in 3D motion,
during the formation of an insertion complex, energy is redis-
tributed among all degrees of freedom and the come-back to
the energetically favoured reactant channel is more likely.
Obviously, the opposite is true in abstraction via a reorien-
tation mechanism, for which the 3D motion allows an exit
into the product channel. Couditions at which 3D-QCT and
R-IOS reactive cross-sections become almost equivalent are
v=2 3 and 4 for H, D and T respectively (Fig. 2). Under
these conditions, the decreased contribution of insertion is
counterbalanced by the increasing contribution of reorien-
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Fig. 8 Contributions of simple and complex trajectories (see text) to
the total cross section, for Mg + FT and initial v =2, 3 and 4.
. {(———) Total cross section. (~ - ~ ) Contribution of complex tra-
y iet. (-----) Contribution of Kimple trajectors
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tation. This compensation occurs, for all three isotopes, at a
translational energy of about 0.75 eV, pointing out the critical
role of translation energy in favouring a switch from insertion
to abstraction mechanisms.

5 Conclusions

The influence of both initial vibrational and translational
energy has been studied in  detail for the
Mg + FH =+ MgF + H reaction, including also its infl

on the spectator-atom isotopic processes. In particular, in this
paper we have discussed the following items.

At low translational energies, PVDs were found to peak at
v’ = 0 for all initial vibrational states (except for v = 4, which
shows a tendency towards vibrational adiabaticity). This
behaviour was rationalized in terms of the rules of Polanyi and
of Light and co-workers about the vibrationally adiabatic
reactive processes (v = 4 fulfills optimum conditions for the
vibrational adiabaticity). In this respect, a decisive influence of
the collision angle was also singled out. For instance, it was
found that the v =0 PVD js essentially determined by the
behaviour of the system at the transition state angle. This is
essentially true also for all other v < 4 values. At v = 4, a clear
correlation between open angles and vibrational excitation
was found (the PVD shape is mainly determined by the col-
linear (180°) contribution). The vibrationally adiabatic behav-
iour and the shift to a dominant, collinear-like reactive
dynamics were found to be linked, with both providing to the
system an amount of vibrational energy sufficient to overcome
the reaction barrier and keeping the initial transiational
energy low.

At higher transiational energy a different behaviour was
observed for low and high vibrational excited reactants. For
the v =0 casc, the PVD tends to broaden and to peak at
higher v’ values. This was found to be owing to a switch from
v =0to v'=2 in the most effective state specific, single-¢
reaction probability. This is caused by an increasing contribu-
tion to reaction of more open orientation angle collisions,
among which are those favouring product vibrational excita-
tion. When both vibrational and translational energy are high,
as is the case of v =4 and E,, = 3.00, the PVD shape was
found to be strongly dominated by the HHL nature of the
mass-combination of the system, since reaction is, to a large
extent, direct. As a result, the state-to-state opacity functions
show a high angular momentum maximum which appears at
higher ¢ values as ¢’ decreases. This causes the PVD to peak
=t lower v’ v=jues ~s tr-~sl~tio~~1 e~ergy is i~creas-d. On th-
other hand, the PVD becomes highly isotropic as a function
of the orientation angle.

As for the isotopically substituted processes, an agrecment
was found, as ecxpected, between the vibrational energy
content and the reactivity enhancement. A remarkably good
agreement was also found, for all initial v, between QCT and
R-IOS cross sections and all isotopes. Reorientation of the
system during the reactive encounter was found to explain the
(small) discrepancies between QCT and R-IOS results at low
translational energy {the QCT cross section being larger than
R-IOS ones) as well as the v = 5 post-threshold Mg + FH
cross section maximum. However, as initial v is decreased, the
QCT reactivity becomes much lower than the R-IOS one,
with such a difference i ing with the isotope mass. This
difference manifests itself as an unexpected large shift towards
higher energy values for the low ¢ QCT cross sections. The
shift has been found to be associated with the replacement of
complex (insertion) by direct (abstraction) collisions. The reac-
tivit decrease is then caused b_ a redistribution of t gy
from the already unfavourable translational mode. The final -
result is that the release of the fixed angle constraint increases
QCT reactivity in abstraction-like collisions but diminishes it
in insertion-like encounters. The switching from insertion to
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abstraction mechanisms is found to be controlled by both
translational and vibr ] energy. This control is evidenced
with the occurrence of trapsition conditions which make QCT
and R-IOS essentially coincident, found at 075 eV
{translational energy) and v=2,3and 4 forthe H, Dand T

isotopes, respectively.
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7.2 The B+ OH — BO + H system.

In this section we will present the work we have published concerning the R-IOS
quantum mechanical study of the above combustion reaction.

7.2.1 Cross sections exhibiting quantum resonances: the
B + OH case.

Journal of Molecular Structure (Teochem) 463 (1999) 65-74

Resonances are one of most noticeable quantum effects that can be found in
reaction dynamics. Appearing as Lorentzian peaks in the reaction probability,
resonances are related to the formation of metastable compound systems and
provide extremely accurate information on the structure of the strong interaction
region of the PES. These phenomena are, therefore, when experimentally observ-
able, a unique benchmark to improve the theory. However, two main difficulties
arise when it comes to theoretically predicting resonances at the three dimen-
sional cross section level. The first one is related to the relatively short lifetimes
of the collision complexes, which lead to broad probability peaks, easily smoothed
out when one sums over the angular momentum. This may, however, be of less
importance if there exists a stable complex. The second shortcoming concerns
the high computational cost of a complete rigorous reactive scattering calcula-
tion. To overcome this second problem, one may employ reduced dimensionality
models, such as IOS, as a first estimation of the resonance pattern relevance of a
reactive system.

In this context, we considered the approximate study of the resonance pattern
presented by the title system. The interest of the system lies in the importance
of the HBO and HOB stable intermediates, which may be important in the
formation of resonance states. The HBO is experimentally known and theoretical
studies have predicted a linear geometry for this minimum. The second HOB
minimum geometry has caused some controversy and, apparently, fitting the PES
to a collinear minimum gives the better description of the reactivity. Thus, a
Sorbie-Murrell fit was used, considering a linear geometry for both intermediate
states. On this PES, the reaction is 3.60 eV exoergic and its alternative channel
can be neglected at the energies considered in the work since it is over 1.75 eV
endoergic. The BOH lies around 6.4 eV below the reactants’ asymptote and
is located early in the entrance region. Following the minimum energy path, a
barrier of 1.21 eV connects this minimum to the HBO one, lying 4.9 eV below
products’ asymptote.

In the present article we showed how the resonant component of the global
reactivity was significant for the title system. The plots of opacity functions as
well as differential cross sections confirmed this fact, giving strongly structured
opacity functions and highly symmetric differential cross section. The outstand-
ing structure surviving in the integral cross section indicates that its experimental
measurement may be of great use for the refinement of the interaction potential.
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Abstract

Extensive theoretical quantum-mechanical calculations are reported for the cross-section and related dynamical quantities of
the B + OH — BO + H reaction, on a previously developed potential-energy surface (PES) describing the ground electronic
state. These calculations show, as an outstanding feature, the presence of marked structures in the shape of the excitation
function as a consequence of the existence of a dense spectrum of rather long-lived resonance states. These are narrow enough
to survive the angular momentum averaging, thanks to an important stabilization caused by an electronic minimum correspond-
ing to a linear HOB configuration. The centrifugal barriers due to high values of the orbital angular momentum are found to lead
to several orbiting shape resonances, as revealed by the opacity function plots and the dependence of the reaction probability on
energy. Differential cross-sections corresponding to energies lying at either reactivity peaks or valleys in the integral cross-
section show a highly symmetric dependence on scattering angle, indicating an important resonant contribution to reactivity in
both cases. The possibility of directly observing resonances in experimental integral cross-section measurements is analysed in

the light of the present results. © 1999 Published by Elsevier Science B.V. All rights reserved.

Keywords: Reaction dy

ics; Scattering; Resonance; Potential-energy surface (PES)

1. Introduction

Resonances constitute one of the most striking
phenomena in physics [1,2]. In scattering processes,
they were first measured experimentally in nuciear
and particle physics as a consequence of the formation
of new compound particles emerging from collisions of
simpler systems. They are manifested as Lorentzian-
type peaks in the reaction probability, the maximum
being identified as the resonance energy and the width
Proportional to the inverse of the compound system’s
lifetime. In chemical reaction dynamics, resonances
were first predicted theoretically 28 years ago by
Truhlar and Kuppermann [3], in collinear exact
quantum calculations of the reaction probability as a
function of energy for the H + H, — H, + H reaction.

S —
* Corresponding author.

From the very beginning the importance of such
phenomena was realized, since they provide very
accurate information on the structure of the close
interaction region of the potential-energy surface
(PES). However, predictions had to be made on quan-
tities amenable for experimental detection. About six
years ago, remarkable improvements in theoretical
methodology allowed Miller and Zhang [4] to point
out the possibility of directly observing resonances for
the H + H, — H, + H reaction, by looking at ridges in
the simultaneous energy and angular dependence of
the state-to-state differential cross-section. More
recently, Kuppermann and Wu {5] succeeded in refin-
ing the above ideas and performed the first quantita-
tive prediction, for the H + D, — HD + H reaction, of
a reactive scattering resonance. They used symme-
trized hyperspherical coordinates to perform exact
quantum calculations of the reaction probability,

0166-1280/99/5 - see front matter © 1999 Published by Elsevier Science B.V. All rights reserved.
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including the effect of the geometric phase due to
conical intersections between electronic surfaces.
These predictions concerned highly energy- and
scattering-angle-resolved state-to-state differential
cross-sections, quantities which are rather difficult to
measure experimentally, although remarkable
successful experiments along this line have been
reported quite recently [6).

Other recent and detailed studies where resonances
have been measured in molecular (heavy particle)
processes concern van der Waals® complexes, for
which resonances are analysed in highly resolved
electronic Spectra as predissociation phenomena
[2,7,8]). Photoelectron detachment spectra (PhES)
have also been a source of detailed information
about transition state (TS) resonances. This has been
shown in experiments where an electron is photo-
ejected from a stable anion, leading to an unstable
neutral, which is usually found to be formed in the
TS region [9,10]. A paradigmatic resuit illustrating
this series of experiments can be given by the excel-
lent agreement between the experimental PhES spec-
trum and its rigorous theoretical simulation found in
the study of the F + H, system, which allowed the
authors to conclude that *‘the nature of the FH, transi-
tion state has been essentially solved’” [11]. Also,
from experimental measurements on the photodisso-
ciation and photoisomerization of ketene, Lovejoy
and Moore [12] deduced the direct isomerization
rate of the same molecule. They obtained a strongly
structured shape of the isomerization rate versus
energy relationship, which they attributed to reso-
nance states of oxirene, the intermediate species
found in the route to isomerization. Gezelter and
Miller [13] calculated theoretically the corresponding
microcanonical rate of isomerization and found
reasonable qualitative agreement with the experi-
mental results, confirming the resonance features
present in the microcanonical (i.e. energy-selected)
rate constant.

The above examples suggest that it is becoming
increasingly possible to make a direct comparison
between calculated and measured resonance phenom-
ena. Thus it appears necessary to accumulate addi-
tional studies on different molecular processes and
other experimentally measurable quantities. In parti-
cular, it is highly interesting, on one hand, to have
such information for elementary chemical processes

other than the *‘canonical’”’ H + H, — H, + H, since
metastable states play a decisive role in controlling
the reaction outcome and much richer and varied
energy dependences are found in non-academic reac-
tions. On the other hand, it is also desirable to explore
the possibility of directly observing resonances in
integral cross-section measurements, since highly
resolved related experiments are becoming available.
For instance, recent improvements are making the
proper energy resolution at hand to characterize
resonance peaks adequately [14].

In the present work we are concerned with reso-
nances that are manifested in the integral cross-
sections of elementary chemical reactions; i.e. the
sum for all relevant total angular momentum values
of the reaction probability. However, two main
problems arise in this case. The first one is related
to the relatively short lifetimes of the collision
complexes that are frequently found in chemical reac-
tions. Short lifetimes lead to broad Lorentzian peaks,
being easily smoothed out in the sum over the angular
momentum. Thus, in these cases, resonances become
undetectable at the cross-section level. The second
problem is related to the computational cost of a
complete reactive scattering calculation. At present,
calculations involving non-academic  systems
demand such a computational effort that the computa-
tion of most exact quanturmn reactive cross-sections is
rendered extremely expensive. Thus, even in the case
that the resonance structure survives the angular
momentum sum, its exact computation is a formidable
task.

The first shortcoming may be of less importance if
strongly stable complexes can exist during the reac-
tion. Previous experience with reduced-dimensional-
ity and one-partial-wave exact quantum calculations
indicate that if the PES supports stable electronic
complexes, the resonance pattern of the reaction prob-
ability is much richer and intense [15-20]. In these
cases several resonances are much sharper (or life-
times much longer), thus increasing the probability
of survival after the angular momentum averaging.
The second shortcoming can be partially overcome
with the use of reduced-dimensionality quantum-
mechanical (QM) scattering methods. Although
approximate, they provide a first estimation of how
relevant the resonance reactivity is. For instance, they
may serve as an initial guess to more accurate
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methods for the characterizing properties of the
resonances (i.e. width, intensity and density of the
resonance peaks), how they are manifested in aver-
aged quantities, etc. In addition, they could provide
rather accurate information on those resonance states
that are due to the degrees of freedom included exactly
in the approximate scattering method.

The present study deals with a QM study of the
combustion-related B + OH — BO + H reaction,
performed by means of the Reactive-Infinite Order
Sudden (R-IOS) technique [21-27]. The interest in
the B + OH system lies in the importance of the
HBO and HOB stable intermediates, which are
supposed to have a determining role in the formation
of resonance states. In particular, HBO has been
known experimentally since 1971 [28]. Theoretical
studies at ab initio level [29-32] indicate the exis-
tence of the HBO structure as a minimum on the
doublet ground-state surface of the HBO system. A
second HOB minimum is also predicted, less stable
than the former. All theoretical works predict a linear
configuration for the HBO intermediate, but certain
controversy exists on the nature of the HOB minimum
geometry, since both linear and angular geometries
have been reported in the literature.

2. Potential-energy surface and method numerical
parameters

As part of a systematic study of some boron atom
reactions, the problem of determining the best geome-
try for the second minimum was undertaken [31-35).
These studies used a reasonable PES that was tested
previously [31,32], showing a linear geometry for
HBO but angular geometry for the HOB minimum.
The influence of the HOB minimum geometry was
then checked by comparing the previous results with
those obtained on a new PES fit with linear HOB
geometry [35). It was found that the last surface
described the experimental evidence better, since it
predicted a strong product vibrational population
inversion, in accordance to related reactions where
the BO molecule is also produced [36-39). In addi-
tion, comparison between quasiclassical trajectory
(QCT) and long-range behaviour [40,41] showed
that the Jong-range interaction, which is the dominant

one in this kind of surface, was better described with
the second surface.

A Sorbie—Murrell fit, the main features of which
have been discussed elsewhere [35], was used, corre-
sponding to the surface with both linear HBO and
HOB minima. On this PES, when B approaches OH
(4.147 eV below the B + O + H dissociation plateau),
strongly bound BOH (10.601 eV) stabilized by a ca.
6.4 ¢V well located early in the entrance channel can
be formed, from which the minimum-energy path
goes through a barrier of 1.21 eV connecting with
the HBO (12.671eV) well before reaching the
product asymptote (7.747eV). The B + OH —
BO + H reaction is thus exoergic by 3.60 eV, and
the ground reactant vibrational level lies 0.24788 eV
above the reactant minimum. The alternative BH-
forming channel is endoergic by 1.7531 eV, so it is
not considered at the energies of the present study.

