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Abstract: Methods for generating beams with arbitrary polarization based
on the use of liquid crystal displays have recently attracted interest from a
wide range of sources. In this paper we present a technique for generating
beams with arbitrary polarization and shape distributions at a given plane
using a Mach-Zehnder setup. The transverse components of the incident
beam are processed independently by means of spatial light modulators
placed in each path of the interferometer. The modulators display computer
generated holograms designed to dynamically encode any amplitude value
and polarization state for each point of the wavefront in a given plane.
The steps required to design such beams are described in detail. Several
beams performing different polarization and intensity landscapes have
been experimentally implemented. The results obtained demonstrate the
capability of the proposed technique to tailor the amplitude and polarization
of the beam simultaneously.
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1. Introduction

The propagation of polarized light and its interaction with matter have been extensively ex-
plored in the fields of optical inspection and meteorology, display technologies, data storage,
optical communications, material sciences and astronomy, as well as in biological research [1].
While early studies mainly dealt with spatially homogeneous polarization states, in recent years
interest in arbitrary spatially-variant polarized beams (ASPBs) has increased significantly due
to their special properties compared to homogeneously polarized beams, which can thereby
enhance the functionality of optical systems. Nevertheless, the generation of ASPBs can be a
difficult task; while static techniques do not allow dynamic encoding of ASPB patterns [2–5],
a solution can be found using spatial light modulators (SLMs) which can be considered as
reconfigurable phase retarder devices controlled by computer [6–16].

In this paper we present a method for generating beams with arbitrary polarization and shape
distributions (BAPS) at a given plane. Our approach is based on a Mach-Zehnder setup com-
bined with a translucent SLM in each path of the interferometer [17]. The transverse com-
ponents of the incident light beam are processed independently and modified by means of
specifically designed holograms calculated using a procedure derived from Arrizón’s method
to encode complex signals [18, 19]. The processed transverse components are recombined and
imaged on a CCD camera. Our approach allows us to encode any polarization state at each
point of the wavefront and the amplitude may also be modeled so as to obtain a particular shape
in a given plane.

The paper is organized as follows: in section 2 we present the optical setup required to gener-
ate BAPS, while the algorithm for calculating complex-valued holograms is reviewed in section
3. Several examples of experimentally generated BAPS that illustrate how this method is used
in practice are found in section 4. Finally, the conclusions are summarized in section 5.

2. Optical setup

Figure 1 shows the experimental setup based on a Mach-Zehnder interferometer. An unpolar-
ized HeNe laser beam passes trough linear polarizer P1 set at 45◦ with respect to the x direction;
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this field (Ein) is described by Ein = Ein2(x,y)e1 +Ein1(x,y)e2, where e1 and e2 are unit vec-
tors in the x and y directions. Later, Ein is split into two beams by means of a polarizing beam
splitter, PBS1. Reflected by mirror M1 or M2, the split beams pass through different wave
plates which rotate the oscillating plane and set the modulator in order to achieve the desired
modulation curve. Afterwards, the light passes through modulator SLM1 or SLM2 which dis-
play complex transmittances h1(x,y) and h2(x,y), respectively. Each of the displays used is a
translucent twisted nematic Holoeye HEO 0017 with a resolution of 1024× 768 pixels and
32 μm of pixel pitch. Then, the light is recombined by means of the second polarizing beam
splitter PBS2 and fed into the on-axis reconstruction system consisting of a 4 f -Fourier lens
system. Note that a spatial filter in the back focal plane of L1 is needed to remove higher-order
diffracted terms generated by the holograms h1(x,y) and h2(x,y). Finally, the resulting field is
analyzed by means of P2 and the final irradiance is recorded by the CCD camera. The output
field (Eout(x,y)) at the camera plane is

Eout(x,y) = Ein1(x,y) h1(x,y)e1 +Ein2(x,y) h2(x,y)e2 = (1)

= A1(x,y)exp(iφ1(x,y))e1 +A2(x,y)exp(iφ2(x,y))e2 .

Where A1(x,y) and A2(x,y) are the amplitude distributions of Eout(x,y) in the x and y direc-
tions respectively and φ1(x,y) and φ2(x,y) are the corresponding accumulated phase shifts. The
total phase delay between components x and y of Eout(x,y) is φ(x,y) = φ2(x,y)− φ1(x,y).
For convenience, we write A1(x,y) = Ash(x,y)a1(x,y) and A2(x,y) = Ash(x,y)a2(x,y) with
a2

1(x,y)+a2
2(x,y) = 1, where Ash(x,y) is the beam shape distribution. In this way, the oscillation

orientation distribution at each point (x,y) of the wavefront is θ(x,y)= tan−1(a2(x,y)/a1(x,y)).
For simplicity, the magnification introduced by the imaging 4 f system is not taken into account.
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Fig. 1: Sketch of the experimental setup.

