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. . . Y tú para que quieres un barco, si puede saberse, fue lo que el rey preguntó 
cuando finalmente se dio por instalado con sufrible comodidad en la silla de la 
mujer de la limpieza, Para buscar la isla desconocida respondió el hombre, Qué 
isla desconocida, preguntó el rey, disimulando la risa, como si tuviese enfrente a 
un loco de atar, de los que tienen manías de navegaciones, a quien no sería bueno 
contrariar así de entrada. La isla desconocida, repitió el hombre. Hombre, ya no 
hay islas desconocidas. Quién te ha dicho rey, que ya no hay islas desconocidas, 
Están todas en los mapas, En los mapas están sólo las islas conocidas, Y qué 
isla desconocida es la que tú buscas, Si te lo pudiese decir, entonces no sería 
desconocida, A quién has oído hablar de ella, preguntó el rey ahora más serio, 
A nadie, En ese caso, por qué te empeñas en decir que ella existe, Simplemente 
porqué es imposible que no exista una isla desconocida, Y has venido aquí para 
pedirme un barco, Y tú quén eres para que yo te lo dé, Y tú quién eres para 
no dármelo. Soy el rey de este reino y los barcos me pertenecen todos. Más les 
perteneces tú a ellos que ellos a ti. Qué quieres decir, preguntó el rey inquieto, 
Que tú sin ellos nada eres, y que ellos sin ti, pueden navegar siempre. . . . 

José Saramago 
El cuento de la isla desconocida. 





Ara que el tren s'ha aturat per un instants, em permet contemplar el 
panorama d'aquest viatge que he realitzat en els darrers quatre anys. El 
paissatge es mostra ample i dificíl de descriure, en quatre anys passen moltes 
coses i persones, totes formen part del mosaic d'impressions, sensacions, ex-
periències que em reflexa el mirall de l'experiència viscuda. Els miralls són 
sempre incòmodes perquè reflexen el que veuen, no coneixen la cortesia. El 
reflex del meu mirall, però, no és cruel, és més aviat agradable. 

Si resumir quatre anys de feina ja em resulta una tasca feixuga, encara ho 
és més, agrair a tothom qui m'ha donat un cop de mà en aquest temps. 

- El director del treball, en Xaví, a qui agraeixo la seva orientació mai 
autoritària i sempre respectuosa amb la meva opinió. A més, senta 
molt bé tenir un dire que de vegades et parli de coses alienes a la 
feina! 

- L'Antonio, Margarita i Josep Maria, que en diferents moments i cir-
cumstàncies menys agradables han mirat de fer-me el major costat 
possible. En Jaume, que em va concedir dret a taça pròpia tot i no 
ser un habitual de l'hora del tè. L'Albert que, sense saber-ho ell, em 
va fer riure en algun que altre moment no tan alegre. 

- Els meus companys del Tugurio. Les he passades de molt bones amb 
vosaltres i espero poder continuar essent un dels fixes al cafè de les 
10. Entre vosaltres hi ha gent molt especial que portaré sempre molt 
aprop. 

- A Perugia ho imparato tantissime cose (non soltanto scientiflche) " dalle 
chiachere" con tutti i "freghí' che ho conosciuto lí. Mi siete tutti tanto 
cari! 

- Fora de la Facultat he passat moments d'allò més bons sobre tot amb 
els amics en majúscules dels partidets i les farrikis del dissabte, sou 
mogollón d'entranyablesl 

- La Rosanne, ningú coneix millor que ella els dies més amargs d'aquest 
treball. 

- Els amics i companys són certament molt importants però l'origen de 
tot ha estat la família. Estic fermament convençut que els meus pares 
són els principals responsables d'aquest treball. Gracias Aitatxos! 

- Voldria agrair el suport financer atorgat pels projectes finançats dins el 
"Programa Sectorial de Promoción General del Conocimiento" PB94-
0909 atorgat per la D.G.LC.Y.T. i PB95-0598-C02-01 i PB97-0919 
atorgats per la D.G.E.S. del "Ministerio de Educación y Ciencia", així 
com els projectes 1996SGR00040 i 1998SGR00008 del C.U.R. de la 
Generalitat de Catalunya. Aquest treball ha estat possible mercès a la 
C.LR.LT., entitat finançadora de la beca de Formació d'Investigadors 
FI/96 de la que he gaudit. 





Resum 

La present memòria vol reflectir la tasca realitzada dins del projecte de recerca 
destinat a l'obtenció del Grau de Doctor en Química. El treball s'ha realitzat 
en el Grup de Cinètica i Dinàmica de Reaccions elementals de la Universitat 
de Barcelona. Per raons de conveniència, tot creient que així se'n facilita la 
seva difusió, l'autor d'aquest treball ha decidit redactar el mateix en llengua 
anglesa. Tanmateix, d'acord amb la normativa vigent per a la presentació de Tesis 
Doctorals a la nostra Universitat, i mostrant també una voluntat de difusió del 
nostre treball, de la manera més entenedora possible, dins la comunitat científica 
catalana, he redactat aquesta part del treball en català. 

El treball es presenta en forma de compendi d'articles que descriuen el gruix 
de la feina realitzada. No obstant això, s'ha inclòs una minuciosa introducció 
dels diversos fonaments teòrics que hem estudiat i assimilat prèviament a la real-
ització d'aquests treball. Hem considerat oportuna la presentació del compendi 
d'articles perquè crèiem que així es pot comprendre millor la unitat global de la 
nostra feina que ha estat, més que l'estudi dinàmic d'un sistema o d'una família 
de reaccions en concret, utilitzant metodologies ja existents, un estudi i apro-
fondiment en algunes de les metodologies que s'empren usualment a l'estudi de 
la dinàmica de reaccions, utilitzant com a exemples d'aplicació sistemes d'interès 
pràctic. Així, hem utilitzat tant tècniques mecanoquàntiques exactes i aproxi-
míules, com tècniques clàssiques, tot i que aquestes darreres només de manera 
col·lateral i per això no n'expliquem els seus fonaments. D'aquesta manera, els 
treballs es presenten en els darrers tres capítols de la memòria, com a tres unitats 
corresponents a la utilització de metodologia quàntica aproximada lOSA (capítol 
7, articles 1, 2 i 3), al desenvolupament i aplicació d'un nou mètode aproximat 
(capítol 8, articles 4,5,6 i 7) i a l'estudi mitjançant metodologia mecanoquàntica 
exacta (capítol 9, article 8). 

Considerem que les principals innovacions que aporta el nostre treball són les 
següents: a) el fet de detectar fenòmens de naturalesa quàntica en un sistema on 
es bescanvia un àtom pesat, com ara l'efecte túnel i les particularitats que mostra 
la distribució vibracional dels productes en la reacció Mg + FH MgF + H, b) 
el desenvolupament d'un nou mètode de tractament mecanoquàntic aproximat, 
basat en la implementació de potencials absorbents en la resolució propagativa 
del problema de dispersió reactiva, i c) l'estudi mecanoquàntic exacte del sistema 
Ne + H} NeH"^ + H, mitjançant el mètode hiperesfèric. La importància de 
la segona aportació recau bàsicament en l'eficiència i fiabilitat que ha mostrat 
el nou mètode, cosa que ha motivat crítiques molt positives per a alguns dels 
nostres treballs. Pel que fa a la tercera, la seva importància recau no només en el 
sistema reactiu en si, habitualment emprat en la física de plasmes, sinó també en 
el relativament escàs nombre de càlculs exactes que s'han realitzat fins el moment. 
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Introducció 

Quan hom estudia una reacció química qualsevulga, habitualment té com a ob-
jectiu l'obtenció de dades quantitatives com ara la calor de reacció, el rendiment 
o, de manera més general, la influència de les diverses variables sobre el sis-
tema. Aquests objectius s'assoleixen mitjançant dues disciplines de la Química: 
la termodinámica i la cinètica. Per a qualsevol químic és ben conegut que la 
termodinámica, tot i que és una eina bàsica a l'hora de conèixer la espontaneïtat 
d'una reacció, resulta incapaç de predir la velocitat amb que es donarà. Per tant, 
la informació proporcionada per la cinètica química resulta essencial per conèixer 
completament qualsevol procés químic. 

Tanmateix, tant la cinètica com la termodinámica, com a ciències basades en 
l'experimentació macroscópica, resulten incapaces de proveir-nos d'una explicació 
del procés químic basada en primers principis i, per tant, la seva capacitat pre-
dictiva es veu restringida a correlacions empíriques. Resulta evident la necessitat 
d'una disciplina que estudiï els mecanismes íntims de la reacció química en el seu 
nivell més elemental. Aquesta és la tasca de la dinàmica de reaccions. 

La dinàmica de reaccions és doncs una subdisciplina de la cinètica química i 
el seu objectiu és l'estudi dels mecanismes molteculars a través dels quals tenen 
lloc els processos químics. Per tant, es tracta d'una ciència que estudia les 
col·lisions intermoleculars i els moviments intramoleculars. D'ençà els seus inicis, 
al començament dels anys trenta, en els treballs de M. Polanyi, E. Wigner, H. 
Eyring, E. Pelzer i altres, l'estudi dels processos químics elementals ha esdevingut 
un camp d'importància creixent. 

Des dels inicis de la dinàmica química fins avui en dia, s'han dut a terme 
nombrosos estudis de reacccions elementals en fase gasosa, importants tant per si 
mateixes com per les seves aplicacions posteriors. Aviat es va reconèixer que els 
experiments de feixos moleculars oferien els mitjans més directes per estudiar la 
dinàmica de les reaccions químiques elementals, permetent conèixer les principals 
característiques de la distribució de velocitat de productes, així com una sèrie de 
propietats inaccessibles a través dels mètodes cinètics tradicionals. Tot i això, 
com en un principi els experiments de dispersió químics eren escassos, degut a 
la dificultat que representava la seva realització, la interpretació dels resultats 
va haver d'œperar un ulterior desenvolupament i refinament tant dels aspectes 
experimentals com dels teòrics. Evidentment, a un mètode que depenia tan for-
tament de la tecnologia li calia un període d'evolució. Gràcies a la millora en 
les tecnologies de detecció de senyals, tècniques d'alt buit i l'us de computadores 
digitals en totes les fases de realització de l'experiment, així com al desenvolu-
pament de nous mètodes teòrics per part del mon acadèmic, ha estat possible 
l'obtenció de resultats prou extensos com per poder establir generalitzacions en 
el comportament químic. 

L'estudi d'una col·lisió simple és un problema físic especialment adaptat a 
les condicions d'un estudi teòric, degut a l'absència de forces perturbatives ex-
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ternes al sistema. Això provoca que el nivell d'exigència que hom ha de tenir 
en la comparació de la teoria amb l'experiment sigui molt elevat. Els resultats 
experimentals han de valorar la capacitat predictiva dels models teòrics i a la 
vegada els resultats obtinguts per la teoria poden servir de guia per a la cerca de 
determinats fenòmens experimentals. 

L'estudi teòric dels processos de col·lisió elemental, bé siguin reactius o no, es 
poden realitzar emprant diversos mètodes, la majoria dels quals tenen les seves 
arrels en el camp de la física atòmica o nuclear. Aquests mètodes es poden clas-
sificar genèricament en tres categories: mètodes clàssics, quanties i semiclàssics. 
Aquesta classificació correspon a la manera en què els diferents mètodes resolen 
el moviment dels nuclis sotmesos a les forces exercides pel núvol electrònic i la 
repulsió internuclear. 

En els mètodes anomenats clàssics, s'assumeix que l'evolució dinàmica dels 
nuclis atòmics té lloc d'acord amb les lleis clàssiques del moviment, sobre una 
superfície d'energia potencial (PES) prèviament calculada, i ens permet treballar 
amb trajectòries associades a la reacció elemental. Habitualment es procedeix 
de manera que es calcula, resolent l'equació de Hamilton, un nombre suficient 
de trajectòries de manera que es reprodueixin les condicions inicials de l'experi-
ment. Posteriorment es duu a terme un tractament estadístic sobre les trajectòries 
per tal d'obtenir els observables. Normalment, les equacions del moviment es 
resojen de manera que les condicions inicials siguin compatibles amb la descripció 
quàntica dels estats moleculars, en el que s'anomena l'aproximació Quasiclàssica. 
Tot i que els resultats obtinguts mitjançant la metodologia clàssica són general-
ment bons per a les quantitats promitjades, no es poden obviar les limitacions 
de la descripció clàssica de la natura i per tant hom no hauria d'esperar poder 
descriure correctament els fenòmens purament quàntics amb aquests mètodes. 

Si el comportament microscòpic de la matèria només es pot reproduir rigo-
rosament utilitzant la descripció de la natura que ens proporciona la mecànica 
quàntica, ha de ser aquesta la metodologia més adient per estudiar una col·lisió 
quan o bé es desitja una descripció molt acurada o bé els efectes quàntics són 
molt importants. En els mètodes quàntics, és l'equació de Schrödinger correspo-
nent al moviment nuclear la que es resol sobre una SEP prèviament determinada. 
Malhauradament, la solució exacta de les equacions rœultants només és possible 
des d'una perspectiva numèrica. El tractament mecano-quàntic de la reactivitat 
presenta bàsicament dues dificultats principals: 

- les dificultats que provenen de la mateixa natura del procés reactiu, que 
no és sinó una reorganització de les partícules components del sistema. Tal 
procés de reordenament requereix una elecció molt acurada de les coorde-
nades a utilitzar com a variables en la funció d'ona nuclear del sistema. 
En la pràctica, aquest problema es resol tractant de trobar un sistema de 
coordenades que sigui capaç de descriure tots els ordenaments possibles així 
com la regió de forta interacció. 
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- les dificultats que concerneixen essencialment els aspectes computacionals. 
El fet que una reacció química pugui involucrar un elevat nombre d'estats 
vibro-rotacionals tant de reactius com de productes fa que les dimensions 
del sistema d'equacions que s'ha de resoldre en la dinàmica s'incrementi fins 
el punt de impossibilitar el seu tractament exacte. Aquest fet ha motivat la 
relativa proliferació de models aproximats que redueixen la dimensionalitat 
del sistema d'equacions. Els recents avenços tecnològics, així com el desen-
volupament de tècniques algebràiques i analítiques més recents han permès 
en els darrers deu anys la realització dels primers càlculs mecanoquàntics 
exactes sobre sistemes reactius. 

La metodologia semiclàssica se situa entremig de les dues anteriors. Gene-
ralment utilitza una barreja d'ambdues, tractant clàssicament alguns graus de 
llibertat i altres quànticament. D'aquesta manera permet l'estudi de fenòmens 
quanties i a la vegada permet relacionar-los amb imatges clàssiques. 

Resultats i Conclusions 

Estudis R-IOSA 

Com ja hem dit, el sistema d'equacions diferencials acoblades a resoldre en el 
plantejament mecanoquàntic exacte és ben poques vegades resoluble de manera 
exacta, degut a l'elevat nombre d'estats assolibles pel sistema quan es treballa a 
les energies típiques de col.lisió. Així, per exemple, per al sistema F + H2, calen 
un total de 150 estats rovibracionals i unes 30 ones parcials per obtenir càlculs, 
completament convergits, de la secció eficaç integral a cada energia. Això implica, 
com es veurà més endavant, resoldre per a cada valor del moment angular total 
i de l'energia un sistema de 150 equacions diferencials acoblades; no cal dir que 
per als sistemes que en aquest treball hem estudiat {Mg -I- FH i B -I- OH), en 
ser molt més pesants, el nombre d'estats rovibracionals necessaris per convergir 
augmentaria considerablement. 

Conseqüentment, una gran part dels esforços que s'han dut a terme en el camp 
de la dinàmica química han estat amb l'objectiu de desenvolupar simplificacions 
de les equacions exactes basades en criteris físics raonables. La primera aprox-
imació consisteix en l'expansió de la funció d'ona en un conjunt de funcions de 
base corresponents a l'espectre discret de la molècula diatómica, que generalment 
s'anomena aproximació close coupling. En un nivell inferior a aquesta aproxi-
mació es troba l'anomenada aproximació centrífuga sobtada (CS) que suposa que 
la col·lisió ve dominada pel potencial electrostàtic i oer la rotació molecular. Se 
suposa que, essencialment, el terme d'energia cinètica és prou gran com per a 
que el valor exacte del terme centrífug no sigui important. Segons aquesta aprox-
imació els estats rotacionals encara es consideren de manera exacta i s'elimina 



l'acoblament entre els diferents valors del moment angular orbital. Per a major 
detall, veure capítol 6. 

En el següent nivell de teories aproximades trobem dues maneres de fer no 
només diferents sinó oposades. Ambdues aproximen el moviment rotacional del 
sistema, una de les aproximacions suposa que els períodes rotacionals són molt 
més grans que els vibracionals i utilitza una aproximació rotacional sobtada (ES) 
i l'altra aproximació es basa en que el moviment rotacional correlaciona amb una 
vibració de flexió en el camí de reacció i tracta adiabàticament el moviment de 
flexió. No anirem més enllà en la segona aproximació per que s'escaparia dels 
objectius introductoris d'aquesta part del treball. 

L'aproximació utilitzada en aquest treball s'anomena aproximació reactiva 
sobtada d'ordre infinit (R-IOSA) (Reactive Infinite Order Sudden Approxima-
tion) i es basa en combinar les aproximacions CS i ES a partir de les equacions 
CC. Aquesta aproximació té com a principal conseqüència l'orientació fixada de 
l'arranjament àtom-diàtom. La vibració es tracta així de forma exacta, excepte 
per l'acoblament vibració-rotació i vibració-òrbita. 

El mètode lOSA es va formular, en el seu origen, per al cas inelastic amb la 
idea de reduir la complexitat que provoca l'existència d'un elevat nombre d'estats 
rotacionals per a cada nivell vibracional. Els bons resultats del mètode van 
fomentar la seva aplicació a la dispersió reactiva. 

L'equació R-IOSA és de la forma: 

d' . d" 1(1+i 3(3+1 
drl - dRl Rl rl 

(1) 

on £ indica el canal d'ordenament i 0a és un paràmetre que indica l'angle d'ori-
entació àtom-diàtom en l'ordenament. El procés d'integració del sistema d'equa-
cions es duu a terme, en el nostre cas, expressant el Hamiltonià segons l'anomenat 
sistema de coordenades circulars de col.lisió 

i fent servir el mètode de la matriu 
R per a r^oldre la part radial de la solució. El mètode no s'explicarà amb més 
detall ja que ha estat exposat en anteriors treballs (veure capítol 6.1). 

El notre grup de recerca ha treballat llargament amb aquest mètode aproxi-
mat i per tant creiem que tenim suficient experiència amb el mateix. Com en 
tots els mètodes aproximats, la clau per a emprar-los adientment és conèixer en 
profonditat les seves limitacions. El mètode R-IOSA s'ha mostrat com un mètode 
relativament fiable per a la majoria de sistemes estudiats en el nostre grup, i de 
manera especial quan l'efecte orientacional de la superfície és petit o es consideren 
energies elevades. 

D'aquesta manera, en el capítol 7 de la memòria es presenten els articles 
que hem publicat referents a l'estudi sobre dos sistemes reactius. Mg + FH 
MgF + H i B + OH ^ BO + H utilitzant el mètode R-IOSA. En aquests 
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articles, es pot comprovar com a l'estudi del primer sistema ens vam concentrar 
en diferents aspectes de la seva dinàmica que es van traduir en dues publicacions. 
Pel que fa al segon sistema, vam trobar de prou interès l'estudi del patró de 
ressonàncies que presenta la reacció utilitzant un model reduït com ara el R-
lOSA. 

El sistema Mg + FH ^ MgF + H. 

El sistema presenta diverses característiques que van motivar el seu estudi. De fet, 
qualsevol sistema que, com aquest, es compongui de masses relativament elevades 
constitueix un repte per a un càlcul mecanoquàntic degut a l'increment en el 
nombre d'estats a considerar. Per altra banda, el sistema es mostra especialment 
adient per a un estudi IOS ja que les primeres inspeccions sobre la SEP van 
indicar una certa isotropia a la regió de l'estat de transició. Aquest fet afavoreix 
clarament un estudi del tipus IOS doncs la restricció d'orientació fixa perdrà 
relevància. Per tant, es va dur a terme un càlcul R-IOS extensiu per un total 
de 50 energies centrant-se principalment en la zona del llindar reactiu on es va 
emprar un espaiat energètic de fins a 0.01 eV. 

Es van realitzar dos estudis a partir d'aquests resultats, centrant-se en as-
pectes més aviat diferents. En un d'ells ens vam concentrar en el llindar energètic 
per a la reacció i les peculiaritats que mostra la reactivitat a angle fixat. En el 
segon, vam realitzar un estudi més general sobre les distribucions vibracionals 
de productes (DVP) i els efectes de les masses isotòpiques. Per aquest segon 
treball, vam haver de realitzar un elevat nombre de trajectòries quasiclàssiques 
així com càlculs R-IOS addicionals per d les variants isotòpiques de la reacció, 
on se substituïa l'àtom de hidrogen successivament per deuteri i triti. 

La superfície de potencial emprada per realitzar els càlculs es va ajustar a 
punts ab initio utilitzant un funcional RBO. Sobre aquesta superfície, la reacció 
presenta una endoergicitat de 1.33 eV i una barrera endarrerida cap a productes 
de 1.83 eV on la geometria de l'estat de transició és clarament plegada amb un 
angle MgF H d'uns 72°. A,més d'aquestes característiques, la SEP presenta dos 
pous, un de col.lineal que es troba 0.34 eV per sota de l'assímptota de reac-
tius i correspon al complex MgFH i un segon pou d'uns 1.30 eV per sota de 
l'assímptota, de geometria altament plegada (al voltant de 6 = 35°)que vam 
anomenar complex d'inserció. Aquest segon pou, tot i que és profund, només es 
pot assolir a través de la reorientació del sistema, de manera que serà intranscen-
dent per a la reactivitat IOS, mentre que en el treball vam mostrar com juga 
un paper qualitativament important en la reactivitat que mostren les trajectòries 
quasiclàssiques. Diferents diagrames de contorn de potencial es mostren en la 
figura 7.1. Segons la nostra opinió, la importància d'aquests treballs recau en 
el fet que s'hagin trobat efectes quàntics notables en un sistema on és un atom 
pesat el que es transfereix. 

• Energy mode effectiveness and tunnelling in triatomic reactions: the energy 
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threshold for the Mg + FH -4 MgF + H reaction. Chemical Physics 
Letters 282 (1998) 91-99. 
En aquest article, es presentaven alguns dels resultats de l'estudi mecano-
quàntic tridimensional aproximat sobre el sistema Mg+FH per tal d'obtenir 
coneixement sobre el llindar de reactivitat i de com es veia afectat princi-
palment per l'energia vibracional inicial de reactius. La reactivitat tridi-
mensional global presentava un acusada selectivitat per al mode vibracional 
de l'energia, cosa que està d'acord amb les regles de Polanyi. Tal i com es-
tableixen aquestes normes, per a reax;cions amb barrera cap a productes, 
la reactivitat es veu fortament incrementada en augmentar l'energia vi-
brational inicial dels reactius. De totes maneres, a banda de les magni-
tuds tridimensionals, es van explorar les seccions eficaces a angle fixat per 
tal d'obtenir alguna indicació addicional sobre el mecanisme de la reacció. 
Aquest va resultar ser més complex del que semblava a partir de les corbes 
tridimensionals. A partir d'aquest estudi a angle fixat vam poder establir 
dos tipus de comportament diferents en el sistema. D'una banda, per niv-
ells vibracionals inicials de reactius baixos, la contribució més important a 
la seva reactivitat es troba per a angles propers al de la geometria de l'estat 
de transició. Per una altra banda, els nivells vibracionals més elevats de 
reactius tendeixen inesperadament cap a una reactivitat col.lineal. A més, 
d'ells corresponia a la corba per als reactius inicialment en el nivell vibra-
cional w = 3 i un angle fixat a 7 = 180°, llunyà de la geometria de l'estat 
de transició. Això s'assolia a través d'una important contribució de túnel. 
Es tractava doncs de dos aspectes més aviat sorprenents, atès que el punt 
més baix de la barrera de reacció es trobava per un angle tancat, allunyat 
de la col.linealitat. 

Aquesta sèrie de fets, més aviat inusuals, els vam poder explicar gràcies a la 
representació dels camins de mínima energia a angle fixat, que són de fet els 
camins que "veuen" els càlculs IOS. En aquestes representacions vam poder 
veure com, tot i que l'alçada de la barrera augmentava en desplaçar-se cap 
a angles més oberts, el seu gruix disminuïa encara més significativament 
permetent d'aquesta manera un major efecte túnel. L'expressió analítica 
de la permeabilitat per a un model senzill de barrera quadrada, ens va 
permetre explicar el major efecte túnel per al nivell vibracional v = 3 per 
a una mateixa energia total. 

The influence of initial energy on product vibrational distributions and 
isotopic mass effects in endoergic reactions: the M g -I- FH case. Physical 
Chemistry Chemical Physics, 1 (1999) 1133-1139. 
En aquest segon treball, vam centrar la nostra atenció en un estudi detallat 
de la distribució vibracional de productes i una comparació extensiva de 
les seccions eficaces R-IOSA amb les corresponents obtingudes a través de 
trajectòries quasiclàssiques realitzades també per nosaltres mateixos. Per 
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aquest treball, a banda dels resultats que ja teniem, es van realitzar càlculs 
addicionals sobre les variacions isotòpiques D, T enlloc d'íí, així com també 
les QCT corresponents, per tal de tenir un marc de comparació fiable. 

Pel que fa a les DVPs, tot i que estan en acord general amb les regles de 
Polanyi, mostren comportaments qualitativament diferents, depenent no 
només de l'energia de col·lisió sinó també del nivell vibracional de reactius. 
Aquest és un camp que vam trobar interessant d'estudiar donat que podia 
aportar conclusions interessants pel que fa a la selectivitat d'estats de pro-
ductes en les reaccions. D'aquesta manera, a energies de col.isió baixes la 
DVP pels nivells vibracionals inicials per sota de = 4 són estadístiques 
mentre que la DVP corresponent al nivell íj = 4 és més aviat adiabática. 
Quan hom es desplaça cap a energies més elevades, les DVP s'eixamplen, 
com era d'esperar, però a la vegada les distribucions corresponents av <3 
tendeixen a desplaçar els seus màxims cap a valors més elevats del nivell 
vibracional final de productes {v') mentre que per u = 4 la distribució es 
comporta a la inversa, desplaçant-se cap a nivells vibracionals de productes 
menys excitats. Aquest comportament es va mirar de justificar en l'article a 
través del paper que juguen els diferents valors del moment angular orbital, 
representant les funcions opacitat. 

A més a més, es van realitzar variacions isotòpiques sobre l'àtom lleuger 
{H, D, T) per tal d'assolir un millor coneixement del mecanisme de la reacció. 
D'acord amb la selectivitat de la reacció per al mode vibracional de l'en-
ergia, la secció eficaç per a una energia de col·lisió donada, per un mateix 
nivell vibracional inicial, disminueix a mesura que s'augmenta la massa 
de l'àtom lleuger. Per tal de tenir un marc de comparació pràctic, per 
comprovar la fiabilitat dels nostres resultats, es van realitzar càlculs QCT 
sobre el sistema així com les variacions isotòpiques· L'acord entre les dues 
metodologies va resultar satisfactori en general i el vam atribuir a una in-
fluència relativament baixa en la reactivitat tridimensional tant dels efectes 
quàntics com orientacionals. 

El sistema B + OH BO + H. 

• Cross sections exhibiting quantum ressonances: the J5-I-0/Î case. Journal 
of Molecular Structure (Teochem) 463 (1999) 65-74 
Les ressonàncies són un dels efectes més notables que hom pot trobar en la 
dinàmica de reaccions. Les ressonàncies, que apareixen com pics lorentzians 
en la probabilitat de reacció, estan relacionades amb la formació de sistemes 
compostos metaestables i proporcionen informació extremadament acurada 
sobre l'estructura de la SEP. Aquest tipus de fenòmens són, doncs, quan 
són observables experimentalment, un marc de proves únic per a millorar 
els models teòrics. De totes formes, quan es prova de predir ressonàncies 
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teòricament a nivell de secció eficaç, hom es troba amb dues dificultats. 
El primer inconvenient està relacionat amb els temps de vida relativament 
curts dels complexos de col·lisió habituals, que porten a pics de probabili-
tat amples que fàcilment desapareixen en acumular els diferents moments 
angulars. Aquest problema pot ser, tanmateix, de menor importància si 
en el sistema reactiu es troben complexos relativament estables. La segona 
dificultat té a veure amb el cost computacional elevat d'un càlcul rigorós 
de dispersió reactiva; per tal de superar aquest contratemps hom pot em-
prar models de dimensionalitat reduïda, com ara el IOS, com a primera 
estimació de la importància del patró de ressonàncies d'un sistema reactiu. 

En aquest context, vam considerar l'estudi aproximat del patró de res-
sonàncies presentat per al sistema B + OH. L'interès d'aquest sistema 
recau en la importància dels seus intermedis estables H BO i HOB, que po-
drien se importants en la formació d'estats ressonants. El complex HBO és 
conegut experimentalment i estudis teòrics han predit una geometria lineal 
per aquest mínim. La geometria del segon mínim HOB ha estat motiu de 
més controvèrsia, tot i que ajustant la SEP a una geometria col.lineal del 
mínim dóna una millor descripció de la reactivitat. Així doncs, es va utilit-
zar un ajust emprant un funcional Sorbie-Murrell, prenent una geometria 
col.lineal per a ambdós estats intermedis. Sobre aquesta SEP, la reacció 
resulta 3.60 eV exoèrgica i el seu canal alternatiu es va poder negligir a les 
energies de treball, doncs resulta 1.75 eV endoergic. L'energia del complex 
BOH es troba 6.4 eV per sota de l'assímptota de reactius i es troba en la 
zona de reactius. Seguint el camí de mínima energia, una barrera de 1.21 
eV connecta aquest mínim amb el de HBO, d'energia uns 4.9 eV per sota 
de l'assímptota de productes. 

En aquesta publicació vam mostrar com la component ressonant de la reac-
tivitat global era prou significativa pel sistema en estudi. La representació 
gràfica de les funcions opacitat i seccions eficaces diferencials van confirmar 
aquest fet mostrant funcions opacitat accentuadament estructurades i sec-
cions eficaces diferencials molt simètriques. La significativa estructura que 
sobreviu en la secció eficaç integral indica que la seva mesura experimental 
podria resultar molt útil per al refinament del potencial d'interacció per 
aquest sistema. 

Implementació dels NIPs a la solució propagativa del prob-
lema reactiu. 

En aquesta part de la memòria es presenten els articles publicats respecte del nos-
tre treball en la implementació de la tècnica dels Potencial Negatius Imaginaris 
(NIP, acrònim de l'anglès) en un esquema propagatiu, en concret del tipus invon-
ant embedding i específicament l'anomenat mètode de propagació de la matriu 



R. Alhora es va presentar la aplicació d'aquesta nova metodologia a una família 
de sistemes reactius que cobreixen un ampli interval de casos possibles. Aques 
treball s'ha reflectit, fins ara, en tres articles i una comunicació, tots ells cobrint 
diferents aspectes del desenvolupament i l'aplicació del mètode. 

On the accuracy of reactive scattering calculations with absorbing poten-
tials: a new implementation based on a generalized R-matrix propagation. 
Chemical Physics Letters 291 (1998) 346-350 
En aquest treball, la nostra intenció era notificar l'èxit de la implementació 
dels potencials absorbents a un mètode de propagíicio invariant embedding, 
centrant-nos en la seva factibilitat i les bones prestacions del codi numèric. 

La idea, com s'explica en la secció 2.7, consisteix bàsicament en reduir un 
problema de dispersió reactiva en un d'inelàstic introduint convenientment 
un potencial complex. Com s'explica a la memòria i a l'article, coneixent 
la capacitat del NIP d'absorbir el flux associat a la funció d'ona, si hom 
col·loca tal potencial absorbent més enllà de la regió de l'estat de transició, 
on s'assumeix que les interaccions reactives ja ja han tingut lloc, hom pot 
aleshores atribuir la pèrdua de flux que provoca el NIF a la component 
reactiva. Per tant, introduint un NIP i realitzant un càlcul inelastic, que en 
principi resulta més senzill, hom pot obtenir probabilitats reactives globals. 
Naturalment, l'esquema de propagació va haver de ser modificat per tal de 
tenir en compte la naturalesa complexa de les matrius d'interacció, cosa 
que es va explicar en una altra publicació. 

Enlloc de comprovar el nou mètode amb reaccions prototípiques, vam tro-
bar que seria més interessant l'estudi col.lineal de la reacció de bœcanvi 
Cl + HCl CIH + Cl, reacció per a la que disposàvem de resultats exac-
tes que havien estat prèviament publicats per altres autors. Els nostres 
resultats van coincidir plenament amb els publicats, fins i tot en comparar 
les fines estructures ressonants que presenta el sistema. A més a més, la 
implementació es mostrava més eficient que els nostres càlculs previs util-
itzant una propagació estándar de la matriu R, és a dir sense la introducció 
del NIP. 

Comment in the 110 Faraday Discussion on Chemical Reaction Theory. 
General Discussion. Faraday Disctission 110 (1998) 236-238 
En aquesta comunicació es presenta el comentari que vam aportar en la 
Discusió General de la 110 Faraday Discussion. El nostre comentari feia 
referència a un article presentat per Peng[69] en el que desacoblaven reactius 
i productes. Vàrem creure que era interessant esmentar en aquest contexte 
la implementació dels NIP sobre la propagació de la matriu R, que haviem 
desenvolupat. En concret, vàrem mostrar els resultats obtinguts per al 
càlcul de la secció eficaç del sistema Ne -I- H2 NeH^ -I- H per unes 
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200 energies entre 0.7 i 1.1 eV. Aquests resultats evidencien una reactivitat 
molt estructurada. 

The application of complex absorbing potentials to an invariant embed-
ding scattering method: I. Theory and computational details. Journal of 
Chemical Physics 109 (1998) 5761-5769 
En el citat article desenvolupem en detail l'extensió que vam realitzar dels 
mètodes mecano-quàntics basats en el mètode de propagació de la matriu R 
per tal de poder incorporar potencials complexos absorbents. Partint de la 
base que no erem pioners en l'ús de potencials òptics, sí que ho hem estat en 
implementar-los en un esquema propagatiu, i l'article mira de donar prime-
rament una revisió de l'us històric i desenvolupament dels potencials òptics. 
El principal objectiu del treball publicat era descriure en detall els aspectes 
claus que havien estat modificats a l'esquema de propagació de la matriu 
R, de manera que pogués tenir en compte una matriu d'interacció de nat-
uralesa complexa. Com ja s'explica en les seccions 2.7 i 8.1 de la memòria, 
mitjançant la introducció d'un potencial negatiu imaginari (NIP) hom pot 
reduir el problema de dispersió reactiva en el que nosaltres vam anomenar 
problema pseudo-inelàstic. Aleshores, es pot dur a terme un càlcul com si 
només es donés dispersió inelàstica, que és molt més senzilla de tractar, i de-
sprés assignar la pèrdua de flux al flux reactiu. Aquest potencial absorbent 
és, en el nostre cas, una rampa lineal negativa que depèn de les coordenades 
físiques del sistema. La introducció de tal potencial imaginari provoca que 
la matriu d'interacció esdevingui complexa. El mètode propagació de la 
matriu R assumeix, tal i com es va formular originàriament, que la matriu 
d'interacció és real i simètrica, cosa que ja no és el cas. Les modificacions 
van implicar essencialment un generalització de les solucions per al prob-
lema de potencial constant a cada sector, passant a un quocient de funcions 
exponencials enlloc de les funcions trigonomètriques i hiperbòliques habit-
uals així com la inversió explícita d'algunes matrius de transformació que 
ja no són real simètriques. L'assignació assimptòtica es va realitzar d'acord 
amb la propagació estándar de la matriu R pel cas inelàstic i després es van 
calcular les probabilitats inelàstiques estat-a-estat. 

Una vegada el mètode de la matriu R havia estat generalitzat, vam em-
prar un Hamiltonià d'ordre infinit (IOS) (veure més amunt i secció 6.1) 
per tal d'obtenir una expressió més explícita de la matriu d'interacció. A 
més, com que disposàvem de resultats previs utilitzant la metodologia tradi-
cional R-IOS, propagant la matriu R en les regions de productes i reactius, 
vam pensar que seria una bona prova per a les prestacions del nou mètode. 
Així doncs, vam fer diverses càlculs del codi NIP-IOS desenvolupat sobre la 
reacció de bescanvi Cl 4- HCl CIH + Cl. La fiabilitat dels nostres resul-
tats ja havia estat comprovada en la comunicació presentada anteriorment. 
En aquest article vam mostrar l'estabilitat del mètode, no nomfe pel que fa 
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als paràmetres del NIP sinó tambe els paràmetres propis de la propagació, 
que resulten en unes prestacions superiors del NIP-IOS respecte el R-IOS. 

• The application of complex absorbing potentials ot an invariant embedding 
scattering method: II. Applications. Journal of Chemical Physics (in 
press) 
La publicació de l'anterior treball ha estat seguida per la publicació d'un 
altre treball en el que s'aplica la nova implementació a l'estudi dels sis-
temes Li + FH, Mg + FH \ H F^. Amb l'estudi d'aquestes reaccions es 
cobreixen diferents ergicitats i nivells de complexitat en la SEP, així com 
diferents combinacions de masses. Aquest estudi el vam realitzar ja que, 
tot i que les primeres aplicacions del mètode semblaven indicar una millora 
en el càlcul de magnituds globals respecte l'anterior tècnica R-IOS, vam 
pensar que seria interessant disposar d'una prova addicional que establís 
de manera definitiva el nivell de prestació del mètode. A més de provar 
els NIPs per diverses condicions, preteniem aprofitar-nos d'un mètode com-
putacionalment barat per tal d'aprofondir en la dinàmica d'alguna de les 
reaccions mencionades anteriorment. 

Tot i que en principi, en el tractament IOS, hom hauria de necessitar difer-
ents paràmetres del NIP per cada angle d'orientació diferent, a la pràctica 
això no és el cas habitual i hem estat capaços d'utilitzar un únic conjunt 
de paràmetres NIP per a totes les orientacions, excepte per les SEP alta-
ment anisotròpiques, com ara la del H -(- F2, on vam haver d'utlitzar dos 
conjunts de paràmetres. Aquest fet, conjuntament amb la relativa facilitat 
amb què es troben els paràmetres òptims del NIP, mostra que el temps 
consumit en obtenir el NIP convenient és negligible en comparació amb el 
temps estalviat. 

La comparació de les prestacions del mètodes R-IOS i NIP-IOS va eviden-
ciar clarament el menor esforç computacional del segon. Generalment, el 
nombre de sectors translacionals es redueix a la meitat i la dimensió de la 
base vibracional es veu significativament reduïda. Ambdues reduccions es 
tradueixen en un estalvi de temps de CPU. Mentre la reducció de temps és 
lineal amb la reducció de sectors, com el procés de propagació implica la 
inversió explícita d'una matriu, l'estalvi de temps en la reducció de la base 
és proporcional a N^. 

Tot i que en el treball publicat fins ara els mètodes NIP-IOS i R-IOS mostren 
un bon grau d'acord, hom no hauria d'esperar a priori una coincidència 
exacte dels resultats, ja que no es tracta de mètodes totalment equivalents. 
Creiem que cal recalcar que el NIP-IOS només restringeix el moviment pel 
que fa a l'orientació fixada de reactius. No hi ha restriccions addicionals 
més enllà de la zona de l'estat de transició on s'absorbeix el flux. Això 
no és així pel R-IOS on la solució s'ha de propagar també en la regió de 
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productes i per tant també es restringeix el seu moviment. 

La relativament bona eficiència i fiabilitat del codi ens va empènyer a rea-
litzar alguns càlculs addicionals en els que vam obtenir satisfactòriament 
probabilitats cumulatives de reacció amb un estalvi significatiu de temps. 
La idea consistia en, dins un càlcul NIP-IOS normal, realitzar l'assignació 
assimptòtica poc després de la zona de forta interacció on, tot i que les 
interaccions inelàstiques encara són importants, les reactives ja es poden 
negligir. Això condueix, òbviament, a probabilitats inelàstiques estat-a-
estat errònies però si l'objectiu és una magnitud global com ara la constant 
de velocitat, la probabilitat cumulativa de reacció és tot el que necessitem. 

Càlculs hiperesfèrics exactes. 

• Exact quantum 3D cross sections for the Ne+H} NeH'^+H reaction by 
the hyperspherical method. Comparison with approximate quantum me-
chanical and classical results. Physical Chemistry Chemical Physics 
1 (1999) 1125-1132 
En aquest article vam publicar els primers resultats de l'estudi mecanoquàntic 
exacte del sistema Ne+H} NeH*+H utilitzant el mètode hiperesfèric, 
tal i com està explicat en la secció 5.1. El relativament recent desenvolupa-
ment tecnològic, així com l'aparició dels primers codis numèrics realment 
pràctics ha donat un nou impuls al càlcul mecanoquàntic exacte de la dis-
persió reactiva. Tanmateix, encara pocs mètodes s'han mostrat capaços de 
realitzar càlculs en condicions acceptables, pel que fa a recursos computa-
cionals. Un dels mètodes més eficients i àmpliament utlitzat és el desen-
volupat per Launay i LeDorneuf, que nosaltres hem emprat en el treball 
descrit en la publicació. 

En concret, hem estudiat un membre de la família de sistemes X 4- H}, 
on X = He, Ne, Ar, per la qual hi ha una quantitat considerable de dades 
experimentals. A més, la reacció en concret és pot trobar habitualment en el 
camp de la física de plasmes on els àtoms de Ne són introduïts en plasmes 
de H2 per a refredar-los desactivant el H^- Les característiques que fan 
aquesta reacció mereixedora d'estudi són principament dues: l'important 
increment en la reactivitat que pateix el sistema amb l'excitació vibrax;ional 
dels reactius i l'elevada estructura que mostra la probabilitat de reacció, 
reveladora d'un probable espectre dens de ressonàncies. Disposàvem de 
resultats preliminars prèviament publicats que ens van estar de gran utlitat 
a l'hora de trobar els paràmetres de convergència, un pas més aviat crític 
en qualsevol càlcul numèric. 

Es va descriure a l'article, doncs, amb relatiu detall la cerca dels paràmetres 
òptims de convergència. El procés de convergència va ser comprovat sobre la 
probabilitat de reacció per moment angular total nul ( J = 0) utilitzant fins 
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a 800 energies en un interval de 0.4 eV. EI principals paràmetres convergits 
van ser el valor màxim (assimptôtic) de I'hiperradi, el nombre de sectors 
i el tamany de la base interna. En concret, es va tenir especial cura a 
la determinado de pmax i els nostres resultats van confirmar els publicats 
anteriorment. A continuació es van establir les condicions de convergència 
per al càlcul de la secció eficaç, en concret del màxim valor del moment 
angular total (J) que contribueix a la reactivitat així com el nombre de 
projeccions de J que s'ha d'incloure en la propagació. 

Els resultats obtinguts van confirmar la important efectivitat del mode 
vibracional de l'energia. La destacable estructura ressonant sembla que 
sigui causa de complexes de llarga vida, més que d'efectes de la barrera 
centrífuga. Vam comparar també els nostres resultats exactes amb altres 
mètodes aproximats com CS, R-IOS i QCT amb diferents nivells d'acord. 
Mentre, com era d'esperar, els rœultats CS eren els més propers als exactes, 
els resultats obtinguts per QCT eren inespereradament equivocats, prob-
ablement degut a una violació sistemàtica de la regla de conservació de 
l'energia del punt zero i a una contribució molt important dels estats resso-
nants. 
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Chapter 1 

Introduction 

Contents 

1.1 Molecular Dynamics 3 
1.2 Interaction between experiment and theory 3 
1.3 Theoretical methods 4 

Probably, one of the main goals when studying chemical reactions is the ac-
quaintance of quantitative data, such as the reaction heat, the reaction yield or, 
more generally, the influence of relevant variables on the behaviour of the react-
ing system. This goal is usually achieved under the framework of two chemistry 
disciplines, thermodynamics and kinetics. 

In general terms, thermodynamics provides us information about the sense 
in which the reaction will take place. The well-known general criterion for spon-
taneity is that the free energy variation between reactants and products has to 
be negative. It is worth pointing out that this measure is expressed by means of 
state functions; therefore their variation associated to the process depends only 
on the initial and final state features. However, since thermodynamics cannot 
provide information about the rate with which the reaction will occur, there can 
be the case where a spontaneous process will not appreciably occur. It can there-
fore be said that, for the complete study of a chemical process, one needs as well 
the information given by chemical kinetics, as the branch of science that studies 
the rate of chemical reactions. 

The thermodynamic and kinetic characterization of chemical processes is 
known to be of great technological importance. It is also true, however, that 
both disciplines, as sciences based on macroscopic experimentation, are not ca-
pable of providing an explanation of the chemical process based on first principles, 
and therefore their predictive capability remains constrained to empirical correla-
tions. Given the enormous variety of behaviours that can be found in the chemical 
world, an effort to extract the fundamental trends that characterize it appears 
as essential. These trends have to be obtained from the microscopic study of the 

1 
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chemical species and the further connection to the macroscopically measurable 
information through statistical mechanics, including both equilibrium (partition 
functions, etc.) and non-equilibrium disciplines (microcanonical and canonical 
rate constants, correlation functions, etc.). 

