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Abstract. The analysis of paraxial Gaussian beams is a topic commonly present

in undergraduate courses in Laser Physics, Advanced Optics, and Photonics. These

beams provide a simple model of the field generated in resonant cavities of lasers,

thus becoming a basic element for understanding the laser theory. Usually, uniformly

polarized beams are considered in the analytical calculations, with the electric field

vibrating at normal planes to the propagation direction. However, such paraxial fields

do not verify the Maxwell equations. In this paper we discuss how to overcome this

apparent contradiction and we evaluate the longitudinal component that any paraxial

Gaussian beam should exhibit. Despite the fact that the assumption of a purely

transverse paraxial field is useful and accurate, the inclusion of the above issue in the

program helps students to clarify the importance of the electromagnetic nature of light,

thus providing a more complete understanding of the paraxial approach.
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1. Introduction

The study of the propagation of Gaussian beams (GB) is a common topic in most of

the undergraduate courses in Lasers, Advanced Optics, and Photonics. In general,

textbooks in these fields include a chapter covering this issue [1–6]. Furthermore,

multiple papers highlighting the formative value of GB have been published: theoretical

consideration, labs, simulations, etc [7–14]. At least two reasons justify the inclusion

of GB in undergraduate programs: on the one hand, GB are solutions of the paraxial

Helmholtz equation. The formula that describes the propagation of this kind of beams

is easily derived and illustrates its physical behavior in an elegant and relatively simple

way. On the other hand, nearly GB are generated in laser cavities, so they become a

basic element for the understanding of laser theory.

In the analysis shown in the textbooks, a scalar approach is usually considered,

which implicitly involves the assumption of a uniformly polarized field throughout the

transverse wavefront. More precisely, the light beam is assumed to be uniformly linearly

polarized, whose electric-field vector vibrates in transverse planes orthogonal to the

direction of propagation.

However, strictly speaking, this type of paraxial fields does not verify the Maxwell

equations since the divergence of such free-propagating beams is not zero. The failure

of this law can be overcome just considering that the electric field is not confined to the

transverse plane, i.e., its longitudinal component is not zero.

Nowadays, the study of light fields with significant longitudinal component is an active

research topic either from the theoretical or from the technological point of view. Highly-

focused (non-paraxial) beams provide current examples of such fields. They are present,

for instance, in high resolution optical microscopy, high density optical storage, or optical

trapping, among other applications [15]. As is well known, non-paraxial beams have to

be studied within the framework of the electromagnetic theory of diffraction [16, 17].

Despite of the fact that it is not advisable to introduce this issue in undergraduate

courses, the analysis of the longitudinal component in paraxial beams is affordable to

these students. At the end of the day, the inclusion of this feature in the program

provides a better understanding of the paraxial approach, and makes possible to clarify

the link with a more advanced theory.

In this paper attention is mainly focused on how to estimate the longitudinal component

of paraxial GBs. The article is organized as follows: In the next section we briefly

review the formalism of the angular spectrum of plane waves. This simple and elegant

formulation of propagation is equivalent to the conventional Sommerfeld scalar theory of

diffraction [18]. In section 3, the properties of paraxial Gaussian beams are described [3].

In section 4, we show how to calculate the longitudinal component of a paraxial

field at the convergence plane. For the particular but conceptually important case

of GBs, results can be derived analytically. In section 5 we present an electromagnetic

simulation to corroborate the previous calculations. The profile of the students to

whom this material is intended is discussed in section 6. Finally, the main conclusions
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are summarized in section 7.