Calcuiations have been performed by means of the
same R-IOSA procedure used in previous works [42~
51]. The calculation procedure can be divided into
two parts. In the first part, potential cuts, vibrational
eigenvalues and eigenfunctions and overlaps are
computed for each sector into which the configuration
space is divided. In the second part, the solution is
propagated through the sectors, by means of the invar-
iant embedding R-matrix method [52,53], to get the
fixed-angle S-matrix elements for all relevant (i.e.
non-negligibly contributing to reactivity) values of
the orbital angular momentum and each collision
energy. The global procedure is repeated at each rele-
vant collision angle (the Jacobi atom--diatom orienta-
tion angle).

Configuration space was divided into 450 sectors,
225 for each reaction channel. For the energy range of
interest, convergence was obtained by using 40 vibra-
tional basis functions. The scanned collision energy
range was from 0.01 eV to 0.41 eV, with a total of 55
points for the integral cross-section. For each energy
value a total of 20 collision angles was included,
ranging from 80 to 180° in steps of 5°. For each colli-
sion angle and energy, the number of angular momen-
tum partial waves leading to convergency varied from
lpx =34 at E; = 0.01 eV and vy = 100°, t0 [y, = 124
at E; = 0.41 eV and vy = 140°. The first part of the
calculation lasted an average of 60 s on an IBM 3AT
Workstation, while each vibrational state-to-state
(v— v') S-matrix element (S.,,(¥)) took 2 s on average



110

Chapter 7. R-IOS studies.

68 X. Giménez et al. / Journal of Molecular Structure (Theochem) 463 (1999} 65-74

1.2x10° ] : 1 Y
10| .
08} .
'!u— -
2 (20
(18)
S R SR 2 VNS
V\’/_N\f\/\,-.f.»\_,., J\I,-» /\.4]0)
B N
+ N s /*‘ .o ‘-(6)
i 1 i 1
b 39 40 41 42 43

Energy/eV

Fig. 1. Partial cumulative R-IOS 3D reaction probabilities as & function of total energy (zero placed at the bottom of the products arrangement),
for OH in the ground vibrational state, summed over all open vibrational product states and for the orbital angular momentum quantum number
1= 0. Numbers in parenthesis indicate the number of angles included in the partial integration (the integration range is 80-180° in steps of 5°).
The curve labelled with (20) is the complete R-10S 3D reaction probability.

to be obtained, for each energy, collision angle (y) and
partial wave (J), on the same computer. Additional
calculations were performed to obtain the single-
reaction probability. In this case, a total of 1000 energy
points was computed, in the same energy range, for the
same number of collision angles. Finally, differential
cross-sections were computed for a total of 721 scatter-
ing angle values, this large number being necessary to
characterize the strongly oscillatory structure properly
(see below).

3. Resulits and discussion

An extensive study of the reaction dynamics of the
title system has been performed. The main goal was to
compute both averaged quantities (i.e. easier to
measure experimentally), such as differential and inte-
gral cross-sections, as well as more detailed ones,
such as state-to-all opacity functions and reaction
probabilities, to see how resonance features are mani-
fested, and also how they evolve from detailed to
averaged quantities. The calculation obviously starts

by solving the R-IOS Schridinger equation, which
provides the corresponding S-matrix elements. Its
squared modulus, integrated over the collision angle,
is the state-to-state single-energy, single-angular
momentum reaction probability

Pl = -;- J’l_ 1 |-S’wr(7)|2 dcosy )

which, when summed over all product vibrational
states v’ and plotted as a function of energy, leads to
the results shown in Fig. 1. This graph shows the
reaction probability for zero orbital angular momen-
tum. The global shape is described by an overall
almost constant dependence upon energy, with
several broad peaks and valleys. Superimposed on
this background bebaviour intense and sharp peaks
are found, due to strongly bound metastable states.
In addition, partial cumulative angular integrations
are also shown, with the purpose of visualizing how
the global three-dimesional (3D) probability profile is
gradually built up (although in an approximate way).
Remarkable is the homogeneity of the reaction prob-
ability profile as the fixed-angle probabilities are
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Fig. 2. R-I0S 3D reaction probabilities as a function of total energy (zero placed at the bottom of the products arrangement), for OH in the
ground vibrational state, summed over all open vibrational product states and for the orbital angular momentum’ quantum number / = 70.

being added. Most of the broad peaks and valleys
present in those graphs containing less angles are
kept during the rest of the integration, with minor
changes causing only slight variations in their inten-
sity. This is a clear consequence of the important
degree of isotropy of the potential. The only major
difference is the appearance of the sharp and intense
peaks, which is strongly dependent on the collision
angle. This fact clearly shows the dramatic depen-
dence of the resonance features on small changes in
the PES topography, thus stressing the importance of
putting effort towards characterizing resonances in
chemical reactions.

Fig. 2 shows the state-to-all reaction probability, as
a function of energy, for the orbital angular momen-
tum / == 70. Two main differences arise upon compar-
ison with the ! = 0 case. The first is that the centrifugal
barrier, for the I = 70 case, shifts the reactivity thresh-
old by about 0.1 eV towards higher energies. The
second and major difference is that the / = 70 reaction
probability is dominated by an extremely dense reso-
nance spectrum. To give more details on it, Fig. 3
shows several state-to-state reaction probabilities,
again for / = 70. It is clearly seen that resonances
manifest themselves in an essentially similar way in
all state-to-state transitions. In addition, several peaks
appear at the same energy position, independently of
the final v' state, as is well known for resonances in

chemical reactions. When the total energy coincides
with the energy of the metastable state — the
resonance, the reaction outcome is dominated by the
resonance formation, independently of the state from
which the collision occurs. Then, the longer transit
time in the strong-interaction region allows for energy
redistribution and a higher probability for reaction.
The transitions to different v’ states differ only in
the amount of background or direct reactivity. While
being roughly constant as a function of energy, it is
increasingly higher as v’ is increased, indicating a
propensity towards translational energy conservation
from reactants to products.

A main conclusion to be extracted from Figs. 1-3 is
that resonances appear mainly as a consequence of
orbital angular momentum barriers, which allow the
formation of shape resonances on the electronic—
vibration-orbital effective potentials. It is the inter-
vention of all these components of motion that causes
the dense resonance spectrum to appear. On the
contrary, the absence of an effective barrier is the
key feature preventing the resonance mediation to
reaction, the direct reaction mechanism then being
dominant. This fact implies that compound
(Feshbach) resonances are rarely formed during the
collision, as a consequence of a weak vibrational
non-adiabatic coupling.

However, vibrational non-adiabatic transitions



[y

12

Chapter 7. R-10S studies.

70 X. Giménez et al. / Journal of Molecular Structure (Theochem) 463 (1 999) 65-74

T T T
1501

T
100 [ v=0~+v'=12
L

-
8 o8
—

B

Probability

ne*
o 8 8 & B.22.828. 28

Fig. 3. R-IOS 3D state-to-state reaction probabilities as a function
of total energy (zero placed at the botiom of the products amange-
ment), for OH in the ground vibrational state. Orbital angular
momentum guantum number / = 70.

must exist, since the product’s vibrational distribution
is clearly different from that coming from a vibration-
ally adiabatic mechanism. These couplings occur in
the direct scattering since the background reactivity,
not the resonant one, is the component that increases
gradually as v' is increased in Fig. 3.

When Eq. (1) is summed again over the product
vibrational states and plotted against the orbital angu-
lar momentum, at fixed energy values, the opacity
functions represented in Fig. 4 are obtained. The
most interesting feature is the presence of resonance
structure, except for the first 10 to 15 values of the
orbital angular momentum, whose density increases
gradually with /. The background behaviour (disre-
garding the resonant peaks) of the opacity function
is close to a step function.

The results of Fig. 4 confirm the analysis performed
from Figs. 1-3; i.e. shape resonances can be formed
as the centrifugal term interposes a barrier just before
the strong stabilization due to the HOB well. The three
plots shown in Fig. 4 correspond to energies lying on a
reactivity peak and on the valleys immediately before
and after the peak, respectively. No major differences

. are found between them so that, in principle, we

cannot attribute a pure resonant behaviour to the
cross-section peaks nor a purely direct reactivity
mechanism to the cross-section valleys. This seems
fairly reasonable, in view of the fact that each energy
point represents a sum over all angular momentum
values (up to 200 at the highest energies) and all
vibrational product states (up to 18).

The above statements have been confirmed by
studying the behaviour of the differential cross-
section. It is calculated by means of products of S-
matrix elements times Legendre polynomials
Pfcos 9) in the form:

00 [
;2 > 3 @+ D@ + DPy(cos B)Py(cos 6)
4kVi 1=0 /=0

l i
X %— J l Shy(mSt, dcos ¥
)

§ being the centre-of-mass scattering angle. Fig. 5
shows the differential cross-sections for the same
three conditions as the opacity function, always for
OH in the ground vibrational state. In all cases, the
differential cross-section shows a high forward/back-
ward symmetry, typical of the formation of a long-
lived complex. Although the R-IOS method describes
the angular variables crudely, these results are in
agreement with the dominating resonance mechanism
found for this reaction. In addition, previous QCT
studies [35] also predicted a highly symmetric shape
for this quantity.

The final quantity to be analysed in the present
work is the R-IOS integral cross-section, which is
given by:

T - 1 2
O = 73;:;0(2” D3 J-. S| deosy @
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Fig. 4. R-10S 3D summed over all product vibrational states’ opacity functions, at three selected energies, corresponding to a reactivity peak
found in the integral cross-section (E = 4.00235 eV) and the valleys before and after (E = 3.99825 ¢V and 4.00485 eV, respectively).

In the present case, it has been calculated by summing
over all product states. Its dependence on energy is
shown in Fig. 6, again for OH in the ground vibra-
tional state. The general shape follows an exponen-
tially (or potentially) decreasing trend as a function of
collision energy, in agreement with the general
behaviour expected for systems with zero or negative
activation energies [54-56]. The background profile
is superimposed on a relevant structure reflecting, at

the cross-section level, the fingerprint of reactive
scattering resonances.

As seen from the preceding analysis, the depen-
dence of the integral cross-section on energy, while
resulting from the sum for all angular momentum
partial waves, is characterized by the fact that low [
values do not lead to a strong resonant behaviour; but
as l is increased, shape resonances become completely
dominant over the whole energy range. Resonance
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Fig. 5. R-IOS summed over all product vibrational states dxﬂ'erenual cross-sections, at three selected energies, corresponding to a reactivity
Peak found in the integral cross-section (E = 4.00235 eV) and the valleys before and after (E = 3.99825 cV and 4.00485 eV, respectively).
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Fig. 6. R-10S summed over all product vibrational states’ integral
cross-sections as a function of total energy, for OH in the ground
vibrational state. In total 55 points have been calculated, using a
finer mesh around the 4.0 eV region.

peaks are very narrow, indicating rather long life-
times. As seen from the opacity function plots,
changing the total energy slightly makes the reso-
nance peaks change their position and intensity
slightly. These are the conditions, as has been
previously discussed in the literature [2], for the
peaks to disappear with the partial wave summation.
However, in the present case, peak superposition due
to partial wave summation resembles what is obtained
in a random signal accumulation, given the high value
of partial waves to be included and the sharpness and
high number of resonant peaks. As a consequence, the
structure surviving in the integral cross-section is
similar to a “*noise’’ variation, as far as the shape of
the integral cross-section curve is concerned, but, of
course, the structure is by no means aleatory. In spite
of this, we think that a back-and-forth interaction
between theory and experiment is still possible in
such cases. Although peaks in the excitation function
are not attributable to particular resonance states, the
structure is still reflecting a lot of information and, as
is well known [15-20}, it is strongly dependent on the
interaction potential. Thus it can be used to refine the
PES until theory and experiment become coincident
enough. However, this process would avoid the need
for an accurate dynamical method to compute the

cross-section. “he u "'ty o~ an approx mate stu y
like the present one is that, in addition to the dynami-
cal trends established here, it points us in the right
direction to look. Thus when looking for relevant
resonance structures, we avoid the highly time-
consuming task of directly determining the exact
cross-section.

4. Summary and conclusions

In this work a detailed approximate QM study of
the B + OH — BO + H reaction has been performed,
with the aim of determining how resonance features
manifest themselves in the integral cross-section. For
this purpose, the 3D reaction probability for a single
angular moment.m w.s comp.t.d .si.g a vory fiu.
energy grid. It has been found that resonances become
dominant as the centrifugal barriers interposed by the
orbital angular momentum gradually increase. Thus,
shape resonances due to orbiting processes are the
kind of metastable state responsible for the observed
behaviour.

The resonant reactivity contributes an appreciable
fraction to the total reactivity. This has been
confirmed by computing both the opacity function
and the differential cross-section, for energies lying
on a reactivity peak (in the integral cross-section)
and on a reactivity valley. In all cases results are
essentially equivalent, giving a2 marked structured
behaviour for the opacity function and a highly
forward/backward symmetric differential cross-
section.

The predominantly non-resonant reactivity found
for low values of the orbital angular momentum indi-
cates that Feshbach-type resonances rarely occur, so
that non-adiabatic vibrational coupling is weak in the
configuration space region where resonances are
formed. However, this coupling must exist in neigh-
boring configuration space regions, since strongly
non-adiabatic product vibrational distributions are
obtained for this surface, owing to direct, non-
resonant reactivity.

Finally, the structure surviving in the integral cross-
section results largely from what could be described
as the noise of a random summation process, as far as
resonance peaks are concerned. As a consequence,
experimental measurement of its fine energy grid
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may be of great use for refinement of the interaction
potential, but no identification of the quantum states
of the metastable complex is possible.
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In the following sections we will present the articles concerning our work on
the implementation of the Negative Imaginary Potentials (NIPs) technique on an
invariant embedding propagation scheme, in particular the R-matrix method, as
well as its application to a family of reactive systems, covering a wide range of
possible cases. The work we have done has yielded until now three regular articles
and a communication, each of them covering different aspects of the development
and application of the method. In a first article, we showed the accuracy and
reliability of the approach by reproducing the extremely sharp resonances of the
collinear Cl+ HC symmetric exchange reaction. Then followed a communication
in which we explicitly showed the applicability of the method to easily obtain the
cross section for a large number of energy values. In a latter publication, the
theory was developed in full detail trying to explain carefully the modifications
on the R-matrix propagation scheme that the introduction of a complex potential
implied. A fourth paper focused on the application of the developed methodology,
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employing an I0S Hamiltonian, to study different reactive systems and trying to
cover various ergicities and mass combinations.

8.1 On the accuracy of reactive scattering cal-
culations with absorbing potentials: a new
implementation based on a generalized R-
matrix propagation.

Chemical Physics Letters 291 (1998) 346-350

In this work, we intended to give a short communication on the successful
implementation of absorbing potentials in an invariant embedding propagation
method, focusing on its feasibility and the good performance of the numerical
code developed.

The idea, as explained in section 2.7, is basically to reduce a reactive scattering
problem into an inelastic one introducing a properly located complex potential.
As we have already explained, knowing the ability of NIPs to absorb the flux
associated to the wavefunction, if one places such an absorbing potential beyond
the transition state region, where reactive transitions are assumed to already
have taken place, one may then assign the flux lost to the reactive component.
Thus, by properly introducing a NIP and carrying out a straightforward inelastic
R-matrix propagation, one may obtain reactive global probabilities. Of course,
the propagation scheme has to be accordingly modified to take complex valued
interaction matrices into account. However, the goal in this article was to inform
briefly and as clearly as possible on the feasibility and reliability of the method
and therefore further theoretical explanations were left for the next publication.

