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Resum

La descripció estàndard de l’evolució cosmològica està basada en la Relati-
vitat General i el seu èxit, descrivint l’evolució de l’univers, és excepcional.
Però, en el nostre avanç en el coneixement dels detalls de l’univers, es fa ne-
cessari introduir nous elements per poder explicar totes les caracteŕıstiques
que observem. Alguns dels problemes més coneguts, com el problema de
l’horitzó o el de la planor, són resolts per la inflació. Hi ha altres problemes
com el de l’expansió accelerada o el del contingut de matèria que necessi-
ten una altra explicació. Aquests problemes s’acostumen a resoldre acudint
a l’existència de dos components “foscos”: l’energia fosca i la matèria fos-
ca. Tot plegat es considera, usualment, el model cosmològic estàndard i és
conegut com el model Λ-CDM.

La gravetat és una força atractiva que tendeix a apropar les coses. Però
l’any 1998 dues col·laboracions, el Supernova Cosmological Project i el High-
z Supernova Search Team [PAG+99, RFC+98], van descobrir que l’univers
estava en expansió accelerada. Això suggeria l’existència d’un component
amb una força que compensava la gravetat, una energia que ocupava la
major part de l’univers i que va ser anomenada “energia fosca” degut a la
seva naturalesa desconeguda. A l’inici, aquesta energia va ser associada a
la constant cosmològica, com l’energia del buit quàntic, però això portava a
una mida estimada molt més gran que la quantitat observada. Aix́ı, l’origen
i la forma d’aquesta energia són encara problemes que s’han de resoldre en
la cosmologia actual.

El fons còsmic de radiació de microones és una altra observació que,
encara que proporciona un suport molt important a la cosmologia del Big
Bang, necessita d’altres elements complementaris, que serien algun tipus
d’energia i matèria fosques. La detecció inicial del fons còsmic de radiació
de microones va ser feta al 1965 per Penzias i Wilson [PW65] i la seva signi-
ficació cosmològica va ser explicada a [DPRW65]. Les mesures originals van
proporcionar una estimació de la temperatura de radiació del cos negre d’uns
3.5 K. L’espectre de Planck del fons de microones va ser establert finalment
amb gran precisió gràcies al satèl·lit COBE als anys 90 [SBK+92] i la seva
temperatura fixada als 2.725±0.002K. Des de llavors, l’experiment WMAP
[KDN+09] ha continuat proporcionant més i més detalls de l’espectre i de
les anisotropies del fons còsmic de radiació de microones.
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D’altra banda, es van proposar moltes alternatives per explicar aques-
tes observacions. Totes aquestes propostes comparteixen algunes carac-
teŕıstiques comunes. En primer lloc, totes són modificacions de la gravetat
a llargues distàncies. En segon lloc, estan totes fortament restringides pel
requeriment de covariància general. Per aquesta raó, la majoria de les alter-
natives a la Relativitat General proposades poden ser formulades com una
Relativitat General acoblada a nous camps1.

L’acceleració còsmica pot ser deguda a un camp escalar que descendeix
lentament per un potencial [PR88]2 o pot ser simplement un camp escalar
situat al mı́nim local del potencial [BP00]. Alternativament, pot ser con-
düıda per un terme cinètic no mı́nim d’un camp escalar de k-essence amb
un Lagrangià de la forma p(X,φ), on X = ∂µφ∂µφ. Aquesta forma és molt
versàtil i pot ser usada per imitar fluids còsmics, amb un ample rang de
possibilitats per la seva equació d’estat efectiva i la seva velocitat del so,
incloent aquelles que són caracteŕıstiques de l’energia fosca i de la matèria
fosca freda [APDM99, APMS00, APMS01, GM99].

El gradient del camp de k-essence, ∂µφ, és un vector de tipus temporal
que trenca espontàniament la invariància de Lorentz, d’una forma que és
paramètricament independent del seus efectes en l’evolució temporal de la
geometria de fons. Concretament, la invariància de Lorentz pot ser tren-
cada espontàniament per ∂µφ mentre que l’espaitemps de fons es manté
màximament simètric, una situació que es coneguda com ghost condensati-
on [AHCLM04]. Tot i això, el “fluid” respon a l’atracció gravitatòria de la
matèria ordinària, provocant modificacions dels potencials de llarg abast.

De manera més general, les teories amb un gravitó massiu poden ser es-
crites de forma covariant com Relativitat General acoblada a un conjunt de
camps escalars de “Stückelberg”, φA, amb termes cinètics no mı́nims i amb
gradients que tenen valors esperats no nuls [AHGS03, Dub04, BCNP09]. De-
penent de les interaccions i dels valors esperats dels condensats, això pot des-
criure diverses fases de la gravetat massiva. A més de la fase de Fierz-Pauli,
en la qual es preserva la invariància de Lorentz [AHGS03] (veure també
[CM10]), hi ha altres fases que es van estudiar a [Dub04, BCNP09] on la inva-
riància Lorentz està trencada. Algunes d’aquestes fases tenen una fenomeno-
logia molt interessant, com pot ser el fet que no tinguin “fantasmes” en l’es-
pectre linealitzat, el tenir un gravitó massiu amb només dues polaritzacions
transversals, o tenir potencials gravitatoris febles que es diferencien d’aquells
de la Relativitat General estàndard per termes proporcionals al quadrat de

1Un contraexemple és l’escenari del món de branes DGP, on la gravetat es modifica a
l’infraroig degut a un continu de gravitons de Kaluza-Klein [DGP00]. Per això, DGP no
pot ser formulada com una versió estàndard de la Relativitat General en quatre dimensions
amb camps addicionals.

2Això inclou el cas on modifiquem l’acció d’Einstein-Hilbert fent servir una funció
arbitrària de l’escalar de Ricci [Cap02, CDTT04], ja que la teoria resultant pot ser refor-
mulada com una teoria escalar-tensor estàndard [Wil93].

ii



la massa del gravitó [Rub07, Dub04, BCNP09, DTT05, DFST09, BM09].

La inclusió de camps addicionals de spin 2 va ser considerada en teories de
bigravetat (o multigravetat) [DK02], on l’espaitemps està dotat de diverses
mètriques que interaccionen entre elles de forma no derivativa. Degut a
la covariància general només un dels gravitons de l’espectre linealitzat es
manté sense massa, mentre que la resta adquireix masses proporcionals als
termes d’interacció no derivatius. La invariància Lorentz pot ser trencada
espontàniament, fins i tot, quan totes les mètriques són planes, sempre que
els seus cons de llum tinguin velocitats ĺımit diferents. Això porta a una
fenomenologia [BCNP07, BCNP08, BDG07] semblant a certes fases de la
gravetat massiva que trenca la invariància Lorentz mencionada anteriorment
[Rub07, Dub04, BCNP09, DTT05, DFST09, BM09].

Finalment, podem considerar l’addició de camps vectorials, que són l’ob-
jecte d’aquesta tesi. Les teories efectives pels vectors estan fortament res-
tringides pels requeriments d’estabilitat. Habitualment, les teories d’aquest
tipus que tenen una dinàmica cosmològica no trivial contenen un “fantas-
ma” massiu [APDT09], que pot ser eliminat de l’espectre portant la seva
massa cap a l’infinit. L’efecte és el mateix que si s’imposés una restricció
fixa en la norma del vector, produint un valor esperat del buit que trenca la
invariància Lorentz. Aquest fet va dur a Jacobson i Mattingly a anomenar
aquests models com a teories d’Einstein-Aether [JM01]3. Les seves excita-
cions de baixa energia són els bosons de Goldstone de la simetria Lorentz
trencada4, que participaran en la dinàmica de les interaccions de llarg abast.

Un desenvolupament recent interessant és la proposta feta per Hořava
[Hoř09b, Hoř09a] que planteja que una teoria de gravetat que trenca la si-
metria Lorentz podria ser renormalitzable i completa a l’UV. El trencament
de la invariància Lorentz es produeix en aquest cas introduint una foliació
privilegiada de l’espaitemps, sense estructura addicional. Com va ser as-
senyalat en [BPS09], qualsevol teoria amb una foliació privilegiada pot ser
escrita d’una forma covariant si tractem el paràmetre temporal que etiqueta
les diferents superf́ıcies com un camp escalar de Stückelberg, T . La foliació
és considerada f́ısica però no la parametrització i, per tant, la teoria cova-
riant hauria de ser invariant sota redefinicions del camp T → f(T ). En
altres paraules, el Lagrangià pot tenir una dependència respecte a la nor-
mal unitària a les hipersuperf́ıcies, però no pot dependre de la magnitud del
gradient T ,µ (en contrast amb els exemples de k-essence i ghost condensati-

3Un camp vectorial amb norma fixa determinant un sistema de referència privilegiat
es va ser fer servir, també, en les versions relativistes de MOND [Mil83], com en TeVeS
[Bek04], que fa un intent per explicar les corbes de rotació de les galàxies sense utilitzar
matèria fosca freda

4En les teories amb simetries d’espaitemps espontàniament trencades, el nombre de bo-
sons de Goldstone no és, en general, el mateix que el nombre de generadors trencats. Però,
si el paràmetre d’ordre que trenca la simetria d’espaitemps és independent de l’espaitemps
(com el camp d’Aether constant), llavors, els dos nombres coincideixen [LM02].

iii



on mencionats anteriorment). Partint d’aquesta observació, Blas, Pujolàs i
Sibiryakov van mostrar [BPS10b, BPS10a] que la gravetat de Hořava podia
estendre’s incloent en l’acció tots els termes compatibles amb la simetria
de reparametrització, i que era consistent amb la renormalització per power
counting. Aquesta extensió és molt interessant, ja que permet solucionar
alguns problemes en el sector escalar de la proposta original (com inesta-
bilitats i acoblament fort a baixes energies [BPS09]). Jacobson [Jac10], ha
clarificat la relació entre la teoria d’Einstein-Aether i aquesta versió estesa
de la gravetat de Hořava, que va anomenar gravetat BPSH. Concretament,
va assenyalar que qualsevol solució d’Einstein-Aether on el camp vectorial
sigui ortogonal respecte a la hipersuperf́ıcie és també solució del ĺımit de
baixes energies de la gravetat de BPSH.

Ja que l’Aether només interacciona gravitatòriament qualsevol senyal
d’aquest ha de ser proporcional a una potència de (E/MP )2, on MP és la
massa de Planck redüıda, i E l’escala d’energies. Per tant, encara que l’Aet-
her conté camps sense massa, la seva presència és dif́ıcil de detectar. Això fa
que la inflació proporcioni una finestra interessant per provar l’existència de
l’Aether i les seves implicacions. Durant el temps d’inflació, les fluctuacions
de petita escala del buit dels camps lleugers són transferides a distàncies
cosmològiques, on poden deixar una empremta observable. Per això, és
natural cercar empremtes d’Einstein-Aether a l’espectre de pertorbacions
primordials, que és el tema al qual dediquem aquesta tesi.

Treballs previs sobre aquest tema [Lim05, LMB08], exploren una regió
de l’espai de paràmetres més estreta i amb conclusions en certa mesura
diferents. Al sector escalar hi trobem un mode d’isocurvatura primordial
que pot ser interpretat com el potencial de velocitat de l’Aether respecte
a la matèria. Segons siguin els paràmetres de l’Aether, aquest mode pot
créixer a escales de superhoritzó, portant a un camp de velocitats aleatori
per a l’Aether de magnitud apreciable. Resultats similars són aplicables al
sector transversal del vector. Aquestes pertorbacions podrien ser d’interès
fenomenològic. També observem que el mode d’isocurvatura està fortament
correlacionat amb el mode adiabàtic usual, que es correspon amb les pertor-
bacions de la curvatura en el tall comòbil.

Treball previ sobre l’impacte de les pertorbacions escalars adiabàtiques
en el fons de radiació de microones i les estructures a escales llargues en les
teories de l’Aether (generalitzades) es pot trobar a [ZFZ08, ZZB+10].

Durant l’elaboració d’aquesta tesi va sortir un article de gran interès de
Kobayashi, Urakawa i Yamaguchi [KUY10] que analitzava l’evolució des-
prés d’inflació del mode escalar adiabàtic en la teoria BPSH. Parlarem més
d’aquest article a la Secció 4.1.5. En aquells aspectes en els que els nos-
tres treballs es superposen, les nostres conclusions coincideixen. Hi ha un
altre article recent que estudia la polarització del mode B en el cas de l’A-
ether [NK11], en la seva majoria numèricament, però també fan un intent
d’aproximació anaĺıtica. Parlarem més d’aquests resultats a la Secció 5.7.
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L’objectiu d’aquesta tesi és estudiar la teoria d’Einstein-Aether des del
punt de vista de les pertorbacions cosmològiques. Estem interessats en les
restriccions pels paràmetres de la teoria que es poden obtenir d’aquesta
anàlisi i en les caracteŕıstiques particulars que pot generar el mode vectorial,
absent en Relativitat General. L’organització de la tesi és la següent.

Després de contextualitzar el tema que volem estudiar i les raons que ens
porten a fer aquesta investigació, podem entrar en matèria. Començarem
fixant la notació que farem servir al llarg de la tesi (Cap. 2). A continu-
ació, (Cap. 3), farem una introducció a les teories d’Einstein-Aether, i ens
aturarem per analitzar la seva dinàmica cosmològica i les restriccions feno-
menològiques existents. Finalment, introduirem la teoria de la gravetat de
Hořava i explicarem la relació que existeix entre aquesta teoria i les teories
d’Einstein-Aether.

El següent pas serà l’estudi de les pertorbacions cosmològiques en les
teories d’Einstein-Aether (Cap. 4). La teoria de pertorbacions lineals en
un univers en expansió és una teoria realista per descriure el creixement de
les inhomogenëıtats a escales subhoritzó després de recombinació. Podem
separar les pertorbacions en modes escalar, vectorial i tensorial i estudiar
cada un d’ells separadament. En el cas de l’escalar, aplicarem el forma-
lisme canònic per expressar el Lagrangià escalar en termes de les variables
invariants de gauge. La raó d’aquest estudi és obtenir la normalització dels
modes escalars. Fet això, estudiarem els ĺımits de longitud d’ona curta i
llarga i obtindrem l’espectre de potències per aquests modes. Per finalit-
zar, calcularem les solucions de subhoritzó durant les èpoques de radiació i
matèria i compararem els nostres resultats amb els obtinguts per la gravetat
de Hořava en l’article [KUY10]. En segon lloc, analitzarem l’estabilitat i
l’espectre de potències del mode vectorial durant una fase d’inflació amb llei
de potències. Finalment, estudiarem el cas del tensor, que ens proporcionarà
una restricció dels paràmetres degut als requeriments d’estabilitat clàssics.

Un cop estudiades les pertorbacions cosmològiques, examinarem l’im-
pacte que la teoria d’Einstein-Aether té en les anisotropies del fons còsmic
de microones (Cap. 5). Durant l’època de recombinació, la radiació còsmica
de fons ens mostra que l’univers era molt homogeni i isòtrop, però avui
podem veure a l’univers una estructura no lineal prodüıda per la inestabi-
litat gravitatòria. Això fa que la matèria sigui atreta a les regions d’alta
densitat, amplificant les inhomogenëıtats presents prèviament. Per aquest
motiu, l’estudi de les propietats de la radiació còsmica de fons proporciona
informació de gran interès sobre el comportament de la teoria de gravetat.
Resumirem el marc general de les anisotropies del fons còsmic de microones
i discutirem el càlcul de les anisotropies en Relativitat General per després
aplicar-lo als modes vectorials. Ens centrarem en la contribució dels modes
vectorials a les anisotropies del fons còsmic de microones, inexistent pel cas
de Relativitat General. Analitzarem les solucions per a radiació i matèria
i calcularem l’espectre de potències angular tant a escales angulars petites
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com a escales angulars grans. Compararem els resultats amb la contribució
procedent del mode tensorial i amb les observacions. Per últim, estudiarem
els efectes que té en la polarització del fons còsmic de radiació.

Als dos primers apèndixs revisarem breument la teoria general de les
pertorbacions cosmològiques i inclourem les fórmules detallades per calcular
l’acció gravitatòria pertorbada i les equacions d’Einstein pertorbades en un
univers amb una mètrica plana de Friedmann-Robertson-Walker (Ap. A i B).
A l’Apèndix C hi incloem el conjunt complet d’equacions de moviment per a
la teoria d’Einstein-Aether del sector escalar en el cas del gauge longitudinal.
Els dos Apèndixs següents (D, E) comprenen l’estudi de les solucions del
sector escalar, en primer lloc per un escenari amb una pertorbació d’inflató
i, en segon lloc, pel cas de les solucions subhoritzó a les èpoques de dominació
de radiació i matèria, tot en el cas del gauge longitudinal. L’últim Apèndix,
F, inclou la derivació per un contingut general de matèria en el ĺımit de
longituds d’ona llargues.

Les conclusions de la tesi es recullen al Cap. 6. En aquesta teoria es
destaca l’existència de dos camps dinàmics addicionals, un al sector escalar
i un altre al vectorial, i que la inflació indueix pertorbacions mesurables a
ambdós camps. Els resultats són també aplicables al ĺımit de baixes energies
de la gravetat BPSH.

Podem assumir que els paràmetres de l’Aether ci (i = 1, . . . , 4) són
petits, fet justificat en què poden ser considerats com a proporcionals al
quadrat de la raó entre l’escala de trencament de simetria M i l’escala de
Planck ci ∼ (M/MP )2 # 1.

Les conclusions més destacades són les següents. Trobem, en el sec-
tor escalar, que a més del mode adiabàtic estàndard ζ (que es correspon
a la curvatura de les superf́ıcies de densitat de matèria constant), hi ha
un mode addicional d’isocurvatura que podria tenir importància fenome-
nològica. Geomètricament, el mode d’isocurvatura pot ser descrit com el
nombre d’e-foldings diferencials que separen les superf́ıcies de densitat de
matèria constant de les superf́ıcies ortogonals a l’Aether. Això juga el pa-
per d’un potencial de velocitat v per l’Aether respecte a la matèria. En el
moment de la sortida de l’horitzó durant inflació, les amplituds de δN i v
són comparables a les del mode adiabàtic estàndard ζ

v ∼ δN ∼ ζ ∼ H

MP
ε−1/2 (sortida de l’horitzó).

Aqúı H és el paràmetre de Hubble i ε # 1 és el paràmetre de slow-roll
durant inflació, que és independent dels paràmetres de l’Aether.

Una vegada creuat l’horitzó, la pertorbació de curvatura ζ es manté
constant, mentre que el comportament de δN depèn del paràmetre κ̃ ≡
−
(
1 + α

c14

)
. En el cas κ̃ < 0 la pertorbació d’isocurvatura cau lentament

a escales grans, mentre que per κ̃ > 0 creix. D’altra banda, la pertorbació
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de velocitat ve donada per v ∼ (k/ȧ)δN , on k és el nombre d’ona comòbil
i ȧ és la derivada del factor d’escala respecte del temps propi. Per tant
durant inflació quan ȧ creix, el camp de velocitat de longituds d’ona llargues
cau aproximadament en proporció a l’invers del factor d’escala. Després
d’inflació, l’univers desaccelera i el camp de velocitat torna a créixer. En
el moment de reentrada a l’horitzó, per escales cosmològicament rellevants,
tenim

v ∼ δN ∼ eNκ̃ζ ∼ eNκ̃ 10−5 ! 1, (reentrada a l’horitzó)

on N ∼ 60 és el nombre de e-foldings d’inflació des del temps quan l’escala
cosmològica creua primer l’horitzó. L’última desigualtat indica el ĺımit de
validesa de l’aproximació lineal. És necessari assenyalar que, per κ̃ = 0, la
pertorbació d’isocurvatura i el camp de velocitat de l’Aether són compara-
bles a ζ ∼ 10−5 en el moment de la reentrada a l’horitzó. Tot i aix́ı, amb
κ̃ ! 10/N tenim δN ! 1. Si κ̃ és suficientment gran per saturar la desi-
gualtat, encara permet velocitats moderadament relativistes per el camp de
l’Aether v ∼ 1 dins l’univers observable.

Pel sector vectorial trobem resultats semblants. Si denotem per V el
component transversal del camp de velocitat de l’Aether respecte la matèria,
trobem que a escales de superhoritzó

V ∼
(

ε

c14

)1/2

v.

Per tant, si c14 < ε (que sembla natural si l’escala del trencament de la
simetria Lorentz és baixa), la contribució al camp de velocitat serà dominat
respecte el component logitudinal. D’altra banda, en una teoria com BPSH,
el component transversal del vector no existeix i la part escalar v és la
dominant.

També trobem que els potencials gravitatoris en el gauge longitudinal φ i
ψ poden ser diferents, fins i tot, pel mode adiabàtic. En escales superhoritzó,
trobem que aquest efecte (que pot ser atribüıt a l’anisotropic stress del
tensor d’energia-impuls de l’Aether) és de l’ordre

(φ− ψ)adiab ∼ φadiab c13 ∼ ζ c13 ∼ 10−5c13,

on c13 ∼ (M/MP )2 és una combinació dels paràmetres de l’Aether (c13 =
c1 + c3). F́ısicament, aquest paràmetre es pot expressar en termes de la
velocitat de propagació dels modes tensorials c13 = c−2

t − 1. El mode d’iso-
curvatura contribueix màximament a l’anisotropic stress però el potencial
degut al mode d’isocurvatura està suprimit per c13

(φ− ψ)isoc ∼ φisoc ∼ c13 δN.

Ja que δN pot ser més gran que ζ, l’anisotropic stress pot estar dominat pel
mode d’isocurvatura. L’anisotropic stress a escales observables està suprimit
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respecte al seu valor en el moment de creuar l’horitzó degut a la dinàmica de
l’Aether a escales subhoritzó. Per κ̃ = 0 l’efecte escala com k−2 per modes
que van creuar l’horitzó durant l’època de matèria i com k−1 per modes que
el van creuar a l’època de radiació. Les restriccions actuals per φ − ψ a
escales cosmològiques no són molt restrictives i el cas |c13| ! 1 sembla estar
permès per les observacions.

L’Aether apareix als paràmetres PPN a través dels efectes que depe-
nen del sistema de referència, produint anisotropies al camp gravitatori dels
cossos que es mouen respecte de l’Aether. D’aquesta manera el camp de ve-
locitat generat durant inflació podria ser detectable. És necessari assenyalar,
però, que sembla dif́ıcil que amb la tecnologia actual sigui possible obser-
var les propietats estad́ıstiques del camp aleatori per aquest tipus particular
d’observacions. Fins i tot, encara que el camp de velocitats fos relativista a
escales cosmològiques, v ∼ 1, decau com k−2. Concretament, el component
que varia en escales de l’ordre dels 100 Mpc estaria per sota de la velocitat
del virial, vvir ∼ 10−3, dels objectes lligats en galàxies i sembla poc pro-
bable que poguéssim mostrar efectes dependents del sistema de referència
en objectes que es troben a distancies més llunyanes. D’altra banda, a les
distàncies relativament petites on l’observació dels efectes dependents del
sistema de referència és accessible, encara podem detectar un gran però
bastant homogeni camp de velocitat, fins i tot, un de molt més gran que la
velocitat del virial dels objectes lligats.

Finalment, hem calculat la contribució del camp vectorial transversal V
a l’espectre de potències angular del fons de radiació de microones. Trobem
que per κ̃ = 0 l’espectre de coeficients multipolars CV

# té la mateixa forma
que el dels modes tensorials. L’amplitud està relacionada amb l’espectre Ct

#

pels modes tensorials i amb Cζ
# pel mode escalar adiabàtic com

CV
# ∼ c213

c14
e2Nκ̃Ct

# ∼ ε c213
c14

e2Nκ̃Cζ
# .

Això vol dir que els modes vectorials en la teoria d’Einstein-Aether po-
den dominar de manera senzilla el senyal dels modes tensorials. A més,
sabem que el fons de radiació de microones s’ajusta bé amb un espectre
primordial de pertorbacions escalars adiabàtiques. Això imposa restricci-
ons fenomenològiques addicionals entre els paràmetres c13 i κ̃ de la teoria
d’Einstein-Aether de la forma

κ̃ ! 1

2N
ln

∣∣∣∣
c14
ε c213

∣∣∣∣ .

L’anàlisi de la polarització indüıda pels modes vectorials és de gran in-
terès fenomenològic. En particular, els modes vectorials contribueixen a la
polarització de tipus B i podrien ser distingibles de la contribució procedent
dels modes tensorials. Això pot proporcionar una manera de diferenciar les
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teories d’Einstein-Aether de la Relativitat General. L’enfocament que hem
seguit aqúı ens proporciona informació només de la dependència en l de
l’espectre fins l’època de recombinació. Per poder obtenir més informació és
necessari utilitzar el càlcul numèric. L’estudi fet en [NK11] (basat en part
en el treball d’aquesta tesi) segueix aquest camı́ i suggereix que el mode B
podria ser detectable pels futurs projectes d’observació del fons de radiació
de microones i, també, que l’amplitud pot ser més gran que la procedent de
les ones gravitatòries primordials.

Per concloure, els resultats presentats aqúı mostren que el sistema de
referència privilegiat seleccionat pel camp de l’Aether Aµ (o per la foliació
privilegiada de la teoria de BPSH) pot haver adquirit una velocitat aleatòria
gran, alimentada per les fluctuacions quàntiques durant l’època d’inflació.
Depenent dels paràmetres, això pot ser lleument relativista a escales cos-
mològiques. Els efectes d’aquest camp de velocitat poden ser detectables
en observacions del efectes als PPN dependents del sistema de referència
o en caracteŕıstiques pròpies de l’espectre de la radiació còsmica de fons,
com pot ser una contribució mesurable procedent dels modes vectorials a les
anisotropies de la temperatura i a la polarització.
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me permitió hacer grandes amigos, con los que he compartido no sólo las
clases sino también el inicio de mi vida en Barcelona. Gracias Xavi, Javi,
Joan, Guillem, David Bote, Arnau, por los cafés, las cervezas en “El Maño”
al salir de la facultad, el cine y todo. A Escart́ın, sin el que la facultad no
hubiese sido lo mismo. A Isaac, cuya compañ́ıa pudimos seguir disfrutando
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Estela, muchas gracias por todo.
Darlle tamén as grazas a David Serantes, compañeiro de doutorado na
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Y muy especialmente quiero darles las gracias a mis compañeros de comi-
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quéroos moito.
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Chapter 1

Introduction: Motivation
and Outline

The standard description of cosmological evolution is based on General Rel-
ativity (GR), whose success explaining the evolution of the universe is over-
whelming. However, as we advance in the knowledge of the details of the
universe we have to introduce new elements in order of explain all the fea-
tures observed. Some of the most well-known problems, as the horizon or
flatness problems, are addressed by inflation. Other open problems are the
accelerated expansion of the universe and the missing matter. The common
explanation for these is to require the existence of two “dark” components,
dark energy and dark matter. All together, this is usually considerer the
fiducial model for cosmology, known as the Λ-CDM model.

Gravity is an attractive force that tends to pull things together. However,
in 1998 two collaborations, the Supernova Cosmological Project and the
High-z Supernova Search Team [PAG+99, RFC+98], discovered that the
universe is in an accelerated expansion. That suggested the existence of a
component with repulsive force that counteracts gravity, an energy that fills
most of the universe and that, due to its unknown nature, was called “dark
energy”. Initially, this was identified with the cosmological constant, as the
quantum vacuum-energy, but this leads to an estimated size much higher
than the observed value. Thus, the origin and form of this energy is still a
problem to solve in present cosmology.

The Cosmic Microwave Background (CMB) is the other observation that
although it provides an important support for the Big Bang Cosmology it
also confirms the need of some kind of dark energy and matter. The initial
detection of the CMB was made on 1965 by Penzias and Wilson [PW65],
and its cosmological significance was explained in [DPRW65]. The original
measurements provide an estimate of the temperature of the black-body
radiation of about 3.5 K. The Planck spectrum of the microwave background
was finally established with great precision with the COBE satellite in the
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Chapter 1. Introduction: Motivation and Outline

90s [SBK+92], giving a temperature of 2.725 ± 0.002K. Since then, the
WMAP experiment [KDN+09] has continued to provide more and more
details about the spectrum and the anisotropies of the CMB.

On the other hand, a large class of alternative proposals have been ex-
plored in the literature in order to explain these observations. These have
some common characteristics. First of all, they are modifications of gravity
at large distances. Second, they are strongly constrained by the requirement
of general covariance. For that reason, most of the proposed alternatives to
General Relativity can in fact be cast as GR coupled to new fields1.

Cosmic acceleration may be due to a scalar field slowly rolling down
a potential [PR88]2, or simply sitting in one of its local minima [BP00].
Alternatively, it can be driven by the non-minimal kinetic term of a k-essence
scalar field with a Lagrangian of the form p(X,φ), where X = ∂µφ∂µφ. This
form is quite versatile, and can be used to mimic cosmic fluids with a wide
range of possibilities for the effective equation of state and speed of sound,
including those which are characteristic of dark energy and cold dark matter
[APDM99, APMS00, APMS01, GM99].

The gradient of the k-essence field, ∂µφ, is a time-like vector which spon-
taneously breaks Lorentz invariance, in a way that is parametrically inde-
pendent of its effects on the time evolution of the background geometry. In
particular, Lorentz invariance can be spontaneously broken by ∂µφ while the
background spacetime remains maximally symmetric, a situation which is
known as ghost condensation [AHCLM04]. Still, the “fluid” responds to the
gravitational pull of ordinary matter, leading to modifications of the long
range potentials.

More generally, theories with a massive graviton can be written in a
covariant form as GR coupled to a set of “Stückelberg” scalar fields φA with
non-minimal kinetic terms, whose gradients have non-vanishing expectation
values [AHGS03, Dub04, BCNP09]. Depending on the interactions and the
expectation values of the condensates, this can describe different phases
of massive gravity. Aside from the Lorentz preserving Fierz-Pauli phase
[AHGS03] (see also [CM10]), Lorentz breaking phases have been investigated
in [Dub04, BCNP09]. Some of these have interesting phenomenology, such
as the absence of ghosts in the linearized spectrum, a massive graviton with
just two transverse polarizations, and weak gravitational potentials which
differ from those in standard GR by terms proportional to the square of the
graviton mass [Rub07, Dub04, BCNP09, DTT05, DFST09, BM09].

Additional fields of spin 2 have been considered in bigravity (or multi-

1A counterexample is the DGP brane-world scenario, where gravity is modified in the
infrared by a continuum of Kaluza-Klein gravitons [DGP00]. Because of the continuum,
DGP cannot be formulated as a standard four dimensional GR with additional fields.

2This includes the case where we “modify” the Einstein-Hilbert action to an arbitrary
function of the Ricci scalar [Cap02, CDTT04], since the resulting theory can be reformu-
lated as a standard scalar-tensor theory [Wil93].
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Chapter 1. Introduction: Motivation and Outline

gravity) theories [DK02], where space-time is endowed with several metrics
interacting with each other non-derivatively. Due to general covariance, only
one of the gravitons in the linearized spectrum stays massless, while the re-
maining ones acquire masses proportional to the non-derivative interaction
terms. Lorentz invariance can be broken spontaneously even in cases where
all metrics are flat, provided that their light-cones have different limiting
speeds. This leads to phenomenology [BCNP07, BCNP08, BDG07] similar
to that of certain phases of Lorentz breaking massive gravity referred to
above [Rub07, Dub04, BCNP09, DTT05, DFST09, BM09], of which multi-
gravity can be seen as a particular realization.

Finally, additional vector fields have received considerable attention in
cosmology. Effective field theories for vectors are strongly constrained by
stability requirements. Typically, those with non-trivial cosmological dy-
namics contain a massive ghost [APDT09], which can be removed from the
spectrum by sending its mass to infinity. This amounts to imposing a fixed-
norm constraint on the vector, which in turn forces a Lorentz-breaking vac-
uum expectation value. This led Jacobson and Mattingly to dub this type
of models Einstein-Aether theories [JM01]3. Their low-energy excitations
are the Goldstone bosons of the broken Lorentz symmetry4, which will par-
ticipate in the dynamics of the long range gravitational interactions.

An interesting recent development is the proposal by Hořava [Hoř09b,
Hoř09a] that a Lorentz-breaking theory of gravity may be renormalizable
and UV complete. The breaking of Lorentz invariance in this case is imple-
mented by introducing a preferred foliation of space-time, but no additional
structure. As pointed out in [BPS09], any theory with a preferred foliation
can be written in a generally covariant form by treating the time param-
eter which labels the different hypersurfaces as a Stückelberg scalar field
T . The foliation is considered to be physical, but not the parameterization,
and therefore the covariant theory should be invariant under field redefini-
tions T → f(T ). In other words, the Lagrangian can have a dependence
on the unit normal to the hypersurfaces, but not on the magnitude of the
gradient T ,µ (in contrast with the examples of k-essence and ghost condensa-
tion mentioned above). From this observation, Blas, Pujolàs and Sibiryakov
showed [BPS10b, BPS10a] that Hořava gravity could be extended by includ-
ing in the action all terms compatible with reparameterization symmetry,
and consistent with power counting renormalizability. Interestingly enough,
this extension also cured certain problems in the scalar sector of the original

3A fixed norm vector field determining a preferred frame has also been used in rela-
tivistic versions of MOND [Mil83], such as TeVeS [Bek04], which attempt to explain the
rotation curves of galaxies without introducing cold dark matter

4In theories with spontaneously broken spacetime symmetries, the number of Goldstone
bosons does not generally agree with the number of broken generators. However, if the
order parameter that breaks the spacetime symmetry is spacetime-independent (as the
constant Aether field), then both numbers do agree [LM02].
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Chapter 1. Introduction: Motivation and Outline

proposal (such as instabilities and strong coupling at low energies [BPS09]).
Jacobson [Jac10], has recently clarified the relation between the Einstein-
Aether theory and this extended version of Hořava gravity, which he dubbed
BPSH gravity. In particular, he pointed out that any solution of Einstein-
Aether where the vector field is hypersurface orthogonal is also a solution
of the low energy limit of BPSH gravity.