3. Codification procedure

Arrizón developed a cell-based holographic algorithm for encoding complex optical signals
in SLMs with arbitrary amplitude and phase distributions [19]. Here, we briefly summarize
the steps required to generate holograms able to shape the amplitude and the phase of the
wavefront. Figure 2(a) is a polar diagram of the set of complex values accessible by modulators
SLM1 (blue dots) and SLM2 (red dots). Both curves have been determined using the method
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presented in [20], which is appropriate for transmissive twisted-nematic modulators. The wave
plates are oriented as follows: SLM1, λ/2 at 70◦ and λ/4 at 145◦; SLM2, λ/2 at 150◦ and
λ/4 at 35◦ (these angles are from the fast axis of the wave-plate). From Fig. 2(a) it is apparent
that: (i) the amplitude modulation is not constant and no phase-only modulation would be
possible using this device; (ii) the phase values are limited to the range [0◦, 240◦]; and (iii)
the displays perform in similar but not identical ways. Note that the phase origin of SLM2

is shifted by fine tuning the optical path of the corresponding arm of the interferometer. The
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Fig. 2: (a) Modulation response M for the Holoeye displays SLM1 and SLM2. The Fig. also

shows how Cnm can be accessed as a combination of M(1)
nm , M(2)

nm , E(1)
nm and E(2)

nm . (b) Double
pixel hologram approach: four pixels of the SLM that have values M(1)

nm and M(2)
nm are required

to encode each complex value, Cnm.

holographic algorithm takes advantage of the amplitude-phase coupling of these displays to
achieve full-complex modulation with two SLMs. Let Cnm be the complex value to be coded
at position (n,m). If Cnm does not belong to the modulation curve M, it can be written as

Cnm =M(1)
nm −E(1)

nm and Cnm =M(2)
nm −E(2)

nm where M(1)
nm and M(2)

nm are points on M (see Fig. 2(a) for

details). Selecting M(1)
nm and M(2)

nm in such a way that E(1)
nm =−E(2)

nm then Cnm =
(

M(1)
nm +M(2)

nm

)
/2.

Following the cell-oriented holograms approach, four pixels in the SLM are required to encode
each complex value, Cnm, as depicted in Fig. 2(b). Using this pixel arrangement, the optical

Fourier transforms of M(1)
nm and M(2)

nm are reconstructed on-axis whereas the undesired terms
E1

nm and E2
nm are diffracted off-axis; to remove their contribution, a spatial filter is placed at the

back focal plane of lens L1. Finally, the desired distribution is reconstructed on-axis at the back
focal plane of lens L2 (CCD plane).

Figure 3 shows all the possible values for Cnm that can be obtained as a combination of two

points M(1)
nm and M(2)

nm that belong to the modulation curves. Blue and red dots indicate the points
of the complex plane that can be accessed by SLM1 or SLM2, respectively. Consequently, if the
phase origin of SLM2 is shifted 60◦ with respect to the other display, the system can access any
amplitude value and phase difference φ(x,y) between the two components within the circle of
transmittance T = 0.4. Although the relative phase delay, φ(x,y), can be achieved from many
pairs φ1(x,y) and φ2(x,y), it is necessary to emphasize that this pair of phase distributions has
to be smooth and without phase jumps across the beam.
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Fig. 3: Accessible values using the codification procedure (SLM1 in blue, SLM2 in red). The
black dashed line delimits the useful values.

4. Results

Four different beams with arbitrary polarization and shape distributions have been considered.
The first case (Fig. 4(a)) is a radially polarized beam. In the second, (Fig. 4(b)), the oscillation
orientation changes according to the law θ(x,y) = 4tan−1(y/x). In these two cases, the shape
Ash(x,y) remains constant. However, the illumination is not uniform due to the expanded Gaus-
sian incident beam. The third case, (Fig. 4(c)), is a Laguerre-Gauss 10 mode (Eq. 2a), where the
inner part of the beam is radially polarized and the external ring is azimuthally polarized. The
last case considered, (Fig. 4(d)), is a doughnut-shaped beam following Eq. 2b; in this case the
oscillation orientation and the phase delay are θ(x,y)= tan−1(y/x) and φ(x,y)=±2tan−1(y/x)
respectively. The + sign stands for right-handed polarization states whereas the − sign is used
for left-handed cases.