Rather than testing our methodology with prototypic reactions, we found
more challenging to study the collinear C! + HCI reaction, for which already
exact results had been published. Numerical results were found to fully coincide
with the published ones even when comparing the sharp resonances shown by
the system. Moreover, the present implementation proved to be more efficient
than previous calculations which used a standard R-matrix propagation, since the
number of sectors and basis functions used could be more than halved, resulting
in great savings of calculation time.
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Abstract

A quantum scattering method based on combining a generalization of the propagative R-matrix technique with negative
imaginary potentials is presented. Reactive probabilities are then obtained considering only the reactants arrangement
channel and Jacobi coordinates. Collinear and infinite order sudden results are shown for the Cl + HCl symmetric reaction,
showing excellent agreement with previous results, including the reproduction of sharp reactive scattering resonances, at a

fraction of the computer time and memory requirements. © 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Among the algebraic, numerical and computa-
tional developments in molecular reactive scattering
theory, special impetus has been taken recently in the
use of complex absorbing potentials to decouple a
subset of the close-coupling equations {1,2]. This
began when Neuhauser and Baer realized that decou-
pling the rearrangement channels could be achieved
by simply adding a purely negative imaginary linear
potential (NIP) ramp at the entrance of the products
arrangement [3-5]. This idea exploited the fact that,
for reactive collisions, the probability flux loss to-
wards rearrangement states takes place in a rather

* Corresponding author.

well-delimited region of configuration space, which
is different from that where the inelastic flow trans-
fer processes take place, between states of the same
rearrangement channel. Therefore, a suitably defined

_ function, depending on physical coordinates, is found

to be able to discriminate the reactive component of
the wavefunction and absorb it. This results in a
local, smooth and weakly energy-dependent NIP.
On such basis, powerful state-to-all time-depen-
dent (TD) and time-independent (TI) methods for
reactive scattering were developed, which avoided
the well-known problem of artificial back-reflection
of the wavepacket at the grid limits (in TD methods)
and the coordinate transformation between rear-
rangement channels. The combination of the TI ap-
proach with a variational technique, applied to solv-
ing the scattering problem by a splitting of the

0009-2614,/98 /$19.00 © 1998 Elsevier Science B.V. All rights reserved.

PI: 50009-2614(98)00599-5



120

Chapter 8. NIP-10S implementation and application.

F. Huarte-Larraniaga et al. / Chemical Physics Letters 291 (1998) 346-350 347

hamiltonian between a reference problem and the
remainder perturbation, allowed extracting state-to-
state reactive probabilities. This methodology has
been successfully applied to several triatomic and
tetraatomic systems, within coupled-states and infi-
nite order sudden (I08) approaches, respectively, as
well as to electronic non-adiabatic reactions [6,7].

Other TI methods, using one form or another of .

absorbing potentials, have been proposed since then.
For instance, Miller’s group [8] have successfully
used NIPs to force outgoing boundary conditions in
the calculation of the cumulative reaction probabil-
ity, as a means for the direct rate constant calculation
without solving the whole state-to-state problem.
Another promising class of methods which make use
of NIPs are those classified as ‘artificial boundary
inhomogeneity’ [9-11).

The alternative approach to treating reactive scat-
tering by means of TI methods, namely the use of
propagation techniques on a suitably expressed
hamiltonian — conceming coordinate systems
and/or reduced dimensionality approximations —
has been less explored in terms of incorporating the
NIPs. Neuhauser et al. [12] added to a propagative
inelastic method a NIP, using an adiabatic basis set
and the Numerov method for propagation. It led to
the calculation of state-to-all reactive probabilities
for the collinear H+ H, reaction. Shortly after-
wards, Baer et al. [13] extended the previous method
to the reactive infinite-order sudden approximation
and applied it to the Ar+ H system. Results ap-
peared to be closer to experiments than those ob-
tained with a ‘traditional’ (i.e. without NIP) R-10S
method.

A new implementation of a propagation method,
which is intended to improve the efficiency of the
previous techniques, is presented here, focusing in
this work on its feasibility and the good performance
of the numerical code. Results for the present test
appear to be easily and well converged, as well as
coincident with those obtained with a completely
different numerical technique. Remarkably, it has
been found that strongly sharp reactive scattering
resonances have been well reproduced. Computer
times and RAM memory requirements keep into
reasonably low values, thus improving the already
well-known performances of propagation-based
methods.

2. Outline of the method and numerical results

The method is based on the inelastic R-matrix
propagation [14] of a Hamiltonian expressed in reac-
tants Jacobi coordinates, generalized to deal with the
complex interaction matrix which results with the
inclusion of a NIP at the entrance of the products
arrangement channel. The collision is then treated as
being inelastic and reactivity is calculated from the
flux loss, i.e. the difference between unity and each
state-to-all inelastic probability sum.

In opposition to the variational methods, for which
an eigen problem must be solved for a large matrix
for each partial wave and energy, the propagation
methods use a larger number of smaller dimensional-
ity matrices to propagate the solution along the
scattering coordinate. This latter method leads to
much smaller memory requirements than the varia-
tional, but to a larger amount of input—output to
secondary memory. The use of an absorbing poten-
tial appears then well suited to this problem, since it
greatly reduces the number of translational sectors to
propagate along. It thus leads to a diminution in
those input—output operations which are the slowest.
Moreover, within the large class of propagation
methods available in the literature, the invariant em-
bedding methods [15] have shown to be not only the
fastest but especially adapted to deal with the
closed-channel explosion problem [16). Therefore, it
appears that the use of an invariant imbedding propa-
gator, adapted to include complex interaction matri-
ces, is one of the key factors leading to a good
numerical performance. Here just the novel features
of the present approach will be outlined and full
details of the theoretical methodology, as well as an
extended 3-dimensional application to several tri-
atomic systems, will be given elsewhere [17].

The method essentially consists of the reduction
of a reactive scattering problem to an inelastic prob-
lem through the introduction of a proper complex
potential and then applying the inelastic scattering
R-matrix propagation scheme [14]. This propagation
technique had to be properly generalized to take into
account the complex-valued algebra arising from the
use of an absorbing potential. In particular, a suitable
reference problem [14,18] had then to be formulated
consistently with the resulting complex eigenvalues
of the interaction matrix. This led to a modified

.
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expression of the sector propagators [14,18] and
further t~ tu= ,~ll~wing recursion rel-ti-— -f th
R-matrix,

R®) = p(b) — p(HZ0)p(0

20 =[5~ Q" (k= LR DQ(k =1,6)] ™"

Here, R is the global R-matrix up to the kth
sector, r® (i=1, 2, 3, 4) are the kth sector R-
matrices and Q(k = 1, k) is a transformation matrix
which relates the solutions across the sectors. The
present expressions differ from those given in Ref.
{19] basically in the complex valued nature of the
matrices invoived and in the explicit inversion of the
Q matrix instead of having taken its complex trans-
pose. State-to-all reactive S-matrix elements are then
obtained subtracting from one, the state-to-all inelas-
tic counterpart, which is obtained directly from in-
elastic boundary conditions [14], instead of the reac-
tive boundary conditions emerging from the standard
reactive R-matrix technique [19].

Rather than testing the method with the prototypic
H+ H, reaction, we thou ht more challen in to
look at its applicability to the collinear Cl + HCI
symmetric reaction. As is well known, the acute
skew-angle characterizing the system poses special
difficulties when treating it with hamiltonians ex-
pressed in other than hyperspherical coordinates.
However, since propagation is performed in a single
arrangement channel, those problems arising as a
consequence of the strong reaction-path curvature at
the transition state region are directly avoided.

The inclusion of a NIP required an independent
tunning of its adjustable parameters before undertak-
ing the scattering calculations. The final set of pa-
fameters was easily found, once the proper location
of the linear ramp after the transition state zone was
stablished, since a wide range of both the width and
height of the linear ramp led to essentially stable
results, in agreement with previous experience [3~6).
In particular, ramp heights (U) between 0.3 and 10
€V and ramp widths (D) between 0.5 and 1.5 A
determined the region for which probabilities were
stable. Then, the reactive probabilities obtained with
the final set, chosen to be 0.5 eV (U) and 1.0 A (D),
were compared and found to coincide with the R-ma-
trix results of the detailed hyperspherical propagation
calculations of Bondi et al. (BCMR), performed on

Cl+HCl

1.0 T T T 1 U

0.6~ -

Probability

0.0 { | i 1
04 05 06 07 08 09 1.0

Total Energy / eV

Fig. 1. State-to-all collinear reaction probabilities for the Cl+ HCI
symmetric exchange reaction, as a function of total energy, for the
v=0and v=1 initial vibrational states, on the BCMRSsLEPS
surface.

the same LEPS [20]. It is important to emphasize that
a unique set of NIP parameters was used for the
whole energy range. Fig. 1 shows the dependence of
the state-to-all reactive probabilities with total en-
ergy, in the range of 0.32-1.00 eV, for the v =0 and
v=1 initial vibrational states. A total of 2156 en-
ergy points have been calculated, using a finer grid,
as explained below, around the sharp resonance re-
gions. Convergence was reached with the inclusion
of 10 vibrational states, although the final number
used was 15 in order to allow for a high degree of
accuracy testing. Propagation ran from 2 to 8 A.
Numerical results are found to coincide well, within
the whole energy range and for all initial vibrational
states, with those of BCMR.

As a further fine-tuned test of scattering methods
incorporating NIPs, the extremely sharp reactive



122

Chapter 8. NIP-IOS implementation and application.

F. Huarte-larrahaga et al. / Chemical Physics Letters 291 (1998) 346-350 349

Table 1
Comparison between BCMR and the present work resonance
positions (in eV) for the collinear Cl+HCI symmetric exchange
reaction

BCMR Present work
0.58848 0.58886
0.61960 0.62000
0.84492 0.84529
0.88359 0.88397
0.91609 0.91645

scattering resonances shown in the BCMR results
were also searched in the present case. As seen in
Fig. 1, they have been properly characterized by
including a sufficiently fine grid of energy points
(the energy step size being up to 0.00001 eV). Their
positions and widths are found to be close to BCMRs,
as shown in Table 1. In particular, the position
agrees within approximately four-tenths of meV, for
all resonances considered. After checking accurately
the origin for the discrepancies found (masses, poten-
tial parameters, ...) and given the fact that the
differences between BCMR and the present work
results are essentially constant, their origin may be
due to an energy shifting caused by small differences
in the units conversion factors used. Nevertheless,
given the remarkable differences between the numer-
ical approaches used in both calculations, the present
results constitute a good benchmark for stablishing
the ability of absorbing potential-based methods to
reproduce exact quantum scattering calculations.

As for computer performances, it is found that the
simplicity introduced by avoiding the reagent-to-
product channe! transformation makes the calcula-
tion of each reaction probability quite fast. There-
fore, the calculation becomes shorter because the
number of sectors is approximately halved and, in
most cases, fewer basis functions are necessary than
in the traditional propagation calculations. The com-
plications introduced by the absorbing potential,
namely the major width and reduced simplicity of
the potential profiles along the vibrational coordi-
nate, as well as the slightly more involved algorithm
for propagation [17), clearly do not reverse the sav-
ings introduced by the above simplifications. Explicit
figures on CPU time consumption and relative accu-

racy are given in Table 2, for different sets of total
sector number and dimension of the vibrational ba-
sis. An infinite order sudden hamiltonian was consid-
ered for this case (resulting the hereafter named
NIP-IOS method). In the table it can be seen that
NIP-IOS execution times are four times smalier than
R-IOS (i.e. the traditional reactive-IOS method
{21]), at the same accuracy. This elapsed time can
even be reduced by a factor of six and the error still
would remain acceptable. It therefore shows that
accurate results can be obtained with a fraction of
the computer time necessary when the standard R-
I0S technique is used. In the present Cl + HCI case,
results from Table 2 clearly indicate that the major
gain in CPU time and memory consumption come
from the much smaller basis set dimension neces-
sary, due to the use of reactants arrangement Jacobi
coordinates instead of circular collision coordinates
and the smaller number of sectors necessary for
propagation.

In conclusion, further evidence has been pro-
vided, in the present work, for the ability of NIP-
based methods to reproduce accurately exact resuits
obtained by means of other well-stablished tech-
niques. A most remarkable fact is that even those
dynamical features dramatically depending on colli-

Table 2

Comparison of accuracy and CPU time consumption between
converged R-IOS fixed-angle (y = 180°) cross-section calcula-
tions (last row and bold) for the Ci+HCI system, for a total
energy of 0.6 eV, and equivalent NIP-IOS results for different
values of the main numerical parameters (from first to last but one
row)

NS NV % ERR Time (s)
300 30 0.00 3508
300 10 0.00 389
300 7 0.03 258
200 15 0.13 503
200 10 0.13 261
150 15 0.30 378
150 10 0.30 194
400 b 1) - 1174
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sion energy, i.e. the sharp resonances which charac-
terize the collinear Cl + HCl reaction, have been
reproduced in the present calculations. Furthermore,
the present calculations constitute a most demanding
test concerning the accuracy of NIP-based methods,
when compared against well-stablished exact tech-
niques. Moreover, our new implementation of the
invariant imbedding R-matrix propagation technique
has shown to be computationally competitive when
compared to methods which need to propagate along
both reactant and product arrangements. It is worth
mentioning that a unique, easily found linear absorb-
ing potential ramp has been used for the whoie
calculation.

Finally, it is interesting to point out that the
present method is close in spirit to the detailed
quantum transition state theory of Light and Al-
tenberger-Siczek [22,23]. However, the use of com-
plex absorbing potentials removes the approxima-
tions resulting from the imposition of the boundary
conditions at the transition-state surface. Work is in
progress for extending the present code to 3D (both
exact and approximate) calculations for triatomic
systems and to approximate calculations of poly-
atomic systems.
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8.2 Comment in the 110 Faraday Discussion on
Chemical Reaction Theory. General Dis-
cussion.

Faraday Discussion 110 (1998) 236-238

Here we present the comment with which we contributed to the General Dis-
cussion in the 110 Faraday Discussion on Chemical Reaction Theory. Our com-
ment concerned an article by Peng et al.[69] in which they decoupled reactants
and products. We thought it would be interesting to present in this context
our recent implementation of the NIP to the R-matrix propagation scheme. In
particular we showed the results obtained for the application of the new method
to the Ne + H} — NeH* + H reaction. Cross-sections for about 200 energy
values, ranging from 0.7 eV to 1.1 eV, were computed and evidenced a markedly
structured reactivity.
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use of a ground-state transmission coefficient for including dynamical tunneling and
nonclassical reflection contributions.*

1 S. L. Mielke, G. C. Lynch, D. G. Truhlar and D. W. Schwenke, Chem. Phys. Lett., 1993, 216, 441; S. L.
Mielke, G. C. Lynch, D. G. Trublar and D. W. Schwenke, J. Phys. Chem., 1994, 98, 8396; S. L. Mielke, T.
C. Allison, D. G. Truhlar and D. W. Schwenke, J. Phys. Chem., 1996, 100, 13588.

2 H. Eyring, J. Chem. Phys., 1935, 3, 107.

3 K S. Pitzer, Quantum Chemistry, Prentice-Hall, Englewood Cliffs, NJ, 1953.

4 B. C. Garrett and D. G. Trublar, Proc. Natl. Acad. Sci. USA, 1979, 76, 4755: B. C. Garrett and D. G.
Truhlar, J. Chem. Phys., 1980, 72, 3460; B. C. Garrett, D. G. Truhlar, R. S. Grev and A. W. Magnuson,
J. Phys. Chem., 1980, 84, 1730; D. G. Truhlar and B. C. Garrett, Acc. Chem. Res., 1980, 13, 440,

Dr Nyman commented: From calculations on reactions where a light atom is trans-
ferred through a potential barrier, it is my experience that the J-shifting approximation
works well in the tunnelling regime and less well as the energy is increased (see, for
example, ref. 1). It has already been mentioned that the J-shifting approximation is
expected to work best for reactions with a potential barrier so that there is a localized
transition state, where the rotational constants used in the J-shifting approximation are
evaluated. My observation is in agreement with this and indicates that, as the energy is
increased, the potential barrier is less efficient in localizing the transition state.