Since the Aether only interacts gravitationally, any signal of it must be
proportional to a power of (E/MP )2, where MP is the reduced Planck mass,
and E is an energy scale. Thus, even though the Aether contains massless
fields, its presence is hard to detect. In that respect, inflation provides
an interesting window to probe the Aether and its implications. During
inflation, short-scale vacuum fluctuations of light fields are transferred to
cosmological distances, where they may leave an observable imprint. It is
thus natural to look for signatures of Einstein-Aether on the spectrum of
primordial perturbations, which is the subject to which we devote this thesis.

Previous work on this subject has been done in Refs. [Lim05, LMB08],
although in a somewhat narrower region of parameter space and with some-
what different conclusions. In the scalar sector, we find that there is a
primordial isocurvature mode, which can be interpreted as the velocity po-
tential for the Aether with respect to matter. Depending on the Aether
parameters, this mode can grow on superhorizon scales, leading to a large
random velocity field for the Aether. Similar results apply to the transverse
vector sector. These perturbations may thus be of phenomenological inter-
est. We also find that the isocurvature mode is strongly correlated with the
usual adiabatic mode, which corresponds to curvature perturbations in the
co-moving slicing.

For previous work on the impact of adiabatic scalar perturbations on the
cosmic microwave background radiation (CMB) and large scale structure in
(generalized) Aether theories, see [ZFZ08, ZZB+10].

While this thesis was being prepared, an interesting related paper by
Kobayashi, Urakawa and Yamaguchi appeared [KUY10], which analyzes the
post-inflationary evolution of the adiabatic scalar mode in BPSH theory. We
will comment more about these article in Section 4.1.5, but summarizing we
can say that where we overlap, our conclusions agree. There has also been
a recent article that studies the B-mode polarization of the Aether [NK11],
mostly numerically, but they also make an analytical approach. We will
discuss more about these results when we talk about polarization in Section
5.7.

In this thesis we are going to study the Einstein-Aether (E-A) theory
from the point of view of its cosmological perturbations. We are interested
in the constraints that may be obtained from this analysis and the special
features that can arise from the vector mode, absent in General Relativity.
The plan of the thesis is the following.

First of all, in Chapter 2 we are going to fix the notation that we are
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going to follow in the text. After that, in Chapter 3 we will present the
Einstein-Aether theory, its general properties and present constraints; also,
we will introduce Hořava gravity and explain the connection that can be
done between these two theories.

Next, we will start with the study of cosmological perturbations in
Einstein-Aether theory (Chap. 4). The theory of linear perturbations in
an expanding universe is a realistic theory to describe the growth of in-
homogeneities on subhorizon scales after recombination. We can split the
perturbations in scalar, vector and tensor modes, and we will study each
of them separately. In the scalar case, we are going to apply the canonical
formalism to express the scalar Lagrangian in terms of the gauge invariant
variables in order to obtain the normalization for the scalar modes. Then,
we will study the short and long wavelength limits, and obtain the power
spectrum for these modes. Finally, we will calculate the subhorizon solu-
tions during the radiation and matter domination epochs and compare these
results with the ones obtained in [KUY10] for Hořava gravity. For the vector
we will study the stability and the power spectrum during power-law infla-
tion. The last section of this chapter will be devoted to the tensor modes,
where we will check the conditions for classical stability and calculate the
primordial power spectrum.

In Chapter 5 we will examine the impact of Einstein-Aether theory in the
CMB anisotropies. At the epoch of recombination, the CMB shows us that
the universe was very homogeneous and isotropic, however, today we can
see a nonlinear structure on the universe produced by gravitational insta-
bility, making the matter to be attracted to high density regions amplifying
the already existing inhomogeneities. Thus, the study of the properties of
the CMB provides very useful information about the behavior of the grav-
ity theory. We will overview the general framework of Cosmic Microwave
Background anisotropies and discuss the calculation of the anisotropies in
GR and then we will apply the same procedure to the vector modes in the
E-A theory. We will focus on the contribution of the vector modes to the
CMB anisotropies, as in GR there is no such contribution. We will analyze
the solutions for radiation and matter and calculate the angular power spec-
trum both at large and small angular scales. We will compare these results
with the contribution coming from the tensor modes and with observations.
Finally, we will look at the effects in the polarization of the CMB.

We will summarize the results obtained in the previous sections and
present the conclusions and outlook of this thesis in Chapter 6.

In the Appendices we will briefly review the general theory of cosmo-
logical perturbations (App. A) and include the detailed formulas for cal-
culate the perturbed gravitational action and Einstein equations in a flat
Friedmann-Robertson-Walker (FRW) universe (App. B). In Appendix C we
include the complete set of equations of motion for Einstein-Aether theory
for the scalar sector in the longitudinal gauge. The following two Appendices
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D, E comprise the study of the scalar solutions for an inflaton perturbation
and the subhorizon solutions during radiation and matter in the longitudinal
gauge. The last Appendix F contains the derivation for long wavelengths
for a generic matter content.
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Chapter 2

Notation and Conventions

Unless otherwise stated, we shall use the space-time metric gµν with signa-
ture (−,+,+,+). Geometric tensors are defined as follows
Covariant derivative

Uµ;ν ≡ Uµ,ν − Γλ
µνUλ,

V µ
;ν ≡ V µ

,ν + Γµ
νλV

λ.

Christoffel symbols

Γλ
µν =

1

2
gλρ[gµρ,ν + gνρ,µ − gµν,ρ]. (2.1)

Riemann tensor

Rα
µβν = Γα

µν,β − Γα
µβ,ν + Γα

ρβΓ
ρ
µν − Γα

ρνΓ
ρ
µβ , (2.2)

Ricci tensor

Rµν = Rα
µαν , (2.3)

Curvature scalar

R = gµνRµν . (2.4)

Einstein tensor

Gµν = Rµν −
1

2
gµνR = 8πGTµν . (2.5)

In the Lagrangian formulation, we use

Sg =
1

2
M2

P

∫
d4x

√
−gR =

1

2
M2

P

∫
L
√
−gd4x =

∫
d4xL, (2.6)

where MP is the reduced Planck mass, M2
P = 1

8πG .
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Chapter 2. Notation and Conventions

Dots indicate derivatives with respect to time t and primes derivatives
with respect to conformal time η.

The perturbed Friedmann-Robertson-Walker (FRW) metric for a flat
universe is

gµν = ḡµν + δgµν , (2.7)

where ḡµν is the background metric and δgµν the perturbation. More ex-
plicitly, the components will be written as

gµν = a2
[
−(1 + 2φ)dη2 + 2(B,i + Si)dηdx

i

+(δij − 2ψδij + E,ij + 2F(i,j) + tij)dx
idxj

]
. (2.8)

The scalar gauge-invariant variables are defined by

Ψ = ψ −H
(
B − 1

2
E′

)
,

Φ = φ+

(
B′ − 1

2
E′′

)
+H

(
B − 1

2
E′

)
, (2.9)

and the vector gauge-invariant variables are given by

Q = F′ − S (2.10)

The boldface on vector quantities indicates that these are 3-component ob-
jects. The tensor sector is already gauge invariant.

In the Einstein-Aether theory we will have two extra modes, arising from
the decomposition of the Aether field perturbation (see Eq. (4.2)), one scalar
(C) and one vector mode (V). The vector mode is already gauge-invariant,
while the gauge-invariant variable for C is Z = C + 1

2E
′.
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Chapter 3

Einstein-Aether Theories

The Einstein-Aether theories are, as we already mentioned in the introduc-
tion, gravity theories with additional vector fields. These type of theories
are strongly constrained by stability requirements. To avoid instabilities a
fixed-norm constraint is imposed to the vector field and thus Lorentz in-
variance is broken. In curved spacetime the vector must have dynamics in
order to preserve general covariance. The original proposal of gravity with a
dynamical preferred frame defined by a unit timelike vector was developed
by [JM01].

As we said before, there are different motivations to study modified
theories of gravity. First of all, it is useful to have a viable theory against
which to compare gravitational observations, and this can also be seen as
a way of testing General Relativity. The possibility that the vacuum in
quantum gravity may determine a preferred rest frame was also a motivation
in the studies of these theories. Finally, the presence of the dark components,
dark energy and dark matter, and its role in explaining cosmic acceleration,
galaxy rotation curves and structure formation, motivates the exploration
of long-distance modifications of gravity.

In this thesis, we are going to focus in the effect that this modification
has in primordial perturbations and the consequences for CMB anisotropies,
but firstly, we need to introduce the theory and its general properties. We
will consider the cosmological dynamics in an unperturbed universe and
summarize the principal constraints for the parameters of the theory. In the
last section of this chapter we will briefly comment on Hořava gravity and
the connection between both theories.

The Einstein-Aether is described by the most general Lagrangian with
two derivatives acting on a vector field of constrained norm [JM01],

LA = c1∇αA
γ∇αAγ + c2∇αA

α∇γA
γ + c3∇αA

γ∇γA
α

− c4A
αAβ∇αA

γ∇βAγ + λ(AαAα + 1). (3.1)

Here, the ci are dimensionless coefficients, and λ is a Lagrange multiplier

11



Chapter 3. Einstein-Aether Theories

that enforces the constraint

AµAµ = −1. (3.2)

The unit timelike vector field is dimensionless as is the metric. We restrict
to two derivatives as higher derivatives would be suppressed by one power
of a small length scale for each extra derivative, as usual in effective field
theories.

The Lagrangian (3.1) can be thought of as the low-energy description of
a theory in which boost invariance is spontaneously broken by the expecta-
tion value of Aµ, while spatial rotations and translations remain unbroken.
The fixed-norm constraint eliminates the “radial” degree of freedom in field
space, which is typically a ghost. We assume that Aµ is “minimally coupled”
to gravity and to the rest of matter, so the total action is of the form,

S =
M2

P

2

∫
d4x

√
−g [R+ LA] +

∫
d4x

√
−g Lm. (3.3)

Here MP is the reduced Planck mass, and Lm is the Lagrangian of ordinary
matter, which we assume does not contain couplings to the aether field.

The gravitational equations involve the energy-momentum tensor of the
vector, Tµν = (−1/

√
−g)(δSA/δgµν). This is given by

Tµν = ∇σ

(
J σ
(µ Aν) − Jσ

(µAν) − J(µν)A
σ
)
+ Yµν

+
1

2
gµνLA + λAµAν − c4A

αAβ(∇αAµ)(∇βAν), (3.4)

where

Jα
σ = c1∇αAσ + c2δ

α
σ∇βA

β + c3∇σA
α − c4A

αAβ∇βAσ, (3.5)

and

Yαβ = c1 [(∇γAα)(∇γAβ)− (∇αAγ)(∇βA
γ)] . (3.6)

Variation of the Lagrangian (3.1) with respect to A leads to the field equation

∇α(J
α
β) + c4A

α(∇αA
γ)(∇βAγ) = λAβ , (3.7)

whilst variation of the Lagrangian density with respect to the Lagrange
multiplier λ imposes the fixed norm constraint (3.2).

The coefficients ci are subject to both theoretical and phenomenolog-
ical restrictions, we will derive here the constraints coming from classical
and quantum stability, and from phenomenological considerations related
to primordial perturbations. There are other set of constraints we will de-
tail below. All of them are summarized in Table (3.1). Their magnitude,

12



Chapter 3. Einstein-Aether Theories

relative to the symmetry breaking scale, can be estimated from dimensional
analysis. The field redefinition Aµ = Ãµ/M leads to the fixed norm con-
straint ÃµÃµ = −M2, from which we may interpret M as the scale at which
Lorentz symmetry is spontaneously broken. In terms of the coefficients c̃i
that would multiply the action for the rescaled field Ã, the original coeffi-
cients are given by c1,2,3 = (M/MP )2c̃1,2,3 and c4 = (M/MP )2M2c̃4. We
expect the dimensionless c̃1,2,3 to be of order one, and the dimensionful c̃4
to be of order M−2, which leads to

ci ∼
M2

M2
P

. (3.8)

For convenience, in what follows we use the abbreviations

c13 = c1 + c3, c14 = c1 + c4, (3.9a)

α = c1 + 3c2 + c3, β = c1 + c2 + c3. (3.9b)

Note that α = 3β − 2c13, so these abbreviations are not supposed to be an
independent parameterization. Note also that our coefficients ci and those
of other works in the Aether literature may have opposite signs [Jac07].

3.1 Cosmological Dynamics

Let us consider the dynamics of a spatially flat unperturbed FRW universe
in the presence of the Aether. Homogeneity and isotropy constrain the form
of the metric and of the Aether. With the line element given by

ds2 = a2(η)
[
−dη2 + d-x2

]
(3.10)

we have, from Eq. (3.2),

Aµ = (a−1, 0, 0, 0). (3.11)

Substituting into the expression for the energy-momentum tensor (3.4), we
find that the energy density and pressure of the vector field are respectively
given by

ρA =
3α

16πGa2
H2, pA = − α

16πGa2
(
H2 + 2H′) , (3.12)

where G = 1/8πM2
P , H = a′/a and a prime denotes a derivative with respect

to conformal time. Thus, Einstein’s equations read

H2 =
8πGcos

3
a2ρ, (3.13a)

H′ = −4πGcos

3
a2(ρ+ 3p), (3.13b)

13



Chapter 3. Einstein-Aether Theories

where ρ and p are the energy density and pressure of the remaining matter
fields (Aether excluded) and

Gcos =
(
1− α

2

)−1
G. (3.14)

A comparison with the same equations in the absence of the Aether shows
that the effect of the vector field is merely to “renormalize” the value of
Newton’s gravitational constant [CL04]; the energy density and pressure of
the vector field mimic that of the remaining components in the universe.

On the other hand, the gravitational field created by isolated bodies
is not exactly the same as that of General Relativity, and in that sense
the Aether is a bona-fide modification of gravity. To lowest order in a
post-Newtonian expansion, the potential sourced by a static and spherically
symmetric body satisfies the Poisson equation ∆φ = 4πGNρ, but with a
modified gravitational constant [Jac07]

GN =
(
1 +

c14
2

)−1
G. (3.15)

Hence, the Aether also renormalizes the gravitational constant measured in
“local” experiments, but by a different amount than in the cosmological case.
Post-Newtonian corrections lead to further deviations of General Relativity,
which place severe constraints on the Aether parameters. A summary of
these and other constraints is given below. Nucleosynthesis, in particular,
places a bound on the relative magnitude of the two Newton constants, of
the form [CL04]

∣∣∣∣
Gcos

GN
− 1

∣∣∣∣ < 10%. (3.16)

Note that, for positive matter energy density and positive Newton’s constant
G, Eq. (3.13a) can only be solved if1

α < 2. (3.17)

Remarkably, this condition does not follow from any of the perturbative
stability arguments which we shall consider below, but merely from the
existence of a cosmological solution with positive energy density for ordinary
matter. Note also that the Lagrange multiplier has a finite value along the
cosmological solutions. Contracting the vector field equations of motion
(3.7) with Aβ we have

λ =
3

a2
(
βH2 − c2H′) . (3.18)

1We could have α > 2 if we allow G < 0. However, this leads to instabilities in the
tensor modes, as we shall discuss in Section 4.3.
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For later reference, let us consider the case where the matter sector consists
of a scalar field with an exponential potential,

Lm = −1

2
∂µϕ∂

µϕ− V0 exp

[
−µ

ϕ

MP

]
. (3.19)

It is well-known that this potential leads to power-law inflation [LM85],
with a constant equation of state parameter w ≡ pϕ/ρϕ determined by the
coefficient µ in the exponential. With a constant equation of state w the
solution of Eqs. (3.13a) and (3.13b) is then

a ∝ (−η)q, with q =
2

1 + 3w
=

1

ε− 1
, (3.20)

where

ε ≡ − H ′

aH2
=

2− α

4
µ2 (3.21)

is the conventional slow-roll parameter. Note that if 2 − α is sufficiently
small, inflation may be de Sitter-like even if µ is of order one. This broadens
the class of “natural” inflationary models that do not require particularly
flat potentials, though we shall not explore this possibility here.

3.2 General Constraints

As mentioned above there are several conditions that the ci’s have to satisfy,
which arise from the Post-Newtonian limit of the theory, Big-Bang Nucle-
osynthesis, and from the arrival of high-energy cosmic rays to earth. An
extensive summary of these constraints can be found in [Jac07].

3.2.1 Post-Newtonian limits

In any metric theory, the gravitational field created by non-relativistic bodies
can be characterized beyond the Newtonian limit by a set of post-Newtonian
PPN parameters, whose values are tightly constrained by solar system tests
of gravity [Wil93]. The parameters β and γ in Aether theories agree with
those of General Relativity, and also agree with the measured ones [EJ04].
But because the Aether defines a preferred frame, it also introduces ad-
ditional departures from General Relativity, which manifest themselves as
gravitational potentials that depend on the velocity of the interacting bod-
ies with respect to the Aether. These preferred-frame effects are encoded
in the PPN parameters α1 and α2. One of the most stringent limits on the
value of α1 comes from measurements of the eccentricity of the binary pulsar
J2317+1439 (which would change if α1 were non-zero) [BCD96], while one
of the most stringent limits on α2 stems from the alignment of the sun spin
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with the solar system angular momentum (a non-zero α2 would lead to a
misalignment) [Nor87]. These limits lead to the conditions

α1 =
−8(c1c4 + c23)

2c1 − c21 + c23
" 1.7× 10−4, (3.22a)

α2 =
α1

2
− (2c13 − c14)(α+ c14)

β(2− c14)
" 1.2× 10−7. (3.22b)

It is important to stress that both limits assume that the velocity of the sun
with respect to the Aether ω is the velocity with respect to the frame in
which CMB dipole vanishes, ω ∼ 10−3. Roughly speaking, the limit on α1

is actually a limit on α1ω, while the limit on α2 actually constraints α2ω2.
Thus, if ω were larger than assumed, as the results of our work seem to
allow, the limits on α1 and α2 would be actually tighter. In other words,
the constraints on the PPN parameters α1 and α2 actually are

α1 ! 10−4 ×
(
10−3

ω

)
, (3.23a)

α2 ! 10−7 ×
(
10−3

ω

)2

, (3.23b)

where ω is again the velocity of the sun or binary pulsar with respect to the
preferred frame. The constraints (3.22) are typically satisfied if the norm of
the Ã, defined above, is of order M ∼ 10−4MP .

3.2.2 Big-Bang Nucleosynthesis

The agreement between the predicted light element abundances, and those
actually observed (or indirectly measured using Cosmic Microwave Back-
ground observations [KDN+09]) constrains the value of the Hubble constant
at the time the light elements formed, at temperatures of about T ≈ 109K.
Because the expansion rate depends on the value of the renormalized New-
ton constant Gcos = 2G/(2−α) through Eq. (3.13a), and because the latter
is related to the “Newtonian” gravitational constant by Eq. (3.15), given the
measured value of GN on small scales and the number of relativistic species
during nucleosynthesis, one can determine how light element abundances
depend on the parameters α and c14. Agreement of such a prediction with
observations then implies

c14 + α

2− α
! 10%. (3.24)

3.2.3 Cherenkov radiation

If any of the propagation speeds of tensor, vector or scalar modes we have
discussed were sufficiently smaller than the speed of light, highly relativistic

16



Chapter 3. Einstein-Aether Theories

particles traveling close to the speed of light would loose energy into these
modes by a process analogous to Cherenkov radiation (this is kinematically
possible only if the dispersion relation of the emitted quanta is subluminal).
Although the emission amplitude is inversely proportional to the Planck
mass, the fact that we detect these cosmic rays, and that they must originate
at astrophysical distances, allows one to place quite stringent limits on the
parameters of the Aether [EMS05],

c13 < 1× 10−15, (3.25a)

c213(c
2
13 + 2c4)

c21
< 1.4× 10−31, (3.25b)

(c3 − c4)2

|c14|
< 1× 10−30, (3.25c)

c4 − c2 − c3
c1

< 3× 10−19. (3.25d)

It is important to realize though that these constraints are “one sided”, they
only apply if the different Aether modes propagate subluminally. Under
this assumption conditions (3.25) can also be taken to imply the bound
M " 10−7MP on the norm of the Aether field Ãµ defined above.

3.2.4 Propagation speed

Some authors impose further conditions on the parameters of the Aether,
namely, that the propagation speed of the perturbations be subluminal. The
origin of this requirement goes back to the violations of causality that appear
in Lorentz-invariant theories with superluminal signals. As far as we know,
there is no link however between superluminality and violations of causal-
ity in backgrounds like the ones we are considering. The cosmic Aether
breaks Lorentz invariance and defines a preferred reference frame. Signals
always travel forward in time in this frame, so no closed timelike curves can
arise. Even the construction of [AAHD+06], in which due to the nature of
the background closed timelike curves may appear seems difficult to realize
here, because the Aether satisfies a fixed-norm constraint. Hence, we shall
not require subluminal propagation, though because this is a somewhat con-
troversial issue, we collect the appropriate conditions here for completeness.
They easily follow from Eqs. (4.97), (4.24) and (4.84). In the limit of small
coefficients, ci # 1 they read

c13 # 0, (3.26a)

c1 − c4 − c213 # 0, (3.26b)

β − c14 # 0. (3.26c)

Note that because we have taken metric perturbations into account, these
conditions differ from those derived in the limit of a decoupled Aether
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[Lim05]. For alternative views on superluminal propagation we refer the
reader to the references [AAHD+06, Bru07, BMV08].

3.3 Hořava Gravity

In this section we briefly summarize the main aspects of the Hořava gravity
and its extended version, BPSH gravity. The relation between the BPSH
gravity and Einstein-Aether theory has been recently clarified by Jacobson
[Jac10]. He shows that any hypersurface orthogonal solution to E-A theory
is a solution to the IR limit of BPSH gravity. This implies that FRW
cosmological solutions to E-A theory are also solutions to BPSH gravity.
So, we can apply many of the conclusions for the results obtained for E-A
theory to BPSH. Note that, on the contrary to general E-A theories, vector
perturbations are absent in BPSH.

Hořava gravity was proposed in [Hoř09b, Hoř09a] as a new approach
to the theory of quantum gravity. At short distances describes interact-
ing nonrelativistic gravitons. It is a Lorentz-breaking theory in which the
breaking is implemented by a foliation by space-like surfaces. This way, the
coordinates split and general covariance is also broken. This preferred fo-
liation of spacetime defines a global causal structure. In order to improve
the UV behavior of the graviton propagator and make the theory power-
counting renormalizable higher spatial derivative terms are added to the
GR action. It is thus a candidate for a UV completion of GR, as well as
an infrared modification. Despite everything there were still doubts about
the consistency of this proposal [BPS09], such as problems with instabilities
and strong coupling at low energies. However, the extended proposal made
by Blas, Pujolàs and Sibiryakov [BPS10b, BPS10a] cured these problems.
In the original proposal by Hořava one considers the ADM decomposition
of the metric in the preferred foliation

ds2 = N2dt2 − hij(dx
i −N idt)(dxj −N jdt), (3.27)

and writes the action of the form

S =
M2

P

2

∫
d3xdt

√
hN(KijK

ij − λK2 − V(hij)), (3.28)

where MP is the Planck mass and Kij is the extrinsic curvature tensor

Kij =
1

2N
(ḣij −∇iNj −∇jNi), (3.29)

with trace K, h is the determinant of the spatial metric hij , N is the lapse
function and N i is the shift vector, and λ is a dimensionless constant. The
“potential” term depends only on the 3-dimensional metric and its spatial
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derivatives and is invariant under 3-dimensional diffeomorphisms. Restrict-
ing to operators of dimensions up to 6 is sufficient to make the theory näıvely
renormalizable by power-counting. It is possible to restrictN to depend only
on time and in this case one obtains the “projectable” version of the the-
ory. The unrestricted N case, in which it can be a generic function of the
spacetime, constitutes the “non-projectable” version of the theory. At low
energies, the presence of the λ parameter is the only difference with GR,
suggesting that the theory might have GR as its low-energy limit. However,
the explicit breaking of general covariance by the preferred foliation intro-
duces a new scalar degree of freedom that continues to be present at low
energies generating a pathological behavior of the theory. The proposal of
[BPS10a] to avoid this pathological behavior consists in the addition of a
certain type of new terms in the action. Starting from the non-projectable

version of the theory they consider a 3-vector ai ≡
∂iN

N
. It describes the

proper acceleration of the unit normal vector field to the foliation surfaces,
which is covariant under the transformation

x ,→ x̃(t,x) t ,→ t̃(t). (3.30)

Now the potential will include terms depending on ai. The existence of the
preferred foliation structure allows to introduce into the action terms with
higher derivatives in spatial directions which improve the UV behavior of
the graviton propagator but, at the same time, the theory remains second
order in time derivatives avoiding problems with unitarity. The explicit
breaking of 4-dimensional diffeomorphisms gives rise to the presence of a
new scalar gravitational degree of freedom. This mode is free of pathologies
at all energies given the following restrictions in the parameters

λ− 1

3λ− 1
> 0, 0 < α < 2. (3.31)

The linear dispersion relation at low energies,

ω2 =
λ− 1

3λ− 1

2− α

α
p2,

shows that, in general, the propagation velocity of this scalar mode is dif-
ferent to the one from gravitons. This is an indication of the breaking of
Lorentz invariance at low energies. These properties imply a different phe-
nomenology at low energies with respect to the one of GR, and allow to
obtain constraints for the parameters.

Writing the action in a covariant form the connection with E-A theories
becomes clear

S = −M2
P

2

∫
d4x

√
−g

(
(4)R+ (λ− 1)(∇µu

µ)2 + αuµaν∇µu
ρ∇νuρ

)
,

(3.32)
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where uµ ≡ ∇muφ√
∇nuφ∇νφ

. This would be a special case of E-A theory where

the vector field uµ is hypersurface orthogonal, thus characterized by a single
scalar field. In this case, therefore, there is just one degree of freedom
instead of the 3 degrees of general E-A theory. If we make the exchange
(1−λ) → c2 and −α → c4, and taking the E-A theory parameters c1 = c3 =
0, we can reproduce the results obtained in [BPS10a] about the effective
Newton constant and the effective gravitational constant. The other point
to emphasize is that, contrary to the case of E-A theory, in this case there is
no effect on tensor modes compared with GR, vector propagation is absent
and the deflection of light is the same as in GR (c1 = c3 = 0 in E-A theories
implies φ = ψ). However, more details and subtleties about this connection
are studied in [Jac10], and in principle, when matter is present and if it is
coupled minimally to the spacetime metric, this choice of parameter it is not
possible.

Here we are mainly interested in the results for scalar modes in E-A
theories that can be applied to the BPSH theory, as we will comment in
the corresponding section (4.1.5). In this case, we can apply the relation
between parameters mentioned above in order to compare our results.
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Condition Constraint Equation

Solution of Einstein’s
equations

α < 2 (3.17)

Stability of Tensors c13 > −1 (4.98)

Stability of Scalars −2 " c14 < 0, β < 0 (4.25)

Stability of Vectors 2c1 " c213(1 + c13) (4.85)

PPN Limits see Equation (3.22)

Big-Bang Nucleosynthe-
sis

c14 + α ! 0.2 (3.24)

Cherenkov radiation (as-
sumes subluminality)

see Equation (3.25)

Superluminal Tensors c13 " 0 (4.97)

Superluminal Scalars (2 + c14)β " (2− α)(1 + c13)c14 (4.24)

Superluminal Vectors 2c4 # − c213
1 + c13

(4.84)

Anisotropic stress of
long wavelength adia-
batic modes

|c13| ! 1 (4.45)

Non-growing scalar
isocurvature modes

α

c14
# −1 (4.30)

Subdominant contribu-
tion of vectors to CMB

CV
# ! Cζ

# (6.7)

Table 3.1: Summary of the theoretical and phenomenological conditions on
the parameters of Aether theories. We use the abbreviations α, β, c13 and
c14, which are related to the standard Aether parameters ci through Eqs.
(3.9).
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Chapter 4

Perturbations in
Einstein-Aether Theories

In the previous chapter we have reviewed the general concepts about the E-A
theories as well as their general constraints. Here we are going to focus in the
analysis of the cosmological perturbations on this theory and the constraints
that come from this analysis. We are going to treat separately tensor, vector
and scalar. Vector perturbations are not present in General Relativity so
they provide the most differentiating feature. We want to analyze their
contribution to the temperature anisotropies and the polarization on the
CMB.

Cosmological Perturbations

The background vector field (3.11) preserves rotational invariance, and so
it is still convenient to use the standard decomposition of perturbations in
scalars, vector and tensors under spatial rotations. The perturbed FRW
metric can be written as

ds2 = a2(η)
[
− (1 + 2φ)dη2 + 2(B,i + Si)dηdx

i

+ (δij − 2ψδij + E,ij + Fi,j + Fj,i + tij) dx
idxj

]
, (4.1)

and the vector field as

A0 =
1

a
+ δA0, Ai =

1

a
(C,i + Vi − Si) . (4.2)

Since the metric and vector fields are related to the Lagrange multiplier by
Eq. (3.7), we also need to perturb the Lagrange multiplier,

λ = λ0 + δλ, (4.3)
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where λ0 is the background value, given by Eq. (3.18). Variation of the
second order action with respect to δλ leads to the linearized form of the
constraint (3.2),

δA0 = −φ

a
. (4.4)

Here, φ,B, ψ,E,C are scalars, Si, Fi, Vi are transverse vectors, and tij is a
transverse and traceless tensor. Note that tij and Vi are gauge-invariant.
Scalars, vectors and tensors decouple from each other in the linearized the-
ory, so we consider each sector separately. In momentum space, our conven-
tion for the Fourier components is

fk(η) ≡ f(η,k) =

∫
d3x

(2π)3/2
f(η,x) exp (−ik · x) . (4.5)

We will start studying scalar perturbations, then the vector sector and,
finally, the tensor one.

4.1 Scalar Perturbations

The scalar sector of Einstein-Aether theories consists of the five scalars φ,
ψ, B, E, C defined in Eqs. (4.1) and (4.2)1. Thus, the Aether enlarges the
scalar sector by the Aether perturbation C.

It is convenient to introduce a gauge-invariant description of the dynam-
ical degrees of freedom. To this end, following [BPS10b, BPS10a, Jac10] we
note that the scalar part of the Aether field Aµ can be represented by means
of an auxiliary scalar field T through the identification

Aµ ≡ −T ,µ
(−T ,ν T ,ν )1/2

,

where it is assumed that the gradient of T is everywhere time-like. Surfaces
of constant T define a foliation of space-like surfaces, and we can think of T
as a time variable. Since the background Aµ is aligned with the FRW tem-
poral coordinate, the background field is given by T = T (η). The perturba-
tions δT (η,x) lead to the linearized spatial components Ai = −(a/T ′)δT ,i.
From Eq. (4.2) we have Ai = a ∂i(B + C), so it follows that

δT
T ′ = −(B + C). (4.6)

In addition to the Einstein-Aether sector, we must also include the matter
sector. When the dominant matter component is the inflaton field ϕ, a

1The perturbation in the Lagrange multiplier δλ disappears from the Lagrangian after
substituting the constraint to which it leads. To linearized order, this constraint is δA0 =
−φ/a, which we use to eliminate the scalar δA0 in favor of the potential φ.
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convenient set of gauge-invariant variables is given by:

ζa ≡ ψ −H(B + C), (4.7a)

δN ≡ H
ϕ′ δϕ+H(B + C). (4.7b)

Geometrically, these can be interpreted as follows (see Fig. (4.1)). Using
(4.6), it is clear that the variable ζa is the curvature perturbation on surfaces
of constant field T (i.e. on hypersurfaces orthogonal to the Aether field Aµ).
From the definition of ζa and δN it also follows that

ζ ≡ ζa + δN (4.8)

is the curvature perturbation on surfaces of constant inflaton ϕ. At the end
of inflation and afterwards, ζ will describe the curvature perturbation on
hypersurfaces comoving with matter (excluding the Aether). On the other
hand,

δN = H
(
δϕ

ϕ′ −
δT
T ′

)
= Hδη, (4.9)

where δη is the amount of conformal time separating the surfaces of con-
stant ϕ from the surfaces of constant T . Hence δN can be interpreted as
the differential e-folding number between these two types of surfaces. The
velocity of Aether with respect to the matter is given by

vi = δη,i= H−1δN,i . (4.10)

Hence, we can also think of the isocurvature perturbation H−1δN as a ve-
locity potential for the Aether with respect to matter.