Being more specific, chemical kinetics gives us an initial path to find out 
the connection between the experimental behaviour, macroscopically observed, 
and the corresponding microscopical foundings. Thus, a very usual result one 
obtains, from a macroscopic kinetics study of a particular reaction, is the plot of 
the concentration variation with time, for each of the chemical species taking part 
in the process. The study of these variations leads to establishing empirically the 
rate equation, that for a process such as: 

aA + hB + cC + > mM + nN + ••• 

has the general form: 

V = k{T)\Af[BY[Mf[NY • •• 

where k{T) is the rate constant -usually T-dependent- specific for each reaction, 
and a, . . . are generally positive or negative, integer or half-integer exponents. 
For some other complicated cases, the rate equation can be more involved and 
contain summations and/or other algebraic terms. Using this macroscopic rate 
equation, a mechanism able to explain the whole process can be inferred. Actu-
ally, most of the processes usually formulated by a single chemical equation are 
the global outcome of a series of elementary stages, some of them acting succes-
sively and others simultaneously, in which intermediate species happen to occur 
and disappear. 

The study of the concentration profiles, establishing the rate equation and 
the mechanism, as well as the study of the influence of temperature and other 
variables on the rate constant constitute the domains of the formal chetnical 
kinetics, macroscopic branch of chemical kinetics. 

The main characteristic of the rate equations, corresponding to each of the 
elementary stages of any mechanism, is that their mathematical form corresponds 
to a simple case, since only reactants concentrations appear in them and their 
exponents coincide with their respective stoichiometric coefiicients. This allows 
us to deduce that the reaction rate is due to a common factor, non intrinsic to 
the system, namely concentrations, and an intrinsic factor, the rate constant. If 
there would be no rate constant in the rate equation, the rate of all elementary 
reactions with identical stoichiometry would be the same, disregarding the nature 
of the chemical species undertaking the reaction. Nevertheless, experience tells 
us the contrary, for if the concentration term plays the role of modifying the 
number of collisions in a unit of time, the rate constant is found to characterize 
the effectivity of these collisions. 
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The explicit quantification of how different factors modify the value of the 
rate constant requires a microscopic explanation of the collisions between the 
chemical species. These are the domains of molecular dynamics. 

1.1 Molecular Dynamics 
The scope of molecular dynamics is then the study of the molecular mechanisms 
through which chemical and physical processes take place. It is, therefore, related 
to the intermolecular collisions and the intramolecular motions. The understand-
ing of the dynamical behaviour of a system at a molecular level will then be the 
clue for the interpretation of its macroscopic kinetics. This has been generally ac-
cepted ever since the kinetic theory of gases stated that intermolecular collisions 
are the microscopic mechanism of all phenomena in which velocity is a relevant 
magnitude. On the other hand, it is not far the time in which the development 
of both theoretical and experimental techniques has allowed the first studies of 
kinetic processes at a molecular level. Nowadays, the most intimate details of 
a physical change or a chemical reaction are beginning to be experimentally ob-
served, as the result of a 75-year experience. 

The first studies on elementary chemical processes can be dated on the publi-
cation of several works by M. Polanyi, E. Wigner, H. Eyring, E. Pelzer and others 
in the beginning of the thirties. Molecular dynamics has become since then a new 
aspect of science by itself and chemical dynamics appears as its most important 
branch. This provides not only the foundings for macroscopic chemical kinetics, 
but an important source of knowledge on the basic phenomena involved in the 
elementary chemical event. 

We can then say that the main goal of molecular dynamics is the study of 
elementary chemical processes, i.e., the study of what goes on in a single collision 
between reacting species. The fact we are studying a single collision will affect 
the conditions under which the experimental measures will take place and make 
the subject specially adapted to be treated from the theoretical point of view. 

1.2 Interaction between experiment and theory 
Since we are interested in simple collisions, the experiment will generally be free 
of those factors that usually prevent the experimental results from being directly 
comparable to the theoretical ones. Therefore, we will not care, in principle, 
about external influences on the collision process and neither will we consider 
the cooperative phenomena between species occurring in the condensed phase. 
Experiments in the field of molecular dynamics basically concern the develop-
ment of molecular beams techniques, although other experimental techniques 
have also provided some detailed information on elementary reactive processes 
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-chemiluminiscence, photoionization, ion-imaging, photoelectron spectroscopy, 
femtosecond laser spectroscopy , etc.-. 

The fact that the experimental environment can be described in a relatively 
simple way does not mean that the information to be extracted, or the corre-
sponding theoretical calculations, have to be simple as well. Nevertheless, the 
absence of external disturbing factors makes that, wishing to have theory and 
experiment at the same level, the theoretical methodology and the experimental 
technique become complicated to really high limits. When this is achieved, the 
theoretical treatments can predict the experimental behaviour and advances in 
the experiment can confirm or discard the validity of these theoretical models. 
On the other hand, when the acquaintance of experimental data is complicated, 
theory can appear as a valuable ab initio source of data. 

This mutual interaction can only be found in those fields of science where 
theory and experiment are at comparable levels, being this the case in many of 
the molecular dynamics applications. 

1.3 Theoretical methods 
The theoretical study of elementary collision processes that imply atomic and/or 
molecular systems, reactive or not, can be carried away using several methodolo-
gies that find their origin in the field of atomic or nuclear physics. The many 
methodologies nowadays available are usually classified in three main categories: 
classical, quantum and semiclassical. These refer to the way in which the motion 
associated to the atomic nuclei, under the forces exerted by the the electronic 
cloud and the internuclear repulsion, is solved. 

In classical methods, it is assumed that the dynamical evolution of the atomic 
nuclei occurs according to the classical laws of motion, over a previously calcu-
lated potential energy surface (PES), and allows us to deal with trajectories 
associated to an elementary reaction. Solving the Hamilton equations, a number 
of trajectories, sampling the set of initial conditions which are found to match the 
experimentally controllable initial states, can be calculated. After a statistical 
treatment of a large enough number of trajectories, the relevant observables can 
be obtained. Usually, the equations of motion are solved in a way that the initial 
conditions are compatible with the quantum dracription of molecular states, lead-
ing to the Quasiclassical approach. Although the results obtained are generally 
satisfactory for averaged quantities, one has to be aware of the classical mechan-
ics limitations; therefore one should not expect purely quantum phenomena to 
be treated correctly using this methodology. 

Since the microscopic behaviour of matter can only be rigorously reproduced 
using the description provided by quantum mechanics, this methodology must be 
the most convenient for studying an elementary collision whenever high accuracy 
is important or quantum effects dominate the reaction outcome. The Schrödinger 
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equation corresponding to the nuclear motion over a previously determined PES, 
is the one to be solved in that case. However, the exact solution of the resulting 
equation is hard to be obtained even from a purely numerical perspective. This 
has hindered its application for a long time, even for the simplest chemical sys-
tems. The quantum-mechanical treatment of reaction dynamics has historically 
presented two main difficulties: 

- firstly, difficulties arising from the fact that the nature of a rearrangement 
process demands a careful selection of the coordinates to be used, in order 
to describe the nuclear wavefunction of the system. Unlike elastic and in-
elastic processes, where, for instance, a three-body process can be described 
as an effective 2-body problem, a rearrangement event forces the study to 
remain under the three-body optics. In practice, this problem yields ma-
jor difficulties in the choice of the most appropriate coordinate system, i.e. 
that capable of describing all the possible asymptotic arrangements and at 
the same time capable of describing the close-interaction regions where the 
triatomic ensemble is found. 

- a second difficulty concerns essentially computational aspects and arises 
from the fact that a chemical reaction can involve a large number of vibro-
rotational states of both reagents and products. This increases dramatically 
the dimension of the coupled set of differential equations into which the ini-
tial Schrödinger equation is usually transformed. This has caused efforts to 
be put for a long time on the development of approximations that would 
reduce the number of states involved and therefore ease the solution of the 
nuclear equation. Fortunately, relatively recent technological developments 
as well as new analytical and algebraic advances have provided us with pow-
erful calculating tools, which have made feasible rigorous reactive scattering 
calculations. 

The semiclassical methodology finds its spot in the middle of the classical 
and the purely quantum mechanics. In some approaches, it employs a mixture 
of both, treating classically some degrees of freedom and others quantally. This 
allows the study of quantum phenomena and relates them to classical pictures. 
Other well-known methodologies are the JWKB semiclassical approach (Marcus) 
and the Path Integral which yields the classical-limit approach to the S-matrix 
(Miller). 
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Quantum mechanical formalism 
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In this chapter, a brief description of the collision processes, based essentially 
on the formal aspects of the operator theory, is presented, since it provides a solid 
theoretical framework on which the different methodologies have been developed. 
Basically, the theory consists in an adaptation to the field of bimolecular elemen-
tary reactions of the particle dispersion formal theory. In the following, a general 
overview of the formalism will be given. Firstly, the simple case of a structureless 
and spinless particle under a scattering potential is discussed. This will be a way 
to introduce the concepts of bound and scattering states, being the last respon-
sible for the reactive event. Next, the key operator to the quantum treatment 
of scattering will be defined, the scattering operator. It will be proven how this 
operator relates linearly the initial and final states of a collision process. Follow-
ing, the time-independent treatment will be introduced through the stationary 
scattering states. It will be seen how the use of a stationary treatment essentially 
saves one dimension (time) and modifies the boundary conditions of the problem. 
Within this stationary frame the case of elastic scattering will be treated as an 
example and used to introduce the concept of the partial wave expansion. We 
will then proceed to describe the generalization of the scattering fundamentals 
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to the case of more complex systems with more than two particles and therefore 
with several different arrangement possibilities between its components. In this 
context the central equation of the quantum mechanical treatment of elementary 
reactivity, the close coupling equation set, can be developed. 

2.1 Scattering operator for a single particle. 
In this section, a brief description to most of the essential concepts that can be 
found in scattering problems, such as the scattering operator, the Möller wave 
operators or the cross section for the potential scattering will be given. We will 
point out how the free motion of a particle prior to the collision can be related 
directly to its free motion after the collision has taken place, through the unitary 
scattering operator, S. 

Let \ijjt > be the state vector of a particle satisfying the time-dependent 
Schrödinger equation 

(2.1) 
at 

The solution to this equation will be of the form \ipt >= Ü{t)\%ß > = >, as 
it can be proven by direct substitution on 2.1, where U{t) = is the so called 
time evolution operator and IV* > is a vector belonging to the spinless particle 
Hilbert space. Each orbit, as we will call hereinafter U{t)\ip >, is univocally 
labeled by the \ip > vector, which is the state vector for the system at time í = 0. 
Let's suppose the particle is under a scattering potential so that H = + V, 
where H° is the free particle Hamiltonian and F is a finite range scattering 
potential. Considering that the orbit describes a scattering experiment, if we 
would then follow it back to a time long before collision, this orbit would represent 
a wavepacket localized far away from the scattering center. 

û m û'imn > (2.2) 

where Í)^(í) is the time evolution operator associated to the free Hamiltonian H°. 
Similarly, if we would follow the orbit evolution forward in time for the scattering 
experiment, we would find as well a wavepacket localized far from the scattering 
conti 61* 

Û{t)\iP>*-^Û^{t)\i,out> (2.3) 

> and \rpout > are called, respectively, the incoming and outgoing asymptotes 
for the \ip > scattering state. 

Of course, one should not expect all orbits to have asymptotes, for there will 
be some orbits that will have asymptotes, and will correspond to scattering states, 
and there will some other that will not and will correspond to bound states. In 
this sense, the asymptotic condition establishes that, for any vector \ipin >€ H, 
there is a solution to the Schrödinger equation that is asymptotic to the free orbit 
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U''it)\ipin > when t -00, and similarly for any > when t +oo. This 
indicates that any incoming (and outgoing) asymptotic state is linearly related 
to a scattering state. Thus, it can be written 

û m > - û \ m „ > ' ^ 0 

since U is unitary, 

then >= > (2.4) 
and analogously 

>= Ä Ô - l ^ o u e > (2.5) 

where and n_ are called the Möller wave operators and are isometric op-
erators, i.e., their domain and range are not the same space. In other words, 
they operate over the whole Hilbert space but their image is only found in the 
scattering states subspace. 

Next, two principles will be stated but they will not be proven, for a rigorous 
proof see [1]. The orthogonality theorem establishes that the bound states space, 
B, is orthogonal to the space formed by states that have an incoming asymptote, 
TI+, and to the space formed by those having an outgoing asymptote, 

B±n+ 
B i n . 

The asymptotic completeness theorem establishes that the space of those states 
with incoming asymptote and that of those with outgoing asymptote are actually 
the same, 72.+ = = 11. Thus, the Hilbert space {%) for a particle under a 
potential can be divided in two orthogonal subspaces, B expanding the bound 
states and H the scattering states. 

n = B®n 

According to the asymptotic completeness theorem, any scattering state has an 
incoming and outgoing asymptote, and so these can be related: 

>= Ù+lrPin > ; 
IV-out >= Û^IV->= > ; S = Ù'^_Ù+ 

it is the usually written: 
l^out >= S\lPin > (2.6) 

Thus, we call scattering operator {§) the operator relating the asymptotic states 
of a particular scattering state. Since only the asymptotic states are observable in 
the experiment, this magnitude will provide us with all the information necessary 
in order to express the experimental measurable quantities in terms of more 
fundamental ones. 
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2.2 The S-matrix. 
As it has been shown, the S operator relates the motion of a free particle leaving 
a collision to its initial asymptotic state. For large values of time, once the 
interaction is over, a state \tpout > is obtained belonging to the Hilbert space of 
the free Hamiltonian {H°) eigenvectors, but does not have to be necessarily an 
eigenfunction: 

00 

liront >= >< 'Pi\i><mt > 
n = l 

Taking into account equation 2.6 the expression can be rewritten in terms of the 
incoming asymptotic states: 

oo 
> = Y, >< > 

n=l 

Then, the probability for obtaining the state > as a consequence of the inter-
action, starting from the > state (for this, we can choose an eigenvector of 

is: 
2 

W {ipi Vin) = < <Pi\S\lpin > 

Unfortunately, although those details that refer to the orbit state at time t = 0, 
labeled as the instant of the collision, have been eliminated, this quantity cannot 
still be experimentally measured. This is due to the fact that the > and 
Itpin > wavepackets cannot be univocally identified in practice. Only position and 
momentum can be relatively known for \ißin > , but not univocally. Regarding the 
final state, generally the state is only detected in the experiment if the direction 
of the outgoing motion is within the solid angle element, dQ,, around a particular 
direction. Thus, instead of calculating the w {ipi i - probability, one should 
calculate uj (dû <- which is the probability for, starting from an initial free 
asymptotic state, the outgoing direction to be within the diî element. The fact 
that the precise incoming asymptotic is ignored, will just imply an averaging of 
this probability over all the relevant > states. This averaging process will 
lead to the cross section concept. 

As it has been stated in the previous section, the scattering operator is a 
unitary operator, combination of two isometric operators, that acts and projects 
onto the whole Hilbert space. One of the most important properties of this 
operator is that it is energy conserving, as expected, since we are only considering 
internal forces. For a time independent Hamiltonian the system is conservative 
and therefore the expected energy value for any orbit is constant. Since the S 
operator relates the free asymptotic states, one would expect it to commute with 

rather than with Ê. Using the intertwining relation[2] of the Möller operators, 
which states Hù± = Ü±H°, it can be seen that: 

SH° = ülü+H^ = QlHQ+ = H°nlü+ = H°S 
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and therefore: 
S,H°]=0 (2.7) 

and consequently energy is conserved, < ipinlH l̂ipin >=< ipout\n\'>pout >• Since 
the free Hamiltonian and the scattering operator commute, a complete orthonor-
mal eigenfunction set common to both operators, can be constructed. Derived 
from the wavepacket treatment, it has been considered as convenient to choose 
the momentum representation, 

|p> sothat H'\P>=L\P>-E,\p> ; \p> sothat . 

Thus, we can express the matrix representation of the 5 operator in the momen-
tum representation. Using the latter commutation relation 2.7, we can establish 
that: 

0 = { f \ [H°, S] |p) = - E,) < p'\S\p > (2.8) 

and then the matrix element is zero unless the energy of both states is the same. 
We can then write that: 

< >= 0{Epi - Ep) X other terms 

After some manipulations[3] of the expression in order to factorise elastic scat-
tering one obtains: 

< p'\S\p >= ¿3 (p' -P) + -¿Ç^^iEp' - EMp' ^ P) (2-9) 

where f{p' ^ is called the scattering amplitude and is a smooth function, i.e., 
does not vary abruptly as the previous Dirac function. Its physical interpretation 
will be given later on when dealing with the stationary treatment (see section 
2.3). 

Once the general characteristics of the scattering operator and its matrix 
representation, the S matrix, have been stated, we are now ready to define the 
cross section, probably the most important quantity in reaction dynamics. Let's 
consider a scattering state with asymptotes, ^,„(p) and ipmtip)- The probability 
for this state to emerge with linear momentum within the solid angle dfi around 
a particular direction dp is: 

iv (dÜ ̂ i>i„) = düf dp \tp^tip)P (2.10) 

We will assume that V'tn(p) is a well localized function over a particular momen-
tum, pq. Imagine a series of experiments where the incoming asymptotic state 
is \ipin > = \'Pp > where > is obtained through random rigid shiftings of the 
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\fp > state (localized over po) along r. This means that ipp is a function of the 
same shape as tp but its maximum probability peak is shifted by p. 

= e-'^Mp) 

Suppose a whole series of experiments all with different small shiftings, the total 
number of scattered orbits within the solid angle element dû around p will be, 

NscidCl) = j d^puincuj {dû •(- (Pp) 

where ni„<. is the density of incident states and can be considered as constant for 
a random distribution. We then write: 

iV,e(dn) = nine/d^Pi^idn <(- <Pp) = ni„c<ridQ <r- i f ) (2.11) 

From this expression one obtains the differential cross section as, 

a(dÜ j d''pu){dn i- ipp) (2.12) 

taking into account equation 2.10, one can write 

aidn <^ip) = J ( f p d n J p ^ d p ( 2 . 1 3 ) 

and given that \ipout >= S\tpin >, which written in the momentum representation 
takes the form, 

i > U p ) ^ J d y < p \ S \ p ' > l P i n { p ' ) 

considering 2.9 and substituting in 2.13, after some modifications where it is 
assumed that the incoming wavefunction (p{p) is well localized over po and that 
the measure is carried away far from the po, allows us to derive the differential 
cross section expression: 

a ( d n ^ p ) = dil\f{p4^p0)f (2.14) 

and a{(p) = /q a{d£L íp)dD, is the expression for the integral cross section. 

2.3 Stationary scattering states. 
In the previous sections we have followed a time dependent d^cription of the 
collision processes. First we have described collisions in terms of the scatter-
ing operator, then we have decomposed the S matrix elements in terms of the 
scattering amplitude, and we have finally seen the expression for the cross sec-
tion. However, for time-independent Hamiltonians it is possible to perform an 
equivalent treatment based on the time-independent Schrödinger equation. This 
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implies working with wavefunctions of definite energy, and therefore extended 
over the whole configuration space, as well as considering the proper boundary 
conditions, as it will be seen later on. The methods employed in the present work 
follow a time independent treatment. The formalism is built on the basis of the 
stationary scattering states > that we will briefly describe next. 

Let's define the following > and \ f— > states at time í 0 corresponding 
to the to the incoming and outgoing asymptote > so that, 

\tp+ Q.+ \(p > ; \ip- >= > 

if the \(p > state is expanded in the momentum representation, 

\ip>= j Spip{f)\p> (2.15) 

we can proceed analogously for the state vector at í = 0 

>= >= f <fp(p{p) n+\p>= f d^pifip) \p+ > (2.16) 

We can then get to write the following linear relation: 

| p + > - n + | p > (2.17) 

An immediate interpretation of the latter is that the \ip+ > state at í = 0 has the 
same expansion in terms of |p+ > as the asymptotic > state in terms of \p >. 
If the |p > state is an eigenvector of the free Hamiltonian with corresponding 
eigenvalue Ep, then > is an eigenvector as well, with the same eigenvalue, 
but corresponding this time to the complete Hamiltonian. 

H\p+ >= >= fi+Jî"|p >= Ej,\p+ > 
-iEt,t 

U{t)\p+ >= e-^\p+ > 

\p+ > is, thus, a stationary state. We then have that, since {|p>} is an or-
thonormal basis of H, according to 2.17 {|p+ >} will be an orthonormal basis 
of H. We then have a state vector basis for the scattering states and if we add 
to it a basis for the bound states subspace we will have a basis set for the whole 
Hilbert space, 

1 = / b >< p\d^p = >< I + E„ |n >< n\ , . 
= / d 3 | p - > < p - | + E „ | n > < n | 

It can be proven that these stationary states have the following asymptotic form, 
in the position representation, as the distance between the colliding species be-
comes infinity (or large with respect to the scattering center dimensions). 

< f |p+ ^ (27r)3/2 e"'·'' + f{px<-p}· (2.19) 
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where we find once more the scattering amplitude, f{px i- p). It can be seen 
that < > represents at the same time an incident beam and an infinite and 
spherically scattered particle beam. It is on this boundary conditions that the 
stationary treatment does actually reflect, since we are imposing, at an infinite 
distance, the state of the system to be represented by an incident beam and, 
at the same time, a spherically scattered beam. It can be seen as well that 
< > represents a plane wave and another wave that collapses spherically 
and therefore has no direct physical meaning. Here we can clearly introduce the 
physical interpretation of the scattering amplitude, f{px i— p),a,s the anisotropic 
angular factor on the scattered beam. 

It can be easily shown that the differential cross section of a collision process, 
in its stationary interpretation, is defined as the quotient between the emitted 
particle flux through a unit solid angle and the incident flux. The integral cross 
section is correspondingly defined as the integration of the differential cross sec-
tion with respect to the solid angle. The different geometry of the reference 
surface at which the flux is measured for each beam, a plane wave for the in-
cident ajid a spherical one for the emergent, causes the cross section to have 
dimensions of area. 

2.4 Scattering by a center of force. Stationary 
treatment 

In this section, the simplest collision process will be studied, the elastic scattering 
between two spinless particles. 

An elastic collision is one in which there is no change in the internal energies 
of the colliding species. The collision process of two atoms, without changing 
their respective electronic states, is the most important and simple example of 
such processes from the theoretical point of view. Elastic scattering can be found 
as well in molecular collisions, even if it is usually of secondary interest, since the 
inelastic collisions, where there is change in molecular rotational and vibrational 
energies, are much more frequent. 

Adopting the center-of-mass coordinate system, the elastic process between 
two species, atoms hereinafter, produces a change in the direction of the relative 
velocity vector (v) but does not alter its magnitude. Therefore the scattering is 
univocally determined by the change in the orientation of v and the two-particle 
collision is formally reduced to the motion of a single particle with reduced mass 
ß under a potential V{f), where f is the interparticle vector. Since we have 
assumed we are dealing with atoms, the potential energy depends only on their 
separation V{r) and so we have a central force problem. 

This central force problem is formally identical to the well-known case of the 
electronic energy levels of the hydrogen atoms, the single but crucial difference 
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relying on the boundary conditions, as we will see. As in the hydrogen atom, the 
Schrödinger equation for this system is most easily solved using polar spherical 
coordinates and factorising the wavefunction into a product of angular functions 
(spherical harmonics) and radial functions. 

As we have already said, the difference between our case and that of the 
hydrogen atom spectrum lies not in the form of the Schrödinger equation but 
in the boundary conditions applied to the solutions. For bound-state problems, 
the wavefunction approaches to zero as r tends to infinity and this boundary 
condition causes the quantization of the energy levels. As we have stated in 
the stationary treatment of the scattering problem, our wavefunction will not 
decay at infinity; rather we will have a wavefunction representing at the same 
time atoms coming together initially along straight lines and departing from one 
another in some angular pattern determined by the scattering amplitude. 

Let's start by considering the wavefunction that represents initially the stream 
of particles moving with momentum kh in the positive direction of 2. 

^ikz 

This plane wave describes the incident beam in the idealized crossed beam ex-
periment. Once the collision has taken place and the atoms are away from the 
collision region, we will have particles moving with the same velocity as the in-
cident beam but in all directions. If the particles were moving isotropically, this 
would be represented by a wavefunction 

i.e., a spherical wave. In the previous section we have seen that the scattering 
amplitude f{9) introduces the anisotropic character of the scattering experiment, 
so we represent the situation after the collision by: 

me' ,ikr 

Note that for the scattering amplitude only one angular variable is needed since 
we are dealing with a central force problem and therefore the wavefunction is 
independent of the polar angle (t>, due to the cylindrical symmetry of the problem 
about the z axis. 

We can now establish the boundary conditions as: 

xa ^ e' '" + í í ^ ^ , r 0 0 ( 2 . 2 0 ) 

The form of the wavefunction remains unknown in the interaction region and to 
find it out we must solve the Schrödinger equation with this boundary condition. 
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Let's formulate then the equation for a system of reduced mass ß under a central 
potential V(r) 

2ß •V'r + Vir) ^ ( f ) = E'9{f) 

We can simplify this expression introducing the variables 

2ßE U{r) = = MM 

(2.21) 

(2.22) 

then, 
(2.23) 

We can obtain a completely general solution of this equation taking an ex-
pansion of the wavefunction in spherical harmonics functions, because this is a 
complete set of functions for the description of any analytic function of the polar 
angles: 

1=0 m=-e 
(2.24) 

However, as we have already said, because of the cylindric symmetry around the 
2 axis, there is no (j) dependence in the wavefunction and only m = 0 terms con-
tribute to the expansion. The functions Yiq are, apart from a multiplying factor, 
the Legendre Pf{cos6) functions. The expansion is therefore usually written as 

(2.25) 

which is called the partial wave expansion. The ^ term is introduced in order to 
get rid of the first derivative term of the radial Laplacian. Although mathemati-
cally convenient, this expansion is not always highly convergent. 

If one substitutes the expansion 2.25 into 2.23, using the orthogonality of the 
Legendre functions, one finds that the radial wavefunction is the solution 
of the radial equation 

dr^ 
+ _ Ut{r) Mr) = 0 (2.26) 

where i7/(r), called the effective potential, combines the actual potential and the 
centrifugal barrier: 

= + (2.27) 

Since equation 2.26 is a second-order differential equation, there will be two 
linearly independent solutions for each value of k'̂  and I. However, these will be 
physically acceptable only if they are regular at the origin, this is, the solution 
being zero when r = 0. 
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It is relatively easy to find solutions of 2.26 for any potential Ut{r) by nu-
merical integration, starting the wavefunction with zero amplitude at r = 0 and 
integrating outwards to a value of r large enough for Ue{r) to be taken as zero. 
When r reaches such a value the equation becomes 

dr'^ 
ip{r) = 0 (2.28) 

and its general solutions can be written in the form 

sin(fcr + T]i) (2.29) 

where r¡t is a phase which depends on k, Í and the form of the potential. 
We have already seen in the previous sections that our interest is the asymp-

totic form of the function at r = oo, since it is from by which we obtain the cross 
section. In this region the only feature that depends on the potential is the phase 
r)(. We therefore see how important this phase is in the theory of elastic scatter-
ing. However, its value depends not only on the actual potential V(r) but on the 
centrifugal barrier as well (see equation 2.27), and it is therefore usually conve-
nient to take as a reference value the phase that is obtained by the centrifugal 
potential by itself, that is, the phase for a constant null potential U{r) = 0. 

dr^ 
'+1) 

Mr) = 0 (2.30) 

The solutions for this equation are well known[4] and related to the spherical 
Bessel functions je{r) by the expression 

Mr) = krjtikr) (2.31) 

which has the asymptotic form 

ipt ~ sin kr 2 (2.32) 

Therefore, the asymptotic form of the solutions of equation 2.26 can be then 
defined to be 

( t'K \ 
tjjt ~ sin kr —— -I- Se (2.33) 

V 2 / 
where = rĵ  -I- ̂  is called the phase shift. Note that for some potentials, such 
as the Coulomb potential, the formula does not apply, since the potentials fall 
more slowly than the centrifugal barrier and therefore cannot be neglected. The 
dependence of 6t on £ is very interesting and reflects features of the potential. 
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The relationship between the scattering amplitude and the phase shift can be 
derived comparing the asymptotic expression obtained from substitution of 2.33 
in 2.25, 

1 °° I l'K \ 
^ { r ) ^ - E sin ĵ fcr- - y + ô/ j P<(cos 6) (2.34) 

and the asymptotic expression 2.20. The result of this comparison [4] is known as 
the partial wave expansion of the scattering amplitude: 

m = ¿ + W ' - mi^osO) (2.35) 

From the two terms of the central factor of the expression, the first, is due 
to the interatomic potential and the second, (—1), to the contribution from the 
unscattered incident plane wave. 

We can deduce the scattering cross section in its stationary interpretation from 
the amplitudes of the incident and scattered waves in the asymptotic wavefunc-
tion expression. In the incident beam, the flux across unit area is proportional 
to 

le'̂ ^P = 1 (2.36) 

and in the scattered beam the flux across the unit solid angle is proportional to 

^ (2.37) 

Since we are dealing with elastic phenomena, the momenta of the particles are 
the same in the incident and the scattered beams and therefore the proportion-
ality constants in the respective fluxes coincide. We have defined the stationary 
differential cross section as the ratio of the scattered flux per unit solid angle to 
the the incident flux per unit area and we therefore have: 

^{0) = \ m \ ' (2.38) 

If we replace the scattering amplitude by its partial wave expansion 2.35 we 
obtain the following expression: 

= ¿ 2 £ - - l)P,(cosö)P,,(cose) (2.39) 

Note that there are interference terms between £ and £' partial waves. On the 
other hand, the expression for the corresponding integral cross section will be 
rather simple, benefiting from the orthogonality properties of the Legendre poly-
nomials, so that only £ = will perdure after integration over 0: 

^ = + (2.40) 
1=0 

= + (2-41) 
^ t=o 
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2.5 Multichannel Scattering 
Until now we have only dealt with processes that involved structureless particles. 
Now let's return to the more formal presentation of the scattering event but let's 
take a step forward as well in the complexity of the problem. From now on we will 
consider inelastic and rearrangement processes, i.e. collisions between particles 
with an internal structure. In this section a description will be given on how the 
generalization of the latter expressions is obtained and a formal expression will 
be obtained for the close coupling equations, which are the central equations for 
the multichannel collisions treatment under a target states expansion. 

Let's consider a simple case where three spinless particles a, b and c are 
forced to move on a line, so that they can only lead to ac and be bound systems, 
which are usually called arrangements. For each arrangement the bound systems 
can support several different states, called channels. Suppose that, at a given 
collision energy, only the (be), (be)* and (ac) cases are possible, being (6c)* an 
excited internal state of the be arrangement. A table of the available channels for 
a collision process will look like this: 

channel 0 
a + b + c a + (be) a + (be)* b + (ac) 

The system Hamiltonian will therefore be of the form, 

'J 'J 'J 
^ ^ = + y (2.42) 

where xab,x¡,c,xac are the interatomic distances in the collinear arrangement. 
Let's consider the 0 channel, if one follows the orbit back to a time long before 
the collision, one finds three infinitely separated particles 

and the corresponding asymptotic states wavefunction is of the form < xlV'in >= 
x(a;o,Xj,Xc) G So, where So is the subspace of those asymptotic functions that 
can label incoming or outgoing asymptotes in the 0 channel, i.e., the dissociation 
channel. 

In channel 1, following the same procedure, one would find particle a infinitely 
separated from the system be which is in the bound state (be), 

and therefore the Hamiltonian can be factorised as H = H^ + where is 
the channel potential containing the Vab and Kc potentials that become zero as 
a goes far away from be and the system evolves into channel 1: 
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The asymptotic state wavefunction would be < xltpin >= xi^a^^bc)^^!^)^^!^) € 
Si, where «Si is the subspace of those asymptotic functions labeling incoming or 
outgoing asymptotes in channel 1, i.e., the channel in which b and c form together 
the fundamental bound state and a moves freely. 

For the other channels one would proceed in a similar way, defining a partition 
as H = H^+V^ so that V^ is a potential that becomes zero as the system evolves 
asymptotically into channel A. 

The asymptotic condition is generalized for the multichannel case establishing 
that, for any function belonging to the Sa asymptotic functions subspace, there 
is a corresponding scattering state given by the corresponding Möller operator: 

y\rpin > e 5„ > I > 
>= fi^lV'in > 

These new Möller operators are, as the former, isometric operators that map the 
Sa functions onto the scattering states space. 

Concerning the orthogonality, it can be proven that all the subspaces of scat-
tering states with incoming asymptotes belonging to different channels are orthog-
onal and, at the same time, are orthogonal as well to the bound states subspace. 

ß 1 ± n%' 

The generalization of the asymptotic completeness theorem œtablishes that 
the direct sum of all the spaces of states with incoming asymptote belonging 
to any channel is coincident with that of the spaces of states with outgoing 
asymptote belonging to any channel. Furthermore, the sum of this subspace to 
that of the bound states generates the whole Hilbert space. 

n = ni+ e • • - ©ti„+ = tIi- © • • • ® Un- ; n = B®n 

For the mœt general case of multichannel scattering, an orbit ought to be con-
sidered so that its incoming asymptote would be a linear combination of all the 
n channels asymptotic functions, 

>= { I C >, - , >} ; l^in >€ = 5° © • • . © 

the state at í = 0 would then be expressed as: 

In practice, however, initial conditions are selected so that there is only a single 
asymptote on a channel and only the scattering on a single channel is measured 
resulting 

l̂ emt > = { 0 , . . - , 0 } ; 
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The scattering state is then written as l'̂  >= > and \tp >= > and 
the probability for the system to evolve from a (p asymptote in channel a to a, ¡p' 
asymptote in channel a ' is: 

uj{ip'a' <r- (pa) = (2.43) 

Since "Has is the direct sum of each channel asymptotic functions subspaces, 
we can obtain a basis set for this space combining the basis sets of each subspace. 
Thus, since the \p,a > vectors are an orthonormal basis set for Sa, then the set 
of vectors 

{0,. . ,0, |p,Q>,0,. . .0}a = 0,...,n; Vp 

is an orthonormal momentum basis set for Has- From now on we will assume the 
following abbreviation: 

{0,...,0,|p,a>,0,...0} = |p ,a> , < p ,a |p ' ,a '>= ¿„„-¿(p - p') 

It can be seen[3] that the S matrix under this reprœentation is of the form: 

<p',a\S\p,a>=ôaa'S{p'-p)-:^S(E-EW-P)f(p'a'^pa) (2.44) 

where p represents the ria linear momenta, P is the center of mass linear mo-
mentum and p represents the ria — 1 relative linear momenta. 

The stationary scattering states are obtained for the multichannel case in a 
similar way as performed previously (see section 2.3): 

H\pa± >= ñül\pa >= Ü^H^lpa >= E^\pa± > ^ ' 

For the elastic and inelastics collisions, the stationary states wavefunction is 
usually expanded in terms of target states, tpaixtar)- As an example let's consider 
the channel 1 of the above example. The Hamiltonian can be then partitioned 
a s H ^ H ^ + V^, where 

From this expression, where the Hamiltonian contains two independent terms, it 
appears clearly that the following products can be used as eigenfunctions oí H^, 

(27r)»/; 

where (Pa{xb) labels any eigenfunction of F(6c) with corresponding eigenvalue, Ea-
These states can be of two types, for there will be n bound states, and also the 
continuum states, where the diatomic be molecule dissociates. So, for a general 
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channel A, the stationary states wavefunction can be expanded in the following 
form: 

< X, XTAAP, A+ (2-46) 

where the summation and integral signs indicate that their combination includes 
all the bound and continuum target states and where T)a is responsible for the 
asymptotic form when r becomes infinity: 

1 

(27r)3/2 

gip»r 
(2.47) 

taking into account the Hamiltonian factorization {Ñ = H^ + substituting 
2.46 into the Schrödinger equation , multiplying by (f^ixtar) and integrating over 
all internal coordinates one obtains: 

z Y ! 
2m 

r¡a{x) + / E Vca>{S)Va'(f) = {E - E M ^ ) (2-48) 
Ja ^ 

where Vaa'{x) = J dXtar'Pa{Xtar)V^{x,Xtar)'Po,'{Xtar)· 
An infinite and continuous set of coupled integrodifferential equations is ob-

tained. If one eliminates the continuum target states from the expansion, one 
obtains the close coupling (CC) equations. This approximation is valid for en-
ergies below the diatomic dissociation limit, which is always the case, for the 
present work: 

-V^ -
2m 

Va(S) = - E 
a'^a 

>{x)T,„,{X) (2.49) 

Each of the so-called radial functions ija satisfies a single-body Schrödinger equa-
tion in which the potential term couples all solutions together. 

Briefly, the close coupling equations then have been established in a formal 
rather than practical way. The goal of the following sections will be to establish 
a more practical formulation of these equations for the triatomic case, where an 
atom collides with a diatomic molecule. This will be achieved exploiting firstly 
the fact that total angular momentum of the system is conserved. This will allow 
us to expand the wavefunction in terms of the P operator eigenfunctions, where J 
is the total angular momentum. This will lead to a partial wave expansion similar 
to that obtained in section 2.4. Then, an expansion in terms of the target bound 
eigenstates of the diatomic molecule will render a more practical formulation of 
the close coupling equations. Let's begin then by expressing the conservation of 
the total angular momentum as the commutation of its operator with the system 
Hamiltonian: 

Ê, J^l = 0 (2.50) 
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so that the global wavefunction can be expressed as: 

oo 

^(x,Xtar) = E Cji)j{x,xtar) (2.51) 
J=0 

However, in order to build an expression of the close coupling equations that 
can be numerically solved, we will need to express the wavefunction and the 
Hamiltonian in an adequate coordinate system. This will be the subject of the 
following chapters, although we will first consider some other cases which will 
prove of interest later on. 

2.6 Collinear inelastic scattering 
The practical formulation of the close-coupling equations can be a cumbersome 
task when considered in its full dimensionality, even for the atom+diatom case. 
For this reason, we begin by considering a reduced dimensionality treatment, 
which nevertheless contains all the essentials that we need [4]. This reduction in 
dimensionality is obtained by forcing the system to move exclusively along the 
axis defined by the diatomic molecule, i.e. considering only collinear geometries. 

The collinear collision for an atom and a diatomic molecule was studied by 
Jackson and Mott, as early as 1932, as a model for the exchange of energy in 
the collision between an atom and a solid surface. A landmark paper in 1966 
by Secrest and Johnson provided the first exact quantum mechanical results for 
inelastic collisions and allowed comparison with earlier classical, semi-classical 
and approximate quantum mechanical results. In this section we will give a brief 
outline on the Secrest-Johnson treatment. 

In this model it is assumed that an atom A interacts along the x axis with a 
harmonic diatomic oscillator BC of force constant k. The corresponding Hamil-
tonian, under the collinear restriction, is as follows: 

where XBC = XB - xc, and x%c is the equilibrium bond length of BC. By 
transferring to a center-of-mass coordinate system, where: 

XcM = -Am^+^B^s + xcma ^̂ .SS) 

xsmB + xcmc 
X = xa  tub + rnc 
Y = Xb + xc 
M = m A + mB + fnc 
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the Hamiltonian becomes 

+ + (2.54) 

where 

Since the center of mass motion is conserved, one can neglect the first term in 
2.54. On the other hand, the interaction potential VA-BC couples the X and 
Y motions. Moreover, if this was a function only of X, then even the X and 
Y motions would be uncoupled. More realistically, for the case of an atom A 
colliding collinearly to a an AB diatom from the B side, the interaction potential 
can be viewed as a function, by now still undetermined, of the ^ - S distance. 
This latter distance, in terms of the relative X and Y coordinates, is: 

x a - X B = X - (2.56) 
niB + mc 

The diabatic basis expansion, in terms of the target states, that will lead to the 
corresponding close coupling equations, can be done using the harmonic oscillator 
eigenfunctions 

n X , Y ) = '£^j{X)xj iY) (2.57) 
i 

where 

Xj{y) = 

and 

i/,(g)e-«V2 (2.58) 

(2.59) 

being Hi{Q) the Hermite polynomials. The basis set eigenvalues are 

The close coupling equations using this basis take the form i>i{X) + £ Vij{X)i,j{X) = 0 (2.61) 

where 

= (2H% !̂J-!1/2) X (2-62) 

X r HiiQ)HjiQ)e-'^V (X - eç) dQ 
•'-00 W-B + fnc J 
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and 

e = TTlc 

friB + mc 

Íi2 \ 

\kßBcJ 

1/2 

(2.63) 

The coupled set of second-order differential equations in 2.61 depend only on 
one variable and can therefore be solved using the standard numerical techniques 
available for the ordinary differential equations. These are usually propagative 
techniques which-involve integration outwards from X = 0 or, in practice, a 
value of X where the A - BC repulsive potential energy is high enough for all 
the channel wavefunctions to be considered as zero. To start this integration one 
must specify initial values for the derivatives ^-(O). 

The multichannel equations must be integrated outwards to a large enough 
value of X so that all elements of the potential energy matrix can be neglected, 
which means that the potential V dies off at sufficiently large distances. At this 
point the equations have the form 

(2.64) 

The general solutions of these equations, which are therefore the asymptotic 
solutions to 2.61, can be derived analytically: 

il>i{X) ~ Aié"'^ + Bie"'*-^ 

where 

ki = 
M E - E f ) 

(2.65) 

(2.66) 

are called channel wave numbers. From 2.66 we see that if > Ef, the channel 
wave numbers are real and it is possible for the system to emerge from the 
scattering event in the i channel; these are called open channels. On the other 
hand, whenever E < Ef the corresponding channel wave number is positive (by 
convention) imaginary and the system is not physically capable of emerging in 
the i channel; we say these are closed channels. 

Thus, for the closed channels one must impose a ß j = 0 boundary condition, 
otherwise the asymptotic form 2.65 would be an exponentially increasing function 
of X. This must be imposed to ensure that closed channels are not present at the 
asymptotic limit. 

If we are looking for a wavefunction that, under the stationary states frame-
work, reprœents the system in an initial internal state i, emerging in final states 
j (open channels), we then write the jth component of the wavefunction as 

i;j{X) ~ áî e-'*̂ ^ - Sji Í-1 
1/2 

ikiX (2.67) 
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where the coefBcients Sy are the elements of the S-matrix and its square modulus 
represents the probability density for the system entering collision with incoming 
asymptote tßi to leave the collision with outgoing asymptote ipj. Introducing 

the factors this probability is converted to a flux. The 5y are evidently 
related to the coefficients in 2.65 (see Appendix A). 

2.7 The Optical Potential. 

In section 2.5 we have seen that an expansion of the full wavefunction of the 
collision process in terms of target eigenstates as 

í j2Va{x)<f>aM (2.68) 
a 

converts the original many-body problem into an infinite set of coupled one-
body equations. In the same section we have seen that it is a generally valid 
approximation to retain the first N terms of this expansion, which correspond to 
the first N eigenstates of the target's discrete spectrum. However, it could be the 
case where we would be interested in a certain subset of N' (obviously N > N') 
channels, where it would no longer be a good approximation to simply ignore all 
the other r¡a to which our subset is coupled. 

In this section we shall outline how, for any given choice of N' channels, it is 
formally possible to define an operator Vopt, called the optical potential, so that 
the N' wavefunctions T]a{x) exactly satisfy N' coupled equations with a potential 
matrix given by Vgpt (for proof see Appendix B or, alternatively, [5]). This will 
establish the formal basis to introduce the complex absorbing potentials which 
are one of the main scopes of the body of the work presented, particularly its 
implementation in an invariant embedding propagation technique. 

As an example, let's consider the case of iV = 1; that is, we consider just the 
wavefunction TII{X} which will then describe the elastic scattering in channel 1. 
One can define a one-particle operator[3], Vopt so that T)I(X) exactly satisfies the 
following one-particle equation: 

/ fc \ 

\2^l opt mix) = {E - EMx) (2.69) 
/ 

with the corresponding one-channel boundary condition. 

1 3/2 / 
„ik-r e*kr 

(2.70) 
r 

and the inelastic scattering is exactly reduced to an equivalent one-channel prob-
lem. 
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Obviously, such an astonishing simplification of the multichannel problem 
must have a price to pay. The price is the knowledge of the optical potential 
which is a generally extremely complicated operator. In particular, it is nonlocal, 
energy-dependent, and, for energies above the first inelastic threshold, it is not 
Hermitian. This last characteristic is what one should expect ; if the Hamil-
tonian were Hermitian, the corresponding evolution operator would be unitary. 
This would mean that solutions of the corresponding time dependent Schrödinger 
equation would have constant norm or, equivalently, that the stationary wave-
function would have equal incoming or outgoing fluxes. This situation would not 
allow for loss of flux due to inelastic processes. Nevertheless, if inelastic pro-
cesses occur (i.e. if E is above the inelastic threshold) and we are describing only 
the elastic scattering using an optical potential, then the Hamiltonian has to be 
non-Hermitian. 