1 G. Nyman, J. Chem. Phys., 1996, 104, 6154.

Prof. Truhlar commented: I would like to draw attention to one aspect of the spin-
orbit coupling in halogen reactions that has very general implications, as we have noted
elsewhere." This is the effect of the spin-orbit splitting on barrier heights. For most
halogen atom reactions with tight transition states (e.g., Cl + CH, but not necessarily
downhill association reactions), the spin—orbit splitting AEs,, is effectively quenched at
the transition state. This rather general conclusion arises not from detailed calculations
of spin-orbit matrix elements but rather from the large energy gap between the ground
and first excited electronic state at the transition state geometry; hence the second order
perturbation theory expression for AEg, is small. This quenching of the spin—orbit split-
ting means that any calculation of the barrier height that neglects this effect will under-
estimate the barrier height by one third of the spin—orbit splitting, i.e., by 04, 0.8, 3.5
and 7.2 kcal mol~! for reactions of F, Cl,.Br and I, respectively. Electronic structure
theorists may be loath to include this effect because their calculated barrier heights are
usually too large (due to the incomplete treatment of electron correlation), and raising
the barrier by including spin-orbit lowering of the reactant energy will only make the
situation worse. Nevertheless, the effect is real, and it will have to be included as the
accuracy of the electronic structure calculations improves.

1 O. Roberto-Neto, E. L. Coitific and D. G. Truhlar, J. Phys. Chem. A, 1998, 102, 4568.

Mr Huarte-Larrafiaga and Dr Gimenez{ communicated regarding the paper by
Peng et al.: Peng et al. suggest in their article that, in their attempt to get state-to-state
information by means of the reactant-product decoupling method, the product scat-
tering wavefunction can be calculated solving either (i) the time-independent Schréd-
inger equation with an energy-dependent source term or (ii) the time-independent
homogeneous equation for the full vector wavefunction, through the use of an adequate
propagation scheme.

We have recently implemented a procedure which is rather close in spirit to the
second case, although it is devised to obtain state-to-all information. It is based on
combining a generalization of the propagative R-matrix technique with negative imagin-

99 Also Prof. Aguilar, Universitat de Barcelona, Spain.
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ary potentials (NIP). State-to-all reactive probabilities are then obtained considering
only the reactants arrangement channel and Jacobi coordinates. In particular, the
method is based on the inelastic R-matrix propagation, generalized to deal with the
complex interaction matrices resulting from the inclusion of an NIP at the entrance of
the products arrangement channel. The collision is then treated as being inelastic and
reactivity is calculated, as usual, from the flux loss, i.e. by subtracting from unity each
state-to-all inelastic probability sum.

The modification of the R-matrix propagation scheme starts with the formulation of
the reference problem consistent with the resulting complex eigenvalues of the inter-
action matrix. This leads to a modified expression of the sector propagators and further
to the following recursion relation for the R-matrix,

RE = p& _ 0 Z(k)rgt)
z(k) — [r(k) — Q- l(k — l,k)R(k_ ”Q(k _ l,k)]"‘

where R(k) is the global R-matrix up to the kth sector, ¥ (i = 1, 2, 3, 4) are the kth
sector R-matrices and Q(k — 1, k) is the transformation matrix which relates solutions
across the sectors. The present expressions differ from those given in the original formu-
lation of the inelastic R-matrix method® basically in the complex-valued nature of the
matrices involved and in the explicit inversion of the Q matrix instead of taking its
complex transpose. State-to-all reactive S-matrix elements are obtained by substracting
from one the state-to-all inelastic counterpart. It is in turn obtained directly from inelas-
tic boundary conditions, instead of the reactive boundary conditions applied in the stan-
dard reactive R-matrix technique.?

The method was first tested with the collinear Cl + HCl symmetric reaction. A
unique set of NIP parameters was found to be able to reproduce the previously avail-
able collinear reaction probabilities, including the extremely sharp reactive scattering
resonances.’ Reactive state-to-all infinite order sudden (IOS) cross-sections were
obtained, with the same accuracy, using ca. one third of the vibrational basis dimension
and one fifth of computer time than the standard Reactive IOS method. This reduction
in computational needs is found to be due essentially to two factors: first, only one half
of the sectors are necessary for propagation and, second, fewer basis functions are
required since the complications introduced by the transition from reactants to products
are directly avoided.* As a consequence, the present approach seems to be well suited to
propagative techniques, since these are based on the use of a large number of relatively
small matrices to propagate the solution along the scattering coordinate, so that much
smaller memory requirements are necessary than, for instance, variational methods.
However, a larger amount of input-output to secondary memory exists. Therefore,
decreasing the number of translational sectors to propagate along leads to a diminution
of those input—output operations which are the slowest.

The application to other involved triatomic systems (Li + FH, Mg + FH, ...) will be
given in a future article.® Here we outline the ability of the present approach for resolv-
ing structured reaction probability profiles. Fig. 12 shows the fixed-angle IOS cross-
section, for the collinear geometry of the Ne + H,* — NeH™ + H reaction. This is a
collinearly dominated endoergic process with an electronic minimum found just before
the transition state configuration. The energy dependence of the fixed-angle cross-
section is found to be dominated by a pattern of resonance peaks, which survive the
angular momentum summation. This result is in accord with the complex-forming
nature of the collision process, as established in previous studies.® The results in Fig. 12
have been obtained, after careful checking for convergence, with one set of NIP param-
eters, 15 vibrational basis functions and 200 total encrgy values in the 0.7-1.1 eV range.

1 E. B. Stechel, R. B. Walker and J. C. Light, J. Chem. Phys., 1978, 69 3518.
2 J. G Light and R. B. Walker, J. Chem. Phys., 1976, 65 4272.
- f
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0.7 08 .9 1. “s
Total energy / eV

Fig. 12 Fixed-angle [OS cross-sections [a(y)], for the collinear geometry of the Ne + H,* — NeH™*
+ H process, within the 0.7-1.1 eV total energy range. Results are shown for the reactants vibra-
tional state v = 0, | and 2.

3 F. Huarte-Larrafiaga, X. Gimenez, A. Aguilar and M. Baer, Chem. Phys. Lett., 1998, 291, 346.

4 F. Huarte-Larrafiaga, X. Gimenez and A. Aguilar, J. Chem. Phys., in press.

5 F. Huarte-Larraiaga, X. Gimenez, J. M. Lucas and A. Aguilar, in preparation.

6 M. Gilibert, R. M. Blasco, M. Gonzilez, X. Gimenez, A. Aguilar, 1. Last and M. Baer, J. Phys. Chem.,
1997, 101, 6821.

Prof. J. Z. H. Zhang opened the discussion of Prof. Balint-Kurti's paper: When
state-to-state scattering results are needed. It is not desirable to use a single set of Jacobi
coordinates to carry out the wavepacket propagation since this will drastically increase
the number of basis functions and numerical grids as a penalty for not choosing the
correct coordinates. In such case, it is advisable to use more suitable methods to do
state-to-state calculations. The RPD (reactant-product decoupling) method is a general
and attractive method for such applications.

Dr Althorpe addressed Prof. Balint-Kaurti: Might I suggest that your wavepacket
caiculations on O + H, and O + HD would benefit from an application of the
reactant-product decoupling (RPD) approach of Zhang and co-workers?! This would
reduce the size of the Hamiltonian matrices (used to propagate the wavepacket) and
would enable you to switch from reactant to product coordinates. I would like to
propose a modification to Zhang’s original RPD approach, which is applicable when-
ever one wants to calculate the state-to-state reaction probabilities into one product
channel.

» The original RPD scheme' partitions a reaction as shown by arrow I in Fig. 13, for
the simplest example of the two-dimensional A + BC — AC + B reaction. The coordi-
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8.3 The application of complex absorbing po-
tentials to an invariant embedding scatter-
ing method: I. Theory and computational
details.

Journal of Chemical Physics 109 (1998) 5761-5769

In this article, the theory of our extension of quantum scattering methods,
based on the propagative R-matrix method, to deal with complex absorbing po-
tentials was developed in detail. Assuming we had not been by no means pioneers
in the use of optical potentials, nevertheless we have just implemented them in
a propagative scheme, the article intended to give first a careful review on the
historical use and development of such optical potential techniques. Some brief
outlines on this have already been given in section 2.7. The main aim of the
published work was to describe in full detail the key aspects that had to be mo-
dified on the R-matrix propagation scheme, so that it could take into account
the complex valued nature of the interaction matrix. As we have already stated
in sections 2.7 and 8.1, through the proper introduction of a negative imaginary
potential (NIP) one can reduce the reactive problem into what we have called a
pseudo-inelastic one. Then, one can carry out a calculation as if there would be
only inelastic scattering which is much more simple to treat and then assign the
flux lost to the reactive probability flux. This absorbing potential is in our case
a negative imaginary linear ramp which depends on the physical coordinates of
the system. The introduction of such imaginary potential causes the interaction
matrix in the close coupling equations to become complex-valued. The R-matrix
propagation method, as originally formulated, assumes the interaction matrix is
real and symmetric and this was no longer our case. Therefore, the propagation
scheme had to be revised in order to generalize it to complex-valued interaction
matrices. Essentially, modifications imply basically a generalization of the sec-
tor constant potential solutions to quotients of exponential functions, instead of
the usual trigonometric and hyperbolic functions, as well as the explicit inver-
sion of some transformation matrices which are no longer real and symmetric
and therefore its transpose does not correspond to its inverse. The asymptotic
matching was carried out as in the standard inelastic R-matrix propagation and
then state-to-state inelastic probabilities were obtained.

Once the R-matrix propagation had been generalized, we employed a infinite
order sudden (IOS, see section 6.1) Hamiitonian for obtaining an explicit expres-
sion for the interaction matrix. Moreover, since we had already several results at
hand using the traditional R-IOS methodology, in which the solution was prop-
agated in both reactants and products region, we thought it could be a good
test of the new approach’s performance. Thus, different runs of the developed
computer code were undertaken for the calculation of the Cl+ HCIl — CIH 4+ Cl
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exchange reaction. Reliability of our collinear resuits had already been proven in
the previous communication when compared to exact results from the literature
(see 8.1). In this paper we showed the method stability, not only concerning
the NIP parameters but also propagation parameters which turn into a better
performance of the NIP-IOS code, as compared to that of the R-IOS.
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In this article, an extension of quantum scattering methods based on propagative R-matrix
techniques to deal with negative imaginary potentials is presented. Reactive probabilities can be
then obtained, considering only the reactants arrangement channel and Jacobi coordinates. It has
been necessary to generalize the R-matrix propagation method, in order to consider the
complex-valued nature of the interaction matrix. The new formulation has been particularized, in the
present case, to the Infinite-Order Sudden Approximation, for which several results, focusing on the
reliability and numerical performances of the method, will be shown. © 1998 American Institute

of Physics. [S0021-9606(98)02338-1]

I. INTRODUCTION

The use of Negative Imaginary Potentials (hereafter re-
ferred as NIP) as a tool for simplifying the complexity of
close-coupling scattering calculations has been considered
for a long time.! Several applications to molecular systems,
based on rather different formal approaches, have been pro-
posed in the literature during the last years. For this reason,
in order to put in the adequate context the contributions de-
veloped here, it is worth beginning with a short revision of
what has been performed up to the date on this subject.

Based on the well-known Feshbach decomposition,? the
absorbing potentials were first used in the field of nuclear
physics? Typical applications considered both formal and
phenomenological approaches for dealing with elastic pro-
cesses. For instance, complex phase shifts determined from
more or less approximated estimations of optical potentials,
were used to account for processes such as the absorption of
particles by atomic nuclei.

As for its application to molecular collisions, two rather
well-differentiated stages ought to be considered. The first
focused essentially on elastic events when both inelastic and
reactive processes take place at the same time, that is, solv-
ing the close-coupling equations retaining only one term.*
On one hand, formal developments dealt with well-known
problems associated with the use of NIPs as, for instance, the
noalocality of the potential.’ Adiabatic and decoupling ap-
proximations were also taken into account to simplify the
dimensionality of the problem.® Among other relevant
works, that of Wolken’ can be pointed out, who devised 2
procedure for, given a numerically solved problem, extract-
ing that optical potential which allowed reproducing a de-
sired S-matrix subset. This method was subsequently used by
Trublar and co-workers® to study electron—atom collisions.
The main results found were that the sharp variations of the
optical potential, found when the radial wave function has a
node, could be smoothed without significantly altering the
results. On the other hand, phenomenclogical approaches

“Blectronic mail: io@vystup.qf.ub.es
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were also adopted for the form of the NIP. Different ad hoc
functional forms with adjustable parameters were used by
Marriot and Micha,” Micha and Rotenberg'® and Ross and
colleagues,' to succesfully reproduce experimental informa-
tion on elastic data by means of parametrizing the absorption
as a function of the orbital angular momentum. Although
some insights on the elastic behavior of collisions in the
presence of inelastic and reactive phenomena were obtained,
no systematic procedure became available and the use of
adjustable parameters limited its predictive capability.

The second stage that we distinguish in the development
of the optical potentials application to molecular systems be-
gins in 1986, when Kosloff and co-workers'? considered the
problem of artificial back-reflection of wave packets. It usu-
ally takes place at the boundaries of the point grid defined on
the configuration space for time-dependent wave packet
propagations. Initially, this problem was avoided extending
the grid size, but this required very large computational re-
sources and limited its applicability. As an altemative solu-
tion, they proposed the use of empirical forms of NIPs, based
on similar treatments proposed for the stabilization of reso-
nance calculations’ and the photodissociation of
molecules,™ so that the wave packet is absorbed before the
grid edges have been reached, without being altered in the
inner regions. This inspiring idea was further considered in
detail by Neuhauser and Baer,'* who analyzed the conditions
for which a linear ramp, is an optimal functional that allows
effective wave packet absorption conditions.

Shortly after, the same authors'® proposed a compietely
different use of the absorbing lincar ramp. Instead of placing
it in the far asymptotic region, it was situated right after the
transition state, at the entrance of the products channel. With
this location, it is possible to consider that the absorbed flux
corresponds 1o that fraction of the total fiux that flows toward
the products channel. Moreover, the optimal absorption con-
ditions were found to be basically the same than those deter-
mined in their first study, i.c., in the asymptotic region.
Therefore, it results in a local, soft, little system- and energy-
dependent and easy to impiement optical potential, which

© 1998 American institute of Physics
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can be used to obtain quantitative information on the total
reactive flux. This phenomenological use of NIPs differs
from the one previously discussed for the elastic scattering in
that the actual flux absorption takes place in a completely
differentiated region of configuration space, i.c., the reactive
part of the flux does not overlap in this region with the elas-
tic and inelastic parts. Therefore, a suitably placed NIP de-
pending on physical coordinates should be, in principle, able
to discriminate the reactive component of the flux and absorb
it selectively, since it is the only fraction of the flux reaching
the region of configuration space where the NIP is placed.

The main well-known advantage of this approach stems
on the fact that the close coupling calculations simplify ba-
sically to an inelastic scattering calculation. Since reactive
flux is absorbed fairly near to the strong interaction region,
one solves the problem considering only one (although
somewhat perturbed) rearrangement channel. Therefore, the
calculation is simplified since Hamiltonians defined on a
single arrangement channel can be used and basis set expan-
sions may also be accordingly devised. On the other hand,
the method, as originally formulated, is only capable of pro-
viding total reaction S-matrix elements and the calculation
becomes more complicated since complex algebra must be
then considered.

The first implementation of the NIP method to reactive
scattering was based on the time-dependent (TD)
methodology.'® However, nothing prevented to implement
the above idea, as originally formulated, to ume-mdc?enden
(T1) approaches. This idea led Neuhauser and Baer!” 1o de-
velop a TI-NIP method. In particular, it was based on the
partition of the Hamiltonian into a reference and a perturba-
tion problem. They also added another NIP in the far reac-
tants asymptotic region, so that the scattering problem was
converted to a boundlike problem. Probabilities were ini-
tially calculated by means of flux formulas.