Initially we consider the case of an exponential inflaton potential, Eq.
(3.19). This somewhat simplifies the analysis because the background solu-
tions have a constant equation of state parameter p = wρ.

In addition, the behavior of long wavelength perturbations of such a
scalar field can mimic those of radiation and matter dominated eras for
w = 1/3 and w = 0 respectively. The “equivalence” applies only on large
scales, because scalar perturbations and fluid perturbations have different
sound speeds. Nonetheless, in Appendix F we derive the form of the long
wavelength adiabatic and isocurvature scalar modes for generic matter con-
tent and expansion history.

In Appendix C we derive the equations of motion considering the energy-
momentum tensor of a perfect fluid. In Appendix E we write this equations
in the longitudinal gauge for the cases of radiation and matter. We will use
these equations in Section 4.1.5 in order to study the subhorizon solutions
during radiation and matter dominated epochs in the longitudinal gauge,
and we will compare our results with the ones obtained in [KUY10] for
Hořava gravity.
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Figure 4.1: Geometrical interpretation of different perturbation variables.
On hypersurfaces of constant inflaton ϕ, the curvature perturbation is ζ,
while on hypersurfaces of constant Aether T the perturbation of the spatial
curvature is ζa. In the presence of isocurvature modes, both hypersurfaces
do not agree. Their distance in conformal time is the variable δη, which
measures departures from adiabaticity.

4.1.1 Canonical reduction of the scalar sector

The normalization of the spectrum of scalar perturbations follows from the
normalization of the action for the corresponding physical degrees of free-
dom. Here, we find the reduced set of gauge-invariant dynamical variables,
and express the second order Lagrangian in terms of them. This Lagrangian
can also be used, of course, to re-derive the scalar equations of motion (D.6)
and (D.7).

The starting point is the Lagrangian for scalar perturbations in an ar-
bitrary gauge, which is obtained by substituting the metric (4.1) into the
action (3.3), and expanding to second order in the scalar perturbations. Us-
ing the constraint (3.2) which is obtained from variation with respect to δλ,
we arrive at

L(2)
s =

M2
P

2
a2
[
2k2ψ2 − 3(2− α)ψ′2 − 4k2ψφ+ 4k2ψ′B

− (2− α)k2ψ′E′ + 2αk2ψ′C + βk4
(
C +

1

2
E′

)2

− c14k
2
(
φ+ C ′ +B′)2 − 6(2− α)Hφψ′

− 2(c14 − 2)Hk2φB − (2− α)Hk2φE′
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+ 2(α− c14)Hk2φC − (2− α)(2H2 +H′)φ2

+
(
α(H2 −H′) + c14(H2 +H′)

)
k2(C +B)2

+M−2
P

(
δϕ′2 − k2δϕ2 + 2ϕ′δϕ

(
3ψ′ − k2B +

k2E′

2

)

−2ϕ′δϕ′φ− a2V,ϕϕδϕ
2 − 2a2V,ϕδϕφ

)]
. (4.11)

Not all variables in this Lagrangian are dynamical. Some linear combina-
tions are gauge modes, while others are constrained. We would like to find
a Lagrangian that contains dynamical gauge-invariant variables only.

The identification of constraints and the reduction of phase space is
best performed in the canonical formalism, where the equations of motion
are at most of first order in time. Constraints are equations of motion
without any time derivatives, and can be substituted back into the first
order Lagrangian. Here, we closely follow Fadeev and Jackiw’s method for
dealing with constrained systems [Jac93]. For a discussion of cosmological
perturbation theory in this framework, see [GMST98].

We begin by introducing new variables U and W through

2W = B + C, (4.12a)

2U = B − C. (4.12b)

The conjugate momenta of the system are given by

Πψ ≡ L(2)
s

∂ψ′ = M2
Pa

2
[
αk2(W − U) + 2k2(U +W )

− (2− α)

2
k2E′ − 3(2− α)(ψ′ +Hφ)

+ 3M−2
P ϕ′δϕ

]
, (4.13a)

ΠE ≡ L(2)
s

∂E′ =
1

2
M2

Pa
2k2

[
βk2

(
W − U +

1

2
E′

)

− (2− α)(ψ′ +Hφ) +M−2
P ϕ′δϕ

]
, (4.13b)

Πδϕ ≡ L(2)
s

∂δϕ′ = a2(δϕ′ − φϕ′), (4.13c)

ΠW ≡ L(2)
s

∂W ′ = − 2c14M
2
Pa

2k2
(
φ+ 2W ′) , (4.13d)

and we can write the first order Lagrangian

L(1)
s = ΠEE

′ +ΠWW ′ +Πδϕδϕ
′ +Πψψ

′

− 3Π2
E

M2
Pa

2k4(1 + c13)
+

Π2
W

8c14k2M2
Pa

2
−

Π2
δϕ

2a2
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+
βΠ2

ψ

4M2
PLa

2(2− α)(1 + c13)
−

2k2βWΠψ

(2− α)(1 + c13)

+
ΠEΠψ

M2
Pa

2k2(1 + c13)
− 2UΠE − 2(1− c13)WΠE

(1 + c13)

−
ϕ′δϕΠψ

M2
P (2− α)

+M2
Pa

2k2ψ2 + 2M2
Pa

2k2W 2

×
(

2k2β

(2− α)(1 + c13)
+ (c14 + α)H2 + (c14 − α)H′

)

− 1

2
a2δϕ2

(
k2 + a2V,ϕϕ − 3ϕ′2

M2
P (2− α)

)

+
2αa2k2ϕ′δϕW

(2− α)
+ φ

[
− 2c14M

2
Pa

2k2HW − 2M2
Pa

2k2ψ

+
1

2
ΠW +HΠψ − ϕ′Πδϕ − a2δϕ(a2V,ϕ + 3Hϕ′)

]
. (4.14)

Variation with respect to the independent variables ψ, Πψ, E, ΠE , δϕ, Πδϕ,
W , ΠW , U and φ leads to the same equations of motion as those derived
from the variation of (4.11) with respect to ψ, E, δϕ, B, C and φ.

Note that the time derivatives of U and φ do not appear in Eq. (4.14),
so variation with respect to these variables leads to the two constraints

ΠE = 0, (4.15a)

Πδϕ =
−4c14M2

Pa
2k2HW − 2a4V,ϕδϕ− 4M2

Pa
2k2ψ

2ϕ′

+
ΠW + 2HΠψ − 6a2Hϕ′δϕ

2ϕ′ . (4.15b)

Substitution of these constraints also causes E, φ and U to drop from the
Lagrangian, which therefore depends only on the five independent canonical
variables ψ, Πψ, δϕ, W , ΠW . Five is one too many, since we expect two
canonical pairs only. Indeed, one of the variables is redundant, and it corre-
sponds to the residual gauge invariance of the Lagrangian. Let us introduce
the gauge-invariant combinations

ζ ≡ ψ +
H
ϕ′ δϕ, (4.16a)

δN ≡ 2HΩ ≡ 2HW +
H
ϕ′ δϕ. (4.16b)

Geometrically, these can be interpreted as follows. The variable ζ is the
curvature perturbation on surfaces of constant inflaton field ϕ. The variable
δN is the same as the one introduced in (4.9), and can be interpreted as
the differential e-folding number between hypersurfaces of constant inflaton
field and surfaces orthogonal to the Aether field.
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The momenta conjugate to the gauge-invariant variables ζ and Ω are
given by

Πζ ≡ Πψ +
2M2

Pa
2k2

ϕ′ δϕ, (4.17a)

ΠΩ ≡ ΠW +
2c14M2

Pa
2k2H

ϕ′ δϕ. (4.17b)

In terms of the new variables, the field perturbation δϕ disappears from the
Lagrangian (4.14) and we have

L(1)GI
s = M2

Pa
2k2

[
2

(
2βk2

(2− α)(1 + c13)
+ (c14 + α)H2

+(c14− α)H′
)
Ω2 + ζ2 − 2M2

Pk
2

ϕ′2 (ζ + c14HΩ)2
]

+

(
1

8c14M2
Pa

2k2
− 1

8a2ϕ′2

)
Π2

Ω

+

(
β

4M2
Pa

2(2− α)(1 + c13)
− H2

2a2ϕ′2

)
Π2

ζ −
H

2a2ϕ′2ΠζΠΩ

+
c14M2

PHk2

ϕ′2 (2HΠζ +ΠΩ) Ω− 2βk2

(2− α)(1 + c13)
ΠζΩ

+
2M2

PHk2

ϕ′2 ζΠζ +
M2

Pk
2

ϕ′2 ζΠΩ + Πζζ
′ + ΠΩΩ

′. (4.18)

Expression (4.18) gives the first order Lagrangian we have been looking
for, since it is a function of two canonical pairs, corresponding to two field
degrees of freedom.

To see this more explicitly, we may vary with respect to ΠΩ and Πζ , and
plug the resulting equations back into Eq. (4.18) to obtain the second order
Lagrangian. For reference we just reproduce the leading terms in the limit
k|η| - 1 (the full expression is cumbersome and not very illuminating). In
terms of ζ and δN , this is given by

L(2)GI
s =

M2
Pa

2

2

[
− 4(2 + c14)k2

c14
ζ(δN) +

2(2 + c14)k2

c14
ζ2

+
k2(2(4 + c14α) + c14(α− 2)(1 + 3w))

2c14
(δN)2

+
4(2− α)(1 + c13)

β
(δN)′ζ ′ − 2(2− α)(1 + c13)

β
ζ ′2

− (2− α)(4(1 + c13)− 3β(1 + w))

2β
(δN)′2 + · · ·

]
,

(4.19)
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where the ellipsis denote terms which are subleading in the momentum ex-
pansion.

Variation of (4.19) with respect to ζ and δN (including the terms that we
do not explicitly write down) yields two second-order differential equations
for ζ and δN . These equations of motion are valid in any gauge. To find their
form in the longitudinal gauge, we may use Eq. (D.11) to express the inflaton
perturbations in terms of metric and Aether perturbations. Substituting in
(4.16a) and (4.16b), we can cast the equations of motion for ζ and Ω as two
third-order differential equations for the longitudinal gauge variables ψ and
C. The latter happen to be precisely linear combinations of Eqs. (D.6), (D.7)
and the time derivative of (D.7)2.

In Eq. (4.19), the curvature perturbation ζ on surfaces of constant in-
flaton field is coupled to the variable δN . However, if we replace ζ by the
curvature perturbation ζa = ζ − δN on hypersurfaces orthogonal to the
Aether, this leads to a Lagrangian for two decoupled variables, ζa and δN

Lkη#1 =
1

2ZN

[
(δN)′2 − k2(δN)2

]
+

1

2Za

(
ζ ′2a − c2ak

2ζ2a
)
+ · · · , (4.20)

where the ellipsis denote terms which are subleading in the momentum ex-
pansion, and we have introduced

Z−1
N =

3(1 + w)(2− α)

2
M2

P a2, (4.21)

and

Z−1
a =

2(1 + c13)(α− 2)

β
M2

P a2, c2a = − (2 + c14)β

c14(α− 2)(1 + c13)
. (4.22)

This form of the Lagrangian will be used in order to normalize the positive
frequency modes associated with the initial vacuum fluctuations.

4.1.2 Short wavelength Lagrangian and stability

Once that we have the Lagrangian for the two gauge-invariant degrees of
freedom (ζa, δN) given by Eqs. (4.7a, 4.7b) in the short wavelength limit
(Eq. (4.20)), we can analyze the stability requirements. We can rewrite

ZN =
4πGcos

ε
, Za = −2πc2tβGcos, (4.23)

and

c2a =
Gcos

GN

β

c14
c2t . (4.24)

2Note in particular that Eqs. (D.6) and (D.7) cannot follow from a variational principle
from a reduced Lagrangian depending quadratically on C and ψ. If α = −c14, the evolution
of C decouples from that of ψ, while the evolution of the latter does depend on the
evolution of the former.
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Here we have introduced the slow roll parameter ε = (3/2)(1 + w) and GN

as given in Eq. (3.15). For constant scale factor a, the residue Za and
sound speed ca agree with the corresponding quantities in a perturbed flat
space, as discussed in [JM04]3. Quantum stability requires Za > 0, and
classical stability requires c2a # 0. As we will see, the stability of tensors
demands c2t > 0, and recalling that (3.17) requires Gcos > 0, we are led to
the conditions

−2 " c14 < 0 and β < 0, (4.25)

which in turn guarantees GN > 0 (The case c14 = 0 is singular, and has to
be treated separately).

From Eq. (4.20) we can read off the normalization of the positive fre-
quency modes associated with the “in” vacuum in the limit k|η| → ∞,
corresponding to wavelengths well within the horizon. The two independent
mode functions are given by

ζ(ϕ)a → 0, δN (ϕ) →
Z1/2
N

a

e−ikη

√
2k

, (4.26a)

ζ(a)a → Z1/2
a

a

e−icakη

√
2cak

, δN (a) → 0. (4.26b)

In the first mode, where ζa → 0, the surfaces of constant Aether field coincide
initially with the so-called flat slicing, and δN is the number of e-folds
separating the surfaces of constant inflaton field from the flat slicing. This
mode survives in the limit when there is no Aether field (since one can
still define the flat slicing surfaces). Hence, we may call this the inflaton
perturbation. In the second mode, where δN → 0, the inflaton is initially
aligned with the Aether, so that there is no inflaton perturbation in the
Aether frame. This mode survives in the flat space limit even when there
is no inflaton field. Hence, we call this the Aether perturbation. This can
be thought of as one of the Goldstone bosons of the spontaneous Lorentz
symmetry breaking.

In the previous discussion we have assumed that the action (3.3) gives an
accurate description of the Aether up to sufficiently high momenta, so that
(4.26) applies to scales well within the horizon. Hence, we require that the
Einstein-Aether as an effective theory should be valid at least up to some
spatial cut-off Λ - H, where H is the Hubble rate during inflation. We
expect the corrections introduced by the unknown physics above the cut-off
scale to be at most of order of H/Λ (see for instance [APL03]).

It should be noted that, on large scales, the fluctuations due to the Aether
will mix with those due to the inflaton. Hence, while in single field inflation

3The above expressions are singular for β = 0, but it is easy to show, following the
derivation in the previous Section 4.1.1 that ζa is not dynamical in this case.
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perturbations have to be adiabatic, in Einstein-Aether theories there should
exist additional non-adiabatic modes, as we discuss next.

4.1.3 Long wavelength modes

The full Lagrangian in terms of the gauge-invariant variables ζa and δN
is somewhat cumbersome away from the short wavelength limit, because
the two modes are no longer decoupled. However, for long wavelengths the
Lagrangian can be easily obtained from (4.18) and diagonalized, but now
in terms of a new pair of gauge-invariant variables (ζ, δN), where ζ is the
curvature perturbation on hypersurfaces of constant inflaton field, which we
shall also refer to as comoving hypersurfaces, defined in Eq. (4.8). The long
wavelength Lagrangian is given by

Lkη$1 = Lζ + LδN + · · · . (4.27)

Here the ellipsis denotes subdominant terms and the dominant ones are
given by

Lζ =

(
4

3(1 + w)
− βc2t

)−1 a2

4πGcos
ζ ′2, (4.28)

and

LδN = −c14(1 + 3w)2
a2(kη)2

64πG

[
(δN)′2 +

κ

η2
(δN)2

]
, (4.29)

where we have introduced

κ = −6

(
1 +

α

c14

)
1 + w

(1 + 3w)2
. (4.30)

As we shall see, there are a total of four independent long wavelength modes,
which we derive in Appendix D.2. Two of them have the property that
δN = 0. For these, matter and Aether are mutually at rest, and so we call
these modes adiabatic. The other two have δN &= 0 and ζ = 0, so we call
them isocurvature, since there is no curvature perturbation on co-moving
hypersurfaces.

Adiabatic modes (δN = 0)

In standard single field inflation, the non-decaying solution for the “adia-
batic” perturbation ζ, which we denote by ζ1, stays constant on superhorizon
scales. In Appendix F we show that the same is true in the presence of the
Aether:

ζ1 = const. (4.31)
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for any expansion history (including the case where the equation of state
changes abruptly in time). The corresponding gravitational potentials in
the longitudinal gauge are given by Eqs. (D.19a):

φ1 =
3(1 + w)

(5 + 3w)
c2t ζ1, (4.32a)

ψ1 = φ1 + c13 c2t ζ1. (4.32b)

The form of the two adiabatic modes (non-decaying and decaying) for an
arbitrary expansion history and matter content is derived in Appendix F.
The decaying adiabatic mode is given by (F.8), and it is characterized by

φ2 = ψ2 ∝ Ha−2, (4.33a)

ζ2 = 0. (4.33b)

It is worth mentioning that, although these adiabatic modes have the prop-
erties described in [Wei03], they do not share the properties postulated in
[Wei04b, Wei04a, Wei08]. In particular, for the first adiabatic mode ζ1, the
anisotropic stress is non-vanishing (φ1 &= ψ1).

Isocurvature modes (δN &= 0, ζ = 0)

As shown in Appendix D.2, for the case where the background equation of
state parameter w is constant, the two isocurvature modes behave as powers
of conformal time:

δN ∝ (−η)t, (4.34)

where the exponents t are given by

t± = −1

2

(
5 + 3w

1 + 3w

)
±

√
1

4

(
5 + 3w

1 + 3w

)2

+ κ, (4.35)

and κ is given in Eq. (4.30). Note that for κ > 0, there is always a growing
isocurvature mode. If we don’t want this mode to grow out of control, then
κ should not be too large and positive,

−∞ < κ # 1. (4.36)

In the following subsection we shall be more precise about the upper limit
of this range (after discussing the overall normalization of the corresponding
power spectrum). Note that for α = −c14, we have κ = 0 and the dominant
isocurvature mode stays constant on large scales, just like the adiabatic one.
Hence, from the point of view of observability of isocurvature modes, the
interesting range of parameters is around α ≈ −c14.
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From Eq. (D.22c), the gravitational potentials for the isocurvature modes
are given in terms of δN by

ψ = −c13 c2t δN, (4.37)

and

ψ − φ

φ
∼ 1. (4.38)

Hence, isocurvature modes have sizable anisotropic stress. It is also straight-
forward to check from the relations in the Appendix D.2 that for the long
wavelength isocurvature mode, the velocity of the Aether with respect to
matter is given by

vi = H−1δN,i= c−2
t C,i , (4.39)

where in the first equality, we use Eq. (4.10) and C is the scalar Aether
perturbation in the longitudinal gauge. From Eq. (F.11) in Appendix F,
it is clear that at the time of a sudden transition in the equation of state
parameter, the variable C and its derivative remain continuous for the long
wavelength isocurvature mode. This means that the velocity field matches
trivially:

[vi] = [v′i] = 0, (4.40)

where the square brackets indicate the discontinuity at the time of the tran-
sition. On the other hand, since the pressure changes abruptly at the transi-
tion, so does H′, and therefore the matching conditions for δN are [δN ] = 0,
[δN ′] = (3/2)[w] HδN .

4.1.4 Power spectra

As shown in Subsection 4.1.2, the variables ζa and δN are uncorrelated on
subhorizon scales. Hence, from Eqs. (4.8) and (4.26), it is clear that, at
short wavelengths, the power spectra associated to δN and ζ are given by

PδN =
ZN

(2π)2

(
k

a

)2

, (4.41a)

Pζ = Pζa + PδN =
Za + ZN

(2π)2

(
k

a

)2

. (4.41b)

These spectra are valid for kη - 14.

4Here, and for the rest of this section, we shall assume that the speed of propagation
of Aether is larger than or comparable to 1. This is convenient so we do not have to
introduce the scale of sound horizon crossing in the discussion of the adiabatic mode. Also,
this assumption avoids the need of imposing the constraints due to Cherenkov radiation
discussed in 3.2.3.
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Adiabatic modes

For wavelengths comparable to the cosmological horizon, δN and ζ are cou-
pled to each other, and their evolution will not have a simple form. Nonethe-
less, the evolution of δN and ζ is again simple in the long wavelength limit,
as we saw in the previous subsection. In particular, ζ stays constant at long
wavelengths. The power spectrum for ζ will be approximately equal to its
value at the time of horizon crossing, which we can estimate from (4.41a)
by setting k/a = H,

Pζ ∼
Za + ZN

(2π)2
H2, (4.42)

where H2 is evaluated at the time of horizon crossing.
From Eqs. (4.23) and (4.24) we have

ZN + Za =

(
1− βεc2t

2

)
ZN . (4.43)

Note that Za is parametrically suppressed with respect to ZN by one power
of Aether parameters ci ∼ (M/Mp)2 # 1 and by one power of the slow roll
parameter ε. Hence

Pζ(k|η| # 1) ≈ 8G2
cosρ

3ε

∣∣∣∣
ηk

[
1 +O(βεc2t )

]
, (4.44)

where ρ is the energy density and ηk is the time of horizon exit during
inflation. Up to the small corrections introduced by the fluctuation of the
Aether, which are controlled by Za, this expression is the same as the one
in Einstein gravity, with Newton’s constant G replaced with the effective
Newton’s constant Gcos which appears in the Friedmann equation (3.13a).

In summary, due to the smallness of the Aether parameters ci, the spec-
trum of primordial adiabatic modes does not change significantly with re-
spect to the case of standard Einstein gravity. As we saw in the previous
subsection, in the presence of the Aether the adiabatic modes do not have
the properties generally attributed to adiabatic perturbations. In particular,
from Eq. (4.32b), on super-horizon scales the non-decaying adiabatic mode
has a non-vanishing anisotropic stress

ψadiab − φadiab

φadiab
∼ c13 (4.45)

both in the matter and radiation dominated era. It is easy to see from
Eq. (D.6) that for α+c14 = 0, the Aether perturbation C behaves exactly like
a massless field which propagates at the speed ca. Hence C oscillates while
its amplitude decays as the inverse of the scale factor, C ∝ (1/a)e−icakη. It
then follows from (D.4) that φ− ψ also decays in inverse proportion to the
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scale factor, and hence it is suppressed by a factor of a(tk)/a(t0), where tk
is the time of horizon crossing. For modes which cross the horizon during
the matter era, this means that the effect is suppressed with distance as5

ψ − φ

φ
∼ c13 (kt0)

−2 (teq # k−1 # t0, α ≈ −c14), (4.48)

where we adopt the standard convention a(t0) = 1. On the other hand,
for modes that crossed the horizon during the radiation era, the scaling is
with k−1. This is in agreement with the result that at small scales the
post-Newtonian parameter ψ/φ equals one, as in General Relativity [EJ04].
Nonetheless, as a matter of principle, there could still be a distinct phe-
nomenological signatures in the adiabatic sector imprinted on large scales.

Constraints on the ratio ψ/φ on cosmological scales have been derived
under several different assumptions, using combinations of different large
scale structure probes [KM06, DCC+09, GMSM10, BT10]. At present, how-
ever, the constraints are quite weak, and it appears that values of ψ/φ of
order one are still consistent with the data.

Isocurvature modes

Next, let us consider the spectrum of long wavelength isocurvature modes
PδN . The phenomenological situation depends on whether α+c14 is positive
or negative. If α < −c14, then δN decays on superhorizon scales, during
and after inflation. Hence, these modes will remain insignificant with respect
to the adiabatic ones. If α = −c14, then there is a constant non-decaying
isocurvature mode, and δN stays constant on superhorizon scales. Finally,
for α > −c14 there is a growing mode and δN can be very large at the time
of re-entry even if it was small at the time of horizon exit.

Phenomenologically, the most interesting case seems to be the limit |α+
c14| # |c14|, in which the supercurvature mode δN stays approximately
constant on large scales. Otherwise, either the mode is too suppressed to be

5Assuming that the Aether parameters are small, these conclusions are easily extended
to the case α "= −c14. In this case, Eq. (D.6) can be solved as the sum of the “ho-
mogeneous” equation which is obtained by ignoring terms proportional to φ, plus the
contribution of a particular “inhomogeneous” solution. The first one takes the form
Ch ∝ a−(1+d/2)eicakη, where

d = c13 c2t

(
1 +

α
c14

)
. (4.46)

This leads to

ψ − φ
φ

∼ c13
[
(kt0)

−(2+d) +O(kt0)
−2

]
(teq % k−1 % t0). (4.47)

This applies to modes that entered the horizon during the matter era. For those which
crossed the horizon during the radiation era, the scaling is with one less power of k in the
denominator.
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of any significance, or it grows too fast to be compatible with observations.
In this case, the exponent t± for the dominant mode can be approximated
by

t̂ ≈ 1 + 3w

5 + 3w
κ, (4.49)

where κ is given in (4.30), and we have |t̂| # 1 both during inflation and
afterwards. At the time of horizon crossing, the adiabatic and isocurvature
modes have comparable amplitudes, P ∼ (2π)−2ZNH2, and these will re-
main roughly comparable throughout cosmic history up to the present time
provided that t̂ is sufficiently close to zero. In order to assess how small
it would have to be, we can make a rough estimate of the evolution of the
amplitude of δN from the time of horizon crossing during inflation to the
time of equality:

(δN)eq ∼ Z1/2
N He−t̂iN

(
ηeq
ηrh

)t̂r

∼ Z1/2
N He(t̂r−t̂i)N ! 1. (4.50)

Here, the subindices i and r refer to inflation and radiation era respectively.

Assuming Z1/2
N H ∼ 10−5, as follows from the normalization of the adiabatic

modes, we find that for

t̂r − t̂i ≈
1

3
κr ! ln(105)/N (4.51)

the perturbation δN remains within the linear regime up to the time of
equality of matter and radiation. Here, we have neglected κi, which is
suppressed with respect to κr by a slow roll factor (we are assuming that
the Aether parameters are the same today than they are during inflation),
and

N ∼ 60

is the number of e-foldings of inflation after the mode with co-moving
wavenumber k ∼ ηeq first crossed the horizon. Note also that, according
to (4.37), the contribution of the isocurvature mode to the gravitational
potential is suppressed by c13,

ψisoc = −c13 c
2
t δN ! 10−5,

where the last inequality is the observational bound on the gravitational
potentials. For −c13 c2t ! 10−5, ψisoc can remain small enough even if the
inequality (4.51) is saturated, so that δN ∼ 1. Also ψisoc becomes compa-
rable to the contribution of the adiabatic mode ψadiab, when the inequality
κ " −3 ln |c13 c2t |/4N is saturated, and combining with (4.51), we require

κ ! 3

N
min{ln(105),− ln |c13 c2t |}. (4.52)
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Let us estimate what the physical implications of the isocurvature perturba-
tions might be. On one hand, they would induce maximal anisotropic stress
on large scales, as can be seen from Eq. (4.38),

ψisoc − φisoc

ψisoc
∼ 1,

which means that there would be a sizable difference between the two grav-
itational potentials φ and ψ provided that the contribution of the isocur-
vature mode is comparable to that of the adiabatic mode. For κ = 0 we
have ψisoc ∼ c13 c2t δN ∼ c13 c2t ψadiab, and so from (4.45) both adiabatic and
isocurvature modes contribute to the anisotropic stress in a similar amount
(unless c2t is very large). However, if κ is small and positive, then the isocur-
vature mode grows on superhorizon scales, and will contribute more to the
anisotropic stress than the adiabatic one. As argued in the previous sub-
section, the difference 1 − (φ/ψ) decays after horizon crossing, and so does
its magnitude as a function of co-moving scale, which roughly goes as k−2

for modes which crossed the horizon during the matter era, and as k−1 for
modes that crossed before the time of equality (see Eqs. (4.47), (4.48)).

Another possible signature might be due to preferred-frame effects due
to the motion of matter with respect to the Aether [DEF94, GJW05], such
as a dipole anisotropy in the gravitational potential of massive bodies. The
primordial perturbations cause the Aether to point in different directions
at different places in the observable universe. Hence, the velocity of matter
with respect to the Aether (and the corresponding gravitational dipole, for
instance) would have a random distribution. From (4.10) an isocurvature
perturbation with wave-number k, induces a relative speed of the Aether
with respect to matter given by

v =
k

HδN.

When the mode reenters the horizon during the radiation or matter era, at
time tk ∼ a/k, we have

v ∼ δN(tk).

This has to be compared with the peculiar velocities in bound objects at the
same scale, which is of order ζ1/2 ∼ 10−3. Hence, the effect of the peculiar
velocity of the Aether will be subdominant unless δN has grown from the
time of horizon exit, in such a way that at the time of reentry it is at least
of the order ζ1/2. This possibility exists, since we have seen that δN has
a growing mode for α > −c14. Because of that, the velocity of the Aether
at the time of horizon crossing could even approach moderately relativis-
tic speeds without compromising the validity of the linear approximation
and without contradicting current observations [Note from Eqs. (4.37) and
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(4.38), that the gravitational potentials along the isocurvature mode, and
hence their effects on the CMB, are suppressed by a factor c13, which can
be very small].

The velocity field of the Aether is strongly correlated with the amplitude
of adiabatic modes, since both have a common origin in the amplitude of the
short wavelength mode δN when it first crosses the horizon during inflation.
Should the velocity field of the Aether be detected, such correlation would
indicate that the velocity field has a primordial inflationary origin.

We may define a power spectrum Pv for the longitudinal velocity field
of the Aether through the equation

〈vi(η,k)vj(η,k′)〉 ≡ 2π2

k3
Pv(η, k)

kikj
k2

δ(k− k′). (4.53)

Note that at the time of horizon exit during inflation, we have

Pv ∼ PδN ∼ Pζ ∼ 10−5, (4.54)

where the last estimate follows from observations. However, since the pertur-
bation δN grows on large scales for 0 < κ # 1, we can have Pv ∼ PδN - Pζ

at the time of horizon reentry. As we shall see in the next section, vector
perturbations can give an additional contribution to the velocity field (which
can of course be disentangled from the scalar isocurvature contribution from
the fact that the corresponding velocity field is transverse). It turns out that
the scalar component and transverse vector component of the velocity field
obey the same equation of motion on large scales. Hence, we defer the dis-
cussion of the spectral properties of Pv on currently observable scales to the
next section.

4.1.5 Subhorizon solutions

In the following, we are going to study in detail the solutions of the scalar
equations during radiation- and matter-dominated epochs. We have already
estimated this behavior but now we are going to obtain the analytic solutions
and also to make a numerical study in order to compare with the results
obtained for the special BPSH case in [KUY10]. The general equations for
the scalar modes and their form in the longitudinal gauge for both radiation
and matter epochs are included in Appendix E.

Solutions during radiation-dominated epoch

In the short wavelength limit the equations (E.1, E.2) reduce to

ψ′′ +
2 + c14
3(2− α)

k2ψ +
(c14(1 + c13)− 3β)

3(2− α)
k2C ′ = 0, (4.55)
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and

C ′′ +
β

c14(1 + c13)
k2C +

α+ c14
c14(1 + c13)

ψ′ = 0. (4.56)

Using the ansatz

ψ = ψ̃(kη) exp(−icskη), C = C̃(kη)ψ, (4.57)

we get the two positive frequency solutions

ψ1 = exp

(
− ikη√

3

)
, (4.58a)

C1 =
i

k

√
3 (α+ c14)

3β − c14(1 + c13)
ψ1, (4.58b)

and

ψ2 = exp

(
−i

√
β (2 + c14)

c14(1 + c13)(2− α)
kη

)
, (4.59a)

C2 =
i

k

α− 2

β

√
β (2 + c14)

c14(1 + c13)(2− α)
ψ2. (4.59b)

We can get the normalization matching the solutions at kη = 1 with the
ones obtained for the long wavelength modes for both the adiabatic

ψ̃ad =
2 + 3c13
3(1 + c13)

ζ0, (4.60a)

C̃ad = − 1

3(1 + c13)
η ζ0, (4.60b)

and isocurvature cases

ψ̃iso = − c13
1 + c13

(
η

ηeq

)t+

δN0, (4.61a)

C̃iso =
1

1 + c13

(
η

ηeq

)t+

η δN0, (4.61b)

where

ζ0 1 δN0 1
H

2π

√
4πG

2− α
, (4.62)

and

t+ 1 −3

2

(
1 +

α

c14

)
. (4.63)
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We want to solve the equations (E.1, E.2) numerically. The initial conditions
are given by Eqs. (4.60, 4.61) for the adiabatic and the isocurvature modes
respectively. We use the values for the parameters

α = 0.005,

β = − 0.001,

c14 = − 0.008,

c13 = − 0.004.

(4.64)

Adiabatic mode In Fig. (4.2(a)) we can see the behavior of C and in
Fig. (4.2(b)) the difference among the potentials. As we can expect from
the analytical solutions they have an oscillatory behavior. The difference
φ − ψ ∝ c13C, as expected. We can check that both modes decays ap-
proximately as 1/k, in agreement with the estimation made in the previous
section (Eq. (4.48)).

(a) Evolution of C

(b) Evolution of φ− ψ

Figure 4.2: Behavior of the perturbations in a radiation dominated universe
for the adiabatic modes.
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Isocurvature mode In Fig. (4.3(a)) we have the behavior of C. In
Fig. (4.3(b)) we have plotted φ−ψ. Both of them are for the limit |c14+α| #
|c14|, where t+ ∼ 0. The isocurvature modes seem to be around two times
bigger than the adiabatic ones, but they are fairly of the same order, as
expected for the regime in which we are. They decay approximately in the
same way as the adiabatic modes (Eq. (4.48)).