One can actually take profit from this property since, by calculating the flux 
loss in the elastic calculation, one can indirectly obtain the flux towards inelastic 
scattering. So, if one would be interested in knowing the inelastic flux regardless 
of the specific outgoing state and the corresponding V̂ pt would be at hand, it 
would be a particular advantageous thing to do, to perform just the elastic scat-
tering calculation and attribute the loss of flux to the inelastic process. It has to 
be stressed that this would lead to a state-to-all information of the inelastic pro-
cess. This, which might seem rather excentric for the inelastic case, could be, on 
the other hand, of great advantage for reactive processes in which one would just 
be interested in state-to-all magnitudes (e.g. cross sections) or directly the rate 
constant. For such processes one would be able to constrain the calculation to a 
much simpler inelastic (and elastic) scattering one by means of a non-hermitian 
Hamiltonian where the Vopt would have been included and assign finally the flux 
loss to the reactive event. 

We would like to point out that this methodology could perfectly be included 
in the family of effective potential methods, not necessarily complex. To this 
family belong very well-known methods as Hartree-Fock or Kohn-Sham, for the 
calculation of molecular systems electronic structure, where non local potentials 
appear explicitly. 

2.7.1 Approaches to the calculation of V̂ pt 
Unfortunately, the optical potential is in practice far too complicated for an 
exact calculation of it. Rather, the importance of what we have shown lies in the 
knowledge of its existence, since it provides a reliable basis for the development 
of approximate calculations of these optical potentials. 

The first estimations of optical potentials were performed in the field of Nu-
clear Physics in the 50s[6]. They dealt essentially with the elastic scattering at 
energies where inelastic and/or reactive channels were as well accessible. Con-
cerning its application to scattering processes in molecular systems, two rather 
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well different stages might be distinguished. 
The first, covers approximately a period from 1965 to 1985, and focused its 

activity in elastic processes, this is, solving the close coupling equations for a 
single term[7, 8]. 

On one hand, formal developments dealt with well-known problems associ-
ated with the use of NIPs as, for instance, the non-locality of the potential[9]. 
Adiabatic and decoupling approximations were also taken into account to sim-
plify the dimensionality of the problem[10]. Among other relevant works, that 
of Wolken[ll] can be pointed out, who devised a procedure for, given a numeri-
cally solved problem, extracting that optical potential which allowed reproducing 
a desired S-matrix subset. This method was subsequently used by Truhlar and 
coworkers[12] to study electron-atom collisions. The main results found were that 
the sharp variations of the optical potential, found when the radial wavefunction 
has a node, could be smoothed without significantly altering the results. On 
the other hand, phenomenological approaches were also adopted for the form 
of the NIP. Different ad hoc functional forms with adjustable parameters were 
used by Marriot and Micha[13], Micha and Rotenberg[14] and Ross and cols.[15], 
to successfully reproduce experimental information on elastic data by means of 
parameterizing the absorption as a function of the orbital angular momentum. 
Although some insights on the elastic behaviour of collisions in the presence of 
inelastic and reactive phenomena were obtained, no systematic procedure became 
available and the use of adjustable parameters limited its predictive capability. 

The second stage which we distinguish in the development of the optical 
potentials application to molecular systems begins in 1986, when Kosloff and 
coworkers[16] considered the problem of artificial back-reñection of wavepackets. 
This back-reflection usually takœ place at the boundaries of the point grid defined 
on the configuration space for time-dependent wavepacket propagations. They 
proposed the use of empirical forms of negative imaginary potentials (NIP) to 
solve this problem. In fact, it can be actually proven that a purely imaginary 
potential absorbs or creates flux associated to a stationary wavefunction according 
to whether this potential is negative or positive (see appendix C). This idea was 
adopted by Neuhauser and Baer[17], and they used it to propose a linear NIP 
ramp as a functional form that would allow perfect absorption conditions of the 
wavepacket. 

Shortly after, an extension of this idea allowed a wide spreading of the imagi-
nary potentials on the study of chemical reactivity. The authors[18, 19] proposed 
to place the NIP, not at the limits of the grid but right after the transition state 
region, at the beginning of the products arrangement channel. This change in the 
NIP petition allowed to consider that all the absorbed flux was that flowing to-
wards products. As the authors claim in their article, one has to consider that the 
probability flux that yields purely reactive transitions is that measured once well 
crossed the transition state region. If this is accomplished, we are able to have 
just the inelastic (and elastic) component of the scattered wavefunction treated 
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exactly using a local, less energy- and system- dependent imaginary potential. 
This results therefore in a rather simple and easy to implement approximation 
to the optical potential. 

The characteristic that difFerentiates the present approach from the previous 
phenomenological derivations of optical potentials is that, in principle, the reac-
tive flux is completely apart from the inelastic and elastic ones, i.e., it takes place 
in a different region of configuration space. So, a complex potential as a function 
of physical coordinates will be able to select the reactive component from the 
rest in the total flux. We can then study the reactive collision as a distorted in-
elastic process where the NIP is placed in the products rearrangement entrance. 
Like this, using inelastic scattering propagative techniques, generalized to take 
complex valued interaction matrices into account (see section 4.4 and chapter 8), 
the corresponding inelastic probabilities are calculated and subtracting the sum 
of these to unity one obtains reactive state-to-all probabilities. We stress the fact 
that these are global probabilities, this means only state-to-all magnitudes can 
be obtained through this methodology, as presently formulated. 

The major methodological improvement of this approach relies on the fact that 
almost no attention must be paid to the products arrangement characteristics. 
This turns into a much simpler choice of coordinates and therefore the possibility 
of using much simpler Hamiltonians. Moreover, the configuration space is approx-
imately halved with the corresponding saving in integration time. On the other 
hand the technique presents basically two disadvantages: Firstly, as it has been 
derived here, the method is not capable of yielding state-to-state reaction prob-
abilities. Secondly, the calculation becomes involved from the numerical point 
of view, because of the complex valued nature of the potential instead of being 
real-valued, as usual. Nevertheless, we claim the advantages of the application 
clearly overcome its disadvantages when dealing with the calculation of global 
magnitudes such as state-to-all integral cross sections and, to a major extent, 
reaction rates. 

Different methods employing NIPs have recently proposed in the literature. 
Among them, we would like to point out that by Manthe, Seideman and Miller[20], 
that calculates the cumulative reaction probability using NIPs on both reactants 
and products arrangement channels. The total flux is then obtained averaging 
according to a Boltzmann distribution to yield directly the reaction rate. The 
main advantage of this method is that rate constants are readily obtained sam-
pling a comparatively small part of configuration space. In particular, just a 
small portion before and after the transition state has to be included to achieve 
rate constant (i.e. cumulative reaction probability) convergence. 

Baer and coworkers have continued developing the method originally proposed 
by them. In particular, they have extended it to the calculation of state-to-state 
probabilities[17] by means of a generalized variational procedure. 



30 
Chapter 2. Quantiun mechanical formalism 



Chapter 3 

The accurate description of the 
Reactive System 

Contents 

3.1 Electrons - nuclei system 31 
3.1.1 Adiabatic representation. Born - Oppenheimer App. . 32 
3.1.2 Diabatic representation 35 

3.2 Jacobí coordinates 35 
3.2.1 Kinematic rotations 37 
3.2.2 Spatial rotations. Body Fixed Jacobi Coordinates. . . 38 
3.2.3 Close Coupling equations 38 

3.3 Hyperspherical coordinates 45 
3.3.1 Asymmetric Parameterization. Fock coordinates. . . . 46 
3.3.2 Symmetric Parameterization. Smith coordinates. . . . 48 
3.3.3 Hamiltonian 50 

In the previous chapter we have settled the basis for the quantum mechanical 
description of the reactive event. Finally, a rather practical formulation of the 
close coupling equations has been presented, but still in terms of two general 
variables, x and Xuir- It is now turn to give these variables an expression, to 
choose the coordinate system in which we will express the wavefunction and the 
Hamiltonian. 

3.1 Electrons - nuclei system 
The Quantum Mechanical study of collision processes essentially consists in the 
description of an n-electron and iV-nuclei system. Such system will be univocally 
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described at a given instant t by its associated wavefunction, í». The evolution 
of the system will be governed by the corresponding time-dependent Schrödinger 
equation : 

= (3.1) 

where the wavefunction is a function of all electronic (r) and nuclear coordinates 
(R) as well as time. If one does not consider relativistic effects, one can write the 
system Hamiltonian {H) as the sum of the nuclear and electronic kinetic energy 
operators and the operators describing the interaction between them. Therefore, 
the corresponding time independent Schrödinger equation will be 

[Tjv{R) + Te(r) + y;viv(R) + V;ve(R, T) + Veeir)] 'J'lR, r) = £;4'(R, r) (3.2) 

where T¡v(R), 7e(r) are respectively the nuclear and electronic kinetic energy 
operators, Vjviv(R) is the electrostatic repulsion between the nuclei, VVe(R-)'') 
represents the electron - nuclei interaction and Vee(r) is the electronic repulsion. 

The fact that the Hamiltonian contains a Coulombic interaction term between 
nuclei and electrons, therefore mixing nuclear and electronic coordinates, 

does not allow the construction of a global wavefunction as the product of two 
functions, each one depending on either one or the other type of coordinates. 

However, attempts have been made to express the global wavefunction on a 
basis that differentiates electronic and nuclear functions. 

3.1.1 Adiabatic representation. Born - Oppenheimer App. 

The common concept of a Potential Energy Surface arises from the recognition 
that in a molecule the motion of electrons is much faster than that of the nuclei 
since masses are so different but charges much more comparable, and therefore 
these two types of motion can be in a fairly accurate way separated. We could 
think of the electrons as being subject to a electrostatic field created by stationary 
nuclei. On the other hand, the nuclei would be subject to a potential which is 
the sum of the nuclear repulsion and the average field due to the electrons. 

It is a strictly rigorous approach to expand the system global wavefunction 
as the linear combination of direct products of a complete basis of electronic 
functions, {Vj(r)} and a nuclear functions basis set: 

^ (R, r ) = $:xi(R)¥^,(r) (3.4) 
y 

However, this would not be very efficient, since a much higher number of electronic 
functions would be needed than if we would use another electronic functions basis 
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set {#j (r; R)}, this parametrically dependent on the nuclear coordinates and the 
nuclear wavefunction, x-

= (3.5) 
i 

The parametric introduction of the nuclear coordinates in the electronic functions 
allows to optimize the basis size even if it then implies a different, in principle, 
electronic basis set for each nuclear configuration. These functions r) are 
solution of the electronic Schrödinger equation : 

lUv) + r) + Veeir)] r) = r) (3.6) 

This equation describes the motion of the electronic system for a given nuclear 
configuration, R. Introducing the expansion 3.5 into equation 3.2, considering 
3.6, pre-multiplying by and integrating over all electronic coordinates leads to 
the following expression[21]: 

[T^ + UI{R) - E] Xi(R) + E Ci,(R, P)x,(R) = 0 (3.7) 
} 

where Î7, = Wi + Vjvjv is the potential energy function for the i state and the so 
called non adiabatic coupling terms, c,j are 

The operator P t is the nuclear momentum operator, M* the mass of each nuclei 
and the terms Aij, Bij represent 

4 H R ) = J$* (R , r ) ( ^ V , ) $*(R,r)dre, (3.9) 

BÍf (R) = / $ * ( R , r ) ( ^ V ^ ) $-(R,r)dTei (3.10) 

For a stationary state the electronic wavefunction can be chosen as a real 
function and therefore the diagonal An term can be set to zero and equation 3.7 
is then rewritten: 

[Tjv + C/i(R) + B.-.(R) - E] x<(R) = - E P)Xi(It) (3.11) 

Generally the coupling terms are only important between a small group of states 
so that the expansion can be then truncated to a smaller electronic basis. 

It can then be said that equation 3.11 is the nuclear Schrödinger equation . 
In the adiabatic approximation, the coupling terms c,j are taken as zero and 

then equation 3.11 turns into 

[Tjv + f/i(R) + S,,(R) - Í;] X i ( R ) = 0 (3.12) 
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The Born-Oppenheimer Approximation 

The well-known and commonly used Bom-Oppenheimer approximation is a par-
ticular case of this adiabatic approximation. Consider the Schrödinger equation 
for the global electrons-nuclei system (3.2). The Born-Oppenheimer approxima-
tion goes a step further in the adiabatic representation and the wavefunction, í», 
is rewritten as the product of one electronic wavefunction depending parametri-
cally on the nuclear configuration and another nuclear wavefunction: 

4'<(R,r) = Xi(R)#<(R,r) (3.13) 

Note the difference between this approximation and the rigorous basis expan-
sion of the adiabatic representation in equation 3.5, this arises from the fact of 
expressing the wavefunction as a single product instead of the former adiabatic 
basis expansion. As in the previous case, the electronic wavefunction is solution 
of 3.6, the electronic Schrödinger equation. At its turn, x¿(R) will be the solution 
of: 

[Tjv + Ui{R) - E] Xi{R) = 0 (3.14) 
where t/, (R) = V}vivR) + W;(R) is known as the Potential Energy Surface (PES). 
Notice that 3.14 differs from 3.12 only in the small adiabatic correction term, 
Bii{K). 

To realize to which extent the assumption in 3.13 is valid, let's introduce the 
expression into 3.2 (the index i being dropped for the sake of clarity): 

[TN{R) + Te(r) + VWjv(R) + VOve(R,r) Vee(r)] $(R,r)x(R) = (3.15) 

= E^R,t)x{R) 

Considering the form of the nuclear kinetic energy operators: 

where k runs over all nuclei. The application of operator 3.16 to the previous 
expression of the wavefunction yields: 

r;v(R)$(R,r)x(R) = $(R,r) 

+X(R) 

(3.17) 

87r2 ^ Mk 

-h' 
E ^ { V * $ ( R , r ) } { V a ( R ) } 87r2 ^ Mk 

Considering this expression in 3.6, it can be seen[21] that equation 3.15 trans-
forms into 3.14 only when 

x(R) 
- h ^ ^ 1 .1 - h ' 1 
^ E ' I Ç V . X ( R ) } = 0 (3.18) 
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Usually this terms can be neglected and therefore the approximation is valid. 
For example, the first term contains the second derivatives of $ with respect to 
the nuclear coordinates. These will be of the same order of magnitude as the 
derivative with respect to the electronic ones. However, while the Te^ is of the 
same order of magnitude as the energy of one of the electrons, this term will then 
be of the order of ^ and therefore negligible (m being the mass of the electron). 

Among the work being done recently on non adiabatic transitions, i.e., pro-
cesses where the Born Oppenheimer approximation breaks down, stress has been 
put on lately on those transitions caused by spin-orbit coupling. These have ap-
peared to be of a greater relevance than expected since, for instance, reaction 
barriers had to be modified, when including the spin orbit interaction, in very ac-
curate calculations on both the PES and the dynamics of the F + Hi-^ FH + H 
system[22]. 

3.1.2 Diabatic representation 

Let's return to the complete basis expansion in 3.5. Whatever linear combination 
of the adiabatic basis functions is used, it would not lead to any alteration of 
the global wavefunction, í». Consider then a basis change that eliminates the 
Aij,Bij (equations 3.9 and 3.10) couplings between electronic states. Such a 
process is known as diabatization and the resulting basis set is correspondingly 
called diabatic basis. Obviously, the electronic Hamiltonian would not longer be 
diagonal under this representation and its off-diagonal terms would represent the 
new couplings. 

3.2 Jacobi coordinates 
From here on, we will assume the validity of the Born-Oppenheimer approxi-
mation. We are going to study then the nuclear Schrödinger equation, so we 
therefore need to specify the set of nuclear coordinates{R} on which the nuclear 
wavefunction depends. The number of coordinates needed for the complete de-
scription of a iV-particle system is 3N. Considering that our study will concern 
the motion and rearrangement of 3 nuclei (.4 + BC case), we can specify the 
position of the three particles A, B and C using three position vectors of common 
origin in a laboratory fixed frame, f^, f^ and re-

A first rigorous simplification can be performed by separating the motion of 
the center of mass from the relative motion between the particles. This is done 
introducing the vector: 

CM = ^^r^ + rnsfs + mcrc 
niA + TUB + mc 
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A 

Figure 3.1: Mass-scjded Jacobí coordinate for the a arrangement 

Thus, the nuclear wavefunction can be factorised in a part depending exclu-
sively on CM, which is simply a free particle wavefunction, and another part 
depending on all the other internal degrees of freedom. This last part could be 
expressed, for example, in terms of internuclear distances. However, this choice 
would lead to a non-diagonal kinetic energy tensor and therefore great complica-
tions in the calculations. 

The Jacobi vectors[23] show up to be a proper choice to overcome the problem 
of the mixed derivative, being as well still tightly related the physical situation 
of the process and therefore have become a coordinate set of great relevance. 

Let's consider the Jacobi vectors for a three particle-system (A,B,C) and in 
particular, those related to the arrangement a = A + BC (figure 3.1): 

- rnBTB + mçfc 
_ , _ (3-20) TUB -I- mc 

Xa = f c - Tb (3.21) 
where a indicates the particular arrangement, Xa is the internuclear vector 

joining B and C, and Xa is the vector joining the center of mass of the molecule 
BC to atom A. Note that this procedure is completely general for the n-particle 
case since the internal coordinates of n bodies can always be expressed in terms 
of 71 — 1 Jacobi vectors. As it has been said before, the Jacobi vectors allow not 
only the separation of the center of mass motion but also enable an expression 
of the kinetic part of the nuclear Hamiltonian where no mixed derivative terms 
appear. For example, for the latter a arrangement the Kinetic Energy Operator 
reads: 

T = (3.22) 
2//BC 

Note that the kinetic energy operator expression on 3.22 depends explicitly on 
two different reduced masses, HBC = i f ^ and ^A,BC = ^̂  
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be shown that, for the other two possible arrangements, AB + C and A + BC 
(usually denoted by ß and 7) two other different reduced masses appear respec-
tively, yielding six different reduced masses when considering the whole ensemble. 
A remarkable reduction and simplification can be achieved by mass-scaling the 
Jacobi vectors. The mass-scaled Jacobi coordinates relate to the unsealed ones 
by a dimensionless factor: 

dr = mr Í m-r 

ß \ M 

1/2 

(3.23) 

where T labels the particular arrangement (so that r = a, /?, 7 and m„ = 
and so on) and ß is the three-body reduced mass, ABC 

mATriBTnc^^/'^ 
M j 

Employing these scaled coordinates the kinetic energy operator takes the fol-
lowing form: 

^ = r = a,ß,j (3.25) 

where only a single reduced mass appears and therefore the expression is valid for 
all three possible arrangements (the only changes are the transformation equa-
tions to the center of mass position vectors). 

3.2.1 Kinematic rotations 
It can be shown that transformations between different sets of scaled Jacobi 
coordinates (usually corresponding to other possible arrangements) are the so-
called kinematic rotations, 

i n . < -= nX(r) (Kr (3.26) 

where T is the 6 x 6 matrix: 

T(Xir) - (3.27) 
' c o s x ç t i s i n x í r l 

^ -s inXír l COSXírl 

These rotations involve terms depending only on the masses of the colliding 
partners. The kinematic angles X t + i . t , for a cyclic order (i.e. when T = A, 

r-l-1 = t-I-2 = 7, but if r = T-l-1 = 7, r-l-2 = a), are the negative, obtuse 
angles defined by: 

and 

c o s x t + i . t = 3 - 3 
arar+imrJ^2 

- 1 
S i n Xr+1,T = 

drdr+1 

(3.28) 

(3.29) 
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Spatial rotations. Body Fixed Jacobi Coordinates. 3.2.2 

Besides kinematic rotations, which mix the Jacobi vectors, we will need several 
Body Frame (BF) axes systems, and therefore ordinary spatial rotations must be 
introduced. Consider the rotation n{2 -f- 1) that carries some axes set 1 into 
axes set 2, 

n{2 <(- 1) = ( R 0 ^ / 

v o RJ Î 
\ 

n{2 1) Rl 
(3.30) 

where 0 is the 3 x 3 null matrix, 1 and 2 superindexes denote the vector compo-
nents on the two different axes set and R is a 3 x 3 matrix of Euler angles: 

R = 
' cos A cos/SODS 7 - s i n A sin 7 sin A coscos 7 + cos A sin 7 -sin/3cos7 N 

- sin a cos/3 sin 7 - s i n o cos 7 - sin a coscos 7 + cos a cos 7 sin;3cos7 
cos a sin ̂  sin a cos ̂ fl cos/3 

where a = a^, ß = ß2i and') = 721 are the Euler angles that carry axes system 
1 into axes system 2. 

Of particular interest is the case when 1 is the space-frame (SF) and 2 is the 
BFr system (see figure 3.2) in which the BF 2; axis points along Rj.. This leads to 
"21 = ÖT = f R r and ß i i ^ ßr = •ÖRr, i.e., the spherical polar coordinates of R^ in 
the SF system, but leaves 721 = 7t arbitrary. It is often convenient to choose the 
third Euler angle 7^ so as to make r^ lie in the BF^ xz plane with a nonnegative 
X component, therefore the vector in the new frame is expressed as: 

K = 
/ 0 

0 
Rr 

(3.31) 

rL — 
XL / r^sine^ 
0 = 0 (3.32) 
4 / XrrœsQr / 

where 6r is the angle between the two Jacobi vectors. 
Thus, the body-frames for T = A, B mdC all have a common y axis, and one 

can transform from one to another by rotating about this common axis. 

3.2.3 Close Coupling equations. 

In this section we will derive the explicit expression of the close coupling equa-
tions, introduced in section 2.5, in the Jacobi coordinate system, firstly for the 
inelastic scattering case and later for the reactive process. 
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Figure 3.2: Space fixed {X,Y,Z) and body fixed (x,y,z) axis frames 

Inelastic scattering. 

Let's assume we are dealing with an inelastic process within the A + BC arrange-
ment. Jacobi coordinates are particularly adequate for describing this process, 
the Hamiltonian being a function of Rr and r^. Subscripts labeling the particu-
lar arrangement will be omitted throughout the section. One can clearly see how 
adequate are the B - C distance and the distance from A to the BC center of 
mass, as variables to describe the inelastic process and specially for the target 
states basis expansion, since we will have functions for the target states that will 
depend just on one vector, r (three variables). For the moment we will consider 
we are using a Space Fixed reference frame and later we will transform to the 
Body Fixed. The factorization of the system Hamiltonian that allows a target 
basis set expansion in this arrangement has the form: 

H = + + (3.33) 

where, as explained in section 2.5, ÈBC represents the BC system Hamiltonian 
(assuming a E electronic state) 

-h' 
HBC = 

- f t M a 

(3.34) 

a • + VBc(r) '¿ßBcr'^dr dr ' IßsCr'^ 

where ß is the BC system rotational angular momentum, whose eigenfunctions 
are hyperspherical harmonics depending on the angular components of r, i.e. 
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r = fr) in the SF frame. The target eigenstates satisfy the Schrödinger 
equation : 

f) = f) (3.35) 

and since we know the angular part eigenfunctions we can further decompose the 
eigenstates as a product of radial and angular functions: 

[Hbc - (r) = 0 (3.36) 

The kinetic energy operator for the translational Jacobi coordinate, R can un-
dertake a similar transformation if we express it in a radial and angular part: 

2 - f t ' 1 Ô a ñ , ^ 

where £ denotes the orbital angular momentum of A around BC. Similarly to 
the rotational angular momentum case, eigenfunctions for the that depend 
only on the angular components of R can be found in the spherical harmonics 
that, in this case, will be with R = i0R,ipR). One can now couple the 
two angular functions basis sets to build a basis set for the whole angular part 
of 3.33. One will be then coupling the two angular momenta to obtain the total 
angular momentum, 3 —j + £. This is achieved by means of the Clebsch-Gordan 
coefficients: 

E E C{jU-,mjrmM)Yj„,^{f)Yt^^{R) (3.38) 
m,j=-j mi=-l 

As it has been said at the end of section 2.5, since the total angular momentum 
is conserved all along the process, its corresponding operator commutes with 
the total Hamiltonian. One can therefore find a common eigenfunction basis set 
{i/;-^^} and build our wavefunction as their linear combination in what it is called 
partial wave expansion 

^ = E (3.39) 
j=o 

Each of these functions satisfies 

ñ i , ^ ^ = Ex!)^^ (3.40) 

These functions will be the product of the angular function, eigenstate of the 
total momentum operator and its Z-axis projection in the SF frame, and two 
radial functions, one which is the target vibrational function and the other which 
will depend on the translational radial component. 

= E E E ¿Gi r .W^i» w r (fi, r) (3.41) 
j t V 
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Here we have written for convenience, since a simpler expression for 
the equations will be obtained. We identify the summation over v as the target 
expansion explained in section 2.5. Substituting 3.41 into 3.33 and premultiplying 
the resulting equation by 

integrating over r and the angular components of R and r, and benefiting from 
the orthogonality properties of the spherical harmonics and the Clebsch-Gordan 
coefficients, we obtain the following expression for the close coupling equations 
using SF Jacobi coordinates: 

(P 

dR^ 
+ 

í'{í' +1 
GUAR) = (3.42) 

2M ( i t « 

where 

{ / ¿ V \V\j£v) = J \ ' d r J x 

xF(Ä, r, ejY/t'^iR, f)^j,(T)dRdf 

(3.43) 

Next, we will derive the expression of this equation set using Jacobi coordi-
nates as well, but this time under a Body Fixed frame, whose quantization axis 
follows R along the rearrangement process. All there is to do is to perform the 
rotation described in section 3.2.2 from the SF to the BF frames along polar and 
azimuthal Euler angles of R in the SF frame. The orbital angular momentum 
components in this axis frame will then be 

4 = -{PR)VR 

ly = -(Pfi)x-R 

4 = 0 

The Hamiltonian operator in BF Jacobi coordinates is written as: 

R dR^ R^ 

(3.44) 
(3.45) 
(3.46) 

(3.47) 

where the rotor angular momentum, j^, is included in the BC Hamiltonian and 
4 the orbital angular momentum of atom r about the diatom. Remember that 
the subscript labeling the particular arrangement is being omitted in this section. 

If one now expresses the orbital angular momentum as the difference between 
the total and rotational angular momenta: 

(3.48) 
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equation 3.47 may be rewritten as: 

, ^ {Jy-hf 
R dB? ̂  E? ^ B? + HBc{T) + V{R,r,Q) (3.49) 

One can conveniently introduce the ladder operators = Jx ± ijy (and corre-
spondingly for J±) and transform 3.34, knowing that J^ = j^, into: 

2M + (3.50) R dR^ 

To derive the close coupling equations in their BF Jacobi coordinates formula-
tion, one has to see the effect of a 5 F BF rotation on the SF partial wave 
wavefunction , V/^'· In the literature[25, 26], this is expressed as: 

= t Di^^xT^'iR^r) (3.51) 

where Í2 is the projection of the total angular momentum on the BF quantization 
axis, 2. Hereinafter, we will express the jiv set as ß. Substituting 3.51 into 3.50 
and after some manipulations, the equation set becomes: 

Hnsi-ixif-i + H u s i x T + = 0 (3.52) 

where 

Hiisi = - — 
1 d^ 1 

R -I- 2/xr2 

-f-

2fi\rdr^ ' RdR"' 

[j( J + - + 'f] + V{r, R, 6) 

H, 'nn±i 

If one then performs the target basis set expansion: 

where 
ß> 

<S>ß,n,{T) = -^ß'{r)Yj.sv{f) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

substituting equations 3.55 and 3.56 into 3.52, multiplying by and 
integrating over r, we finally obtain the close coupling equations, using Jacobi 
coordinates, under a BF reference frame: 

+ + h ' ù w u X - ^ ' i R ) = (3.57) 

ß' 
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where, 

and 

(¿2 

B? 

"fi'n'ii — 

(/?n' |t/| ß'ü) = p / r, Q)<¡>ff{r)Y;,^,,{f)drdf (3.60) 

(3.58) 

J( J + 1) - Ü^^Y" {j{j + 1) - n'(n ± ¿ (3.59) 

Reactive scattering. 

To develop the close coupling equations for the reactive event in Jacobi coordi-
nates we will continue on the BF frame, and the treatment will be, in principle, 
completely analogous to that of the inelastic scattering. Attention should be 
paid now to the fact that we will be having as many BF frames as different ar-
rangements involved in the rearrangement process. Since we have to distinguish 
between arrangements, the subindex labeling them has to be put once again and 
therefore the nuclear Schrödinger equation: 

J_ 
2 / x 

Rx 
+ (3.61) 

+Htar(rx) + V{R,r,e)-E = 0 

will be the Schrödinger equation expressed in Jacobi coordinates for a given 
arrangement A. As in the inelastic case, the partial wave expansion can be per-
formed (the rearrangement obviously does not alter the conservation of total 
angular momentum). Each SF partial wave can expressed in terms of Wigner ro-
tation matrices and BFx wavefunctions(note the arrangement subscript labeling 
the Oxxvzx axis system), 

nx=-J 
(3.62) 

where the quantum number n> specifies the projection of J on the zx axis, or 
equivalently on This number will therefore depend on the specific arrange-
ment channel considered. Due to a treatment analogous to that for the inelastic 
scattering, the BF close coupling equations can be obtained as: 

- E) + + (3.63) 

ús=m 
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Figure 3.3: The reactive event clearly evidences two radically different physical situations 

7 = 0,1,2,. . . = JA = IÍÍAI, IÍÍAI + 1 

where are the functions depending on the radial components of 
both Jacobi vectors. For derivation of the equations and explicit form of the 
^íhfí terms refer to [26]. 

Note that the resulting equations have been exprrased so that their solution 
is a function that depends on both radial coordinates ta, RX- This means that 
no expansion of the total wavefunction has been carried away on the target's 
vibrational eigenfunctions. This is done so because this would result in a rather 
inefficient formulation whenever dealing with a rearrangement process. As an 
example, consider the particular case oí a, A + BC reactive process. One would 
solve the problem integrating the Schrödinger equation from the strong interac-
tion region to the reactants and products region. Suppose we want to express the 
total wavefunction in terms of eigenstates in Ta, the vibrational «-arrangement 
Jacobi coordinate. The Schrödinger equation ought to be the integrated from 
0 to a given value R ^ " , of the corresponding translational Jacobi coordinate. 
From figure 3.3 appears clearly evident that a large number of eigenstates in r« 
will be necessary to accurately describe the wavefunction for /3-product arrange-
ment configurations, since now motion along r corresponds to a translation rather 
than a vibration. This means that one attempts to describe a translational mo-
tion through an expansion in terms of vibrational eigenstates, which is the main 
source of inefficiency. There would appear also difficulties in describing the strong 
interaction region (there is a shift in the vibrational baricenter). 

Several attempts have been made (some of them quite successful) to overcome 
this problem remaining in Jacobi coordinates. In particular, in the present work, 
Jacobi coordinates have been used for the study of reactive scattering under an 
Infinite Order Sudden Approximation (see section 6.1 and chapters 7 and 8). 
There, the close coupling equations are solved employing the iî-matrix method 
of section 4.4. The problem is formulated in Jacobi reactant coordinates when 
propagating in the reactants valley and in the corresponding Jacobi products 
coordinates when in the products valley. In the strong interaction region a rela-
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tion between both sets of coordinates is established so that the equations can be 
transformed from one set to the other[27]. 

However, nowadays it is commonly accepted that Jacobi coordinates, as here 
formulated, are not efficient enough to describe the reactive event and several 
alternative coordinate systems have been developed. 

3.3 Hyperspherical coordinates 
The application of hyperspherical coordinates[28], introduced in Atomic Physics 
around the thirties, and adopted in Molecular Physics and Kinetics in the be-
ginning of the sixties, has spreaded rapidly and successfully in the last twenty 
years, showing up to be a powerful tool for the solution of the reactive problem. 
Although it is by no means the only possible approach for the description of a 
reactive process, it is undoubtly one of the most powerful and has already been 
successfully tested. 

Essentially, the hyperspherical description aims to transform the problem of 
the three particles moving in a three-dimensional space into that of a single 
particle evolving in a N-dimensional space. For the atom-diatom reactive process, 
for example, the reactive event can be described (after CM motion separation) 
in terms of a 6-dimensional hypersphere. Such a description, is capable of fully 
describing the collective motion of the three atoms, even though it can give rise 
to numerical difficulties, in terms of convergence, for the asymptotic situations. 

Remembering how inefficient the particular Jacobi coordinates set of a given 
arrangement was to describe the physical situation in a different arrangement, it 
can be concluded that a general variable that cuts both valleys perpendicularly is 
convenient for a good convergence. The people who developed the hyperspherical 
coordinates found in curvilinear coordinates a good candidate and among them 
the polar coordinates are the most simple choice. 

(3.64) 

X̂  = arctanß2/r2 (3.65) 

Generalization of these equations to the tridimensional processes leads to the 
hyperspherical coordinates. In the d-dimensional space (d = 3{N - 1)) of the 
mass-scaled vectors, the hyperradius (corner stone of the whole hyperspherical 
approach) has the meaning of the radius of a hypersphere: 

= (3.66) 
«=1 
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For our case {N = 3), we can derive an expression in terms of the Jacobi 
vectors 

P^y/Rl+rl^ s/R} + rl = + (3.67) 
Probably the most important characteristic of this quantity is that it is univer-
sal, i.e. invariant with respect to the Jacobi set considered. This makes the 
hyperradius an ideal variable to follow the reaction evolution. Low values of p 
label strong interaction situations while large values describe asymptotic (either 
reactants or products) ones. 

Another very important characteristics of the hyperradius is that it is an 
almost separable variable. This means that separating the motion in the hyper-
radial coordinate from the rest of motions is a considerably good approximation, 
having enabled considerable advances. This will be very helpful, for instance, 
for propagativo techniques, since we will be able to divide our integration region 
into fixed p sectors where we will solve the Schrödinger equation for all the other 
variables without significant loss of accuracy. We still lack, however, d — 1 other 
variables to cover the full d-dimensional space and thus completely specify the 
motion of the internal system. These variables are usually parameterized as the 
hyperangles covering the hyperephere's surface. There are many different param-
eterizations of these hyperangles. It can be shown that the many possible choices 
correspond to different angular momenta coupling schemes. The key works in 
this subject were performed by Smith[29, 30], who generalized the angular mo-
mentum to the hypersphere and thoroughly studied the motion of three particles 
in a plane. 

3.3.1 Asymmetric Parameterization. Fock coordinates. 

One possible choice for the hyperangles corresponds to the so-called asymmetric 
parameterization, which was introduced in the thirties and later Fock[31] gave 
an ultimate impulse. In order to define the five hyperangular variables, let's 
refer to a mass-scaled Jacobi vector set, keeping in mind that these coordinates 
allow the separation of the center of mass motion. We can then represent R, r 
in a reference frame centered on the center of mass and its axes parallel to the 
space-fixed frame. 

Let's define x as the 3 x 2 matrix containing the 6 cartesian components of 
the Jacobi vectors for a given arrangement a and, alternatively, their expressions 
in terms of spherical coordinates: 

X = 
( Txa Rxa \ 

TYO RYO 

\ Tza Rza J 

f r« s i n c o s i e r « s i n c o s ^ ^ ^ 
Ta sin ̂ ra sin Ra sin •ÛR̂  sín 
raC0S1?r„ Ra COS •Ôr^ 

(3.68) 

The fifth hyperangle is chosen from a direct extension of the polar coordinates: 

Xa = a r c t a n K (3.69) 
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and consequently Xo ranges from 0 to n/2. 
Although this set of coordinates has almost direct physical interpretation, has 

the important disadvantage that all angles depend explicitly on the considered 
Jacobi set. However, this set allows a simple description of the three-atom spatial 
rotation, and an almost immediate construction of the nuclear angular momen-
tum eigenfunctions. On the other hand, an additional coordinate transformation 
has to be introduced since the potential energy depends only on p, x and ©„, be-
ing ©T is the angle formed between the two Jacobi vectors of the corresponding 
arrangement: 

c o s 6 « = c o s •âr^ COS Úr^ + s i n s i n ' Ô r ^ COS(<^IJ„ — ipr^ ) (3.70) 

These difficulties can be overcome using a rotating frame whose origin is 
common to the preceding fixed frame. In order to specify the orientation of 
the rotating system in space one needs the three Euler angles a, ß, 7, which are 
defined in a form which is dependent on the choice taken for the orientation of 
the rotating axes. Schematically, the above rotation can be expressed as: 

A'FZ ^ xyz (3.71) 

For this case, 2 coincides with R while r lies on the xz plane. Therefore the new 
3 x 2 matrix x' containing the cartesian components is now: 

and relates to x so that 

this is. 

r . 0 
0 0 
r. R 

x = D{a, / 3 , 7 ) x ' 

(3.72) 

(3.73) 

( r x Rx] / 

TY RY = 

\ r z Rz ) \ 

sm a cos a 
0 0 

cosß 0 sinß \ 
0 1 0 

^ — sin/3 0 cosß y 
^ C0S7 - s i n 7 0 

0 
1 

sm 7 COS 7 

0 0 

rx 0 
0 0 
r, R 

(3.74) 

Introducing r^ = r sin 6 and = r cos O and performing the matrix multi-
plications, it can be verified that: 

(3.75) 
(3.76) 
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To this point the asymmetric hyperangular parameterization can be consid-
ered as completed. The six internal coordinates of the triatomic system have 
been factorised in terms of the product of a rotation matrix function of external 
coordinates (Euler angles , ßg^, 7) and a term which is function of the inter-
nal coordinates, p, x (from polar coordinates) and 0 (keep in mind that it is the 
angle between the Jacobí vectors, whose range is [0,7r]). 

3.3.2 Symmetric Parameterization. Smith coordinates. 
One set of hyperangles which yields a coordinate system non-dependent on the 
particular arrangement is that developed by Felix Smith for both the planar 
(1962) and tridimensional (1967) cases[29, 30]. A later formal modification (1980) 
by Johnson[32] is quite often used. 

This coordinate set is defined as well on a rotating frame. In order to under-
stand as best as possible the path leading to these coordinates, let's start from 
the three-body inertia tensor[25]. This tensor is defined as 

I = lir(Z) - Z (3.77) 

where Z = xx and x, as in 3.68 is the cartesian components matrix of the Jacobi 
vectors, with x its transpose. It can be seen that: 

ir(Z) = p̂  (3.78) 

The inertia tensor is then a 3 x 3 matrix that has all its components different 
from zero in the center of mass fixed frame: 

1 = 
( f ^ - A - R x -{rxry + RXRY) -{rxrz + RxRz) \ 

-[ryrx ^ RyRx) p^-r\r-Rl -(ryrz + RyRz) 
\ -(rzrx + RzRx) -{rzry + RzRy) p^-r%-R% / 

(3.79) 

Now, let's introduce here as well the same rotating reference frame defined in 
equation 3.73. Since the rotating system a;, y, 2 is related to the preceding by a 
rotation function of the Euler angles, we can write, 

Z = XX = Dx'x'D = DZ'D (3.80) 

Keeping in mind that D is an orthogonal rotation matrix, we can obtain the 
tensor of inertia in the rotating system with its z-axis along R: 

r = DID = 
^ p ' - r l 0 

0 p" 0 
K 0 p ' - R ^ ) 

(3.81) 

We can then choose a rotating reference frame in which the inertia tensor becomes 
diagonal, finding the appropriate Euler angles a/, /?/, 7/ for which the matrix 
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product D{a/,/3/,7/)ID(a/,/?/,7/) is diagonal. This is a crucial choice since we 
are choosing a BF frame oriented along the principal axes of inertia. Since we are 
dealing with a non-rigid body, these evolve in a natural way with the reaction, 
changing from the initial arrangement to the final one, and so will do our reference 
frame. 

Also in this case, we can express in a compact form the relationship between 
the cartesian components of the Jacobi vectors in the center of mass and those 
of the new frame 

rx Rx 
ty RY 

\rz Rz ) 
= D(a/,Ä,7/) 0 0 

R< J 
being ^ and C the labels for the new reference frame. We therefore have. 

DID = pH - DZD 

where 

DZD = 0 0 
Kn Rc J 

( r , 0 r , \ 
[R^ 0 Rc) 

0 r^r^ + R^Rç \ 
0 0 

(3.82) 

(3.83) 

(3.84) 

r^rç + RfR( 0 r¡ + R} 

This, to be diagonal, requires: r^r^ + Rf̂ R^ = 0. This condition is immediately 
satisfied defining: 

r | = psin0cos# r^ = pcos9sin# 
R^ = psmQsm^ R( =—pcosQcos^ 

which leads to the following transformed Z' matrix: 

Z' = 

and the tensor of inertia is 

f p'sin^e 0 0 
0 0 0 
0 0 fPcos^e y 

(3.85) 
(3.86) 

(3.87) 

f p" C0s2 e 0 0 \ ( h 0 0 \ 
r = ItrZ -Z' = 0 p' 0 = 0 h 0 

I 0 0 p^ sin^ Í I 0 0 h ) 

(3.88) 

these eigenvalues represent the principal moments of inertia of the system. Note 
that = this relation allows us to establish the square of the hyperradius 
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as a measure of the total inertia of the system. Furthermore, see that since the 
three atoms evidently lie on a plane h = h + h , and since 6 ranges in the 
physical space from 0 to 7r/4[29], h is always smaller than Ii. Therefore, in this 
reference frame r and Ç are respectively the maximum and minimum inertia axes. 

We can find a physical meaning as well for the two internal angles (O, of 
the symmetric parameterization. It is evident that, since one can express 6 in 
terms of p and the moments of Inertia (see 3.88), the variable is therefore not 
altered if the set of Jacobi vectors is changed. In fact, we can easily verify that 
e is tightly bound to the area of the triatomic triangle. 

A = \fi\ = 
R X r (3.89) 

^ URj - r(R(  
2 

sin 26 
~ 4 

Representation of the relationship 
between the 6 hyperangular 
coordinate and the area of the 
triatomic triangle 

At the same time, $ (ranging [0,27r] see [29, 30]) labels the different forms 
of the triangle with the same moment of inertia, i.e. distinguishes the different 
possible arrangements. 

In conclusion, the coordinates for the hyperspherical symmetric parameter-
ization of a reactive collision process are composed of three external variables, 
such as the a/ , ßi, 7/ Euler angles, and the internal variables p, Ö, 

3.3.3 Hamiltonian. 
In this section we will show the expression of the Hamiltonian using hyperspheri-
cal coordinates. In these coordinates the kinetic energy operator may be written 
as 

-h' 
K = 2M 

(3.90) 

where we do not introduce the explicit form of the hyperangular coordinates. 
Therefore this expression applies to both previous parameterizations. Let's con-
sider the tridimensional atom-diatom collision where we explicitly distinguish 
between the external and internal hyperangles of the six-dimensional hypersphere 
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by denoting O5 = (57, SJ )̂ and let's write the system Hamiltonian taking into ac-
count that, in the absence of external forces, the potential will depend only on 
the internal hyperangles ÖJ, 

H = IÊ. 
2/1 

+ V{p,w) (3.91) 

Now, all that remains to know in order to write more explicitly the form of 
the Hamiltonian is to introduce the hyperangular parameterization one is using. 
This will not affect the hyperradial part of the kinetic energy operator, but will 
definitely have an effect on known as the Casimir operator. 

Asymmetric Parameterization. 

The form of the Casimir operator for the six-dimensional hypersphere, A^(Q5), 
can be found in the literature[33] as: 

' + ,3.92) 
sm'' 2x dx dx coŝ  x sm^ x 

where x is the polar angle defined in 3.69 and j and (. are, respectively, the 
rotational and orbital angular momenta. 

The eigenvalue equation for this operator read[34]: 

A%i(n5) = -A(A + 4)n,-,(05) (3.93) 

where A is called the grand angular quantum number and takes the values 

X^2n + j + e (3.94) 

where n takes all the integer values from zero to infinity and j and £ all the 
integer values from zero to A. 

The eigenfunctions of this operator are the hyperspherical harmonics[33, 34] 
and in the asymmetric parameterization have the following explicit form: 

Yxji{x,'PR,^R,¥>r,A) = Ix; A;i;i > (3-95) 

where |x;A;j;¿ > is a Jacobí polynomial of order n conveniently weighted and 
normalized[33]. 

Symmetric Parameterization. 

Let's now turn to the six-dimensional Hamiltonian in the symmetric parameteri-
zation which is the one we will be solving. In the corresponding section we have 
seen how this parameterization corresponds to using hyperspherical coordinates 
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in a reference frame which is parallel to the principal axes of inertia. This would 
explain why Pack and coworkers[28] named these coordinates Adiabatically Ad-
justing Principal Axis Hyperspherical (APH) coordinates. In section 3.3.2 we 
have derived the expression for these coordinates considering the orientation of 
the solidary axis system, so that the z axis is oriented along the least inertia 
principal axis, but we could have chosen alternatively z to be oriented along the 
most inertia principal axis, i.e. that going out from the triatomic plane. Next 
we will write down the expression of the Casimir operator for the two possible 
choices. 

If we consider the orientation in which x lies along the least inertia principal 
axis, the Casimir operator can be written as[28] 

= - ^ Y ^ ^ ' ^ L · I À ^ L · 

2zsin2e- d Jl Jl J^ 
cosn% sin^ e cos2 26 cos^ 6 

According to Pack[28], it is often convenient to write this expression as a sum of 
a hyperradial, rotational and Coriolis term: 

= + + (3.97) 

where, 

where the Coriolis term typically couples the internal and global rotation motion 
through a mixed derivative. This choice of orientation of the solidary BF frame 
leads to a minimization of the Coriolis couplings[35]. Note that Ah represents the 
Casimir operator for the case of null total angular momentum. 