Ash(x,y) ∝ exp

(
−x2 + y2

w2
0

)
L0

1

(
−x2 + y2

w2
0

)
(2a)

Ash(x,y) ∝ (x2 + y2)1/2 exp

(
−x2 + y2

w2
0

)
(2b)

Fig. 4: (a) Gaussian beam with radial polarization, (b) Gaussian beam with ‘star-like’ polariza-
tion, (c) L0

1 Laguerre-Gauss beam displaying different polarizations in the external ring and in
the inner disc and (d) doughnut-shaped beam with φ(x,y) =±2tan−1(y/x).
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Note that w0 is the beam waist radius and L0
1 is the first generalized Laguerre polynomial.

For the Laguerre-Gauss 10 and the doughnut-like cases, the effect of the input beam has been
compensated for in the respective holograms. Four pairs of holograms have been calculated
to generate the beams described above. The corresponding experimental light distributions ob-
tained at the CCD plane are presented in Fig. 5. The first row shows the light distributions
without analyzer P2. Rows 2 to 5 display the results obtained for each beam when the analyzer
P2 is set at 0◦, 45◦, 90◦ and 135◦, respectively.

The intensity patterns obtained clearly demonstrate that the synthesized beams behave as
expected. Nevertheless, implementation requires us to deal with some non-critical drawbacks:
(i) precise alignment of the different optical components is required, especially a good match
between the corresponding pixels of the SLMs; (ii) the selected method requires the use of
four-pixel cells to code each complex value, which means that the points available to define the
wavefront are reduced by a factor of four; and (iii) some light is lost due to the modulation used
(with a maximum transmittance T = 0.4, see Fig. 2).

To provide more insight about the method, an experimental measure of the Stokes parameters
(S0,S1,S2,S3) (SP) has been carried out [21]. The beam used to perform this measure is a non-
circular radially polarized Gaussian beam as shown in Fig. 6(a). In practice, these parameters
are easily obtained according to the following relations

S0 = I(0◦,0)+ I(90◦,0) (3a)

S1 = I(0◦,0)− I(90◦,0) (3b)

S2 = I(45◦,0)− I(135◦,0) (3c)

S3 = I(45◦,π/2)− I(135◦,π/2) , (3d)

where I(α,β ) stands for the recorded intensity when the analyzer P2 is set at an angle α with
respect to the x direction; β is the retardation between the x and y directions. Related to the SP,
the degree of polarization P (DP) is

P =

√
S2

1 +S2
2 +S2

3

S0
. (4)

Figures 6(b) to 6(f) show the obtained normalized parameters and the DP. These five images
are presented in false color using the jet colormap. S0 (Fig. 6(b)) represents the total intensity.
S1 (Fig. 6(c)) displays red and blue pixels in those areas where the dominant polarization is
in the x or y directions respectively. Note that the polarization direction changes smoothly,
according to a radially polarized pattern. A similar interpretation is possible for S2 (Fig. 6(d))
but for α = 45◦ and α = 135◦. S3 (Fig. 6(e)), that compares the amount of right and left handed
circular polarization of the field, is almost zero everywhere. Finally, the DP is shown in Fig.
6(f): notice that P = 1 for the points of the beam and is nearly zero outside.
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Fig. 5: Experimental intensity patterns for different positions of the analyzer P2. All the exper-
imental images were recorded using an 8-bit CCD and displayed in false color using the hot
colormap to help assess the imperfections of the experimental beam.
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Fig. 6: Experimentally measured Stoke parameters: (a) Radially polarized elliptically-shaped
Gaussian beam, (b) S0, (c) S1, (d) S2, (e) S4, (f) P.

5. Conclusions

Here we present a method for generating light beams with controlled polarization and shape
using a Mach-Zehnder setup. The transverse components of the beam are manipulated inde-
pendently through the use of transmissive liquid crystal displays in each arm of the interfer-
ometer. Since the devices used are not able to modulate the phase from 0 to 2π and present
amplitude-phase coupling, a cell-oriented computer generated hologram algorithm has to be
used to encode the information; in this way, full complex modulation can be achieved. Differ-
ent beams with arbitrary polarization and shape distributions have successfully been obtained
experimentally thereby demonstrating the feasibility of the proposed technique.
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