(a) Evolution of C for t+ ∼ 0

(b) Evolution of φ− ψ for t+ ∼ 0

Figure 4.3: Behavior of the perturbations in a radiation dominated universe
for the isocurvature modes.

Solutions during matter-dominated epoch

In the short wavelength limit the equations (E.10, E.11) reduce to

ψ′′ − β

2− α
k2C ′ = 0, (4.65)

C ′′ +
β

c14(1 + c13)
k2C +

α+ c14
c14(1 + c13)

ψ′ = 0. (4.66)
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From the first equation we get

ψ′ = A+
β

2− α
k2C, (4.67)

and plugging this into the second equation we get a second-order differential
equation for C,

C ′′ +
β(2 + c14)

c14(1 + c13)(2− α)
k2C +

α+ c14
c14(1 + c13)

A = 0, (4.68)

with solution

C = −(α+ c14)(2− α)

β(2 + c14)

A

k2
+B cos

√
β(2 + c14)

c14(1 + c13)(2− α)
kη

+D sin

√
β(2 + c14)

c14(1 + c13)(2− α)
kη.

(4.69)

Now, integrating Eq. (4.67) we get the solution for ψ

ψ = F +
2− α

2 + c14
Aη

+

√
βc14(1 + c13)

(2 + c14)(2− α)
k

(
B sin

√
β(2 + c14)

c14(1 + c13)(2− α)
kη

−D cos

√
β(2 + c14)

c14(1 + c13)(2− α)
kη

)
.

(4.70)

The four constants (A, B, D, F ) are obtained through the matching with
the long wavelength solutions, both for the adiabatic

ψ̃ad =
3 + 5c13
5(1 + c13)

ζ0, (4.71a)

C̃ad = − 1

5(1 + c13)
η ζ0, (4.71b)

and isocurvature cases

ψ̃iso = − c13
1 + c13

(
η

ηeq

)t+

δN0, (4.72a)

C̃iso =
1

2(1 + c13)

(
η

ηeq

)t+

η δN0, (4.72b)

where

ζ0 1 δN0 1
H

2π

√
16πG

3(2− α)
, (4.73)
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and

t+ 1 −6

5

(
1 +

α

c14

)
. (4.74)

We will repeat the same calculation that we have done before for radi-
ation, now for the case of matter. The initial conditions are given by
Eqs. (4.71, 4.72). The parameters are the same ones used in the radiation
case (4.64). The situation is very similar to the case of radiation-dominated
epoch, being the main difference that the two solutions decay now roughly
as 1/k2 instead of as 1/k (Eq. (4.48)).

Adiabatic mode In figure 4.4 we see that the behavior observed agrees
with the statement made before saying that C and (φ − ψ)/φ decay in,
approximately, the same way. In this case neither the Aether perturbation C
nor the anisotropic stress oscillate around zero, contrary to the isocurvature
case. The anisotropic stress is proportional to the parameter c13 (Eq. (4.48)).

(a) Behavior of the Aether perturbation

(b) Behavior of the anisotropic stress φ−ψ
φ

Figure 4.4: Evolution of the potentials for the adiabatic modes during matter
dominated universe.
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Isocurvature mode As we did for the radiation epoch, we show the plots
for t+ ∼ 0. Both the Aether perturbation and the anisotropic stress behave
in a similar way. The amplitude of the anisotropic stress, as happens dur-
ing radiation epoch, is larger than the amplitude for the adiabatic modes,
although the amplitude for the Aether perturbation is fairly of the same
order. This is a consequence of the initial conditions, the anisotropic stress
for adiabatic modes has a factor c13 that is absent for isocurvature modes
(Eq. (4.45)).

(a) Evolution of C for t+ ∼ 0

(b) Evolution of the anisotropic stress φ−ψ
φ for t+ ∼ 0

Figure 4.5: Evolution of the potentials for the isocurvature modes during
matter dominated universe.

Comparison with Kobayashi et al.

We also want to compare these solutions with the ones plotted in [KUY10].
To do so we have to go to a different gauge. Their analysis corresponds to a
choice of the parameters c1 = c3 = c13 = 0, that means our potentials verify
φ = ψ. Their variables (which we denote with the subscript U) are related
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to the ones in the longitudinal gauge in the following way

BU = − C,

ψU = ψ −HC,

φU = φ+ (C ′ +HC).

(4.75)

The values for the parameters are (the equivalents to the ones used in
[KUY10])

c2 = − 0.05,

c4 = − 0.1.
(4.76)

The initial conditions here are, for radiation

ψ̃(ad)
U = ζ0, (4.77a)

B̃(ad)
U =

1

3
η ζ0, (4.77b)

ψ̃(iso)
U = −

(
η

ηeq

)t
(r)
+

δN0, (4.77c)

B̃(iso)
U = −

(
η

ηeq

)t
(r)
+

η δN0, (4.77d)

and for matter

ψ̃(ad)
U = ζ0, (4.78a)

B̃(ad)
U =

1

5
η ζ0, (4.78b)

ψ̃(iso)
U = −

(
η

ηeq

)t
(m)
+

δN0, (4.78c)

B̃(iso)
U = − 1

2

(
η

ηeq

)t
(m)
+

η δN0, (4.78d)

where ζ0 1 δN0 1 H
2π

√
16πG

3(2−3c2)
, t(r)+ = −1.7 and t(m)

+ = −3 for these values

of the parameters.

Radiation In Fig. (4.6) we compare our solutions with the ones plotted
in [KUY10]. We can see that the behavior agrees with their results in the
shape and size of the potentials for the adiabatic mode, but we get two
solutions instead of just one. In their analysis they do not consider the
presence of the isocurvature solutions, that we found, and it is two orders
of magnitude smaller than the adiabatic mode. The isocurvature mode is
initially suppressed by a factor of ∼ 10−3.
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(a) Evolution of ψU and φU (Adiabatic mode)

(b) Evolution of ψU and φU (Isocurvature mode)
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FIG. 2: Subhorizon evolution of the density perturbation (di-
vided by ζ∗) in a matter-dominated universe, compared to the
analytic solution (47).
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FIG. 3: Evolution of ψ (solid line) and φ (dashed line) with
k = 0.01×a(t0)H(t0) in a radiation-dominated universe. The
initial condition is given by ψ0 = 1 = φ0, β0 = 0, and χ0 = 0.
The parameters are λ = 1.05 and η = 0.1, and ac is defined
similarly to the previous figures: k = acH(ac).

the horizon. The evolution of δ is shown in Fig. 2 for the
same set of the initial conditions as in Fig. 1. One can
confirm that the growth of δ is in agreement with the
analytic solution (47).

The same large scale behavior, ψ ! −ζ∗ and φ ! 0,
is found also in a radiation-dominated universe, as can
be seen in Fig. 3. The oscillation on small scales in the
radiation-dominated universe, shown in Fig. 4, is well
approximated by the analytic solutions presented in the
previous subsection. The δ induced part and Ψ typically
have the same amplitude in the plotted region, and Ψ
dominates for larger τ . We have confirmed that different
initial conditions with the same value of ζ∗ (and the same
set of the other parameters) result in the identical profile.
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FIG. 4: Subhorizon evolution of ψ and φ in a radiation domi-
nated universe, compared to the analytic solutions (49)–(51).
The initial condition and parameters are the same as in Fig. 3.

V. CONCLUSIONS

In this paper, we have studied cosmological perturba-
tions in a healthfully extended version of Hořava gravity.
The most general perturbation equations have been de-
rived without specifying the matter content. We then
solved the resultant perturbation equations in the IR
regime analytically and numerically, for a universe domi-
nated by a single fluid with vanishing non-adiabatic fluc-
tuations. It was found that the large scale evolution con-
verges to that described by a constant ζ, which is an ana-
log of the curvature perturbation on uniform density hy-
persurfaces commonly used in the context of usual gravi-
tational theories having general covariance. This implies
that, although the system has two scalar degrees of free-
dom corresponding to a scalar graviton and an adiabatic
matter fluctuation, it is sufficient to specify the value of
ζ for predicting the late-time evolution of perturbations.
Our analytic results were confirmed by numerical calcu-
lations.
It would be important to revisit the analysis of cos-

mological perturbations in extended Hořava gravity by
employing the Hamiltonian formulation in order to get a
more transparent understanding of the properties of the
scalar graviton [9, 24]. This issue is left for a further
study.
It was pointed out very recently that the IR limit of

extended Hořava gravity is identical to Einstein-aether
theory [30] if the aether vector is restricted to be hy-
persurface orthogonal [18, 31]. Hypersurface orthogonal
solutions of Einstein-aether theory are also solutions to
the IR limit of extended Hořava gravity, though the con-
verse is not true. This observation is insightful for un-
derstanding the background cosmological dynamics, as a
cosmological background aether field is hypersurface or-
thogonal. For example, the discrepancy between GN and
Gc is a generic feature of Einstein-aether theory. Note,
however, that the aether field is no longer hypersurface

(c) Evolution of ψU , φU from [KUY10]

Figure 4.6: Evolution of ψU and φU (Radiation)
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Matter In Figs. (4.7(a), 4.7(b),) we plot both the adiabatic and the isocur-
vature numerical solution we obtain. For comparison, we plot also the figure
from [KUY10]. We can see that the behavior of the adiabatic mode agrees
with their result in the shape of the potentials, there are some differences
in the size, but an exact comparison cannot be made, as there are possi-
ble differences in the values of constants taken in the numerical analysis,
together with the fact that they are plotting against ln(a/ac) instead of
plotting against ln(kη) as we do. As well as in the radiation case, we get a
second solution, corresponding to the isocurvature mode. This mode has a
decaying wave shape, and it is clearly suppressed compared to the adiabatic
one. The difference in the potentials is proportional to the Aether mode,
as this decays during the matter epoch the potentials tends to a common
value. The isocurvature mode is initially suppressed by a factor of ∼ 10−5

and has a oscillatory behavior.
As we expected, the solutions for E-A theory and BPSH agree, although

one mode was missing in the study made for the BPSH. Also, we confirm that
the anisotropic stress decays on subhorizon scales according to Eq. (4.48).
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(a) Evolution of ψU and φU (Adiabatic mode)

(b) Evolution of ψU and φU , scaled by 108 (Isocurvature
mode)

6

approximation, the evolution equations imply that

ψ ≈ φ, β ≈ 0, (44)

on subhorizon scales. Equations (42)–(44) are then ar-
ranged to give the following equations:

δ̈ + 2H δ̇ =
∇2

a2
φ, (45)

∇2

a2
φ = 4πGNρ δ, (46)

where 8πGN = M−2
Pl (1− η/2)−1. This gravitational con-

stant coincides with effective Newton’s constant defined
in [15] (so that it differs from the gravitational constant
in the Friedmann equation, Gc). This is a natural exten-
sion of the result of [15], where the gravitational field of
a static point source has been derived. Again, we have
the relation ψ = φ, in contrast to the case of Lorentz-
invariant scalar-tensor theories of gravity.
Equations (45) and (46) admit the analytic solution

δ = C1t
(−1+

√
1+24ξ)/6 + C2t

(−1−
√
1+24ξ)/6, (47)

where ξ := GN/Gc = (3λ − 1)/(2 − η). The first term
grows in time, and, for ξ $= 1, the growth rate of the
matter density perturbation is slightly different from the
standard one (δ ∼ t2/3).
Next, let us consider a radiation-dominated universe

(w = 1/3) and study the evolution of δ inside the sound
horizon. From Eq. (43) we may estimate (∇2/a2)φ ∼
O(H2δ), so that we have δ̈+H δ̇ & (∇2/3a2)δ inside the
sound horizon. This coincides with the corresponding
equation in general relativity, and the last term hinders
the growth of the density perturbation in the radiation-
dominated stage. Moving to the Fourier space and using
the conformal time defined by dτ = dt/a, this equation
can easily be solved to give δ = C0 cos(kτ/

√
3+θ0), with

C0 and θ0 being integration constants.
Although the behavior of the density perturbation on

subhorizon scales in the radiation-dominated universe is
simple as seen above, the metric perturbations evolve
in a non-trivial manner. Using the generalized Poisson
equation (43), the traceless part of the evolution equa-
tions (27), and Eq. (32), with some manipulation and the
approximation k2 ( O(1/τ2), we arrive at

A

(
φ′′ +

2

τ
φ′ + c2gk

2φ

)
& −6

η

a2ρ

M2
Pl

(
δ′

k2τ
+

δ

3

)
, (48)

where ′ := ∂τ . The detailed derivation is presented in
Appendix A. A solution to this equation is given by

φ = Ψ(τ ; k) +
6k−2

ηA − 3(2− η)

a2ρ

M2
Pl

[
δ +O(δ′/k2τ)

]
,(49)

where Ψ(τ ; k) is a solution to the source-free wave equa-
tion Ψ′′ + (2/τ)Ψ′ + c2gk

2Ψ = 0, and hence

Ψ = CΨ
cos (cgkτ + θΨ)

a
, (50)
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FIG. 1: Evolution of ψ and φ in a matter-dominated universe.
Red lines with circles correspond to the initial condition φ0 =
ψ0(= 1), while blue lines with crosses φ0 = −2ψ0(= −2).
Other initial data are the same and are given by β0 = 1×k−1

and χ0 = 0. The wavenumber is given by k = 0.1×a(t0)H(t0).
The parameters are λ = 1.05 and η = 0.1, and ac represents
the “horizon-crossing time” defined by k = acH(ac).

where CΨ and θΨ are integration constants. The mode
Ψ can be naturally identified as the scalar graviton, and
it decays as ∼ a−1 inside the horizon, analogously to the
usual helicity-2 gravitational wave mode in a cosmologi-
cal setting. Note that the propagation speed of a scalar
gravitational wave in a cosmological background is iden-
tical to cg in the Minkowski background, and its stability
is ensured for c2g > 0. The δ induced part of φ decays as
∼ a−2. ψ can be obtained from the generalized Poisson
equation (43) as

ψ ≈ η

2
Ψ− 1

2k2
ηA − 3(2 + η)

ηA − 3(2− η)

a2ρ

M2
Pl

δ. (51)

The subhorizon evolution in a radiation-dominated uni-
verse is apparently characterized by four integration con-
stants, but they are completely determined by a single
constant, ζ∗, and thus are in fact related to each other.

C. Numerical solutions

We have solved numerically the perturbation equations
in the IR without any other approximations. The pro-
cedure for doing so is described in some detail in Ap-
pendix B. The results are summarized in Figs. 1–4, all
of which reproduce the analytic results obtained above.
In Fig. 1 we show the evolution of ψ and φ in a matter-

dominated universe. The initial condition is set by spec-
ifying four numbers ψ0 = ψ(t0), χ0 = ψ̇(t0), φ0 = φ(t0),
and β0 = β(t0) at some initial time t = t0. It can be
seen that the perturbation evolution starting with the
two different initial conditions first converges to the so-
lution (40) outside the horizon, and then to (44) inside

(c) Evolution of ψU , φU from [KUY10]

Figure 4.7: Evolution of ψU and φU (Matter)
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4.2 Vector Perturbations

In a universe dominated by a scalar field there are no vector perturba-
tions. Perfect fluids do support vector perturbations, but they decay as
the universe expands. By contrast, the Aether contains a massless vector
field (under spatial rotations), which renders vector metric perturbations
dynamical. For a certain range of parameters, these modes can grow on
large scales, leading to potentially interesting signals, or to constraints on
the parameters of Einstein-Aether theories.

4.2.1 Short wavelength stability

As in the case of the scalar modes, we can read off from the action for the
vector perturbations whether the vector sector in Einstein-Aether theories is
both quantum and classically stable on short scales. Inserting the expansions
(4.1) and (4.2) into the action (3.3), expanding to quadratic order in the
vectors S and V, and using the background equations of motion, we obtain
the following Lagrangian for the vector perturbations

L(2)
v =

M2
Pa

2

2

[
− c14V

′2 +
1

2
(1 + c13)∂iQ · ∂iQ

+ c1∂iV · ∂iV + c13∂iQ · ∂iV

+ α
(
H2 −H′)V2 + c14(H2 +H′)V2

]
,

(4.79)

where we have introduced the gauge-invariant combination

Q ≡ F′ − S (4.80)

(the vector perturbation V is also gauge-invariant). Note that Q is not
a bona-fide Lagrangian variable, since its definition (4.80) relates it to the
time derivative of F. Hence, we shall merely think of it as shorthand for the
right hand side of (4.80). Variation of Eq. (4.79) with respect to S gives the
response of the metric to a given perturbation of the Aether field,

Q = −c13 c2tV. (4.81)

In the canonical (first order) formalism, this equation corresponds to the
vanishing of the canonical momentum conjugate to F, ΠF = 0. Upon sub-
stitution of this constraint back into the first order Lagrangian, one is left
with a Lagrangian for the single canonical pair formed by V and its con-
jugate momentum ΠV. Rewriting this reduced Lagrangian back in second
order form gives

L(2)
v =

M2
P

2

[
−c14ξ

′2 + α(H2 −H′)ξ2 + c1

(
1− c213c

2
t

2c1

)
∂iξ · ∂iξ

]
,

(4.82)

50



Chapter 4. Perturbations in Einstein-Aether Theories

where, for convenience, we have introduced the rescaled variable

ξi ≡ aVi. (4.83)

The absence of ghosts requires the coefficient in front of ξ′2 in the Lagrangian
(4.82) to be positive, and classical stability requires that the squared speed
[JM04]

c2v =
c1
c14

(
1− c213c

2
t

2c1

)
(4.84)

be non-negative. Therefore, stability in the vector sector demands both

c14 " 0 and c1 "
c213

2(1 + c13)
. (4.85)

In a Minkowski background, the two modes in the vector sector are massless
fields, which we may interpret as two of the Goldstone modes of the broken
boost invariance. The broken generators transform as a spatial vector un-
der the unbroken group of spatial rotations, so the corresponding Goldstone
bosons transform as a vector. This can be decomposed into a transverse part
and a longitudinal part. The longitudinal Goldstone (with helicity zero) is
of course part of the scalar sector, which we discussed in the previous sec-
tion. It should be noted that Lorentz invariance is generically broken in any
curved spacetime. For instance, if the spacetime curvature is non-constant,
the gradient ∇µR defines a non-zero vector field which is not invariant under
Lorentz-transformations. What is particular about the Einstein-Aether is
that the breaking of Lorentz-invariance has physical consequences, namely,
the existence of Nambu-Goldstone bosons, whose dispersion relations ap-
proach non-relativistic expressions in the high-momentum limit, and whose
masses vanish in flat space6.

4.2.2 Solutions during power-law inflation

Variation of (4.82) with respect to ξ leads to the equation of motion for the
vector perturbations,

ξ′′i + c2v k
2 ξi +

α

c14

(
H2 −H′) ξi = 0. (4.86)

In terms of the original variable Vi = ξi/a, we have

V ′′
i + 2HV ′

i + c2v k
2 Vi +

[(
1 +

α

c14

)
H2 +

(
1− α

c14

)
H′

]
Vi = 0.

(4.87)

6In an arbitrary spacetime, the “mass” of these bosons is non-zero, as illustrated in
the case of a FRW universe by the contribution to the effective mass of the last term in
the Lagrangian (4.82).
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In a universe that undergoes power-law inflation (3.20) this can be solved
in terms of Bessel functions and we have

Vi =
1

2MP

√
π

−c14

(−η)1/2

a
H(1)

ν (−cvk η) ei. (4.88)

Here,

ν =
t+ − t−

2
=

√
1

4
− αq(q + 1)

c14
, (4.89)

where t± is given in (4.35). The parameter q is defined in Eq. (3.20) and ei
is a normalized transverse polarization vector, e · k = 0 and e2 = 1. For a
given wave number k, there are two such linearly independent polarizations,
orthogonal to k. We have chosen the amplitude of Vi in Eq. (4.88) so that
the solution has the appropriate normalization of a positive frequency mode
in the limit η → −∞. Note that the factor q(q + 1) is non negative if the
null energy condition is satisfied (w # −1).

The long wavelength power spectrum of vector perturbations created
during inflation is defined by

〈Vi(η,k)Vj(η,k
′)〉 ≡ 2π2

k3
PV (k, η)Πij δ(k− k′), (4.90)

where Πij = δij − kikj/k2 projects onto the subspace orthogonal to k. At
the time of reheating ηrh, we have

Prh
V (k) = A2

V ×
(

k

kN

)nv

, (4.91a)

nv ≡ 3− 2ν, (4.91b)

A2
V ≡

H2
rh

M2
P

(
−1

c14q2

)
Γ2(ν)

(2π)3

(cv
2

)−2ν
exp

(
Nnv

q

)
. (4.91c)

In Eqs. (4.91) Hrh is the value of the Hubble constant at the end of inflation,
and kN is the mode that crossed the cosmic horizon N e-folds before the
end of inflation (|kNηN | = 1). For the mode that is entering the horizon
today, the value of N depends logarithmically on the unknown reheating
temperature, and typically equals 50 to 70 e-folds (see for instance [DH03]).
It is important to realize that the time at which the spectrum is evalu-
ated matters, since the vector modes do not freeze out at horizon crossing.
The superscript “rh” is meant to imply that the power spectrum describes
the amplitude of the modes just before the end of inflation. Likewise, we
may define the spectrum of the corresponding metric perturbation, which
according to Eq. (4.81) is given by

Prh
Q (k) = A2

Q ×
(

k

kN

)nv

, (4.92a)
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A2
Q = c213c

4
tA2

V . (4.92b)

In the limit in which de Sitter inflation is approached (q → −1) the index
ν tends to 1/2, so the amplitude of long wavelength perturbations is pro-
portional to exp(−2N). Hence, velocity perturbations on observationally
accessible scales are very small in this limit [Lim05, LMB08]. On the other
hand, in typical inflationary models q differs from −1 and the rate of decay
can be smaller. In fact, if

α >
−2c14
q(q + 1)

=
−2c14

ε
(1− ε)2, (4.93)

the combination 3−2ν would be negative, and long wavelength perturbations
would be amplified exponentially withN , in stark contrast with the de Sitter
case. It turns out, however, that we do not need to deviate much from
ν = 1/2 in order to have an observable signal. As we shall see, even if the
long wavelength velocity field is very tiny at the end of inflation, it may
resurface from obscurity during the radiation and matter era, so that it can
be quite sizable at the moment of horizon reentry.

Indeed, the behavior of long wavelength vector perturbations is com-
pletely analogous to that of the scalar component of the velocity field vi
which we studied in the previous section. To see this, we note that in the
long wavelength limit, Eq. (4.87) is the same as Eq. (F.11) for the isocur-
vature perturbation. The latter is written in terms of the variable C in
the longitudinal gauge, which according to Eq. (4.39) is proportional to the
longitudinal velocity field of the Aether vi. Hence, on superhorizon scales,
longitudinal and transverse velocity fields satisfy the same equation of mo-
tion Eq. (4.87). In particular,

V ∝ v ∝ (k/a)H−1δN ∝ η1−q+t± (kη # 1), (4.94)

where t± is given in (4.35). For α = −c14, the velocity field decays exponen-
tially during inflation. Nonetheless, as we saw in the previous section, the
isocurvature perturbation δN stays frozen on superhorizon scales (except
at the transitions where the equation of state changes, where the dominant
mode changes also by factors of order one). This can lead to a sizable ve-
locity field v of order δN at horizon reentry. The overall normalization of v
and V is different, but it is clear that the relative size of V and v at horizon
reentry is determined by their relative size at the time when they exit the
horizon during inflation. In other words, the spectra of long wavelength
modes are related by

Pv(η, k)

PV (η, k)
=

Pv(ηk, k)

PV (ηk, k)
∼ ZN

c14
M2

P

∼ c14
ε
, (4.95)

where the relative normalization can be read off from the corresponding short
wavelength actions, and ε is the slow roll parameter during inflation. Note
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that ε is of order of a few percent, while the Einstein-Aether parameters such
as c14 ∼ (M/MP )4 are suppressed by the square of the symmetry breaking
scale over the Planck scale. Unless M and MP are very close, we expect
c14 # ε. Therefore, parametrically, we expect that the transverse vectors
may give a much bigger contribution than the scalar isocurvature modes.
For that reason, it is very important to assess their impact on observables
such as the CMB, as we do in Subsection 5.5.2.

One may worry that if the primordial amplitude of vectors due to quan-
tum fluctuations generated at horizon crossing decays during inflation, then
it may be insignificant compared with the contribution of non-linear effects
which source the vector modes at later times. However, in order to construct
a vector from a quadratic expression involving scalars and tensors, it is nec-
essary to use at least one derivative. Because of that, the terms which may
source the vectors from the scalar and tensor sector are momentum sup-
pressed, and hence they also decay in inverse proportion to the scale factor.
We conclude that if the initial amplitude of the vectors at horizon crossing
is sizable, compared to that of scalars and tensors, then we can safely use
linear evolution in order to determine its amplitude at the end of inflation
(even if that amplitude is exceedingly small). Vector modes can still grow
during radiation and matter domination from that initial tiny amplitude, so
that their effect on cosmological observables may be important.

4.3 Tensor Perturbations

As discussed in [Lim05] the presence of the Aether modifies the propagator
and the dispersion relation of the tensor modes. Substituting Eq. (4.1)
into the action (3.3), with matter Lagrangian given by (3.19), expanding
to quadratic order in tij and using the background equations of motion we
obtain,

L(2)
t =

M2
Pa

2

8

[
(1 + c13)t

′ · t′ − ∂it · ∂it
]
, (4.96)

where t stands for a matrix with components tij and the dot indicates con-
traction of both indices (with the Euclidean metric). On short (subhorizon)
scales, gravity waves propagate at a speed [JM04]

c2t =
1

1 + c13
. (4.97)

Classical stability of tensors thus imposes the condition

1 + c13 > 0, (4.98)

since, otherwise, high frequency modes grow exponentially fast.
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In the previous chapter we noted that the background solution only exists
for α < 2, implicitly assuming that the “bare” Newton’s constant is positive
G > 0. Here, we note that for M2

P < 0, the coefficient in front of the kinetic
term of tij has the “wrong” sign, and the two independent transverse and
traceless tensor modes are ghosts.

A theory with ghosts is quantum mechanically unstable. The vacuum
can decay by emitting positive energy particle plus negative energy quanta
while conserving energy. In a Lorentz-invariant theory, the phase space
available for the decay of the vacuum would be infinite, and the lifetime
of the vacuum is then infinitely short, which makes the theory unviable.
In a non-Lorentz invariant theory, the decay rate may be finite, and the
vacuum may be sufficiently long-lived (see for instance [CJM04]). In our
case, Lorentz invariance is spontaneously broken, and the effective theory
we are using is supposed to be valid only well below the symmetry breaking
scale M . The decay rate is UV sensitive, so strictly speaking it is unclear
whether the theory can be made sense of in the presence of ghosts. However,
to be conservative, we shall systematically exclude from parameter space the
cases when ghosts are present.

The equation of motion for the tensor modes just differs from the one of
GR (5.39) in the propagation speed

h′′ +

(
c2tk

2 − a′′

a

)
h = 0, (4.99)

where tij =
h
aeij .

The primordial spectrum of tensor modes seeded during inflation is im-
mediately obtained from (4.96), and is inversely proportional to their prop-
agation speed,

Pt(k) =
1

π2ct

H2

M2
P

∣∣∣∣∣
csk=H

. (4.100)

Hence, the amplitude of the primordial tensor modes differs from that in
General Relativity (for the same values of H and MP ).
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Chapter 5

CMB Anisotropies

The Cosmic Microwave Background (CMB) provides us with a lot of useful
information about the evolution of the universe and the behavior of grav-
ity. What we know from these photons that have freely travelled along the
universe since the last scattering surface is, first of all, that they all have
the same temperature, around 2.7 K. But, once we can look further into
the details of these background radiation, we can see that there are small
anisotropies, of order 10−5, and that these anisotropies can provide infor-
mation about the cosmological perturbations.

The large angular scale anisotropies correspond to perturbations that
haven’t entered the horizon at recombination time. These scales haven’t
changed much and provide information about the primordial spectrum of
perturbations. On the other hand, the small scale perturbations have en-
tered the horizon before recombination and gravitational instabilities have a
big effect on them. They provide information about the cosmological param-
eters that control the change of perturbation amplitudes. The large scales
are dominated by gravitational effects and are characterized by a nearly
scale invariant spectrum. At intermediate scales we encounter the acoustic
oscillations, whose amplitude and distance between peaks strongly depends
on cosmological parameters. Finally, anisotropies on small scales are erased
by Silk damping and free streaming. Here, we overview the main charac-
teristics of the CMB anisotropies in the case of General Relativity in order
to better understand the differences we could observe in the E-A theories.
For more details see for example [Muk05, Wei08, LL09, Dur01, Muk04]. To
analyze large angular scales we may assume that the last scattering was an
instantaneous process, but in the case of small scales it is necessary to be
more careful, as the duration of recombination affects the anisotropies we
will observe. Both temperature and polarization spectra can be calculated
numerically in GR for different values of cosmological parameters using nu-
merical codes publicly available such as CMBFAST [SZ96].

Once the basics of the CMB anisotropies were established we will focus
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on the vector perturbations for Einstein-Aether theories. As vector contri-
bution in GR is absent, this constitutes the most interesting feature that
these theories possess to differentiate from GR. We will analyze its contri-
bution to the temperature anisotropies and to the polarization modes in the
CMB and compare our results with the contribution coming from tensor
modes.

5.1 Boltzmann equation and Sachs-Wolfe effect

Assuming that recombination was an instantaneous process, one can con-
sider that before recombination radiation behaves as a perfect fluid and
after, as an ensemble of free photons. The free propagating photons are
described by the distribution function n

n = n

(
E

T

)
, (5.1)

where E = −pµuµ is the energy of a photon as measured by an observer at
rest in the coordinates x. The temperature depends not only on position
but also on the direction of arrival of the photons and on the moment of
time

T = T0(η) + δT (η, xµ, li), (5.2)

with T0 the unperturbed temperature and li ≡ pi/p where p ≡ (δijpipj).
Making a coordinate transformation x̃ = x+ ξ we can see that the temper-
ature fluctuation in the new coordinate system is

δ̃T = δT − T ′
0ξ

0 + T0ξ
i ′
li, (5.3)

and so the monopole (li-independent) and the dipole (proportional to li)
depend on the coordinate system in which the observer is at rest. Then, in
our case, the monopole can be removed by a redefinition of the background,
and the dipole depends of the motion of the observer with respect to a
“preferred frame”. These cannot provide much information about initial
fluctuations and we will be interested in higher-order multipoles only.

If we consider scalar metric perturbations up to first order, we get

p0 =
p

a2
1 + 2ψ

1 + 2φ
1 p

a2
(1 + ψ − φ), (5.4a)

p0 = − a2(1 + 2φ)p0 1 −p(1 + ψ + φ), (5.4b)

using pµpµ = 0, and

n =
E

T
= − p0√

−g00T
=

p

aT0

1 + ψ + φ(
1 + δT

T0

)
(1 + 2φ)1/2

58



Chapter 5. CMB Anisotropies

=
E0

T0

(
1 + ψ − δT

T0

)
. (5.5)

The Boltzmann equation for the free gas of photons is

∂n

∂η
+

∂n

∂xi
dxi

dη
+

∂n

∂pi

dpi
dη

= 0. (5.6)

From the geodesic equations

dp0

dη
= − p(φ′ + ψ′), (5.7a)

dpi

dη
= − p(φ+ ψ),i, (5.7b)

dxi

dη
=

pi

p0
=

(1 + 2ψ)a−2δijpj
p0

=
(1 + 2ψ)δijlj
1 + ψ − φ

∼ (1 + ψ + φ)li, (5.7c)

and substituting in (5.6)

∂n

∂η
+ (1 + ψ + φ)li

∂n

∂xi
− p(φ+ ψ),i

∂n

∂pi
= 0. (5.8)

Taking into account that ∂η(E0/T0) = ∂xi(E0/T0) = 0, and ∂pi(E0/T0) =
(li/p)(E0/T0), and up to first order in perturbations

(
∂

∂η
+ li

∂

∂xi

)(
δT

T0
− ψ

)
+ li(φ+ ψ),i = 0, (5.9)

that can be rewritten as
(

∂

∂η
+ li

∂

∂xi

)(
δT

T0
+ φ

)
=

∂

∂η
(φ+ ψ). (5.10)

These equations simplify for General Relativity, where ψ = φ,
(

∂

∂η
+ li

∂

∂xi

)(
δT

T0
+ φ

)
= 2

∂

∂η
φ. (5.11)

If the universe is matter-dominated after recombination, we can consider
that φ ∼ constant and then

(
δT

T0
+ φ

)
= constant. (5.12)

This influence of the gravitational potential in the CMB fluctuations is what
is known as the Sachs-Wolfe effect. In reality, the gravitational potential
is not exactly constant. If we take into account its slowly time-varying
character, then this change in the potential will produce a contribution to the
fluctuations called early Integrated Sachs-Wolfe effect. The late Integrated
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Sachs-Wolfe effect is the contribution due to variations of the potential at

late times, during dark energy domination. Today,
δT

T
(η0, xi0, l

i) is given by

δT

T
(η0, x

i
0, l

i) =
δT

T
(ηrec, x

i
rec, l

i) + φ(ηrec, x
i
rec)− φ(η0, x

i
0), (5.13)

so the angular dependence is given by the initial temperature fluctuations at
recombination time and the value of the gravitational potential at that time;
the last term can be ignored as it only contributes to the monopole. The first
contribution can be expressed in terms of the gravitational potential and the
fluctuations of the energy density of photons. A more detailed calculation
of this contribution is done for the vector case in the following section. We
will just quote the result for the scalar sector (see for example [Muk05])

(
δT

T

)

k

(ηrec, l) =
1

4

(
δk +

3 i

k2
(kmlm)δ′k

)
. (5.14)

The final expression for temperature fluctuations at present time is then

δT

T
(η0, x

i
0, l

i) =

∫ [(
φ+

δ

4

)

k

−
3δ′k
4k2

∂

∂η0

]

ηrec

eik(x0+l(ηrec−η0)) d3k

(2π)3/2
,

(5.15)

where δ are the fluctuations of the photon energy density, k ≡ |k|, k · l ≡
kmlm and k · x0 ≡ knxn0 .