On the other hand, choosing the BF z axis oriented along the maximum inertia 
axis leads to a simpler expression of the Coriolis term in the Casimir operator: 

= - s à ë â "" - -
2 i s in2e - d Jl Jl Jl 
cos'20 siñ^ ^ cos^e ^ cos2 2e 

The expression for the Coriolis coupling is simpler because it includes Jg instead 
of Jy, and the first has a much simpler expression: 

J , = - i A (3.102) 
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Unfortunately, unlike the asymmetric parameterization case, the eigenfunc-
tions of the Casimir operator in this parameterization are not known for the 
case of total angular momentum greater than zero. Thus, in applications it is 
commonly used an expansion as: 

a/, ßi, 7/) = ¿ YXMQ, m i n i c ' i , ßn 7/) (3.103) 
n=-j 

where 0 is the projection of J on the principal axis frame and the form of the 
Yxaii(&, ^)DifQ{ar, ßi, 7/) functions will be shown in another section (see section 
5.1). 
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Chapter 4 

Solution of the CC Equations. 
The propagative approach 
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4.4 The R-matrix method 64 

Among all the methods that can be used for solving the close coupling (CC) 
equations, in this work we have always used the propagative approach for the 
time-independent Schrödinger equation associated to the nuclear motion. Propa-
gation essentially consists in solving the properly formulated close-coupling equa-
tions by dividing the scattering coordinate in several, small partitions, called 
sectors. Within each sector, solutions for the internal problem, parametrically 
dependent on the scattering coordinate, are obtained. This leads to an adiabatic 
basis treatment throughout the sectors. Inside each sector, instead, the same ba-
sis is used to express the scattering part of the solution at one end in terms of that 
obtained in the previous end. Thus, within a given sector, a diabatic approach is 
used. The global procedure is sometimes termed as adiabatic intersector diabatic 
intrasector. A common problem one encounters when trying to propagate the 
whole set of close-coupling equations is that, as originally formulated, they are 
what is called a stiff set of equations. The stiffness arises as a consequence of 
the inclusion of closed channel solutions of the internal problem, necessary to en-
sure the proper convergence of the numerical solution. The resulting instability 
originated from the exponentially growing nature of the closed channel solutions, 
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which tend to dominate the whole solution -and destroy linear independence-, is 
a consequence of the finite precision of the numerical solution algorithms. 

Q (M) Q) 

-7^ XI X I _ I Xi " Xm 

Figure 4.1: Sectorization of the propagation region. The scattering (propagation) coordinate 
is divided into small intervals where an internal eigenvalue problem will be solved. Its solutions 
will serve as a basis for propagation. 

Several procedures have been proposed to overcome these difBculties, which 
are reviewed in the following sections. We shall pay special attention to the 
specific methods used in the present work. 

4.1 General formulation of the propagation. The 
Cauchy propagators 

Let's consider the most general form of the scattering equations 

<P 
dx2 

-)- A(a;) -I- B(x) ip{x) = 0 (4.1) 

where x is the scattering coordinate and the matrices correspond to the target 
states expansion. The problem is usually formulated so that A=0. The solution 
is obtained at an asymptotic value by propagating its value starting from an 
initial value. By propagating, we understand the obtention of a function value 
at a given point given the corresponding value at a preceding point. 

The propagator of a function in an interval [ar', x"] is defined as a 2N x 2N 
block matrix that connects values of any solution of 4.1, and its derivative, V', 
at the endpoints x' and x". Such a propagator is called a Cauchy propagator{36] 

/ fii Í22 \ 
" " i û 3 n j 

for which the defining relation takes the form 

[ i/{x") I -{Ü3 (^C^x') Ü4ÍX",X') 
( \ 
\ I 

(4.2) 
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The existence of such propagators is guaranteed in all the intervals [x', x"] where 
the matrices A{r) and B(r) are continuous functions of x. The basic properties 
of the Cauchy propagators are[36]: 

Ü{x", x') = Çl{x", vMy, x') for y € [x\ x"] 
n{x',x') = 1 

(4.3) 
(4.4) 

In order to determine the expression of ü{x",x') one needs to solve an appropriate 
number of initial value problems for the system of equations 4.1. 

4.2 Invariant embedding type propagators. 
Besides the Cauchy propagators, there is a number of other types of propagators 
which are involved with boundary value problems rather than initial value ones. 
These are called invariant embedding propagators. The invariant embedding tech-
nique consists in solving a series of simple problems embedded in the space of 
the complete problem. The inherent stability of these methods derives from the 
fact that the bounded scattering amplitude is propagated through space, rather 
than the wavefunction for the entire system. The so called reflection (F̂ *") and 
transmission (Z^) matrices form the propagator originally formulated in ref.[36] 
that satisfies the following relation for any solution ip: 

( i>{x') _ ( Y+{x'y) Z-(x',x") ] nx') 
^(x") - Z+{x',x") Y-(x',x") j i^'ix") (4.5) 

Other types of invariant embedding propagators can be formulated such as the 
Ä-matrix or the log-derivative method, which we will see in the following sections. 
For example, let's consider an alternative expression of 4.5 where: 

11/{x') \ _ ( LW(a:',x") LC'^X'^X") 

{ i'ix") 
(4.6) 

The specific form of the boundary value problems can be established in the fol-
lowing form. Let's call the two solutions of 4.1 and impose: 

Substituting in 4.6 we obtain: 

HI 1¡)^{x") = 

( iíl) 
¿(3) 

^ 1 ^ 

( r'{x') \ _ / 

V r ' { x " ) ) -

£(1) £(2) N 
£(3) £(4) 

(4.7) 

(4.8) 

(4.9) 



(4.10) 
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and therefore, 

Since solutions to particular boundary values do not always exist, all invariant 
embedding type propagators fail to exist for some intervals [x', x"]. This difficulty 
can be however overcome. 

Obviously these invariant embedding propagators are related to one another 
as well as to the Cauchy operators. Consequently, the basic properties of the 
standard Cauchy propagator can be expressed in terms of the properties of the 
of any other propagator. In this way, the recurrence relations of the invariant 
embedding propagators can be derived[36]: 

L{x',x") = LlÜix".x')] 

where L acts on a 2N x 2N block matrix 

Ci C2 C = 
C3 C4 ^ 

so that 

^ —C^C^^Ci -I- C3 c^c^^ 
L[C] = 

acting on both sides of 4.3 

L{x',x") = t[ü{x".x')] = L{í-'[L{yy)]L-'[L{x',y)]] 

after performing the necessary matrix operations[36]: 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
(4.17) 
(4.18) 

This recurrence relations can be converted to the following differential form[36] 
in the {x" — y)->0 limit: 

dy 
ix',y) = ix',y) ¡A^{y) + A^iyW^K^', y) 

(4.19) 

(4.20) 
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^ (4.21) 

^ (4.22) 

The Ai, i = 1,2,3,4 denote blocks of the coupling matrix in the system of first 
order differential equations equivalent to the system 4.1: 

M l , Ai ) 
0 1 

- B - A 
(4.23) 

Let's take a step forward and point out that the propagator whose properties 
we have been developing is an extension of what is usually called a log-derivative 
matrix Lp, which is defined by the relation 

^{x) = LDÍ¡{X) 

where tp is a solution of 4.1 satisfying the initial í¡{x) = 0 condition. Indeed, 
substituting if) into 4.6 it can be seen that Ld = which is enough for inelas-
tic scattering. This particular method of propagation will be developed from a 
slightly different point of view in the next section. 

4.3 The log-derivative method 
In 1973, B.R. Johnson briefly presented his, at that time, new method for prop-
agatively solving the multichannel eguations[37]. The method is relatively popu-
lar, although no really transparent derivation of its algorithm was fully published 
by the author. However, two different derivations of the method can be found 
in the literature. One was published by Mrugala and Secrest[36], which has al-
ready proven useful as a basis for several improvements[38], which will be later 
on outlined, and extensions [39, 40] to the original algortihm. However, this 
derivation relies on a highly sofisticated form of invariant embedding, whose in-
troductory lines have been developed in the preceding section, and it is therefore 
quite complicated to describe. Another simpler and more understandable deriva-
tion, based only on finite difference approximations, has been published by D.E. 
Manolopoulos[38, 41]. 

In this section we will follow basically the derivation of the Johnson's log-
derivative method from [38], since it will provide us a clearer introduction to the 
Johnson-Manolopoulos method used in our work. 

Let's write the close coupling equations in matrix notation as 

«-(a;) = W(x)'i(a:), (4.24) 
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where x is the propagation coordinate and 

W(a;) = - k^ (4.25) 
ft 

The centrifugal term is assumed to be included in the potential energy matrix, 
decaying as x tends to infinity, /i is the collision reduced mass, and k is a diagonal 
matrix of asymptotic channel wave vectors. The wavefunction ^{x) is a square 
matrix where each column is a linearly independent solution of the problem. In 
principle, the expansion is infinite, but in practice it is always truncated at some 
finite value, N. The log-derivative matrix is defined as: 

Y(x) = (4.26) 

In the different log-derivative methods it is this matrix that is propagated, rather 
than the wavefunction itself and Its derivative. This eliminates the stability 
problems arising whenever the integration is started deep inside the classically 
forbidden region. 

DiflFerentiating 4.26 and using 4.24 to get rid of the second derivative we obtain 

Y'ix) = W ( i ) - Y2(j;) (4.27) 

which is a Riccati matrix equation. In most inelastic scattering problems W is 
a real and symmetric coupling matrix. Transposing this equation throughout, 
one then finds that Y'(x) is also a solution of the same first order differential 
equation, as Y(2:). Since its initial value will be symmetric and the solution is 
unique, the log-derivative matrix will be symmetric for all x. This symmetry is 
not essential but has computational advantages, particularly for matrix inversion. 

From its definition in 4.26, it can be seen that the log-derivative matrix be-
comes undefined whenever the wavefunction determinant becomes zero. This 
causes the standard numerical techniques of integration not to be applicable. 
However, the log-derivative matrix may be safely propagated using a special form 
of invariant embedding technique (section 4.2). Let's define an embedding type 
propagator, y, on a interval [x', x"] by 

yi{x',x") y2{x',x") (4.28) 

The blocks of this propagator are obtained solving appropriate boundary value 
problems on the interval [x',x"]. It is well known that solutions to particular 
boundary value problems do not always exist, so can also be undefined on 
some intervals, this, however, does not cause any practical difficulties. 

A recursion relation for the log-derlvatlve matrix can be obtained post-multiplying 
the upper part of the matrix equation in 4.28 by and the lower part by 

and then e l i m i n a t i n g O n e obtains: 

Y(x") = y4{x',x") - y^ix'y) [ Y ( X ' ) + (4.29) 
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This recursion relation forms the basis of the log-derivative method. The inte-
gration range will be partitioned into a series of small intervals, as it has already 
been explained, the propagator matrix y constructed for each sector and the 
log-derivative matrix propagated by recursive application of 4.29. 

4.3.1 The Johnson-Manolopoulos method 
. First published by D.E. Manolopoulos[38], the method is based on the log 
derivative method 4.3 of Johnson and it has widely proven to be highly competi-
tive for the majority of atomic and molecular collision problems. In particular, we 
have employed this propagation method in our work for the exact solution of the 
close coupling equations with the Hyperspherical method presented in chapter 9. 
The method, as it will be seen, basically differs from the previous one formulated 
by Johnson in the way in which the sector propagators are constructed. 

The algorithm is presented as a means by which the log-derivative matrix can 
be propagated across a single sector, [a, 6]. The original sector is divided into two 
half-sectors. It is then convenient to define the mid point c and step size h by 

b + a 1 
c = — (4.30) 

In what follows we shall use as well [a;', x"] to denote both half-sectors [a, c] and 
[c, 6}. Then another basic step is introduced. Prior to obtaining the solution of the 
complete CC equations, one solves first a simpler homogeneous problem, inside 
each sector, defining a simple reference potential. This leads to propagators for 
the homogeneous solutions. The global solution (and the global propagator) is 
then obtained through the Green's function method, as it will be explained below. 
Let's start by constructing the analytical solutions to a simple homogeneous 
problem on the interval [o,6]. The equation has the form 

^"{X) = Wref{x)^{x) (4.31) 

where the reference potential Wre/ix) is continuous throughout the sector. In 
the original log-derivative method Wre/i^) was set to zero, but Manolopoulos 
introduced instead a piecewise constant diagonal reference potential, 

Wref{x)ij = Sijpl r G [a, 6]. (4.32) 

Homogeneous equation 4.31 is easily solved analytically using this reference po-
tential. One can then define a propagator matrix y corresponding to the homo-
geneous solutions $(x) analogously to 4.28. The blocks of this propagator for 
the half-sectors [x', x"] are also easily obtained as, 



y2Íx',x'% = y3{x',x")ij = % 
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\pj\csch\pj\h, p]>0, 

pjjcscjpjjh, p]<0. 

These become undefined whenever its argument approaches an integer multiple 
of TT in a classically allowed region (pj < 0). However, the step size h is usually 
small enough for this situation not to arise. 

Equation 4.24 can be reformulated as an integral equation, through the use 
of the Green's function method[36] on the interval [a, 6], with the homogeneous 
part given by 4.31. Manolopoulos' algorithm consists of discretizing the integral 
equation using the same quadrature as in the original log-derivative method. The 
residual coupling matrix is defined as, 

U(x) = W { x ) - W „ / ( x ) (4.34) 

which is the difference, at each sector end, between the true and the reference 
potential. Then the quadrature contributions from the three grid points are given 
by 

Q{a) = 

Q(c) = 

Q(b) = 

¡Via) (4.35) 

h? 
i - ^ u w 

- 1 

- 1 

where the weights introduced are identical to those used in Simpson's rule inte-
gration. To obtain the quadrature contributions from the original log-derivative 
method one simply has to set W^e/ = 0 in 4.34. 

Finally, the half-sector propagators for the solution of 4.24, y{x',x"), may be 
obtained. These contain both analytical contributions from the reference poten-
tial and quadrature contributions from the residual potential, which combine in 
the following way: 

M ^ ' y ) 

M ^ ' y ) 

%{x\x") 

yiix',x") + Q(x'), 

y2(x',x"), 

y3(x',x"), 

y,ix',x") + Qix"). 

(4.36) 

The log-derivative matrix is propagated from a to & across the sector by repeated 
application of the recursion relation, 

Y(x") = Mx'^x") - ¡fix') Mx'y)]'' Mx',x") (4.37) 
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where Y (a) = Y(a) and yields the log-derivative value at the end of the particular 
sector 

Y{b)=Y{b) + 0{h% 
The authors call y(x', x") effective propagators because the matrix Y{c) defined 
when 4.37 is first applied, i.e. in the \x',x"] = [a,c], is not directly related to 
F(c), the log-derivative matrix evaluated at the center of the sector, a quite 
simple explanation for this can be found in [38]. 

Once the recursion relation has been established, all that is left is to choose 
the diagonal reference potential. Manolopoulos and his coworkers have usually 
used the diagonal of the coupling matrix evaluated at the midpoint c: 

P] = (4.38) 

Such a simple to implement choice has proven to give rapidly convergent results 
with respect to the sector width. Since the reference potential changes from sector 
to sector, the algorithm is somehow a function approach [36, 42] propagative 
method, especially in regions where the coupling matrix is nearly diagonal. The 
authors claim that improvement in convergence over the original method (purely 
potential approach[Z&, 42]) relies on the improved homogeneous solutions in each 
sector. 

The log-derivative matrix may be propagated across any desired interval, 
[̂ min J ^mox ], dividing the interval into a series of sectors. Usually x^in is chosen to 
be deep inside the classically forbidden region, and then a diagonal approximation 
to the WKB initial value is used: 

Y{XrrUn)ij = (4.39) 

Xmax will be some large value of the propagation coordinate, beyond which the 
interaction potential can be neglected. Once this region is reached, the asymptotic 
log-derivative matrix will be used to calculate the scattering S matrix. 

4.3.2 Asymptotic analysis. 
The propagation of the log-derivative matrix instead of the wavefunction itself, 
is found to ease as well the evaluation of the relevant asymptotic quantities. 
It is so, due to fact that one can write the S-matrix (or, equivalently, the K-
matrix) directly in terms of Bessel and Neuman functions and the asymptotic 
log-derivative. So, once one has obtained the asymptotic log-derivative matrix, 
an expression can be derived for extracting the scattering matrix from it. To do 
so, let's first write the wavefunction considering the scattering coordinate is large 
enough for all potential interactions, but the centrifugal; to be neglected: 

^(z) = J(x) + N(x)K, 2:->oo (4.40) 
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being J (x) and N(x) diagonal. For the open channels these matrix elements will 
be the Riccati-Bessel functions, 

[j(x)]y = ôi jk j '%ikjX) , (4.41) 

[N(x)],, = S i jk - '%ik jx ) , (4.42) 

and for the closed channels these are modified spherical Bessel functions of the 
first and third kinds 

[J(x)],,- = Sij{kjxr '%+i,2Íkjx), (4.43) 
[N(x)],,- = 6ij{kjxr'^^K,.+r/2{kjx), (4.44) 

where kj is the channel wave number. Performing the log-derivative on 4.40, this 
is, differentiating with respect to x and post-multiplying by the inverse, we get 
(setting X = Xas): 

K = -[y(xa,)N(xa.) - N'ixas)]-' X [y(xa,)J(x„J - J'(x„,)] (4.45) 

This matrix K is the so called reaction matrix and contains elements connecting 
closed and open channels. It can be shown that it can be factorised as into 
open-open, open-closed, closed-open and closed-closed submatrices: 

ic - Í ^oo Koc \ .ßx 
Kao Kar 

The scattering matrix can be obtained from the open-open submatrix using the 
formula[37]: 

S = - ( I + iKoo)-' X (I - iKoo) (4.47) 
The solution corresponding to the closed channels is an exponentially increas-
ing function (equation 4.44) and an exponentially decreasing function (equation 
4.44). These, specially the first, can cause numerical trouble when evaluating 
4.45. Johnson[37] proposed to eliminate this problem by the replacement of the 
closed channel matrix elements by: 

[J(xAr)]« 1, (4.48) 
[J(x;v)]« -)• IJ'(x;v)]« X [J(x;^)].7i (4.49) 

Expressions for N are obtained by substitution. Quite clearly, this leaves the 
open-open submatrix Koo unchanged. 

4.4 The R-matrix method 
In 1976, J.C. Light, D.J. Zvijac and R.B. Walker presented in two consecu-
tive articles[44, 43] their new approach to the solution of close coupling equa-
tions by using the Ä-matrix method, originally presented by E.P. Wigner and 
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L. Eisenbud[45]. The method is based upon a division of the dynamically ac-
cessible regions of configuration space into smaller regions (sectors), in each of 
which a local matrix of the inverse log-derivative, called ii-matrix, is determined 
analytically. Then, these sector Ä-matrices are assembled recursively and yield a 
ñ-matrix for the whole integration region. The scattering matrix can be obtained 
from this global matrix. 

Unlike the Johnson-Manolopoulos method, which we have just employed as 
originally formulated by the authors, during this work we have got to work quite 
deeply with this propagation method. So, we have generalized the formulation 
of the approach in order to take complex potentials into account. This derivated 
from the problems arisen when a complex absorbing potential was placed so as 
to absorb all the flux towards products (see sections 2.7 and chapter 8). Due to 
the use of this potential, a reactive problem was reduced to an inelastic one but 
paying the price of a complex interaction matrix to be used for the propagation. 
Then, the R-matrix propagation method had to be adapted in order to consider 
complex valued interaction matrices. Details of the theory are fully given in the 
next sections (see specifically section 8.3). 
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5.1 The method of Launay and LeDourneuf 
In the late 80s and beginning of the 90s, J.M Launay, M. LeDourneuf and cowork-
ers published a series of papers which, in our opinion, caused a major impulse 
in the development of exact cross-section calculations of reactive systems. Rele-
vance of this work relies on the particularly intelligent partition of the Hamilto-
nian which allowed the practical calculation of reactive cross-sections, as we will 
show later on. 

5.1.1 The Hamiltonian. 
Let's consider we are studying an atom-diatom reactive collision using symmetric 
hyperspherical coordinates, under a BF rotating solidary frame, whose z lies along 
the least inertia principal axis. These have been called by some authors APH 
coordinates[28] (see section 3.3.2). In constructing the APH Hamiltonian, one 
minimizes the couplings due to rotation of the body frame at linear or near-linear 
configurations. 

The expression of the Kinetic energy operator in APH coordinates, following 
ref.[46], is: 

67 
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where V is the interaction potential and A^, the Casimir operator, is the square 
root of the grand angular momentum. Following Launay's derivation we replace 
the original Smith-Whitten hyperangle 6 by which is its double, to allow a 
familiar [0,7r/2] range of variation, 0 corresponding to linear configurations and 
7r/2 to symmetric top configurations. The Casimir operator in 3.96 transforms 
then into: 

1 — cos Ö cos^ B 1 + cos Ö 

This choice of the reference frame allowed Launay to introduce the following 
partition of the Casimir operator: 

= + + (5.3) sm'' B ^ ' 

where A^o and H, which contains a part of the rotational kinetic energy and 
Coriolis coupling, are given by 

4 Ö Ö 1 
= — s i n 20— (5.4) sin 20 dB dB cos^ B dx^ 
^ J! , Jy 2iúnBJy d 

cos^B'^cosH cos^B dx ^ ' 

Ah 
is the square of the grand angular momentum operator for ,7 = 0 in the 

principal axis frame. 
For the sake of simplicity, from now on we will label globally the hyperangular 

variables, the internal as w {B,ij>) and the external as U>e (the Euler angles). 
One may then consider a (parametrically) p-dependent basis of five-dimensional 
functions, 

= (5.6) 
where the symmetric top wavefunctions N^'^^'ips) of definite parity c/ = ±1 
are linear combinations of Wigner rotation matrices: 

^ ^ l e X l V s a o ) + (5.7) 

Here, J is the total angular momentum and M its projection on the space-frame 
z axis, while Í2 > 0 is the absolute magnitude of its projection onto the body-
frame z axis. The index ep in (5.6) labels the symmetry of the wavefunction with 
respect to the permutation of two identical atoms (or even more). 
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The functions ifl'^"", also called surface states, are fi- and /9-dependent solu-
tions of a two-dimensional Schrödinger equation at fixed hyperradius p: 

Û J ) ^ ' ^ ^ ; = er'^'y^r'^'ip; ÔJ) (5.8) 

The consideration of a /O-dependent basis will be very useful thanks to the near 
separability of the hyperradius. Equation 5.8 can be solved within a {e/, ep, Q} 
symmetry block, following Launay's approach, by variational expansion over 
a primitive basis of orthogonal eigenfunctions {>*} (pseudoharmonics), see ap-
pendix D. 

5.1.2 Coupled hyperradial equations 

Taking profit from the fact that the hyperradius is a near-separable variable and 
that a parametrically p- and fi-dependent basis for a part of the Hamiltonian has 
been obtained, the Schrödinger equation is solved using the diabatic-by-sector 
method [47], in which the range of integration along p is divided into smaller 
sectors [pp_i/2,p,H-i/2] centered around pp. In each sector, the total wavefunction 
is expanded on the basis defined at pp, 

= (5.10) 

In 
practice, the expansion of the wavefunction is finite. In particular, we can 

vary separately the number of k and Q, components in the linear combination 
5.10. For instance, the maximum value of 0 in the expansion will be denoted by 
fim. The functions f¿n"''{pp; p), called hyperradial functions, are solutions of the 
following set of coupled second-order differential equations, 

+Ek'V^ir"{Pp-,p)f¿,W''{pp-,p) + (5-11) 

where the coupling matrix elements are given by (taking into account (5.6)): 

p) =< vT'^p: ^ W i P . > ü (5.12) 
T^ÍU'MPp) =< >0̂ ,0;. (5.13) 

The evaluation of these matrix elements is relatively easy since the basis 
functions are factorized in 5.6 into an internal part , which is 
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independent of the total angular momentunj J , and an external part. Firstly, the 
potential energy coupling matrix V is independent of the total angular momen-
tum and connects states with the same projection fi. Therefore, the interaction 
matrix elements are computed at the boundaries and the middle of each sector 
and further evaluated inside each sector interpolating by means of a three-point 
Lagrange interpolation scheme. Secondly, to what the H matrix elements con-
cerns, integrals over the 9, x coordinates are independent of J while J-dependent 
integrals over the Euler angles, l3e can be performed analytically. The authors 
indicate that Tl is smooth and well behaved for linear conigurations (0 = 0) and 
can evaluated just at the middle of each sector, but diverges dramatically for 
symmetric top configurations {6 = n/2). Further comment has to made to point 
out that U connects states with Afi = 0, ±1, ±2. Therefore, the kinetic coupling 
leads to a pentadiagonal H matrix which will be propagated throughout the con-
figuration space. The Afi = 0, ±1 terms arise from Coriolis couplings while those 
with An = ±2 from rotational couplings. 

The logarithmic derivative linearly independent solutions of the coupled equa-
tions (5.11) are propagated outwards in each sector using the Johnson[37] -
Manolopoulos[38] algorithm (see section 4.3). When the boundary of each sector 
pp+i/2 is reached, a transformation to the basis of the next sector computed at 
Pp+i, is performed. This is repeatedly performed from the first sector until the 
last one (p,), this corresponding to the asymptotic region. The sector width is 
an important parameter for controlling the accuracy and efficiency of the calcu-
lations. 

5.1.3 Asymptotic matching 

As the hyperradius p increases, the functions (pk whose energy is lower than the 
potential ridge tend to concentrate into the arrangement valleys, whereas the 
atom-diatom interaction potential tends to zero, i.e. the system approaches the 
asymptotic situation! The behaviour of the ipk functions then becomes simple, 
very close to the rovibrational target states into which we have expanded the 
wavefunction in section 2.6. But this cannot be easily seen from (5.8), since the 
Smith-Whitten coordinates there used are not suited to describe the atom-diatom 
fragmentation region (they lead to the well-known large-p shrinkage problem[48]). 
On the other hand, Fock asymmetric hyperspherical coordinate provide an op-
timal parametrization of the sj^tem at large hyperradius. It is therefore con-
venient, once one has got to the asymptotic hyperradius, to rewrite the Hamil-
tonian (5.9) in Fock internal coordinates ([31] and section 3.3.1). For a given 
arrangement A the two Fock angles (xx, 6a) are the hyperradial correlation angle 
XX = axctmrx/Rx and the bending angle &x = arccos(fA • Ra). Using these 
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coordinates, the Hamiltonian becomes 

1 Ö . d e j = _ (5.14, 

1 4 1 d . ^ d Q2 

Moreover, inside each A-arrangement valley and at large enough hyperradius, 
the potential becomes independent of the bending angle T)X and therefore can be 
written as Vx{p,xx)- Knowing this, it can be stated that the coupled equations 
become separable in ( x a j Ô a ) coordinates. Thus, the (fl'^''^ functions converge 
to a rovibrational function vj in each arrangement A, separable in xx and ©a, 

<pr' '"^xxvAp;xx)Pl'(ex). (5.15) 

This separation can be seen as a factorization of the vibration {xxvj{p',xx)) and 
the rotation (P"(6a)) motions. The F"{9a) are associated Legendre functions 
and the xxvj are the solutions of the one-dimensional equation 

+ + XXvMXX) = (5.16) 2pf?\ siv?2xxdxx dxx sin^2xA / 
ixvj(p)xxvj(p-,xx) 

where Vx{p,Xx) is the asymptotic potential in arrangement A. 
After determination of the fragmentation vj quantum numbers, the total 

wavefunction is projected onto the space-fixed basis functions, which can be 
written as Xxvjipq', Xx)y/i'^{fx, Rx) of each arrangement in order to obtain its 
hyperradial components fxvji''ÍPq, Pas) and normal derivatives in that basis. This 
projection involves two steps: 

• firstly, a transformation that reorients the principal axis z along Rx, the 
atom-diatom vector of arrangement A. This involves two-dimensional quadra-
tures in the (xa) ©A) coordinates. 

• secondly, a standard body-frame to space-frame projection is made using 
analytical methods. 

Regular and irregular asymptotic channel functions are expressed as spherical 
Bessel functions of the radial variable Rx- The matching of the components 
fxvji''ÍPq,Pas) and of their normal derivatives to these asymptotic functions on 
the p = Pas hypersphere yields the reactance K and the scattering S matrix, as 
shown in chapter 2. 
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6.1.1 R-IOS Approximation equations 77 

Given the difficulty for obtaining reactive quantities from an exact quantum 
mechanical description, a lot of effort has been historically put, and still is, on 
the development of approximate methodologies and theories that may produce 
in a reliable but much simpler way the desired results. The goal is then to de-
velop simplifications to the exiict equations based on reasonable physical criteria. 
The development of any approximate method demands a great deepening in the 
understanding of the physical phenomena, involved in chemical reactions in our 
case, since it is the understanding of the dependence on all factors that will give 
the clues to individualize these factors and single out the role they play. 

Thus, many approximate methods for the study of reactive scattering, based 
on different levels of accuracy, can be found in the literature. Most of them 
are checked with the exchange H + H2 H^ + H reaction which, although 
being a chemically unrelevant reaction, was until recently the only reaction for 
which one had relevant exact close coupling results at hand. However, many 
other methods have been developed to study quite different reactions, i.e. non 
collinearly dominated, and therefore comparison to experimental results has to 
be carried. But in this case great care has to be taken in their interpretation, 
since discrepancies could arise as well from inaccuracies in the potential energy 
surface. 

One of the principal difficulties in solving exactly the close coupling equa-
tions is the high dimensionality of the resulting equation set. Knowing the great 
number of approximate theories that can be found in the bibliography, it is by 
no means the intention of this chapter to give a detailed description to all of 
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them. Nevertheless, we intend to give a brief description to some of them and 
describe in more detail the particular approach that has been used in our work , 
the Infinite Order Sudden (IOS) approximation. 

Actually, working under the close-coupling (CO) framework, we have already 
assumed a first approximation, since the CO expansion is not complete strictly 
speaking (as discussed in section 2.5, the states belonging to the dissociation 
continuum are excluded from the expansion) although generally acceptable when 
working below the dissociation threshold. Assuming this approximation, the 
most general one that is usually made is the so-called Centrifugal Sudden (OS) 
approximation, that supposes the collision to be dominated by the electrostatic 
potential and the molecular rotation. Essentially, this turns into assuming that 
the relative kinetic energy term is large enough so that one can consider that 
the orbital angular momentum to be constant along the collision. In this way, 
the Í operator can be substituted by a fixed value ?(l -I- 1) and the Coriolis 
coupling is diagonalized. Thus, the CS approximation still treats the rotational 
states exactly and therefore it is often called jz conserving or helicity conserving 
approximation. To see how the CC equations simplify under this approximation 
let's rewrite the BF Jacobi coordinate CC equations: 

( Ä - E) + + (6.1) 

J = 0 , l ,2 , . . . = ÍA = |nA|,|ÍÍA| + l 

Neglection of the Coriolis coupling corresponds to setting the f2-off-diagonal 
blocks to zero: 

Ä ± i = 0 (6.2) 
and in the O-diagonal term the orbital angular momentum operator is substituted 
by a fixed value. We therefore obtain a CS-CC equation set: 

iA=|nAl 

ivh6r6 

Although this approximation eliminates the coupling between different values of 
Oa, it still treats all rotational channels exactly and therefore the dimensionality 
of the equation set is still high. 

Quite evidently, to move on further from the CS approximation, one must es-
tablish approximations on the rotational motion of the target, since it is usually 



75 

the source of the largest increase in the number of states of the close-coupling ex-
pansion. We would like to distinguish in the next level of approximation between 
two different approaches, depending on how the rotational motion is treated. On 
one hand, it is argued that since rotational periods are large in comparison to 
vibrational periods, it is reasonable to use what is called a sudden rotational or 
energy sudden (ES) approximation, for which the atom-diatom orientation re-
mains fixed for the motions in both reactants and products channels. On the 
other hand, it could be argued that, since the rotational motion correlates with 
a flexion-vibration along the reaction path, this flexion motion can be treated 
adiabatically and correlate it statistically to the asymptotic rotational levels. 

The first approximation is what is called Infinite Order Sudden (IOS) approx-
imation and it has been the approach employed in some of the calculations of this 
work. Since it will be described in the following section, in particular its applica-
tion to reactive scattering, here we will just point out that the IOS approximation 
reflects, in the BF Jacobi coordinates CC equations, as a parametrization of the 
Jacobi orientation angle. Thus, the number of variables is reduced to two (Rx, rx) 
and the third becomes a parameter (6A), the equation set is then solved for each 
value of Qx, for a wide enough range of angles, to cover the whole reaction win-
dow. 

The second approximation for the treatment of rotation in the scattering event 
(once under the CS approximation) englobes a variety of methods which are called 
generally Reduced Dimensionality Exact Quantum (RDEQ) approaches. The dif-
ferent approaches differ from one another in the different degree of adiabaticity 
with which the flexion motion is considered as well as other approximations to 
the treatment of the centrifugal potentials. Full description of these methods can 
be widely found in the literature[26]. 

The real behaviour observed in most of the systems is obviously a mixture of 
both assumptions, sudden and adiabatic. The flexion dynamics for energies near 
the threshold, is in fact adiabatic but at energies well above the system clearly 
tends to a sudden behaviour. 

There exist as well other approximate methods arising from rather different 
assumptions than what we have seen up to now. One of them is based on the 
distorted wave (DW) theory, which considers the reactive event as a small per-
turbation on the non-reactive collision dynamics. This consideration is based on 
the fact that cross sections for inelastic or elastic processes are usually of some 
orders of magnitude greater than the reactive ones. Thus, the reactive scattering 
matrix can be approximated as a matrix element of a perturbative Hamiltonian 
operator, using non-reactive wavefunctions of the reactants and products states. 

Practical results using the DW theory showed that reaction is usually a per-
turbation much larger than first order, so that most of these methods were aban-
doned. However, more recently, Baer and coworkers set up a method which 
shares some characteristics with the DW approach. It is based on dividing both 
the Hamiltonian and the scattering solution in a reference problem plus a per-



76 
Chapter 6. Approximate Close-Coupling Methods 

turbative part. The reference portion is defined so as to have a simpler solution 
(elastic, average angle inelastic, complete inelastic or even average reactive col-
lisions have been taken as reference problems), while the perturbation, which is 
included completely (not through perturbative methods), considers the remaining 
interaction. Approximations are then flexibly built into the method, since it can 
be considered separately both in the reference and the perturbation parts. The 
solution to the whole problem is obtained by means of a generalized-Lagrange-
multiplier variational approach. The inclusion of absorbing potentials inside the 
method gave a major impulse to it, so that it has been widely applied for the 
approximate treatment of three-, four- and five-atom reactions[49]. 

6.1 R-IOSA 
The IOS approach, initially formulated for the inelastic case, was introduced with 
the aim of reducing the complexity that the great number of rotational states for 
each vibrational state causes. Historically, the first works on this approxima-
tion date from the middle 50s to the middle 60s[50, 51], but their formulations 
resulted rather involved and not so easy to interpret. Curtiss[52], Pack[53] and 
Secrest[54] extended the formulation and gave an almost ultimate practical form. 
This development allowed Pack to perform the first applications[55]. Since then, 
the method has been confronted with exact CC or other approximate results with 
generally satisfactory conclusions. 

The considerable good agreement found encouraged its application to reac-
tive scattering by three research groups almost simultaneously. The first arti-
cle published was a communication on the preliminary results by Bowman and 
Lee[56] for the H+H2. Then followed the theoretical works by Khare, Kouri and 
Baer[57, 58, 59] (KKB), Barg and Drolshagen[60] (BD) as well as that of Bowman 
and Lee[61] (BL). Formulations by KKB and BL and essentially identical, since 
both are based on the explicit use of the orbital angular momentum, while BD 
formulated their own approximation based on the total angular momentum. 

Major differences can be found, anyway, in how these approaches perform the 
matching process between both rearrangement channels and how do they relate 
the IOS parameters for reactants with those of products. In particular, since, 
as we will see, the IOS motion is based on a constant atom-diatom orientation 
angle along the collision, a criterion for a reactants-products orientation angle 
correspondence must be established. To do this, the approaches of BL and BD 
must introduce additional simplifications, while the KKB formulation is able to 
base the whole matching procras on a parameter B^x-

The KKB theory defines a surface to match both channels so that: 

Tv = Bv\r\ 

where the parameter allows to take into account the possible asymmetry of the 
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two channels involved in the rearrangement process. On the other hand, BL must 
introduce the approximation of centrifugal potential conservation in the reactants 
to products transition which permits to write 6y = tt - 9a- At their turn, BD 
obtain the reactive equations only for the limiting case in which the central atom 
mass can be considered as infinite. In the approach here followed we have used the 
matching parameter of KKB and we have set this parameter so that transition 
between both arrangement coordinate sets is done on the potential ridge, the 
region where the reactive transition probability is a maximum[62]. 

As usual, the first applications of the method were performed on the H+H2 
H2 + H system[62, 63, 64]. Results were compared to exact data available on the 
reaction and some of them appeared to be in rather good agreement, the cross 
section not differing in more than 25%. On the other hand, in some other rather 
sensible quantities as the differential cross section or the opacity function, greater 
discrepancies were found. 

The first application to a more asymmetrical system was done by Clary and 
Drolshagen[65] on the D + HCl DH + Cl system, in the context of the 
Light-Heavy-Light (LHL) limiting case of an infinite central mass. Results were 
in good agreement with those obtained by a less approximated technique[66], 
mostly at high energies for both global and more detailed quantities. However, no 
comparison was performed of this results with experimental or less approximated 
data for this reaction nor the Ii{D) 4- HBr H{D)Br -I- H studied later by 
Clary[67] as well. 

The IOS approach has been widely used in our research group[68] as well 
as in the work presented here. We have used both the reactive and inelastic 
applications of the IOS approximation. The first calculations were performed 
using the R-IOS code as developed by Giménez et al.[26] on the M g -I- FH 
MgF + H, with the purpose of studying the dynamics of this reaction. The 
code propagates a IOS solution of the nuclear Schrödinger equation using the R-
matrix propagation method. Other R-IOS calculations have been recently carried 
away in the group as well on the B + OH BO -(- H, in which we did some 
calculations. Next, once the R-matrix was generalized to take complex values of 
the interaction matrix into account, we were able to introduce Negative Imaginary 
Potentials in our problem and formulate the reactive problem as a pseudo-inelastic 
one (see 2.7); the R-IOS was modified to a NIP-IOS code which resulted of the 
same accuracy of the previous code and generally of better efficiency. The new 
implementation was tested on a wide range of systems showing a rich variety 
of scattering dynamics, since they were characterized by heavy masses, varied 
ergicities, involved PESs, . . . 

6.1.1 R-IOS Approximation equations. 
As we have already said, the IOS approximation assumes that a possible form 
of simplifying the rotational motion arises from the consideration that rotational 
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periods are usually considerably large when compared to vibrational periods. It 
is then reasonable to think that, as a limiting case, the orientation between the 
atom and the diatomic molecule remains fixed in both rearrangement channels. 
However, we must point out that, technically, this is not an assumption but rather 
a consequence of how the approximation is constructed. 

The IOS approximation is obtained by imposing simultaneously the centrifu-
gal sudden (OS) and energy sudden (ES) restrictions, which in practical terms 
can be written as: 

? - 4 l ( i + l ) ( 6 . 5 ) 

? J(J + 1) (6.6) 

i.e., both angular momentum operators are substituted by fixed constant values. 
In the expression we have derived for the Jacobi coordinates in the BF frame, 

the rotational angular momentum j is found explicitly, but not the orbital angular 
momentum I . This leaves two possibilities: a) to find the condition equivalent 
to 6.6 in the BF formulation or, b) change the representation frame so that the 
centrifugal frame appears explicitly. We will refer to the first case as the J-labeled 
IOS formulation and in the second to the ¿-labeled IOS. 

The J-labeled formulation was developed by Barg and Drolshagen [60] and 
translates the 6.6 condition into the following approximations in the equation set 
6.1: 

n'A ÛA (6.7) 

(6.8) 

However, this J-labeled formulation has proven to undergo some difficulties in 
inelastic scattering[57]. In particular, when the potential is spherically symmet-
rical, physically senseless transitions are found between different levels rrij. On 
the other hand, the ¿-labeled formulation is exact at this limit. 

It is therefore convenient to derive the R-IOS equations in their ¿-labeled 
formulation. A direct way of doing this would be to employ the Jacobi SF close 
coupling equations. However, transformation between different rearrangement 
channels would still be much clearer under a BF frame, for which the procedure 
followed[26] could be to integrate the SF equations in each channels and transform 
them to the BF frame once it gets to matching both arrangements. 

Both representations are related by the following unitary transformation: 

Í1P' 

F ^ r . f S r M = E ( s j i r j (6.9) 

and the inverse transformation will be given by: 

/of 4- 1 \ 

= E ( S T T T ) (rA,ÄA) (6.10) 
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If one substitutes 6.10 into the Schrödinger equation 6.1, one obtains after 
some manipulations and neglecting the Coriolis couplings: 

+ M _ + l _ fxifx + 1 
[dRl^drlj-^ h' Rl F j \ A r x , R x ) = (6.11) 

where now the kinetic energy term is diagonal and does not depend on J. On 
the other hand the potential energy term contains much more coupling than in 
the BF case: 

{e'xfxW^inJ^) = E " ^ ^ ' ^ t j f i T ' ^ m ' x W n ' x ) (6.12) 

inOJx^xlJ^'x) 27r £ l^în^ (6^,0)V{n, Rx, ex)Yj.n',{Ox, 0) sin BxdQ, 

Note that this term depends explicitly on J. This equation can be simplified if 
one introduces the following transformation: 

= E (6.13) 

this allows us as well to define the function F^(jQ^{rx,Rx,Qx) parametrically 
depending on the angle ©a- Substituting 6.13 into 6.11, one obtains: 

92 1(1 + 1 J ( J + l 

This equation is known as the IOS Schrödinger equation since it gives the radial 
solution for each value of the atom - diatom orientation angle. Note that the 
terms in 6.14 still contain the A superindex labeling the arrangement. This is to 
remind that, for rearrangement processes, we will have an equation as 6.14 for 
each possible arrangement channel (A = a, ß, 7). The solution of these equations 
can be performed in many ways, but at a certain moment a matching proce-
dure must be carried away between the solutions from the different regions of the 
configuration space. This matching procedure, as well as the asymptotic bound-
ary conditions, characterize the reactive process with respect to that elastic or 
inelastic. 

In this work, 
as well as in other works published by our research group, the 

integration of the IOS coupled equations at each value of the orientation angle 
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will be carried away employing natural circular coordinates and the iî-matrix 
propagation method. For the derivation of the IOS coupled equations using 
these coordinates, see [26]. 
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In this chapter we will englobe the works we have done employing the R-IOS 
approximate methodology. Our research group has worked for a long time using 
this approach and we believe we have earned relative experience on it. As in 
all approximate methods the clue to their adequacy is the knowledge in depth 
of their restrictions. R-IOS has shown up to be a relatively reliable method for 
mœt of the systems studied in our group[68], specially when the orientational 
eflFect of the surface was small or when high collision energies were considered. 

So, in this context we present the articles we have published concerning our 
work on two reactive systems, namely M g + FH MgF + H and B + OH 
BO -f H, employing the R-IOS code we had at hand as developed by ref.[26]. As 
it will be seen, the study on the first system was carried away rather thoroughly 
on many aspects and led to the publication of two articles, each of them focusing 
on a different aspect we found interesting. Concerning the second system, we 
found it worth studying the rather involved resonance pattern presented by the 
system even at the three-dimensional level (cross section) employing a reduced 
dimensionality model. 
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7.1 The Mg + FH ^ MgF + H system. 
The system presents many interesting characteristics that motivated its study. 
Any system composed by relatively high masses constitutes a challenge for a 
quantum mechanical study due to the increase in the number of states that have 
to be considered. Moreover, the present system evolves through a non collinear 
transition state and this is not the usual case in the reactions commonly studied. 
Besides, the system showed to be properly suited for a IOS study since simple 
studies on the potential energy surface used proved that the transition state 
region was rather isotropic as a function of the orientation angle. This fact 
clearly enfavours a simpler IOS study where its fixed orientation restriction will 
loose relevance. An extensive R-IOS calculation was thus carried away on the 
title reaction calculating a total of 50 energy points, specially focusing on the 
threshold region using an energy grid of up to 0.01 eV. 

Two rather differenced studies were carried from these results, in one of them 
we focused mainly on the energy threshold to reactivity and the curious char-
acteristics showed by the fixed angle reactivity. In the second a wider study 
was performed concerning the product vibrational distribution (PVD) and the 
isotopic mass effect. For this second study, extensive quasiclassical trajectories 
calculation were run as well as additional R-IOS calculations for the title reaction 
and their isotopic variations. 