The calculation of state-to-state probebilities and differ-
ential cross sections was made possible with the incorpora-
tion of a variational principle to the above formulation.'®
Efficiency was further improved with the use of localized
Gaussian functions as the translational basis set. This basis
set is defined using only reactants-arrangement channel Ja-
cohcoadxmtes"mdnmas:mulmeousexmmmmdl
arrangement channels, as it is common to traditional varia-
tional methods (which leads to nonlocal, exchange-type in-
tegrals and overcompleteness with the basis set may also
occur).®

The application of the above TD and TT methodologies
has led to accurate studies of triatomic (using exact’’ and
coupled-states’ Hamiltonians) and tetratomic (using 10S
Hamiltonians®) reactions at the cross section level. Four-
mathematical dimension treatments® and exact probabilities
have been produced for the prototypic tetratomic reactions
H, +OH™ and H,+CN.% The most refined version of the
Ti-NIP method has aiso been the basis for the formulation of
a new lg:mch to treating electronically nonadiabatic
processes.

Other T1 approaches have been proposed in the literature
that use one form or another of absorbing potentials. Among
them, it is interesting to mention those by Seideman, Manthe

Huarte-Larraiiaga, Giménez, and Aguilar N

and Miller,?® who use absorbing boundary conditions by
means of a Wood-Saxon potential to ensure outgoing
boundary conditions for the direct calculation of rate con-
stants via a flux—flux autocorrelation operator. The method
has been recently applied to the calculation of the rate con-
stant for several reactions: H, +OH,?® CI+H,,%° O+HC1 >
H+0,® and the ketene isomerization> Other promising
methods, although not yet so extensively tested, which can
make use of NIPs, are those classified as *“artificial bound-
ary inhomogeinity”":> the time-independent wave packet
method of Kouri ef al.* the spectral projection approach of
Mandeishiam and Taylor’’ and the generalized boundary in-
homogeneity method of Jang and Light 3 This latter method
actually demonstrates that it is possible to handle the correct
reaction probabilities with the use of real, shor-ranged
terms.

The well-known alternative approach to treating reactive
scattering by means of TI methods, namely the use of propa-
gation techniques on a suitably expressed Hamiltonian—
concerning coordinate systems and/or reduced dimensional-
ity approximations—has been less explored in terms of
incorporating the NIPs. Neuhauser, Baer, and Kouri®® added
to a propagative inelastic method a NIP, using an adiabatic
basis set and the Numerov method for propagation. It led to
the calculation of state-to-all reactive probabilities for the
collincar H+H, reaction. Shortly after, Baer, Ng, and
Neuhauser® extended the previous method 1o the reactive
infinite-order sudden approximation and applied it to the
Ar+H; system. Results appeared to be closer to experi-
ments than those obtained with a traditional (i.c., without
NIPs) R-IOS method.

The introduction of a propagation scheme into a NIP-
based scheme scattering method may be understood in terms
of the seek for higher efficiency while keeping the accuracy.
In opposition to the variational methods, for which an eigen-
probiem must be solved for a very large matrix for each
partial wave and cach energy, the propagation methods use a
larger number of smaller dimensionality matrices to propa-
gate the solution along the scattering coordinate. This latter
method has much smaller memory requirements, but needs a
larger amount of input~output to secondary memory. The
use of an absorbing potential appears then well suited to this
problem, since it greatly reduces the number of translational
sectors 1o propagate along. It thus leads to a diminution in
those input—-output operations which are, by far, the slowest.
Moreover, within the large class of propagation methods
available in the literature, the invariant embedding methods*’
have shown to be not only the fastest but especially adapted
10 deal with the closed-channel explosion probiem.*! In ad-
dition, while invariant embeddmg methods display the so-
called symplectic symmetries,*> which ensure the unitarity
and symmetry of the S-matrix in standard applications, the
Numerov and related propagation schemes do not show
them, so that unitarity and symmetry is not always gvamn-
teed.

At this point, an additional reason for exploring the com-
bination between invariant embedding propagation and ab-
sorbing potential emerges, since the present application
makes an explicit use of nonunitarity. This leads to the ques-
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ti== -fh-= —-li" - ~~rate NIP-base "me " 0 's are, since t e
simplectic properties have not been checked with non-
unitary operators.** Although remarkable studies have been
performed, in general, on the comparison between well-
established traditional methods and NIP ones, which show
that results are basically identical or, at least, that differences
are reasonably small, the above discussion stresses that there
is still missing a detailed test on the accuracy limits of the
NIP methods. Moreover, such a study would connect the
rather numerous studies on the relative efficiencies of several
functional forms of NIPs* with its actual use in scattering
methods. For all these reasons, a rather demanding test has
beenalreadyp . % _ e o
presented here. It showed, in particular, its ability to repro-
duce the extremely sharp resonances that are characteristic of
the CI+HCI collinear reactive scattering. An interesting re-
sult is that symmetry has been found to be highly preserved
in all applications. In addition, since an explicit use is made
of the ““amount of unitarity’* lost when the absorbing poten-
tial actually modifies the radial solution, the present applica-
tion shows to be consistent with the formal requirements, as
it will be discussed below.

The remainder of this paper is structured as follows: In
Sec. 11 an outline of the theoretical methodology, stressing
on the modifications that have arised with the introduction of
the NIP, is presented. In Sec. Il we deal with the practical
implementation and numerical performances, while in Sec.
1V we conclude.

. THEORETICAL FUNDAMENTALS

A. Treatment of the reactive system as a
pseudoinelastic process

It is well known that the Close-Coupling treatment of a

multiarrangement reactive system requires the solution of a
Ny+::++N,, equation set, where N, , . .. ,N,, are the differ-
ent arrangement open channels. Moreover, a transformation
from the reactants coordinates to those of the products is
required or, alternatively, more involved coordinate systems
have to be used. Therefore, the treatment of a reactive system
is commonly much more complicated than inelastic scatter-
ing.
As outlined in the Introduction, the complex absorbing
potentials can be used for the study of a reactive system
without having to propagate the solution into the products
arrangement. The consequence is that we will not only save
the product arrangement channels (Fig. 1) but, even in the
case of simpler coordinate systems, the transformation be-
tween coordinates as well. As already noted, the basic idea is
1o insert a NIP, V(R,r), at the products channel entrance.
According to Ref. 38 we have chosen a linear function of the
vibrational coordinate {r) as a convenient form of the NIP
such that

=WVollr=r)(r;—r)l,

1 <r<r;, R ,<R<R,, (4)]
0, outside.
Therefore, a phenomenological (rather than formal) ap-

V(R 7)=
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FIG. 1. Schematic representation of a reactive fixed angle PES where 2 NIP
has been placed on the to the prod

proach has been assumed to incorporate the optical potential
into the scattering equations. The complex potential is di-
rectly added to the Hamiltonian,

B'=0+Vg. @

Since this potential is a function of the physical coordinates
it can be placed 50 that only the reactive flux is absorbed.
The reactive system can then be considered from the com-
putational perspective as an inelastic calculation and there-
fore be solved by an inelastic scattering algorithm, but taking
into account that the interaction matrix will now contain
complex factors. The caiculation then yields all the state-to-
state inelastic probabilities that result when the reactive pro-
cess is present, and one can easily obtain global reactive
probabilities, for a given reactants state, by subtracting from
unity the sum of all state-to-state inelastic probabilities cor-
responding to a given initial state.

B. Trestment of the inelastictike system.
Generalization of the R-matrix propagation method

The set of coupled equations that describes the scattering
processes can be writien in matrix notation, independently of
which specific Hamiltonian is used, as

dz
e v W(R) Y, 3)

where ¢ are the translational scattering functions and W is
the so-called interaction or coupling matrix. These equations
are obtained, for instance, through the expansion of the total
wave function in an orthonormal target basis set {4}, or in
an adiabatic basis set,

N
YRX)=Z $,0%(R), @

where R is the translational scattering coordinate, orthogonal
to all internal coordinates, X. This equation can be efficiently
solved by propagation jointly with an adiabatic basis set. In
particular, we will use in the present case the R-matrix
propagation method, which propagates the inverse logarith-
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mic derivative of the solution rather than the function itself.
For inelastic problems, the global R matrix is defined soas to
always relate functions and derivatives,

=Ty . )

1. The R-matrix propagation

In this section, the R-matrix propagation technique will
be briefly summarized. For a detailed presentation, see Refs.
46, 41. Essentially, solving the close-coupling radial equa-
tions by propagation methods consists in dividing the entire
range of the radial (scattering) coordinate into small sectors.
Inside each sector, the solution of a reference probiem is
built by means of a local sector propagator and imposing the
invariant embedding boundary conditions, yielding a local R
matrix. Then a global R matrix is constructed by assembling
the local R matrices. In Fig. 2 a schematic representation of
the sector partitioning is presented. The translational coordi-
nate is divided into M sectors, the first of which (1) is nearest
to the origin and the last sector (M) is in the asymptotic
range. Each sector is characterized by its translationat coor-
dinate value at the center, R=R,;, and its width, A=h;.

The explicit derivation of the propagation algorithm
starts expanding the total wave function at each sector in
terms of the actual truncated set of intemnal motion adiabatic
eigenfunctions,

Ny
Y(RX=3Z SOUR). ©

Then & local translational Schridinger equation is obtained
for each sector as

dz
77 = WRIWP. ™

A transformation t0 a new basis of local translational func-
tions, in which all the couplings are eliminated, is camied
away through the diagonalization of the interaction matrix:
(T®)'WRYTD =2 (k), @®
#H= g, )
At this point, in the usual description of the R-matrix prope-
gation for inelastic scattering, the eigenvalues of this inter-
action matrix were identified with the negative of the iocal
kinetic encrgy available for translation.® Now, this is no
longer 80 since we have artificially introduced a complex
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potential in the interaction matrix and its eigenvalues wili be,
in principle, complex. This statement can, however, still be
made for those regions where no NIP is set, such as the
reactants’ asymptotic region. Note also that (T¥)t has been
substituted by (T*")~1, since W(R,) is no longer real sym-
metric.

Thus, the sector translational Schrodinger matrix equa-
tion in this locally uncoupled representation takes the form

el o)

this equation can be solved for each sector together within
invariant embedding boundary conditions,*

dz 2 ‘P+
B'Eylp=)\ ¢=92solunons{ = an

=0 (R")=1, ¢;=¢*(R')=0,

=¢ (R")=0, ¢, =¢ (R")=1;

here, @3 and *(R") both label the value of the function at
the right coordinate boundary (R=R"). Equivalently, ¢]
and ¢*(R") stand for its value at the left boundary (R
=R"). Solutions then are

- - »
AR_ AR, -2AR

o (R)=—
e-'AR'_e)R'e ~2AR"*
_ e lR_eARe—ZKR'
¢ (R)=

Y IV TV
M _ AR", 22K

where the ¢* and ¢~ functions are the generalization of the
local sector solutions to complex cigenvalues. Since the in-
verse of the logaritmic derivative is the magnitude that is
actually propagated and this relates the function and its de-
rivative, the expressions for the propagator are

or=ap,+bop,
12
er=cop+dey, 12

which is usually expressed in a convenient matrix notation as

[ d‘)] [rgk) rgk) 1{k)

—¥L
@ r§” rﬁ"

o L) (13)

L)

the r-matrix being called the (k)th sector R matrix; its block
elements are

1 jdhy,
== By S
2 (14)
)= P),= 511]'@ Py s o B

where A, is the corresponding jth sector solution eigenvalue
and Ak is the sector width.

Onceﬂlcfuncnonhasbeenpmpagawdfmmthemww
the outer boundary of the sector, constraints have to be ap-
plied to ensure the function’s continuity between sectors.
Thus, the ¢~ * locally uncoupled sector basis set is trans-
formed to the ¢ representation and back to the ¢ repre-
sentation commesponding to the next sector,
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A V=Qk-10¢,

e V=QUk-10)e'P, {15)
where
Q(k—1&)y=(T* ") 1@k~ 1 k) T®
=(1(k—l))-l¢l(k—l)¢(k)vr(l)_ (16)

Note that the basis change is now performed using the in-
verse of the transformation matrix instead of the transposed
used in the original formulation.*

The R-matrix propagation scheme consists in assembling
recursively the sector R matrices, starting from the sector
nearest 1o the origin and continuing toward the asymptotic
configuration. The algorithm that assembles a new sector R
matrix 7*® to an old global R-matrix R*~" and builds up a
new global R™® is the following:*6<74

R®=pb) _(Oz®®
- ZO=[rP- Q7 (k- 1HR*VQU-1L0)]

where again Q™' appears instead of Qt. These arise from
the basic properties of the Cauchy standard propagators*
and they can be derived by relating these standard propaga-
tors to the invariant embedding ones.

As in every recursion, one needs a point at which to
start, We therefore define an initial R matrix R‘" by

1n

(RD),;=8; ’ (18)

N
which is the appropiate expression for regular boundary con-
ditions given a large repulsive constant potential. %

Thus, the final global R matrix is obtained, beginning
with the initial matrix (18) and assembling recursively the
sector R matrices, under the continuity requirement, until the
range of the global R matrix reaches the asymptotic region of
the potential where the asymptotic boundary conditions are
to be applied:

AO=RMYO, 19)

Once the propagation scheme reaches the asymptotic fi-
nal sector, it is useful to transform the translational solution
from the uncoupled representation, ¢'*, 1o the representa-
tion to be used for applying scattering boundary conditions,
which could be a retum to the primitive basis. Under this
transformation we have, for the R matrix,

%M);%ﬁu!w&m , (20)

where 7858l TUDRMM(TMY —1 gnd (TM) 7! i5 used in
place of (T*M)1,

2. Asymptotic matching

The scattering information is extracted, as usually, by
means of the scattering S matrix, which relates our transla-
tional asymptotic functions with the incoming and outgoing
asymptotic solutions, so that

¥=1-08°,

¥'=r-0's". @y
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An expression for the S matrix is obtained in terms of
the quantities actually computed, by combining (20) and
(21), which leads to

So=(O"ﬂﬁ.ﬂo')-x(l—.%ﬁ‘”l'), (22)
which needs only a further scaling to satisfy the flux conser-
vation condition,

k”sz‘ In=(o_$/inalol)—l(l_jgﬁnlllr), (?3)
1o get the desired result Here k'?=2u(E—¢, )" s the
wave vector matrix. According to Refs. 47 and 49, O and 1
are

Oum= Bumiky "B (K, R®),

Ol = Sumirre (k")
(1.3 am d(k,,R“’) 7 Rn *
2]
L= 8,miky P (kR7),
1=, i——d——hm(k,R“’)
nm nm d(k,,R‘») V4 »
where n,m label v, jand v, j', respectively, and bV, H®)

are the first and second kind Hankel spherical functions and,
in the present context, / labels the orbital angular momentum
quantum numbers.

This treatment yields, finally, all state-to-state single an-
gular momentum inelastic probabilities that will be treated
later on.

C. implementation of the absorbing potential in an
10S method

Once the R-matrix method has been generalized to deal
with complex potentials, constructing the relevant scattering
quantities needs the specification of the means for obtaining
an explicit interaction matrix W. In the present work, a
simple infinite-order sudden (10S) Hamiltonian**>* has been
used for that purpose, with the aim of using a simple method
to test the present implementation but at the same time test-
ing it extensively. For the latter purpose, we have on hand,
several results using the traditional R-JOS method,*~* in-
cluding systems with involved PES’, so that a direct com-
parison is actually possible. The Schrodinger equation, under
the 10S approximation for an inelastic scattering problem, in
Jacobi coordinates, is:®

# # NI+l jG+1
(E’*W'T"J—(}T $ugtr-R.7)

2
= Z2 V(R )~ EWir.R, ), @)

where J, 7 and 7 labe] the total, rotational and orbital angular
momentum quantum numbers, respectively. Global reaction
probabilities will be obtained letting V=V~ Vygp, where V
stands for the actual potential for the reactive process.
After the corresponding sectorization of the propagation
region and expansion of the total JOS wave function in a
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-
o P

the convergency criterion.
Resolution Cooley/ms DVR/ms R
LINp -
87 60 710
148 40 120
™ Not converged 20 3L R
Not converged 10

locally vibrationally adiabatic basis for each sector (as ex-
plained in Sec. II B 2), the interaction matrix for a given
sector, £, has the form

)

(26)

jg+1)
72

2 T(T+1
(W)= 8, ;—‘}(si—s)+—(7r—))+< &

2
- #:'((ﬁ:'Vled’j).

and once the coupling matrix is calculated, one can proceed
with the propagation as described in Sec. 11 B.

