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Abstract. We prove some results concerning the possible configurations of Her-
man rings for transcendental meromorphic functions. We show that one pole is
enough to obtain cycles of Herman rings of arbitrary period and give a sufficient
condition for a configuration to be realizable.

1. Introduction

Given a meromorphic map f : C → Ĉ, we consider the dynamical system generated

by the iterates of f , denoted by fn = f ◦ n). . . ◦ f . If f has a limit at ∞, then

f : Ĉ → Ĉ is a rational map. Otherwise, f is a transcendental map, i.e., it has
an essential singularity at ∞. If the essential singularity has no preimages, i.e., if f
has no poles, we speak about entire transcendental functions. Else f is known as a
(transcendental) meromorphic function.

There is a dynamically natural partition of the phase space into the Fatou set F(f),
where the iterates of f are well defined and form a normal family, and the Julia set
J(f), which is the complement.

Background on iteration theory of rational maps can be found for example in [7], [18]
or [22]. For transcendental maps, the reader can check the survey in [8] or the book
[16].

There are several differences between transcendental and rational maps. One im-
portant such difference concerns the singular values or singularities of the inverse
function. For a rational map f , all branches of the inverse function are locally well
defined except on the set of critical values, i.e., points v = f(c) where f ′(c) = 0.
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If f is transcendental, there is another obstruction: some inverse branches are not
well defined either in any neighborhood of the asymptotic values. A point a ∈ C is
called an asymptotic value if there exists a path γ(t) −→

t→∞
∞ such that f(γ(t)) −→

t→∞
a.

Although critical values always form a discrete set (even finite in the case of rational
maps), this needs not be the case for asymptotic values, unless f is of finite order.

This fact motivated the definition and study of special classes of transcendental maps
like, for example, the class S of functions of finite type, which are those with a
finite number of singular values. Entire or meromorphic functions in S share many
properties with rational maps, like for example the fact that all components of the
Fatou set are eventually periodic [12, 13]. There is a classification of the periodic
components of the Fatou set for a rational map or a transcendental map in class
S: Such a component can either be a rotation domain (a Siegel disk if it is simply
connected or a Herman ring if it is doubly connected) or the basin of attraction of
an attracting, superattracting or parabolic periodic point. Each of these components
is somehow associated to a singular value. More precisely, all basins must contain
one such point, while the orbit of a singular value must always accumulate on each
boundary component of a rotation domain.

If we allow f to have infinitely many singular values then there are more possibilities:
namely a Fatou component (i.e., a connected component of F(f)) can be wandering,
that is it will never be iterated to a periodic component; or it can belong to a cycle of
Baker domains, i.e., a domain on which some subsequence of iterates tend to infinity
(the essential singularity) at a linear rate.

In this paper we are concerned with one particular type of Fatou components, namely
Herman rings. For 0 < r < s < ∞, let Ar,s denote the standard annulus of inner
radius r and outer radius s. For θ ∈ [0, 1) let Rθ(z) = e2πiθz be the rigid rotation of

angle 2πθ. A p−periodic Fatou component A ∈ Ĉ is called a Herman ring of f , if
there exist r < 1 and θ ∈ (0, 1) \Q and a conformal change of variables L : Ar,1 → A
such that L conjugates f p to Rθ, i.e., f p ◦ L = L ◦ Rθ. In this case, we call L the
linearizing function and θ the rotation number of A, which is (mod 1) determined up
to sign. It follows that Herman rings are doubly connected, and foliated by invariant
simple closed curves, on which all orbits under f p are dense. An n−cycle of Herman
rings consists of n−periodic Herman rings A1, ..., An which satisty f(Ai) ⊂ Ai+1 for
all i < n, and f(An) = A1.

For our constructions, we often also work with Siegel disks. These are Fatou domains
on which f p is conjugated to an irrational rotation of the unit disk. We use the terms
linearizing function and rotation number in the same way as for Herman rings.
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Figure 1. Herman ring of a rational map

It is well known that entire functions may not have Herman rings, which is a conse-
quence of the maximum principle. Although Fatou and Julia originally conjectured
that Herman rings did not exist for any rational map, this was proven to be false
by Herman in [14] who gave an example by extending earlier work of Arnold in [2].
Later on, Shishikura [19] used quasiconformal surgery to construct rational functions
with Herman rings. We shall make extensive use of his construction all throughout
the paper. More precisely, Shishikura [19] showed that for any p > 0 and any θ ∈ B,
there exists a rational function with a p−cycle of Herman rings of rotation number
θ, where B stands for the set of irrational numbers called of Brjuno type, a superset
of the Diophantine numbers. The periodic cycles of Herman rings in Shishikura’s
construction are all non-nested, that is, assuming that ∞ does not belong to any of
the rings, every ring lies in the unbounded component of the complement of all other
rings in the cycle. In the same paper, Shishikura also proved that nested configura-
tions are possible, by explicitely constructing a rational map wih a nested 2-cycle of
Herman rings.