The potential energy surface employed for the calculations was fitted to ab 
initio points using a RBO functional form. The reaction presents a 1.33 eV 
endoergicity and a late barrier of 1.83 eV whose transition state geometry is 
clearly bent with a MgF H angle of 72°. Besides these characteristics, two wells 
characterize the surface, a collinear well 0.34 eV below reactants' asymptote 
corresponding to the MgF H complex and a second well 1.30 eV below reactants' 
asymptote corresponding to a highly bent geometry (around 6 = 35°) which we 
shall call insertion complex. This second well, although deep, can only be reached 
through reorientation since the barrier for the fixed geometry is to high and will 
therefore be unrelevant for the IOS reactivity while it will play a qualitatively 
significant role in quasiclassical trajectories reactivity. Relevance of the works 
presented relies, mainly, in our opinion, on the fact of having found noticeable 
quantum effects in a system where a heavy atom is transferred. General features 
of the PES here described can be observed in the contour plots of figure 7.1. 

7.1.1 Energy mode effectiveness and tunneling in triatomic 
reactions: the energy threshold for the M g + FH 
MgF + H reaction. 

Chemical Physics Letters 282 (1998) 91-99. 
In this paper, a three-dimensional approximate quantum mechanical calcular 
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dMg-F / dMg-F / 

dMg-F / dMg-P / 

Figure 7.1: PES contour levels at four different relevant atom - diatom orientation angles. 
Upper-left panel corresponds to 0 = 45° and shows the insertion well, upper-right panel to 
e = 72°, which is the transition state geometry, lower-left to 6 = 105°, which is an intermediate 
angle and lower-right to collinearity showing the collinear well. 
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tion on the M g + FH system was presented in order to get some insights on the 
effects on the reactivity threshold and how it was affected mainly by the reactants 
initial vibrational energy. The global three-dimensional cross section presented a 
marked selectivity towards the vibrational energy mode, in agreement with the 
Polanyi rules. So, accordingly to what these rules state for a late barrier, reacti-
vity was drastically enhanced by an increasing in the initial vibrational energy of 
reactants. However, rather than the tridimensional magnitudes, the fixed angle 
cross sections were explored in order to get some indications on the reaction mech-
anism which showed up to be more complex than it appeared from the 3D curves. 
From this fixed angle study two well differentiated behaviours were stated. On 
one hand, for low initial vibrational levels significant reactivity was found only for 
angles close to that of the transition state geometry. On the other hand, higher 
vibrational levels tended quite unexpectedly to collinear reactivity. Moreover, 
studying the reactivity threshold we found that the lowest energy threshold to 
reactivity was given by the i; = 3 reactants initial vibrational level at a fixed 
angle of 6 = 180°, far from the TS geometry. This was achieved by the system 
through a significant tunneling contribution. These were two rather surprising 
facts since the lowrat point of the reaction barrier was located at a bent angle, 
far from collinearity. 

The key to the explanation of this rather unusual behavior was given by 
the plots of the fixed angle Minimum Energy Paths (MEPs) where it could be 
seen how, even if the barrier increased when moving towards open angles, its 
width decreased even more significantly allowing then for a greater tunneling 
probability. The analytic formula for permeability of a simple square barrier 
model justified the higher tunneling effect for the v = 3 vibrational level, at the 
same total energy. 
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Abstract 

An approximate three-dimensional quantum approach has been adopted to investigate threshold effects for the 
Mg + FH -» MgF + H reaction and their dependence upon leactants' vibrational energy. The main results are: (a) vibrational 
energy is the most effective mode (however, this switches from vibration at open angles to translation at bent angles); (b) 
although a fairly heavy atom is transferred, the threshold is determined by the mnneling region, being dominant orientation 
angles significantly differing from that of the saddle; (c) the threshold moves to lower energy values as the reactant 
vibrational level increases. A rationale is given in terms of fixed oriemation-angie minimum potential-energy profiles. 
C1998 Elsevier Science B.V. 

1. Introduction 

The accurate detennination of reactive thresholds 
is of key importance in studies of reaction dynamics 
and chemical kinetics [1-3]. As an example, the 
value of the rate constant of gas-phase elementaiy 
reactions with a positive activation energy are, in the 
usual temperature ranges, mainly controlled by the 
amount of reactivity around the threshold. The value 
of the threshold temperature is usually linked to the 
value of some key structural parameters (like the 
height of the hairier to reaction of the potential 
energy surface (PES)) via the calculation of the cross 
section (cr) from which rate constants can be evalu-

Pmiummt sddre&s : DqMUtameiito de (}uíiiiici Física, Univer-
sidad de Salamanca, Salamanca. Spain. 

ated by integrating over energy. Most often, the 
calculation of the rate constant is performed using a 
simple classical transition state treatment (TST) [1,4], 
which assumes reactions occur only at energies higher 
than the saddle. Tunneling corrections, if any, are in 
genera] introduced in a one-dimensional fashion 
along the minimum eneigy path (MEP) of the PES 
[1]. Only rarely, comer-cutting coirections are intro-
duced [5]. To include the depradence of reactivity on 
the collision angle (-y), one can make use of a fixed 
y TST treatment. As a result, one obtains a fixed y 
contribution triy) to the cross section and a fixed y 
threshold energy (.E^), whose dependence on the 
collision angle has the same shape as the window to 
reaction of the PES. This is in general also found 
when performing a reactive infinite-order sudden 
(RIOS) [6-8] calculation. Such a finding implies that 

0009-2614/98/$I9.00 © 1998 Hsevier Science B.V. All rights reserved. 
Pll 30009-2614(97)01151-2 



86 
Chapter 7. R-IOS studies. 

98 F. Huaru-Lammaga et al. / Chemical Physics Letters 282 (1998) 91-99 

tunneling effects do not change significantly with the 
collision angle, as has been found previously in 
calculations on a wide variety of atom-diatom sys-
tems [9-14]. However, this is not the case for the 
Mg + FH reaction; for this reaction, the peculiar 
features characterizing the PES of the system make 
the value of y at which threshold energy is lowest 
differ significantly from the one at which the poten-
tial eneigy bairier is minimal. 

The well known Polanyi rules [2] state that the 
reactivity of endothermic processes which have a 
late barrier (i.e. a barrier displaced into the exit 
valley) is more efficiently enhanced by vibrational 
energy than by translational energy. This is also 
found for the title reaction. However, factors similar 
to those which lead to the different contribution of 
tunneling to reactivity, as the collision angle varies, 
also alter the relative importance of the various 
energetic nuxles, resulting in a much more complex 
picture of the reaction outcome as a function of the 
collision angle. 

The Mg + FH reaction has already been investi-
gated dieoretically. A relive PES was developed 
and three-dimensional (3D) quasiclassical trajectory 
(QCT) calculations were perfwmed on it 115-18]. 
Hie present quantum study focuses on some features 
of tiM corresponding quantum results. 

The Letter is organised as follows: in Section 2 
the potential energy surface is briefly illustrated by 
pointing out the features of the PES useful for 
understanding tunneling effects. Section 3 describes 
the main results obtained. In Section 4 the factors 
determining both the enhancement of reactivity with 
vibration and the amount of tunneling for the differ-
ent initial conditions are analyzed. Hnally, in Section 
5, the main conclusions are presented. 

Z Potential energy surface and calculation method 

As menticmed above, we used the Mg + FH-* 
MgF + H res of Ref. [15], fitted to ab initio poten-
tial energy values using an RBO functional. The PES 
is 1.33 eV endoeijic and has a late barrier located 
well inside the product channel, which is 1.826 eV 
higto' than the reactants' asymptote for die bent 
(y—ll") transition state geometiy. In the strong 
interaction region the MEP shows two minima: one. 

collinear ( y = 180°), 0.34 eV deeper than the reac-
tants' asymptote, is located just before the reaction 
bairier and the other, 1.30 eV deeper than the reac-
tants' asymptote, is located late in the products 
channel. The second minimum corresponds to a 
highly bent configuration (y= 35°) that can only be 
reached through reorientation, since at y = 35° the 
barrier interposed between the reactant asymptote 
and the well is high. The two minima are separated 
by a large barrier. Another important feature of this 
PES (see solid line of Fig. 1) is that the fixed angle 
barrier to reaction (that, as ah«ady nmed, has a 
minimum at y 12°) rises sharply on moving to 
smaller values of y (more bent geometries) while it 
rises slightly (about 0.2 eV in the range 74° s r S 
115° and about zero fix>m y = 115° to y - 180°) 
moving to larger values of the collision angle. As a 
support to a TST rationalization of the angular de-
pendence of E^, we also plot in the same figure 
(dotted line) the fixed y zero-point energy at the 

Fig. 1. Value of die fixed y banien to leactioo plaited as a 
function of the collision angle y. Continuous line: potential eneigy 
values. Dotted line: potoKial eaeigy plus zero^toim energy (effec-
tive iuiiier). 
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barrier (effective barrier) obtained from a RIOS 
treatment. 

As already mentioned, a program based on the 
RIOS approximation was used for the calculations of 
3D quantum reaction probabilities. For a detailed 
description of the methodology, see [6-14], A total 
of 50 energy points were considered by paying par-
ticular attention to the threshold region, for which a 
grid spacing of 0.01 eV was adopted. The computa-
tional parameters [9-14] leading to optimum conver-
gence are the following: 35 vibrational basis func-
tions, 390 sectors (240 for the reactants channel and 
150 for the products channel), 16 values of the 

orientation angle y (ranging from 45° to 180°) and 
up to 200 angular momentum partial waves. The 
calculation of the energy-independent part (potential 
profiles, vibrational eigenvalues and eigenfunctions 
and potential matrix elements for each sector and 
overiaps between sectors) took approximately 25 s, 
while propagation along the translational sectors, by 
means of a standard invariant embedding R-matrix 
method [19,20], for all relevam partial waves and all 
orientation angles necessary to get converged 3D 
cross sections, took an average of 15000 s, per 
energy, on a single processor (R8000) Silicon Graph-
ics Power Challenge L Workstation. 

D 

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 

Total Energy /eV 

Fig. 2. Vibralional sute specific cross sections ploded as a function of total energy for the first six leactant vibrational levels. 
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3. Main features of the results 

Vibrational state-specific cross sections (the rota-
tional state is always set equal to zero, in our study, 
taking advantage of the fact that rotations are decou-
pled in the RIOS treatment) are plotted in Fig. 2, as a 
function of total energy, for the first six reactant 
vibrational levels. A first indication given by the 
plots shown in the figure is that vibrational energy is 
effective in promoting reaction, as expected ftom the 
late location of the icacti<m bairier on the fixed y 
MEPs. The reactive cross section becomes, in fact, 
larger when v, the reactant quantum vibrational num-
ber, increases (saturation is observed only at much 

higher energies). The effectiveness of vibrational 
energy in promoting reaction is confirmed also by 
the dependence of the £„, values on v, as shown by 
the different curves plotted in Fig. 2: for reactant 
vibrational levels asymptotically lying below the re-
action barrier (f = 0, 1, 2 and 3), the threshold is 
located basically at the same energy value (1.89 eV). 
This means diat for v = 0, 1,2 and 3 the coupling of 
different degrees of freedom is adequate (although in 
a different way) to allow reaction. Therefore, any 
energy increase (either in translation or in internal 
degrees of fieedom) actively contributes to tiie over-
taking of the barrier, though with different effective-
ness. In otiier words, motions along all degrees of 

2.0 2.2 2.4 2.6 2.82.0 2.2 2.4 2.6 2.8 

Total Energy/eV 
Fig. 3. Fixed-7 vibntional «aie specific conlribulians to the cioss lectioiis plotted as a function of total enetgy for r - (continuous line 
and open ciicles), r - 10S° (daaed line and open squaies), y- 180° (daihed line and full circles). 
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freedom are open to reaction. For i; = 4 or larger, 
the threshold energy coincides with the reactant vi-
brational energy (2.09 eV at v = 4, 2.50 eV at d = 5, 
. . . ) since die energy at which the channel opens is 
higher dian the reaction barrier. In addition, no effec-
tive barriers due, for instance, to vibrational adia-
baticity, come into play. 

Although these results seem to indicate that the 
reactivity determining feature of the PES is the 
height of the effective barrier, that at = 72° amounts 
to 1.866 eV (see Fig. 1). fixed angle RIOS calcula-
tions provide a more complex pichire of the reaction 

mechanism. A decisive argument is offered by the 
value of fixed-angle cross sections, plotted in Figs. 3 
and 4 as a function of total energy, at initial vibra-
tional states ranging from u = 0 to u = 5 and y = 75, 
105, and 180°. In Fig. 3, the curves are given for an 
interval of total energy going from 1.8 to 2.8 eV at 
three values of y relevant to reaction. In Fig. 4, an 
enlargement of these curves over the threshold re-
gion is given by including also the cases of -y = 72° 
and y = 95°. Plots of the two figures related to v = 0 
and 1 clearly show that, at low vibrational energy, 
the most important contribution to the reactive cross 

1 r 
Ev=o=1.9164eV 

ot^l.8766eV 

0.6 

0.4 

0.2 

0.0 

_L 

7=72" 

J-

E^=1.9311eV 

Eb=1.8905eV Y=75° 

i-M f -
E^=2.0148 eV 

Eb=1.978eV 

E^=1.9975eV 

Efc= 1.9674 eV r=I80°. 

1.85 1.90 •foá Energy^/^ 2.05 2.10 

Pig. 4. Foed-angle contributions to the cnss section plotted «s a function of total eoergy, in the thieshold energy region, at several reactant 
vibrational levels and y values. »x' ^b indicate the vibtatioaally adiabatic n - 0 and barrier height energy, respectively (see also Fig. 
1). 
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section (top row of Fig. 3) comes from the y value 
of the transition-state; it also determines the energy 
value of the threshold is 1.900 eV for u = 0 and 
£y, = 1.896 eV for i; = 1). This is not clearly so at 
i; = 2, while it definitely does not apply to y •= 3. In 
fact, at although the largest contribution to the 
cross section (central Ihs panel of Fig. 3) comes from 
y = 75°, the threshold energy is now determined by 
the -y- 180° contribution (as shown in Fig. 4, " 
1.880 eV for 7 = 180°, E^ = 1.950 eV for y = 105° 
and 1.950 eV for y =15°). Hie central rhs 
panel of Fig. 3 also shows that at u - 3, the orienta-
tional angle contributing most to the overall reactiv-
ity is r = 180°, (<t(180°)> o-(105°)> o-(75°)). Re-
lated calculated energy thresholds are: £0,(18O°)=> 
1.922 < £^,(105°) - 2.000 < £^,(75°) - 2.10 eV. Re-
sults at higher v values are similar to those at i; 3. 
However, the threshold energies are in this case 
higher since they are detennined by the opening of 
the asymptotic energy levels. 

In summary, the above data indicate that: 
(1) the effectiveness of the reactants' energy in 

promoting product formation decreases when mov-
ing from open to bent collision angles. In relative 
terms, translation is more effective at bent angles 
while vibration is more effective at open angles. 

(2) threshold energy decreases as both 7 and f 
increase thanks also to non-classical (tunneling) con-
tributions. 

4. Discussion 

The first comment will be addressed to the effect 
of varying the allocation of energy into the different 
molecular modes of the reactants. It is, in fact, 
generally true that for this reaction vibration en-
hances reactivity, as usual for processes having a late 
barrier (MEPs of Fig. 5 evidence a late position of 
the barrier at all values of the collision angle). At the 
same time it is also true that, for bent orientation 
angles (e.g. 7 -75°) , reaction is cleariy favoured by 
high translational eneigy, with initial vibrational en-
ergy being less effective than for open angle colli-
sions (although, absolutely speaking, vibration is 
more effective than translatif at all values of the 
orientation angle). In contrast, at open orientation 
angles reactivity is increasingly enhanced as vibra-
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Fig. S. Potential energy minimum energy padi. as a function of the 
(tnuisluional) circular collision coordinate of Ref. [10], at differ-
ent values of y (top panel y - 75°. central panel y - IDS', bottom 
panel y - l S f f ) . 

tional energy increases. The above features indicate 
that, in relative terms, insertion-like collisions (small 
y values) are favoured by translational energy, while 
abstraction-like collisions (large y values) are 
favoured by vibrational energy. 

This can be rationalized as follows: in insertion-
like collisions, translational energy produces both the 
effect of displacing H and bringing Mg closer to F. 
Besides that, insertions are made more difficult by 
high Vibration since, in this case, the incoming atom 
meets, on average, a lai;ge number of repulsive di-
atomic configurations as a resuh of the higher fre-
quency of the H-atom motion and of the strong 
endothermicity of the MgH channel (4.692 eV). In 
contrast, in collinear-like collisions the H-atom mo-
tion is less disturbing, for geometrical reasons and, 
since the collision is gradually oriented towards the 
F-atom end, it becomes benefited from the larger 
F-atom kinetic energy as vibration is increased. 

As a result, the overall reactive behaviour is 
detennined by the relative importance of the two 
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mechanisms as the orientational angle is varied, in 
agreement to what was found in previous studies of 
triatomic reactions with a bent transition state and 
following complex dynamics [9-14,21]. It is impor-
tant to emphasize here that the overall behaviour of 
the Mg + FH reaction is more characterized by open 
angle configurations than closed ones, contrary to 
what one usually expects (i.e. that reactive collisions 
are strongly characterized by the nature of the saddle 
configuration). This is due to the "anomalous" fea-
ture of the saddle point of this system that allows 
less reactive flux than the higher barriers of more 
open configurations do. 

A second reactive feature analyzed here is the 
threshold location on the energy scale. Since thresh-
olds are in general associated with tunneling region 
effects, otie might found their analysis on one dimen-
sional (fixed y MEP) transition state models and 
rationalize the observed behaviour in terms of tun-
neling through the barrier of the fixed y MEP. 
However, as it has been commented before, such an 
analysis would lead to the wrong conclusion that the 
lowest fixed angle threshold is associated with the y 
value of the transition state. This is not the case for 
the Mg -I- FH reaction, since the main contributors to 
the energy threshold (Fig. 4) are y values much 
larger than that of the saddle point. Such a shortcom-
ing of the one dimensional tunneling model could be 
eliminated by introducing a higher dimensionality 
tunneling treatment. It is well-known, however, that 
higher dimensionality tunneling models are rather 
involved and difficult to implement [3,4]. For this 
reason we choose here an approximate two-dimen-
sional analysis that includes the contribution of the 
degree of freedom orthogonal to the reaction coordi-
nate (adiabat) in an step-wise fashion. To illustrate 
the approach we first show in Fig. 5 the lowest 
adiabat of the Mg -I- FH reaction as a function of the 
(translational) circular collision coordinate [19,20] at 
three values of the angle y. The plots evidence 
shows two important features: (a) in agreement with 
data shown in Fig. 1, the adiabatic barrier height 
varies little with the orientation angle; (b) the barrier 
width narrows as the orientation angle becomes 
larger. This implies that tunneling may become larger 
as collisions tend to collinearity. The model adopted 
allows us to work out a more quantitative estimate of 
the tunneling contribution. By fitting a rectangular 

Table 1 
C¡.( Eh bairier permeabilities for the square-potential problem (see 
text for derinition) given as a function of the total energy E and 
the initial vibrational level i , at total energies conesponding to the 
direshold regions. The square potential feanires have been fitted 
so as to match as closely as possible the potential energy profiles 
conesponding to y = 72° = I.Í766 eV and A« = 1.2 
bohr) and r = 180° ( £ , „ ^ , - 1.9674 eV and A b - 0 . 7 bohr), 
shown in columns (a) and (b), respectively 

(a ) r = 72° (b)y- . 180° 

r - 0 D - 0 f = 3 

1.86 0.19 0.39 0.34 0.51 
1.90 0.24 0.47 0.37 0.56 
1.94 0.28 0.55 0.40 0.61 

barrier to each adiabat, a simple analytic expression 
can be given for the barrier permeability G,(£) [3]: 

+ ( ÍB, + ¿c, A«)] " ', 
where Au is the barrier width and it^,., k^,. and Jtc, 
are the wavevectors associated with the entrance 
(before the square barrier), intermediate (over the 
barrier) 

and exit section (after the barrier), respec-
tively, of the reaction profile. Results for several 
threshold energies and vibrational levels are given in 
Table 1. Values reported in the table give a quantita-
tive grounding to the qualitative considerations pre-
viously described. In addition, using the same model 
it is possible to illustrate why E^ shifts to lower 
positions as the initial vibrational number v in-
creases from 0 to 3. In fact, since when varying the 
kinetic energy (comparisons are made at constant 
total energy), the permeability is approximately pro-
portional to ¿c/^A. is the wavevector associ-
ated to the asymptote past the collisicm (in our case, 
the products region) and ¿^i <he wavevector associ-
ated with the reactants region [3]), diminishes as 
V is increased, so that tunneling will be larger at 
lai^er initial vibrational energy, as observed in our 
calculations. 

S. Conclusions 

In this work, a RIOS study of the Mg-fFH 
MgF H reaction has been carried out, as a function 
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of initial translation and vilnational energy. Particu-
lar attention has been paid to the threshold region 
reactivity. The main conclusions are: 

(a) The overall effectiveness of vibrational energy 
in promoting reaction is consistent with the late 
location of the reaction barrier, namely that vibration 
is more effective than translation for enhancing the 
reactivity of this type of reaction. It was found, 
however, that this global effect results from two 
different contributions to reactivity when the differ-
ent fixed-angle results are analyzed. Thus, on one 
hand, for bent orientation angles, the reaction is 
clearly favoured by high translational eneigy while 
an increase of the initial vibrational eneigy is less 
effective. On the other hand, the reactivity for open 
orientation angles is enhanced by vibraticmal eneigy 
while an increase of initial translational energy is 
less effective. Such a behaviour has been put down 
to the different effectiveness of translation and vibra-
tion in inseition and collinear like mechanisms. 

(b) The threshold eneigy location was found to be 
mainly due to tunneling. It was also found that the 
threshold energy for fixed y contributions to the 
cross section moves to lower values as y increases, 
in spite of the fact that the transition state is bent 
(small y). This behaviour was rationalized in terms 
of fixed angle adiabatic curves. It was found that the 
lowering of the threshold as y increases is caused by 
a gradual decrease of the width of the effective 
potential baiiier, which ultimately leads to an in-
crease of tunneling reactivity. 

(c) It was also found that the threshold shifts to 
lower positions as the initial v increases finm 0 to 3. 
This effect can be understood in terms of analytical 
permeabilities calculated for a model banrier. In this 
case, the initial banslational eneiigy is inversely pto-
portional to the permeability, giving rise to an in-
crease of tunneling as vibrational energy is increased 
(since, at the same total eneigy, translation corre-
spondingly decreases). 

Hie importance of these findings lies in die fact 
that the Mg-t-FH reaction implies a heavy atom 
transfer, for which quantum effects are usually be-
lieved to be negligible [22]. To evaluate these effects 
we have used the tq^ximate QM RIOS method. 
This has the obvious disadvantage of ignoring the 
bending degree of fieedom in computing the tunnel-
ing reactivi^, which would lead to important dis-

agreements if comparisons were made with experi-
mental or more accurate results. In this work, how-
ever, we have been mainly interested in comparing 
tunneling reactivities at different orienution angles, 
showing diat, with particular PES topographies, re-
sults can substantially differ from those correspond-
ing to TST concepts. This comparison between dif-
ferent orientation angles has been made on an equal 
theoretical footing, so as to ensure that the calculated 
effects are due to special features the interaction 
potential, the main conclusion of the present work. 
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7.1.2 The influence of initial energy on product vibra-
tional distributions and isotopic mass eflFects in en-
doergic reactions: the M g + FH case. 

Physical Chemistry Chemical Physics, 1999, 1, 1133-1139. 
In this second work, we concentrated our effort on a rather thorough study 

of the Products Vibrational Distribution and an extensive comparison of the R-
lOS results for the reactive cross section with those obtained by quasiclassical 
trajectories performed by ourselves as well. For this work, besides the results we 
already had, additional calculations were run on their D, T isotopical variations 
as well as their corresponding QCTs in order to have a reliable benchmark. 

Concerning the PVDs, although they are in general agreement with Polanyi's 
rules, the distributions show qualitatively different behaviours depending not only 
on the collision energy but also on the initial vibrational level. This is a field 
which we found worth exploring since it could give some interesting conclusions 
regarding the state-specificity of reactions. So, at low collision energies, PVD for 
initial vibrational levels below t; = 4 are statistical while PVD corrraponding to 
that level is rather adiabatic. When moving towards higher collision energies, the 
PVD broaden as expected but those corresponding to u < 3 tend to shift towards 
greater values of the final vibrational level {v') while that for w = 4 proceeds 
inversely, shifting towards lower products vibrational levels. This we have tried 
to justify in the article through the role played by the different values of the 
angular momentum by plotting the opacity functions. 

Besides, isotopic mass variations on the light atom were performed {H, D, T) 
in order to get better knowledge of the reaction mechanism. Accordingly to the 
reaction's selectivity towards the vibrational energy mode, the cross section for 
a given energy, at a given initial vibrational level, decreased as the light atom 
mass was increased. In order to have a practical benchmark to test the reliability 
of our results, QCT calculations were run on the title system and its isotopic 
variations. Agreement between the two methodologies was generally good and 
was attributed to a low influence of relatively both quantum and orientational 
effects. 
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The influence of initial energy on product vibrational distributions and 
isotopic mass effects in endoergic reactions: the Mg + FH case 
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Extended Quasiclassical Trajectory and quantum Reactive-Infinite Order Sudden calculations were performed 
on a previously developed potential energy surface to investigate the dynamics of the endoergic (1.33 eV) 
Mg + FH MgF + H reaction. The study focused on both the product vibrational distributions and the 
spectator-atom isotopic mass effect. In particular, their dependence upon varying, over a wide range, both 
translational and vibrational energy of reactants was investigated in detail. It was found that an increase of the 
translational energy shifts the maximum of the product vibrational distribution to a higher product vibrational 
sute (lO when the reactant vibrational state (c) is low. However, the maximum of the product vibrational 
distribution is shifted to lower v' values when » is high. At the same time, it was found that the vibrational 
energy has less influence on the shape of the product distributions than does the translational energy, except 
when several (four in our case) vibrational quanta are added. In this case, a product vibrational distribution 
having a vibrational adiabatic-like shape was obtained. At high translational and vibrational energy, collisions 
were found to be direct enough to allow for the kinematic heavy heavy-light constrictions to largely determine 
the product vibrational distribution, as confirmed by the analysis of quantum state-to-state opacity functions. 
Isotopically substituted reactions showed a generally good agreement between quasiclassical and quantum 
results for all initial d values. Despite that, an unexpected shift of quasiclassical reactive thresholds towards 
higher translational energies was found for the D and T isotopic variants at low vibrational energies. A 
rationale for these and other dynamical effects is discussed. 

1 Introduction 
The basic mechanisms that lead to molecular energy 
transfer have been the subject of extended studies during the 
last few decades, with most of the work being focused on 
inelastic collisions.' However, energy transfer is also inti-
mately connected to reactive processes. It is only because of 
the additional difficulties that arise when dealing with reactive 
processes that a systematic study has not yet been performed, 
especially for those processes for which the energy flow 
directly involves reactive modes. In spite of that, the key role 
played by reactive processes in tran^erring energy has been 
widely recognized, for instance, by the fluid dynamics and the 
plasma physics communities, who have shown that a proper 
inclusion of the reactive processes into the modelling greatly 
enhances the accuracy of theoretical predictions.' 

A great deal of theoretical work has already been performed 
to understand the way energy is allocated into product modes, 
for a large number of elementary reactions, when reactants are 
in low vibrational states. Conversely, relatively little is known 
on the effect on product energy distributions of increasing 
either the vibrational excitation of the reactant molecule or 
the translational energy of the system. Some of the available 
results'"' indicate that product distributions may be drasti-
cally altered if initial conditions involve moderatdy or highly 
excited vibrational states and/or large translational energies. 
For these reasons, more work aimed at rationalizing these 
effects is needed, especially if the passive control of chemical 
processes, as it is currently termed, is to be reached.' 

On the experimental side. Berg and Sloan' have measured 
the product vibrational distribution (PVD) for exoergic reac-
tions and its evolution with translational energy. An inter-
esting observation made in their paper was that PVDs 
measured for reactants in the ground vibrational state (t> = 0) 
differ from those predicted for exoergic reactions by coUinear 
calculations,' even when the minimum energy path of the 
related potential energy surface (PES) is coUinear. In particu-
lar, it was foimd that there is not the expected shift in the 
PVD (c 0) maximum to higher & values when the collision 
energy increases. On the contrary, a shift to lower v' values 
was found. A reactive-infinite order sudden (R-IOS) study was 
also performed.'" It showed that the discrepancy between col-
linear and experimental findings may be rationalized, for the 
above mentioned exoergic reactions, in terms of the different 
range of angular momentum values that contribute to the 
reaction at different product ti' values, rather than in terms of 
a weakening of the coUinear nature of the reactive event. 
More recently, Kalogerakis and Zare* performed a aossed-
beam study of the strongly heavy heavy-light (HHL) 
Ba -)- HI -» Bal -t- H reaction at several translational energies. 
The product energy distribution showed a remarkable coUi-
sion energy dependence. For instance, the PVD at S kcal 
m o P ' is bell-shaped and peaks at v' = 12, while at higher 
energies a second maximum located at »' •= 0 shows up. The 
mechanisms controUing the observed behaviour were found to 
be related to the angular momentum centrifugal barrier at low 
energy and to energy conservation at high energy. Related 

Phys. Chem. Chem. P/iys, 1999,1,1133-1139 1133 
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arguments will be used here to rationalize some of the results 
obtained for the title reaction. 

Our investigation was motivated by the wish to know more 
about the PVDs of endoergic reactions and about their 
change in shape when initial conditions vary over a wide 
range of values. The investigation focused on the 
Mg + FH MgF + H reaction, since this process is strongly 
endoergic, has a dear HHL nature and allows an extended 
study of both selectivity and specificity of vibrational energy, 
thanks to the small vibrational spacing in the product 
arrangement and the existence of a reaction barrier (1.826 eV 
from the reactants side) in the PES. Owing to the fact that the 
key issue of the paper is the investigation of the relationships 
linldng the vibrational modes and the reactive behaviour of 
the system, the calculations were carried out using the 
quantum time-independent R-IOS technique. The approach 
provides, in fact, the whole fixed energy vibrational state-to-
state 5-matrix by averaging over rotations.""" 

Using the same technique, the isotopic sutstitution of the 
spectator H-atom was also investigated. The interest in this is 
based on the fact that, in addition to allowing an evaluation of 
the kinetic isotope effect, the mass change allows also an addi-
tional comparison of the role played by vibrational energy. 
Therefore, results from isotopic variants will be used as a com-
plement to those obtained by varying c. Furthermore, the iso-
topic variation of the constant of inertia of the reactant 
diatom also allows a qualitative evaluation of the importance 
of reorientation in determining reactivity. This means that 
results obtained for the isotopic substitutes will be used not 
only to gain a better knowledge of the reaction mechanism 
but also to gather indications about the validity of the fixed 
angle assumption of the R-IOS calculations. 

Other theoretical investi^tions of the Mg + FH reaction 
have been carried out in the past A reliable P E S " based on a 
bond order (BO) functional was developed. QCT and, more 
recently, some quantum R-IOS calculations""^" were per-
formed on that PES to investigate the reactive properties of 
this system. Particular attention was paid to the rational-
ization of energy mode effectiveness and tunneling properties. 
It was found that the energy mode more suited to enhance 
reactivity switches from vibration (at open atom-diatom 
orientation angles) to translation (at bent angles) and that the 
threshold reactivity is largely determined by the tunneling at 
angles different from that of the saddle geometry, in ^ i te of 
the bet that a birly heavy atom is transferred during the 
process. 

This paper is organized as follows: the PES used and the 
methodology adopted are briefly described in Section 2. 
Results are presented in Section 3 and their main features are 
discussed in Section 4. Conclusions are given in Section S. 

2 PotMtia] energy surface and computations 
As mentioned above, we used for our calculations the 
Mg-(-FH — M g F - f H PES," fitted to ab initio potential 
energy values using an RBO functional. The PES is 1.33 eV 
endoergic and has a late barrier placed well inside the product 
channd. The barrier is 1.826 eV higher than the reactants' 
asymptote. The transition state geometry is bent, with r (the 
angle formed by the Jacobi vectors) being 72°. In the strong 
inteiaction region the MEP shows two minima: one for the 
coUinear (y = 180°) geometry, which lies 0.34 eV below the 
reactants' asymptote and is placed just before the reaction 
barrier, u d one for a higbly bent (; — 35°) geometry, which 
l ia 1.% eV below the leactanb' asymptote and is placed late 
in the product channel There is also a large barrier inter-
posed between the two mininn, being ca. 3.0 eV for the fixed-
angle energy path and gradually reduced through reorien-
tation. Another hnportant feature of this PES is that the 
fixed-angle barrier to reaction (which, as already noted, has a 

minimum at y = 72°) rises sharply on moving to smaller 
values of y (more bent geometries) but rises very little (ca. 0.2 
eV in the range 74 < y < 115° and ca. zero from y = 115 to 
180°) on moving to larger y values. 

As already mentione4 a program based on the R-IOS 
approximation was used to obtain 3D estimates of the 
quantum reaction probabilities. For a detailed description of 
the methodology, see tefs. 10-15 and 21-23. Owing to the 
characteristics of the system (heavy particles, highly structured 
PES), particular attention was paid to make the numerical 
procedures h i ^ y accurate. A total of 50 energy values were 
consideied. The computational parameters'""" leading to 
converged reactive probabilities are as follows: 35 vibrational 
basis functions, 390 sectors (240 for the reactants channel and 
150 for the products charmel), up to 200 angular momentum 
partial waves and 16 values of the orientation angle y (ranging 
from 45 to 180°). The calculation of the energy-independent 
part (potential profiles, vibrational eigenvalues and eigen-
functions and potential matrix elements for each sector and 
overlaps between sectors) took approximately 25 s, while the 
propagation along the reaction coordinate, by means of a 
standard invariant embedding X-matrix method,^* for all rele-
vant partial waves and all orienution angles, took an average 
of 15000 s per energy, on a single processor (RgOOO) Silicon 
Graphics Power Challenge L Workstation. Additional calcu-
lations were performed to estimate the isotopic mass effects at 
10 energy values for each isotopic variant (D and T) of the 
hydrogen atom. To ensure the proper convergency, aU 
numerical parameters were rechecked when varying the mass. 
Only the dimension of the vibrational basis needed to be 
adjusted for each isotope, in fact, because of the non-
neglipble shrinking of the vibrational level spacing when 
going from H to D and T (changes in the skewing angle and 
scaling factors were found to be less important) the dimension 
of the basis needed to be increased to 40 for D and to 45 for 
T. 

Existing QCT results""" were integrated by performing 
further calculations aimed at completing the range of initial c 
values and translational energies already considered. A total 
of 100000 trajectories were run for each set of initial condi-
tions. Equivalent calculations were performed also for the D 
and T isotopic variants, at 10 energy values. 

3 Results 
Fig. 1 shows the variation of the PVD when plotted as a func-
tion of the total energy ( f^J and the reactant vibrational 
number (ti). In the figure, the energy increases on going from 
bottom to top panels and the reactant vibrational number 
increases in going from M to ri^t panels. In general—with 
the exception of v=4—^an approximately statistical PVD, 
having a maximum at v' = 0, is obtained. Such a behaviour is 
consistent with Polanyi rules: the late barrier of the endoergic 
PES leads to a repulsive energy release, thus favouring the 
population of the lowest product vibrational states. However, 
several deviations were found, depending on both total energy 
and the reactant vibrational state. 

When the total energy increases, the distribution always 
becomes wider, covering a larger interval of product vibra-
tional sutes. It was also found that for c < 3 the PVD 
maximum tends to shift towards higher v' states as the energy 
increases. In particular, this is apparent for ii >> 0 and 2. At 
V E 1 this leads to the appearance of a local maximum that 
peaks at v* 5. However, this is not the case of v = 4. Its 
PVD peaks at e" - 5 at low enet^y values (suggesting a ten-
dency to vibrational adiabaticity). In this case the maximum 
moves towards lower tf values (it is located at r' = 2 at £„, = 
3.00 eV) as the energy increases. 

As for the isotopic mass effect, F ® 2 compares QCT and 
R-IOS CTMS sections of Mg -(- FH, Mg + FD and Mg -t- FT 
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Fig. I Product vitoatioiial diílributioiis, plotted as a functioa of the initial vibtational state (columm) and the total energy (rows). 

for the first six reactant vibrational states. The curves are 
plotted as a function of translational energy. From the figure 
the significant enhancement of the reactivity as the vibrational 
energy is increased is clearly apparent, as is typical of endo-
ergic reactions with late barriers. This holds for all isotopic 
variants when going from low to high v. However, at a fixed 
initial vibrational level, the absolute value of the total cross 

£,„/kcal mor' 

2 Reactive croas tecüoúi plotted as a Amctioa of the trans-
lational energy for the first <ii initial vibrational states and for the H, 
t> and T qxctatornitom isolopic variants. Una: R-IOS remits. Unes 
and citctes: OCT lenilts. 

section decreases, on average, as the isotopic mass is 
increased. Such a result is in accord with the role played by 
vibrational excitation in enhancing the reactivity of endoergic 
processes: as the isotopic mass increases, the content of vibra-
tional energy for a given vibrational state decreases and so 
does the reactivity. Such a result also agrees with transition 
state theory (TST) predictions. The density of states of the 
reactants increases on going from H to T. However, the 
deiBity of states at the transition state is almost unaffected by 
the isotopic substitution. This is, in fact, essentially that of the 
products since the endoergicity of the process causes the reac-
tion barrier to be located late in the product region. Accord-
ingly, the reactive probability, defined in TST as the ratio of 
the two quantities, de(xeases in the same sense. 

According to the shrinking of the vibrational spacing, the 
value of translational energy at the threshold shifts gradually 
upwards when going from H to T, for both QCT and R-IOS 
calculations. On the average, the agreement between QCT 
and R-IOS results is good for all initial vibrational levels and 
isotopic variants. In previous papers'""'* this agreement has 
been shown to be essentially owing to the rather weak varia-
tion of the PES with the orientation angle and to the HHL 
nature of the reaction. As a matter of fact (see Fig. 2), the 
agreement is particularly good at p = 2, 3 and 4 for H, D and 
T, respectively. These are the vibrational states which at 
threshold lead to an approximately equal amount of trans-
lational energy for the three isotopes. At larger v values, QCT 
reactivity is always higher than that of R-IOS, while the 
opposite is true for smaller v values. It has also to be men-
tioned that, for the lowest v values, the QCT and R-IOS 
threshold energies differ significantly. The difference increases 
with the mass of the isotope while it decreases with i>. 

4 Discossi«» 
4.1 PmlBctvilintioBaldislribiilioiis 

A rationalization of the variation of the PVD shape with both 
the total energy and the reactant vibrational energy may be 
obtained from a detailed analysis of the R-IOS state-to-state 
opacity functions, since they single out the role played by indi-
vidual orbital angular momentum contributions to the reac-
tive probability. The state-to-state opacity functions, from the 
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initial vibrational states c = 0 and 4 (each taken as a represen-
tative of the two types of PVDs found) to several product 
vibrational states are shown in Fig. 3 and 4, at £„, = 2.24 and 
3.00 eV (for low and high total energy, respectively). 

4.1.1 Low tnariatioiial aiagf. At low energy, the shape of 
the opacity function is sufficiently close to a step function. 
What makes the difference between o = 0 and c = 4 results is 
the range of allowed orbital angular momentum (O values 
(0-70 for » = 0 and 0-40 for » = 4) and the height of the 
plateau. However, the range of angular momentum values 
that contribute to the reaction changes negligibly as a func-
tion of the final vibrational state considered. This means that 
for a given v value the final shape of the PVD depends only 
on the height of the opacity function plateau. The leason why 
the allowed angular momentum range becomes larger when 
the initial vibrational state becomes small resides in the larger 
initial translational energy available. This causes larger ^ 
values come into play. For these / values, however, orbital 
angular momentum barriers are larger and generate a cen-
trifugal repulsion sufficient to prevent colUsion partners from 
coming close enough to react. 

4 . U Low tnuBhtioiwI energy and high vibntioiial cogleot: 
fibntioiially adiabatic PVDs. The particular behaviour found 
at low energy for c =» 4 can be understood in terms of the 
conditions for adiabatidty discussed by Light and co-
workers.^' In a series of studies employing an adjustable 
potential, they found that a process is vibrationally adiabatic 
when some requirements on the local kinetic energy along the 
translational coordinate on the curvature of the reaction path 
and on the vibrational spadng and its variation along the 
translational coordinate are fulfilled. These requirements are, 
indeed, matched by the Mg + FH reaction at high vibrational 
excitation and low total energy, as is the case for v - 4 and 
£ „ s 2^4 eV. In agreement with the findings of light and 
co-workers, an increase in translational energy tends to 
weaken the adiabatidty of the PVD. 

The way vibrational adiabatidty is enforced needs, 
however, a comment. In the previous quantum study of the 
Mg + FH reaction,^" the reaction mechanism was found to 
depend significantly upon the orientation angle. It was seen, 
for instance, that tuimeUng contributions to the reaction differ 
significantly when the collision angle varies from bent to open. 
Other examines of the angular dependence of reactivity are 
given in Fig. 5. In the figure, the fixed angle PVDs for » - 0 
and 4 at £,„ = Z24 and 2.73 are shown. The » = 0 PVD is 
determined by the y 75° one (it well represents the situation 
at the transition state). This is strictly the case at low energy, 
while at E ^ = Z73 eV there is a significant contribution from 
collisions occcurring at more open angles, which causes the 

[ E 3 

«hKr· 

— r ^ t 1 . 1 . YSMA .' 

F%.3 R-IOS I E iqiadty ftuKtiont, at initial 

broadening of the PVD in the high u' region. PVDs calculated 
at various values of y do not differ significantly from that for 
y = 73°, though collisions occurring at open angles show a 
tendency to lead to larger populations at high v' states. This 
means that a correlation between open angles and vibrational 
exdtation can be established. Such a behaviour was first 
singled out by Biais and Truhlar^' and then confirmed by 
others." Its relevance, for the present case, is owing to the 
dominance of open angle contributions in the characterization 
of the integral quantity. In fact, for this reaction, an increase 
of the translational energy brings in contributions from PVDs 
calculated at all values of the orientation angle. 

4.1.3 High translational energy. As already mentioned, an 
increase in the total energy makes the calculated PVDs change 
markedly. A result of increasing total energy is the widening 
of the range of angular momentum values (about 0-140 for 
both ti = 0 and 4) that appredably contribute to reaction. For 
V = 0 the height of the opadty function calculated at different 
v' values varies significantly when going from low to high 
translational energy. This causes a shift of the PVD maximum 
towards larger v' values as translational energy is increased. 
At I) = 4, however, the situation is sUghtly more complex 
because of the (Ufferent energy disposal assodated with low 
and high orbital angular momentum collisions. Contrary to 
the 1) = 0 case, in fact, at » = 4 and £,„ = 3.00 eV the height of 
the specific opadty function at low angular momentum values 
Httle differs from that at £,„ = 2.24 eV. This means that, at 
least qualitatively, the probability of populating the various 
product vibrational states is essentially unaffected by an 
increase in translational energy. On the contrary, at large ¿ 
values the opadty function changes from a flat into a struc-
tured profile, owing to the appearance of a maximum. This 
maximum shifts towards h i^e r angular momentum values 
and becomes higher as v' decreases. Since high angular 
momentum terms significantly contribute to the cross section 
due to the 2^ -f 1 factor, this makes the PVD peak shift 
towards lower vi values as the total energy increases. 

Such behaviour is typical of HHL systems exhibiting direct 
dynamics.*-^'''® It can be understood in terms of the propen-
sity of HHL systems to keep the product translational energy 
constant (translational energy is mainly stoied in heavy 
atoms) and to allow a quantiUtive transfer of ^ to the product 
rotatonal quantum number / . For this process, the state-to-
state opadty ftmction shows a maximum for a given u' state 
when the conservation of total energy is satisfied by means of 
a complete conversion of reactant orbital into product rota-
tional ener^, i.e. a suitable condition for the above-
mentioned kinematic rtiles to hold. Despite this, the opadty 
function has inequivocal HHL characteristics only when both 
vibrational and total energies are suffidently large. This fact 
indicates that the PES structure plays a key role in determin-
ing the reactive behaviour of Mg -t- FH and allows a limiting 
kinematic behaviour to become dominant only when the 
energy is large and it is allocated to the appropriate reactant 
mode (vibration in this case). 

4.2 Reactioo cran section and isotopici selTecIa 

Z24 eV (first cohmm) and 3.00 eV (second coluniiX for •>' - a 1,2 and 
3 (from bottom to top row, nspwtivdy). Note the change of scale 
between the fiist and the leroHd oohiinas. 