Iil. APPLICATION

A computer code has been developed in order to solve
the close-coupling equations of reactive scattering that com-
bines the use of a NIP with the R-matrix propagation algo-
rithm. The current version uses Jacobi coordinates and di-
vides the integration range in Cartesian sectors of constant
width. Using Jacobi coordinates leads to a shape of the po-
tential cuts, in the strong interaction region, which is rather
different from the shape resulting when, for example, circu-
lar collision coordinates are used. In particular, one has to
deal with double minimum potential profiles, instead of sim-
pler single minimum profiles. Because of that, a DVR using
a primitive Fourier basis™ was found to be a convenient
method for reliably solving the internal problem, rather than
standard shooting algorithms, like the Numerov method as
implemented by Cooley.*® Although the present method in-
volves explicitly a matrix inversion, which could consider-
ably slow down the performance of the code, the signifi-
cantly faster convergence of this DVR technique enabies us
to describe the potential profiles with few enough points (up
to 38 points compared with 130 for Cooley, in the specific
cxample reported in Table I), so0 as 1o overcome the Cooley
performance, even in the simpler case of single minimum
profiles (those encountered in the asymptotic region).

A previous step in every scattering calculation when
dealing with NIP-based methods, is the definition of the
proper NIP. This compiex potential has to be placed conve-
niently so that it only absorbs the reactive flux. To do so, one
needs to have a rather good knowledge of the potential en-
ergy surface topography. Then one can set the NIP beyond
the transition state but not too deep into the products ar-
rangement, so that onc can save as much as possible prope-
gation time. Within the 10S coniext, a first scan through the

L 1 A i
L1 o 1]
NP haighs / 4V

FIG. 3. Variation of colinear and y=150°, =0 reactive probabilities for
CH+HCI (v=0) with the potential ramp height.

different fixed angle PES contours has to be performed. Then
the optimal NIP parameters are set so as to lead to a maxi-
mum in the reactivity without infringing the transition state
region. Once the optimal NIP parameters are found, calcula-
tions of reaction probabilities can be performed.

The program has been tested on a variety of reactive
scattering problems.*>*” We bave concentrated in this paper
on the CI+HCl system® with the purpose of completing the
good results already given in Ref. 59 and giving a detailed
ilustration of the theory here presented. In that article we
compared colinear (i.e., /=0 and j=0 with y=180°) reac-
tive probabilities obtained by the present method, hereafter
named NIP-10S, to the same probabilities obtained by Bondi
et al.® Results came out to be outstandingly satisfactory,
since even the very sharp resonances which characterize the
CI-+HC1 were well predicted by the NIP-IOS. Therefore, as a
numerical example of the method we have chosen to present
further calculations on the C1+HC! and leave an extensive
application to other systems for a coming article.¥”

We then focus on the symmetric exchange C1+HCI (v)
reaction on the LEPS potential energy surface given by
Bondi ef al.®* The reaction has been studied, under the NIP-
10S approximation, for a total energy range going from 0.2
to 1.0 eV, and considering a reactants atom-~diatom orienta-
tion angle (7) range between 125°~180°. In this energy
range, for both reactants and products, mainly two open vi-
brational channels can be found and a third at the end of the
energy range, which, for practical reasons, we will not con-
sider hereinafter.

First of all, we will present a series of results stressing
on the stability and performance of the method. To what the
stability of the results against variations in the NIP param-
eters concemns, in Fig. 3 the collinear and the y=150° /
=0 reactive probabilities, for C1+HCl (v=0, j=0) at a
total energy of 0.6 eV, are shown as & function of the NIP
beight (Wp). It can be seen how, for a wide range of W,
both do not vary noticeably. Essentially similar results have
been obtained for the amp width, being the stability region
given by the 0.5-1.5 A range. Therefore, we can state that
the calculation is essentially stable under a wide variation of
the NIP parameters. )

Conceming the reliability of the present application, we

L
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TABLE II. j=0,! inclasgtic probabilities for

stands for intial (final)

) states,
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the CI+HCI (y=180°) system at a total energy of 1 eV. i (j)

1

15,2

PATEIIL

1=Z 18

0.16749E+00 0.37234E-03

0 037234E-03 0.27740E+00
0.22695E-05 0.15648E-01
0.54466E+00 0.17607E—01

80 0.17607E-01 0.13501E-0t
O0.11157E—-(8 0.16541E—02
0.27156E+00 0.38269E~02

160 0.38269E—02 0.88630E+00
0.25034E-15 0.22257E~-12

0.2269SE~—05 0.16786E+00 0.83214E+00
0.15648E-01 0.29342E +00 0.70658E+00
0.61432E+00 0.62997E +00 0.3700BE+00
0.11157E-03 0.56238E+00 0.43762E+00
0.16541E-02 032762E-01 0.96724E+00
0.33018E+00 0.33195E+00 0.66805E+00
0.25034E~15 0.27539E+00 0.72461E+00
0.2225TE-12 0.89013E+00 0.10987E+00
0.10000E +01 0.10000E+01 0.74385E-14
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present in Table II the inelastic block of the S matrix (which
is the whole S-matrix since we are acwally running an in-
elastic calculation) for selected values of the orbital angular
momentum, where it can be easily seen how symmetry of the
S matrix is highly preserved, even at the highest energy con-
sidered in the present work. The fourth column of the table
corresponds to the global inelastic probabilities (that is, the
sum for a given starting vibrational level of the elastic and all
inelastic transition probabilities) and the fifth column con-
tains simply the substraction of the latter probability from
unity, thus illustrating how the global reaction probabilities
are extracted. In order to check the unitarity, it must be said
that, previous to the current calculation, a first run was per-
formed where no NIP was placed but only an infinite poten-
tial wall in the products arrangement. All the state-to-all in-
elastic probabilities summed unity. Then reactive
probabilities, obtained with the optimal set of NIP param-
eters, were compared with those given by BCMR® and
found to be extremely coincident, as shown in Ref. 45.
Therefore, it can be stated that the combination of the gen-
eralized R-matrix-invariant embedding with absorbing po-
tentials adequately accounts for the flux loss due to absorp-
tion and “‘global’* unitarity is preserved.

The present application shows a faster convergence than
the traditional two-arrangement method. The key parameters
for the calculations have been minimized up to their limit
convergence values (for ¥= 180°) and then compared to pre-
viously available R-10S results obtained with a traditional
technique.> While a fully converged R-IOS calculation for
the C1+HCI system, at the atom—diatom orientation angle
Y=180°, for a total energy of 0.6 eV, used 400 (200 for
each arrangement channel) translational sectors (NTS in
Table IH) and 27 basis functions (NV in Table III) for the
propagation and lasted 1174 s to yield the final cross section,
in Table III it is shown how for the same calculation, the
present program leads to accurate results with a significantly
lower number of vibrational basis functions for the propaga-
tion and also less translational sectors. Lower sector resolu-
tion is needed (see Table I) in the NIP-IOS because of the
betier convergence of the DVR method, which solves the
internal problem instead of the modified Numerov™® method
used in the 10S program. It should be taken into account that
the difference in the number of sectors relies mainly on the

fact that we are studying basically half of the surface. More-
over, this number of sectors may still be lowered with the
use of sectors of variable width.

Next, some results obtained for the BCMR potential en-
ergy surface of the C1+HCI (v) with the NIP-IOS method
are presented and compared to those previously obtained
with our previous R-10S method.> In particular, in Fig. 4
(lower panel), both NIP-IOS and R-10S y=180° state-to-all
reactive cross sections are drawn as a function of the total
energy. Both methods show a noticeable oscillation in the
cross section curve, reminiscent of the strongly oscillatory
behavior of the reaction probability characteristic of light-
atom symmetric exchange reactions. For this case, both
methods yield almost exactly the same result. However,
when we consider the upper pannel in Fig. 4, where the same
functions are represented at y=160°, we can see that this
agreement is not so good, although the qualitative behavior
is still the same. Differences are attributable to the different
PES probed by the NIP-IOS and the R-10S method. While
NIP-IOS method considers the y=160° cut of the PES, the
traditional R-IOS technique is based on a matching between
the reactant’s and product’s constant-y potential energy cuts.
When moving from the reactants toward the products sur-
face, across the B-matching line,%! a reactants-to-products

TABLE IIl. Convergence table for C1+HCI (y=180°,E=0.6 eV). Relative
emors are given, considering the result for NTS=300 and NV=30 as the

exact value. Bold-faced figures pond to results obtained by means of

the traditional R-IOS technique.
NTS NV ERR % time /8
300 30 3508
300 15 0.00 756
300 10 0.00 389
300 7 0.03 258
200 15 0.13 503
200 10 0.13 261
200 7 31.00 152
150 15 0.30 Im
150 10 030 194
150 7 3201 113
400 b4 1174
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FIG. 4. Fixed Jacobi angle excitation functions for CI+HCl (v=0). A
comparison between R-IOS and NIP-10S.

coordinate change is performed, thus modifying the numeri-
cal value of the interaction matrix elements. This would have
no effect if boundary conditions were applied in both reac-
tants and products channel. But the use of the reactants as-
ympiote only in the NIP-1OS method makes that those terms
entering in the interaction matrix, such as the centrifugal
term, contribute differently than when the coordinate change
is performed.

To conclude this section, in Fig. 5 we show the tridimen-
sional global reactive cross sections again as a function of
the total energy. This magnitude is obtained by integration,

-—— RO
26} —— NIPIOS =

o . .

ups
g.—

i =

Yy S I I}
o4

0.6 10
Totei Energy / oV

HG. 5. Tridi ional excitation fi for C1+HC (v=0,1). A com-

parison between R-10S and NIP-1OS.
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over all contributing angles, of the fixed angle reaction cross
sections.”’ Again, a good agreement between both methods
is met. This should not be surprising since the most contribu-
tive angles are those close to colinearity.

IV. CONCLUSIONS

A method has been developed that introduces the ab-
sorbing potential technique into a 10S reactive scattering
problem reducing it into an 10S inelastic scattering problem.
This has led to a generalization of the R-matrix propagation
method in order to take into account the fact that the cou-
pling matrix might be compiex.

The method has shown up to be a powerful approach for
computer consuming reactive calculations. In particular, the
implementation of the imaginary potential linear ramp
showed a better performance than a traditional R-matrix
propagation R-IOS, mainly due to a faster convergence in
the number of basis functions and also in the number of
translational sectors. The S-matrix symmetry and unitarity
tests presented here as well as the stability of the results with
the variation of the linear ramp parameters (mainly its
height) state the method’s good reliability.

As an example, the method has been applied to the Cl
+HC} system and then its results have been compared to
those obtained by a traditional R-matrix propagation 10S
treatment. The results agree for both the fixed-angle cross
section and the all-angle integrated cross section, although
for those angles far from colinearity there is a noticeable
discrepancy in the curves, probably due to the different po-
tential energy profiles scanned by the two approaches.

Finally, to conclude this section we would like to stress
some singularities of the present application, which make it
different from other aiready successfully applied methods,
similar in _ nit, that were mentioned in the Introduction. In
comparison with Seideman, Manthe and Miller’s approach,2®
one could say that the present application goes kalfivay in the
application of NIPs, since we have placed the absorbing po-
tential only in the products region while the cited authors
placed a complex potential in both products and reactants
ammangements. This can be understood since Seideman, Man-
the, and Miller approach focused solely on the thermal rate
constant k(T), or, to be more precise, the cumulative reac-
tion probability. On the other hand, our approach enables us
to obiain initial state-to-all properties of the system. Light
and Altenberger’s approach®? is also very close in spirit, al-
though no absorbing potentials are used, to the implementa-
tion presented here, since it also seeks to solve the Schro-
dinger equation in a smaller physical region. This is
performed by the application of approximate boundary con-
ditions at a transition state hypersurface. Naturally, this re-
sults in an approximate set of S-matrix elements. In this
sense, it could be stated that the present approach eliminates
t ¢ approxmatc oun ary matchng, snce asymptotic
boundary conditions are only applied in the reactants
asymptotic region and no matching is performed at the TS
hypersurface but an absorption of the reactive flux beyond it.

N
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8.4 The application of complex absorbing po-
tentials to an invariant embedding scatter-
ing method: II. Applications.

Journal of Chemical Physics (accepted)

Following to the previous publication, another work has been recently ac-
cepted for publication, in which the novel implementation is applied to Li+ FH,
Mg+ FH and H + F; systems. Studying such reactions we cover different ergici-
ties (moderately endoergic, largely endoergic and exoergic,respectively), different
levels of PES complexity and different mass combinations as well.

Although the first applications of the method seemed to point out a clear
improvement in the calculation of state-to-all quantities, with respect to the
previous R-IOS technique, we thought it would be challenging to have available a
more comprehensive test so that we could establish more confidently the method’s
level of performance. Besides testing the use of NIPs for varied conditions, we
also intended to benefit from such a cheap method to get some deeper insights
into the dynamics of some of the reactions here explored.

Although one would need in principle different NIP parameters for each dif-
ferent orientation angle in the IOS treatment, in practice this is not usually the
case and we have been able to employ a single set of NIP parameters for all
orientations except for highly anisotropic PES (H + F3) where we used two sets
of parameters. This, in addition to the fact that these parameters are quite easily
found, shows that the time spent in obtaining an optimal NIP is small.

Comparison between R-IOS and NIP-IOS performances on these systems
showed clearly the smaller computational effort for the second. Generally, the
number of translational sectors is halved and the dimension of the vibrational
basis is significantly reduced. Both turn into CPU time savings, reduction of the
number of sectors decreases linearly CPU time while diminishing the basis scales
as N3 since an explicit matrix inversion is included in the propagation code.
Through the introduction of the absorbing potential we were able to formulate
the reactive scattering problem using a single arrangement coordinate system and
this simplificated significantly the numerical parameters convergence, since the
reactants-products matching (characteristic for R-IOS approach) can be avoided.

Although in the published work NIP-IOS and R-IOS are in good agreement,
one should not expect, in principle, an exact agreement since they are not exactly
equivalent approaches. We would like to emphasize that NIP-IOS strictly con-
strains the motion to that governed by the reactants fixed-angle approximation.
No additional constrains are introduced beyond the TS in the products region
where the flux is absorbed. This does not stand for R-10S, where the solution
has to be propagated as well on the products region and therefore the motion in
this region is constrained and related to the reactants by the B-matching rule.