5.2 CMB anisotropies in the vector sector

As we have just done for the scalar modes, we are going to apply a similar
procedure to the vector perturbations. The effect of vector perturbations on
the amplitude of CMB anisotropies is easily estimated in the same approx-
imation of a sharp transition between thermal equilibrium and complete
transparency at the moment of decoupling. Again, before the transition,
photons and baryons are approximated as a perfect fluid, whereas after the
transition the radiation will be described in terms of a distribution of free
photons.

The number of photons in a phase space cell can be written as

dn = n(x,p)
∏

k

dxk
∏

i

dpi, (5.16)

where xk are space coordinates and pk are the spatial components of the
momentum. For a gas of free photons, the number density in phase space
obeys the collisionless Boltzmann equation (5.6). Further, we assume that
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the distribution of photons traveling in a given direction l at any given point
has the Planckian spectrum (5.1) where again

E = −pµu
µ = −a−1p0 (5.17)

is the energy of a photon as measured by an observer at rest in the coordi-
nates x. The four-velocity of this observer is given by uµ = (−g00)−1/2δµ0 ,
and in the last equality we have used that −g00 = a2 is unperturbed in the
linearized vector sector. Before decoupling, when the system is in thermal
equilibrium, the temperature anisotropy is just a dipole, corresponding to
the local motion of the photon fluid. This is characterized by the four-
velocity δuµ. Note that n is a scalar, and so T is defined in such a way that
the ratio y ≡ E/T transforms as a scalar. In the co-moving frame, where
the fluid is at rest, we have

y =
Ec

Tc
=

−(uµ + δuµ)pµ
Tc

=
E − δuipi

Tc
, (5.18)

where the co-moving temperature Tc = T0(1 + δ0(η,x)) is isotropic, and we
have used δu0 = 0 (to linear order in δui). Since y = E/T = Ec/Tc, it
follows from (5.18) that at the time of decoupling

δT

T0
(ηdec,x, l) = δ0 + a δui li. (5.19)

Later, after decoupling, the photons arriving from different directions at a
given spacetime point have originated at different locations on the surface
of last scattering, which leads to anisotropies also in the higher multipoles.

The monopole and dipole components in (5.19) are related to the per-
turbations in T 0

0 and T 0
i , which can be obtained from the expression

Tµ
ν =

1√
−g

∫
n(y)

pµpν
p0

d3p. (5.20)

Here p stands for the spatial components of the momentum, with lower
indices. Let us consider the perturbation in the energy density. This will
be related to the monopole component in the temperature anisotropy. For
vector perturbations,

a−2δg0i = a2δg0i = Si, (5.21)

a−2δgij = −a2δgij = (F i,j + F j,i), (5.22)

the linearized metric determinant is
√
−g = a4, and the condition pµpµ = 0

leads to

p0 = −p(1− Sili − F i,j lilj). (5.23)
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The energy density of photons is given by

ργ = −T 0
0 = − 1

a4

∫
n(y) p0 p

2 dp d2l. (5.24)

We can now use that p0 = −a T0 y (1 + δT/T ) and p = a T0 y (1 + Sili +
F i,j lilj + δT/T ) to eliminate p and p0 in favor of y. After simple manipu-
lations, one obtains

ργ = ρ(0)γ

[
1 + 4

∫
d2l

4π

δT

T

]
. (5.25)

Since vector perturbations do not change the energy density, we have δργ =
0. Therefore, using (5.19) in (5.25) we find δ0 = 0. Hence, the tempera-
ture anisotropy (5.19) for vector perturbations in the perfect fluid is purely
dipolar:

δT

T0
(ηdec,x, l) = −Sili +

δui
a

li. (5.26)

For later convenience, here we have expressed the result in terms of the
velocity perturbation with lower indices, which is gauge-invariant.

The evolution of the temperature anisotropy after decoupling can be
inferred from the Boltzmann equation. Defining

E0 = p/a, (5.27)

we have ∂η(E0/T0) = ∂xk(E0/T0) = 0, and ∂pk(E0/T0) = (lk/p)(E0/T0).
Substituting (5.1) in (5.6), and linearizing in perturbations, it is straight-
forward to show that

(
∂

∂η
+ lk

∂

∂xk

)(
δE

E0
− δT

T0

)
+

lk
p

dpk
dη

= 0, (5.28)

where δE = E − E0 = −(p0 + p)/a. The geodesic equation reads

dpk
dη

=
1

2p0
∂gµν
∂xk

pµpν = Si,k pi + F i,j ,k
pipj
p

. (5.29)

Using (5.23) and (5.29) in (5.28) we have

d

dη

(
δT

T0
+ F′ · l

)
= Q′ · l. (5.30)

Here, d/dη = ∂η + li∂xi is the total derivative along the line of sight, and
primes indicate partial derivatives with respect to η. The result is expressed
in terms of the gauge-invariant combinations (δT/T0) + F′ · l and Qi ≡
F i′ − Si. Eq. (5.30) can be integrated along the trajectory of the photons
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x(η) = (η− η0)l, from the time of decoupling ηdec to the present time η0, to
obtain the temperature anisotropy which is observed at present:

(
δT

T0
+ F′ · l

)

0

=

(
Qili +

δui
a

li

)

dec

+

∫ η0

ηdec

dη Q′ · l. (5.31)

Here we have used the initial condition determined by (5.26). As we mention
in Subsection 5.5.1, a non-vanishing velocity perturbation δui cannot be
generated as long as the perfect fluid description is valid, so we shall ignore
δui in Eq. (5.31), and simply write

(
δT

T0

)

0

= (Q · l)dec +
∫ η0

ηdec

dη Q′ · l. (5.32)

Here we have also dropped the dipole term at the time of observation, since
this is always subtracted.

5.3 Correlation functions

If the spectrum of temperature of the CMB is Gaussian, it can be charac-
terized by the two-point correlation function

C(θ) ≡
〈
δT

T0
(l1)

δT

T0
(l2)

〉
, (5.33)

where l1 · l2 = cos θ. Substituting Eq. (5.15) we can rewrite this expression
as a discrete sum over multipole moments Cl (the monopole and dipole are
excluded)

C(θ) =
1

4π

∞∑

l=2

(2l + 1)ClPl(cos θ), (5.34)

where Pl(cos θ) are the Legendre polynomials. Finally, the multipole mo-
ments are (see [Muk05])

Cl =
2

π

∫ ∣∣∣∣

(
φk(ηrec) +

δk(ηrec)

4

)
jl(kη0)−

3δ′k(ηrec)

4

djl(kη0)

d(kη0)

∣∣∣∣
2

k2dk,

(5.35)

where jl(kη) are the spherical Bessel functions of order l.
At the time of recombination the Hubble radius corresponds to an angu-

lar size of 1◦. The analysis of the modes that enter the horizon long before
or after the time of recombination can be understood qualitatively by using
suitable approximations.
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Large angular scales

The large angular scales correspond to angles θ - 1◦. As they exceed the
Hubble radius at recombination, they have not evolved since the end of
inflation, providing information about the primordial inhomogeneities. The
perturbations at this scale are dominated by gravitational effects. They lead
to a nearly flat plateau, l(l + 1)Cl ∼ constant for l # 200. As we approach
this value of l we start to see the acoustic peaks. They are caused by the
acoustic oscillations of the photon-baryon fluid.

Small angular scales

In the case of short angular scales we cannot consider recombination to be
an instantaneous process. We have to take into account a certain duration
for the process, that is, we place the photon last scattering in a range 1200 >
z > 900. This is the finite thickness effect, that leads to a suppression of
the temperature fluctuations at small angular scales. The corresponding l’s
for these scales are l > 200 and we can use the approximation of l - 1 in
the calculations of the multipole moments. In order to account to this we
calculate the probability that the photon was scattered in the time interval
∆ηL at time ηL

dP (ηL) = µ′(ηL)e
−µ(ηL)dηL, (5.36)

where we have defined the optical depth

µ(ηL) ≡
∫ η0

ηL

σTntXa(η)dη, (5.37)

where nt is the number density of electrons and X the ionization fraction.
Then, the modified expression is

δT

T
=

∫ [(
φ+

δ

4

)

k

−
3δ′k
4k2

∂

∂η0

]

ηL

eik(x0+l(ηL−η0))µ′e−µdηL
d3k

(2π)3/2
.

(5.38)

Calculations of the spectrum are now more complicated and we are not
interested here in the details of the calculations. In the references mentioned
before it is possible to follow the complete analysis. At large l’s the spectrum
is also damped by the diffusion damping (Silk damping).

5.4 Gravitational waves

The equations of motion for tensor modes are quite simple and easy to
analyze at all scales since they are decoupled. The equation

h′′ +

(
k2 − a′′

a

)
h = 0, where tij =

h

a
eij , (5.39)
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has an exact solution at radiation domination epoch but we can just have a
look at the two limits.

The non-decaying mode for kη # 1 (long wavelengths) is constant during
this time. On the other side, for wavelengths smaller than the Hubble radius
the amplitude of the mode decays in inverse proportion to the scale factor.
Therefore, gravitational waves (GW) generated during inflation that enter
the horizon after recombination, but well before present time, have a nearly
flat spectrum at η = ηrec,

∣∣t2k(ηreck3)
∣∣ ∼ Bgw ∼ constant. (5.40)

Inside horizon, for modes kηeq - 1, the spectrum will be significantly mod-
ified,

∣∣t2k(ηreck3)
∣∣ ∼ Bgw

(
1

kηeq

)2(zrec
zeq

)2

. (5.41)

The gravitational Sachs-Wolfe effect is given by

δT

T
= −1

2

∫ η0

ηrec

eiej
∂tij
∂η

dη, (5.42)

and the correlation function (for a detailed calculation on how to arrive to
this formula see e.g. [Dur01])

CT
l =

(l − 1)l(l + 1)(l + 2)

2π

∫
dkk2

〈∫ η0

ηrec

∣∣∣∣t
′
k
jl(k(η0 − η)

(k(η0 − η))2
dη

∣∣∣∣
2
〉
.

(5.43)

We will introduce the new variable x = k(η0−η), and for l - 1 and kη0 - 1
(see for example [Muk05])

CT
l 1 (l − 1)l(l + 1)(l + 2)

2π

∫ ∞

0

∣∣t2k(ηreck3)
∣∣ j

2
l (x0)

x50
dx0, (5.44)

where jl(x) is the spherical Bessel function and x0 = kη0. Considering the
case where the spectrum is approximately constant we have

l(l + 1)CT
l ∼ Bgw. (5.45)

When we consider the modified spectrum for k - η−1
eq we see that

l(l + 1)CT
l ∼ Bgw

(
leq
l

)2

, (5.46)

with leq = η0
ηeq

. This behavior can be clearly seen in Fig. (5.1), where the
effect of the acoustic peaks for large l becomes visible. In the case of E-A
theories, we will just have a different amplitude, that depends on the values
of the parameters of the theory (see Eq. (4.100)).
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9.10 Polarization of the cosmic microwave background 395
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Fig. 9.3.

As with scalar perturbations, the contribution of the tensor perturbations to the
CMB power spectrum also consists of a flat plateau at low multi-poles, due to
the superhorizon gravitational waves at last scattering. However, for l > 55, the
amplitude l(l + 1) CT

l decreases quickly. Figure 9.3 was drawn using a precise
numerical code showing how the total spectrum is subdivided into scalar and tensor
components for the concordance model. Note that the tensor component dies off
rapidly where the acoustic peaks appear. Hence, detecting the tensor contribution
to the temperature autocorrelation function relies on comparing the height of the
plateau to the height of the acoustic peaks. It is difficult to separate this effect from
reionization or a spectral tilt. Polarization proves to be the better test for detecting
primordial gravitational waves.

9.10 Polarization of the cosmic microwave background

Thus far, we have focused on the temperature fluctuations in the cosmic microwave
background, because the temperature autocorrelation provides the single, most
powerful test for distinguishing cosmological models and determining cosmolog-
ical parameters. However, there is more information to be gained by measuring
the polarization and its correlation with the temperature fluctuations. In particu-
lar, polarization provides the cleanest and most sensitive method of detecting the

Figure 5.1: CMB temperature produced by tensor perturbations calculated
using a numerical code for the case of the standard model (from [Muk05]).

5.5 Vector contribution to the power spectrum of
the CMB

As we discussed above, the power spectrum of the transverse velocity field
may easily dominate over that of the longitudinal component. It is therefore
of interest to determine the imprint that this power spectrum may have on
CMB observations, to which this section is devoted.

5.5.1 Solutions during radiation and matter domination

In order to find the power spectrum of the vector modes at the time of recom-
bination, we must first evolve it from the time of thermalization through the
radiation and matter dominated epochs. For a set of perfect fluids which do

not interact with each other, the conservation equation ∇µT
µ (k)
i = 0 holds

for each fluid component, which we label by (k). This leads to a homoge-

neous equation for the gauge-invariant velocity perturbation δu(k)i that does
not contain metric perturbations,

∂

∂η

[
a3(ρk + pk)δu

(k)
i

]
= 0, (5.47)

from where it follows that δui/a ∝ 1/[a4(ρ + p)]. Eq. (5.47) tells us that
if δui = 0 initially, then it will not be generated as long as the perfect
fluid description is valid. Furthermore, δui/a decreases during cosmological
evolution, except in the radiation dominated stage, where it stays constant.

Hence, in what follows, we assume that δu(k)i = 0 for matter and radiation.
Then, the only contribution to the metric perturbations stems from the
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Aether, and it can be shown that the equations of motion in the vector
sector are still given by Eqs. (4.81) and (4.86).

The general solution of Eq. (4.86) during a stage of cosmic expansion
in which a ∝ ηq is proportional to a linear combination of Bessel functions.
For our present purposes, it will suffice to work with the long wavelength
approximations

ξ = A+

(
η

η∗

) 1
2+ν

+A−

(
η

η∗

) 1
2−ν

, (5.48)

where ν is given by Eq. (4.89) and ξi ≡ ξ · ei. For real values of ν, A+

is the amplitude of the dominant mode, and A− is the amplitude of the
subdominant mode.

In order to determine the mode amplitudes Ar
+ and Ar

− during radiation
domination, we simply demand that ξ and its time derivative be continuous
at a sudden transition from inflation to radiation domination. We expect
this approximation to be valid for scales much longer than the duration of
reheating. Proceeding in this manner, and dropping the contribution from
the subdominant mode we find that the amplitude of the dominant mode
changes during reheating by a factor

Ar
+

Ai
+

=
νi + νr

2νr
, (5.49)

where the superscripts label the expansion epoch (i for inflation and r for
radiation domination), and the subscripts label the different modes (+ for
the dominant mode and − for the subdominant one.)

Eq. (4.86) has an exact solution at long wavelengths during radiation and
matter domination, which we can use to determine the change in the mode
amplitudes during the transition from radiation to matter domination. Since
this change is typically of order one, we shall neglect it, and assume that
the amplitude of the growing mode at the transition remains unchanged.

Once a mode enters the “sound horizon”, cvkη = 1, the field starts
oscillating. In the limit cvkη - 1, the solution of Eq. (4.86) that approaches
the growing mode at early times is

ξ(η) = A+ Cosc cos [cvkη − ϕ] , where (5.50a)

Cosc =
c13(ν + 1)√

π

(
2

cvkη∗

) 1
2+ν

, (5.50b)

and ϕ is k-independent phase. Note that the amplitude of the oscillations
A+Cosc is roughly the value of ξ at horizon entry.

Collecting then the results from Eqs. (4.83), (5.48) and (5.49) we find
that during matter domination the transfer function for the vector pertur-
bations Tk, which we implicitly define by the relation Q(η) = Tk(η)Q(ηrh)
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is

Tk ≈ T ×






(
aeq
arh

) 1
2+νr( η

ηeq

) 1
2+νm

, kηeq # kη # c−1
v ,

(
aeq
arh

) 1
2+νr

Cm
osc cos(cvkη), kηeq # c−1

v # kη,

Cr
osc cos(cvkη), c−1

v # kηeq # kη,

(5.51a)

where

T =
arh
a

νi + νr

2νr
, (5.51b)

and in Cp
osc the transition time η∗ equals ηrh for p = r and ηeq for p = m.

The first line in Eq. (5.51a) holds for those modes that have not entered the
sound horizon at time η. The second applies to those which enter between
the time ηeq of equality between matter and radiation densities and time η,
and the third one to the ones which enter between reheating and the time
of equality. The power spectrum of Q at any time after reheating is given
by

PQ(η) = |Tk(η)|2Prh
Q . (5.52)

5.5.2 Impact on the CMB

We derive in Section 5.2 the contribution of vector perturbations to the
temperature anisotropies in the cosmic microwave background radiation. In
order to determine the angular power spectrum and relate it to the primor-
dial spectrum, it is convenient to rewrite Eq. (5.32) in Fourier space,

(
δT

T0

)

0

= e−ik·l η0
∫

d3k

[
l ·Q(ηdec,k) exp (ik · l ηdec)

+

η0∫

ηdec

dη l ·Q′(η,k) exp (ik · l η)
]
. (5.53)

The contribution of the two terms on the right-hand-side of (5.53) is sim-
ilar to that of scalar perturbations. The first term is the analogue of the
Sachs-Wolfe effect, which relates the temperature anisotropies to the state
of the perturbations at last scattering. The second term is the analogue of
the integrated Sachs-Wolfe effect, which takes into account the change of
the metric potentials along the line of sight, and vanishes if the latter are
constant.

The angular power spectrum C# is defined by the relation
〈
δT

T0
(n̂)

δT

T0
(m̂)

〉
≡

∑

#

C#
26+ 1

4π
P#(n̂ · m̂), (5.54)
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where n̂ and m̂ are two directions on the sky, and the P# are Legendre
polynomials. Because scalar, vector and tensor perturbations are uncorre-
lated, their contributions to the temperature anisotropies add in quadrature,
C# = Cs

# +CV
# +Ct

#. Inserting Eq. (5.53) into the left-hand-side of Eq. (5.54),
using Eq. (4.90), and comparing to the right-hand-side of Eq. (5.54) we find
after some work that the contribution of vector perturbations to the angular
power spectrum is given by

CV
# = 4π6(6+ 1)

∫
dk

k
Prh
Q |N − I|2 , (5.55a)

N ≡ Tk (ηdec)
j#(xdec)

xdec
, (5.55b)

I ≡
xdec∫

0

dx
dTk
dx

j#(x)

x
. (5.55c)

In these equations x ≡ k(η0 − η), the j# are the spherical Bessel functions
of the first kind, the primordial spectrum is given by Eqs. (4.92) and the
transfer function Tk by Eqs. (5.51). After an integration by parts, Eqs. (5.55)
agree with the expression derived in [HW97] by somewhat different methods.
Note that x is the ratio of the comoving distance to time η divided by the
wavelength of the perturbation 1/k. Thus, x is the inverse of the angle that
an object of comoving size 1/k at (comoving) distance η0−η would subtend
on the sky at time η0. It will be useful to consider separately those modes
that enter well before and well after decoupling. These contribute to the
temperature anisotropies, respectively, on small and large angular scales.

The structure of expressions (5.55) still reflects the two contributions to
the temperature anisotropies we mentioned above. The value of N captures
the analogue of the Sachs-Wolfe effect, while the value of the integrated term
I captures the analogue of the integrated Sachs-Wolfe effect. For scalar per-
turbations, the Sachs-Wolfe effect is dominant except on the largest scales,
because the gravitational potential remains constant until relatively recently.
For vector perturbations however, this is not always the case. To see this, it
is useful to realize that we can employ the same approximations developed
to study the contribution of tensor modes to the temperature anisotropies
[Muk05]. We begin by noting that, for 6 - 1, the Bessel function can be
approximated by [GR80]

j#(x) ≈






0, x < 6+ 1
2

cos
[√

y − (6+ 1
2) arccos

(
#+ 1

2
x

)
− π

4

]

x1/2y1/4
, x > 6+ 1

2

(5.56)

where y ≡ x2−(6+1/2)2. Because the integrand is negligible for x < 6+1/2,
only modes that have entered the horizon by today, xdec ≈ kη0 $ 6 + 1/2
can contribute to the temperature anisotropies on angular scales 6 - 1.
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Large Angular Scales

Large angular scales correspond to modes that cross the sound horizon after
decoupling. Let us estimate the contribution of the integrated term I on
those scales first. From Eq. (5.51a), the derivative of the transfer function
dTk/dx is dominant during the interval xk ! x ! xdeq, where xk ≡ k(η0−ηk)
corresponds to the time of sound horizon crossing ηk ≡ 1/(cvk). After
horizon crossing, this function oscillates with period 2π/cv and a slowly
varying amplitude. On the other hand, the ratio jl(x)/x changes slowly in
the interval ∆x ! 1 # l ! x. Assuming that cv is not much smaller than
1, we have ∆x = xdeq − xk ≈ kηk = 1/cv ! 1, and we can pull the factor
jl(x)/x out of the integral. What remains is a boundary term that can be
readily evaluated,

I ≡
xdec∫

0

dx
dTk
dx

j#(x)

x
≈ j#(xdec)

xdec
[Tk(ηdec)− Tk(η∗)] , (5.57)

where the effective lower limit of integration η∗ is of order ηk.
The dominant term in the right hand side of Eq. (5.57) depends on

whether the long wavelength modes are decaying (which happens for νm <
3/2), or growing (νm > 3/2) before horizon crossing. In the first case we
have

I ≈ j#(xdec)

xdec
Tk(ηdec), (5.58)

while in the second case we have instead

I ∼ −j#(xdec)

xdec
Tk(ηk). (5.59)

Therefore, comparison of Eqs. (5.58) and (5.59) with (5.55b) shows that
N and I are of the same order if there is no growing mode during matter
domination (12 + νm " 2), and that I - N otherwise (νm > 3/2).

We are ready now to calculate the angular power spectrum on large
angular scales, which are dominated by modes that crossed the vector sound
horizon after decoupling (cvkηdec < 1). The relevant expression for the
transfer function is given by the first line of Eq. (5.51a) at η = ηdec. If
there is no growing mode during matter domination, the contributions from
the integrated and non-integrated terms in (5.55) are roughly equal, and
substituting Eqs. (4.92) and (5.52) into (5.55) we get

CV
# ≈ 4πA2

Q T 2
k (ηdec)

∫
dx0
x0

6(6+ 1)

x20
xnv
0 j2# (x0), (5.60)

where we have chosen kN in Eq. (4.91) to be the mode that is crossing the
horizon today, kNη0 = 1, and used that xdec ≈ x0 ≡ kη0.
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From reheating to the time of decoupling, the amplitude of the vector
modes changes by Tk(ηdec). The spectrum is thus proportional to the square
of the transfer function times the primordial amplitude A2

Q. This factor is
independent of angular scale, since we are taking the long wavelength limit.
The angular dependence in the last equation can be estimated as follows.
The Bessel function is negligible for x0 ! 6, and rapidly decays at x0 > 6, so
the anisotropies are dominated by x0 ∼ 6. In the integrand, the maximum
of the Bessel function is of order 1/x0, and the two remaining factors of x0
in the denominator “cancel” the enhancement proportional to 6(6 + 1) one
would otherwise have. In summary, we have CV

# ∝ 6nv−2.
More precisely, since the period of oscillations of the Bessel function

is much shorter than any other characteristic scale in the integrand of
Eq. (5.60), we may replace the oscillations with their average, 1/2. If the
spectral index nv is not too blue (nv < 4), the dominant contribution to the
integral is given by the value of the integrand at x ≈ 6, so the angular power
spectrum becomes (for νm " 3/2)

6(6+ 1)CV
# ∼ 2πA2

Q

(
νi + νr

2νr

)2(
adec
arh

)2νr−1(adec
aeq

)νm−2νr− 1
2

6 nv . (5.61)

This expression is valid for those scales that entered the vector horizon after
recombination, which corresponds to 6 ! 50/cv (for a ΛCDM model with
ΩΛ = 0.7.)

If there is a growing mode during matter domination, the integrated term
(5.55c) yields the dominant contribution to the temperature anisotropies.
Proceeding along the same lines as above, we find that in this case the
angular power spectrum is (for νm > 3/2)

6(6+ 1)CV
# ∼ 2πA2

Q

(
νi + νr

2νr

)2(
aeq
arh

)2νr−1( a0
cvaeq

)νm− 3
2

6 nv+3−2νm .

(5.62)

Of course, in the crossover case νm = 3/2 the two angular power spectra
(5.61) and (5.62) agree.

Small Angular Scales

For the scales that enter the vector horizon before decoupling a precise
estimate of the integrated term in (5.55c) becomes more difficult. For these
modes the derivative of the transfer function is an oscillatory function, whose
amplitude decreases in time. Hence, it is most important at earlier times x ≈
xdec and sharply decays within an interval ∆x = kηdec. Whereas the latter
is small for modes that cross after decoupling, for those scales that enter the
horizon well before that time ∆x = kηdec is large, and the approximation of
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a constant Bessel function that led to (5.58) breaks down. Nonetheless, if
we are interested in the order of magnitude of the Bessel function, and not
in the oscillations, we can still use Eq. (5.58), since the “amplitude” of j#(x)
only changes significantly within ∆x = xdec ≈ kη0 - kηdec. In that case,
the integrated term is at most of the same order of magnitude as the non-
integrated one, and Eqs. (5.55) imply that the temperature anisotropies
at any given angular scale will depend on the vector anisotropies on the
appropriate comoving distance at the time of decoupling.

Under the assumption that N and I are of the same order, the angular
power spectrum on small angular scales can be now calculated as before.
For simplicity, let us concentrate on relatively small scales, which cross the
sound horizon before equality of matter and radiation densities. The relevant
expression for the transfer function is given by the third line of Eq. (5.51a).
Substituting Eqs. (4.92) and (5.51a) into (5.55) we obtain

CV
# ≈ 4πA2

QT 2
η−1
0
(ηdec)

×
∫

dx0
x0

6(6+ 1)

x20
xnv−2νr−1
0 cos2

(
cvηdec
η0

x0

)
j2# (x0). (5.63)

As before, the power is proportional to the primordial contribution xnv times
an additional factor x−2νr−1, which just reflects that modes enter the hori-
zon at different times, and thus evolve differently. The cosine represents a
snapshot of the “acoustic oscillations” of the vector perturbations at decou-
pling.

Before we proceed, we should mention an additional effect that influ-
ences the anisotropies on very small scales. So far, we have been assuming
that the decoupling of the photons from the baryons is instantaneous. This
is an accurate approximation for scales in which the argument of the co-
sine in Eq. (5.51a) does not change much during the duration of decoupling.
On scales in which the cosine does change significantly, the spread in time
at which a photon last scatters dampens the fluctuations by an exponen-
tial factor exp

(
−x20/2σ

2
)
[Muk05]. A similar suppression is also due to

Silk-damping, which originates from the breakdown of the tight-coupling
approximation at scales of the order of the mean free path of photons in
the plasma. For the observed values of the cosmological parameters, both
effects yield an overall value of the suppression scale σ ≈ 500.

Due to the exponential damping, the integral over modes converges for
any power-law spectrum. As before, if the effective spectral index is not too
blue, the dominant contribution to the integral is given by the value of the
integrand at x0 ≈ 6, so the angular power spectrum becomes

6(6+ 1)CV
# ∼ 2c213(νr + 1)A2

Q

(
νi + νr

2νr

)2(
arh
adec

)2( 2η0
cvηrh

)2νr−1

×6 nv−2νr−1 cos2
(
cvηdec
η0

6

)
e−#2/2σ2

.

(5.64)
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This equation is qualitatively valid at small angular scales, those corre-
sponding to modes that crossed the horizon before equality, 6 $ 120/cv.
The acoustic oscillations subtend an angle cvηdec/η0 on the sky, the ratio of
the comoving size of the sound horizon at decoupling to the comoving dis-
tance to the last scattering surface. A plot of the angular power spectrum
for vector modes for a specific set of parameters is shown in Figure 5.2.
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!
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Figure 5.2: The contribution of vector modes to the temperature anisotropy
power spectrum for models with c14 = −α and cv = 1 (the normalization
is arbitrary). The black (continuous) curve is the added contribution of the
integrated and non-integrated terms, Eq. (5.55). The contribution of the
integrated term alone is shown in red (dashed-dotted), while the contribution
of the non-integrated term alone is shown in blue (dashed). On large angular
scales, the spectrum is well approximated by Eq. (5.62). On small scales,
Eq. (5.64) gives a qualitatively correct approximation.

Comparison with Tensor Modes

It is also illustrative to compare the contribution of the vector modes to the
angular power spectrum (5.55) to that of the tensor modes [Sta85, TWL93,
Muk05], which, in the limit of instantaneous decoupling, is given by

Ct
# = π

(6+ 2)!

(6− 2)!

∫
dk

k
Prh
t

∣∣∣∣∣

xdec∫

0

dx
dTk
dx

j#(x)

x2

∣∣∣∣∣

2

, (5.65)

where this time Tk is the transfer function of the tensor modes. Up to a
factor ∼ (6/x)2 this is just what the vector modes would contribute if the
non-integrated term in (5.55) were negligible. In fact, because each power
of x in the integral over momenta typically yields a factor 6, this scales with
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6 in the same way as the contribution from the integrated term of the vector
modes.

The amplitude of the tensor modes remains constant on superhorizon
scales and decays also with 1/a inside the horizon. Thus, for modes that
cross the horizon after decoupling but well before the present, the analogue
of the large-scale approximation (5.58) is

xdec∫

0

dx
dTk
dx

j#(x)

x2
≈ Tk(ηdec)

j#(xdec)

x2dec
. (5.66)

Substituting then Eq. (5.66) into (5.65) and following the same steps as
before we obtain

6(6+ 1)Ct
# ≈

π

2
A2

t 6
nt , (5.67)

which, again, holds for 6 ! 50. Thus, on large scales the shape of the
spectrum for tensor and vector modes roughly agree if the spectral indices
are the same, and there is no growing mode in the vector sector. On small
scales, the situation is different though. Along the same lines as before,
the contribution of the integrated term can be estimated qualitatively by
Eq. (5.66). Carrying out the same approximations as for the vector modes,
the angular power spectrum from the tensor modes then becomes

6(6+ 1)Ct
# ≈

π

2
A2

t

(
aeq
adec

)2( η0
ηeq

)2

× 6 nt−2 cos2
(
ηdec
η0

6

)
exp

(
−1

2

62

σ2

)
. (5.68)

This result agrees qualitatively well with numerical simulations [TWL93,
Muk05], and lends further support to the approximation (5.57) for the vector
modes on small scales. It shows that, at these scales, the angular power
spectrum of vector modes with spectral index nv is essentially the same as
the angular power spectrum of tensor modes with spectral index

nt = nv + 1− 2νr. (5.69)

A particularly relevant example of the equivalence arises for α + c14 = 0,
which leads to νr = 3/2, νm = 5/2. In this case, the spectral index of the
vector modes is nv ≈ 2, which is just the spectral index of a massless field in
flat spacetime. Even though the amplitude of this spectrum is negligible on
large scales at the end of inflation, because there is a growing mode during
radiation domination, the amplitude of the spectrum at decoupling may be
sizable. In any case, during radiation domination the spectrum at time η is
proportional to (kη)2, so all modes enter the sound horizon cvkη = 1 with
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the same amplitude. After horizon crossing the amplitude decays as 1/a, as
for tensor modes. Hence, up to the frequency of the acoustic oscillations, this
case is almost equivalent to that of tensor modes with a nearly scale-invariant
primordial spectrum, as stated by (5.69). The equivalence also extends to
large angular scales. With νm = 5/2, Eq. (5.62) yields a flat plateau in the
contribution of vector modes to the temperature anisotropies, just as for a
scale-invariant spectrum of gravitational waves.