2. Beam propagation in terms of the angular spectrum of plane waves

Let us first introduce some basic definitions and properties used in the paper. Let

E(x, y, z) be an electromagnetic wave propagating along the direction s = (α, β, γ);

being s a unit vector, |s| = 1. For simplicity, the temporal dependence is omitted in the

expressions. At z = 0 the two-dimensional Fourier transform of E(x, y, 0) reads

Ê(u, v, 0) = FT[E(x, y, 0)] =

∫
E(x, y, 0) e−2πi(ux+vy) dxdy , (1)

where u and v are the spatial frequencies and FT stands for the Fourier transform

operator. Equivalently, E(x, y, 0) is the inverse Fourier transform of Ê(u, v, 0):

E(x, y, 0) = FT−1[Ê(u, v, 0)] =

∫
Ê(u, v, 0) e2πi(ux+vy) dudv . (2)

Since at z = 0 a plane wave is described by E = Aeik(αx+βy), being A the amplitude of

the wave, λ the wavelength and k = 2π/λ, Equation 2 can formally be understood as a

superposition of plane waves traveling along a direction defined by the cosines α = λu,

β = λv and γ =
√
1− α2 − β2, i.e.:

E(x, y, 0) =

∫
Ê(α, β, 0) eik(αx+βy) d

α

λ
d
β

λ
. (3)

The contribution of each plane wave to the total field, namely Ê(α, β, 0), is the angular

spectrum of plane waves associated to E(x, y, 0). In addition, the angular spectrum in

any plane transverse to the longitudinal axis z given by:

Ê (α, β, z) =

∫
E(x, y, z) e−ik(αx+βy) dxdy . (4)

Let us now write out the propagation of a beam in terms of its angular spectrum. By

using the Helmholtz equation, ∇2E+ k2E = 0, we get in the Fourier space

d2

dz2
Ê (α, β, z) + k2(1− α2 − β2)Ê (α, β, z) = 0 (5)

whose solution reads

Ê (α, β, z) = Ê (α, β, 0) exp
(
ikz
√
1− α2 − β2

)
, (6)

being H (α, β, z) the so-called Transfer Function of the propagation in free space:

H (α, β, z) = exp
(
ikz
√
1− α2 − β2

)
. (7)

Consequently, the propagated angular spectrum is obtained by calculating the product

between the original angular spectrum and the transfer function. The scheme shown in

Figure 1 summarizes the calculations.
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Figure 1: Calculation of E(x, y, z) using the propagation of the angular spectrum.

Up to now, we wrote no limits in the integrals of equations 1-4. However, in a

rigorous way, the integration should be extended throughout the entire transverse plane.

Consequently, two intervals should be considered: α2 + β2 ≤ 1 and α2 + β2 > 1. If the

plane waves required to accurately describe the wavefront only take significant values

close to the axis, i.e., when α2+β2 � 1 (paraxial or Fresnel approximation), the transfer

function would be

HF (α, β, z) = exp(ikz) exp

(
−i

kz

2
(α2 + β2)

)
. (8)

For these beams, the Helmholtz equation is reduced to

∂2

∂x2
A(x, y, z) +

∂2

∂y2
A(x, y, z) + 2ik

∂

∂z
A(x, y, z) = 0 , (9)

with E(x, y, z) = A(x, y, z)eikz. Note that for paraxial beams A(x, y, z) is a slowly

variant function of z.

Figure 2: Propagative and evanescent regimes in the Fourier domain. The circle

α2 + β2 = 1 indicates the limit of propagative and evanescent waves.

On the other hand, if the values of α and β required to describe the beam are high

enough, then α2 + β2 > 1. In this case the transfer function associated to this spatial-

frequency interval becomes

HE (α, β, z) = exp
(
−kz

√
α2 + β2 − 1

)
(10)
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and we see that the field (evanescent wave) vanishes very quickly following an

exponential decay. Figure 2 displays the plane (α, β) showing the different possible

calculation regimes. The interested reader can consult [18] for an extensive explanation

about this topic.