The general good agreement between QCT and R-IOS cross 
sections for all initial vibrational levels and H-atom isotopic 
masses, as shown in Fig. 2, provides, in prindple, a rather 
direct insight into the importance of initial energy in deter-
mining the accural^ of the infinite order sudden approx-
imation (lOSA). It is well known, from its use in inelastic 
collisions, that the lOSA becomes more accurate as trans-
lational energy increases. However, as already mentioned, the 
features of the PES characterizing the reactive process make 
additional factors to come into play. For instance, it has been 
repeatedly found that the anisotropy of the PES favours reori-
entation of the collision partners and the coupUng of angular 
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4 State-to-state opacity fiinctioiis, for initia] v 4, at Z24 
eV (fint column) and 3.00 eV (second columnX for i/ 2, 3,4,5 and 6 
(from bottots to top rows). Note the change of scale between the Sist 
and the second columns. 

motions. On the other hand, when the variation of the PES 
with the orientation of the target molecule is small, the frozen 
collision angle approximation holds better. This is also the 
case of the Mg -f FH reaction, since its PES shows Uttle varia-
tion for a wide angular range (70-180°) and in the remaining 
angular range it is repulsive enough to not contribute to reac-
tivity. 

4.Z1 Low trandatioiial ene rgy—in i t i a l c states. At suf-
ficiently low translational energies, QCT cross sections are 
larger than R-IOS ones. This is owing to the fact that, when 
the velocity is sufficiently low, reorientation of the target mol-
ecule from an initial utifavourable orientation to a more 
favourable one is easier. This leads to an enhancement of the 
3D reactivity with respect to the fixed-angle collision one. 

A reorienting effect—and not only a decrease in vibrational 
energy—plays a key role in determining the decrease of the 
cross section as the isotopic mass increases. However, since it 
is known that FD and FT molecules reorient themselves less 
promptly than FH, low translational energy QCT reactivity 
becomes smaller when the hydrogen isotope becomes heavier, 
as confirmed by the decreasing difference between QCT and 
R-IOS results as the H-mass increases (Fig. 2). In particular, 
the spike found in the low translational energy region of the 
QCT excitation function of Mg + FH at d = 5 may be 
explained in terms of reorientation effects. This is confirmed 
by the fact that both QCT and R-IOS results do not exhibit 
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Fig. S Integral and y-dependent product vibtational distiibutioiis, at 
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Bottom row: £ „ - 2J4 eV. Upper row: - 1 7 3 eV. ( ) Inte-
gral PVD. (• ) T - 75°. ( ) T - 105«. ( ) T - 180°. 

any peak for FD and FT. In other words, the sharp maximum 
is obtained only when the isotope is light enough and the 
computational approach correctly takes into account reorien-
tation effects. 

4J.2 High translational energy—low initial c sutes. The 
observed behaviour changes markedly when low initial vibra-
tional states are considered. First, for all isotopes high trans-
lational energies are necessary to obtain appreciable cross 
sections. This result is in accord with the enhancing role 
played by vibration in promoting reactivity and the less effec-
tive role played by translation. Second, the QCT reactivity is 
found to be smaller than the R-IOS one, with this effect being 
enhanced by an increase of the isotopic mass. The smaller 
QCT reactivity is found to be caused by an unexpected but 
significant upwards (along the translational energy scale) shift 
of the threshold energy for the isotopically substituted QCT 
cross sections, at low u values. The energy shift is much larger 
than the decrease in vibrational energy associated with the 
isotopic substitution of H by D and T. 

To find a rationale for the observed behaviour, it was sug-
gested that, below a certain content of vibrational energy, the 
reaction mechanism may become complex."* A later 
paper^' shows, in fact, that under certain conditions the reac-
tion may occur tiio an insertion of Mg into HF. We have 
investigated the rate of occurrence of complex collisions as a 
function of the initial vibrational level and of the isotopic 
mass. The results of this study are shown in Figs. 6-8. An 
inspection of the figures makes it clear that the anomalous 
shift of the QCT results takes place at the same vibrational 
level that (as one goes from high to low d values for each 
isotope) is the first to show a relevant contribution of complex 
collisions to the total cross section. It is important to empha-
size here that for higher vibrational levels the contribution of 
complex collisions to the integral cross section vanishes. Then, 
it is perfectly legitimate to conclude that the shift in threshold 
energy for QCT results is due to the accessibility of insertion 
pathways when not enough energy is put into the enhancing 
mode (vibration). This causes a decrease of the reactivity 
because when a collision complex is formed energy redistri-
bution may take energy away from the reaction mode and 
allocate it to other modes that are less effective in promoting 

|Mg4.FH| 

Fig. 6 Contributions of simple and complex trajectories (see text) to 
the total cross sectioB, for Mg-i-FH and initial t ) » 0 , 1 and Z 
( Total cross section. ( ) Contribution of complex trajec-
tories. ( ) Contribution of simple trajectories. 
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reaction. However, when enough energy is put into the 
enhancing mode, the system reacts via a direct abstraction. 

In summary, for this endoergic reaction, when the fixed 
angle constraint (typical of the R-IOS approach) is released in 
favour of a fiill 3D motion, reactivity is penalized for 
insertion-like mechanisms, while it is enhanced for abstraction 
(with reorientation) ones. The reason is that in 3D motion, 
during the formation of an insertion complex, energy is redis-
tributed among all degrees of freedom and the come-back to 
the energetically favoured reactant channel is mote likely. 
Obviously, the opposite is true in abstraction via a reorien-
tation mechanism, for which the 3D motion allows an exit 
into the product channel. Conditions at which 3D-QCT and 
R-IOS reactive cross-sections become ahnost equivalent ate 
I) = 2, 3 and 4 for H, D and T respectively (Fig. 2). Under 
these conditions, the decreased contribution of insertion is 
counterbalanced by the increasing contribution of reorien-

s±a 

FI(. S Contributions of simple and complex trajectòries (see text) to 
the total CK» section, for Mg-t-FT and initial v - 2 , 3 and 4. 
( Tottl cross section. ( Contribution of complex tra-
jectOiieL ( - — ) Contribntian of iim]de trajectories. 
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tation. This compensation occurs, for all three isotopes, at a 
translational energy of about 0.75 eV, pointing out the critical 
role of translation energy in favouring a switch from insertion 
to abstraction mechanisms. 

5 Conclusions 
The influence of both initial vibrational and translational 
energy has been studied in detail for the 
Mg + FH -» MgF -I- H reaction, including also its influence 
on the spectator-atom isotopic processes. In particular, in this 
paper we have discussed the following items. 

At low translational energies, PVDs were found to peak at 
d' = 0 for all initial vibrational states (except for r = 4, which 
shows a tendency towards vibrational adiabaticity). This 
behaviour was rationalized in terms of the rules of Polanyi and 
of Light and co-workers about the vibrationally adiabatic 
reactive processes (v = 4 falfiJIs optimum conditions for the 
vibrational adiabaticity). In this respect, a decisive influence of 
the collision angle was also smgled out. For instance, it was 
found that the » = 0 PVD is essentially determined by the 
behaviour of the system at the transition stale angle. This is 
essentially true also for all other c < 4 values. At u = 4, a dear 
correlation between open angles and vibrational excitation 
was found (the PVD shape is mainly determined by the col-
linear (180°) contribution). The vibrationally adiabatic behav-
iour and the shift to a domin.ant, coUinear-like reactive 
dynamics were found to be linked, with both providing to the 
system an amount of vibrational energy sufficient to overcome 
the reaction barrier and keeping the initial tiandational 
energy low. 

At higher translational energy a different behaviour was 
observed for low and high vibrational excited reactants. For 
the II — 0 case, the PVD tends to broaden and to peak at 
higher v' values. This was found to be owing to a switch from 
»' - 0 to c' - 2 in the most effective sUte specific, single-/ 
reaction probalality. This is caused by an increasing contribu-
tion to reaction of more open orientation angle collisions, 
among which are those favouring product vibrational excita-
tion. When both vibrational and translational energy are high, 
as is the case of » = 4 and = 3.00, the PVD shape was 
fotmd to be strongly dominated by the HHL nature of the 
mass-combination of the system, since reaction is, to a large 
extent, direct As a result, the state-to^tate opacity ftmctions 
show a high angular momentum maximum which appears at 
higher / values as decreases. This causes the PVD to peak 
at lower v̂  values as translational energy is increased. On the 
other hand, the PVD becomes highly isotropic as a function 
of the orientation angle. 

As for the isotopically substituted processes, an agre^nent 
was found, as expect^ between the vibrational energy 
content and the reactivity enhancement. A remarkably good 
agreement was also foun4 for all initial v, between QCT and 
R-IOS cross sections and all isotopes. ReorienUtion of the 
system during the reactive encounter was found to explain the 
(small) discrepancies between QCT and R-IOS results at low 
translational energy (the QCT cross section being larger than 
R-IOS ones) as well as the » - 5 post-threshold Mg + FH 
cross section maximum. However, as initial v is decreased, the 
QCT reactivity becomes much lower than the R-IOS one, 
with such a djJBTerence increasing with the isotope mass. This 
difference manifests itself as an unexpected large shift towards 
higher energy values for the low v QCT cross wctions. The 
shift has been found to be associated with the replacement of 
complex (insertion) by direct (abstraction) collisions. The reac-
tivity decrease is then caused by a redistribution of the energy 
from the already unfavourable translational mode. The final 
result is that the release of the fixed angle constraint increases 
QCT reactivity in abstraction-like collisions hut diminishes it 
in insertion-liice encounters. The switching from insertion to 
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abstraciioD mechanisms is found to be controlled by both 
traaslational and vibrational energy. This control is evidenced 
with the occurrence of transition conditions which make Q C T 
and R-IOS essentially coincident, found at 0.75 eV 
(translational energy) and t; = 2, 3 and 4 for the H, D and T 
isotopes, respectively. 
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7.2 The B + OH BO-l·l·l system. 
In this section we will present the work we have pubHshed concerning the R-IOS 
quantum mechanical study of the above combustion reaction. 

7.2.1 Cross sections exhibiting quantum resonances: the 
B + OH case. 

Journal of Molecular Structure (Teochem) 463 (1999) 65-74 
Resonances are one of most noticeable quantum effects that can be found in 

reaction dynamics. Appearing as Lorentzian peaks in the reaction probability, 
resonances are related to the formation of metastable compound systems and 
provide extremely accurate information on the structure of the strong interaction 
region of the PES. These phenomena are, therefore, when experimentally observ-
able, a unique benchmark to improve the theory. However, two main difficulties 
arise when it comes to theoretically predicting resonances at the three dimen-
sional cross section level. The first one is related to the relatively short lifetimes 
of the collision complexes, which lead to broad probability peaks, easily smoothed 
out when one sums over the angular momentum. This may, however, be of less 
importance if there exists a stable complex. The second shortcoming concerns 
the high computational cost of a complete rigorous reactive scattering calcula-
tion. To overcome this second problem, one may employ reduced dimensionality 
models, such as IOS, as a first estimation of the resonance pattern relevance of a 
reactive system. 

In this context, we considered the approximate study of the resonance pattern 
presented by the title system. The interest of the system lies in the importance 
of the HBO and HOB stable intermediates, which may be important in the 
formation of resonance states. The HBO is experimentally known and theoretical 
studies have predicted a linear geometry for this minimum. The second HOB 
minimum geometry has caused some controversy and, apparently, fitting the PES 
to a collinear minimum gives the better description of the reactivity. Thus, a 
Sorbie-Murrell fit was used, considering a linear geometry for both intermediate 
states. On this PES, the reaction is 3.60 eV exoergic and its alternative channel 
can be neglected at the energies considered in the work since it is over 1.75 eV 
endoergic. The BOH lies around 6.4 eV below the reactants' asymptote and 
is located early in the entrance region. Following the minimum energy path, a 
barrier of 1.21 eV connects this minimum to the HBO one, lying 4.9 eV below 
products' asymptote. 

In the present article we showed how the resonant component of the global 
reactivity was significant for the title system. The plots of opacity functions as 
well as differential cross sections confirmed this fact, giving strongly structured 
opacity functions and highly symmetric differential cross section. The outstand-
ing structure surviving in the integral cross section indicates that its experimental 
measurement may be of great use for the refinement of the interaction potential. 
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Abstract 

Extensive theoretical quantum-mechanical calculations are reported for the cross-section and related dynamical quantities of 
the B OH — BO - m reaction, on a previously developed potential-energy surface (PES) describing the ground electronic 
state. These calculations show, as an outstanding feature, the presence of marked structures in the shape of the excitation 
function as a consequence of the existence of a dense specinim of rather long-lived resonance states. These are narrow enough 
to survive the angular momentum averaging, thanks to an important stabilization caused by an electronic minimum correspond-
ing to a linear HOB configuration. The centrifugal barriers due to high values of the orbital angular momentum are found to lead 
to several orbiting shape resonances, as revealed by the ojMCity ftinction plots and the dependence of the reaction probability on 
energy. Differential cross-sections corresponding to energies lying at either reaaivity peaks or valleys in the integral cross-
section show a highly symmetric dependence on scattering angle, indicating an important resonant contribution to reactivity in 
both cases. The possibility of directly observing resonances in experimental integral cross-section measurements is analysed in 
the light of the present results. © 1999 Published by Elsevier Science B.V. All rights reserved. 

Keywords: Reaction dynamics: Scattering; Resonance; Potential-energy surface (PES) 

1. Introduction 

Resonances constitute one of the most striking 
phenomena in physics [1,2], In scattering processes, 
they were first measured expeiimentally in nuclear 
and particle physics as a consequence of the formation 
of new compound particles emeiging from collisions of 
simpler systems. TTjey are manifested as Lorentzian-
type peaks in the reaction probability, the maximum 
being identified as the resonance eneigy and the width 
proportional to the inverse of the compound system's 
lifetime. In chemical reaction dynamics, resonances 
were first predicted theoretically 28 years ago by 
Truhlar and Kuppermann [3], in collinear exact 
quantum calculations of the reaction protobility as a 
function of enei^y for the H + Hj — Hj + H leactitm. 

* Craiesponding authw. 

From the very beginning the importance of such 
phenomena was realized, since they provide very 
accurate information on the structure of the close 
interaction region of the potential-energy surface 
(PES). However, predictions had to be made on quan-
tities amenable for expeiimental detection. About six 
years ago, remarkable improvements in theoretical 
methodology allowed Miller and Zhang [4] to point 
out the possibiUty of directly observing resonances for 
the H + Hj —• H2 + H reaction, by looking at ridges in 
the simultaneous energy and angular dependence of 
the state-to-state differential cross-section. More 
recently, Kuppermaim and Wu [5] succeeded in refin-
ing the above ideas and performed the first quantita-
tive prediction, for the H + D2 — HD + H reaction, of 
a reactive scattering resonance. They used symme-
trized hyperspherical coordinates to perform exact 
quantum calculatitHis of the reaction probability, 

0166-128(V99/$ - see ftont matter O 1999 Published by Elsevier Science B.V. All rights reserved. 
PH: 80166-1280(98)00394-7 
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including the effect of the geometric phase due to 
conical inteisections between electronic surfaces. 
These ¡»«dictions concerned highly energy- and 
scattering-angle-resolved state-to-state differential 
cross-sections, quantities which are rather difficult to 
measure experimentally, although remarkable 
successful experiments along this line have been 
reported quite recently [6]. 

Other recent and detailed studies where resonances 
have been measured in molecular (heavy particle) 
processes concern van der Waals' complexes, for 
which resonances are analysed in highly resolved 
electronic spectra as predissociation phenomena 
[2,7,8], Photoelectron detachment spectra (PhES) 
have also been a source of detailed information 
about transition State (TS) resonances. This has been 
shown in experiihents where an electron is photo-
ejected from a stable anion, leading to an unstable 
neutral, which is usually found to be formed in the 
TS region [9,10]. A paradigmatic result illustrating 
this series of experiments can be given by the excel-
lent agreement between the experimental PhES spec-
trum and its rigorous theoretical simulation found in 
the study of the F + Hj system, which allowed the 
authors to conclude that "the nature of the FHj transi-
tion state has been essentially solved" [11]. Also, 
from experimental measurements on the photodisso-
ciation and photoisomerization of ketene, Lovejoy 
and Moore [12] deduced the direct isomerization 
rate of the same molecule. They obtained a stnmgly 
structured shape of the isomerization rate versus 
energy relationship, which they attributed to reso-
nance states of oxirene, the intennediate species 
found in the route to isomerization. Gezelter and 
Miller [13] calculated theoretically the c(»Tesponding 
microcanonical rate of isomerization and found 
reasoniü)le qualitative agreement with the experi-
mental results, confirming the resonance features 
present in the microcanonical (i.e. energy-selected) 
rate constant. 

The above examples suggest that it is becoming 
increasingly possible to make a direct comparison 
between calculated and measured resonance phenom-
ena. Thus it appears necessary to accumulate a<Ui-
tional studies on different molecular processes and 
other experimentally measurable quantities. In parti-
cular, it is highly interesting, on one hand, to have 
such infonnation for elementary chemical processes 

other than the "canonical" H + H2 —• H2 + H, since 
metastable states play a decisive role in controlling 
the reaction outcome and much richer and varied 
energy dependences are found in non-academic reac-
tions. On the other han4 it is also desirable to explore 
the possibility of directly observing resonances in 
integral cross-section measurements, since highly 
resolved related experiments are becoming available. 
For instance, recent improvements are making the 
proper energy resolution at hand to characterize 
resonance peaks adequately [14]. 

In the present work we are concerned with reso-
nances that are manifested in the integral cross-
sections of elementary chemical reactions; i.e. the 
sum for all relevant total angular momentum values 
of the reaction probability. However, two main 
problems arise in this case. The first one is related 
to the relatively short lifetimes of the collision 
complexes that are frequently found in chemical reac-
tions. Short lifetimes lead to broad Lorentzian peaks, 
being easily smoothed out in the sum over the angular 
momentum. Thus, in these cases, resonances become 
undetectable at the cross-section level. The second 
problem is related to the computational cost of a 
complete reactive scattering calculation. At present, 
calculations involving non-academic systems 
demand such a computational effort that the computa-
tion of most exact quantum reactive cross-sections is 
rendered extremely expensive. Thus, even in the case 
that the resonance structure survives the angular 
momentum sum, its exact computation is a formidable 
task. 

The first shmcoming may be of less importance if 
strongly stable complexes can exist during the reac-
tion. Previous experience with reduced-dimensional-
ity and one-paitial-wave exact quantum calculations 
indicate that if the PES supports stable electronic 
complexes, the rescmance pattern of the reaction prob-
ability is much richer and intense [13-20]. In these 
cases several resonances are much sharper (or life-
times much longer), thus increasing the probability 
of survival after die angular momentum averaging. 
The second shortcoming can be partially overcome 
with the use of reduced-<iimensionaIity quantum-
mechanical (QM) scattering methods. Although 

ĵproximate, they provide a first estimation of how 
relevant the resonance reactivity is. For instance, they 
may serve as an initial guess to more accurate 
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methods for the characterizing properties of the 
resonances (i.e. width, intensity and density of the 
resonance peaks), how they are manifested in aver-
aged quantities, etc. In addition, they could provide 
rather accurate information on those resonance states 
that are due to the degrees of freedom included exactly 
in the approximate scattering method. 

The present study deals with a QM study of the 
combustion-related B + OH — BO + H reaction, 
perfonned by means of the Reactive-Infinite Order 
Sudden (R-IOS) technique [21-27]. The interest in 
the B -(- OH system lies in the importance of the 
HBO and HOB stable intermediates, which are 
supposed to have a determining role in the formation 
of resonance states. In particular, HBO has been 
known experimentally since 1971 [28]. Theoretical 
studies at ab initio level [29-32] indicate the exis-
tence of the HBO structure as a minimum on the 
doublet ground-state surface of the HBO system. A 
second HOB minimum is also predicted, less stable 
than the former. All theoretical works predict a linear 
configuration for the HBO intermediate, but certain 
controversy exists on the nature of the HOB minimum 
geometry, since both linear and angular geometries 
have been reported in the literature. 

2. Potential-energy surface and method numerical 
parameters 

As part of a systematic study of some boron atom 
reactions, the problem of deteiminiftg the best geome-
try for the second minimum was undertaken [31-35]. 
These studies used a reasonable PES that was tested 
previously [31,32], showing a linear geometry for 
HBO but angular geometry for the HOB minimum. 
The inñuence of the HOB minimum geometry was 
then checked by comparing the previous results with 
those obtained on a new PES fit with linear HOB 
geometiy [35]. It was found that the last surface 
described the experimental evidence better, since it 
predicted a strong product vibrational population 
inversion, in accordance to related reactions where 
the BO molecule is also produced [36-39]. In addi-
tion, comparison between quasiclassical trajectory 
(OCT) and long-range behaviour [40,41] showed 
that the long-range interaction, which is the dominant 
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one in this kind of surface, was better described with 
the second surface. 

A Sorbie-Murrell fit, the main features of which 
have been discussed elsewhere [35], was used, corre-
sponding to the surface with both linear HBO and 
HOB minima. On this PES, when B approaches OH 
(4.147 eV below the B + O -f H dissociation plateau), 
strongly bound BOH (10.601 eV) stabilized by a ca. 
6.4 eV well located early in the entrance channel can 
be formed, from which the minimum-energy path 
goes through a barrier of 1.21 eV connecting with 
the HBO (12.671 eV) well before reaching the 
product asymptote (7.747 eV). The B -i- OH 
BO + H reaction is thus exoergic by 3.60 eV, and 
the ground reactant vibrational level lies 0.24788 eV 
above the reactant minimum. The alternative BH-
forming channel is endoergic by 1.7531 eV, so it is 
not considered at the energies of the present study. 

Calculations have been performed by means of the 
same R-IOSA procedure used in previous works [42-
51]. The calculation procedure can be divided into 
two parts. In the first part, potential cuts, vibrational 
eigenvalues and eigenfunctions and overlaps are 
computed for each sector into which the configuration 
space is divided. In the second part, the solution is 
propagated through the sectors, by means of the invar-
iant embedding Ä-matrix method [52,53], to get the 
fixed-angle 5-matrix elements for all relevant (i.e. 
non-negligibly contributing to reactivity) values of 
the orbital angular momentum and each collision 
energy. The global procedure is repeated at each rele-
vant collision angle (the Jacob! atom-diatom orienta-
tion angle). 

Configuration space was divided into 450 sectors, 
225 for each reaction channel. For the energy range of 
interest, convergence was obtained by using 40 vibra-
tional basis functions. The scanned collision energy 
range was from 0.01 eV to 0.41 eV, with a total of 55 
points for the integral cross-section. For each energy 
value a total of 20 collision angles was included, 
ranging firom 80 to 180° in steps of 5°. For each colli-
sion angle and energy, the number of angular momen-
tum partial waves leading to convergency varied fit>m 
Z„„ = 34 at £„ = 0.01 eV and 7 = 100°, to = 124 
at £„ = 0.41 eV and 7 = 140°. The first part of the 
calculation lasted an average of 60 s on an IBM 3AT 
Workstation, while each vibrational state-to-state 
(v -» v') S-matrix element (Stv'iy)) took 2 s on average 
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Fig. 1. Psitial cumulative R-IOS 3D reaction probabiUties as a function of KMai e n e ^ (zero placed at the bottom of the products arrangemem ). 
Ua OH in the giouixi vibratiimal state, summed over all open vibrational product states and for the orbital angular momentum quantum number 
J = 0. Numbers in parenthesis indicate the number of angles included in the paitial integration (the integration range is 80-180° in steps of S°). 
The curve labelled with (20) is the complete R-IOS 3D reaction probability. 

to be obtained, for each energy, collision angle (-y) and 
partial wave (0, on the same computer. Additional 
calculations were performed to obtain the single-/ 
reaction probability. In this case, a total of 1000energy 
points was computed, in the same energy range, for the 
same number of collision angles. Finally, differential 
cross-sections were computed foratotal of721 scatter-
ing angle values, this large number being necessary to 
characterize the strongly oscillatoiy structure properly 
(see below). 

3. Results and discussion 

An extensive study of the reaction dynamics of the 
title system has been peifoimed. The main goal was to 
compute both averaged gua^tíes (i.e. easier to 
measure experimentally), such as differential and inte-
gral cross-sections, as well as more detailed ones, 
such as state-to-all opacity fimctions and reaction 
pn4>^lUties, to see how resonance features are mani-
fested, and also how they evolve from detailed to 
avoraged quantities. The calculation obviously starts 

by solving the R-IOS Schrödinger equation, w h i c h 
provides the coiresponding S-matrix elements. Its 
squared modulus, integrated over the collision angle, 
is the state-to-state single-energy, single-angular 
momentum reaction probability 

stv'(y)f d cos y (1) 

which, when summed over all product vibrational 
states v' and plotted as a function of enei^y, leads to 
die results shown in Fig. 1. This graph shows the 
reaction probability for zero orbital angular momen-
tum. The global shape is described by an overall 
ahnost constant dependence upon energy, with 
sevaú broad peaks and valleys. Superimposed on 
this background behaviour intense and sharp peaks 
are found, due to strongly bound metastable states. 
In addition, paitial cumulative angular integrations 
are also shown, with the purpose of visualizing how 
the global three-dimesional (3D) probability profile is 
gradually built up (although in an approximate way). 
Remarkable is the homogeneity of the reaction prob-
ability profile as the fixed-angle probabilities are 
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Fig. 2. R-IOS 3D reaction probabilities as a function of total energy (zero placed at the bottom of the ptoducts arrangement), for OH in the 
ground vibrational state, summed over all open vibrational product states and for the orbital angular momentum quantum number / = 70. 

being added. Most of the broad peaks and valleys 
present in those graphs containing less angles are 
kept during the rest of the integration, with minor 
changes causing only slight variations in their inten-
sity. This is a clear consequence of the important 
degree of isotropy of the potential. The only major 
difference is the appearance of the sharp and intense 
peaks, which is strongly dependent on the collision 
angle. This fact clearly shows the dramatic depen-
dence of the resonance features on small changes in 
the PES topography, thus stressing the importance of 
putting effort towards characterizing resonances in 
chemical reactions. 

Fig. 2 shows the state-to-all reaction probability, as 
a function of energy, for the orbital angular momen-
tum I = 70. Two main differences arise upon compar-
ison with the / = 0 case. The first is that the centrifugal 
barrier, for the / = 70 case, shifts the reactivity thresh-
old by about 0.1 eV towards higher energies. The 
second and major difference is that the / = 70 reaction 
probability is dominated by an extremely dense reso-
nance spectrum. To give more details on it. Fig. 3 
shows several state-to-state reaction probabilities, 
again for I = 70. It is clearly seen that resonances 
manifest themselves in an essentially similar way in 
all state-to-state transitions. In addition, several peaks 
appear at the same energy position, independently of 
the final v' state, as is well known for resonances in 

chemical reactions. When the total energy coincides 
with the energy of the metastable state — the 
resonance, the reaction outcome is dominated by the 
resonance formation, independently of the state from 
which the collision occurs. Then, the longer transit 
time in the strong-interaction region allows for energy 
redistribution and a higher probability for reaction. 
The transitions to different v' states differ only in 
the amount of background or direct reactivity. While 
being roughly constant as a function of energy, it is 
increasingly higher as v' is increased, indicating a 
propensity towards translational energy conservation 
tom reactants to products. 

A main conclusion to be extracted from Figs. 1-3 is 
that resonances appear mainly as a consequence of 
orbital angular momentum barriers, which allow the 
formation of shape resonances on the electronic-
vibration-orbital effective potentials. It is the inter-
vention of all these components of motion that causes 
the dense resonance spectrum to appear. On the 
contrary, the absence of an effective barrier is the 
key feature preventing the resonance mediation to 
reaction, the direct reaction mechanism then being 
dominant. This fact implies that compound 
(Feshbach) resonances are rarely formed during the 
collision, as a consequence of a weak vibrational 
non-adiabatic coupling. 

However, vibrational non-adiabatic transitions 
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Fig. 3. R-IOS 3D siate-to-state reaction probabilities as a ftinctioii 
of total energy (zero placed at the bottom of the products anange-
ment), for OH in the ground vibrational state. Orbiul angular 
momentum quantum number I » 70. 

must exist, since the product's vibrational distribution 
is clearly different from that coming from a vibration-
ally adiabatic mechanism. These couplings occur in 
the direct scattering since the background reactivity, 
not the resonant one, is the component that increases 
gradually as v' is increased in Fig. 3. 

When Eq. (1) is summed again over the product 
vibrational states and plotted against the orbital angu-
lar momentum, at fixed ener^ values, the o|»city 
functions represented in Fig. 4 are obtained. The 
most interesting feature is the presence of resonance 
structure, except for the first 10 to IS values of the 
orbital angular momentum, whose density increases 
gradually wiüi L TI» backgnnind behaviour (disre-
garding the resonant peaks) of the opacity function 
is close to a step function. 

The results of Fig. 4 confirm the analysis performed 
from Figs. 1-3; i.e. shape resonances can be formed 
as the centrifugal term interposes a barrier just before 
the strong stabilization due to the HOB well. The three 
plots shown in Fig. 4 correspond to energies lying on a 
reactivity peak and on the valleys immediately before 
and after the peak, respectively. No major differences 
are found between them so that, in principle, we 
cannot attribute a pure resonant behaviour to the 
cross-section peaks nor a purely direct reactivity 
mechanism to the cross-section valleys. This seems 
fairly reasonable, in view of the fact that each energy 
point represents a sum over all angular momentum 
values (up to 200 at the highest energies) and all 
vibrational product states (up to 18). 

The above statements have been confirmed by 
studying the behaviour of the differential cross-
section. It is calculated by means of products of 5-
matrix elements times Legendre polynomials 
/"/(cos 6) in the form: 

Sil 

2 OQ OO 

I p - X Z + m i ' + D / ' K c o s e)P,'(cos Ö) 
^"vi 1=0 i'=0 

1 
d cos y 

(2) 

e being the centre-of-mass scattering angle. Fig. 5 
shows the differential cross-sections for the same 
three conditions as the opacity function, always for 
OH in the ground vibrational state. In all cases, the 
differential cross-section shows a high fc»ward/back-
ward symmetry, typical of the formation of a long-
lived complex. Although the R-IOS method describes 
the angular variables crudely, these results are in 
agreement with the dominating resonance mechanism 
found for this reaction. In addition, previous QCT 
studies [35] also predicted a highly symmetric shape 
for this quantity. 

The final quantity to be analysed in the present 
work is the R-IOS integral cross-section, which is 
given by: 

0 0 . I 

''W = Z (2/ + W„'(y)f d cos y 
S M) ¿ J-> ' 

(3) 
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Fig. 4. R-IOS 3D summed over all product vibrational stales' opacity functions, at three selected energies, corresponding to a reactivity peak 
found in the integral cross-section (£ = 4.00235 eV) and the valleys before and after (£ = 3.9982S eV and 4.00485 eV, respectively). 

In the present case, it has been calculated by summing 
over all product states. Its dependence on energy is 
shown in Fig. 6, again for OH in the ground vibra-
tional state. The general shape follows an exponen-
tially (or potentially) decreasing trend as a function of 
collision energy, in agreement with the general 
behaviour expected for systems with zero or negative 
activation energies [54-56]. The background profile 
is superimposed on a relevant structure reñecting, at 

the cross-section level, the fingeipnnt of reactive 
scattering resonances. 

As seen from the preceding analysis, the depen-
dence of the integral cross-section on energy, while 
resulting from the sum for all angular momentum 
partial waves, is characterized by the fact that low / 
values do not lead to a strong resonant behaviour; but 
as / is increased, shape resonances become completely 
dominant over the whole energy range. Resonance 
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Fig. 3. R-IOS summed over ail product vibrational states' differential cross-sections, at three selected energies, conesponding to a reactivity 
peak found in the integral cross-section (£ = 4.00235 eV) and^the valleys before and after (£ = 3.99825 eV and 4.00485 eV, respectively). 
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Fig. 6. R-IOS summed over all product vibrational states' integral 
cross-sections as a function of total energy, for OH in the ground 
vibrational sute. In total 55 points have been calculated, using a 
finer mesh around the 4.0 eV region. 

peaks are very narrow, indicating rather long life-
times. As seen from the opacity function plots, 
changing the total energy slightly makes the reso-
nance peaks change their position and intensity 
slightly. These are the conditions, as has been 
previously discussed in the literature [2], for the 
peaks to disappear with the partial wave summation. 
However, in the present case, peak superposition due 
to partial wave summation resembles what is obtained 
in a random signal accumulation, given the high value 
of partial waves to be included and the sharpness and 
high number of resonant peaks. As a consequence, the 
structure surviving in the integral cross-section is 
similar to a "noise" variation, as far as the shape of 
the integral cross-section curve is concerned, but, of 
course, the structure is by no means aleatory. In spite 
of this, we think that a back-and-forth interaction 
between theory and experiment is still possible in 
such cases. Although peaks in tte excitation fraction 
are not attributable to particular resonance states, the 
structure is still reflecting a lot of information and, as 
is well known [lS-20], it is strongly dependent on the 
interaction potential. Thus it can be used to refine the 
PES until theory md experiment become coincident 
enough. However, this process would avoid the need 
for an accurate dynamical method to compute the 

cross-section. The utility of an approximate study 
like the present one is that, in addition to the dynami-
cal trends established here, it points us in the right 
direction to look. Thus when looking for relevant 
resonance structures, we avoid the highly time-
consuming task of directiy determining the exact 
cross-section. 

4. Summary and conclusions 

In this work a detailed approximate QM study of 
the B + OH BO -t- H reaction has been performed, 
with the aim of determining how resonance features 
manifest themselves in the integral cross-section. For 
this purpose, the 3D reaction probability for a single 
angular momentum was computed using a very fine 
energy grid. It has been found that resonances become 
dominant as the centrifugal barriers interposed by the 
orbital angular momentum gradually increase. Thus, 
shape resonances due to orbiting processes are the 
kind of metastabie state responsible for the observed 
behaviour. 

The resonant reactivity contributes an appreciable 
fraction to the total reactivity. This has been 
confirmed by computing both the opacity function 
and the differential cross-section, for energies lying 
on a reactivity peak (in the integral cross-section) 
and on a reactivity valley. In all cases results are 
essentially equivalent, giving a marked structured 
behaviour for the opacity fimction and a highly 
forward/backward symmetric differential cross-
section. 

The predominantiy non-resonant reactivity found 
for low values of tiie orbital angular momentum indi-
cates that Feshbach-type resonances rarely occur, so 
that non-adiabatic vibrational coupling is weak in the 
configuration space region where resonances are 
formed. However, this coupling must exist in neigh-
boring configuration space regions, since strongly 
non-adiabatic product vibrational distributions are 
obtained for this surface, owing to direct, non-
resonant reactivity. 

Finally, the structure surviving in the integral cross-
section results largely from what could be described 
as the noise of a random summation process, as far as 
resonance peaks are concerned. As a consequence, 
experimental measurement of its fine energy grid 
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may be of great use for refinement of the interaction 
potential, but no identification of the quantum states 
of the metastable complex is possible. 
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application. 
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In the following sections we will present the articles concerning our work on 
the implementation of the Negative Imaginary Potentials (NIPs) technique on an 
invariant embedding propagation scheme, in particular the R-matrix method, as 
well as its application to a family of reactive systems, covering a wide range of 
possible cases. The work we have done has yielded until now three regular articles 
and a communication, each of them covering different aspects of the development 
and application of the method. In a first article, we showed the accuracy and 
reliability of the approach by reproducing the extremely sharp resonances of the 
collinear Cl+HCl symmetric exchange reaction. Then followed a communication 
in which we explicitly showed the applicability of the method to easily obtain the 
cross section for a large number of energy values. In a latter publication, the 
theory was developed in full detail trying to explain carefully the modifications 
on the R-matrix propagation scheme that the introduction of a complex potential 
implied. A fourth paper focused on the application of the developed methodology, 
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employing an IOS Hamiltonian, to study different reactive systems and trying to 
cover various ergicities and mass combinations. 

8.1 On the accuracy of reactive scattering cal-
culations with absorbing potentials: a new 
implementation based on a generalized R-
matrix propagation. 

Chemical Physics Letters 291 (1998) 346-350 
In this work, we intended to give a short communication on the successful 

implementation of absorbing potentials in an invariant embedding propagation 
method, focusing on its feasibility and the good performance of the numerical 
code developed. 

The idea, as explained in section 2.7, is basically to reduce a reactive scattering 
problem into an inelastic one introducing a properly located complex potential. 
As we have already explained, knowing the ability of NIPs to absorb the flux 
associated to the wavefunction, if one places such an absorbing potential beyond 
the transition state region, where reactive transitions are assumed to already 
have taken place, one may then assign the flux lost to the reactive component. 
Thus, by properly introducing a NIP and carrying out a straightforward inelastic 
R-matrix propagation, one may obtain reactive global probabilities. Of course, 
the propagation scheme has to be accordingly modified to take complex valued 
interaction matrices into account. However, the goal in this article was to inform 
briefly and as clearly as possible on the feasibility and reliability of the method 
and therefore further theoretical explanations were left for the next publication. 

Rather than testing our methodology with prototypic reactions, we found 
more challenging to study the collinear CI + HCl reaction, for which already 
exact results had been published. Numerical results were found to fully coincide 
with the published ones even when comparing the sharp resonances shown by 
the system. Moreover, the present implementation proved to be more efficient 
than previous calculations which used a standard R-matrix propagation, since the 
number of sectors and basis functions used could be more than halved, resulting 
in great savings of calculation time. 
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Abstract 

A quantum scattering method based on combining a generalization of the propagative R-matrix technique with negative 
imaginaiy potentials is presented. Reactive probabilities are then obtained considering only the reactants arrangement 
channel and Jacobi coordinates. CoUinear and infinite order sudden results ate shown for the CI + HQ symmetric reaction, 
showing excellent a êement with imvimis lesults, including die re{m)dacti(m of sharp reactive scattering resoiuuices, at a 
faction of the computer time and memoiy requirements. 01998 Elsevier Science B.V. All rights reserved. 

1. Introduction 

Among the algebraic, numerical and computa-
tional developments in molecular reactive scattering 
theory, special impetus has been taken recently in the 
use of complex absoibing potentials to decouple a 
subset of the close-coupling equations [1,2]. This 
began when Neuhauser and Baer realized that decou-
pling the reanangement channels could be achieved 
by sinqily adding a purely negative imaginaiy linear 
potential (NIP) ramp at the entrance of the products 
arrangement [3-S]. Ulis idea exploited the fact that, 
for reactive collisions, the probability flux loss to-
wards reanrangement states takes place in a rather 

' CoRespoading author. 

well-delimited region of configuration space, which 
is different from that where the inelastic flow trans-
fer processes take place, between states of the same 
reanangement chatmel. Therefore, a suitably defined 
fiinction, dqjeiding on physical coordinates, is found 
to be able to discriminate the reactive con )̂onent of 
the wavefimction and absoib it. This results in a 
local, snKMth and weakly energy-dependent NIP. 

On such basis, powerful state-to-all time-depen-
dent (TD) and tinœ-incfependent (TI) meüiods for 
reactive scattering were develq)ed, which avoided 
the well-known problem of artificial back-reflection 
of the wavqncket at the grid limits (in TD methods) 
and the coordinate transformation between rear-
rangemrat channels. The combination of the TI 
proach with a variational technique, applied to solv-
ing the scattering problem by a splitting of the 

0009-2614/98/$19.00 O 1998 Elsevier Science B.V. AU tights reserved. 
PU: S0009-2614(98)00S99-S 
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hamiltonian between a reference problem and the 
remainder pertuibaticm, allowed extracting state-to-
state reactive jmibabilities. This methodology has 
been successñilly applied to several triatomic and 
tetraatomic systems, within coupled-states and infi-
nite order sudden (IOS) approaches, respectively, as 
well as to electronic non-adiabatic reactions [6,7]. 
Other H methods, using one form or another of 
absoifoing potentials, have been proposed since then. 
For instance. Miller's group [8] have successfully 
used NIPs to force outgoing boundary conditions in 
the calculation of the cumulative reaction probabil-
ity, as a means for the direct rate constant calculation 
without solving the whole state-to-state problem. 
Another promising class of methods which make use 
of NIPs are those classiñed as 'artifícial boundary 
inhomogeneity' [9-11]. 

The alternative approach to treating reactive scat-
tering by means of Tl methods, namely the use of 
propagaticm techniques on a suitably expressed 
hamiltonian — concerning coordinate systems 
and/or reduced dimensionali^ approximations — 
has been less explored in terms of incoipoiating the 
NIPs. Neuhauser et al. [12] added to a propagative 
inelastic method a NIP, using an adiabatic basis set 
and the Numerov method for propagation. It led to 
üie calculation of state-to-all reactive probabilities 
for the collinear H-Hi j reaction. Shortly after-
wards, Baer et al. [13] extended the previous method 
to the reactive infinite-order sudden q>proximation 
and i^lied it to the Ar -(- H2 system, ^sults ap-
peared to be closer to experiments than those ob-
tained with a 'traditional' O.e. without NIP) R-IOS 
method. 

A new implementation of a propagation method, 
which is intended to impove the efficiency of the 
previous techniques, is presented here, focusing in 
this work on its feasibility and the good pofonnance 
of the numerical code. Results for the present test 
appear to be easily and well converged, as well as 
coiiKádent witfi ttose obtained with a completely 
different numerical technique. Remarkably, it has 
been found that strongly sharp reactive scattering 
resonances have been well reproduced. Conq>uter 
tiroes and RAM memcsy requirements l»ep into 
reason^ly low values, thus improving the already 
well-known performances of propagation-based 
methods. 

2. Outline of the method and numerical results 

The method is based on the inelastic R-matrix 
propagation [14] of a Hamiltonian expressed in reac-
tants Jacobi coordmates, generalized to deal with the 
complex interaction matrix which results with the 
inclusion of a NIP at the entrance of the products 
arrangement channel. The collision is then treated as 
being inelastic and reactivity is calculated from the 
flux loss, i.e. the difference between unity and each 
state-to-all inelastic probability sum. 

In opposition to the variational methods, for which 
an eigen problem must be solved for a large matrix 
for each partial wave and energy, the propagation 
methods use a larger number of smaller dimensional-
ity matrices to propagate the solution along the 
scattering coordinate. This latter method leads to 
much smaller memory requirements than the varia-
tional, but to a larger amount of input-output to 
secondary memory. The use of an absorbing poten-
tial appears then well suited to this problem, since it 
greatly reduces the number of translational sectors to 
propagate along. It thus leads to a diminution in 
those input-output operations which are the slowest. 
Moreover, within the large class of propagation 
meüiods available in the literamre, the invariant em-
bedding methods [IS] have shown to be not only the 
fastest but especially adapted to deal with the 
closed-channel explosion problem [16]. Therefore, it 
î qiears that the use of an invariant imbedding propa-
gator, adapted to include complex interaction matri-
ces, is one of the key factors leading to a good 
numerical performance. Here just the novel feaUnes 
of the present approach will be outlined and full 
details of the diecHetical nnthodology, as well as an 
extended 3-dimensional !q>plication to several tri-
atomic systems, will be given elsewhere [17]. 

The method essentially consists of the reduction 
of a reactive scattering {Roblem to an inelastic p n ^ 
lem through the introduction of a proper complex 
potential and then i^iplying the inelastic scattering 
R-matrix propagation scheme [14]. This propagation 
technique had to be properiy generalized to take into 
account die ccnnplex-valued algetoa arising from die 
use of an absoibing potential. In particular, a suitable 
reference problem [14,18] had dien to be formulated 
consistendy widi the resulting complex eigenvalues 
of die interaction matrix. This led to a modified 
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expression of the sector propagators [14,18] and 
further to the following recursion relation of the 
R-matrix, 

Here, R<*' is the global R-matrix up to the kth 
sector, ( i= 1, 2, 3, 4) are the kth sector R-
matrices and 1, i ) is a transformation matrix 
which relates the solutions across the sectors. The 
present expressions differ from those given in Ref. 
[19] basically 

in the complex valued nature of the 
matrices involved and in the explicit inversion of the 
Q matrix instead of having taken its complex trans-
pose. State-to-all reactive S-matrix elements are then 
obtained subtracting from one, the state-to-all inelas-
tic counterpart which is obtained directly firom in-
elastic boundary conditions [14], instead of the reac-
tive boundary conditions emerging ñvm the standard 
reactive R-matrix technique [19]. 

Rather than testing the method with the prototypic 
H-I-H 2 reaction, we thought more challenging to 
look at its applicability to the coHinear CI + HCl 
symmetric reaction. As is well known, the acute 
skew-angle characterizing the system poses special 
difficulties when treating it with hamiltonians ex-
pressed in other than hyperspherical coordinates. 
However, since prcqiagation is performed in a single 
arrangement channel, those problems arising as a 
consequence of the strong reaction-path curvature at 
the transition state region are directly avoided. 

The inclusion of a NIP required an independent 
tunning of its adjustable parameters before undertak-
ing the scattering calculations. The final set of pa-
rameters was easily found, once the proper location 
of the linear ramp after the transition state zone was 
stablished, since a wide range of both the width and 
height of the linear ramp led to essentially stable 
results, in agreement with previous experience [3-6]. 
In particular, ramp heights (Í/) between 0.3 and 1.0 
eV and ramp widths (D) between 0.5 and 1.5 Â 
determined the region for which probabilities were 
stable. Then, the reactive probabilities obtained with 
the final set, chosen to be 0.5 eV (U) and 1.0 Â (D). 
were compared and found to coincide with die R-ma-
trix results of the detailed hyperspherical propagation 
iaiculations of Bondi et al. (BCMR), performed on 

Cl+HCl 

Total Energy / eV 

Fig. I. Slate-tiv-all collinear reaction probabilities for the a + HCl 
synunetric exchange reaction, as a function of total energy, for the 
t) - 0 and r - 1 initial vibrational states, on üie BCMRSsLEPS 
surface. 

the same LEPS [20J. It is important to emphasize that 
a unique set of NIP parameters was used for the 
whole energy range. Fig. 1 shows the dependence of 
the state-to-all reactive probabilities with total en-
ergy, in the range of 0.32-1.00 eV, for the y = 0 and 
V - 1 initial vilnational states. A total of 2156 en-
ergy points have been calculated, using a finer grid, 
as explained below, around the sharp resonance re-
gions. Convergence was reached with the inclusion 
of 10 vibrational states, although the final number 
used was 15 in order to allow for a high degree of 
accuracy testing. Propagation ran from 2 to 8 Â. 
Numerical results are found to coincide well, within 
the whole eneigy range and for all initial vibrational 
states, with those of BCMR. 