Shishikura’s surgery construction was later generalized to transcendental meromor-
phic functions in [10], showing the existence of transcendental meromorphic functions
with invariant Herman rings of arbitrary Brjuno rotation number, and arbitrary con-
figuration. An example with infinitely many invariant Herman rings was constructed
in [17] for a transcendental meromorphic function with infinitely many singular val-
ues.
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Figure 2. Herman rings of transcendental meromorphic functions

In this paper we are concerned with invariant cycles of Herman rings for transcen-
dental meromorphic maps. Our first result concerns the relation of such cycles with
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the number of poles of f . This result appeared already in [10], but unfortunately, the
proof was incorrect.

Theorem A. Let A1, . . . , An be invariant Herman rings of a transcendental mero-
morphic function f . Then there exists a pole in every bounded connected component
of C \

⋃n

i=1Ai.

An obvious corollary of this theorem is the following:

Corollary. If a transcendental meromorphic function f has n poles, then f has at
most n invariant Herman rings.

On the other hand, we can show that for given n, there is a transcendental meromor-
phic function that has an n-cycle of Herman rings and just one pole.

Theorem B. Let n ∈ N, k1, . . . , kn ∈ N0 such that
∑n

i=1 ki ≥ 1 and θ ∈ B. Then
there exists a transcendental meromorphic function F which has an n-cycle of Herman
rings A1, . . . , An of rotation number θ such that there are exactly ki poles in the
bounded component of C \ Ai, and no other poles. Further, F can be chosen to be of
finite type (i.e. f has at most finitely many critical and asymptotic values).

Once the existence of cycles of Herman rings is established, there arises the question
of possible configurations (see Section 3 for a precise definition). There is extensive
work by Shishikura [20, 21] (some of it unpublished) concerning this issue for rational
maps. For a given configuration of rings he defined an associated abstract tree and
showed that, for any tree satisfying certain conditions, one can construct a rational
map with a cycle of Herman rings realizing such tree. We will not generalize his results
in this paper. Instead, we present a surgery construction which “transcendentalizes”
rational maps g with Herman rings. Intuitively, we add an essential singularity at
a certain point in the Riemann sphere, but still preserve the dynamics in a region
which contains all the Herman rings of g.

We show that the procedure of ’transcendentalizing’ a rational function g without
affecting the configuration of Herman rings is always possible. First, we deal with
the nicer case (see Theorem C below) where there exists a curve γ which is mapped
’outside of itself’ under g. In this case, we can say a lot about the dynamics of the
resulting transcendental meromorphic function F .

To make clear what we mean by ’outside of itself’, we use the following definition.
For a simple, closed, oriented curve γ in Ĉ, we denote by int(γ) (resp. ext(γ)) the

component of Ĉ \ γ which lies to the left (resp. to the right) of γ (see Figure 3
below). Throughout this article, if the orientation of a simple closed curve in C is
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int(γ1)

γ1

ext(γ1)

ext(γ2)

int(γ2)

γ2

Figure 3. The interior and exterior depends on the orientation

not defined explicitly, we always assume that it is oriented such that the interior of
γ is the bounded component of C \ γ.

To state the theorem we use the notation CC or CĈ to denote a configuration in C or

Ĉ. The precise definitions can be found in Section 3 but, intuitively, a configuration
is an equivalence class which provides the relative position, orientation and dynamics
of the cycles of Herman rings.

Theorem C. Let g be a rational function with at least one Herman ring and let
CĈ(g) be the configuration associated with the Herman rings of g. Suppose that there
exists a simple closed real-analytic curve γ contained in a non-periodic preimage of
some periodic component of the Fatou set such that g is injective on γ and int(γ) ⊂
int(g(γ)), where we choose some orientation of γ and assign g(γ) the orientation
respected by g. Further suppose that gn(γ)∩ int(γ) = ∅ for all n ∈ N and that there are
no periodic Herman rings in int(γ). Then there exists a transcendental meromorphic
function F and a configuration CC with CĈ ∼ CĈ(g) and CC ∼ CC(F ), i.e. F realizes
CC. Further, F is of finite type, has finitely many poles, and is quasiconformally
conjugate to a hyperbolic exponential map near ∞.