Comparison with Observations

Present measurements of the CMB temperature anisotropies seem to be well-
fit by a nearly scale-invariant spectrum of scalar perturbations [KDN+09].
Therefore, if vector modes do contribute to the temperature anisotropies at
observable scales, their contribution must be subdominant. This require-
ment places constraints on the parameters of Aether theories, which follow
from demanding

CV
# ! Cs

# . (5.70)

Let us obtain a very rough estimate of the contribution of vector modes to
the temperature anisotropies on large scales. It follows from Eqs. (4.91),
(5.61) and (5.62) that the bulk part of the contribution stems from the four
large factors

6(6+ 1)CV
# ∼ c213

c14

H2
rh

M2
P

exp

(
Nnv

q

)(
aeq
arh

)2νr−1

∼ c213
c14

H2
rh

M2
P

(
aeq
arh

)2νr−nv−1

.

(5.71)

Here, we have ignored the (recent) stage of cosmic acceleration, the difference
between equality and decoupling, and the redshift to the time of equality of
matter and radiation densities. Using Eqs. (4.89) and (4.91b) we find

2νr − nv − 1 ≈ −4 +
√
1 + 4κi + 3

√
1 + (4/9)κr ≈

2

3
κr, (5.72)

where κ is defined in (4.30), and the indices i and r refer to inflation and
the radiation era respectively. We have also expanded for small κ in the
last step, and neglected κi in front of κr, because of a relative slow roll
suppression factor. The sign of κ is determined by the sign of (1 + α/c14).
Hence, if (1 + α/c14) > 0, vector modes are primordially suppressed, and
the subsequent growth during radiation domination cannot compensate for
this suppression. On the other hand if (1 + α/c14) < 0, the growth during
radiation domination may bring the signal well above what is observationally
allowed. Hence, it seems that the range which is the most interesting from
the point of view of observation is when |1+α/c14| # 1, which corresponds
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to κ # 1. Therefore, it is not excluded that the present amplitude of these
modes is quite sizable, producing detectable signals in the CMB, or dipole
contributions to the gravitational potentials of massive bodies through the
effect of the velocity field of the vector modes of the Aether with respect to
matter, as discussed at the end of the previous section.

An interesting question is whether, in the range where |1 + α/c14| # 1,
the contribution of the scalar isocurvature mode to observables will be larger
or smaller than that of the vector modes. As we noted around Eq. (4.95),
the relative amplitude of the longitudinal to the transverse velocity field
power spectra is of order c14/(1 + w), which is likely to be quite small if
the scale of Lorentz symmetry breaking is low. Nonetheless, depending on
parameters, both situations seem possible. Furthermore, in a theory such as
BPSH, the vector mode is completely absent, and we only have the scalar
contribution. A full analysis of the CMB signatures for the scalar mode is
left for further research.

5.6 CMB Polarization

The spectrum of the CMB is polarized so, the same way we can calculate
the correlation functions for the temperature, we can do for the polarization.
It is a consequence of the fact that recombination is not an instantaneous
process, and it is proportional to the time it lasts. Its effect is of the order
of ten per cent of the total temperature fluctuations for small angular scales
and less than one per cent for large angular scales.

Although the effect is small, it is of great interest in the case of B polar-
ization. This one is absent for scalar modes, so it provides a way of indirectly
detecting primordial gravitational waves. The amplitude of GW decreases
on subhorizon scales, being the maximum contribution at l ∼ 100.

To characterize the polarization we are going to consider a plane wave E
arriving at the observer’s position from the z direction. The intensity mea-
sured by a detector of linearly polarized radiation in a plane with azimuthal
angle θ is

dI

dω
= 〈Eθ〉 = I +Q cos 2θ + U sin 2θ, (5.73)

being

Eθ = Ex cos θ + Ey sin θ, (5.74)

and where

I ≡ 〈E2
x〉+ 〈E2

y〉, (5.75a)

Q ≡ 〈E2
z 〉 − 〈E2

y〉, (5.75b)

U ≡ 2Re〈E∗
xEy〉, (5.75c)
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and ω is the angular frequency.
The Stokes parameters Q and U specify the plane polarization, and we

can define the combination Q± ≡ Q± iU . We can expand this in spherical
harmonics

Q±(e) =
∞∑

l=2

l∑

m=−l

Q±
lmY ±

lm(e), (5.76)

where e is the incoming direction of the wave. Polarization multipoles are
defined

Q±
lm = Elm ± iBlm. (5.77)

Following the method used by [HW97], we have that the power spectra of
temperature and polarization anisotropies is defined as CTT

l ≡ 〈|alm|2〉 for
T =

∑
almY m

l , and similarly for the other quantities, obtaining

(2l + 1)2CXX̃
l =

2

π

∫
dk

k
k3X(m)∗

l (η0, k)X̃
(m)
l (η0, k), (5.78)

where X will be T , E or B. There is no cross correlation CTB
l or CEB

l and
CBB
l = 0 for scalars.
In this section we are going to change the convention for derivatives, and

use dots for derivatives with respect to conformal time ˙≡ d
dη and ′ ≡ d

d x ,
where x = k(η0 − η), as it is generally used in the literature.

The Boltzmann equations can be written in integral form giving the
solutions

E(m)
l (η0, k)

2l + 1
= −

√
6

∫ ∞

0
dη τ̇e−τP (m)ε(m)

l , (5.79)

B(m)
l (η0, k)

2l + 1
= −

√
6

∫ ∞

0
dη τ̇e−τP (m)β(m)

l , (5.80)

with

τ(η) =

∫ η0

0
dη̃ τ̇(η̃), (5.81)

being the optical depth. The combination τ̇ e−τ is the probability that a
photon last scattered within dη, therefore it is peaked at the last scattering

epoch. P (m) is the anisotropic scattering source and ε(m)
l and β(m)

l are
combinations of spherical Bessel functions and are given in Table (5.1).

In the tight coupling limit P (m) is giving by

P (1) =

√
3

9

k

τ̇
Q, (5.82)
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mode εml (x) βm
l (x)

0

√
3

8

(l + 2)!

(l − 2)!

jl(x)

x2
0

1
1

2

√
(l − 1)(l + 2)

[
jl(x)

x2
+

j′l(x)

x

]
1

2

√
(l − 1)(l + 2)

jl(x)

x

2
1

4

[
j′′l (x)− jl(x) + 2

jl(x)

x2
+ 4

j′l(x)

x

]
1
2

[
j′l(x) + 2

jl(x)

x

]

Table 5.1: Functions εml and βm
l for the three modes

where Q is given by (4.80) for vectors, and

P (2) = −1

3

ṫ

τ̇
, (5.83)

where t is the tensor perturbation.

5.7 Polarization in E-A Theories

We want to study the polarization for vector modes in the case of E-A theory.
The procedure is similar to the one used to calculate the correlation function
of the temperature fluctuations. We have already compared the correlation
function of the temperature fluctuations for the vector and tensor modes
in a previous section. Now, we want to do the same comparison for the
polarization modes. The interesting mode, the one that can be detected
providing useful information about tensor and vector modes, is the B mode,
absent for the scalars. To do the calculations we will follow the method used
by [HW97]. In a recent article [NK11] they calculate the contribution of the
B-mode using a numerical code, and also give some analytical arguments to
explain the spectrum. Our intention here is to do the complete analytical
approach at large scales and, although not being of the same experimental
interest, extend it to the E-modes.

We will start with the calculation of the B-mode polarization.

B mode The integral solution for the Boltzmann equation for Bl compo-
nent, taking into account we are in the tight coupling limit, is given by (see
Section 5.6)

Bl

2l + 1
=

√
6

∫ η0

0
dητ̇e−τ

√
3

9

k

τ̇
Q
1

2

√
(l − 1)(l + 2)

jl(x)

x
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= −
√
2

6

√
(l − 1)(l + 2)

∫ η0

0
dητ̇e−τ kQ

τ̇

jl(x)

x
. (5.84)

We can approximate τ̇ e−τ ∼ δ(η−ηrec) and considering that (η0−ηrec) ∼ η0

Bl

2l + 1
1 −

√
2

6

√
(l − 1)(l + 2)

kQ(ηrec)

τ̇rec

jl(x0)

x0
, (5.85)

with x0 = kη0.
The angular power spectrum is given by

CBB
l 1 1

9π
(l − 1)(l + 2)

∫
dk

k
k3

(
kQ(ηrec)

τ̇rec

jl(x0)

x0

)2

1 1

9π
(l − 1)(l + 2)

(
AQ|Tk(ηrec)|

τ̇recη0

)2 ∫ dx0
x0

xnv
0 jl(x0)

2, (5.86)

where we have used PQ = k3|Q|2, PQ(η) = Prh
Q |Tk(η)|2, Prh

Q = A2
Q(

k
kN

)nv

and kNη0 ∼ 1. As Tk(ηrec) is independent of k we can take it out of the
integral (first line of Eq. (5.51a)).

In order to evaluate the integral we ignore the oscillating part and con-
sider only the amplitude of the Bessel function. We evaluate the integral for
x0 ∼ l ending with

CBB
l 1 1

9π
(l − 1)(l + 2)

(
AQ|Tk(ηrec)|

τ̇recη0

)2

lnv−2

∼ 1

9π

(
AQ|Tk(ηrec)|

τ̇recη0

)2

lnv , (5.87)

Using τ̇rec ∼ 1
∆η ∼ 10

ηrec
and AQ = c13c2tAV

CBB
l 1 1

900π

(
c13

1 + c13

)2

A2
V |Tk(ηrec)|2

(
ηrec
η0

)2

lnv ∼ CTT
l × l2,

(5.88)

Substituting Tk(ηrec) from the first line of Eq. (5.51a)

l(l + 1)CBB
l 1 (l − 1)l(l + 1)(l + 2)

900π

(
ηrec
η0

)2

A2
V |Tk(ηrec)|2lnv−2

∼ A2
V

900π

(
νi + νr

2νr

)2(
arh
arec

)2(aeq
arh

)1+2νr

×
(
ηrec
ηeq

)1+2νm (
ηrec
η0

)2

lnv+2

∼ lnv+2.

(5.89)

Taking nv = 1 as it is done in [NK11], we arrive to the same dependence
l(l + 1)CBB

l ∝ l3.
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E mode We will apply the same procedure to the E-mode. The results
we expect are similar to the ones for the B-mode, as the differences should
appear out of the range of our calculation, where the peaks start to shown
up.

El

2l + 1
= −

√
6

∫ η0

0
dητ̇e−τ

√
3

9

k

τ̇
Q
1

2

√
(l − 1)(l + 2)

(
jl(x)

x2
+

j′l(x)

x

)

= −
√
2

6

√
(l − 1)(l + 2)

∫ η0

0
dητ̇e−τ kQ

τ̇

(
jl(x)

x2
+

j′l(x)

x

)
.

(5.90)

We can approximate τ̇ e−τ ∼ δ(η − ηrec) and taking into account that (η0 −
ηrec) ∼ η0

El

2l + 1
1 −

√
2

6

√
(l − 1)(l + 2)

kQ(ηrec)

τ̇rec

(
jl(x0)

x20
+

j′l(x0)

x0

)
, (5.91)

with x0 = kη0. Using the relations for derivatives of the Bessel functions
and for large values of l

jl(x)

x2
+

j′l(x)

x
=

jl(x)

x2
+

jl−1(x)

x
− (l + 1)jl(x)

x2
=

jl−1(x)

x
− ljl(x)

x2

∼ jl(x)

x
− ljl(x)

x2
∼ jl(x)

x
, (5.92)

we end up with

El

2l + 1
1 −

√
2

6

√
(l − 1)(l + 2)

kQ(ηrec)

τ̇rec

jl(x0)

x0
. (5.93)

The angular power spectrum is given by

CEE
l 1 1

9π
(l − 1)(l + 2)

∫
dk

k
k3

(
kQ(ηrec)

τ̇rec

jl(x0)

x0

)2

1 1

9π
(l − 1)(l + 2)

(
AQ|Tk(ηrec)|

τ̇recη0

)2 ∫ dx0
x0

xnv+2
0

(
jl(x0)

x0

)2

.

(5.94)

In order to evaluate the integral we ignore the oscillating part and consider
only the amplitude of the bessel function. We evaluate the integral for x0 ∼ l
ending with

CEE
l 1 1

9π
(l − 1)(l + 2)

(
AQ|Tk(ηrec)|

τ̇recη0

)2

lnv−2

∼ 1

9π

(
AQ|Tk(ηrec)|

τ̇recη0

)2

lnv
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∼ CTT
l × l2, (5.95)

Using τ̇rec ∼
1

∆η
∼ 10

ηrec

l(l + 1)CEE
l =

1

900π
(AQ|Tk(ηrec)|)2

(
ηrec
η0

)2

lnv+2

∼ lnv+2. (5.96)

Here, we have again the same dependence in l as for the B-mode.
In Fig. (5.3) are shown the B-mode polarization modes and tempera-

ture anisotropy power spectrum in E-A theory, for values of the parameters
c1 = −0.019, c13 = −0.03, c14 = −α = −0.0128, calculated numerically
in [NK11], and compared with tensor perturbations in GR in the case of
the tensor-to-scalar ratio r = 0.1. The power spectra are PV ∝ knv and
PT ∝ k0. 6

FIG. 2: CMB B-mode polarization and temperature
anisotropy power spectra in the EA theory. For comparison,
those from the tensor perturbation in standard GR are also
plotted in the case of the tensor-to-scalar ratio r = 0.1. In
this figure, c1 = −0.019, c13 = −0.03, c14 = −α = −0.0128,
and dimensionless primordial power spectra are PV ∝ knv

and PT ∝ k0.

the absolute amplitude of the primordial spectrum, and
they are very small for small values of ci. The ampli-
tude A0 is adjusted so that the low-! TT spectrum from
the vector perturbation has the same magnitude as this
primordial tensor contribution. We see in this case that
the BB spectrum in the EA theory is larger than that
from primordial tensor modes at ! ! 100, and hence the
B-mode is potentially detectable in future CMB obser-
vations aiming to detect r = O(0.1) − O(0.01) [38]. In
plotting Fig. 1, we chose α = −c14. In this case, it has
been discussed in [15] that the TT power spectrum has
roughly the same shape as the one from the inflationary
gravitational waves. As one can see, Fig. 1 shows the
same scalings for the two TT spectra.

Using a more realistic parameter set evading all the
existing constraints (see Appendix A), we plot the B-
mode spectrum in Fig. 2. From this we conclude that, for
a viable range of the model parameters, the B-mode from
the vector perturbation is potentially detectable in future
CMB probes even if its amplitude at the end of inflation
is very small. Note that the amplification of V after
inflation is determined basically by the ratio between α
and c14. This means that, even if the model parameters
ci are too small to discriminate the EA theory from GR
with the other observational and experimental tests, the
CMB B-mode polarization could be a powerful probe for
the aether field.

We show the evolution of each variable in a normal plot
(Fig. 3) and in a log plot (Fig. 4). From these figures,
we find that compared with the aether perturbation V
and the shear σ, matter components are negligibly small
especially at early times. It can be seen from Fig. 4

FIG. 3: Evolution of each variable in a normal plot. The
horizontal axis is the scale factor in log plot and a0 = 1. In
this figure, c1 = −0.2, c13 = −0.3, c14 = −α = −0.2.

FIG. 4: Evolution of each variable in a log plot. The hori-
zontal axis is the scale factor in log plot and a0 = 1. In this
figure, c1 = −0.2, c13 = −0.3, c14 = −α = −0.2.

that the growth rate of V on superhorizon scales is given
by V ∝ S for α = −c14. This confirms the early time
solution derived in the previous section.

VI. ANALYTIC ESTIMATES

In this section, let us try to understand the shape of the
B-mode angular power spectrum CBB

! in the EA theory
in an analytic way. The following discussion is similar to
the one introduced in [39] for the B-mode spectrum from
the inflationary gravitational wave.
The starting point is the integral solution for the B!

which was alreadly introduced in Eq. (40):

B!(η0) = − !− 1

!+ 1

∫ η0

dητ̇e−τΨ![k(η0 − η)]ζ.

Using the approximation for the visibility function,

V

V

T

T

Figure 5.3: B-mode polarization modes and temperature anisotropy power
spectrum in E-A theory (from [NK11]).

Tensor perturbations behave (for l < lrec) as l(l+ 1)CBB
l ∝ l2 ([PK05]).

Although the amplitude of the spectrum for E-A differs from the one of
GR, this difference is small for small values of the parameters, and we can
compare with this last spectrum. It seems that the BB spectrum for vectors
can be larger than the one coming from primordial tensor modes. The
observability of this spectrum will depend on the values of the parameters.
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Chapter 6

Summary and Conclusions

In this thesis we have studied cosmological perturbations in Einstein-Aether
theory, where the scalar and transverse vector sectors of General Relativity
are enlarged by an additional dynamical field each. We find that inflation
can induce sizable perturbations in both of these new massless fields on
observable scales. Our analysis also applies to the low energy limit of BPSH
gravity, where the transverse vector is missing by construction [Jac10].

For the purposes of summarizing our results, we shall assume that the
Aether parameters ci (i = 1, . . . , 4) are small. This is natural, since they
can be thought of as proportional to the square of the ratio of the symmetry
breaking scale M to the Planck scale ci ∼ (M/MP )2 # 1.

To motivate the choice of the range of parameters we shall use below,
let us recall that in the Einstein-Aether theory, the effective gravitational
constant on small scales GN can be different from the effective gravitational
constant which appears in the Friedmann equation Gcos. We shall call α and
c14 the parameters which relate these two constants to the bare Newton’s
constant G. They are given in Eqs. (3.9) as linear combinations of the
standard ci. In terms of α and c14 the effective gravitational constants are
given by

G =
(
1− α

2

)
Gcos =

(
1 +

c14
2

)
GN . (6.1)

Note that for α+ c14 = 0 we have Gcos = GN . The difference Gcos −GN is
constrained by nucleosynthesis to be less than 10 %, so it seems natural to
consider the range

|κ̃| # 1, where κ̃ ≡ −
(
1 +

α

c14

)
. (6.2)

This range guarantees the similarity of Gcos and GN , but it is typically more
restrictive than required by the nucleosynthesis bound, since c14 ∼ (M/MP )2

is naturally small. If the parameters are such that we are outside of the range
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(6.2), the effects we are investigating would be either too small to be of
phenomenological interest, or too large to be compatible with observations.

The main results of the thesis are the following. First, we find that in
the scalar sector, aside from the standard adiabatic mode ζ (which corre-
sponds to the curvature of surfaces of constant matter density), there is an
additional isocurvature mode which can be important for phenomenology.
Geometrically, the isocurvature mode can be described as the differential e-
folding number δN which separates the surfaces of constant matter density
from the surfaces orthogonal to the Aether. This plays the role of a velocity
potential v for the Aether with respect to matter. At the time of horizon
exit during inflation, the amplitudes of δN and v are comparable to that of
the standard adiabatic mode ζ

v ∼ δN ∼ ζ ∼ H

MP
ε−1/2 (horizon exit). (6.3)

Here H is the Hubble rate and ε # 1 is the slow roll parameter during
inflation, which is independent of the Aether parameters.

After horizon crossing, the curvature perturbation ζ stays constant, while
the behavior of δN depends on the parameter κ̃ defined above. For κ̃ < 0,
the isocurvature perturbation slowly decays on large scales, while for κ̃ > 0
it grows. On the other hand, the velocity perturbation is given by v ∼
(k/ȧ)δN , where k is the co-moving wave number and ȧ is the derivative of
the scale factor with respect to proper time. Hence, during inflation, when ȧ
grows, the long wavelength velocity field decays, roughly in proportion to the
inverse of the scale factor. After inflation, the universe decelerates and the
velocity field grows again. At the time of horizon reentry, on cosmologically
relevant scales, we have

v ∼ δN ∼ eNκ̃ζ ∼ eNκ̃ 10−5 ! 1, (horizon reentry) (6.4)

where N ∼ 60 is the number of e-foldings of inflation since the time when
the cosmological scale first crossed the horizon. The last inequality indicates
the limit of validity of the linear approximation. Note that for κ̃ = 0, the
isocurvature perturbation and the velocity field of the Aether are comparable
to ζ ∼ 10−5 at horizon reentry. However, with κ̃ ! 10/N , we can have
δN ! 1. If κ̃ is large enough to saturate the inequality, this still allows for
mildly relativistic speeds for the Aether field v ∼ 1 within the observable
universe.

Similar results hold for the vector sector. Denoting by V the transverse
component of the Aether velocity field with respect to matter, we find that
on superhorizon scales

V ∼
(

ε

c14

)1/2

v.
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Hence, if c14 < ε (which seems quite natural if the scale of Lorentz symmetry
breaking is low), the vector contribution to the velocity field will be dominant
with respect to that of the longitudinal component. On the other hand, in
a theory such as BPSH, the transverse component V is missing, and the
scalar part v is the dominant one.

We also find that the longitudinal gauge gravitational potentials φ and
ψ can be different even for the adiabatic mode. On superhorizon scales, we
find that this effect (which can be attributed to anisotropic stress of the
Aether energy momentum tensor) is of order

(φ− ψ)adiab ∼ φadiab c13 ∼ ζ c13 ∼ 10−5c13, (6.5)

where c13 ∼ (M/MP )2 is another combination of the Aether parameters ci,
given in Eqs. (3.9). Physically, this parameter can be expressed in terms
of the propagation speed of tensor modes c13 = c−2

t − 1. The isocurvature
mode contributes maximally to the anisotropic stress, but the potential due
to the isocurvature mode is suppressed by c13

(φ− ψ)isoc ∼ φisoc ∼ c13 δN. (6.6)

Since δN can be larger than ζ, the anisotropic stress can be dominated
by the isocurvature mode. The anisotropic stress on observable scales is
suppressed from its value at horizon crossing, due to the dynamics of the
Aether on subhorizon scales. For κ̃ = 0, the effect scales like k−2 for modes
that crossed the horizon during the matter era. For modes that crossed
the horizon during the radiation era, the behavior changes to k−1. Current
constraints on φ − ψ on cosmological scales are not very restrictive, and
|c13| ! 1 seems to be allowed by observations.

The Aether manifests itself in PPN parameters through frame dependent
effects, which cause anisotropies in the gravitational field of bodies which
move with respect to the Aether. In this way, the velocity field generated
during inflation might be detectable. It should be noted, however, that it
seems difficult with present technology to observe the statistical properties
of the random field from this particular type of observations. Even if the
velocity field were relativistic on cosmological scales v ∼ 1, it falls with scale
as k−2. In particular, the component which varies on scales of the order
of 100 Mpc would then be below the virial velocity vvir ∼ 10−3 of objects
bound in galaxies, and it seems unlikely that we can directly sample frame
dependent effects in objects which are located at distances larger than that.
On the other hand, at the relatively small distances where the observation of
frame dependent effects is accessible, we may still detect a large but fairly
homogeneous velocity field, even one that is much larger than the virial
velocity of bound objects.

Finally, we have computed the contribution of transverse vector fields
V to the angular power spectrum of CMB anisotropies. We find that for
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κ̃ = 0, the spectrum of multipole coefficients CV
# has the same shape as

that of tensor modes. The amplitude, on the other hand, is related to the
spectrum Ct

# for tensor modes and Cζ
# for the adiabatic scalar mode as

CV
# ∼ c213

c14
e2Nκ̃Ct

# ∼ ε c213
c14

e2Nκ̃Cζ
# . (6.7)

This means that the vector modes in Einstein-Aether theory can easily dom-
inate the signal from tensor modes. The analysis of polarization induced by
the vector modes is therefore of phenomenological interest. Vector perturba-
tions in Einstein-Aether theories contribute to the polarization modes of the
CMB. In particular, the contribution for the B-mode is present and could be
distinguishable from the contribution from tensor modes. This could provide
a way to differentiate E-A theories form GR. The approach we have followed
here just provides us information of the l-dependence of the spectrum until
recombination. In order to obtain further information a numerical calcula-
tion should be done. The study made by [NK11], that appeared during the
writing of this thesis, follows this line and suggests that the B-mode would
be detectable by future CMB observations, being its spectrum bigger than
the one coming from inflationary gravitational waves.

Moreover, we know that the CMB is well-fit with a primordial spectrum
of scalar adiabatic perturbations. This imposes additional phenomenological
restriction amongst the parameters c13 and κ̃ of Einstein-Aether theories, of
the form

κ̃ ! 1

2N
ln

∣∣∣∣
c14
ε c213

∣∣∣∣ . (6.8)

So far, we have not included the constraints which follow from the frame-
dependent effects on the PPN parameters. These are summarized in Sec-
tion 3.2, and take the form

ω α1 ! 10−7, ω2α2 ! 10−13. (6.9)

Here, ω = max{V, v, vvir}, is the velocity of the Aether with respect to the
object whose gravitational field is being tested at post-Newtonian order, and
vvir ∼ 10−3 is the typical virial velocity for bound objects with respect to the
CMB frame. The post-Newtonian parameters α1 and α2 are combinations
of the four Aether parameters (α, c14, c+, c−). Here, following [Jac07], we
have introduced c+ ≡ c13 = c1 + c3 and c− ≡ c1 − c3. Phenomenologically,
it is possible to set α1 = α2 = 0, which determines α and c14 as functions
of the other two parameters in the model,

α = −c14 = −2
c+c−

c+ + c−
. (6.10)

The parameters c+ and c− remain rather unconstrained by observations.
Stability requirements and superluminality (or Cherenkov) constraints are
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satisfied provided that −1 " c+ " 0, c+/3(1 + c+) " c− " 0. Constraints
from radiation damping in binary systems determine further constraints on
the (c+, c−) plane, but a sizable coefficient

|c13| ! 1 (6.11)

still seems to be allowed by all observations [Jac07]. This is important, since
the gravitational effects of the Aether are suppressed by this coefficient. For
instance the contribution of vectors to the CMB anisotropies is of order

CV
# ∼ c213V

2, (6.12)

where V ! 1 is the Aether velocity field. Hence, the observability of the
effect depends crucially on c13 being sufficiently large.

This brings us to the question of fine tuning amongst the parameters of
the model. In a low energy theory, one might have expected all dimensionless
parameters to be of the same order,

ci ∼
(

M

MP

)2

.

Observability of CV
# requires an inequality of the form c13V $ 10−6, which

would be natural provided that

(
M

MP

)2

obs

$ 10−6V −1. (6.13)

On the other hand, in Eq. (6.10) we have adjusted the parameters so that
α1 = α2 = 0, but the actual restriction (6.9) is of the form α2 ! 10−13ω−2.
Hence, α2 must be well below the natural scale (6.13) by a considerable
suppression factor

α2 ! 10−7ω−1V

ω

(
M

MP

)2

obs

, (6.14)

with 10−3 < ω < 1. In the classical theory, the parameter α2 can always be
chosen by hand to have any particular value. However, in an effective field
theory (EFT) a parameter is considered to be finely tuned or technically
unnatural if quantum corrections to it are larger than the desired renormal-
ized value of the parameter. The question, therefore, is whether the very
small values of α2 # (M/MP )2 are stable or not under quantum correc-
tions. Withers [Wit09] has recently analyzed the Einstein-Aether theory
as an EFT, with the conclusion that the parameters ci receive only negli-
gible logarithmic corrections. A similar result may hold in BPSH theory
[BPS10b, BPS10a]. This subject is left for further study.

To conclude, the results presented here show that the preferred frame
singled out by the Aether field Aµ, or by the preferred foliation of the BPSH
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theory, may have picked up a large random velocity field seeded by quantum
fluctuations during inflation. Depending on the parameters, this may even
be mildly relativistic on cosmological scales. The effects of this velocity field
may be detectable in observations of frame dependent PPN effects, or in
specific features in the CMB spectrum such as a sizable contribution from
vector modes. These issues deserve further investigation.
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Appendix A

Theory of Cosmological
Perturbations

In this chapter we will review the basics of the theory of cosmological per-
turbations [MFB92, Muk05, KS84, Wei08, Bar80]. In order to study gravity
and its modifications it is necessary to consider not just a perfectly homo-
geneous and isotropic universe but the fluctuations about this background.
These perturbations are the origin of the structures in the universe, and so
it is important to understand the behavior of these perturbations to explain
the observed large scale structures (as galaxies or clusters of galaxies). It will
be also necessary in order to calculate anisotropies of the Cosmic Microwave
Background.

Our starting point is a background spacetime and we want to see what
happens when it is perturbed. The perturbations in the metric of the space-
time must be small compared with the background metric. In the case of cos-
mological perturbation theory the background metric will be the Friedmann-
Robertson-Walker (FRW) metric, and in our case, the flat FRW universe.
So, the metric can be written as

gµν = ḡµν + δgµν , (A.1)

being ḡµν the background metric and δgµν the perturbation.
The background metric in comoving coordinates is

ds2 = −dt2 + a(t)2δijdx
idxj , (A.2)

where a(t) is the scale factor. We are going to work with conformal time
instead of comoving time, defined as

dη =
dt

a(t)
, (A.3)

and the background metric looks like

ds2 = a(η)2(−dη2 + δijdx
idxj). (A.4)
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In the unperturbed universe we had the Friedmann equations, given by

H2 =
8πGa2

3
ρ, (A.5)

H2 − 2
a′′

a
= 8πGa2p, (A.6)

H′ = −4πGa2

3
(ρ+ 3p), (A.7)

where H is the conformal Hubble parameter H = aH; and the energy con-
tinuity equation

ρ′ = −3H(ρ+ p). (A.8)

We can define the equation of state parameter as w ≡ p

ρ
and the speed of

sound as c2s ≡
p′

ρ′
. If w = constant, then c2s = w.

The perturbed metric is

gµν = a2
[
−(1 + 2φ)dη2 + 2(B,i + Si)dηdx

i

+(δij − 2ψδij + E,ij + 2F(i,j) + tij)dx
idxj

]
. (A.9)

In order to obtain the perturbed Einstein equations we need to calculate the
perturbed Ricci tensor and we will need to compute the perturbed Christoffel
symbols. The full set of perturbed quantities that are required to write the
left-hand side of the Einstein equations and the gravitational action are
collected in Appendix B.

Now we are going to focus our attention in the energy-momentum tensor.

A.0.1 Perturbations in the energy-momentum tensor

The background energy-momentum tensor is of the perfect fluid form

Tµν = (ρ+ p)uµuν + pgµν =

(
ρ

pδij

)
. (A.10)

The homogeneity and isotropy of the universe implies that the density and
pressure in the background are just functions of time, ρ = ρ(η) and p = p(η),
and the fluid is at rest, ui = 0. The condition uµuµ = −1 leaves us with

uµ = 1
a(1,

−→
0 ).

The perturbed energy-momentum tensor is obtained substituting the
perturbed variables

ρ → ρ+ δρ, (A.11)

p → p+ δp, (A.12)
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uµ → uµ + δuµ, (A.13)

in Eq. (A.10).
Using the constraint uµuµ = −1 and δui = 1

av
i

uµ =
1

a
(1− φ, vi) → uµ = a(−1− φ, vi +Bi), (A.14)

where Bi = B,i+Si. We finally get the perturbed energy-momentum tensor

Tµ
ν =

(
−(ρ+ δρ) (ρ+ p)(vi +Bi)
−(ρ+ p)vi (p+ δp)δij

)
. (A.15)

From energy-momentum conservation ∇µT
µ
ν = 0 at first order in perturba-

tions we get

δρ′ = −3H(δρ+ δp) + 3(ρ+ p)ψ′ − (ρ+ p)v,ii −
1

2
(ρ+ p)E′

,ii, (A.16)

completing the set of first order perturbed equations. In the next section
we will see how the variables behave under gauge transformations and the
way to get gauge invariant equations.

A.1 Gauge Transformations and Gauge Invariant
Variables

The physical interpretation of the results of perturbation theory has to deal
with the freedom in the choice of coordinates for describing the perturba-
tions. To avoid the presence of fictitious modes or the “disappearance” of
real modes it is convenient to study the gauge transformation of the per-
turbations. This will allow to construct the gauge-invariant variables which
use will avoid the presence of unphysical modes. We could instead fix the
gauge to eliminate the gauge degrees of freedom but in some cases a residual
freedom can still be present, obscuring the interpretation of the results.