3. Paraxial Gaussian beams

Gaussian beams propagating along the z−axis are paraxial waves (solutions of Equation

9) described by

E(x, y, z) = AG(x, y, z)e
ikzp (11)

AG(x, y, z) = A0
w0

w(z)
exp

(
−x2 + y2

w2(z)

)
exp

(
ik
x2 + y2

2R2(z)

)
exp(iξ(z)) ,

where p is a vector (a, b, 0) that characterizes the polarization, w(z) is the beam width

radius, w0 = w(0) is the waist radius, R(z) is the radius of curvature, zR is the Rayleigh

distance, ξ(z) is the so-called Gouy phase, and A0 is a constant. These parameters are

given by the following expressions:

w(z) = w0

√
1 +

(
z

zR

)2

(12a)

ξ(z) = arctan

(
z

zR

)
(12b)

R(z) = z

(
1 +

(zR
z

)2)
(12c)

zR =
πw2

0

λ
, (12d)

and their geometrical interpretation is depicted in Figure 3. They provide meaningful

information about how the Gaussian beam is propagated. The interpretation of these

equations can be found elsewhere (see for instance [3]), but to aid understanding, the

following information is provided:

• p is a vector (a, b, 0) that characterizes the polarization, and a and b are the

components of the Jones vector (a, b). For example, for the linearly polarized

Gaussian beam in the x−direction, p = (1, 0, 0) whereas for the circularly polarized

Gaussian beam, p = 1√
2
(1, eiπ/2, 0). Note that the third component of p is always

zero for paraxial waves (i.e. the electric field vector vibrates in transverse planes

orthogonal to the direction of propagation.)

• The divergence angle 2θ (see Figure 3) is defined as

θ = arctan(w(z)/z) ≈ λ/(πw0) (for z � zR). (13)

Equation 13 yields an interesting result: beams with large divergence angles focus

in small spots and vice versa. Figure 4a displays the variation of the beam waist
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Figure 3: (a) Physical/geometrical interpretation of the beam parameters w(z), R(z),

w0, zR. θ is the divergence angle.

radius w(z) as a function of the axial distance z. It is straightforward to show

that for large values of z, the beam waist is proportional to the divergence angle:

w(z) = θz.

• Figure 4b shows the behavior of the irradiance along the optical z-axis

|E(0, 0, z)|2 ∝ 1

1 + (z/zR)
2 (14)

for different values of the beam waist radius w0. Note that the irradiance varies

faster for small values of w0, generating a narrow peak around the focus. In contrast,

large values of w0 produce a smoother variation of |E(0, 0, z)|2.
• At z = zR (the Rayleigh distance) the beam width is w(zR) =

√
2w0 and the

irradiance drops to |E(0, 0, zR)|2 = 0.5. The confocal parameter (or depth of focus)

is defined as the range of values z that ensure z ∈ [−zR, zR]. Focused beams present

a small depth of focus.

• The wavefront of the Gaussian beam tends to be spherical for large values of z since

the radius of curvature becomes R(z) ≈ z for z � zR. At z = 0, R(z) → ∞ and

thus the wavefront is plane at the focus.

• The Gouy phase introduces a phase shift as the beam propagates, with π being the

total delay for a beam propagating from −∞ to ∞. Moreover, notice that the sign

of the Gouy phase changes at z = 0.

• Figures 5a and 5b map the distribution |E(x, 0, z)|2 for w0 = 2λ and w0 = 5λ

respectively. These figures are displayed in false color using the Matlab default

jet colormap and normalized to the maximum value (small values are displayed in

blue whereas large values are shown in red). These figures help emphasize some

important issues in the analysis: small values of w0 produces beams with high

divergence angles and small depth of focus, and vice versa.
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Finally, it is worth to mention here that other beams can be solutions to the paraxial

Helmholtz equation (Equation 9). In particular, the so called Hermite-Gauss beams are

complete set of solutions whose irradiance is given by

|Emn(x, y, z)|2 ∝ |Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
E(x, y, z)|2 , (15)

beingHn(x) the Hermite polynomial of order n; for instance, H0(x) = 1 andH1(x) = 2x.

