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ABSTRACT. Fekete points are the points that maximize a Vandermonde-type determinant that
appears in the polynomial Lagrange interpolation formula. They are well suited points for inter-
polation formulas and numerical integration. We prove the asymptotic equidistribution of Fekete
points in the sphere. The way we proceed is by showing their connection to other arrays of points,
the so-called Marcinkiewicz-Zygmund arrays and interpolating arrays, that have been studied re-
cently.

1. INTRODUCTION

For any integer L ≥ 0 we denote the space of spherical harmonics of degree not exceeding L
by ΠL. These vector spaces have dimensions

dim ΠL =
d + 2L

d

(
d + L− 1

L

)
= πL ' Ld.

Let {QL
1 , . . . , QL

πL
} be any basis in ΠL. The points Z(L) = {zL,1, . . . , zL,πL

} maximizing the
determinant

|∆(x1, . . . , xπL
)| = | det(QL

i (xj))i,j|
are called Fekete points of degree L for Sd (these points are sometimes called extremal funda-
mental systems of points as in [10]). They are not to be confused with the elliptic Fekete points
which are a system of points that minimize the potential energy. The extremal fundamental sys-
tem of points are better suited nodes for cubature formulas and for polynomial interpolation, see
[10] and the references therein.

The geometric properties of the distribution of Fekete points on the sphere has been the sub-
ject of research, see for instance [9], [6] or [10], where upper and lower bounds for the minimum
distance between pairs of points are found. One natural problem is the limiting distribution of
the points as L → ∞. If we denote by µL = 1

πL

∑
j δxj

it has been known long ago that for
the elliptic Fekete points µL converges in the weak−∗ topology to the uniform distribution of
the sphere even for a wide class of potentials, see [5] for a very nice survey. For Fekete points
in compacts K ⊂ C this is a classical result. Much less is known in higher dimensions. In the
papers [1, 2] the authors have found the limiting distribution in the context of line bundles over
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complex manifolds. Our result, Theorem 3.3, can be formally deduced from theirs but the tech-
niques there are very different from ours, they rely on a careful study of the weighted transfinite
diameter and its differentiability. We will rather emphasize the connection of Fekete points with
Marcinkiewicz-Zygmund arrays and interpolating arrays (see below for the definitions). As long
as the density of these arrays is understood we can obtain the equidistribution of Fekete points.
This is the case of the sphere where we can build on the work [7], where MZ arrays and inter-
polating arrays are studied. The same approach is being pursued by Berman in line bundles over
complex manifolds.

1.1. Marcinkiewicz-Zygmund inequalities and interpolation. We consider arrays of points
on the sphere Sd that determine the norm of polynomials, and also arrays of points where we are
free to interpolate arbitrary values by polynomials, i.e. interpolating arrays. More precisely, for
any degree L we take mL points in Sd

Z(L) = {zL,j ∈ Sd : 1 ≤ j ≤ mL}, L ≥ 0,

and assume that mL → ∞ as L → ∞. This yields a triangular array of points Z = {Z(L)}L≥0

in Sd.

Definition 1.1. Let Z = {Z(L)}L≥0 be a triangular array with mL ≥ πL for all L. We call Z
an Lp-Marcinkiewicz-Zygmund array, denoted by Lp-MZ, if there exists a constant Cp > 0 such
that for all L ≥ 0 and Q ∈ ΠL,

(1)
C−1

p

πL

mL∑
j=1

|Q(zL,j)|p ≤
∫

Sd

|Q(ω)|pdσ(ω) ≤ Cp

πL

mL∑
j=1

|Q(zL,j)|p,

if 1 ≤ p < ∞, and
sup
ω∈Sd

|Q(ω)| ≤ C sup
j=1,...,mL

|Q(zL,j)|,

when p = ∞. Here σ stands for the non-normalized surface area measure on the sphere Sd.

In other words, the Lp−norm in Sd of a polynomial of degree L is comparable to the discrete
version given by the weighted `p−norm of its restriction to Z(L).