The Herman rings arising from Theorem B are ’non-nested’, i.e. if we consider the
configuration associated with the cycle we obtain from the theorem, we have either
Ai ⊂ ext(Aj) or Ai ⊂ int(Aj) for all i ∈ {1, . . . , n} and j 6= i.

As a corollary to Theorem C, we can prove that there exists a transcendental mero-
morphic function f with a ’nested’ 2-cycle A1, A2 of Herman rings, i.e. A1 ⊂ int(A2)
and A2 ⊂ ext(A1). The existence of a rational function satisfying this configura-
tion has been proven first by Shishikura, and it is easy to see that the function he
constructs satisfies the hypothesis of Theorem C.

Corollary. There exists a transcendental meromorphic function F which has a 2-
cycle of Herman rings A1, A2 such that A1 ⊂ int(A2) and A2 ⊂ ext(A1). Further, F
can be chosen to be of finite type and has finitely many poles.
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It turns out we can generalize the method of the proof of Theorem C for any other
rational map with Herman rings, hence proving that any rational configuration is also
possible for transcendental meromorphic maps. More precisely we prove the following
(see Section 3 for precise definitions).

Theorem D. Let g be a rational function with Herman rings. Let C′
C be a configu-

ration with C′
Ĉ
∼ CĈ(g). Then there exists a transcendental meromorphic function F

with CC(F ) ∼ C′
C, i.e. F realizes C′

C.

The paper is organized as follows. In section 2 we review some facts about quasicon-
formal surgery that we will need throughout the paper. In section 3 we provide the
terminology and definitions we will use, in particular we will define what we mean by
a configuration. Section 4 deals with the proofs of Theorems A, B and C. In section
5 we give the proof of the main theorem (Theorem D).

Acknowledgements. We wish to thank Christian Henriksen for the algorithm to
compute nonsymmetric Herman rings of transcendental maps, as the one in Figure 2.
We are grateful to the EU network CODY for giving the oportunity to many young
researchers like the second author to enjoy postdoctoral research stays as the one
that made this paper possible. We also thank the referee for reading the paper and
give useful suggestions.

2. Tools from quasiconformal surgery

We call a function quasiregular (resp. quasimeromorphic) if g is locally the composi-
tion f ◦φ of a holomorphic (resp. meromorphic) map f and a quasiconformal map φ.
The measurable Riemann mapping theorem (see e.g. [1]) ensures that the Beltrami
equation

fz
fz

= µ

can be solved almost everywhere by a K-quasiconformal map φ under the very weak
condition that the Beltrami coefficient (or complex dilatation) µ is measurable and
satisfies ‖µ‖∞ < 1 (we say that µ is bounded), and the constant K can be chosen

as K =
1+‖µ‖

∞

1−‖µ‖
∞

. The importance of this theorem for quasiconformal surgery is the

following: Suppose that f is a quasiregular or quasimeromorphic function and µ is a
bounded Beltrami coefficient which is f -invariant, i.e. the pullback

f ∗µ(u) :=
fz(u) + µ(f(u))fz(u)

fz(u) + µ(f(u))fz(u)
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satisfies f ∗µ = µ almost everywhere. Let φ be the solution of the Beltrami equa-
tion, i.e. φ∗µ0 = µ (where µ0 is the function that is 0 everywhere). If we de-
fine g := φ ◦ f ◦ φ−1, it follows that µ0 is g-invariant, and a corollary of Weyl’s
lemma yields that g is holomorphic (resp. meromorphic) since g is also quasiregular
(resp. quasimeromorphic). Hence, the central question that arises is the following:
Given a quasiregular (or quasimeromorphic) map g, under which conditions does
a g-invariant bounded Beltrami coefficient exist? The most general answer to this
question is the following result (see e.g. [15]).

Theorem. Let f be a quasiregular map. Then there exists a bounded, f -invariant
Beltrami coefficient µ if and only if the iterates fn are uniformly K-quasiregular for
some K <∞.

Since the set of poles of a quasimeromorphic map together with all their preimages
has zero measure, the proof of this theorem can be carried over to quasimeromorphic
maps as well, we only have to replace ’quasiregular’ by ’quasimeromorphic’ in the
statement (see [9]).