Since H0(x) = 1, the Hermite-Gauss beam of order (0, 0) is just the paraxial Gaussian

beam.

(a) (b)

Figure 4: (a) Dependence of the beam radius w(z) and (b) the irradiance |E(0, 0, z)|2
along the optical axis for different values of w0.

(a) (b)

Figure 5: Map of the irradiance |E(x, 0, z)|2 for (a) w0 = 2λ and (b) w0 = 5λ. The red

line superimposed to each image represents the beam width.



On the longitudinal component of paraxial fields 8

4. Longitudinal component of paraxial Gaussian beams

An electromagnetic beam propagating in a medium with no charges nor currents must

fulfill the divergence condition (Gauss’ Law) ∇E = 0. Nevertheless, it is straightforward

to show that the paraxial Gaussian beam does not verify Gauss’ Law, since the

uniformly-polarized electric field vibrates in the transverse plane, and the z-component

is always zero ‡. To avoid this apparent contradiction, let us consider a paraxial beam

with non-zero longitudinal component Ez, which is evaluated by using the Gauss’ Law:

∂Ez

∂z
= −∂Ex

∂x
− ∂Ey

∂y
. (16)

In terms of its angular spectrum, Ê = (Êα, Êβ, Êz) (equation 4), the Gauss’ Law is

written sÊ = 0, thus Equation 16 becomes

Êz = − αÊα + βÊβ√
1− α2 − β2

, (17)

and we obtain the longitudinal component Ez from the inverse Fourier transform, i.e.,

Ez = FT−1[Êz]. A linearly polarized Gaussian field in the x−direction with w0 = 10λ

has been evaluated numerically. Figure 6 displays |Ex|2 and |Ez|2 at the plane z = 0.

The images are presented again in false color using the jet colormap and normalized to

its maximum value.

(a) |Ex|2 (b) |Ez|2

Figure 6: Squared modulus of the field components Ex and Ez at z = 0. The paraxial

Gaussian beam is assumed to be linearly polarized throughout the transverse plane.

The length of the side of the images is L=64λ.

‡ It is worth pointing out that purely transverse beams (i.e., without longitudinal component) can

propagate satisfying the Maxwell equations. A certain type of azimuthally polarized fields constitutes

an illustrative example of such beams [19]. But no contradiction exists with the present paper because

azimuthally polarized fields are not uniformly polarized at a transverse plane, as is assumed throughout

this work.
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Ix/IT Iy/IT Iz/IT
Linearly polarized case 0.99974 0 0.00026

Circularly polarized case 0.49987 0.49987 0.00026

Table 1: Integrated irradiance for each component of the electric field. Results are

normalized to IT = Ix + Iy + Iz.

Furthermore, the irradiance associated to the longitudinal and transversal components

throughout the plane z = 0 is proportional to the following integrals:

Ix =

∫
|Ex|2dxdy (18a)

Iz =

∫
|Ez|2dxdy . (18b)

In the linearly polarized case in the x−direction, Iz is about 10
−4 times smaller than Ix,

(see Table 1). For the circularly polarized case, the results are shown in Figure 7 and

Table 1 as well. Notice that the ratio Iz/IT takes the same value in both cases.

(a) |Ex|2 (b) |Ez|2

Figure 7: The same as in Figure 6 but now computed for the circularly-polarized case.

As should be expected, |Ey|2 is identical to |Ex|2.

Figure 8 shows the ratio Iz/IT at z = 0 as a function of the waist size. We see that

Iz increases for small values of the beams width w0. But smaller w0 means higher

divergence (cf. equations 12). Thus we conclude that for nearly collimated beams, the

longitudinal component becomes negligible compared with the transverse ones. On the

contrary, the type of highly focused fields we are considering would exhibit a significant

longitudinal component. Of course, strictly speaking, the longitudinal component is

never zero.
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Figure 8: Ratio Iz/IT as a function of the beam waist w0.