We have to consider a coordinate transformation

xα → x̃α = xα + ξα, (A.17)

where ξα are infinitesimally small functions of space and time. The metric
tensor in the coordinate system x̃ can be obtained using the transformation
law

g̃αβ(x̃) =
∂xγ

∂x̃α
∂xδ

∂x̃β
gγδ(x) ≈ ḡαβ + δgαβ − ḡαδξ

δ
,β − ḡγβξ

γ
,α. (A.18)

In the new coordinates x̃ we can also split the metric into background and
perturbed piece

g̃αβ(x̃) = ¯̃gαβ(x̃) + δg̃αβ . (A.19)
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Comparing these two expressions and taking into account that

ḡαβ(x) ≈ ¯̃gαβ(x̃)− ḡαβ,γξ
γ , (A.20)

we arrive at

δgαβ → δg̃αβ = δgαβ − ḡαβ,γξ
γ − ḡγβξ

γ
,α − ḡαδξ

δ
,β . (A.21)

Defining 2gαβ = δg̃αβ − δgαβ we see that the metric components for a FRW
universe transform in the following way:

2g00 = − 2(aa′ξ0 + a2ξ0
′
),

2g0i = a2(ξi
′ − ξ0,i),

2gij = a2(ξi,j + ξj,i) + 2aa′ξ0, (A.22)

using ξi = ζ,i + ξ⊥i .
We can separate them in scalar, vector and tensor components

φ −→ φ+Hξ0 + ξ0
′
,

ψ −→ ψ −Hξ0,

E −→ E + 2ζ,

B −→ B + ζ ′ − ξ0,

F −→ F+ ξ,

S −→ S+ ξ′. (A.23)

In the same way, for the case of a 4-vector the transformation will be the
following

δuα → δũα = δuα − uα,βξ
β + uβξα,β . (A.24)

If we have a 4-vector of the form uα = (u0,
−→
0 ), the time and spatial com-

ponents will transform

2u0 = ξ0
′
u0 − ξ0u0

′
,

2ui = ξi
′
u0. (A.25)

Finally for a scalar

δs → δs̃ = δs− s′ξ0. (A.26)

Now that we have the transformations for all types of variables we can work
out ones that are invariant under gauge transformations. The simplest set
of these gauge invariant variables (called Bardeen potentials) is:

Ψ = ψ −H
(
B − 1

2
E′

)
,
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Φ = φ+

(
B′ − 1

2
E′′

)
+H

(
B − 1

2
E′

)
. (A.27)

for the scalar sector and

Q = F′ − S, (A.28)

for the vector sector. The tensor sector is already gauge invariant.
As we will see when we look for subhorizon solutions, in some cases it

will be useful to write some formulas using the longitudinal (Newtonian or
conformal) gauge in which E = B = 0. This gauge has the advantage that
the gauge-invariant potentials are equal to the metric perturbations in this
gauge (Ψ = ψl,Φ = φl), and there is no residual gauge freedom. Once we
have all the variables in a gauge invariant form we are capable of writing
the Einstein equations in terms of these variables.

A.2 Perturbed Einstein Equations

Finally, we may write the perturbed Einstein equations in terms of the
gauge-invariant variables. The gauge-invariant variables for the metric com-
ponents will be the Bardeen potentials and for the density, pressure and
fluid velocity we have

δρGI = δρ+ ρ′
(
B − 1

2
E′

)
,

δpGI = δp+ p′
(
B − 1

2
E′

)
,

vGI
i = vi +

1

2
E′.

(A.29)

The equations are

Ψ,ii − 3H(Ψ′ +HΦ) = 4πGa2δρGI , (A.30)

Ψ′ +HΦ = −4πGa2(ρ+ p)vGI , (A.31)
[
2Ψ′′ + 2H(Φ′ + 2Ψ′) + 2(2H′ +H2)Φ + (Φ−Ψ),kk

]
δij

+ (Ψ− Φ),ij = 8πGa2δpGIδij , (A.32)

If i &=j, then Ψ = Φ.

Then the resulting equations are

Φ,ii − 3H(Φ′ +HΦ) = 4πGa2δρGI , (A.33a)

Φ′ +HΦ = − 4πGa2(ρ+ p)vGI , (A.33b)

Φ′′ + 3HΦ′ + (2H′ +H2)Φ = 4πGa2δpGI . (A.33c)

These are the scalar equations for General Relativity. In order to study
the Einstein-Aether theory we will add to these equations the terms coming
from the Aether sector, that we will calculate in Chapter 3.
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Appendix B

Gravitational Perturbations

We will gather here the general formulas for gravitational perturbations in
a Friedmann-Robertson-Walker universe. The generic perturbed metric can
be written

gµν = ḡµν + δgµν .

The Christoffel symbols up to second order in perturbations

Γλ (0)
µν =

1

2
ḡλρ [ḡµρ,ν + ḡνρ,µ − ḡµν,ρ] , (B.1)

Γλ (1)
µν =

1

2

[
δgλν,µ + δgλµ,ν − δg ,λ

µν

]
− 1

2
δgλρ [ḡµρ,ν + ḡνρ,µ − ḡµν,ρ]

=
1

2

[
δgλν,µ + δgλµ,ν − δg ,λ

µν

]
− δgλρΓ

ρ (0)
µν , (B.2)

Γλ (2)
µν = − 1

2
δgλρ [δgµρ,ν + δgνρ,µ − δgµν,ρ] + δgλρδgξρΓ

ξ (0)
µν . (B.3)

B.1 Friedmann-Robertson-Walker

We are interested in the perturbations in a FRW universe, so in the following
we are restricting ourselves to this case.

B.1.1 Metric

The perturbed metric

gµν = a2(ηµν + hµν) = a2
(
−(1 + 2φ) Bi

Bi δij + hij

)
. (B.4)
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We can split it in scalar, vector and tensor components, Bi = B,i + Si and
hij = −2ψδij + E,ij + 2F(i,j) + tij . The inverse metric is given by

gµν = a−2(ηµν − hµν + hµρh
ρν)

= a−2

[(
−1 0
0 δij

)
−
(
−2φ −Bi

−Bi hij

)

+

(
−4φ2 +B2

,i 2(ψ − φ)B,i −B,jE,ij

2(ψ − φ)B,i −B,jE,ij 4ψ2δij + E,ikEij − 4ψE,ij −B,iB,j

)

+

(
S2
i −SjFj,i

−SjFj,i 4F(i,k)F(j,k) − SiSj + tiktjk

)]
.

(B.5)

To calculate the gravitational action up to second order we will need to
calculate the square root of the determinant of the metric up to second
order. As hµν # we can expand the square root in a Taylor series

√
−g = a4(1 + g̃)1/2 = a4

(
1 +

1

2
g̃ − 1

8
g̃2 + . . .

)

= a4
(
1− 1

2
h00 +

1

2
hii +

1

2
h20i −

1

8
h200 −

1

4
h00hii +

1

4
hiihjj

−1

8
h2ii −

1

4
h2ij

)

= a4
(
1 + φ− 3ψ +

1

2
E,ii −

1

2
φ2 +

3

2
ψ2 +

1

4

(
1

2
E2

,ii − E2
,ij

)

+
1

2
B2

,i +
1

2
φE,ii −

1

2
ψE,ii − 3φψ +

1

2
S2
i − F 2

(i,j) −
1

4
t2ij

)
,

(B.6)

where

g̃ = −h00 + hii − h00hii + h20i −
1

2
h2ij +

1

2
hiihjj . (B.7)

B.1.2 Christoffel symbols

The Christoffel symbols at zero order

Γ0 (0)
00 = H, Γ0 (0)

ij = Hδij , Γj (0)
0i = Hδji . (B.8)

The Christoffel symbols at first order

Γ0 (1)
00 = φ′, (B.9a)

Γi (1)
00 = φ,i +B′

i +HBi = φ,i +B′
,i +HB,i + S′

i +HSi, (B.9b)

Γ0 (1)
0i = φ,i +HBi = φ,i +HB,i +HSi, (B.9c)
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Γ0 (1)
ij = −B(i,j) +

1

2
h′ij − 2Hφδij +Hhij

= − ψ′δij −B,ij +
1

2
E,ij − 2H(ψ + φ)δij +HE′

,ij

+ F ′
(i,j) − S(i,j) + 2HF(i,j) +

1

2
t′ij +Htij , (B.9d)

Γj (1)
i0 = B[j,i] +

1

2
h′ij = −ψ′δij +

1

2
E′

,ij + S[j,i] + F ′
(i,j) +

1

2
t′ij , (B.9e)

Γk (1)
ij =

1

2
(hik,j + hjk,i − hij,k)−HBkδij

= (ψ,kδij − ψ,iδjk − ψ,jδik) +
1

2
E,ijk −HB,kδij

+ Fk,ij −HSkδij +
1

2
(tik,j + tjk,i − tij,k). (B.9f)

The Christoffel symbols at second order

Γ0 (2)
00 = − 2φφ′ + φ,iBi +BiB

′
i +HB2

i

= − 2φφ′ + φ,iB,i +B,iB
′
,i +HB2

,i + SiS
′
i +HS2

i , (B.10a)

Γ0 (2)
0i = − 2φφ,i +BjB[j,i] +

1

2
Bjh

′
ij − 2HφBi

= − 2φφ,i − ψ′B,i +
1

2
B,jE

′
,ij − 2HφB,i + SjF

′
(i,j) + SjS[j,i],

(B.10b)

Γi (2)
00 = − φ′Bi − φ,jhij −B′

jhij −HBjhij

= − φ′B,i + 2ψφ,i − φ,lE,il + 2ψB′
,i − E,ilB

′
,l + 2HψB,i

−HE,ilB,l − 2F(i,l)S
′
l − 2HF(i,l)Sl, (B.10c)

Γ0 (2)
ij = 2φB(i,j) − φh′ij +

1

2
Bk(hik,j + hjk,i − hij,k) + 4Hφ2δij

− 2Hφhij −HB2
kδij

= 2φB,ij + 2φψ′δij − φE′
,ij +

1

2
B,lE,ijl + ψ,lB,lδij − ψ,iB,j

− ψ,jB,i − 2HφE,ij + 4H(φ2 + φψ)δij −HB2
,lδij

+ SlFl,ij −HS2
l δij , (B.10d)

Γj (2)
0i = − φ,iBj − hjkB[k,i] −

1

2
hjkh

′
ik −HBiBj

= − φ,iB,j − 2ψψ′δij −
1

2
E′

,ilE,jl + ψE′
,ij + ψ′E,ij −HB,iB,j

− 2F ′
(i,l)F(j,l) − 2F(j,l)S[l,i] −HSiSj −

1

2
t′iltjl, (B.10e)

Γk (2)
ij = BkB(i,j) −

1

2
Bkh

′
ij −

1

2
hkl(hil,j + hjl,i − hij,l) + 2HφBkδij

+HBlhklδij −HBkhij
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= B,ijB,k + ψ′B,kδij −
1

2
B,kE

′
,ij −

1

2
E,ijlE,kl

+ 2ψ(ψ,kδij − ψ,iδjk − ψ,jδik) + ψE,ijk − ψ,lE,klδij

+ 2ψ(,iE,j)k + 2HφB,kδij +HB,lE,klδij −HB,kE,ij

+ SkS(i,j) − SkF
′
(i,j) − 2F(k,l)Fl,ij + 2H(SlF(k,l)δij − SkF(i,j))

− 1

2
tkl(til,j + tjl,i − tij,l). (B.10f)

B.1.3 Ricci tensor and scalar

The Ricci tensor at zero order is

R(0)
µν = Γα

µν,α − Γα
µα,ν + Γα

ραΓ
ρ
µν − Γα

ρνΓ
ρ
µα, (B.11)

R(0)
00 = − Γi

0i,0 + Γ0
00Γ

i
0i − Γi

0jΓ
j
0i = −3H′, (B.12a)

R(0)
0i = 0 (B.12b)

R(0)
ij = Γ0

ij,0 + Γ0
00Γ

0
ij + Γ0

ijΓ
k
0k − Γk

0iΓ
0
kj − Γk

0jΓ
0
ki = (H′ + 2H2)δij .

(B.12c)

And the Ricci scalar

R(0) = a−2ηµνR(0)
µν = 6(H′ +H2)a−2. (B.13)

At order one

R(1)
µν = Γα (1)

µν,α − Γα (1)
µα,ν + Γα (1)

ρα Γρ
µν + Γα

ραΓ
ρ (1)
µν

−Γα (1)
ρν Γρ

µα − Γα
ρνΓ

ρ (1)
µα ,

(B.14)

R(1)
00 = Γi (1)

00,i − Γi (1)
0i,0 + Γ0

00Γ
i (1)
0i + Γi

0iΓ
0 (1)
00 − 2Γi

0jΓ
j (1)
0i

= φ,ii +B′
i,i −

1

2
h′′ii + 3Hφ′ +HBi,i −

1

2
Hh′ii

= φ,ii +B′
,ii + 3ψ′′ − 1

2
E′′

,ii + 3H(φ′ + ψ′) +HB,ii −
1

2
HE′

,ii,

(B.15a)

R(1)
0i = Γ0 (1)

0i,0 + Γj (1)
0i,j − Γ0 (1)

00,i − Γj (1)
0j,i + Γj

0jΓ
0 (1)
0i + Γj

0iΓ
k (1)
jk

− Γj
0kΓ

k (1)
ij − Γ0

ijΓ
j (1)
00

= B[j,i]j + h′j[i,j] + 2Hφ,i + (H′ + 2H2)Bi

= 2ψ′
,i + 2Hφ,i + (H′ + 2H2)B,i +

1

2
(F ′ − S)i,jj + (H′ + 2H2)Si,

(B.15b)
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R(1)
ij = Γ0 (1)

ij,0 + Γk (1)
ij,k − Γ0 (1)

0i,j − Γk (1)
ik,j +

(
Γ0
00 + Γk

0k

)
Γ0 (1)
ij

+ Γ0
ij

(
Γ0 (1)
00 + Γk (1)

0k

)
− Γ0

ikΓ
k (1)
0j − Γ0

jkΓ
k (1)
0i − Γk

0iΓ
0 (1)
kj

− Γk
0jΓ

0 (1)
ik

= − φ,ij −B′
(i,j) +

1

2
h′′ij +

1

2
(hik,jk + hjk,ik − hij,kk − hkk,ij)

−Hφ′δij +Hh′ij +
1

2
Hh′kkδij − 2HB(i,j) −HBk,kδij

− 2(H′ + 2H2)φδij + (H′ + 2H2)hij

= (ψ,kk − ψ′′)δij + ψ,ij −
(
φ+B′ − 1

2
E′′

)

,ij

− 2HB,ij +HE′
,ij

+ (2H2 +H′)(E,ij − 2(φ+ ψ)δij)−H(φ′ + 5ψ′)δij

−H
(
B,kk −

1

2
E′

,kk

)
δij

+ F ′′
(i,j) − S′

(i,j) + 2H(F ′
(i,j) − S(i,j)) + (2H′ + 4H2)F(i,j)

+
1

2
(t′′ij − tij,kk) +Ht′ij + (H′ + 2H2)tij . (B.15c)

R(1) = a−2
(
ηµνR(1)

µν − hµνR(0)
µν

)

= a−2
[
−2φ,ii − 2B′

i,i + h′′ii + hik,ik − hii,kk − 6Hφ′ − 6HBi,i

+3Hh′ii − 12(H′ +H2)φ
]

= a−2
[
−2φ,ii − 2B′

,ii − 6ψ′′ + E′′
,ii − 2ψ,ii + 6ψ,ii

−6Hφ′ − 6HB,ii − 18Hψ′ + 3HE′
,ii − 12(H′ +H2)φ

]

= a−2
[
−2φ,ii − 2B′

,ii − 6ψ′′ + E′′
,ii + 4ψ,ii − 6Hφ′ − 6HB,ii

−18Hψ′ + 3HE′
,ii − 12(H′ +H2)φ

]
.

(B.16)

At second order

R(2)
µν = Γα (2)

µν,α − Γα (2)
µα,ν + Γα (1)

ρα Γρ (1)
µν − Γα (1)

ρν Γρ (1)
µα

+ Γρ (2)
µν Γα

ρα + Γρ
µνΓ

α (2)
ρα − Γρ (2)

µα Γα
ρν − Γρ

µαΓ
α (2)
ρν (B.17)

We will write separately the scalar, vector and tensor sectors; first the R00

component

R(2)
00 = Γi (2)

00,i − Γi (2)
0i,0 + Γi (1)

00

(
Γj (1)
ij − Γ0 (1)

0i

)
+ Γ0 (1)

00 Γi (1)
0i − Γj (1)

0i Γi (1)
0j

+ Γ0 (2)
00 Γi

0i + Γ0
00Γ

i (2)
0i − 2Γi (2)

0j Γj
0i

= − φ2
,i − φ′Bi,i − φ,ijhij − φ,jhij,i +

1

2
(φihjj,i + φ′h′ii)
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−B[i,j]B[j,i] +
1

2
B′

ihjj,i +B′
[j,i]hij +B[j,i]h

′
ij +

1

4
h′ij +

1

2
h′′ijhij

− 6Hφ′φ+Hφ,iBi + 3HB′
iBi + (2H2 +H′)B2

i +HB[j,i]hij

−HBj,ihij −HBjhij,i +
1

2
HBihjj,i +

1

2
Hh′ijhij , (B.18a)

R(2)s
00 = 3ψ′2 + 6ψ′′ψ − φ2

,i − 3ψ′φ′ − φ,iψ,i + 2φ,iiψ − φ′B,ii +
1

4
E′2

,ij

− ψ′E′
,ii − ψ′′E,ii − ψE′′

,ii +
1

2
(φ′E′

,ii − φ,iE,ijj − 2φ,ijE,ij)

+
1

2
B′

,iE,ijj − 3ψ,iB
′
,i + 6H(ψψ′ − φφ′) +Hφ,iB,i −Hψ,iB,i

+ 2HψB,ii +
1

2
HE′

,ijE,ij −HψE′
,ii −Hψ′E,ii −

1

2
HB,iE,ijj

−HB,ijE,ij + 3HB′
,iB,i + (H′ + 2H2)B2

,i, (B.18b)

R(2)v
00 = − S[i,j]S[j,i] + F ′2

(i,j) + 2F ′′
(i,j)F(i,j) + 2S′

[j,i]F(i,j) + 2S[j,i]F
′
(i,j)

+HF ′
i,jFi,j + 3HS′

iSi +H′S2
i + 2H2S2

i + 2HS[j,i]F(i,j)

− 2HSj,iF(i,j) − 2HSjF(i,j)i, (B.18c)

R(2)t
00 =

1

2
t′′ijtij +

1

4
t′2ij +

1

2
Ht′ijtij . (B.18d)

and then the Rij component

R(2)
ij = Γ0 (2)

ij,0 + Γk (2)
ij,k − Γ0 (2)

i0,j − Γk (2)
ik,j + Γ0 (1)

ij

(
Γ0 (1)
00 + Γk (1)

0k

)

+ Γk (1)
ij

(
Γ0 (1)
0k + Γl (1)

lk

)
− Γ0 (1)

0i Γ0 (1)
0j − Γ0 (1)

jk Γk (1)
0i

− Γ0 (1)
ik Γk (1)

0j − Γl (1)
ik Γk (1)

jl + Γ0 (2)
ij

(
Γ0
00 + Γk

0k

)

+ Γ0
ij

(
Γ0 (2)
00 + Γk (2)

0k

)
− Γk

i0Γ
0 (2)
kj − Γk (2)

0j Γ0
ik − Γk

j0Γ
0 (2)
ki

− Γk (2)
0i Γ0

jk

= φ,iφ,j + 2φφ,ij + φ′B(i,j) + 2φB′
(i,j) −

1

2
φ′h′ij − φh′′ij

+
1

2
φ,k(hik,j + hjk,i − hij,k) +B[k,i]B(j,k) +B[k,j]B(i,k)

−Bk,iBk,j +Bk,kB(i,j) −BkBk,ij +BkB(i,j)k

+
1

2
B′

k(hik,j + hjk,i − hij,k) +
1

2
Bk(h

′
ik,j + h′jk,i)

− 1

2
Bk,kh

′
ij −

1

2
B(i,j)h

′
kk +

1

2
Bi,kh

′
jk −

1

2
B[k,j]h

′
ik

−Bkh
′
ij,k +

1

2
hkl(hkl,ij + hij,kl − hjl,ik − hik,jl)

+
1

4
(hil,khkl,j + hkl,ihkl,j − hik,lhkl,j)
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+
1

2
(hil,khjl,k − hik,lhjl,k)−

1

2
hkl,k(hil,j + hjl,i − hij,l)

+
1

4
hll,k(hik,j + hjk,i − hij,k) +

1

4
h′ijh

′
kk −

1

2
h′ikh

′
jk

+ 4Hφ′φδij +Hφ,kBkδij + 2HφBk,kδij + 4HφB(i,j)

−Hφ′hij − 2Hφh′ij −Hφh′kkδij −HB′
kBkδij +HBlhkl,kδij

+HBk(hik,j + hjk,i − hij,k)−
1

2
HBkhll,kδij +HBl,khklδij

−HB[k,l]hlkδij −HBk,khij +
1

2
H(h′kkhij − h′klhklδij)

+ (2H2 +H′)(4φ2δij − 2φhij −B2
kδij), (B.19a)

R(2)s
ij =

(
ψ′2 + 2ψψ,kk + ψ2

,k + ψ′φ′ + 2φψ′′ + φ,kψ,k +B,kkψ
′

+B′
,kψ,k + 2B,kψ

′
,k −

1

2
ψ′E′

,kk −
1

2
ψ,kE,kll − ψ,klE,kl

)
δij

+ 3ψ,iψ,j + 2ψψ,ij − 2φ,iψ,j + φ,iφ,j + 2φφ,ij + 2ψ′B,ij

− 2B′
,iψ,j − 2B,iψ

′
,j + φ′B,ij + 2φB′

,ij

+
1

4
E′

,ijE
′
,kk −

1

2
E′

,ikE
′
,jk +

1

4
E,ilkE,jlk −

1

4
E,ijkE,llk

+
1

2

(
φ,kE,ijk +B′

,kE,ijk −B,kkE
′
,ij +B,ikE

′
,jk −B,ijE

′
,kk

−φ′E′
,ij + ψ′E′

,ij − ψ,kE,ijk

)
+ 2ψ,ikE,jk − ψ,ijE,kk − φE′′

,ij

+B,kkB,ij −B,ikB,jk +

(
10Hφψ′ + 2Hφ′ψ + 4Hφ′φ

+Hφ,kB,k + 2HφB,kk + 3Hψ,kB,k −
1

2
HE′

,klE,kl +Hψ′E,kk

−HφE′
,kk +

1

2
HB,kE,kll +HB,klE,kl −HB′

,kB,k

)
δij

−Hφ′E′
,ij − 2HφE′

,ij − 3HψE,ij + 4HφB,ij − 4Hψ,iB,j

+
1

2
HE′

,kkE,ij +HB,kE,ijk −HB,kkE,ij

+ (H′ + 2H2)
(
4φ2 −B2

,k + 4φψ
)
δij − 2(H′ + 2H2)φE,ij ,

(B.19b)

R(2)v
ij = SkS(i,j)k − S,kSk,ij −

1

2
(Sk,iSk,j + Si,kSj,k)− 2F ′

(i,k)F
′
(j,k)

+
1

2

(
Fl,ikFl,jk − Fl,kkFl,ij + Fl,ikF(j,k)l − Fk,ilF(j,l)k

)

+ S′
kFk,ij + F ′

k,ijSk + Vi,kF
′
(j,k)

−H
(
S′
kSk + 2F ′

k,lFk,l − Fk,llSk − F(k,l)Sk,l

)
δij + 2HFk,ijSk

− (H′ + 2H2)S2
kδij , (B.19c)
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R(2)t
ij =

1

2
tkl (tkl,ij + tij,kl − tjl,ik − tik,jl) +

1

4
tkl,itkl,j −

1

2
t′ikt

′
jk

− 1

2
Ht′lktlkδij . (B.19d)

The R0i does not appear in the calculation of the Ricci scalar at second
order, so we do not include it here. The second order Ricci scalar is

R(2) = a−2
(
ηµνR(2)

µν − hµνR(1)
µν + hµρh

ρνR(0)
µν

)

= a−2
(
η00R(2)

00 + ηijR(2)
ij − h00R(1)

00 − hijR(1)
ij − 2h0iR(1)

0i

+
(
h00h

00 + h0ih
i0
)
R(0)

00 +
(
hikh

kj + hi0h
0j
)
R(0)

ij

)

= a−2

[
2φ2

,i + 4φφ,ii + 2φ′Bi,i + 4φB′
i,i + 2φ,ijhij + 2φ,khlk,l

−φkhll,k − 2φh′′ii − φ′h′ii +
1

2
Bi,jBj,i −

3

2
B2

i,j +Bi,iBj,j

+2BjBi,ij − 2BiBi,jj +
1

4
h′2ii −

3

4
h′2ij − h′′ijhij

+hjkhjk,ii + hjkhii,jk − hjkhik,ij − hijhik,jk +
3

4
h2ij,k

−1

4
hii,jhkk,j +

1

4
(hik,jhjk,i − hij,khjk,i − 2hij,khik,j)

+hij,ihkk,j − hij,ihkj,k +B′
jhij,i −B′

jhii,j +B′
i,jhij

−Bj,jh
′
ii − 2B[j,i]h

′
ij + 2Bjh

′
ij,i − 2Bjh

′
ii,j +B(i,j)h

′
ij

+24Hφ′φ+ 6Hφ,iB,i + 12HφBi,i − 6Hφh′ii − 6HB′
iBi

−3HBjhii,j + 6HBjhij,i + 6HBj,ihij − 3Hh′ijhij

+24(H′ +H2)φ2 − 6(H′ +H2)B2
i

]

(B.20)

B.1.4 Lagrangian density

Finally, with all these pieces we can calculate the Lagrangian density of
GR up to second order. As before, we will split it in scalar, vector and
tensor components, and we will use integration by parts to obtain the more
compact form.

L(2) =
1

2
M2

P

(√
−g

(1)
R(1) +

√
−g

(0)
R(2) +

√
−g

(2)
R(0)

)
, (B.21)

L(2)
s =

1

2
M2

Pa
2

[
2φ2

,i + 2φφ,ii + 2φ′B,ii + 2φB′
,ii + 6φψ′′ + 6φ′ψ′

−φE′′
,ii − φ′E′

,ii + 2φ,iiψ + 2φ,iψ,i + 4φψ,ii
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+2φ,ijE,ij − φ,iiE,jj + φ,iE,ijj +B,iiB,jj −B2
,ij

+4B′
,iψ,i + 4B′

,iiψ + 8B,iψ
′
,i + 4B,iiψ

′ +B′
,ijE,ij

−B′
,iiE,jj +B,ijE

′
,ij −B,iiE

′
,jj + 6ψ′′ψ + 6ψ2

,i + 4ψ,iiψ

−ψ′′E,ii − ψE′′
,ii − 2ψ,jE,iij − 2ψ,ijE,ij +

1

4
E′2

,ii

−3

4
E′2

,ij +
1

2
E′′

,iiE,jj − E′′
,ijE,ij +

1

4
E2

,ijk −
1

4
E,iijE,kkj

+18Hφ′φ+ 6H (φ,iB,i + 6φB,ii) + 18H
(
φψ′ + φ′ψ

)

−3H
(
φE′

,ii + φ′E,ii
)
− 6HB′

,iB,i + 6H (B,iψ,i +B,iiψ)

+3HB,iE,ijj + 6HB,ijE,ij − 3HB,iiE,jj + 18Hψ′ψ

−3H
(
ψ′E,ii + ψE′

,ii

)
+

3

2
HE′

,iiE,jj − 3HE′
,ijE,ij

+9
a′′

a
φ2 + 18

a′′

a
φψ − 3

a′′

a
φE,ii − 3

a′′

a
B2

,i + 9
a′′

a
ψ2

−3
a′′

a
ψE,ii +

3

4

a′′

a
E2

,ii −
3

2

a′′

a
E,ijE,ij

]

i.b.p.
=

1

2
M2

Pa
2

[
4φψ,ii − 4B,iiψ

′ + 2ψ2
,i − 6ψ′2 + 2ψ′E′

,ii − 4HφB,ii

−12Hφψ′ + 2HφE′
,ii − 9H2φ2 − 18H2φψ + 3H2φE,ii

+3H2B2
,i + (2H′ +H2)

(
3ψ2 − ψE,ii −

1

4
E2

,ij

)]
,

(B.22a)

L(2)
v =

1

2
M2

Pa
2

[
1

2
Si,jSj,i −

3

2
S2
i,j − 2SiSi,jj + S′

iFi,jj + 2SiF
′
i,jj

+2Si,jF
′
(i,j) − 2S′

i,jF(i,j) − 3F ′2
(i,j) − 4F ′′

(i,j)F(i,j)

+F 2
i,jk − Fi,jjFi,kk + Fi,jkFj,ik −

1

2
Fi,jkFk,ij

−1

2
Fj,ikFk,ij + 6H

(
SiFi,jj + Si,jFi,j + Si,jFj,i − S′

iSi

−F ′
i,jFi,j − F ′

i,jFj,i
)
− 3

a′′

a

(
F 2
i,j + S2

i + Fi,jFj,i
)]

i.b.p.
=

1

2
M2

Pa
2

[
1

2
(F ′

i,j − Si,j)
2 + 3H2S2

i − (2H′ +H2)F 2
i,j

]
, (B.22b)

L(2)
t =

1

2
M2

Pa
2

[
−3

4
t′2ij − t′′ijtij + tijtij,kk −

3

4
t2ij,k −

1

2
tij,ktik,j

−3Ht′ijtij −
3

2

a′′

a
t2ij

]

i.b.p.
=

1

8
M2

Pa
2
[
t′2ij − t2ij,k − 2(2H′ +H2)t2ij

]
. (B.22c)
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B.1.5 Einstein tensor

The Einstein tensor at order zero

G(0)
µν = R(0)

µν − 1

2
a2ηµνR

(0), (B.23)

G(0)
00 = 3H2, G(0)

0i = 0, G(0)
ij = −(2H′ +H2)δij . (B.24)

And finally at first order

G(1)
µν = R(1)

µν − a2

2

(
ηµνR

(1) + hµνR
(0)

)
, (B.25)

G(1)
00 = R(1)

00 − a2

2

(
h00R+ η00R

(1)
)

= 2ψ,ii −H
(
6ψ′ + 2B,ii − E′

,ii

)
, (B.26a)

G(1)
0i = R(1)

0i − a2

2
h0iR

= 2ψ′
,i + 2Hφ,i − (H2 + 2H′)B,i +

1

2
(F ′

i,jj − Si,jj)

− (H2 + 2H′)Si, (B.26b)

G(1)
ij = R(1)

ij − a2

2

(
hijR+ ηijR

(1)
)

=

[
2ψ′′ +

(
φ− ψ +B′ − 1

2
E′′

)

,kk

+ 2H
(
φ′ + 2ψ′)

+2H
(
B,kk −

1

2
E′

,kk

)
+ 2(2H′ +H2)(φ+ ψ)

]
δij

+

(
ψ − φ−B′ +

1

2
E′′ − 2H

(
B − 1

2
E′

)
− (2H′ +H2)E

)

,ij

+ (F ′ − S)′(i,j) + 2H(F ′ − S)(i,j) − 2(2H′ +H2)F(i,j)

+
1

2
(t′′ij − tij,kk) +Ht′ij − (2H′ +H2)tij . (B.26c)
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General Equations of Motion
in the Longitudinal Gauge

We will quote here the general equations of motion for the Einstein-Aether
theory for a generic content of matter, considering that it can be cast in a
perfect fluid form. Once we have the general equations we will write them
in the longitudinal gauge. These equations will be then used to calculate
the equations of motion in the particular cases of the inflationary universe
and the radiation and matter epochs.

C.1 Matter Lagrangian and the Energy-momentum
Tensor

The matter lagrangian can be written in the form

Sm =

∫
d4x

√
−gLm =

∫
d4x

√
−gp(X,ϕ),

which stress-energy tensor can be expressed in the perfect fluid form identi-
fying

p = p(X,ϕ)

(
with X = −1

2
gµνϕ,µϕ,ν

)
, (C.1)

ρ = 2Xp,X − p and uµ =
ϕ,µ√
2X

. (C.2)

The energy-momentum tensor at zero order is

T 0
0 = −ρ, T 0

i = 0, T i
j = pδij , (C.3)

and the continuity equation

∇Tµ
0 = 0 ⇒ ρ′ = −3H(ρ+ p). (C.4)
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The perturbed stress-energy tensor expressed in terms of δϕ is

T 0 (m)
0 = − δρ =

[
3H(ρ+ p)

δϕ

ϕ′ −
ρ+ p

c2s

(
−φ+

(
δϕ

ϕ′

)′
+Hδϕ

ϕ′

)]
,

(C.5a)

T 0 (m)
i = − (ρ+ p)

(
δϕ

ϕ′

)

,i

, (C.5b)

T i (m)
0 = (ρ+ p)

(
δϕ

ϕ′ +B

)

,i

, (C.5c)

T i (m)
j = δpδij =

[
(ρ+ p)φ+ 4H(ρ+ p)

δϕ

ϕ′ +

[
(ρ+ p)

δϕ

ϕ′

]′]
, (C.5d)

δρ = −3H(ρ+ p)
δϕ

ϕ′ +
ρ+ p

c2s

(
−φ+

(
δϕ

ϕ′

)′
+Hδϕ

ϕ′

)
, (C.6)

where c2s =
pX
ρ,X

= ρ+p
2Xρ,X

,

δp = −(ρ+ p)φ+ 4H(ρ+ p)
δϕ

ϕ′ +

[
(ρ+ p)

δϕ

ϕ′

]′
, (C.7)

and from ∇µT
µ
0 = 0

δρ′ = −3H(δρ+ δp) + 3(ρ+ p)ψ′ + (ρ+ p)

(
δϕ

ϕ′ +B − 1

2
E′

)

,ii

.