Although this theorem is very useful in many situations, it is not always easy to see
that the family of iterates is uniformly K-quasiregular (or K-quasimeromorphic).

In [19], Shishikura proved another sufficient condition for the existence of a bounded
invariant Beltrami coefficient.

Lemma. Let m ∈ N and f : Ĉ → Ĉ be a quasiregular (resp. quasimeromorphic) map.
Suppose that there exists an integer N ≥ 0, disjoint open sets Ei and quasiconformal
mappings φi : Ei → E ′

i (where i = 1, ..., m) satisfying the following conditions:

(a) f(E) ⊂ E, where E =
⋃m

i=1Ei

(b) φ ◦ f ◦φ−1
i is analytic in E ′

i = φi(Ei), where φ : E → Ĉ is defined by φ|Ei
= φi

(c) fz = 0 a.e. on Ĉ \ g−N(E)

Then there exists a quasiconformal mapping ϕ of Ĉ such that ϕ◦f ◦ϕ−1 is a rational
(resp. transcendental meromorphic) function. Moreover, ϕ ◦ φ−1

i is conformal in E ′
i

and ϕz = 0 a.e. on Ĉ \
⋃

n≥0 f
−n(E).

The quasiconformal maps we construct in this paper arise from pasting together
several quasiconformal maps on analytic curves. Most of the time, we prescribe the
boundary values of the function on such a curve γ, choose some conformal map f
defined in the interior (or exterior) of γ and modify f near γ to fit the boundary
conditions. This modification is done by quasiconformal interpolation. We will use
the following fundamental result implicitly several times throughout this paper - see
e.g. [9] or [10] for a proof.
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Lemma (qc interpolation). Let A and Ã be annuli bounded by real analytic Jor-
dan curves γ(i), γ(o), γ̃(i), γ̃(o) respectively, where (i) (resp. (o)) stands for inner (resp.
outer) boundary. Let f (i) : γ(i) → γ̃(i) (resp. f (i) : γ(i) → γ̃(o)) and f (o) : γ(o) → γ̃(o)

(resp. f (o) : γ(o) → γ̃(i)) be orientation-preserving (resp. orientation-reversing) diffeo-

morphisms. Then, there exists a quasiconformal map f : A→ Ã such that f |γ(i) = f (i)

and f |γ(o) = f (o).

3. Herman rings and configurations

Let γ and δ be simple, oriented, closed curves in Ĉ. Note that int(γ) = int(δ) means
that γ = δ (as sets) and that γ and δ have in addition the same orientation.

By a configuration CĈ = (Γ, π)Ĉ, we mean a finite collection Γ = {γ1, . . . , γn} of dis-

joint, oriented, simple closed curves in Ĉ, together with a permutation π of {1, . . . , n}.

Two configurations CĈ = (Γ, π)Ĉ and C′
Ĉ
= (Γ′, π′)Ĉ (where Γ = {γ1, . . . , γn} and

Γ′ = {γ′1, . . . , γ
′
n}) can be considered equivalent (we write CĈ ∼ C′

Ĉ
) if one of the

following conditions is satisfied:

• π = π′ and there exists a homeomorphism ψ of Ĉ such that int(ψ(γi)) = int(γ′i)
• π = π′ and the orientations of γi and γ′i are reversed for all i that form one or

more cycles of π
• there exists a permutation τ of {1, . . . , n} such that

τ−1 ◦ π ◦ τ = π′ and int(γτ(i)) = int(γ′i)

Obviously, they are also equivalent if C′
Ĉ

arises from CĈ by combining more than one
of the above properties.

Let f be a rational function which has exactly n periodic Herman rings A1, . . . , An.

For i = 1, . . . , n let π(i) := j if f(Ai) ⊂ Aj and let δi be a simple, closed oriented
curve in Ai which is not homotopic to a point. We assign an orientation to each δi
in the following way: In each cycle of π, fix a number i0 and an orientation of δi0 .
We assign f(δi0) the orientation respected by f and δπ(i0) the orientation such that
int(f(δi0)) \ Aπ(i0)=int(δπ(i0)) \ Aπ(i0). Then we proceed inductively.

Set ∆ := {δ1, . . . , δn}. We define the configuration of the Herman rings of f by
CĈ(f) := (∆, π)Ĉ (it is immediate that the equivalence class does not change if we
choose different curves δ′i or renumber them). See Figure 4.