As a further fine-tuned test of scattering methods 
incorporating NIPs, the extremely sharp reactive 
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Table 1 
Comparison between BCMR and the piesent wotk resonance 
positions (in eV) fca- tbe coUinear CI+HCI syminetric exchmige 
reaction 

BCMR Present woric 

0.58848 0.58886 

0.61960 0.62000 

0.84492 0.84529 

0.88359 0.88397 

0.91609 0.91645 

scattering resonances shown in the BCMR results 
were also searched in the present case. As seen in 
Fig. 1, they have been properly characterized by 
including a sufficiently fine grid of energy points 
(the eneigy step size being up to 0.00001 eV). Their 
positions and widths are found to be close to BCMRs, 
as shown in Table 1. In particular, the position 
agrees within approximately four-tenths of meV, for 
all resonances considered. After checking accurately 
the origin for the discrepancies found (masses, poten-
tial parameters, . . . ) and given the fact that the 
differences between BCMR and the present work 
results are essentially constant, tíieir origin may be 
due to an energy shifting caused by small differences 
in the units conversion factors used. Nevertheless, 
given the remarkable differences between the numer-
ical approaches used in bodi calculations, tfie present 
results constitute a good benchmark for stid>Iishing 
the ability of absorbing potential-based methods to 
reproduce exact quantum scattering calculations. 

As for computer performances, it is found that tbe 
simplicity introduced by avoicUng the reagent-to-
product channel transformation mains the calcula-
tion of each reaction probability quite fast. There-
fore, the calculation bectm^s shtxter because the 
number of sectors is approximately halved and, in 
most cases, fewer basis fonctions are mxessaiy üuui 
in the traditional ¡nopagation calculations. Utt i m -
plications introduced by the absotbing potential, 
namely the majOT width and reduced simplicity of 
the potential profiles along die vibrational coordi-
nate, as well as the slightly more involved a]g<»ithm 
for |H<q»gation [17], clearly do not reverse the sav-
ings introduced by the above simplifications. Explicit 
figures on a>U time ccmsumption and relative accu-

racy are given in Table 2. for different sets of total 
sector number and dimension of the vibrational ba-
sis. An infinite order sudden hamiltonian was consid-
ered for this case (resulting the hereafter named 
NIP-IOS method). In the table it can be seen that 
NIP-IOS execution times are four times smaller than 
R-IOS (i.e. the traditional reactive-IOS method 
[21]), at tile same accuracy. This elapsed time can 
even be reduced by a factor of six and the error still 
would remain acceptable. It therefore shows tiiat 
accurate results can be obtained with a fraction of 
tile computer time necessary when tiie standard R-
lOS technique is used. In the present CI + HCl case, 
results ÜFom Table 2 clearly indicate tiiat the major 
gain in CPU time and memory consumption come 
from die much smaller basis set dimension neces-
sary, due to the use of reactants arrangement Jacobi 
coordinates instead of circular collision coordinates 
and the smaller number of sectors necessary for 
propagation. 

In conclusion, ñirther evidence has been pro-
vided, in the present work, for the ability of NIP-
based methods to reproduce accurately exact results 
obtained by means of other well-stablished tech-
niques. A most remarkable fact is that even those 
dynamical features dramatically depending on colli-

Table2 
Comparison of accuracy and CPU time consumption between 
cooveiged R-IOS fixed-angle (y - 180°) cross-section calcula-
tions Oast row and bold) for tbe Q - f H C l system, for a total 
eneisy of 0.6 eV, and equivalent NIP-IOS results fm different 
values of tbe main numerical parameters (fiom first to last but one 
row) 

NS NV %ERR Time(s) 

300 30 0.00 3508 
300 10 0.00 389 
300 7 0.03 258 
200 15 0.13 503 
200 10 0.13 261 
150 15 0.30 378 
150 10 Q.30 194 
400 rt - 1174 

NS. number of tnnslational sectors; NV. vibrational basis set 
dimeiuioa; % ERR. percentage error with respect to the first row 
calculatians; time: elapsed time on a RISC 6000 IBM Woi tsu-
tion. 
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sion energy, i.e. the sharp resonances which charac-
terize the collinear CI + HCl reaction, have been 
reproduced in the present calculations. Furthermore, 
the present calculations constitute a most demanding 
test concerning the accuracy of NIP-based methods, 
when compared against well-staWished exact tech-
niques. Moreover, our new implementation of the 
invariant imbedding R-matrix propagation technique 
has shown to be computationally competitive when 
compared to methods which need to propagate along 
both reactant and product arrangements. It is worth 
mentioning that a unique, easily found linear absorb-
ing potential ramp has been used for the whole 
calculation. 

Finally, it is interesting to point out that the 
present method is close in spirit to the detailed 
quantum transition state theory of Light and Al-
tenberger-Siczek [22,23]. However, the use of com-
plex absorbing potentials removes the approxima-
tiOTs resulting from the imposition of the boundary 
conditions at the transition-state surface. Work is in 
progress for extending the present code to 3D (both 
exact and approximate) calculations for triatomic 
systems and to approximate calculations of poly-
atomic systems. 
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8.2 Comment in the 110 Faraday Discussion on 
Chemical Reaction Theory. General Dis-
cussion. 

Faraday Discussion 110 (1998) 236-238 
Here we present the comment with which we contributed to the General Dis-

cussion in the 110 Faraday Discussion on Chemical Reaction Theory. Our com-
ment concerned an article by Peng et aZ. [69] in which they decoupled reactants 
and products. We thought it would be interesting to present in this context 
our recent implementation of the NIP to the R-matrix propagation scheme. In 
particular we showed the results obtained for the application of the new method 
to the Ne -I- H} NeH* -t- H reaction. Cross-sections for about 200 energy 
values, ranging from 0.7 eV to 1.1 eV, were computed and evidenced a markedly 
structured reactivity. 
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use of a ground-state transmission coefficient for including dynamical tunneling and 
nonclassical reflection contributions.'* 

1 S. L. Mielke, G. C. Lynch, D. G. TniUar and D. W. Schwenke, Chem. Phys. Utt., 1993, 216. 441; S. L. 
Mielke, G. C. Lynch, D. G. Tnihlar and D. W. Schwenke, J. Phys. Chem., 1994,98,8396; S. L. Mielke, T 
C. Allison, D. G. Truhlar and D. W. Schwenke, J. Phys. Chem., 1996,100,13588. 

2 H. Eyring, J. Chem. Phys., 1935,3,107. 
3 K. S. Pitzer, Quantum Chemistry, Prentíce-Hall, Englewood Cliffs, NJ, 1953. 
4 B. C. Garrett and D. G. Tnihlar, Proc. Natl. Acad. Sei. USA, 1979, 76, 4755; B. C. Garrett and D. G. 

Truhlar, J. Chem. Phys., 1980, 72, 3460; B. C. Garrett, D. G. Truhlar, R. S. Grev and A. W Magnuson 
J. Phys. Chem., 1980,84,1730; D. G. Truhlar and B. C. Garrett, Aec. Chem. Res., 1980,13,440. 

Dr Nyman commented; From calculations on reactions where a light atom is trans-
ferred through a potential barrier, it is my experience that the J-shifting approximation 
works well in the tunnelling regime and less well as the energy is increased (see, for 
example, ref. 1). It has already been mentioned that the J-shifting approximation is 
expected to work best for reactions with a potential barrier so that there is a locahzed 
transition state, where the rotational constants used in the J-shifting approximation are 
evaluated. My observation is in agreement with this and indicates that, as the energy is 
increased, the potential barrier is less efficient in localizing the transition state. 

1 G. Nyman, J. Chem. Phys., 1996, MM, 6154. 

ftof. Truhlar commented: I would like to draw attention to one aspect of the spin-
orbit coupling in halogen reactions that has very general implications, as we have noted 
elsewhere.' This is the effect of the spin-orbit splitting on barrier heights. For most 
halogen atom reactions with tight transition states {e.g., a + CH4 but not necessarily 
downhill association reactions), the spin-orbit splitting A£so is effectively quenched at 
the transition state. This rather general conclusion arises not from detailed calculations 
of spin-orbit matrix elements but rather from the large energy gap between the ground 
and first excited electronic state at the transition state geometry; hence the second order 
perturbation theory expression for AEjo is small. This quenching of the spin-orbit split-
ting means that any calculation of the barrier height that neglects this effect will under-
estimate the barrier height by one third of the spin-orbit splitting, i.e., by 0.4, 0.8, 3.5 
and 7.2 kcal mol"' for reactions of F, CI, Br and I, respectively. Electronic structure 
theorists may be loath to include this effect because their calculated barrier heights are 
usually too large (due to the incomplete treatment of electron correlation), and raising 
the barrier by including spin-orbit lowering of the reactant energy will only make the 
situation worse. Nevertheless, the effect is real, and it will have to be included as the 
accuracy of the electronic structure calculations improves. 

1 O. Roberto-Neto, E. L. Coitiño and D. G. Truhlar. J. Phys. Chem. A, 1998,102,4568. 

Mr Huarte-Lamñaga and Dr Gimenez^t communicated regarding the paper by 
Peng et al.: Peng et al. suggest in their article that, in their attempt to get state-to-state 
information by means of the reactant—product decoupling method, the product scat-
tering wavefunction can be calculated solving either (i) the time-ind^ndent Schröd-
inger equation with an energy-dependent source term or (ii) Üie time-independent 
homogeneous equation for the full vector wavefunction, through the use of an adequate 
propagation scheme. 

We have recently implemented a procedure which is rather close in spirit to the 
second case, although it is devised to obtain state-to-all information. It is based on 
combining a generalization of the propagative Ji-matrix technique with negative imagin-

f f Also Prof. Aguilar, Universitat de Barcelona, Spain. 
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ary potentials (NIP). State-to-all reactive probabilities are then obtained considering 
only the rcactants arrangement channel and Jacobí coordinates. In particular, the 
method is based on the inelastic Ä-matrix propagation, generalized to deal with the 
complex interaction matrices resulting from the inclusion of an NIP at the entrance of 
the products arrangement channel. The collision is then treated as being inelastic and 
reactivity is calculated, as usual, from the flux loss, i.e. by subtracting from unity each 
state-to-all inelastic probability sum. 

The modification of the /f-matrix propagation scheme starts with the formulation of 
the reference problem consistent with the resulting complex eigenvalues of the inter-
action matrix. This leads to a modified expression of the sector propagators and further 
to the following recursion relation for the Ä-matrix, 

¡w = [r"" - Q- '(k - l,)t)Ä'*- - 1 , / c ) ] - ' 

where R(k) is the global R-matrix up to the kth sector, ri" (i = 1, 2, 3, 4) are the klh 
sector Ä-matrices and Q{k - 1, k) is the transformation matrix which relates solutions 
across the sectors. The present expressions differ from those given in the original formu-
lation of the inelastic Ä-matrix method' basically in the complex-valued nature of the 
matrices involved and in the explicit inversion of the Q matrix instead of taking its 
complex transpose. State-to-all reactive 5-matrix elements are obtained by substracting 
from one the state-to-all inelastic counterpart. It is in turn obtained directly from inelas-
tic boundary conditions, instead of the reactive boundary conditions applied in the stan-
dard reactive Ä-matrix technique.^ 

The method was first tested with the collinear CI + HCl symmetric reaction. A 
unique set of NIP parameters was found to be able to reproduce the previously avail-
able collinear reaction probabilities, including the extremely sharp reactive scattering 
resonances.^ Reactive state-to-all infinite order sudden (IOS) cross-sections were 
obtained, with the same accuracy, using ca. one third of the vibrational basis dimension 
and one fifth of computer time than the standard Reactive IOS method. This reduction 
in computational needs is found to be due essentially to two factors: first, only one half 
of the sectors are necessary for propagation and, second, fewer basis functions are 
required since the complications introduced by the transition from reactants to products 
are directly avoided.* As a consequence, the present approach seems to be well suited to 
propagative techniques, since these are based on the use of a large number of relatively 
small matrices to propagate the solution along the scattering coordinate, so that much 
smaller memory requirements are necessary than, for instance, variational methods. 
However, a larger amount of input-output to secondary memory exists. Therefore, 
decreasing the number of translational sectors to propagate along leads to a diminution 
of those input-output operations which are the slowest. 

The application to other involved triatomic systems (Li -)- FH, Mg -f- FH,...) will be 
given in a future article.̂  Here we outline the ability of the present approach for resolv-
ing structured reaction probability profiles. Fig. 12 shows the fixed-angle IOS cross-
section, for the collinear geometry of the Ne -h Hj* NeH* + H reaction. This is a 
collinearly dominated endoergic process with an electronic minimum found just before 
the transition state configuration. The energy dependence of the fixed-angle cross-
section is found to be dominated by a pattern of resonance peaks, which survive the 
angular momentum summation. This result is in accord with the complex-forming 
nature of the collision process, as established in previous studies.® The results in Fig. 12 
have been obtained, after careful checking for convergence, with one set of NIP param-
eters, 15 vibrational basis functions and 200 total energy values in the 0.7-1.1 eV range. 

1 E B. steidjel, R. B. Walker and J. C. Ught , J. Chem. Phys.. 1978,69 3518. 
2 J. q . Light and R. B. Walker, J. Chan. Phys.. 1976, « 427Z 
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0.8 0.9 1.0 1.1 
Total energy/eV 

Fig. 12 Fixed-angle IOS cross-sections [<r(y)], for the collinear geometry of the Ne -I- Hj"^ — N e H * 
+ H process, within the 0.7-1.1 eV total energy range. Results are shown for the reactants vibra-

tional state t• = 0 , 1 and 2. 

3 F. Huarte-Larrañaga, X. Giménez, A. Aguilar and M. Baer, Chem. Phys. Lett., 1998, 291, 346. 
4 F. Huarte-Larrañaga, X. Giménez and A. Aguilar, J. Chem. Phys., in press. 
5 F. Huarte-Larrañaga, X. Gimenez, J. M. Lucas and A. Aguilar, in preparation. 
6 M. GUibert, R. M. Blasco, M, González, X. Gimenez, A. Aguilar, I. Last and M. Baer, J. Phys. Chem., 

1997,101, 6821. 

Prof. J. Z. H. Zhang opened the discussion of Prof. Balint-Kurti's paper: When 
state-to-state scattering results are needed. It is not desirable to use a single set of Jacobi 
coordinates to carry out the wavepacket propagation since this will drastically increase 
the number of basis functions and numerical grids as a penalty for not choosing the 
correct coordinates. In such case, it is advisable to use more suitable methods to do 
state-to-state calculations. The RPD (reactant-product decoupling) method is a general 
and attractive method for such applications. 

Dr Aithorpe addressed Prof. Balint-Kaurti: Might I suggest that your wavepacket 
calculations on O -I- Hj and O -t- HD would benefit from an application of the 
reactant-product decoupling (RPD) approach of Zhang and co-workers?' This would 
reduce the size of the Hamiltonian matrices (used to propagate the wavepacket) and 
would enable you to switch from reactant to product coordinates. I would like to 
propose a modification to Zhang's original RPD approach, which is applicable when-
ever one wants to calculate the state-to-state reaction probabilities into one product 
channel. 
4 The original RPD scheme' partitions a reaction as shown by arrow I in Fig. 13, for 
fhe simplest example of the two-dimensional A -f- BC AC -t- B reaction. The coordi-
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8.3 The application of complex absorbing po-
tentials to an invariant embedding scatter-
ing method: I. Theory and computational 
details. 

Journal of Chemical Physics 109 (1998) 5761-5769 
In this article, the theory of our extension of quantum scattering methods, 

based on the propagativa R-matrix method, to deal with complex absorbing po-
tentials was developed in detail. Assuming we had not been by no means pioneers 
in the use of optical potentials, nevertheless we have just implemented them in 
a propagative scheme, the article intended to give first a careful review on the 
historical use and development of such optical potential techniques. Some brief 
outlines on this have already been given in section 2.7. The main aim of the 
published work was to describe in full detail the key aspects that had to be mo-
dified on the R-matrix propagation scheme, so that it could take into account 
the complex valued nature of the interaction matrix. As we have already stated 
in sections 2.7 and 8.1, through the proper introduction of a negative imaginary 
potential (NIP) one can reduce the reactive problem into what we have called a 
pseudo-inelastic one. Then, one can carry out a calculation as if there would be 
only inelastic scattering which is much more simple to treat and then assign the 
flux lost to the reactive probability flux. This absorbing potential is in our case 
a negative imaginary linear ramp which depends on the physical coordinates of 
the system. The introduction of such imaginary potential causes the interaction 
matrix in the close coupling equations to become complex-valued. The R-matrix 
propagation method, as originally formulated, assumes the interaction matrix is 
real and symmetric and this was no longer our case. Therefore, the propagation 
scheme had to be revised in order to generalize it to complex-valued interaction 
matrices. Essentially, modifications imply basically a generalization of the sec-
tor constant potential solutions to quotients of exponential functions, instead of 
the usual trigonometric and hyperbolic functions, as well as the explicit inver-
sion of some transformation matrices which are no longer real and symmetric 
and therefore its transpose does not correspond to its inverse. The asymptotic 
matching was carried out as in the standard inelastic R-matrix propagation and 
then state-to-state inelastic probabilities were obtained. 

Once the R-matrix propagation had been generalized, we employed a infinite 
order sudden (IOS, see section 6.1) Hamiltonian for obtaining an explicit expres-
sion for the interaction matrix. Moreover, since we had already several results at 
hand using the traditional R-IOS methodology, in which the solution was prop-
agated in both reactants and products region, we thought it could be a good 
test of the new approach's performance. Thus, different runs of the developed 
computer code were undertaken for the calculation of the CI + HCl —> CIH + Cl 
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exchange reaction. Reliability of our collinear results had already been proven in 
the previous communication when compared to exact results from the literature 
(see 8.1). In this paper we showed the method stability, not only concerning 
the NIP parameters but also propagation parameters which turn into a better 
performance of the NIP-IOS code, as compared to that of the R-IOS. 
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(Received 1 June 1998; accepted 10 July 1998) 
In this article, an extension of quantum scattering methods based on propagative R-matrix 
techniques to deal with negative imaginary potentials is presented. Reactive probabilities can be 
then obtained, considering only the reactants arrangement channel and Jacobi coordinates. It has 
been necessary to generalize the R-matrix propagation method, in ratder to consider the 
complex-valued nature of the interaction matrix. The new formulation has been particularized, in the 
present case, to the Infinite-Order Sudden A{^ximation, for which several results, focusing on the 
reliaWlity and numerical peifmnancra of the method, will be shown. © J998 American Institue 
of Physics. [S0021-9606(98X)2338-1] 

I. INTRODUCTION 

The use of Negative Imaginaty mentíais (hereafter re-
ferred as NIP) as a tool for simplifying the ccmplexity of 
clase-<»upling scattering calculations has been considered 
for a long time.' Several applications to mtdecular systems, 
based on rather different formal iqjproaches, have been pro-
posed in the literature during the last years, fo r this reason, 
in order to put in the adrqiiatf ccntext the contributions de-
veloped here, it is worth beginning with a short revision rf 
what has been perfonned up to the date o i this subject 

Based m the well-known Feshbach decranposition,^ the 
absorbing potentials were first used in the field of nuclear 
physics.^ Typical applications considered both formal and 
phenomenological af^noaches for dealing with elastic pro-
cesses. For instance, complex phase shifts detennined from 
more or less approximated estimaticns of optical potentials, 
were used to account for piocesses such as the ab«»|^on of 
panicles by alcmic nuclei. 

As for its application to molecular collisions, two rather 
well-differentiated stages ought to be considered. The first 
focused essentially on elastic events when both inelastic and 
reactive processes take place at the same time, that is, sav-
ing the close-coufding equations retaining «ily one term.^ 
On one hand, fonnal developnaits dealt with well-known 
problems associated with the use of NII^ as, for instance, the 
nonlocality of the potential.' Adiabatic and decoupling ap-
proximations were also taken into account to sim|dify the 
dimensionality of the proHem.' Among odier relevant 
woiks. that of Wolken' can be pointed out, who devised a 
procedure for, given a numerically solved proUem, extiact-
ing that optical potential which allowed reproducing a de-
sired S-matrix subset This method was subsequendy used by 
Tnihlar and co-wockers* to study electroo-atom collisions. 
The main results found were that the shaip variations of die 
optical potential, found when the radial wave function has a 
node, could be smoothed without significantly altering the 
results. On the other hand, phenomenological approaches 

' 'Bsdramc naU: iiiloao«vy«up.qr.iib.n 

were also adĉ Med for the form of the NIP. Different ad hoc 
functional fonns with adjustable parameters were used by 
Marriot and Micha,' Micha and Rotenberg'" and Ross and 
colleagues," to succesfully reproduce experimental infonna-
üa i cm elastic data means ctf parametrizing the ̂ scHfMion 
as a function of the orUtal angular momentum. Although 
some insights on the elastic behavior of collisions in the 
presence of inelastic and reactive phenomena were obtained, 
no systematic procedure became available and the use of 
adjustable parameters limited its predictive capability. 

The second stage that we distinguish in the develc^ent 
of the (q>tÍGal potentials ai^icaNon to molecular systems be-
gins in 1986, when Kosloff and co-wocters'^ considered the 
problem of artificial back-reflection of wave packets. It usu-
ally takes place at the boundaries of the point grid defined on 
the configuiation space for time-dependent wave packet 
p n ^ a ^ c x i s . laitialiy, this problem was avoided extending 
die grid size, but this required very large amfHitalicnal re-
sources and limited its i^icabil i ty. As an alteniative sdu-
tion, they proposed the use of empirical forms of NlPs, based 
on similar treatments proposed for the stabilization of reso-
nance calculations'' and die photodissociation of 
mcdecules,'* so diat the wave packet is absnbed before d » 
grid edges have been reached, widxxit being altered in die 
inner refons. This insuring idea was further considered in 
detail by Neuhauser and Baer," who analyzed die cooditioas 
fcx- which a linear lamp, is an optimal functional that allows 
effective wave packet absoiption conditions. 

Shordy after, the same authors" pn^wsed a cranfrietsly 
different use t te absorbing linear lamp. Instead ^ a ä n g 
it in the far asymptotic region, it was situated right after die 
transition state, at the entrance of die products channel. With 
diis location, it is possiUe to consider that die absorbed flux 
correspraids to diat fraction of die total flux diat flows toward 
die products duionel. Moreover, die optimal absrai^on ccm-
ditioas woe found to be basically die same dian diose deter-
mined in dieir first study, i.e., in die asymptotic region. 
Therefore, it results in a local, soft, litde system- and energy-
dependent and easy to implement optical potential, w h i ^ 

0021-9fl0«»ert09(14>«78»»/$15.00 S781 e 1908 Anwrion kntltuts ot PhyMc* 
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can be used to obtain quantitative iofonnation on the total 
reactive flux. This i^irâamaiolcsicsl use ctf NIBs differs 
f m n the one ixeviously discussed for the elastic scattering in 
that the actual flux absnption takes place in a completely 
differentiated region of configuration space, i.e., the reactive 
part of the flux does not overlap in this region with the elas-
tic and inelastic parts. Therefore, a suitably placed NIP de-
pending <» phyácal coradinate should be, in principle, able 
to discriminate the reactive component of the flux and absorb 
it selectively, since it is the only fracticm of the flux reaching 
the region of configuration space where the NIP is placed. 

The main well-known advantage of this appioach stems 
on the fact that the close coin ing calcu]ati(»is simjrtify ba-
ncally to an inelastic scattering calculation. Since reactive 
flux is absoibed fairiy near to the strong interaction Kgion, 
one selves die pn>blem considering c»ly one (although 
somewhat perturbed) reairangement channel. Therefore, the 
calculation is simpUfied since Hamiltonians defined on a 
single arrangement channel can be used and basis set expan-
sions may also be accordingly devised. On the other lúnd, 
the method, as originally formulated, is only cqialde of pro-
viding total reaction S-matrix elements and the calculation 
becomes more compUcated since complex algebia must be 
then considered. 

The first imi^onaitation the NIP method to reactive 
scattering was based on the time-dependent (TD) 
methodolc^ . " However, nothing prevented to implement 
the above idea, as originally fonnutoed, to time-independent 
( n ) iqjproaches. This idea led Neuhauser and Baer" to de-
velop a TI-NIP method. In particular, it was based oa die 
panition erf' die Hamiltonian into a reference and a peiturba-
tion problem. They also added another NIP in the far reac-
tants asymptotic region, so that the scattering problem was 
converted to a boundlike problem. Probabilities were ini-
tially calculated by means of flux fonnulas. 

The calculation of state-to-state probdiilities and difler-
mtial cross sections was made possible with the incocpora-
tion of a variational principle to the above fonnulation." 
Efficiency was fuiflier improved with the use erf localized 
Gaussian functions as Üie translational basis seL This basis 
set is defined luing only reactants-oirangement channd Ja-
cobí coordinates," and not a simultaneous expansion in d l 
arrangement diannels, as it is common to tra^tional varia-
tional mediods (wUdi leads to nonlocal, exchange-type in-
tegrals and overcompleteness with the basis set may also 
occur)." 

The appUcation of the above TD aid TI metbodolc^ies 
has led k) accuiale studies erf' tiiiúoaiic (using exact" and 
coupled-sbtes" Hamiltonians) and tetratomic (using ICS 
Hamiltonians'') reactions at the cross section level. Four-
mathematical dimension treatments'^ and exact probabilities 
have been produced for the piotolypic tetiatomic reactions 
Hi-t-OH" and Hi-t-CN.'* The most i r tned v»Bon oí die 
TI-NIP method has also been die basis for die fonnulation 
a new a n r a c h to treating electronically nonadiabatic 
prooenet ." 

OÚierTI appraadies have been propoaed in the literature 
diat use one form or anodier of absorbing potentials. Among 
tbem, it is isterMing to mouion ttme t ^ Seidenuu, Mandie 

Huarte-U la, Giménez, and Aguilar ^ 

and Miller,^ who use dsscaUng boundary conditions by 
means of a Wood-Saxon potential to ensure outgoing 
boundary conditions for the direct calculation of rate con-
stants via a flux-flux autocorrelation operator. The mediod 
has been recently applied to die calcidation of Uie nue con-
stant for several reactions: Hj-I-OH.'' CI+Hi , ' " O+HCI." 
H-I-Oj" and the ketene isranerization." OUier promising 
mediods, although not yet so extensively tested, which can 
make use of NIPs, are Uiose classified as "artificial bound-
ary inhomogeinity":^' the time-independent wave packet 
mednd of Kouri el a¡.,^ the spectral projectirai apptach of 
Mandelshtam and Taylor'' and the generalized boundary in-
bMm^oieity method of Jang and Light^' This latter mediod 
actually demonstrates diat it is possiUe to handle the correct 
reaction probabilities wiUi die use of real, short-ranged 
terms. 

The well-known alternative sqiproach to treating reactive 
scattering means of TI mediods, namely die i se trf' propa-
^ t ion techniques on a suitably expressed Hamiltonian— 
concerning coordinate systems and/or reduced dimensional-
ity qjproximations—has been less ex|dored in terms of 
incorpoiating die NIFs. Neuhauser, Baer, and Kouri'^ added 
to a propagative inelastic mediod a NIP. using an adiabatic 
basis a » and Oe Numerov mediod for propagation. It led to 
the calculation of state-to-all reactive probabilities fra- die 
coUinear H-I-Hj reaction. Shordy after, Baer, Ng, and 
Neuhauser^' extended die previous method to die reactive 
infinite-order sudden approximation and ^>plied it to the 
Ar-I-H^ system. Results appemtd to be dorer to experi-
ments dian those obtained with a traditional (i.e., without 
NIPS) R-IOS mediod. 

The introduction of a propagation scheme into a NIP-
based scheme scattering method may be understood in terms 
of the seek for higher efficiency while keeping die accuracy. 
In oppositicn to the variatimal methocb, for which an eigen-
proUem must be solved for a very large matrix f w each 
partial wave and each energy, die propagation methods use a 
larger number of smaller dimensionality matrices to propa-
gate die solution along die scattering coordinate. This latter 
mediod has mudi smaller memory requirements, but needs a 
l a i ^ amomt of input-outpat to secondary memory. The 
use of an absorbing potential appears then well suited to diis 
problem, since it gready reduces die number of ttanslational 
sectors to propagate along. It dius leads to a diminution in 
those input-output operations which are. by far, die slowest 
Moreover, widiin die large d œ s of propogaticm methods 
available in die literature, the invariant embedding methods^ 
have shown to be not only die fastest bat espedally adiqited 
to deal widi die dosed-channel exfriosion problem.*' In ad-
dition, while invariant embedding mediods display the so-
called symplectic symmetries,*' which ensure die unitarity 
and symmetry cf the S-matrix in standard Allocations, die 
Numerov and related propagation schemes do not show 
them, so diat imitarity and symmetry is not always guaian-
teed. 

At dlis point, an additional reason for exploiing die com-
bination between invariant embedding prop^ation and ab-
sorbing potential «nages , since die present qiplicatiao 
makes an explicit use of nonunitarity. This leads to the ques-
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tion of how really accurate NIP-based methods are, since the 
simpleclic properties have not been checked with non-
unitary operators.'" Although remarkable studies have been 
perf<xin«i, in general, œ the comparison between well-
established traditional methods and NIP ones, which show 
that results are basically identical or, at least, that differences 
are reasonably small, the above discussion stresses that there 
is still missing a detailed test on the accuracy limits of the 
NIP methods. Moreover, such a study would connect the 
rather numerous studies a i the relative efficiencies (rf several 
functi(»al forms of NIRs^ with its actual use in scattering 
methods. For all these reasons, a rather demanding test has 
been already performed^^ as a first application of the method 
presented here. It showed, in particular, its ability to repro-
duce the extremely sharp resonances that are characteristic of 
the a + H C l collinear reactive scattering. An interesting re-
sult is that symmetry has been found to be highly preserved 
in all applications. In addition, since an explicit use is made 
of Öie "amount ofuniutrity" lost when the absorbing poten-
tial actually modifies the radial solution, the present applica-
tion shows to be consistent with the formal requirements, as 
it will be discussed below. 

The remainder of this paper is structured as follows: In 
Sec. II an outline of the theoretical methodology, stressing 
on the modificaticms that have arised with the intnxiuction of 
the NIP, is presented. In Sec. Ill we deal with the practical 
implementatiai and numerical performances, while in Sec. 
IV we conclude. 

II. THEOREnCAL FUNDAMENTALS 

A. TrBatmofrt of the reactive system as a 
psaudoinelastic process 

It is well known that the Close-Coupling treatment of a 
multianangement reactive system requites the solution of a 

equation set, where AT,.... .N^, are the differ-
ent arrangement open channels. Mraeover, a transformation 
from the reactants coordinates to those of the products is 
required or, alternatively, more invdved coordinate systems 
have to be used. Therefcm, the treatment a reactive system 
is conmcmly much more cmofdicated than inelastic scatter-
ing. 

As outlined in the Introduction, the complex absorbing 
potentials can be used for the study of a reactive system 
vrithout having to propagate the solution into the products 
arrangemenL The cmsequence is that we will not only save 
the iModuct arrangonent channels (Hg. 1) but, even in the 
case of sim|der condinate systons, the tzansfcvmaticn be-
tween coordinates as well. As already noted, the basic idea is 
to insert a NIP, V,(Ä,r), at the products channel entrance. 
According to Ref. 38 we have chosen a linear function of the 
vibrational coordinate (r) as a convenient fonn of the NIP 
such that 
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W * . » - ) ' r^<r<r.¡, R,<R<R^, (i) 

, 0. outside. 

Therefore, a phenomendogical (rather than formal) ap-

FIG 1. Schematic i^esentaion of a reactive fixed angle PES where a NIP 
has been placed on the entrance to the ptoducts arrangement 

proach has been assumed to incorporate the optical potential 
into the scattering equations. The complex potential is di-
rectly added to the Hamiltonian, 

(2) 
Since this potential is a function of the physical coordinates 
it can be jkaced so that only the reactive flux is absorbed. 
The reactive system can then be considered from the com-
putational perspective as an inelastic calculation and there-
fore be solved by an inelastic scattering algorithm, but taking 
into account that the interaction matrix will now contain 
complex factors. The calculation then yields all the state-to-
state inelastic probaUlities that result when the reactive pro-
cess is pesent, and one can easily obtain global reactive 
Fwobabilities, for a given reactants state, by subtracting f ran 
unity the sum of all state-to-state inelastic probabilities cor-
responding to a given initial state. 

B. Tiwtmant of the inriasticHke systam. 
Ganarallialion of <he R-matrix propagation nnMliod 

The set of cou{^ed equations that describes the scattering 
{xxx;esses can be written in matrix mKaticm, independently of 
which specific Hamiltonian is used, as 

é 
^ (3) 

where ^ are the translational scattering functions and W is 
the so-called interaction or coupling matrix. These equations 
are obtained, for instance, through the expansion of the total 
wave function in an orthonormal target basis set or in 
an adiabatic basis set. 

(4) 

where X is the translational scattering coordinate, orthogonal 
to all internal coradinates, x. This equatioi can be efficiently 
solved by ptqagalion jointly with an adiabatic basis set In 
particular, we will use in the present case the R-matrix 
propagation method, which propagates the inverse logarith-
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Q Q O 0 

HG. Z Schematic repreaenlation of the propagtfion aectorizatioa L stands 
for the left side of the Mctor liimt and R stands for the right side of the 
aecur limit 

mic derivative of the scdution rather than the function itself. 
For inelastic pnMons, the ^obal R matrix is defined so as to 
always relate fimctions and derivatives, 

' . (5) 

1. The R-nmtrix propagation 

In this section, the R-matrix ptqxtgatíi» tedinique will 
be briefly summarized. For a detailed presentation, see Refs. 
46, 47. Essentially, solving the dose-coufding ladial equa-
tions by propagation methods consists in dividing the entire 
range of die radial (scatt«ing) coordinate into small sectors. 
Inside each sector, the solution d ' a reference prcMem is 
built by means of a local sectw piopagatra- and imposing the 
invariant embedding boundary conditions, yielding a local R 
matrix. Then a global R matrix is oonstiiicted by assembling 
the local R matrices, in Hg. 2 a schraaatic lepresentaticm of 
the sector paititioning is presented. The banslational coordi-
nate is divided into M sectors, the first of which (1) is nearest 
to ttie origin and the last sector (M) is in the asymptotic 
range. Each sector is characterized by its tianslatiaaal coor-
dinate value at the center, R=Rt, and its width, h=h¡. 

The ex|riicit doivati«» OT the propagatic» dgoi thm 
staits expanding the total wave functicn at each sector in 
terms t i the actual tiuncated set of internal motion adiabatic 
eigenfunctioos. 

(6) 

Then a local tianslational Schiädinger equation is obtiiined 
for each sector as 

(7) 

A trai^ormation to a new basis erf' local tiaoslatioaal func-
tions, in which all the couplings are eliminated, is carried 
away through the diagonalization of the interaction matrix: 

(T» ' ) - 'W{«, ) l<*>=Xi( t ) . (8) 

(9) 

At this point, in the isual descripic» of t t e R-matrix propa-
gation for inelastic scatteiing, the eigenvalues trf' this inter-
action matrix were identified with the negative d the local 
kinetic eaagy available for translation.^ Now. this is no 
laaga- ao since we have artificially iiUraduoed a complex 
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potential in the interaction matrix and its eigenvalues will be, 
in principle, complex. This statement can, however, still be 
made for those regions where no NIP is set, such as the 
leactants' asymptotic region. Note also that (T<*')t has been 
substituted ty since W(Äj) is no longer real sym-

metric. 
Thus, the sector translationa! Schxodinger matrix equa-

tirai in this locally uncoupled representation takes the form 

(10) 

this equaticm can be solved for each sector together within 
invariant embedding boundary conditions,'" 

d V 0 I 9 
dR v' X' 0 v' 

dR 
sdutions ( I I ) 

<l>g=V'{R")=0, q)L=<p'(R')=l; 

here, <f¡ and tp-íR") both label the value of the function at 
the right coordinate braindaiy (R^R"). Equivalraitly, <Pi 
and vHR') stand for its value at the left boundary (R 
=R'). Sdutirais then are 

-)J>. 

where the v * and </>' functions are the generalization of the 
local sector solutions to complex eigenvalues. Since the in-
verse of the logaritinic derivative is the magnitude that is 
actually propagated and this relates the functirai and its de-
rivative, the expiessions for the propagator are 

<ft-'"l>l+l>V¡t • 

9it=cvi-*-d<p¡¡, ^^^^ 

which is usually eiqpressed in a convenient matrix notation as 

(13) 

the r-matiix bnng called the (k)th sector R matiix; its block 
elements are 

[rW r«> 

4 « . ° "rr rf. 

(14) 

where X̂  is the cortespoDdingyth sector solution eigenvalue 
and Ah is the sector width. 

Once the function has been propagated frran the inner to 
die outer boundary cf the sector, consttaints have to be ap-
plied to ensure the function's continuity between sectors. 
Thus, the locally uncoupled sector basis set is trans-
formed to the ^ representation and back to tiie repré-
sentation correspooding to the next sector. 
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(15) 

where 

Q ( t - U ) = (T<'- ' >) - ' e ( t - U)T<« 

= (T<'-")->«'<'-'>.íí»>T<". (16) 

NcMe tiiat the basis change is now peiformed using the in-
verse of the Uansfonnation matrix instead of the transposed 
used in Üie originat formulation.^ 

The R-matrix (nopagaticHi scheme consists in assembling 
recursively the sector R matrices, starting from the sector 
nearest to the origin and craitinuing toward the asymptotic 
configurati(»i. The algorithm that assemUes a new sector R 
matrix r<*> to an old global R-matrix and builds up a 
new global R'*' is the following:'^ 

where again Q"' a|q>ear5 instead of Qf. These arise from 
the basic properlies of the Cauchy standard popagators'" 
and they can be derived by relating these standard propaga-
tors to the invariant embedding raies. 

As in every recursion, one needs a point at which to 
start We therefore define an initial R matrix R ' " by 

(17) 

(18) 
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An expression for the S matrix is obtained in terms of 
the quantities actually computed, by combining (20) and 
(21), which leads to 

(22) 

which needs only a further scaling to satisfy the flux conser-
vation condition, 

(23) 

to get the desired result Here the 
wave vector matrix. According to Refs. 47 and 49, O and I 
are 

d 
O' = 5 . „ i i 

d 

h'Pik.R"). 

(24) 

which is the appropiate expression for regular boundary con-
ditions given a large repulsive constant potential.^ 

Thus, the final global R matrix is obtained, beginning 
with the initial matrix (18) and assembling recursively the 
sector R matrices, under the ctmtinuity requirement until the 
range of the global R matrix reaches the asymptotic region of 
the potential where the asymptotic boundary conditions are 
to be applied: 

#>=RVr. (19) 
Once the propagation scheme reaches the asymptc^c fi-

nal sector, it is useful to transform the translational solution 
from the uncoupled representation, tp^*'̂ , to the re|nesenta-
tion to be used for applying scattering boundary conditions, 
which coidd be a return to the primitive basis. Under diis 
transformation we have, for the R matrix, 

(20) 

where and (T<*")-' is used in 
place of (T<*")^ 

2, AByiiiptotic nwtehing 

The scattering information is extracted, as usually, by 
means of the scattering S matrix, which relates our transla-
tional asymptotic functions with the incoming and outgoing 
asymptotic solutions, so that 

where n.m label v.jandv'. J', respectively, and A'", A" ' 
are the first and second kind Hankel spherical functions and, 
in the present context, I labels the orbital angular momentum 
quantum numbers. 

This treatment yields, finally, all state-to-slate single an-
gular momentum inelastic probabilities that will be treated 
later on. 

C. Impiamentation of the abaorbing poten«al in an 
IOS nialliod 

Once the R-matrix method has been generalized to deal 
with complex potentials, constructing the relevant scattering 
quantities needs die speciiicaticsi of the means for obtaining 
an explicit interaction matrix W. In the present work, a 
simple infinile-order sudden (IQS) Hamiltonian*'" has been 
used for that purpose, with the aim of using a simple method 
to test Ae (sesent imi^ementation but at the same time test-
ing it extensively. For the latter purpose, we have on hand, 
several results using the traditional R-IOS meUiod,""'' in-
cluding systems with involved 1 ^ ' , so that a direct com-
parison is actually possiMe. The Schrödinger equation, under 
the IOS approximation for an inelastic scattering problem, in 
Jact^i cocñdinates, is:™ 

â" S" T(I+ï) JU+l) 
•l·ijàrM.j) 

2M 
(25) 

where J, j and T label the total, rotatiraial and oristal angular 
momentum quantum numbers, respectively. Global reaction 
probabililies will be obtained letting V= ?- Vnip. where V 
stands for the actual potential for the reactive process. 

After the corresponding sectorization of the propagation 
regie» and expansion of the total lOS wave fimction in a 
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TABLE L CPU aecuüaa «ma (in milliiecnnib) for both Cooley and DVR 
mMbodt on a nngle minimun potential pfofiie. By moliitian it is meant the 

t or point» laed to deacribe 11» potenlid cut CaMuioiis woe nin on 
aa R-«OaO 3AT IBM Woriatatioa 'Nol amerfed" Hands for calculatians 
tbat exoeeded a given maiimum number of iteraüons without acomplishing 
the oonvcfgency critenoiL 

Reaolution Codey/ms DVRms 

287 60 710 
1 « 40 130 
79 Not converged 20 
36 Not converged 10 
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locally vibiatioDally adiabetic basis ft* each sectt»- (as ex-
{riained in Sec. I IB 2), the interaction matrix for a given 
sector, it, has the Tonn 

' W 
4 . th 7 ( y + i ) 

Vi 

— M y m · i ' f i / ) . (26) 

and once the coupling matrix is calculated, one can proceed 
with the propagation as described in Sec. IIB. 

Ul. APPLICATION 

A computer code has been developed in <aider to solve 
the close-coupling equations of reactive scattering diat com-
bines the use of a NIP widi the R-matrix propagation algo-
rithm. The cunent version uses coordinates and di-
vides the integratitn range in Cartesian sectors of constant 
width. Using Jacobi coordinates leads to a shape of the po-
teotial cuts, in the strong interacticHi regien, which is rather 
diflerent from the shape resulting when, for example, circu-
lar oollisian coordinates are used. In particular, one has to 
deal with dcuUe minimum pcHential profiles, instead sim-
pler single minimum profiles. Because of that, a DVR using 
a primitive f«urier basis" was found K> be a craivenient 
method for reliaUy solving the internal problem, rather than 
standard shooting algorithms, like the Numerov method as 
impiemented C o d e y . " Ald iou^ die present method in-
vdves exfAdtly a matrix inversion, which coold consider-
aUy slow down the performance of the code, the signifi-
cantly faster convergence of this DVR technique enables us 
to describe the potential precies with few enough points (up 
to 38 points compared with 130 for Cooley, in the specific 
example repotted in TaUe 1), so m to overcome die CocJey 
peifomumce, even in the simpler case of single minimum 
profiles (those encountered in the asymptotic region). 

A pievious step in every scattering calculation when 
dealing with NIP-based methods, is the definition c^ the 
proper NIP. This complex potential has to be placed oonve-
meody t o diat it only d n o r t s the reactive flux. To do so, one 
needs to have a radwr good knowledge the potential en-
ergy surface topography. Then one can set the NIP beyond 
die tmwt iaa stale but not too deep into the products ar-
rangement. so dial one can save as much as possible propa-
gadantime. Widiin die IOS context, a fint scm thrmi^ die 

FIG. 3. Vaiiation of colinear and r = '50°. ' = 0 reacdve probabilities for 
a - f H Q (0=0) with the potential ramp height. 

different fixed angle PES contours has to be perfcmned. Then 
the optimal NIP parameters are set so as to lead to a maxi-
mum in the reactivity without infringing the transition state 
region. Once the optimal NIP parameters are found, calcula-
tions of reaction probabilities can be peiformed. 

The program has been tested on a variety of reactive 
scattering proUems.^^ We have «»centfaled in diis paper 
on die Cl-(-HCI system®" widi the purpose of completing die 
good results already given in Ref 59 and giving a detailed 
ilustration of the theory here presented. In that article we 
compared ccdinear (i.e., / = 0 and y = 0 with y = 180°) reac-
tive (xobabilities obtained the present mediod, hereafter 
named NIP-ICS, to die same probabilities obtained by Bondi 
et al."' Results came out to be outstandingly satisfactoiy, 
since even the very sharp resonances which characterize the 
CI -t-Ha were well predicted by die NIP-I06. Therefcxe, as a 
numerical examine of the method we have chosen to present 
further calculations on the Cl+HCI and leave an extensive 
i^iplicatiai to rther systems for a coming article." 