The relatively good efficiency and reliability of the code developed encouraged
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us to perform some additional calculations in which we successfully calculated
cumulative reaction probabilities (CRP) with significant saving of time. The idea
underlying was, in a regular NIP-IOS run, to carry out the asymptotic matching
shortly after the strong interaction region where, even if the inelastic interactions
are still relevant, the reactive ones can already be neglected. This would lead to
obviously wrong state-to-all reactive probabilities, but if the point is to calculate
global all-to-all quantities, such as the rate constant, then all that one needs is
the CRP.
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Abstract

The application to several triatomic reactions of a novel implementation of absorbing
potentials on a generalized R-matrix propagation method (Chem. Phys. Lett. 291
(1998) 346-350 and J. Chem. Phys. 109 (1998) 5761-5769) is presented. Specific
systems chosen have been Li + FH, Mg+ FH, and H + F,, so that an extensive
application covering a wide range of PESs has been performed: it includes moderately
and largely exoergic and endoergic processes, simple and involved PES, moderate to
large skew angles and direct and complex-forming collisions. In all cases it is shown
that the use of the absorbing potential is simple and robust, yielding correct values at
a fraction of the computer’s resources consumption. The best effectiveness is obtained
for exothermic, direct reactions, for which up to one order of magnitude in CPU time
saving is obtained. This efficiency opened the possibility for a very detailed exploration
of the reactive process, in particular on those gquantities strongly dependent on the
collision energy. In addition, it is shown that, as previously known from a totally
different numerical approach, the cumulative reaction probability can be efficiently
and accurately calculated propagating the scattering solution along a very short range
of the scattering coordinate.

I. Introduction

In previous publications][l, 2, 3], a novel approach for doing reactive scattering calcula-
tions has been developed in our group, based on the application of negative imaginary
potentials (NIP) on a generalization of the invariant embedding R-matrix propagation
method. This use of NIPs, as a tool for reducing the computational effort in scatter-
ing calculations, is complementary to previous time-dependent and time-independent
quantum molecular scattering formulations[4]to[24]. This subject has been reviewed in
the literature several times and, in particular, its use throughout the years has been
briefly summarized by us very recently[2]. Since then, the subject has still focused
an important activity by many groups. Among the recent advances, it is interesting
to notice those which introduce the use of absorbing potentials having both real and
imaginary components -the Complex Absorbing Potentials (CAP)-, which allow for an
important decrease in the absorption width, if compared with the typical absorption
widths of the purely imaginary absorbing potentials[25].

Our new implementation consists essentially in placing, as common to some other
methods, a NIP at the entrance of the products channel, so that propagation towards
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the products channel is saved without losing accuracy, as far as total reaction prob-
abilities (i.e. summed over product states) are concerned. The main advantages are:
a) it avoids an important part of the slow input-output operations towards comput-
er’s secondary memory, and b) fewer basis functions are necessary, in general, in the
close-coupling expansion of the total wavefunction, since only one -although slightly
perturbed-, simple reaction channel has to be counsidered and no change to product
arrangement coordinates has to be performed. The propagation algorithm which re-
sults is somewhat more involved, as a consequence of the complex-valued nature of
the interaction matrix, although it has been shown that the increase in computational
effort is smaller than the savings explained above.

In the previous preliminary applications, it was shown that the method is capable of
reproducing very accurately extremely sharp resonances seen in the collinear Cl + HCI
symmetric exchange reaction[21]. Moreover, the computation of a fixed-angle IOS cross
section for the Cl+ HCI[23] and the Ne+ H [24] systems yielded accurate values while
resulting in a CPU time saving by a factor of five and memory requirements reduced
by a factor of four.

Although the first applications seem to point out a clear step forward with respect
to the previous R-IOS technique[26, 27, 28, 29] (ie. no NIP is used and therefore
state-to-state information is available) when state-to-all probabilities are the only in-
formation needed, it is interesting to have available a more comprehensive test, mainly
in order to establish the real performance of the method under sufficiently varied con-
ditions. The present work deals with this comprehensive test, whose main purpose is
twofold: first, to show that the use of NIPs for sufficiently varied conditions is (almost)
straightforward while accurate and, second, to exploit the feasibility of the calculations
to cheaply get some deeper insights into the dynamics of the reactions here explored.
The applications focus again on the IOS technique, for various reasons. First, several
data is available[30]to[37] which can be directly used for the present tests. Second, it
has long been our primary interest, to deal with "involved” systems, meaning those
having large endo or exothermicities, heavy masses, non-collinear transition states and
described by complicated potential energy surfaces (PES), i.e. those with barriers,
minima, etc... It is well-known that these systems are very difficult to treat with more
accurate scattering methods. It is also worth noticing that, for the purpose of show-
ing the present method’s usefulness, the particular Hamiltonian implemented is of less
relevance, since the main changes are those involving the propagation step, which is
essentially independent of the approximations built into the internal-problem Hamilto-
nian.

The propagation-based nature of the present method is well suited for another, in-
teresting application, namely the calculation of cumulative reaction probabilities (CRP)
using a very short range of the scattering coordinate. In a very clarifying work, Seide-
man and Miller[9] showed the hoped for advantage of the calculation of rate constants
via the direct estimation of the CRP: the use of a short-ranged grid for discrete vari-
able representation (DVR) calculations, defined around the transition state region of
the potential energy surface, leads to accurate values of the CRP. This was calculated
not through the standard procedure, involving the calculation of each state-to- state S-
matrix element, but directly by means of an expression related to the outgoing Green’s



147

operator. Addition of NIPs at the grid edges ensured outgoing boundary conditions
and eliminated the necessity of including basis functions carrying the proper asymp-
totic behaviour. Here it will be shown that performing the present pseudo- inelastic
propagation with a NIP allows an easy extraction of cumulative reaction probabilities.
1t results from the application of standard boundary conditions at similar small values
of the scattering coordinate, such as those used by Seideman and Miller. This provides
an alternative route for the CRP direct calculation, which explicitly shows how one
can save computational effort using the same initial approach as for the state-to-state
calculation. This procedure leads, as physically expected, to incorrect state-to-state
inelastic probabilities but to correct estimations of the total reactive flux. It thus gives
a clear indication of the role played by the different portions of the reactants channel
region of the PES in inducing transitions between states.

The remainder of the paper is organized as follows. Section II describes the com-
putational details of the several applications shown here. Section III shows the main
results for the Li + FH, Mg + FH, and H + F systems, a further general analysis,
and some new features singled out thanks to the easy availability of a dense mesh of
energy points in cross section calculations. Section IV presents the results of the CRP
calculation for some of the above systems and, finally, section V concludes.

I1. Calculations

Calculations have been performed with the same NIP-IOS Hamiltonian as used in the
first tests(21, 23, 24]. The main numerical parameters which have to be controlled for
. numerical convergence may be divided into two groups: a) the group including the
dimension of the vibrational basis (in the present case, a contraction of the initial basis
whose dimension is given by the number of Fourier-basis DVR[38] points), the width of
the translational sectors and the final asymptotic distance at which boundary conditions
are applied and, b) the parameters of the linear potential ramp (position, height and
translational -i.e. along the atom-center of mass of the diatom Jacobi distance, hereafter
denoted by R- and "vibrational” -the internuclear diatom Jacobi distance, denoted by
r- widths). This division is made in order to stress that convergence has to be, and
really is, achieved independently between the two groups of parameters. The ”a” group
parameters are optimized in order to get stable reaction probabilities upon an increase
in their values and are among the typical numerical parameters in time- independent
reactive scattering methods (however, note that very few of them are necessary in the
present method, as a consequence of the simplifications resulting from the fact that
the reactants to products transformation is avoided). On the other hand, the search
for NIP convergence means finding the parameters range leading to conditions of total
absorption and minimal reflection. This interval is identified again as a stability region
of the reaction probabilities.

The general procedure followed for obtaining the final set of NIP parameters has
been the following: first, plots of fixed-angle cuts of each PES have been used in order
to roughly localize the transition-state (TS) region and get a correct knowledge of the
PES topography, mainly that corresponding to the entrance of the products channel.
Then, according to previous experience, a first trial position for the NIP has been
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taken, being as close as possible to the TS but not too close to allow the inelastic flux
being absorbed. This latter feature has been controlled looking for the probabilities
stabilization distance (along the reactants vibrational coordinate) at constant values of
the remaining NIP parameters.

Afterwards, its proper height and translational and vibrational widths are searched
in a global iterative process. This procedure leads, in principle, to different NIPs
for different orientation angles. In practice, however, only highly enough anisotropic
PES for particular mass combinations of the triatom have been found to need the use
of different parameter sets for different angles. This was so since a subtle difficulty
was found for systems clearly departing from the light-heavy-light (LHL) or heavy-
heavy- light (HHL) mass combinations, specifically for the case when acute orientation
angles non-negligibly contribute to reactivity, i.e. the Cl + HCI and the H + F,
system. It is due to the PES distortion found when plotting its fixed-angle cuts using
Jacobi coordinates. For angles close to 90°, variation of R describes the approach
of the attacking atom towards insertion between the atoms of the diatomic molecule.
However, variation of the r coordinate does not describe the departure of the ejected
atom as a result of the reaction, since the center of mass, which still determines the
coordinate origin, also travels somewhat attached to the ejected atom and so does the
attacking atom (for fixed R). As a result, the product arrangement is poorly described
in these cases since the attacking atom cannot be held close to the exchanged one when
varying r. This is, in fact, one of the reasons why one should change from reactant to
product coordinate systems when trying to efficiently describe a reactive process. As
for the consequences to the present method, since only the TS portion of the products
arrangement needs to be described, it just means that special care has to be taken in
adequately placing the NIP. Consequently, the procedure becomes less straightforward
when dealing with these problematic systems.

Table 8.1 shows the values of each numerical parameter as optimized for each of the
three (Li+ FH, Mg+ FH and H + F,) reactive systems included in the present work,
while figure 8.1 illustrates the variation of some reaction probabilities as a function of
the height of the NIP. It shows that stability is clearly achieved within a sufficiently
wide range of the corresponding NIP parameter. Table 8.2 shows the distance at which
the NIP has been placed, along the reactants vibrational coordinate, as a function of the
orientation angle, for the H - F, system, since the particular difficulties encountered for
this reaction, due to an important variation of the PES topography with the orientation
angle, required a much more precise tuning. We note here that only a limited number of
production runs have been necessary in order to determine the optimal NIP parameters
set. It is due to the fact that a unique set is used for the whole energy range. In addition,
since the optimal set little varies with the specific reaction being considered, the first
trial values are found to be usually within the stability range, further accelerating the
optimization process. :
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F igure 8.1: Dependence of the inelastic probabilities as a function of the NIP ramp height.
(a) Li + FH system. (b) Mg+ FH system.

System D W [A

Li+FH (2502 |1.0
Mg+ FH [ 3.0 056 1.0
H+ F * 10.75] 0.5

Table 8.1: Best NIP parameters for the Li + FH, Mg+ FH and H + F, systems. D: upper
limit of the NIP along the vibrational coordinate r; W: height of the NIP linear ramp; A: width
of the linear ramp along the vibrational coordinate. * See Table 8.2.

Orientation angle | D

180 1.8
170 1.8
160 1.8
150 1.8
140 1.8
130 1.8
120 2.1
110 21
100 2.1
90 2.1

Table 8.2:  Upper limit along the vibrational coordinate r (D), as a function of the atom-
diatom orientation angle, for the H + F, system.
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III. Results for the Li+ FH, Mg+ FH, and H+ F;,
systems and analysis

This section shows the results of the application of the NIP-IOS method to several
triatomic systems. As introduced before, our aim has been to cover a sufficiently wide
class of reactions so as to allow us to characterize the accuracy and applicability of the
method. Results will be presented separately for each system, while the corresponding
analysis will be performed afterwards in general terms. Only few specific details will be
given about the general features of each reaction. The interested reader should consult
the quoted references.

The Li+ FH system

As the starting point in the applications, the Li + FFH system has been chosen. This
is a moderately endoergic (0.157 eV) system showing a weakly bound stable reac-
tant complex (—0.302 eV) whose minimum energy path exhibits a barrier of 0.182
eV. Several theoretical calculations have been performed in the past on its reaction
dynamics{27, 28, 34, 39, 40]. Among them, those obtained by means of a Reactive In-
finite Order Sudden (R-IOS) technique[27, 28] on a Bond Order (BO) surface[34] will
be explicitly used here for comparison purposes. For more details on the R-IOS calcu-
lations, see refs [27, 28] and [34]. Figure 8.2 shows 600 closely spaced energy points for
the integral cross section, which were calculated with the proper NIP parameters given
in table 8.1. An additional purpose of the fine energy scanning has been to resolve
the structure previously anticipated in standard R-IOS cross section calculations4l.
Remarkably, the basis dimension could be reduced from 16 (R-I0OS) to 10 (NIP-10S),
in spite of the fact that, in this case, the arrangement channel whose description is
(almost) completely avoided (the products LiF + H) is the one lying higher in energy.

Figure 8.2 shows the integral cross section as a function of total energy, for both the
NIP-10S and the R-10S techniques. Both methodologies lead to rather similar results,
showing an initial decrease of the integral cross section, then reaching a minimum and
finally leading to an uniform moderate increase. Differences are then more quantitative
than qualitative, being larger at the transition region between the decreasing and the
smooth increasing behaviours. The initial decrease is known[34, 39] to be a consequence
of the zero point vibrational energy (ZPE), since, although the reaction is electronically
endoergic, after consideration of both the reactant and product ZPE, the reaction
becomes slightly exoergic. In addition, the reactant ZPE lies above the minimum
energy path electronic barrier. The minimum occurrence and the subsequent increase
in the integral cross section are interpreted as the result of the increasing contribution,
to the integral cross section, of reaction events at angles away from the TS orientation
angle at higher total energy.

The differences between both calculations can be attributed to the different PES
probed by each techniques in the product arrangement region, as it will be discussed
in more detail below. As total energy is increased, the diminishing influence of the
PES on the dynamics makes both methods to approach one each other, as previously
expected.
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Figure 8.2: Integral cross section as a function of total energy, for the Li + FH system.
Continuous line: NIP-IOS results. Dotted line: R-IOS results.
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The Mg+ FH system

The Mg+ FH — MgF + H reaction is a strongly endoergic (1.33 eV) HHL reaction
with a late barrier located well inside the product channel. This barrier is 1.826 eV
higher than the reactants asymptote at a bent (72°) transition state geometry. The
strong interaction region of the PES displays two minima: one, collinear (—0.34 eV), is
located just before the reaction barrier, and the other (-1.30 eV), is located late in the
products channel. The second minimum corresponds to a highly bent configuration,
which is not probed in collisions approximately following the minimum energy path.
Another important feature of the PES[42] is that the fixed angle barrier to reaction
(that, as already noted, has a minimum at © = 72°) rises sharply moving to smaller
values of v (more bent geometries) while it rises slightly (about 0.2 eV in the range
74° <y < 115° and about zero from y = 115° to v = 180°) moving to larger values of
the collision angle.

This reaction has been recently studied by means of the standard R-IOS technique([36,
37] and, previously, by means of quasiclassical trajectory (QCT) calculations{42]. In-
tegral cross sections are available for the ground and up to fifth excited reactants
vibrational level. The peculiarities of the dynamics shown by this reaction makes this
system a rather complete benchmark: reaction is enhanced by reactant vibrational
energy, but its effectiveness clearly changes from open to closed orientation angles.
Tunneling is rather important (although a fairly heavy atom is transferred) in estab-
lishing the position of the reactivity threshold along the energy scale. Excited reactant
vibrational levels are readily available in a single calculation, which leads to relevant
data on the influence of both vibrational and translational energy upon the reactivity.

Since the reaction is considerably endoergic, the discarded channel, as a consequence
of including the NIP is, in principle, the less demanding. However, the closer vibrational
spacing of the MgF molecule makes available, for a given total energy, more vibrational
states than the reactant arrangement. For instance, at a total energy of 3.00 ¢V, 6
vibrational levels are open in the reactants side but these are 15 in the products side.
For this reason, a reduction in the basis dimension from 35 to 25 has been possible, in
addition to an approximate halving in the number of translational sectors.