We say that the configuration CĈ = (Γ, π)Ĉ is realized by f if CĈ(f) ∼ CĈ.
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A1

γ1

A2

A3

A4

Figure 4. C
Ĉ
(f) = {{γ1, . . . , γ5}, {2, 1, 3, 5, 4}} is a representative of the

equivalence class.

It is not hard to see that that a configuration (Γ, π)Ĉ (where Γ = {γ1, . . . , γn}) is
realized by f if and only if f(Ai) = Aπ(i) for all i ∈ {1, . . . , n} and there exist

oriented simple closed curves δi ∈ Ai and a homeomorphism φ : Ĉ → Ĉ with the
following properties:

• If f(δi) is oriented such that f respects the orientation of δi and f(δi), then
int(f(δi)) \ Aπ(i)=int(δπ(i)) \ Aπ(i) for all i

• int(φ(δi)) = int(γi) for all i

The main objective of this paper is to show that every configuration that is realizable
by a rational function is also realizable by a transcendental meromorphic function.
Since ∞ is a special point for transcendental meromorphic maps, we define a config-
uration CC := (Γ, π)C of curves in C by replacing every instance of Ĉ in the previous
definition by C. We then call (C, π)C realizable if there exists a transcendental mero-

morphic function f which satisfies the above conditions (again with Ĉ replaced by
C).

Notice that the variety of configurations in C is larger than in Ĉ - two configurations
that are equivalent in Ĉ need not be equivalent as configurations in C. An example
is the following: Let r1 < r2 and γi := {|z| = ri}, oriented such that γ1 ⊂ int(γ2)
and γ2 ⊂ ext(γ1). Let γ′1 := S1 and γ′2 := {|z − 3| = 1}, again oriented such that
γ′1 ⊂ int(γ′2) and γ′2 ⊂ ext(γ′1). Let C consist of γ1 and γ2, and C′ of γ′1 and γ′2, both
with π = π′ := id. Then (C, π)Ĉ and (C′, π′)Ĉ are equivalent, but (C, π)C and (C′, π′)C
are not, since a homeomorphism f of C cannot send the bounded component of C\γ′2
to the unbounded component of C \ γ2, as it would be required.
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Nevertheless, we will show at the end of this paper that if CĈ is a realizable configura-
tion, then all configurations C′

C with CĈ ∼ C′
Ĉ

are also realizable (by a transcendental

meromorphic function).

4. Proof of Theorems A,B and C

In this section, we prove Theorems A, B and C.

Proof of Theorem A. Suppose that the above statement does not hold, that is, there
exists a bounded component U of C\

⋃
Ai which does not contain any pole of f . There

exists an index i such that Ai ’surrounds’ U , i.e. Ai is contained in the unbounded
component of C \ U and ∂Ai ∩ ∂U 6= ∅. For every k, let γk be an invariant curve in
Ak, oriented such that int(γk) is the bounded component of C \ γk. Let γk1, . . . , γkm
be the curves which are contained in int(γi), but not in the interior of any other curve
γj ⊂ int(γi). If there are no such curves, then we obtain a contradiction using the
maximum principle. Otherwise we glue a rotation inside of each γkl, transforming
Akl∪ int(γkl) into a Siegel disc following fundamental ideas of Shishikura [19]. To
make this construction precise we fix l and start by setting γ := γkl and A := Akl .
Further, let θ be the rotation number of A.

Let L : AR,1 → A be the linearizing map. Then there is an r ∈ (R, 1) such that
L({|z| = r}) = γ.

Let L̃ be a quasiconformal extension of L (for example, the Douady-Earle extension,

see [11]) from D(0, r) to int(γ) and let Rθ(z) := e2πiθz be the rigid rotation by 2πθ.

Define

h(z) :=

{
L̃ ◦ Rθ ◦ L̃

−1(z) if z ∈ int(γ)

f(z) otherwise.

Then it is easy to see that h is a quasimeromorphic map that coincides with f
on γ (since L̃ is a quasiconformal extension of the linearizer). Further, the set
E := int(γ) satisfies the conditions of Shishikura’s lemma (with N = 0), so there

exists a quasiconformal map ϕ : Ĉ → Ĉ fixing ∞ such that F = ϕ−1 ◦ h ◦ ϕ is a
transcendental meromorphic function. It follows easily that ϕ(γ) is an invariant curve
in a Siegel disk of F .