We dien focus on the symmetric exchange CI-I-HCI (i;) 
reaction on die LEPS potential energy surface given by 
Bondi et al.*" The reaction has been snidied, under die NIP-
lOS approximation, for a total energy range going from 0.2 
to 1.0 eV, and considering a reactants atom-diaton orienta-
tion angle (7) range between 12S*-180*. In diis energy 
range, for bodi reactants and products, mainly two open vi-
biational chamids can be found and a diird at die end dw 
energy range, which, for practical reasons, we will not crai-
sider hereinafter. 

Rtst rf all, we will present a series of results stressing 
on die stability and performance of die mediod. To what die 
stability aS die results against variations in the NIP param-
eters concerns, in Hg. 3 the cdlinear and the ISO* / 
= 0 reactive probabilities, for a-l-HCl j=0) at a 
total energy of a 6 eV. are shown as a fimctioo die NIP 
height (Wg). It can be seen how, for a wide tange of Wg, 
both do not vary noticeably. Essentially similar results have 
been obtained for die lamp widdi, being die stability region 
given by die 0 3 - 1 3 A nmge. Therefore, we can state do t 
the calculation is essentially stable under a wide variation of 
the NIP parametos. 

Cooceming die idiability of die present application, we 
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TABLE n. y =0.1 inelastic piotabilities for the a + H Q (y» 180°) system at a total energy of 1 eV i y) 
stands for intiat (final) reactanls arrangtment vibrational stales. 

I î j l (S) , / 

0 
0.16749E+00 
0.37234E-03 
a22695E-05 

0.37234E-03 
0.27740E+00 
0.15648B-01 

0.22695E-05 
0.15648E-01 
0.61432E+00 

0.16786E+00 
0.29342E+00 
0.62997E+00 

0.83214E+00 
0.70558E+00 
0.37003E+00 

80 
O.S4466E+00 
0.17607E-01 
0.111S7E-D3 

0,17607E-01 
O.I3501E-01 
0.16541E-02 

0.11157E-03 
0.16541E-02 
033018E+00 

0.56238E+00 
032762E-0I 
0.33195E+00 

0.43762E+00 
0.96724E+00 
0.66805E+00 

160 
0.27156E+00 
0.38269E-02 
0.25034E-1Î 

0.38269E-02 
0.88630E+CO 
0.22257E-12 

0.25034E-15 
0.22257E-12 
O.IOOOOE+Ol 

0.27539E+00 
0.89013E+00 
O.IOOOOE+01 

0.72461E+00 
0.10987E+00 
0.74385E-14 

present in Table II the inelastic bIcKk of the S matrix (which 
is the whole S-matrix since we are actually running an in-
elastic calculation) for selected values of the oibital angular 
momentum, where it can be easily seen how symmetry of the 
S matrix is highly preserved, even at the highest energy con-
sideied in the present The fourth cdumn of the table 
corresponds to the global inelastic probabilities (that is, the 
sum for a given starting vibrational level of the elastic and all 
inelastic transition probabilities) and the fifth column con-
tains simply the suhstractirai of the latter {Hobability from 
unity, thus illustrating how the global reaction probabilities 
are extracted. In order to check the unitarity, it must be said 
that, previous to the current calculation, a first run was per-
formed where no NIP was placed but only an infinite poten-
tial wall in the products anangemenL All the state-to-all in-
elastic probabilities summed unity. Then leactive 
probabilities, obtained with the optimal set of NIP param-
eters, were compared with those given by BCMR" and 
found to be extremely ctancident, as shown in Ref. 45. 
Therefore, it can be stated that the combination of the gen-
eralized R-matrix-invariant embedding with absorbing po-
tentials œiequately accounts for the flux loss due to abscHp-
tion and "global" unitarity is preserve. 

The present p l i c a t i o n shows a faster convergence than 
the traditional two-arrangement method. The key parameter 
for the calculations have been minimized up to their limit 
convergence values (for y = 180*) and then cranpaied to pre-
viously available R-IOS results obtained with a traditional 
technique.'^ While a fully converged R-IOS calculation for 
the CI-t-HCl system, at the atom-diatom orientation angle 
r = ISO", for a total energy of 0.6 eV, used 400 (200 for 
each arrangement channel) translational sectors (NTS in 
T ^ e III) and 27 basis functions (NV in Table III) for the 
propagation and lasted 1174 s to yield the final cross section, 
in Table III it is shown how for the same calculation, the 
(Hesem program leads to accurate results with a significantly 
lower number of vibrational basis functions for the propaga-
tion and also less Uanslational sectors. Lower sector resc^u-
tion is needed (see Table I) in the NIP-IOS because of the 
better ccmvergence of the DVR method, which solves the 
internal problem instead of the modified Numerov^ method 
used in the IOS program. It should be taken into account that 
the diffeience in the number of sectors relies mainly on the 

fact that we are studying basically half oi the surface. More-
over, this number of sectors may still be lowered with the 
use of sectors of variable width. 

Next, some results obtained for the BCMR potential en-
ergy surface of tiie Cl+HCl (v) with Üie NIP-IOS method 
are presented and compared to those previously oMained 
with our previous R-IOS method.'* In particular, in Fig. 4 
(lower panel), both NIP-IOS and R-IOS y= 180° state-to-all 
reactive cross sections are drawn as a function of the total 
energy. Both methods show a notice^le oscillation in the 
cross section curve, reminiscent of the strongly oscillatory 
behavior of the reaction fnobability characteristic of light-
atom symmetric exchange reactions. For this case, both 
methods yield almost exactly the same result. However, 
when we consider the upper pannel in Fig. 4, where the same 
functions are nspiesemed at y-160°, we can see that this 
agreement is not so good, although the qualitative behavior 
is still the same. Differences are attributable to the (Ufferent 
PES probed by the NIP-IOS and die R-IOS method. While 
NIP-IOS method craisiders the y = I«)» cut of the PES, the 
traditional R-IOS technique is based on a matching between 
Uie reactant's and product's constant-y potential energy cuts. 
When moving from the reactants toward the products sur-
face, across the B-matching line," a reactants-to-products 

TABLEm. Convergence taUe for Q + H a ( r = 180".£=0.6eV). Relative 
eiTDrs are given, considehng the lesult for Nrs=300 and NV=30 as Ibe 
exact value. Bold-faced figures correspond to results obtained by means of 
the traditional R-IOS technique. 

OTS NV ERR% time / s 

300 30 3508 
300 15 0.00 756 
300 10 0.00 389 
300 7 0.03 258 
200 15 0.13 503 
200 10 0.13 26Í 
200 7 31.00 152 
150 15 0.30 378 
150 10 0.30 194 

150 7 32.01 113 

400 Í7 1174 
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FIG. 4. Fiíud Jaootai angle exdtalion fuiKlia« for Q+HQ (11=0). A 
conqianscn between R-IOS and NIF-IOS. 

coordinate cbaoge is perfonned, thiB modifying die numeri-
cal value of the interaction matrix elements. This would have 
no effect if boundaiy omditions w«e Bf^ied in berth reac-
tants and products channel. But the use of the leaclants as-
ymptote only in the NIP-IOS method makes that those teims 
entering in the interaction matrix, such as the centrifugal 
tom, cootribute düTeiently than when the coordinate change 
is performed. 

To conclude this section, in Hg. 5 we show the tridimen-
sional global reactive cross sections again as a function of 
the total energy. This magnitude is obtained by integration. 

HG. £ Tridimenional euilaïon functioo for a + H a (v-0,1). A oom-
9 R-IOS and NIP-IOS. 

over all ctmtributing angles, of the fixed an^e reaction cross 
sections.'' Again, a good agreement between both methods 
is met This should not be surpising since the most contribu-
tive angles are those close lo colinearity. 

IV. CONCLUSIONS 

A method has been developed that introduces the ab-
sorbing potential technique into a IDS reactive scattering 
inoblem reducing it into an IDS inelastic scattering problem. 
This has led lo a generalization of the R-matrix propagation 
method in order to take into account the fact that the cou-
pling matrix might be «mplex. 

The method has shown up to be a powerful approach for 
computer consuming reactive calculaticms. In particular, the 
implementation of the imaginary potential linear ramp 
showed a better performance than a traditional R-matrix 
purga t ion R-IOS, mainly due to a faster convergence in 
the number of basis functirats and also in the nimiber 
translaticmal sectors. The S-matrix symmetry and unitarity 
tests presented here as well as the stability of the results with 
the variation of the linear ramp parameters (mainly its 
he i^ t ) state the method's good reliaUlity. 

As an example, the method has been applied to the CI 
-(-HCl system and then its results have been cmpared to 
those obtained by a traditicmal R-matrix propagation ICS 
treatment The results agree for berth the fixed-angle cross 
section and the all-angle integrated cross section, although 
f«- those angles far from ct^ineaiity tboc is a noticeable 
discrepancy in the curves, probaUy due to the different po-
tential energy p n ^ e s scanned by die two ajqjroaches. 

Finally, to conclude this section we would like to stress 
some singularities cf the present apfrtication, which make it 
different from other already successfully applied methods, 
similar in ^ r i t , diat wen: mentioned in the Introductíc». In 
comparison with Seideman, Manthe and Miller's apfiroach," 
one could say that the present qiplication goes htüfiiay in the 
application of NIPs, since we have placed the absorbing po-
tential only in the products regicm wUle the cited authijrs 
placed a complex potential in both products and reactants 
anangemoits. This can be understood since Seideman, Man-
the, and Miller approach focused solely on the thermal rate 
constant k(T), or, to be more (aedse, ti» cumulative reac-
tion probability. On the other hand, our approach enaUes us 
to obtain initial stale-to-all properties of the ^ t e m . Light 
and Altenberger's apptoach^' is also veiy close in spirit, al-
though no absoitmig potentials are used, to the implementa-
tion presented here, since it also seeks to solve the Schto-
dinger equation in a smaller {^ysical region. This is 
performed by the application of approximate boundary con-
ditions at a tnuisitiMi state hyperiiiiface. Nanmlly, this re-
sults in an approximaie set of S-matrix dements. In this 
soiae, it could be stated that dse present q^msoch diminaies 
the approximale boundary matching, since asymptotic 
boundary conditions are only 8 |^ ied in the reactants 
asymptotic region and no matching is performed at the TS 
hypenurface but an absorption of the reactive flux beyond i t 
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8.4 The application of complex absorbing po-
tentials to an invariant embedding scatter-
ing method: II. Applications. 

Journal of Chemical Physics (accepted) 
Following to the previous publication, another work has been recently ac-

cepted for publication, in which the novel implementation is applied to Li + FH, 
Mg + FH and H+ F2 systems. Studying such reactions we cover different ergici-
ties (moderately endoergic, largely endoergic and exoergic,respectively), different 
levels of PES complexity and different mass combinations as well. 

Although the first applications of the method seemed to point out a clear 
improvement in the calculation of state-to-all quantities, with respect to the 
previous R-IOS technique, we thought it would be challenging to have available a 
more comprehensive test so that we could establish more confidently the method's 
level of performance. Besides testing the use of NIPs for varied conditions, we 
also intended to benefit from such a cheap method to get some deeper insights 
into the dynamics of some of the reactions here explored. 

Although one would need in principle different NIP parameters for each dif-
ferent orientation angle in the IOS treatment, in practice this is not usually the 
case and we have been able to employ a single set of NIP parameters for all 
orientations except for highly anisotropic PES {H + F-z) where we used two sets 
of parameters. This, in addition to the fact that these parameters are quite easily 
found, shows that the time spent in obtaining an optimal NIP is small. 

Comparison between R-IOS and NIP-IOS performances on these systems 
showed clearly the smaller computational effort for the second. Generally, the 
number of translational sectors is halved and the dimension of the vibrational 
basis is significantly reduced. Both turn into CPU time savings, reduction of the 
number of sectors decreases linearly CPU time while diminishing the basis scales 
as N^ since an explicit matrix inversion is included in the propagation code. 
Through the introduction of the absorbing potential we were able to formulate 
the reactive scattering problem using a single arrangement coordinate system and 
this simplificated significantly the numerical parameters convergence, since the 
reactants-products matching (characteristic for R-IOS approach) can be avoided. 

Although in the published work NIP-IOS and R-IOS are in good agreement, 
one should not expect, in principle, an exact agreement since they are not exactly 
equivalent approaches. We would like to emphasize that NIP-IOS strictly con-
strains the motion to that governed by the reactants fixed-angle approximation. 
No additional constrains are introduced beyond the TS in the products region 
where the flux is absorbed. This does not stand for R-IOS, where the solution 
has to be propagated as well on the products region and therefore the motion in 
this region is constrained and related to the reactants by the B-matching rule. 

The relatively good efficiency and reliability of the code developed encouraged 
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us to perform some additional calculations in which we succœsfiilly calculated 
cumulative reaction probabilities (CRP) with significant saving of time. The idea 
underlying was, in a regular NIP-IOS run, to carry out the asymptotic matching 
shortly after the strong interaction region where, even if the inelastic interactions 
are still relevant, the reactive ones can already be neglected. This would lead t o 
obviously wrong state-to-all reactive probabilities, but if the point is to calculate 
global all-to-all quantities, such as the rate constant, then all that one needs is 
the CRP. 
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The application of complex absorbing potentials to an 
invariant embedding scattering method: II. Applications 

Fermín Huarte-Larrañaga, Xavier Giménez, Josep M. Lucas and Antonio Aguilar 
Departament de Química Física, Universitat de Barcelona 

and Centre de Recerca en Química Teòrica, Universitat de Barcelona. 
Martí i Franqués, 1. 08028 Barcelona, Spain 

Abstract 
The application to several triatomic reactions of a novel implementation of absorbing 
potentials on a generalized R-matrix propagation method (Chem. Phys. Lett. 291 
(1998) 346-350 and J. Chem. Phys. 109 (1998) 5761-5769) is presented. Specific 
systems chosen have been Li + FH, Mg -I- FH, and H + Fi, so that an extensive 
application covering a wide range of PESs has been performed: it includes moderately 
and largely exoergic and endoergic processes, simple and involved PES, moderate to 
large skew angles and direct and complex-forming collisions. In all cases it is shown 
that the use of the absorbing potential is simple and robust, yielding correct values at 
a fraction of the computer's resources consumption. The best eflfectiveness is obtained 
for exothermic, direct reactions, for which up to one order of magnitude in CPU time 
saving is obtained. This efficiency opened the possibility for a very detailed exploration 
of the reactive process, in particular on those quantities strongly dependent on the 
collision energy. In addition, it is shown that, as previously known from a totally 
different mmierical approach, the cumulative reaction probability can be efficiently 
and accurately calculated propagating the scattering solution along a very short range 
of the scattering coordinate. 

I. Introduction 
In previous publications[l, 2, 3], a novel approach for doing reactive scattering calcula-
tions has been developed in our group, based on the application of negative imaginary 
potentials (NIP) on a generalization of the invariant embedding R-matrix propagation 
method. This use of NIPs, as a tool for reducing the computational effort in scatter-
ing calculations, is complementary to previous time-dependent and time-independent 
quantum molecular scattering formulations[4]to[24]. This subject has been reviewed in 
the literature several times and, in particular, its use throughout the years has been 
briefly summarized by us very recently[2]. Since then, the subject has still focused 
an important activity by many groups. Among the recent advances, it is interesting 
to notice those which introduce the use of absorbing potentials having both real and 
imaginary components -the Complex Absorbing Potentials (CAP)-, which allow for an 
important decrease in the absorption width, if compared with the typical absorption 
widths of the purely imaginary absorbing potentials[25]. 

Our new implementation consists essentially in placing, as common to some other 
methods, a NIP at the entrance of the products channel, so that propagation towards 



146 
Chapter 8. NIP-IOS implementation and application. 

the products channel is saved without losing accuracy, as far as total reaction prob-
abilities (i.e. summed over product states) are concerned. The main advantages are: 
a) it avoids an important part of the slow input-output operations towards comput-
er's secondary memory, and b) fewer basis functions are necessary, in general, in the 
close-coupling expansion of the total wavefunction, since only one -although slightly 
perturbed-, simple reaction channel has to be considered and no change to product 
arrangement coordinates has to be performed. The propagation algorithm which re-
sults is somewhat more involved, as a consequence of the complex-valued nature of 
the interaction matrix, although it has been shown that the increase in computational 
eflfort is smaller than the savings explained above. 

In the previous preliminary applications, it was shown that the method is capable of 
reproducing very accurately extremely sharp resonances seen in the collinear CI + HCl 
symmetric exchange reaction[21]. Moreover, the computation of a fixed-angle IOS cross 
section for the C7Z+JîC/[23] and the systems yielded accurate values while 
resulting in a CPU time saving by a factor of five and memory requirements reduced 
by a factor of four. 

Although the first applications seem to point out a clear step forward with respect 
to the previous R-IOS technique[26, 27, 28, 29] (i.e. no NIP is used and therefore 
state-to-state information is available) when state-to-all probabilities are the only in-
formation needed, it is interesting to have available a more comprehensive test, mainly 
in order to establish the real performance of the method under sufficiently varied con-
ditions. The present work deals with this comprehensive test, whose main purpose is 
twofold: first, to show that the use of NIPs for sufficiently varied conditions is (almost) 
straightforward while accurate and, second, to exploit the feasibility of the calculations 
to cheaply get some deeper insights into the dynamics of the reactions here explored. 
The applications focus again on the IOS technique, for various reasons. First, several 
data is available[30]to[37] which can be directly used for the present tests. Second, it 
has long been our primary interest, to deal with "involved" systems, meaning those 
having large endo or exothermicities, heavy masses, non-collinear transition states and 
described by complicated potential energy surfaces (PES), i.e. those with barriers, 
minima, etc... It is well-known that these systems are very difficult to treat with more 
accurate scattering methods. It is also worth noticing that, for the purpose of show-
ing the present method's usefulness, the particular Hamiltonian implemented is of less 
relevance, since the main changes are those involving the propagation step, which is 
essentially independent of the approximations built into the internal-problem Hamilto-
nian. 

The propagation-based nature of the present method is well suited for another, in-
teresting application, namely the calculation of cumulative reaction probabilities (CRP) 
using a very short range of the scattering coordinate. In a very clarifying work, Seide-
man and Miller[9] showed the hoped for advantage of the calculation of rate constants 
via the direct estimation of the CRP: the use of a short-ranged grid for discrete vari-
able representation (DVR) calculations, defined Eu'ound the transition state region of 
the potential energy surface, leads to accurate values of the CRP. This was calculated 
not through the standard procedtare, involving the cdculation of each state-to- state S-
matrix element, but directly means of an expression related to the outgoing Green's 
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operator. Addition of NIPs at the grid edges ensured outgoing boundary conditions 
and eliminated the necessity of including basis functions carrying the proper asymp-
totic behaviour. Here it will be shown that performing the present pseudo- inelastic 
propagation with a NIP allows an easy extraction of cumulative reaction probabilities. 
It results from the application of standard boundary conditions at similar small values 
of the scattering coordinate, such as those used by Seideman and Miller. This provides 
an alternative route for the CRP direct calculation, which explicitly shows how one 
can save computational effort using the same initial approach as for the state-to-state 
calculation. This procedure leads, as physically expected, to incorrect state-to-state 
inelastic probabilities but to correct estimations of the total reactive flux. It thus gives 
a clear indication of the role played by the diflerent portions of the reactants channel 
region of the PES in inducing transitions between states. 

The remainder of the paper is organized as follows. Section II describes the com-
putational details of the several applications shown here. Section III shows the main 
results for the Li -I- FH, Mg + FH, and H + F2 systems, a further general analysis, 
and some new features singled out thanks to the easy availability of a dense mesh of 
energy points in cross section calculations. Section IV presents the results of the CRP 
calculation for some of the above systems and, finally, section V concludes. 

II. Calculations 
Calculations have been performed with the same NIP-IOS Hamiltonian as used in the 
first tests[21, 23, 24]. The main numerical parameters which have to be controlled for 
numerical convergence may be divided into two groups: a) the group including the 
dimension of the vibrational basis (in the present case, a contraction of the initial basis 
whose dimension is given by the number of Fourier-basis DVR[38] points), the width of 
the translational sectors and the final asymptotic distance at which boundary conditions 
are applied and, b) the parameters of the linear potential ramp (position, height and 
translational -i.e. along the atom-center of mass of the diatom Jacobi distance, hereafter 
denoted by R- and "vibrational" -the internuclear diatom Jacobi distance, denoted by 
r- widths). This division is made in order to stress that convergence has to be, and 
really is, achieved independently between the two groups of parameters. The "a" group 
parameters are optimized in order to get stable reaction probabilities upon an increase 
in their values and are among the typical numerical parameters in time- independent 
reactive scattering methods (however, note that very few of them are necessary in the 
present method, as a consequence of the simplifications resulting from the fact that 
the reactants to products transformation is avoided). On the other hand, the search 
for NIP convergence means finding the parameters range leading to conditions of total 
absorption and minimal reflection. This interval is identified again as a stability region 
of the reaction probabilities. 

The general procedure followed for obtaining the final set of NIP parameters has 
been the following: first, plots of fixed-angle cuts of each PES have been used in order 
to roughly localize the transition-state (TS) region and get a correct knowledge of the 
PES topography, mainly that corresponding to the entrance of the products channel. 
Then, according to previous experience, a first trial position for the NIP has been 
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taken, being as dose as possible to the TS but not too close to allow the inelastic flux 
being absorbed. This latter feature has been controlled looking for the probabilities 
stabilization distance (along the reactants vibrational coordinate) at constant values of 
the remaining NIP parameters. 

Afterwards, its proper height and translational and vibrational widths are searched 
in a global iterative process. This procedure leads, in principle, to different NIPs 
for different orientation angles. In practice, however, only highly enough anisotropic 
PES for particular mass combinations of the triatom have been found to need the use 
of different parameter sets for different angles. This was so since a subtle diflBiculty 
was found for systems clearly departing from the light-heavy-light (LHL) or heavy-
heavy- light (HHL) mass combinations, specifically for the case when acute orientation 
angles non-negligibly contribute to reactivity, i.e. the CI -I- HCl and the H + F2 
system. It is due to the PES distortion found when plotting its fixed-angle cuts using 
Jacobi coordinates. For angles close to 90°, variation of R describes the approach 
of the attacking atom towards insertion between the atoms of the diatomic molecule. 
However, variation of the r coordinate does not describe the departure of the ejected 
atom as a rrault of the reaction, since the center of mass, which still determines the 
coordinate origin, also travels somewhat attached to the ejected atom and so does the 
attacking atom (for fixed R). As a result, the product arrangement is poorly described 
in these cases since the attacking atom cannot be held close to the exchanged one when 
varying r. This is, in fact, one of the reasons why one should change from reactant to 
product coordinate systems when trying to efficiently describe a reactive process. As 
for the consequences to the present method, since only the TS portion of the products 
arrangement needs to be described, it just means that special care has to be taken in 
adequately placing the NIP. Consequently, the proœdure becomes less straightforward 
when dealing with these problematic systems. 

Table 8.1 shows the values of each numerical parameter as optimized for each of the 
three {Li + FH, Mg -I- FH and H F2) reactive systems included in the present work, 
while figure 8.1 illustrates the variation of some reaction probabilities as a function of 
the height of the NIP. It shows that stability is clearly achieved within a sufficiently 
wide range of the corresponding NIP parameter. T^ble 8.2 shows the distance at which 
the NIP has been placed, along the reactants vibrational coordinate, as a function of the 
orientation angle, for the H+F2 system, since the particular difficulties encountered for 
this reaction, due to an important variation of the PES topography with the orientation 
angle, required a much more precise tuning. We note here that only a limited number of 
production runs have been necessary in order to determine the optimal NIP parameters 
set. It is due to the fact that a unique set is used for the whole energy range. In addition, 
since the optimal set little varies with the specific reaction being considered, the first 
trial values are found to be usually within the stability range, further accelerating the 
optimization process. 
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Figure 8.1: Dependence of the inelastic probabilities as a function of the NIP ramp height, 
(a) Li + FH system, (b) M g + FH system. 

System D W A 
Li + FH 2.5 0.2 1.0 
Mg + FH 3.0 0.56 1.0 
H + F2 * 0.75 0.5 

Table 8.1: Best NIP parameters for the Li + FH, Mg + FH and H+ F2 systems. D: upper 
limit of the NIP along the vibrational coordinate r; W: height of the NIP linear ramp; A: width 
of the hnear ramp along the vibrational coordinate. • See Table 8.2. 

Orientation angle D 
180 1.8 
170 1.8 
160 1.8 
150 1.8 
140 1.8 
130 1.8 
120 2.1 
110 2.1 
100 2.1 
90 2.1 

Table 8.2: Upper limit along the vibrational coordinate r (D), as a function of the atom-
diatom orientation angle, for the H + F2 system. 
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III. Results for the Li + FH, Mg + FH, and H + F2 
systems and analysis 
This section shows the results of the application of the NIP-IOS method to several 
triatomic systems. As introduced before, our aim has been to cover a sufficiently wide 
class of reactions so as to allow us to characterize the accuracy and applicability of the 
method. Results will be presented sepacrately for each system, while the corresponding 
analysis will be performed afterwards in general terms. Only few specific details will be 
given about the general features of each reaction. The interested reader should consult 
the quoted references. 

The Li + FH system 
As the starting point in the applications, the Li + FH system has been chosen. This 
is a moderately endoergic (0.157 eV) system showing a weakly bound stable reac-
tant complex (—0.302 eV) whose minimum energy path exhibits a barrier of 0.182 
eV. Several theoretical calculations have been performed in the past on its reaction 
dynamicspT, 28, 34, 39, 40]. Among them, those obtained by means of a Reactive In-
finite Order Sudden (R-IOS) technique[27, 28] on a Bond Order (BO) surface[34] will 
be explicitly used here for comparison purposes. For more details on the R-IOS calcu-
lations, see refs [27, 28] and [34]. Figure 8.2 shows 600 closely spaced energy points for 
the integral cross section, which were calculated with the proper NIP parameters given 
in table 8.1. An additional purpose of the fine energy scanning has been to resolve 
the structure previously anticipated in standard R-IOS cross section calculations41. 
Remarkably, the basis dimension could be reduced from 16 (R-IOS) to 10 (NIP-IOS), 
in spite of the fact that, in this case, the arrangement channel whose description is 
(almost) completely avoided (the products LiF + H) is the one lying higher in energy. 

Figure 8.2 shows the integral cross section as a function of total energy, for both the 
NIP-IOS and the R-IOS techniques. Both methodologies lead to rather similar results, 
showing an initial decrease of the integral cross section, then reaching a minimum and 
finally leading to an uniform moderate increase. Differences are then more quantitative 
than qualitative, being larger at the transition region between the decreasing and the 
smooth increasing behaviours. The initial decrease is known[34,39] to be a consequence 
of the zero point vibrational energy (ZPE), since, although the reaction is electronically 
endoergic, after consideration of both the reactant and product ZPE, the reaction 
becomes slightly exoergic. In addition, the reactant ZPE lira above the minimum 
energy path electronic barrier. The minimum occiurence and the subsequent increase 
in the integral cross section are interpreted as the result of the increasing contribution, 
to the integral cross section, of reaction events at angles away from the TS orientation 
angle at higher total energy. 

The differences between both calculations can be attributed to the different PES 
probed by each techniques in the product arrangement region, as it will be discussed 
in more detail below. As total energy is increased, the diminishing influence of the 
PES on the dynamics makes both methods to approach one each other, as previously 
expected. 

349 
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Figure 8.2: Integral cross section as a function of total energy, for the Li + FH system. 
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The M g + FH system 

The Mg + FH MgF + H reaction is a strongly endoergic (1.33 eV) HHL reaction 
with a late barrier located well inside the product channel. This barrier is 1.826 eV 
higher than the reactants asymptote at a bent (72°) transition state geometry. The 
strong interaction region of the PES displays two minima: one, collinear (-0.34 eV), is 
located just before the reaction barrier, and the other (-1.30 eV), is located late in the 
products channel. The second minimum corresponds to a highly bent configiu-ation, 
which is not probed in collisions approximately following the minimum energy path. 
Another important feature of the PES[42] is that the fixed angle barrier to reaction 
(that, as already noted, has a minimum at 6 = 72°) rises sharply moving to smaller 
values of 7 (more bent geometries) while it rises slightly (about 0.2 eV in the range 
74° < 7 < 115° and about zero from 7 = 115° to 7 = 180°) moving to larger values of 
the collision angle. 

This reaction has been recently studied by means of the standard R-IOS technique[36, 
37] and, previously, by means of quasiclassical trajectory (QCT) calculations[42]. In-
tegral cross sections are available for the ground and up to fifth excited reactants 
vibrational level. The peculiarities of the dynamics shown by this reaction makes this 
system a rather complete benchmark: reaction is enhanced by reactant vibrational 
energy, but its effectiveness clearly changes from open to closed orientation angles. 
Tunneling is rather important (although a fairly heavy atom is transferred) in estab-
lishing the position of the reactivity threshold along the energy scale. Excited reactant 
vibrational levels are readily available in a single calculation, which leads to relevant 
data on the influence of both vibrational Jind translational energy upon the reactivity. 

Since the reaction is considerably endoergic, the discarded channel, as a consequence 
of including the NIP is, in principle, the less demanding. However, the closer vibrational 
spacing of the MgF molecule makes available, for a given total energy, more vibrational 
states than the reactant arrangement. For instance, at a total energy of 3.00 eV, 6 
vibrational levels are open in the reactants side but these are 15 in the products side. 
For this reason, a reduction in the basis dimension from 35 to 25 has been possible, in 
addition to an approximate halving in the number of translational sectors. 

Figure 8.3 shows the integral cross section, for the NIP-IOS, the R-IOS and the 
QCT techniques, for the V — 2,3,4 and 5 reactant vibrational levels. The semiquanti-
tative agreement is seen to be remarkable and, most importantly, a unique set of NIP 
parameters sufficed to obtain correct integral cross sections for the whole set of initial 
vibrational levels. Given the particular features associated with the orientation angle 
for this reaction, and with the purpose of checking that the NIP-IOS - R-IOS coinci-
dence is not attributable to error compensation between the different angles, Figure 8.4 
(lower panel) and 8.4 (upper panel) show the corresponding fixed angle cross sections 
for 7 = 75° and 180°. It can be easily seen that a rather satisfactory agreement is 
obtained as well. It should be noted that the two angles chosen are those most rep-
resentative of the two kinds of energy effectiveness mechanisms, which are found to 
describe the overall reaction dynamics[36, 37]. 
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The H + F2 system 
The H + F2 has been long considered the prototype of a highly exothermic elementary 
reaction. In fact, the exothermicity is 4.5 eV, which causes a sudden change in the 
nature of the PES at the TS. R-IOS calculations have been performed[30] on a London-
Eyring-Polanyi-Sato (LEPS) PES as developed by Jonathan et al.,[43] and so the same 
PES will be used here. A total of 200 energy points were calculated, within the scanned 
energy range, for the present work. 

This system appears most suited to a treatment which avoids the description of the 
product arrangement, since it is the source of the main difficulties as the strong exother-
micity may lead to the necessity of describing a highly excited vibrational dynamics. 
In this sense, a revealing fact is that the R-IOS study of ref. [30] required doubling the 
number of translational sectors for describing the product arrangement, as compared 
to the reactant arrangement (making a total of 300 sectors), while the vibrational basis 
set dimension had to be set at a value of 30 (although only 4 vibrational states are 
open, asymptotically, in the reactant arrangement at the highest energy considered). 
A major advantage of dealing with the reactant arrangement only is that the number 
of sectors could be fixed at a value only slightly higher than that used for the reactant 
arrangement in the R-IOS study (150 -NIP-IOS- in front of 100 -R-IOS-), while the vi-
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brational basis could be reduced until 13 functions while keeping results well converged. 
Figure shows the integral cross section, which is not only compared with the R-IOS re-
sults but also with results of a quasiclassical trajectory (QCT) calculation[44] and, for 
comprehensive purposes, a vibrational-adiabatic distorted wave (VADW) approach[45]. 
Although some differences arise in the high-energy behaviour of the v = 0 case, one 
again observes a general good agreement between NIP-IOS and R-IOS, as well as with 
the QCT technique. This latter is expectable given the marked isotropy of the PES 
(weak reorientation) and the absence in it of particular features (no strong quantum 
eflFects and/or complex dynamics). Remarkably, the threshold behaviour is strongly 
coincident, in position and shape, between NIP-IOS and R-IOS, lying somewhat be-
fore the QCT threshold to reactivity. VADW results show its inherent limitations, 
especially at higher energies. 

Analysis of the results 

The comparison between the numerical scattering R-IOS and NIP-IOS parameters 
clearly evidences the smaller computational effort for the latter, which is due to the 
inclusion of the NIP just after the TS in the way, as the collision proceeds, to the pro-
duct arrangement. In all cases, the number of translational sectors is roughly halved, 
and the number of vibrational functions may be also correspondingly decreased. The 
reduction in translational sectors contributes approximately linearly to the CPU time 
saving, but any reduction in basis dimension diminishes approximately as N^ the CPU 
time (being N the number of basis functions reduced), since the most expensive part 
of the propagation time is spent in matrix inversion and a direct diagonalization rou-
tine has been used. This latter fact is a consequence, as previously shown[23], of the 
complex-valued nature of the interaction matrix due to the incorporation of the ab-
sorbing potential. Because ofthat, the most favourable cases correspond to exothermic 
reactions and, particularly, those forming a product molecule with a smaller vibrational 
spacing than the reactant one, as it is seen in the H + F^ case. In such cases a gain 
in CPU time of about one order of magnitude is obtained (200 energy points for the 
integral cross section needed, for the H + F-z system, 6 CPU hours on an IBM 3AT 
Work Station). 

The practical implementation of the NIP-IOS method to several, suflBciently var-
ied reactive systems demonstrates another important advantage: calculations are more 
straightforward than with the R-IOS technique, since the parameter optimization pro-
cess, to allow for production runs, is much simpler. This is clearly a consequence of 
the fact that a simpler coordinate system can be used since the reactant to product 
transformation is avoided. One may argue that additional parameters are necessary to 
optimize the NIP. Notwithstanding, they have been determined with a minimum effort 
in all but one case and, mœt important, its determination is completely independent 
of the true reactive scattering numerical parameters optimization. 

The present work shows that NIP-IOS results are found to be in general agree-
ment with the previous R-IOS. However, one should not expect, in principle, an exact 
agreement since the above methods are not equivalent. NIP-IOS dynamics is based 
in constraining the motion to that governed by the reactants fixed-angle approxima-
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tion. Since the reactive flux is absorbed just after the TS, no additional constraints 
are introduced concerning the product arrangement. Instead, the present R-IOS ap-
proach uses the B-matching rule[27] to relate one fixed-angle reactants arrangement 
with one fixed-angle products arrangement, with the constriction that the potential 
be continuous and that reactant to product transformation is performed along a line 
situated roughly around the TS (specifically, along the potential ridge). As a conse-
quence, the reactants channel in both methods is the same but the products channel 
and part of the TS region may be substantially difierent. This difference is expected 
to lead to clearly diflFerent reaction probabilities in certain cases. The discrepancies 
between NIP-IOS and R-IOS found for the Li + FH case are a clear illustration of 
the above statements. Figure 8.2 shows, for instance, that the structure surviving at 
the cross section level is entirely different, and even appears at low energies for the 
R-IOS case but at high energies for the NIP-IOS case. Another source of discrepancy 
may also arise in the fixed-angle cross section calculation, since the orbital angular 
momentum is included in a different manner. The NIP-IOS approach uses the same 
constant orbital angular momentum value through the entire propagation range, while 
the present implementation of the R-IOS method [46] changes the orbital angular mo-
mentum term, when performing the reactant to product transformation, according to 
two limiting behaviours. The orbital quantum number is kept (although the orbital 
angular momentum term changes as a consequence of the reactant to product coordi-
nate transformation) for HLH mass- combination reactions, while it is exchanged with 
the rotational quantum number for HHL or LHL processes. According to the above 
discussion, we consider the NIP-IOS approach to be somewhat more general than the 
R-IOS, since less constraints are included into the theory. 

A practical consequence of the present comparison is that a test on the limitations 
introduced by the B-matching rule can be performed. The general global agreement 
between NIP-IOS and R-IOS results indicates that using that version of the R-IOS 
method, to calculate state-to-all integral cross sections, does not introduce severe lim-
itations to the reaction dynamics, when compared with the non-restricted fixed-angle 
dynamics built into the NIP-IOS method. 

As for the general agreement between NIP-IOS calculations and less approximated 
or experimental results, the conclusions must be essentially the same than for the R-
lOS, i.e. the technique works well for high energies, anisotropic potentials and HHL or 
LHL mass combinations, finding its utility in the previously termed involved reactive 
systems. It has the added advantage of a smaller demand on computational resources, 
and, as stated above, leads to a savings of up to an order of magnitude in CPU time 
for the most favourable case explored in the present work. 

Some insights into the reaction dynamics of the Li + FH 
system 
As pointed out above, the simplicity of the NIP-IOS method makes possible a more 
thorough study of the reaction dynamics of reactive systems, by more accurately ex-
ploring the range of initial conditions. Here we present some results of a detailed 
exploration of the energy dependence of the reactive cross section for the Li + FH sys-
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tem, with the aim of illustrating how new information arises when this kind of study 
becomes available. No attempt is made to fully explain the new results presented here, 
which we leave for future work. 

Some structure is present in the cross section dependence versus energy, for the 
Li + FH system, as it is shown in figure 8.2. This structure in the cross section is 
rather remarkable, since it may correspond to the fingerprint of reactive scattering 
resonances. The possibility of gaining additional knowledge on how it arises, led us 
to ask ourselves for a more detailed study. The resulting low cost of the NIP-IOS 
calculations then made possible the cheap calculation of a fine mesh of energy values. 
As stated before, the cross section was calculated for a total of 6(K) energy values. 

A first analysis can be performed, thanks to the angular motion decoupling of the 
IOS approach, by plotting fixed-angle cross sections as a function of energy. They 
are shown in figures 8.6 and 8.7. Inspection of both figures clearly shows that the 
structure is found exclusively at orientation angles larger than the TS angle (75.52°). 
As a function of the orientation angle, two kinds of structures are distinguished: a) that 
found between 74 and 85° at high total energies, and b) that for angles larger than 85° 
for the whole scanned energy range. To investigate its origin, we show in figures 8.8 and 
8.9. partial sums of the reaction probability, multiplied by the (21 + 1) term, for the 
fixed angle cross section corresponding to 95°. These plots make explicit the way the 
structure appears and how it contributes to the orbital angular momentum summation. 
Plots of figures 8.6 and 8.7, for the 95° case, evidence a double-pattern structure. First, 
a long wavelength, smooth oscillation of about 0.05 eV is seen. Superimposed on it, at 
moderate to high energies, a short wavelength, spiked structure of about 0.006 eV is 
then identified. The partial sum plots reveal that the long oscillation arises from low to 
moderate values of the angular momentum, while the short oscillation emerges from the 
contribution of moderate to high values of the orbital angular momentum. Then, the 
structure in the 95° case originates fi-om the whole angular momentum range, although 
each contribution manifests in different angular momentum regimes, so that its origin 
can be separately identified in the fixed-angle cross section. 

Noteworthy as well is the dependence upon the orientation angle of the cross section 
dependence versus energy, since inspection of figures 8.6 and 8.7 evidences a dramatic 
qualitative change. In particular, a change in 15° is sufficient to evolve from a barrier-
to-reaction to a barrierless behaviour (around 70°) and then back from barrierless to 
barrier-to-reaction (around 85°). This behaviour stresses the fact that, in general, the 
ability to perform lots of calculations at many energies opens up the possibility of 
investigating reaction dynamics in much greater detail than before. This is specially 
useful when a strongly structured energy dependence is to be singled out. 

IV.Calculation of Cumulative Reaction Probabil-
ities (CRP) 
As introduced above, Seideman and Miller used a DVR and absorbing boundary con-
ditions to efficiently calculate the outgoing wave Green's function. The DVR grid 
was defined using -very few points around the transition state region, leading to stable 
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CRPs. This work showed explicitly that when no state-to-state information is neces-
sary, the direct calculation of the rate constant (the global quantity) is possible and 
it is much cheaper than following the complete route, which starts from the state-to-
state S-matrix and performs the sum over product and reactant states to get the rate 
constant. The same work provides also the closed expressions for both the CRP and 
the S-matrix in terms of the outgoing wave Green's operator, which are substantially 
different. 

Here we intend to show, from the propagation-based perspective, the same fact, 
i.e. that CRPs can be efficiently calculated using a very short value of the asymptotic 
matching distance, at which standard boundary conditions are applied. This assump-
tion obviously leads to incorrect state-to-state inelastic probabilities, but the reactive 
flux, which is captured by the NIP at the entrance of the products channel, is never-
theless correct. An advantage of this approach is that the savings introduced by this 
procedure are very easily accounted for, since the same expression for the CRP is used 
in both the long -standard- and short -only valid for CRP's- propagation cases. 

Figures 8.10 show the variation of the state-to-state inelastic and cumulative reac-
tion probabilities as a function of the final "asymptotic" matching distance, as calcu-
lated for the H + F2 and Ne + H^ systems (this latter system having been used Jis 
a preliminary test in ref. [3]). It is clearly evidenced that going from large to short 
scattering coordinate matching values causes the inelastic probabilities to appreciably 
change, while the CRP remains constant within the desired precision. Most remarkable 
are the results corresponding to the H F2 system, since an important variation in 
the inelastic probabilities is already observed at rather large values of the matching 
distance, without altering the CRP. 

The above results (and those of ref. [9]) stress the role played by the potential 
ridge[47, 48, 49] in the very detailed reaction dynamics. The reduction in coordinate 
space sampling for the CRP calculation leads to the fact that only the region around the 
TS, and then around the potential ridge, is kept in the calculation. It is known that it 
is in this region where most of the non-adiabatic coupling between rovibrational states 
takes place and, in particular, those couplings affecting transitions between reactant 
and product states. In the present case, and mainly in the H+F2 system, it is explicitly 
shown that important changes in the inelastic state-to-state probabilities are due to 
simple inelastic energy transfer processes (i.e. local to the reactant channel), since 
CRPs keep essentially constant until matching reaches the strong interaction region. 
This result clearly and remarkably indicates that it is only in the vicinity of the ridge 
region where non-adiabatic coupling take place between reactant and product states. 

V. Summary and conclusions 
In this work, an extensive application of a previously developed new method for doing 
reactive scattering calculations, based on assembling the use of NIPs with a general-
ization of the R-matrix propagation approach, has been performed. The Li -f FH, 
Mg + FH, and H + F2 systems have been studied, with the aim of testing the applica-
bility of the method with reactions which display a rich variety of scattering dynamics. 

It has been shown that correct results are easily obtained, and that it is possible to 
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determine the almost universal optimal numerical parameters, within a given system. 
CPU time consumption and RAM memory requirements iire also moderately to drasti-
cally reduced, when compared to the requirements of the R-IOS technique. Special care 
in the NIP-IOS application must be taken for HLL systems and strongly non-collinear 
configurations, since distortion of the PES, when using reactant Jacobi coordinates, 
prevents a straightforward application of the method. Specifically, the reactant vibra-
tional distance at which the NIP is placed requires a finer tuning, in the present case 
as a function of the orientation angle. Work is in progress towards considering bet-
ter adapted coordinate systems (hyperspherical coordinates, etc...), so as to avoid the 
distortion problem while keeping into reasonable values the computational effort. The 
mutual agreement between NIP-IOS and R-IOS integral cross sections points towards 
a minor global relevance of the B-matching restriction in the R-IOS method. 

The feasibility of reactive scattering calculations with the NIP-IOS method allows 
a more detailed investigation of the reaction dynamics of triatomic systems. As an 
example, we have calculated the integral cross section of the Li + FH system at a very 
fine mesh of energy points (600 values between 0.26 and 0.8 eV) and have explored 
several fixed-angle collisions. This study allowed us to identify a remarkable structure 
present in the integral cross section, most probably revealing the survival of resonances 
at the cross section level. Looking for its origin, the fixed-angle orbital angular mo-
mentum partial sums of the cross section evidenced that: a) for angles smaller than 
80°, only a high-energy structure is present which is attributable to oscillations in the 
reaction probability at very high values of the orbital angular momentum, and b) for 
angles higher than 80° a much richer structure is present in the whole energy range. 
It is formed by a double pattern, consisting of a smooth, long wavelength oscillation 
due to low angular momentum contributions and superposed on it, a spiked, short 
wavelength structure appearing at moderate to high values of the angular momentum. 
This high angular momentum behaviour is most remarkable, since it emphasizes the 
role of angular momentum in reactive collisions and makes explicit the importance of 
the 1) degeneracy term. 

As a final application, we have shown that the calculation of CRPs with a very short-
ranged propagation, using standard boundary conditions, leads to the same values than 
the standard calculations. This offers an alternative way of showing the "hoped for" 
advantage of the direct rate constant calculation as pointed out by Seideman and Miller. 
In so doing, the role of the potential ridge in inducing reactant to product transitions 
has been also illustrated. 
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