(C.8)

The background equations are given by 3.13.
The perturbed equations are

2ψ,ii − 6Hψ′ − 2H
(
B,ii +

1

2
E′

,ii

)
= 8πGa2(δρ+ 2ρφ)

− c14
(
φ+ C ′ +B′ +H(B + C)

)
,ii

+ αH
(
C,ii +

1

2
E′

,ii − 3ψ′
)
,

(C.9a)

2(ψ′ +Hφ),i +

(
H2 − 2

a′′

a

)
B,i = 8πGa2

(
(ρ+ p)

(
δϕ

ϕ′

)

,i

+ pB,i

)

− c14
(
φ′ + C ′′ +B′′)

,i
− c14H

(
φ+ 2(C ′ +B′)

)
,i
− c14

a′′

a
(C +B),i

+ α

((
a′′

a
− 2H2

)
C,i −

3

2
H2B,i

)
, (C.9b)
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[
2ψ′′ + (φ− ψ),kk + 2H(φ′ + 2ψ′) +

(
4
a′′

a
− 2H2

)
(φ+ ψ)

]
δij

+ (ψ − φ),ij +

[
B′

,kk −
1

2
E′′

,kk + 2H
(
B,kk −

1

2
E′

,kk

)]
δij

−
(
B′

,ij −
1

2
E′′

,ij

)
− 2H

(
B,ij −

1

2
E′

,ij

)
+

(
H2 − a′′

a

)
E,ij

= α

[
ψ′′ +H(2ψ′ + φ′) +

(
2
a′′

a
−H2

)
(φ+ ψ)

]
δij

− c2

(
C ′
,kk +

1

2
E′′

,kk + 2H
(
C,kk +

1

2
E′

,kk

))
δij

+
α

2

(
H2 − 2

a′′

a

)
E,ij − c13

(
C ′
,ij +

1

2
E′′

,ij + 2H
(
C,ij +

1

2
E′

,ij

))

+ 8πGa2
(
(δp− 2pψ)δij + pE,ij

)
. (C.9c)

The vector equations

∇µJ
µ
ν + c4A

µ∇µA
σ∇νAσ = λAν (C.10)

For ν = 0

c1∇µ∇µA0 + c2∇0∇µA
µ + c3∇µ∇0A

µ + c4A
µ∇µA

σ∇0Aσ = λA0

⇒ 0 +O(ε2) (C.11a)

For ν = i

c1∇µ∇µAi + c2∇i∇µA
µ + c3∇µ∇iA

µ + c4A
µ∇µA

σ∇iAσ = λAi

β

(
C,kk +

1

2
E′

,kk

)
− α(ψ′ +Hφ) + α

(
a′′

a
− 2H2

)
(C +B)

− c14

(
φ′ + C ′′ +B′′ +Hφ+ 2H(C ′ +B′) +

a′′

a
(C +B)

)
= 0.

(C.11b)

C.2 Longitudinal Gauge

We are going to fix the gauge now, and decided to use the longitudinal gauge
(B=E=0). Writing the equations for mixed indices and in this gauge

2k2ψ + 3(2− α)Hψ′ + c14k
2φ+ c14k

2C ′ + (c14 − α)Hk2C

+
2− α

c2s

(
(3c2s − 1)H2 +H′)φ

=
8πGa2(ρ+ p)

c2s

(
(3c2s − 1)Hδϕ

ϕ′ −
(
δϕ

ϕ′

)′)
, (C.12a)
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2ψ′ + c14φ
′ + (2 + c14)Hφ+ c14

(
C ′′ + 2HC ′ +

a′′

a
C

)

− α

(
a′′

a
− 2H2

)
C = 8πGa2(ρ+ p)

δϕ

ϕ′ , (C.12b)

3(2− α)
(
ψ′′ +H(φ′ + 2ψ′) + (H′ + 2H2)φ

)
− 2k2(φ− ψ)

− αk2
(
C ′ + 2HC

)
= 24πGa2(ρ+ p)

(
4Hδϕ

ϕ′ +
(ρ+ p)′

(ρ+ p)

δϕ

ϕ′ +
δϕ

ϕ′

′)
,

(C.12c)

ψ − φ = −c13
(
C ′ + 2HC

)
. (C.12d)

The vector equation

c14

(
C ′′ + 2HC ′ +

a′′

a
C

)
+ α

(
2H2 − a′′

a

)
C + βk2C

+ α(ψ′ +Hφ) + c14(φ
′ +Hφ) = 0. (C.13)

Simplifications

Subtracting Eq. (C.13) to Eq. (C.12b)

(2− α)(ψ′ +Hφ)− βk2C = 8πGa2(ρ+ p)
δϕ

ϕ′ , (C.14)

and using Eq. (C.12d) to eliminate φ

(2− α)
(
ψ′ +Hψ + c13H(C ′ + 2HC)

)
− βk2C = 8πGa2(ρ+ p)

δϕ

ϕ′ .

(C.15)

Rewriting Eq. (C.12b) using Eq. (C.12d) to eliminate φ and Eq. (C.15) to

eliminate
δϕ

ϕ′ and simplifying we obtain one equation for ψ and C

C ′′ +

(
2 +

c13(c14 + α)

c14(1 + c13))

)
HC ′ +

(
c14 − α+ 2c13c14

c14(1 + c13)
H′

+
(c14 + α)(1 + 2c13)

c14(1 + c13)
H2

)
C +

β

c14(1 + c13)
k2C

+
c14 + α

c14(1 + c13)
(ψ′ +Hψ) = 0. (C.16)

We can get this equation also substituting Eq. (C.12d) in the vector equa-
tion.

Now we need to get a second equation for ψ and C. Adding Eqs. (C.12a)
and (C.12c) and using Eq. (C.12d) to eliminate φ
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(2− α)ψ′′ + 6(2− α)Hψ′ + (2− α)

(
c2s + 1

c2s
H′ +

5c2s − 1

c2s
H2

)
ψ

+ (2− α)c13HC ′′ + (2− α)c13

(
c2s + 1

c2s
H′ +

7c2s − 1

c2s
H2

)
C ′

+(2−α)c13

(
2
2c2s + 1

c2s
H′ + 2

5c2s − 1

c2s
H2

)
HC+(c14(1 + c13)− β) k2C ′

+ (c14(1 + 2c13)− α− 2β) k2HC + (2 + c14)k
2ψ

= 8πGa2(ρ+ p)

(
7c2s − 1

c2s
Hδϕ

ϕ′ +
(ρ+ p)′

(ρ+ p)

δϕ

ϕ′ +
c2s − 1

c2s

δϕ

ϕ′

′)
, (C.17)

substituting Eq. (C.15) and
(ρ+ p)′

ρ+ p
=

2HH′ −H′′

H2 −H′ − 2H, and simplifying

we end up with the second equation for ψ and C

ψ′′ +

(
2H− 2HH′ −H′′

H2 −H′

)
ψ′ +

(
2H′ − 2HH′ −H′′

H2 −H′ H
)
ψ

+ c13HC ′′ + c13

(
2H′ + 2H2 −H2HH′ −H′′

H2 −H′

)
C ′

+ 2c13

(
3H′ −H2HH′ −H′′

H2 −H′

)
HC +

2 + c14
2− α

c2sk
2ψ

+
c14(1 + c13)c2s − β

2− α
k2C ′

+

(
(c14(1 + 2c13) + 2c13)c2s − β

2− α
H+

β

2− α

2HH′ −H′′

H2 −H′

)
k2C = 0.

(C.18)
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Appendix D

Scalar Equations during
Inflation

In this appendix we discuss the scalar sector in the longitudinal gauge in
the presence of an inflaton field.

In the longitudinal gauge, there are five fields in the scalar sector: φ, ψ,
C, δλ and the inflaton perturbation δϕ. Therefore, we need five independent
equations to uniquely determine their values. Contracting Eq. (3.7) with Aβ

and using the constraint AβAβ = −1 yields an equation that expresses the
Lagrange multiplier in terms of the Aether and the metric,

δλ =
1

a2

[
− 6(α− c2)H2φ+ 6c2

a′′

a
φ+ 3c2Hφ′ ++c3k

2φ

− 3(2β − c2)Hψ′ + 3c2ψ
′′ − (β + c1)Hk2C + (β − c1)k

2C ′

]
, (D.1)

which shows explicitly how the Lagrange multiplier can be expressed in
terms of the remaining fields. The time component of the linearized Aether
field Eq. (3.7) is identically satisfied. The linearized spatial components give

C ′′ + 2HC ′ +

[
α

c14

(
2H2 − a′′

a

)
+

a′′

a

]
C

+
β

c14
k2C +

(
1 +

α

c14

)
Hφ+ φ′ +

α

c14
ψ′ = 0, (D.2)

which combined with the 0
i Einstein equation results in

Hφ+ ψ′ − β

2− α
k2C = 4πG

2

2− α
ϕ′δϕ. (D.3)

Eq. (D.3) expresses δϕ in terms of the remaining scalars, and allows us to
eliminate δϕ from our system of equations. On large scales, this equation
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has the same form it would have in the absence of the Aether, with the
difference that the effective Newton’s constant has the renormalized value
implied by Eqs. (3.13). The part of the i

j Einstein equations which is not
proportional to δij is

φ = ψ + c13(C
′ + 2HC), (D.4)

which immediately reveals that the Einstein-Aether is a source of anisotropic
stress in the scalar sector. This equation allows us to express φ in terms
of ψ and C, and thus eliminate yet another variable from the equations.
Note that scalar fields and perfect fluids cannot source anisotropic stress,
which is why a value of ψ−φ different from zero is sometimes attributed to
modified gravity. Finally, the sum of the 0

0 and the i
j Einstein equations

proportional to δij is

ψ′′ + 5Hψ′ +Hφ′ + 2

(
a′′

a
+H2

)
φ+

c14 − 1

2− α
k2φ+

3

2− α
k2ψ

+
c14 − c2
2− α

k2C ′ +
c14 − α− 2c2

2− α
Hk2C =

8πG

2− α
3H(1− w)ϕ′δϕ,

(D.5)

where we have used Eq. (D.1) to eliminate δλ, and that during power-law
expansion the equation of state parameter w is constant. Eqs. (D.1), (D.2),
(D.3), (D.4) and (D.5) form a set of five differential equations for the five
unknowns. We can use the constraints (D.3) and (D.4) to eliminate φ and
δϕ from Eqs. (D.2) and (D.5), arriving at

C ′′ +

(
2 +

c13(c14 + α)

c14(1 + c13)

)
HC ′ +

(
c14 − α+ 2c13c14

c14(1 + c13)

a′′

a
+

2α

c14
H2

)
C

+
β

c14(1 + c13)
k2C +

c14 + α

c14(1 + c13)
(ψ′ +Hψ) = 0,

(D.6)

and

ψ′′ + 3(1 + w)Hψ′ + 2

(
a′′

a
− 2H2

)
ψ + 3(1 + w)H2ψ

+ c13HC ′′ + 2c13

(
a′′

a
−H2

)
C ′ + 3(1 + w)c13H2C ′

+ c13

(
6
a′′

a
− 10H2

)
HC + 6(1 + w)c13H3C

+
2 + c14
2− α

k2ψ +
c14(1 + c13)− β

2− α
k2C ′

+
c14(1 + 2c13) + 4β − α− 3(1 + w)β

2− α
Hk2C = 0.

(D.7)

Because this is a system of two second-order linear differential equations,
we need to specify four independent initial conditions, so there must exist
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four linearly independent solutions. This is also what we expect by simply
counting matter fields. In the limit of weak gravitational couplings, we
may neglect metric perturbations, so we just have one degree of freedom
in the inflaton perturbations and one degree of freedom in the Aether field
perturbations, for a total of four initial conditions to determine uniquely
the evolution of the system. As we deviate from the limit of weak coupling,
neglecting metric perturbations ceases to be a good approximation, but the
number of degrees of freedom in the theory remains unchanged.

D.1 Short wavelength Solutions

In the short wavelength regime, k|η| - 1, the solutions of the equations
of motion (D.6) and (D.7) behave approximately like in flat space. The
notion of an approximate solution can be formalized by introducing kη as
an expansion parameter. In the limit k|η| - 1 the solution of Eqs. (D.6)
and (D.7) can be cast in the form

ψ = ψ̃(kη) exp(−icskη), C =
1

k
C̃(kη)ψ, (D.8)

where ψ̃ and C̃ are functions whose power series expansion starts at a finite
positive power of kη, and cs is a “sound speed” to be determined. Substi-
tuting the ansatz (D.8) into Eqs. (D.6) and (D.7), and keeping the leading
powers of kη yields a set of algebraic equations with two positive frequency
and two negative frequency solutions, for a total of four solutions, as ex-
pected. At leading order, ψ̃ remains unconstrained and can be taken to be
constant. The positive frequency solutions are given by

(cs)a = ca, C̃a = i
α− 2

β
ca, (D.9a)

(cs)ϕ = 1, C̃ϕ = i
c14 + α

β − c14(1 + c13)
, (D.9b)

where ca is the sound speed of Eq. (4.24).
These two modes correspond to the two independent short wavelength

solutions (4.26a) and (4.26b) that we found in Subsection 4.1.2. To see that
this is the case, we may use the expression of δN and ζa in the longitudinal
gauge

δN =
Hδϕ

ϕ′ +HC, (D.10a)

ζa = ψ −HC. (D.10b)

In the first equation, δϕ should be expressed in terms of ψ and C through
the relation

δϕ =
M2

P

ϕ′
[
(2− α)

(
ψ′ +Hψ + c13HC ′ + 2c13H2C

)
− βk2C

]
, (D.11)
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which follows from (D.3) and (D.4). By comparison with (4.26a) and (4.26b)
we also obtain the overall normalization factor ψ̃. For the first mode, we
have

ψa → Z1/2
a

a

e−icakη

√
2cak

, Ca → 1

k
C̃a ψa, (D.12)

where Za is given in Eq. (4.23), and C̃a in Eq. (D.9a). For the second mode,
we have

ψϕ → Z1/2
ϕ

a

e−ikη

√
2k

, Cϕ → 1

k
C̃ϕ ψϕ, (D.13)

where C̃ϕ is given in Eq. (D.9b) and

Z1/2
ϕ ≡ i

ϕ′

kM2
P

(
2 +

c14(β + α(1 + c13))

β − c14(1 + c13)

)−1

. (D.14)

Substitution of (D.12) into (D.10) reproduces Eq. (4.26b), while substitution
of (D.13) into (D.10), together with the background Eqs. (3.13), reproduces
Eq. (4.26a). The vacuum is thus characterized by the two independent
solutions of Eqs. (D.6) and (D.7) that approach (D.12) and (D.13) in the
limit k|η| → ∞.

D.2 Long wavelength Solutions

In the limit of long wavelengths, k|η| # 1, we may neglect terms proportional
to k2 in Eqs. (D.6) and (D.7). In this limit, the power-law ansatz

ψ = (−η)t, C = C · (−η) · ψ (D.15)

reduces the two coupled differential equations (D.6) and (D.7) to an algebraic
system for the two constants t and C,

[
t2 +

c14(1 + c13)(5 + 3w) + 2c13(c14 + α)

c14(1 + c13)(1 + 3w)
t

+
2(c14 + α)(3(1 + w) + c13(5 + 3w))

c14(1 + c13)(1 + 3w)2

]
C

=
c14 + α

c14(1 + c13)

(
t+

2

1 + 3w

)
, (D.16a)

t(5 + t+ 3w + 3wt)(1 + 3w − 2c13 C) = 0. (D.16b)

Because Eqs. (D.16) are linear in C, they may be reduced to a single quartic
equation for t, with four different solutions, as it should be.
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D.2.1 Adiabatic modes (δN = 0)

Two solutions of the coupled equations (D.16) follow directly from Eq.
(D.16b),

t1 = 0, C1 =
1 + 3w

3(1 + w) + c13(5 + 3w)
, (D.17a)

t2 = −5 + 3w

1 + 3w
, C2 = −1 + 3w

2
. (D.17b)

The corresponding perturbations are the two “adiabatic” modes that always
exist at long wavelengths, regardless of the matter content of the universe
[Wei03]. Along these two modes, the (spatial) curvature perturbation on
comoving slices1,

ζ ≡ ψ +
2

3

Hφ+ ψ′

H(1 + w)
, (D.18)

and the difference of the two metric potentials (which is proportional to the
anisotropic stress) are given by

ζ1 =
(5 + 3w)(1 + c13)

3(1 + w) + c13(5 + 3w)
ψ1, φ1 − ψ1 = − c13

1 + c13
ζ1, (D.19a)

ζ2 = 0, φ2 − ψ2 = 0. (D.19b)

It can be readily checked that for these modes δN = 0, so that matter
is at rest in the Aether frame. Though these adiabatic modes have the
properties described in [Wei03], they do not share the properties postulated
in [Wei04b, Wei04a, Wei08]. In particular, for the first adiabatic mode, the
anisotropic stress is non-zero. The form of the two adiabatic modes for an
arbitrary expansion history and matter content is derived in Appendix F.

D.2.2 Isocurvature modes (ζ = 0, δN &= 0)

The two remaining solutions of Eqs. (D.16) require C = (1 + 3w)/2c13, which
gives

ψ = −c13HC ∝ (−η)t± . (D.20)

From (D.16a), the exponents are given by

2t± = −
(
5 + 3w

1 + 3w

)
±

√(
5 + 3w

1 + 3w

)2

+ 4κ, (D.21)

1Recall from equation (4.8) that we mean comoving with respect to all forms of matter,
excluding the Aether. The 0

i Einstein equation (D.3) however reveals that the contribution
of the Aether to the total velocity perturbation is negligible on large scales. Hence, on
large scales, hypersurfaces comoving with matter and comoving with matter plus Aether
are actually the same.
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where κ is given by Eq. (4.30). It is straightforward to check that for these
modes we have

ζ± = 0, (D.22a)

φ± − ψ± =

(
1 + 3w

2

)
t(∓) ψ±, (D.22b)

δN± = −
(
1 + c13
c13

)
ψ± ∝ (−η)t(±) . (D.22c)

These are two isocurvature modes, in the sense that the curvature pertur-
bation on comoving slices ζ vanishes for any value of w.

From Eq. (D.21) it is straightforward to check that, for any value of
w, one of the two modes is a decaying one. Whether the second mode is
growing or decaying depends on the sign of κ, which is in turn determined
by the sign of 1 + (α/c14). For κ < 0 the second solution is also a decaying
one, but for κ > 0 there is a growing mode. In the special case κ = 0, there
is a constant non-decaying long wavelength solution.

The existence of a growing non-adiabatic isocurvature mode in Einstein-
Aether theories for (α/c14) < −1 can have important phenomenological
consequences, as we discuss in the main text.
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Scalar Equations for
Radiation and Matter

We have found the solutions during inflation in the previous chapter, both
in the short and long wavelength limits. Now, we are going to write the
equations (again in the longitudinal gauge) and full solutions during the
epochs of radiation and matter domination. The analysis of these results is
done in Section 4.1.5.

E.1 Radiation

In a radiation-dominated universe, a ∝ η

H =
1

η
; H′ =

−1

η2
; H′′ =

2

η3
; (H′ = −H2).

From Eqs. (C.18, C.17) we end up with a pair of differential equations
for ψ and C

ψ′′ + 4Hψ′ +
2 + c14
2− α

c2sk
2ψ + c13HC ′′ + 2c13H2C ′ + 2c13HH′C

+
c14(1 + c13)c2s − β

2− α
k2C ′+

(c14(1 + 2c13) + 2c13)c2s − 3β

2− α
Hk2C = 0,

(E.1)

and

C ′′ +

(
2 +

c13(c14 + α)

c14(1 + c13)

)
HC ′ + 2

α

c14
H2C +

β

c14(1 + c13)
k2C

+
c14 + α

c14(1 + c13)
(ψ′ +Hψ) = 0.

(E.2)

In Section 4.1.5 we calculate the solutions of these equations in the short
wavelength limit and do the matching with the long wavelength solutions in
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order to get the normalization. The complete normalization coefficients for
the adiabatic mode are

A1 =
1

3(1 + c13)
√

π(2− α)




cos

√
β(2+c14)

c14(1+c13)(2−α)

Aden

−
(2−α)(2+3c13)

β

√
β(2+c14)

c14(1+c13)(2−α) sin
√

β(2+c14)
c14(1+c13)(2−α)

Aden



 , (E.3)

A2 =
1

3(1 + c13)
√

π(2− α)

cos 1√
3
−

√
3(α+c14)(2+3c13)
c14(1+c13)−3β sin 1√

3

Aden
, (E.4)

and for the isocurvature mode

A1 = − 1

(1 + c13)
√
π(2− α)




cos

√
β(2+c14)

c14(1+c13)(2−α)

Aden

−
(2−α)c13

β

√
β(2+c14)

c14(1+c13)(2−α) sin
√

β(2+c14)
c14(1+c13)(2−α)

Aden



 , (E.5)

A2 =
1

(1 + c13)
√

π(2− α)

√
3(α+c14)c13

c14(1+c13)−3β sin 1√
3
− cos 1√

3

Aden
. (E.6)

where

Aden =

√
3(α+ c14)

c14(1 + c13)− 3β
sin

1√
3
cos

√
β(2 + c14)

c14(1 + c13)(2− α)

− cos
1√
3

√
(2 + c14)(2− α)

c14β(1 + c13)
sin

√
β(2 + c14)

c14(1 + c13)(2− α)
.

(E.7)

In the limit |α+ c14| # |c14|

A1 ∼
1

(1 + c13)
√

π(2− α)
sec

1√
3

(
− c13

+
β

2− α

√
c14(1 + c13)(2− α)

β(2 + c14)
cot

√
β(2 + c14)

c14(1 + c13)(2− α)

)
,

(E.8)

A2 ∼
1

2− α

√
c14β

π(1 + c13)(2 + c14)
csc

√
β(2 + c14)

c14(1 + c13)(2− α)
. (E.9)
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E.2 Matter

In a matter dominated universe, a ∝ η2

H =
2

η
; H′ =

−2

η2
; H′′ =

4

η3
; (H′ = −1

2
H2).

From Eqs. (C.18, C.17) we end up with a pair of differential equations for
ψ and C.

ψ′′ + 3Hψ′ +
2 + c14
2− α

c2sk
2ψ + c13HC ′′ + 2c13H2C ′ + 2c13HH′C

+
c14(1 + c13)c2s − β

2− α
k2C ′ +

(c14(1 + 2c13) + 2c13)c2s − β

2− α
Hk2C = 0,

(E.10)

and

C ′′ +

(
2 +

c13(c14 + α)

c14(1 + c13)

)
HC ′ +

(
(c14 + α)(1 + 2c13)

2c14(1 + c13)
+

α

c14

)
H2C

+
β

c14(1 + c13)
k2C +

c14 + α

c14(1 + c13)
(ψ′ +Hψ) = 0. (E.11)

In the short wavelength limit the equations reduce to

C ′′ +
β

c14(1 + c13)
k2C +

α+ c14
c14(1 + c13)

ψ′ = 0, (E.12)

ψ′′ − β

2− α
k2C ′ = 0. (E.13)

From the second equation we get

ψ′ = A+
β

2− α
k2C, (E.14)

and plugging this into the first equation we get a second order differential
equation for C,

C ′′ +
β(2 + c14)

c14(1 + c13)(2− α)
k2C +

α+ c14
c14(1 + c13)

A = 0, (E.15)

with solution

C = −(α+ c14)(2− α)

β(2 + c14)

A

k2
+B cos

√
β(2 + c14)

c14(1 + c13)(2− α)
kη

+D sin

√
β(2 + c14)

c14(1 + c13)(2− α)
kη.

(E.16)
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Now, integrating Eq. (4.67) we get the solution for ψ

ψ = F +
2− α

2 + c14
Aη

+

√
βc14(1 + c13)

(2 + c14)(2− α)
k

(
B sin

√
β(2 + c14)

c14(1 + c13)(2− α)
kη

−D cos

√
β(2 + c14)

c14(1 + c13)(2− α)
kη

)
.

(E.17)

The four constants (A, B, D, F ) will be obtained through the matching
with the long wavelength solutions, both for the adiabatic

ψ̃ad =
3 + 5c13
5(1 + c13)

ζ0, (E.18)

C̃ad = − 1

5(1 + c13)
η ζ0, (E.19)

and isocurvature cases

ψ̃iso = − c13
1 + c13

(
η

ηeq

)t+

δN0, (E.20)

C̃iso =
1

2(1 + c13)

(
η

ηeq

)t+

η δN0, (E.21)

where

ζ0 1 δN0 1
H

2π

√
16πG

3(2− α)
, (E.22)

and

t+ 1 −6

5

(
1 +

α

c14

)
. (E.23)

The final solutions for the adiabatic mode

Cad = −(α+ c14)(2− α)

β(2 + c14)

Aad

k2
+Bad cos

√
β(2 + c14)

c14(1 + c13)(2− α)
kη

+Dad sin

√
β(2 + c14)

c14(1 + c13)(2− α)
kη,

(E.24)
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and

ψad = Fad +
2− α

2 + c14
Aadη

+

√
βc14(1 + c13)

(2 + c14)(2− α)
k

(
Bad sin

√
β(2 + c14)

c14(1 + c13)(2− α)
kη

−Dad cos

√
β(2 + c14)

c14(1 + c13)(2− α)
kη

)
,

(E.25)

where

Aad =
4βk

5(2− α)(1 + c13)
√
3π(2− α)

, (E.26)

Bad =
4

5(1 + c13)
√
3π(2− α)

1

k

×
(√

c14(1 + c13)(2− α)

β(2 + c14)
sin

√
β(2 + c14)

c14(1 + c13)(2− α)

− 2− α

2 + c14
cos

√
β(2 + c14)

c14(1 + c13)(2− α)

)
,

(E.27)

Dad =
−4

5(1 + c13)
√

3π(2− α)

1

k

×
(√

c14(1 + c13)(2− α)

β(2 + c14)
cos

√
β(2 + c14)

c14(1 + c13)(2− α)

+
2− α

2 + c14
sin

√
β(2 + c14)

c14(1 + c13)(2− α)

)
,

(E.28)

Fad =
4 (6− β + 10c13 + 2(1 + 2c13)c14)

5(1 + c13) (2 + c14)
√
3π(2− α)

. (E.29)

For the isocurvature mode (considering |c14+α # c14| and thus t+ ∼ 0)

Ciso = −(α+ c14)(2− α)

β(2 + c14)

Aiso

k2
+Biso cos

√
β(2 + c14)

c14(1 + c13)(2− α)
kη

+Diso sin

√
β(2 + c14)

c14(1 + c13)(2− α)
kη,

(E.30)
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and

ψiso = Fiso +
2− α

2 + c14
Aisoη

+

√
βc14(1 + c13)

(2 + c14)(2− α)
k

(
Biso sin

√
β(2 + c14)

c14(1 + c13)(2− α)
kη

−Diso cos

√
β(2 + c14)

c14(1 + c13)(2− α)
kη

)
,

(E.31)

where

Aiso =
−2kβ

(2− α)(1 + c13)
√
3π(2− α)

, (E.32)

Biso =
−2

(1 + c13)
√

3π(2− α)

1

k

×
(√

c14(1 + c13)(2− α)

β(2 + c14)
sin

√
β(2 + c14)

c14(1 + c13)(2− α)

− 2− α

2 + c14
cos

√
β(2 + c14)

c14(1 + c13)(2− α)

)
,

(E.33)

Diso =
2

(1 + c13)
√
3π(2− α)

1

k

×
(√

c14(1 + c13)(2− α)

β(2 + c14)
cos

√
β(2 + c14)

c14(1 + c13)(2− α)

+
2− α

2 + c14
sin

√
β(2 + c14)

c14(1 + c13)(2− α)

)
,

(E.34)

Fiso =
2 (β − 4c13 − (−1 + c13)c14)

(1 + c13) (2 + c14)
√
3π(2− α)

. (E.35)

122



Appendix F

Long Wavelength Adiabatic
and Isocurvature Modes

The properties of the two long wavelength adiabatic and isocurvature modes
for arbitrary expansion history and fairly general matter content can be also
obtained by following a procedure outlined by Weinberg in [Wei03].

F.1 Adiabatic Modes

Consider the gauge transformations generated by

η → η + ε(η) and xi → xi + ω xi, (F.1)

where ω is a constant. Using the transformation properties of the metric one
finds that these transformations preserve the structure of longitudinal gauge.
In particular, they induce the following transformations on the metric and
Aether perturbations,

φ → φ− ε′ −Hε, ψ → ψ + ω +Hε, C → C + ε. (F.2)

Because the equations of motion are invariant under gauge transformations,
the difference of two sets of perturbations that differ by a gauge transfor-
mation is a solution of the linearized equations,

φ = −ε′ −Hε, ψ = ω +Hε, C = ε. (F.3)

The corresponding values of the remaining perturbation variables can be also
determined by their transformation properties under (F.1). For instance,
for any scalar perturbation δϕ or any velocity perturbation δui ≡ ∂iδu the
solutions have

δϕ = −εϕ′, δu = a ε. (F.4)
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Of course, these space-independent solutions are just gauge modes, physi-
cally equivalent to no perturbation at all. But they can be extended to actual
space-dependent perturbations if the linearized 0

i and i
k Einstein equations

are satisfied for these putative solutions. The 0
i equation is automatically

satisfied for the ansatz (F.3) and (F.4). On the other hand, in the presence
of the Aether the i

j Einstein equation (D.4) imposes the constraint

ε′ + 2Hε+
1

1 + c13
ω = 0, (F.5)

where we have assumed that the remaining matter does not contribute to
the scalar anisotropic stress. The general solution of Eq. (F.5) is the super-
position of two solutions, with

ε1 = − 1

a2
ω

1 + c13

∫ η

dη̃ a2(η̃), ω1 = ω, (F.6a)

ε2 =
C0

a2
, ω2 = 0, (F.6b)

where C0 is an integration constant. The first solution yields the non-
decaying mode, which in the “gravity” sector reads

φ1 =
ω

1 + c13

(
1− H

a2

∫
dη̃ a2(η̃)

)
, (F.7a)

ψ1 = ω

(
1− H

a2
1

1 + c13

∫
dη̃ a2(η̃)

)
, (F.7b)

C1 = − ω

1 + c13

1

a2

∫
dη̃ a2(η̃). (F.7c)

This reduces to the adiabatic mode (D.17a) for a constant equation of state.
For this mode the curvature perturbation is constant, ζ = ω, and the
anisotropic stress is non-zero (if c13 &= 0). The second solution in Eq. (F.6a)
corresponds to a decaying mode, which, for a constant equation of state,
agrees with the adiabatic mode in Eq. (D.17b),

φ2 = C0
H
a2

, ψ2 = C0
H
a2

, C =
C0

a2
. (F.8)

For this second adiabatic mode, the curvature perturbation vanishes, ζ = 0,
and so does the anisotropic stress.

F.2 Isocurvature Modes

An extension of the previous method also unveils the two isocurvature
modes, under the assumption that the Aether does not couple to matter.
Consider the ansatz

φ = c13(C
′ +HC), ψ = −c13HC, (F.9)
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which arises from the gauge transformation (F.1) with ω = 0 and ε = −c13C.
Acting on any velocity uµ and any scalar ϕ (not necessarily the inflaton),
the same gauge transformation leads to the matter perturbations

δϕ = c13ϕ
′C, δu = −c13aC. (F.10)

Since by assumption the Aether does not couple to matter, and for the
same reasons as in the adiabatic case, we expect Eqs. (F.9) and (F.10) then
to be a solution of the matter equations of motion, no matter what the
Aether perturbation C actually is. Of course, for arbitrary values of C, we
cannot expect the ansatz to satisfy Einstein’s equations, since the Aether
does couple to gravity. Inspection of the latter however reveals that the 0

0, 0i
and diagonal i

j equations only contain spatial gradients of the Aether field,
which can be neglected in the long wavelength limit. The only equation in
which the Aether perturbation is not negligible at long wavelengths is (D.4),
which is actually satisfied by the ansatz (F.9). Hence, it only remains to
find out what the Aether perturbation C is. Substituting Eq. (F.9) into
the Aether field equation (D.2) results in a differential equation for the yet
undetermined Aether perturbation,

C ′′ + 2HC ′ +

[(
1 +

α

c14

)
H2 +

(
1− α

c14

)
H′

]
C = 0. (F.11)

This equation has two independent solutions, which when plugged into (F.9)
and (F.10) give the two independent isocurvature modes, for which ζ = ω =
0. None of these solutions can be adiabatic, as the adiabatic mode has ε = C,
while along these solutions ε = −c13C (recall that c13 = −1 is a singular
case). A measure of the non-adiabaticity of these modes is the difference
in the e-folding number between surfaces comoving with Aether, and those
comoving with matter, which equals

δN = (1 + c13)HC = −1 + c13
c13

ψ, (F.12)

and thus differs from zero if c13 &= −1. Since along these solutions all matter
components (aside from the Aether) share the same velocity, the two modes
describe a matter-Aether isocurvature perturbation, which is the only kind
of isocurvature perturbation that can be generated if the Aether does not
couple to matter. For a constant equation of state, these two isocurvature
modes reproduce those found in Subsection D.2.2.

Note that this method of generating solutions would break down if the
anisotropic stress of matter on large scales were not negligible, as would
happen for instance if the matter sector contained a second Aether field.
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