Repeating this construction with each of the Akl, we end up with a transcendental
meromorphic function G which has a Herman ring B that is some quasiconformal
image of Ai, but all Herman rings inside have been transformed into Siegel disks. In
particular there is no pole in int(B), so the bounded component of the complement
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of an invariant curve in B is mapped onto itself by the maximum principle. This
implies that the iterates of G form a normal family there, a contradiction to the fact
that B is a Herman ring of G. �

Figure 5. Sketch of the proof of Theorem A.

We now prove Theorem B which implies that for given n, a transcendental mero-
morphic function that has an n-cycle of Herman rings and just one pole can be
constructed.

Proof of Theorem B. Choose a transcendental entire function f which has an n-cycle
of Siegel disks ∆1, . . . ,∆n with rotation number θ, and choose an fn-invariant curve
γ1 in ∆1. Then γ1 = L({|z| = r}), where L : D → ∆1 is the linearizing map. We
define

γi := f i−1(γ1) for i = 2, . . . , n.

Now let pi be polynomials as follows:

If ki = 0, let pi := id. Otherwise let pi be a polynomial of degree ki + 1 which has a
Siegel disk around 0 of rotation number −θ/n0, where n0 is the number of non-zero
entries in (k1, . . . , kn) (note that −θ/n0 is also a Brjuno number). Then it follows
that pn ◦ pn−1 ◦ . . . ◦ p1 has a Siegel disk D1 around 0 of rotation number −θ. Let

Di := pi−1(Di−1) for all i = 2, . . . , n.

Let δ1 := L̃({|z| = r}), where L̃ is the linearizing map of D1. Then δ1 is a curve in
D1 which is invariant under pn ◦ . . . ◦ p1. Define

δi := pi−1(δi−1) for all i = 2, . . . , n.

Now construct an orientation-reversing real-analytic homeomorphism ψ1 : γ1 → δ1 as
follows. Since we have

L̃−1 ◦ pn ◦ . . . ◦ p1 ◦ L̃(z) = e−2πiθz,

conjugating the left side by c(z) := z yields a rigid rotation by θ.
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Further it is clear that L−1 ◦ fn ◦ L is also a rigid rotation by θ. Hence, by defining

ψ1 := L̃ ◦ c ◦ L−1,

ψ1 is an orientation-reversing real-analytic homeomorphism mapping γ1 to δ1 and
satisfying

ψ−1
1 ◦ pn ◦ . . . ◦ p1 ◦ ψ1 = fn.

For i = 2, . . . , n, define orientation-reversing maps ψi : γi → δi by

ψi ◦ f = pi−1 ◦ ψi−1.

Let E ′
1 := L̃(AR1,R2) (where 0 < R1 < r < R2 < 1) and E ′

i := pi−1(E
′
i−1) for

i = 2, . . . , n. Similarly, let E1 := L(AR1,R2) and Ei := f i−1(Ei−1) for i = 2, . . . , n.

Now construct quasiconformal maps φi : Ĉ → Ĉ as follows: Let φi be conformal
outside Ei with a continuous extension to ∂Ei that maps the boundary curves of Ei

to simple closed real-analytic curves, the center of ∆i to ∞ and ∞ to 0. Extend φi

by quasiconformal interpolation to Ei ∩ ext(γi) such that φi equals ψi on γi. In the

same way extend φi quasiconformally to Ei ∩ int(γi).

Define

g(z) :=

{
f(z) if z /∈

⋃n

i=1 int(γi)

φ−1
i+1 ◦ pi ◦ φi(z) if z ∈ int(γi)

.

Then g is quasiregular. Observe that the poles of g in int(γi) are exactly the non-zero
preimages under φi of the zeros of pi. Hence there are as many poles in int(γi) as
deg(pi)− 1.

By construction, we have γi ⊂ Ei ⊂ ∆i and E :=
⋃n

i=1Ei is invariant under g.
Further, by defining φ := φi|Ei

on Ei, the function φ◦g ◦φ−1 is holomorphic on φ(Ei)

for all i, and g is holomorphic on Ĉ \ g−1(E). Hence the hypothesis of Shishikura’s
lemma is satisfied, so the existence of F follows. Further, if f was chosen to be of
finite type, then F is also. �

The Herman rings constructed here are all non-nested, i.e. if we choose a periodic
curve δ1 in one of the periodic Herman rings of F and assign fm(δ1) the orienta-
tion such that fm respects the orientations of δ1 and fm(δ1), then we have either
Aj ⊂ int(Ai) or Aj ⊂ ext(Ai) for j 6= i. The existence of a transcendental mero-
morphic function with a nested cycle of Herman rings follows from a construction by
Shishikura together with Theorem C, which we will prove now.
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Proof of Theorem C. Let E(z) = λ(ez−1) be the exponential map with an attracting
fixed point at 0 of multiplier λ such that the modulus of the annulus A|λ|,1 equals the
modulus of the annulus bounded by γ and g(γ).