An analytical derivation

The previous calculations were carried out numerically. This procedure is valid for

any paraxial beam. Nevertheless, it is possible to derive analytical expressions for

the longitudinal component of Gaussian beams [15]. Let us consider first the linearly

polarized case:

E(x, y, 0) = A0 exp

(
−x2 + y2

w2
0

)
(1, 0, 0) . (19)

Taking into account that, for paraxial beams α � 1, β � 1 and γ ≈ 1, Equation 17

becomes

Êz ≈ −αÊα = − λ

2πi
2πiuÊα . (20)

Using the derivative property of Fourier transforms, namely,

FT

[
∂Ex

∂x

]
= 2πiuFT[Ex] = 2πiuÊα , (21)

the longitudinal component at z = 0 would read

Ez(x, y, 0) ≈ − λ

2πi

∂

∂x
Ex(x, y, 0) =

A0

ik

2x

w2
0

exp

(
−x2 + y2

w2
0

)
, (22)

where

|Ez(x, y, 0)|2 ∝
x2

w4
0

exp

(
−x2 + y2

w2
0

)
(23)

is proportional to the irradiance. From the previous Equation (see also Figure 6b and

Equation 15), we conclude that the longitudinal component at plane z = 0 exhibit the
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same profile as the (1, 0) Hermite-Gauss mode. In a similar way, an analytical expression

for the logitudinal component of a circularly-polarized Gaussian beam can be derived:

Ez(x, y, 0) = − λ

2πi

(
∂

∂x
+

∂

∂y

)
Ex(x, y, 0) =

=
A0

ik

2

w2
0

(x+ iy) exp

(
−x2 + y2

w2
0

)
, (24)

and the irradiance becomes

|Ez(x, y, 0)|2 ∝
x2 + y2

w4
0

exp

(
−x2 + y2

w2
0

)
. (25)

Now, |Ez|2 shows a doughnut shape, which can be understood as a superposition of the

(1, 0) and (0, 1) Hermite-Gauss modes (in agreement with Figure 7b). Moreover, the

z−component of the electric field (Equations 22 and 24) exhibits a 1
w2

0
dependence with

the waist radius, thus Ez becomes larger for smaller values of w0.

5. A more in depth analysis

In the present work we used the conventional scalar diffraction theory to evaluate the

longitudinal component of the electric field of a uniformly-polarized paraxial Gaussian

beam. Regarding the linearly polarized case, we considered that the electric field vector

at the initial plane has only the x−component, with the y−component equal to zero.

However, a more in depth analysis based on the Electromagnetic Theory of Diffraction

(ETD) shows an interesting non-null behavior of the y−component upon propagation.

Moreover, the application of ETD provides the required theoretical foundation for the

rigorous description of light propagation in the nano-scale. Despite the fact that it is

not advisable to introduce ETD in undergraduate courses, a relatively simple calculation

can provide us more insight about the inner structure of the three components of the

electric field.

We have performed a simulation of the propagation of a (x−axis) linearly polarized

Gaussian beam by using the finite-difference time-domain (FDTD) method [20]. FDTD

tools are designed to integrate Maxwell’s equations and are very useful to model

electromagnetic systems. The calculation has been carried out using the MEEP C++

library [21] §. A linearly-polarized converging Gaussian beam with w0 = 10λ has been

calculated at z = −6.5λ using equations 11 and 12. The beam is propagated using

MEEP until the waist plane (z = 0); to integrate across time, 840 frames during 50

periods have been considered. Figures 9a and 9c show the profiles |Ex(x, y, 0)|2 and

|Ez(x, y, 0)|2. Both are indistinguishable with the corresponding distributions obtained

analytically (cf. figures 6a and 6b). Moreover, the values Ix/IT and Iz/IT are very close

to the values obtained in the previous section. It should be remarked that, |Ey(x, y, 0)|2
(figure 9b) is not zero and looks as the (1, 1) Hermite-Gauss mode. Nevertheless, the

§ MEEP is freely available online at http://ab-initio.mit.edu/meep
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value of the ratio Iy/IT is very low in front of Ix/IT or even Iz/IT . These results are in

agreement with previous works reported in the literature (see, for example, [19,22]).