Figure 8.3 shows the integral cross section, for the NIP-IOS, the R-IOS and the
QCT techniques, for the v = 2,3,4 and 5 reactant vibrational levels. The semiquanti-
tative agreement is seen to be remarkable and, most importantly, a unique set of NIP
parameters sufficed to obtain correct integral cross sections for the whole set of initial
vibrational levels. Given the particular features associated with the orientation angle
for this reaction, and with the purpose of checking that the NIP-IOS - R-IOS coinci-
dence is not attributable to error compensation between the different angles, Figure 8.4
(lower panel) and 8.4 (upper panel) show the corresponding fixed angle cross sections
for v = 75° and 180°. It can be easily seen that a rather satisfactory agreement is
obtained as well. It should be noted that the two angles chosen are those most rep-
resentative of the two kinds of energy effectiveness mechanisms, which are found to
describe the overall reaction dynamics[36, 37].

Y



153

o

. 8

S 6

(8]

2 4

[72]

2 2

)

= 12

&

g 8

T4

8

é o

8 20 [v=5][~0- IOS
A —e— NIP-IOS

o
o

-®- QCT ...... .........................

2.0 2.2 24 2.6 2.8 3.0
Total energy / eV

Figure 8.3: Integral cross section as a function of total energy, for the Mg + FH system,
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Figure 8.5: Integral cross section as a function of total energy, for the H + F2 system.
Continuous line; NIP-IOS results. Dotted line: R-IOS results. Dashed line: QCT results.
Dashed-dotted line: VADW results.

The H + F;, system

The H + F; has been long considered the prototype of a highly exothermic elementary
reaction. In fact, the exothermicity is 4.5 eV, which causes a sudden change in the
nature of the PES at the TS. R-IOS calculations have been performed(30] on a London-
Eyring-Polanyi-Sato (LEPS) PES as developed by Jonathan et al.,[43] and so the same
PES will be used here. A total of 200 energy points were calculated, within the scanned
energy range, for the present work.

This system appears most suited to a treatment which avoids the description of the
product arrangement, since it is the source of the main difficulties as the strong exother-
micity may lead to the necessity of describing a highly excited vibrational dynamics.
In this sense, a revealing fact is that the R-IOS study of ref. [30] required doubling the
number of translational sectors for describing the product arrangement, as compared
to the reactant arrangement (making a total of 300 sectors), while the vibrational basis
set dimension had to be set at a value of 30 (although only 4 vibrational states are
open, asymptotically, in the reactant arrangement at the highest energy considered).
A major advantage of dealing with the reactant arrangement only is that the number
of sectors could be fixed at a value only slightly higher than that used for the reactant
arrangement in the R-10S study (150 -NIP-IOS- in front of 100 -R-I0S-), while the vi-
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brational basis could be reduced until 13 functions while keeping results well converged.
Figure shows the integral cross section, which is not only compared with the R-IOS re-
sults but also with results of a quasiclassical trajectory (QCT) calculation[44] and, for
comprehensive purposes, a vibrational-adiabatic distorted wave (VADW) approach[45].
Although some differences arise in the high-energy behaviour of the ¥ = 0 case, one
again observes a general good agreement between NIP-IOS and R-10S, as well as with
the QCT technique. This latter is expectable given the marked isotropy of the PES
(weak reorientation) and the absence in it of particular features (no strong quantum
effects and/or complex dynamics). Remarkably, the threshold behaviour is strongly
coincident, in position and shape, between NIP-IOS and R-IOS, lying somewhat be-
fore the QCT threshold to reactivity. VADW results show its inherent limitations,
especially at higher energies.

Analysis of the results

The comparison between the numerical scattering R-IOS and NIP-IOS parameters
clearly evidences the smaller computational effort for the latter, which is due to the
inclusion of the NIP just after the TS in the way, as the collision proceeds, to the pro-
duct arrangement. In all cases, the number of translational sectors is roughly halved,
and the number of vibrational functions may be also correspondingly decreased. The
reduction in translational sectors contributes approximately linearly to the CPU time
saving, but any reduction in basis dimension diminishes approximately as N3 the CPU
time (being N the number of basis functions reduced), since the most expensive part
of the propagation time is spent in matrix inversion and a direct diagonalization rou-
tine has been used. This latter fact is a consequence, as previously shown[23], of the
complex-valued nature of the interaction matrix due to the incorporation of the ab-
sorbing potential. Because of that, the most favourable cases correspond to exothermic
reactions and, particularly, those forming a product molecule with a smaller vibrational
spacing than the reactant one, as it is seen in the H + F;, case. In such cases a gain
in CPU time of about one order of magnitude is obtained {200 energy points for the
integral cross section needed, for the H + F; system, 6 CPU hours on an IBM 3AT
Work Station).

The practical implementation of the NIP-IOS method to several, sufficiently var-
ied reactive systems demonstrates another important advantage: calculations are more
straightforward than with the R-JOS technique, since the parameter optimization pro-
cess, to allow for production runs, is much simpler. This is clearly a consequence of
the fact that a simpler coordinate system can be used since the reactant to product
transformation is avoided. One may argue that additional parameters are necessary to
optimize the NIP. Notwithstanding, they have been determined with a minimum effort
in all but one case and, most important, its determination is completely independent
of the true reactive scattering numerical parameters optimization.

The present work shows that NIP-IOS results are found to be in general agree-
ment with the previous R-IOS. However, one should not expect, in principle, an exact
agreement since the above methods are not equivalent. NIP-IOS dynamics is based
in constraining the motion to that governed by the reactants fixed-angle approxima-
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tion. Since the reactive flux is absorbed just after the TS, no additional constraints
are introduced concerning the product arrangement. Instead, the present R-IOS ap-
proach uses the B-matching rule[27] to relate one fixed-angle reactants arrangement
with one fixed-angle products arrangement, with the constriction that the potential
be continuous and that reactant to product transformation is performed along a line
situated roughly around the TS (specifically, along the potential ridge). As a conse-
quence, the reactants channel in both methods is the same but the products channel
and part of the TS region may be substantially different. This difference is expected
to lead to clearly different reaction probabilities in certain cases. The discrepancies
between NIP-IOS and R-TIOS found for the Li + FH case are a clear illustration of
the above statements. Figure 8.2 shows, for instance, that the structure surviving at
the cross section level is entirely different, and even appears at low energies for the
R-IOS case but at high energies for the NIP-IOS case. Another source of discrepancy
may also arise in the fixed-angle cross section calculation, since the orbital angular
momentum is included in a different manner. The NIP-IOS approach uses the same
constant orbital angular momentum value through the entire propagation range, while
the present implementation of the R-I0S method[46] changes the orbital angular mo-
mentum term, when performing the reactant to product transformation, according to
two limiting behaviours. The orbital quantum number is kept (although the orbital
angular momentum term changes as a consequence of the reactant to product coordi-
nate transformation) for HLH mass- combination reactions, while it is exchanged with
the rotational quantum number for HHL or LHL processes. According to the above
discussion, we consider the NIP-IOS approach to be somewhat more general than the
R-108, since less constraints are included into the theory.

A practical consequence of the present comparison is that a test on the limitations
introduced by the B-matching rule can be performed. The general global agreement
between NIP-IOS and R-IOS results indicates that using that version of the R-IOS
method, to calculate state-to-all integral cross sections, does not introduce severe lim-
itations to the reaction dynamics, when compared with the non-restricted fixed-angle
dynamics built into the NIP-IOS method.

As for the general agreement between NIP-IOS calculations and less approximated
or experimental results, the conclusions must be essentially the same than for the R-
108, i.e. the technique works well for high energies, anisotropic potentials and HHL or
LHL mass combinations, finding its utility in the previously termed involved reactive
systems. It has the added advantage of a smaller demand on computational resources,
and, as stated above, leads to a savings of up to an order of magnitude in CPU time
for the most favourable case explored in the present work.

Some insights into the reaction dynamics of the Li + FH
system

As pointed out above, the simplicity of the NIP-IOS method makes possible a more
thorough study of the reaction dynamics of reactive systems, by more accurately ex-
ploring the range of initial conditions. Here we present some results of a detailed
exploration of the energy dependence of the reactive cross section for the Li+ FH sys-
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tem, with the aim of illustrating how new information arises when this kind of study
becomes available. No attempt is made to fully explain the new results presented here,
which we leave for future work.

Some structure is present in the cross section dependence versus energy, for the
Li + FH system, as it is shown in figure 8.2. This structure in the cross section is
rather remarkable, since it may correspond to the fingerprint of reactive scattering
resonances. The possibility of gaining additional knowledge on how it arises, led us
to ask ourselves for a more detailed study. The resulting low cost of the NIP-IOS
calculations then made possible the cheap calculation of a fine mesh of energy values.
As stated before, the cross section was calculated for a total of 600 energy values.

A first analysis can be performed, thanks to the angular motion decoupling of the
I0S approach, by plotting fixed-angle cross sections as a function of energy. They
are shown in figures 8.6 and 8.7. Inspection of both figures clearly shows that the
structure is found exclusively at orientation angles larger than the TS angle (75.52°).
As a function of the orientation angle, two kinds of structures are distinguished: a) that
found between 74 and 85° at high total energies, and b) that for angles larger than 85°
for the whole scanned energy range. To investigate its origin, we show in figures 8.8 and
8.9. partial sums of the reaction probability, multiplied by the (2£ + 1) term, for the
fixed angle cross section corresponding to 95°. These plots make explicit the way the
structure appears and how it contributes to the orbital angular momentum summation.
Plots of figures 8.6 and 8.7, for the 95° case, evidence a double-pattern structure. First,
a long wavelength, smooth oscillation of about 0.05 eV is seen. Superimposed on it, at
moderate to high energies, a short wavelength, spiked structure of about 0.006 eV is
then identified. The partial sum plots reveal that the long oscillation arises from low to
moderate values of the angular momentum, while the short oscillation emerges from the
contribution of moderate to high values of the orbital angular momentum. Then, the
structure in the 95° case originates from the whole angular momentum range, although
each contribution manifests in different angular momentum regimes, so that its origin
can be separately identified in the fixed-angle cross section.

Noteworthy as well is the dependence upon the orientation angle of the cross section
dependence versus energy, since inspection of figures 8.6 and 8.7 evidences a dramatic
qualitative change. In particular, a change in 15° is sufficient to evolve from a barrier-
to-reaction to a barrierless behaviour (around 70°) and then back from barrierless to
barrier-to-reaction (around 85°). This behaviour stresses the fact that, in general, the
ability to perform lots of calculations at many energies opens up the possibility of
investigating reaction dynamics in much greater detail than before. This is especially
useful when a strongly structured energy dependence is to be singled out.

IV.Calculation of Cumulative Reaction Probabil-
ities (CRP)
As introduced above, Seideman and Miller used a DVR and absorbing boundary con-

ditions to efficiently calculate the outgoing wave Green’s function. The DVR grid
was defined using very few points around the transition state region, leading to stable
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Figure 8.9: Partial cumulative sums of the probability term multiplied by (2¢ + 1), as a
function of total energy, for the Li + FH system and v = 95°. Each trace contains the sum
up to the £th partial wave. Traces from ¢ = 24 to £ = 47, which is the highest orbital angular
momentum non-negligibly contributing to the cross section, within the scanned energy range.
Only traces belonging to odd values of £ are shown here as well.
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CRPs. This work showed explicitly that when no state-to-state information is neces-
sary, the direct calculation of the rate constant (the global quantity) is possible and
it is much cheaper than foillowing the complete route, which starts from the state-to-
state S-matrix and performs the sum over product and reactant states to get the rate
constant. The same work provides also the closed expressions for both the CRP and
the S-matrix in terms of the outgoing wave Green's operator, which are substantially
different.

Here we intend to show, from the propagation-based perspective, the same fact,
i.e. that CRPs can be efficiently calculated using a very short value of the asymptotic
matching distance, at which standard boundary conditions are applied. This assump-
tion obviously leads to incorrect state-to-state inelastic probabilities, but the reactive
flux, which is captured by the NIP at the entrance of the products channel, is never-
theless correct. An advantage of this approach is that the savings introduced by this
procedure are very easily accounted for, since the same expression for the CRP is used
in both the long -standard- and short -only valid for CRP’s- propagation cases.

Figures 8.10 show the variation of the state-to-state inelastic and cumulative reac-
. tion probabilities as a function of the final "asymptotic” matching distance, as calcu-
lated for the H + F and Ne + H;} systems (this latter system having been used as
a preliminary test in ref. [3]). It is clearly evidenced that going from large to short
scattering coordinate matching values causes the inelastic probabilities to appreciably
change, while the CRP remains constant within the desired precision. Most remarkable
are the results corresponding to the H + F» system, since an important variation in
the inelastic probabilities is already observed at rather large values of the matching
distance, without altering the CRP.

The above results (and those of ref. [9]) stress the role played by the potential
ridge[47, 48, 49] in the very detailed reaction dynamics. The reduction in coordinate
space sampling for the CRP calculation leads to the fact that only the region around the
TS, and then around the potential ridge, is kept in the calculation. It is known that it
is in this region where most of the non-adiabatic coupling between rovibrational states
takes place and, in particular, those couplings affecting transitions between reactant
and product states. In the present case, and mainly in the H + F, system, it is explicitly
shown that important changes in the inelastic state-to-state probabilities are due to
simple inelastic energy transfer processes (i.e. local to the reactant channel), since
CRPs keep essentially constant until matching reaches the strong interaction region.
This result clearly and remarkably indicates that it is only in the vicinity of the ridge
region where non-adiabatic coupling take place between reactant and product states.

V.Summary and conclusions

In this work, an extensive application of a previously developed new method for doing
reactive scattering calculations, based on assembling the use of NIPs with a general-
ization of the R-matrix propagation approach, has been performed. The Li + FH,
Mg+ FH, and H + F, systems have been studied, with the aim of testing the applica-
bility of the method with reactions which display a rich variety of scattering dynamics.

It has been shown that correct results are easily obtained, and that it is possible to
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determine the almost universal optimal numerical parameters, within a given system.
CPU time consumption and RAM memory requirements are also moderately to drasti-
cally reduced, when compared to the requirements of the R-1OS technique. Special care
in the NIP-IOS application must be taken for HLL systems and strongly non-collinear
configurations, since distortion of the PES, when using reactant Jacobi coordinates,
prevents a straightforward application of the method. Specifically, the reactant vibra-
tional distance at which the NIP is placed requires a finer tuning, in the present case
as a function of the orientation angle. Work is in progress towards considering bet-
ter adapted coordinate systems (hyperspherical coordinates, etc...), so as to avoid the
distortion problem while keeping into reasonable values the computational effort. The
mutual agreement between NIP-IOS and R-IOS integral cross sections points towards
a minor global relevance of the B-matching restriction in the R-IOS method.

The feasibility of reactive scattering calculations with the NIP-IOS method allows
a more detailed investigation of the reaction dynamics of triatomic systems. As an
example, we have calculated the integral cross section of the Li + F H system at a very
fine mesh of energy points (600 values between 0.26 and 0.8 eV) and have explored
_ several fixed-angle collisions. This study allowed us to identify a remarkable structure
present in the integral cross section, most probably revealing the survival of resonances
at the cross section level. Looking for its origin, the fixed-angle orbital angular mo-
mentum partial sums of the cross section evidenced that: a) for angles smaller than
80°, only a high-energy structure is present which is attributable to oscillations in the
reaction probability at very high values of the orbital angular momentum, and b) for
angles higher than 80° a much richer structure is present in the whole energy range.
It is formed by a double pattern, consisting of a smooth, long wavelength oscillation
due to low angular momentum contributions and superposed on it, a spiked, short
wavelength structure appearing at moderate to high values of the angular momentum.
This high angular momentum behaviour is most remarkable, since it emphasizes the
role of angular momentum in reactive collisions and makes explicit the importance of
the (2£ + 1) degeneracy term.

As a final application, we have shown that the calculation of CRPs with a very short-
ranged propagation, using standard boundary conditions, leads to the same values than
the standard calculations. This offers an alternative way of showing the "hoped for”
advantage of the direct rate constant calculation as pointed out by Seideman and Miller.
In so doing, the role of the potential ridge in inducing reactant to product transitions
has been also illustrated.
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