Let δ be a real-analytic curve around 0 which is contained in the domain where the
linearizing map for E is injective. By definition of E, the modulus of the annulus
bounded by δ and E(δ) (which is contained in the interior of δ) is also equal to the
modulus of A|λ|,1. Let φ : int(γ) → ext(δ) be a conformal map. Then φ|γ is an
orientation-reversing real-analytic homeomorphism mapping γ to δ. If we define

φ(z) := E ◦ φ ◦ g−1(z)

on g(γ), then φ|g(γ) is also an orientation-reversing map sending g(γ) to E(δ). Let
p := φ−1(∞). Our goal is to construct an essential singularity at p by gluing the
dynamics of E in the exterior of δ inside of γ (as indicated in Figure 6).

∞

δE(δ)

0p

γg(γ)

p

γ

Figure 6. Sketch of the construction of an essential singularity. The ver-

tical lines indicate the periodic Herman rings of g

Since γ is contained in the preimage B of some periodic Fatou component, there
exists a neighborhood U of γ which is contained in B. Hence g(U) is a neighborhood
of g(γ).
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We want to extend φ quasiconformally to all of Ĉ. Choose a conformal map ψ1

that maps the annulus A bounded by γ and g(γ) to the annulus bounded by δ
and E(δ), sending γ to δ and g(γ) to E(δ). Then modify ψ1 on A ∩ U and on
A ∩ g(U) quasiconformally such that ψ1 equals φ on γ and g(γ). Similarly, let ψ2 :
ext(g(γ)) → int(E(δ)) be a conformal map and modify it quasiconformally on g(U)
such that ψ2 equals φ on g(γ). Note that the modification of ψ1 and ψ2 is possible
because both φ|γ and φ|g(γ) are orientation-reversing. Extend φ by setting φ := ψ1 in
A and φ := ψ2 in ext(g(γ)). The resulting map is quasiconformal and holomorphic
outside of U ∪ g(U).

Now let h be the quasimeromorphic map defined by

h(z) =

{
g(z) if z /∈ int(γ)

φ−1 ◦ E ◦ φ(z) if z ∈ int(γ) and z 6= p.

We want to see that h is quasiconformally conjugate to a transcendental meromorphic
function. So we have to show that the iterates hn are uniformly K-quasimeromorphic
for some K. But this is easy to see since the orbit of every point in C passes at most
once through the region where h is not holomorphic, i.e. through U ∪ g(U) (by the
hypothesis that int(γ) ∩ gn(γ) = ∅ for all n). Hence there is a quasiconformal map

ϕ : Ĉ → Ĉ mapping p to ∞ such that F = ϕ◦h◦ϕ−1 is a transcendental meromorphic
function.

Near ∞, the dynamics of F are the same as the dynamics of E.

We now list some properties of the function F . It has one finite asymptotic value,
namely ϕ(φ−1(−λ)). The other asymptotic value is the essential singularity ∞. Be-
cause E has no critical points, F has at most as many critical values as g. The above
properties yield that F is of finite type.

Further, since ∞ is also an omitted value of E, F has at most as many poles as g. The
ϕ-images of the curves that form the configuration CĈ(g) define a new configuration
C′
Ĉ
= (Γ′, π)Ĉ which is equivalent to CĈ(g), and by construction, F realizes C′

C. Hence
the theorem is proved. �

Remark. The condition that g be injective on γ can also be dropped. Indeed, if g
is n : 1 on γ, we choose En(z) := z 7→ λzn−1(ez − 1) instead of E and the same
argument can be used with obvious modifications.
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5. The general case - Proof of Theorem D

In this section we show the main theorem of this paper - namely, every configuration
of Herman rings that can be realized by a rational function can also be realized by a
transcendental meromorphic function (in the sense of section 3).