(a) |Ex|2 (b) |Ey|2 (c) |Ez|2

Figure 9: Electric field components of the linearly polarized case, with w0 = 10λ. The

length of side of the images is L=64λ. We have Ix/IT = 0.9997, Iy/IT = 6.90 10−8 and

Iz/IT = 2.97 10−4.

For the sake of completeness, the propagation of a circularly polarized Gaussian beam

using MEEP has also been considered. The simulation has been carried out using the

same values as in the previous calculation. It is quite apparent that figures 9a and 9c

are in complete agreement with figures 7a and 7b obtained from analytical expressions.

(a) |Ex|2 (b) |Ey|2 (c) |Ez|2

Figure 10: The same as Figure 9 but for a circularly polarized beam. Now Ix/IT =

0, 49985, Iy/IT = 0, 49985 and Iz/IT = 2.97 10−4 (the same value as in Figure 9).

6. How this material relates to students

The content of this paper was proposed for two different groups of students. On the

one hand, this analysis was suggested as a discussion topic for students enrolled in

Photonics, a compulsory subject for advanced undergraduates in Applied Physics at

the Universitat de Barcelona. It comprises 60 hours of lectures and 9 labs: equivalent

to 9 ECTS credits. Those who enroll on the course have previously taken compulsory

credits in physical optics (which includes diffraction and beam propagation theory).
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The Photonics syllabus includes a relatively in-depth introduction to lasers, with two

lectures devoted to the propagation of Gaussian beams. On average, about 25 students

take Photonics each year and the pass rate is approximately 80%.

On the other hand, a numerical verification of this work was carried out by graduate

students taking a computational techniques course. Computing in Photonics is a 2.5

ECTS credit core subject that forms part of the Barcelona Master in Photonics: a one-

year graduate program offered jointly by three universities in the Barcelona metropolitan

area. It comprises 20 hours of lectures and the homework workload is estimated at 45

hours. The syllabus includes Fourier transform-based beam propagation methods, finite-

difference time domain methods and integration of differential equations. On average,

about 15 students take the course each year and the pass rate is close to 90%.

7. Concluding remarks

The study of light beams with Gaussian profile is present in undergraduate courses

in physics. This kind of beams provides a simple solution of the paraxial Helmholtz

equation and can be used for illustrating a number of physically meaningful spatial

characteristics of paraxial light fields. Usually, for the sake of simplicity, uniformly

polarized beams are handled in the analytical calculations, with the electric field

vibrating in planes normal to the direction of propagation. However, a problem arises

because this type of fields do not fulfill the divergence condition ∇E = 0. This apparent

contradiction is solved by noting that such fields exhibit a nonzero contribution in

the longitudinal direction. Simple analytical expressions have been derived for the

longitudinal component of a Gaussian beam. Two representative cases have been

considered: linearly and circularly uniformly-polarized fields. It has been found that

the squared modulus of this component resembles the spatial shape of certain Hermite-

Gauss functions. Moreover, numerical computations have also been shown that strongly

focused beams (in the non-paraxial regime) exhibit significant values of the magnitude

of the longitudinal component, whereas its contribution is negligible (compared with

the transverse components) for slowly converging beams. The results obtained have

been verified by simulating free propagation of a Gaussian beam using a FDTD routine.

In summary, the discussion on the presence of a longitudinal component in paraxial

beams is an illustrative topic that provides a better understanding of the paraxial

approximation for vectorial light fields. This topic is suitable for both advanced

undergraduates and graduate students in Physics enrolled in Laser Theory, Fourier

Optics or Photonics courses.
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