Proof of Theorem D. Denote the periodic Herman rings of g by A1, . . . , An. Let C′
Ĉ
=

(Γ′, π′)Ĉ and CĈ(g) = (Γ, π)Ĉ. By changing simultaneously the orientations of the
curves corresponding to one or more cycles that form π′ and renumbering the curves
in Γ′ if necessary, we can assume that π = π′ and that there exists an orientation-
preserving homeomorphism α of Ĉ such that int(α(γi)) = int(γ′i) for all i = 1, . . . , n
(where we assume that Γ = {γ1, . . . , γn} and Γ′ = {γ′1, . . . , γ

′
n}).

We consider the point w := α−1(∞) and choose a non-periodic preimageB of some pe-

riodic Herman ring which is contained in the same connected component of Ĉ\
⋃n

i=1Ai

as w. The fact that such a component exists is clear because the preimages of every
Herman ring accumulate everywhere on the Julia set of g. Now choose an oriented,
real-analytic, closed curve γ ⊂ B such that there are no periodic Herman rings of
g in int(γ) and g is injective on γ (for example, let γ be the boundary of a small
disc around some non-critical point in B). We have gn(γ)∩ int(γ) = ∅ for all n ∈ N

because B is non-periodic.

Let p ∈ int(γ). We modify α on the component of Ĉ \
⋃n

i=1Ai that contains w in
such a way that the resulting map (we call it α as well) satisfies p = α−1(∞).

Assign g(γ) the orientation such that g respects the orientations of γ and g(γ). If
int(γ) ⊂ int(g(γ)), we can proceed as in the proof of Theorem C. Therefore we now
have to deal with the case that int(γ) ⊂ ext(g(γ)) (the other cases cannot occur since
gn(γ)∩ int(γ) = ∅ for all n ∈ N).

The construction resembles the one done in the previous section, but notice that now
we cannot find only one quasiconformal map with which to conjugate, because if we
tried to do the construction as in the proof of Theorem C, the homeomorphism that
maps g(γ) to E(δ) would now be orientation-preserving, but the homeomorphism
that maps γ to δ would be orientation-reversing, so we would not be able to extend
these maps to a single quasiconformal homeomorphism of the Riemann sphere. It
follows that we have to work with two quasiconformal maps instead.

As before, let E(z) := λ(ez − 1) be an exponential map with λ < 1, and let δ be a
real-analytic curve around 0 which is mapped 1-1 inside of itself under E.

We choose a conformal map ψ1 mapping the interior of γ to the exterior of δ that
sends p to ∞. Now choose a conformal map ψ2 mapping the exterior of γ to the
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interior of δ, sending ∞ to 0, and modify it quasiconformally in a small (one-sided)
neighborhood U of γ which is contained in B such that the resulting function (call it
ψ2 again) coincides with ψ1 on γ. By pasting ψ1 and ψ2, we obtain a quasiconformal

map Φ1 of Ĉ sending γ to δ which is conformal outside U .

For z ∈ g(γ), we define

ψ̂(z) := E ◦ Φ1 ◦ g
−1(z)

and extend it in the same way to a quasiconformal self-map Φ2 of the sphere which
maps the interior of g(γ) to the exterior of E(δ) and vice versa, is conformal outside
g(U) and sends g(p) to ∞ and ∞ to −λ.

Now we define

h(z) =

{
g(z) if z /∈ int(γ)

Φ−1
2 ◦ E ◦ Φ1(z) if z ∈ int(γ) and z 6= p.

By the construction of ψ̂ and therefore Φ2, h is quasimeromorphic with an essential
singularity at p. As before, it is easy to see that the orbit of every point in C passes
through the region of non-holomorphicity of h at most once, hence the iterates hn

are uniformly K-quasimeromorphic for some K. This ensures the existence of a
transcendental meromorphic function F = ϕ ◦ h ◦ ϕ−1, where ϕ is a quasiconformal
self-map of Ĉ sending p to ∞.

Note that F does not have more critical points than g, so F has only a finite number
of critical values. Unlike in section 4, F now has 2 finite asymptotic values, namely
ϕ(g(p)) and ϕ(Φ−1

2 (−λ)).

In fact, the essential singularity ∞ is not an asymptotic value of F - if it were, then
there would exist an asymptotic value of E in the interior of E(δ), which is clearly
impossible by the definition and properties of δ.

Further, F has infinitely many poles - the set of poles equals ϕ(E−1(Φ2(p))).

Finally, the map α ◦ ϕ−1 is a homeomorphism of C satisfying the condition for F to
realize the configuration (Γ′, π)C, which finishes the proof of Theorem D. �
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