Definition 1.2. Let Z = {Z(L)}L≥0 be a triangular array with mL ≤ πL for all L. We say that
Z is Lp−interpolating, if for all arrays {cL,j}L≥0,1≤j≤mL

of values such that

sup
L≥0

1

πL

mL∑
j=1

|cL,j|p < ∞,

there exists a sequence of polynomials QL ∈ ΠL uniformly bounded in Lp such that QL(zL,j) =
cL,j, for 1 ≤ j ≤ mL.

Roughly speaking in order to recover the Lp−norm of a polynomial of degree L from the
evaluation at the points in Z(L) we need a sufficiently big number of points in Z(L). Thus,
intuitively, the MZ arrays must have high density. On the other hand, in an interpolating array it
is possible to have a spherical harmonic of degree at most L attaining some prescribed values on
Z(L). Intuitively this is possible only when Z(L) is sparse.
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In dimension one the roots of unity are simultaneously an interpolating and an MZ array
when 1 < p < ∞. In higher dimension the situation is more delicate. It has been proved, [7,
Theorem 1.7] that there are not arrays which are simultaneously Lp-MZ and interpolating when
d > 2 and p 6= 2 and most likely even when p = 2. We will prove that Fekete points are a
very reasonable substitute. If we perturb them slightly they are interpolating sequences and a
different perturbation makes them MZ-arrays. Thus, in a sense, they behave like the roots of
unity in higher dimensions. Since the densities of the MZ-arrays and the interpolating arrays are
well understood, see [7, Theorem 1.6], then we will get some geometric information on Fekete
points.

In the next section we will provide the connection between Fekete points and interpolating and
MZ-arrays. In the last section we will draw some geometric/metric consequences.

The following notation will be used below: We write A . B to denote that A . CB for some
constant C > 0, independent of the degree, denoted typically by L. If both A . B and B . A,
then we write A ' B.

Acknowledgment This paper has its origins in a conversation of the second author with Robert
Berman at the Mittag-Leffler Institute over the possibility of connecting Fekete points and sam-
pling sequences. It is a pleasure to thank him for sharing his thoughts and to the Institute for its
warm hospitality and great atmosphere.

2. FEKETE POINTS, MZ-ARRAYS, INTERPOLATING ARRAYS

Theorem 2.1. Given ε > 0 let Lε = [(1 + ε)L] and

Zε(L) = Z(Lε) = {zLε,1, . . . , zLε,πLε
},

where Z(L) is the set of Fekete points of degree L, then Zε = {Zε(L)}L≥0 is an Lp-MZ array,
for any 1 ≤ p ≤ ∞.

Proof. Assume that Z is a collection of Fekete points. It satisfies a nice separation property that
is convenient to prove the first inequality of (1.1).

Definition 2.2. A triangular array Z is uniformly separated if there is a positive number ε > 0
such that

d(zL,j, zL,k) ≥ ε

L + 1
, if j 6= k,

for all L ≥ 0, where d(z, w) = arccos〈z, w〉.
Reimer observed that Fekete points are uniformly separated, [9, p. 199]. More precisely, he

proves that
π

2L
≤ min

i6=j
d(zL,i, zL,j),

using the analogous result of M. Riesz for trigonometric polynomials on great circles.Thus we
know that

min
i6=j

d(zLε,i, zLε,j) ≥ π

2Lε

≥ Cε

L + 1
,
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and therefore the array Zε is uniformly separated. This implies the following Plancherel-Polya
type inequality for any 1 ≤ p < ∞

1

πL

πLε∑
j=1

|Q(zLε,j)|p .
∫

Sd

|Q(z)|pdσ(z), for any Q ∈ ΠL,

see [7, Corollary 4.6].
The right hand side inequality in (1) is more delicate, we need an appropriate representation

formula for the polynomials in terms of the values at the points. The most naive approach is to
start by the Lagrange interpolation formula. Let

`L,i(z) =
∆(zL,1, . . . , zL,i−1, z, zL,i+1, . . . , zL,πL

)

∆(zL,1, . . . , zL,πL
)

then supz∈Sd |`L,i(z)| ≤ 1 and the Lagrange interpolation operator defined in C(Sd) as

ΛL(f)(z) =

πL∑
j=1

f(zL,j)`L,j(z)

satisfies
‖ΛL(f)‖∞ ≤ πL‖f‖∞.

We want better control of the norms. So we need a slightly bigger set of points and a weighted
representation formula. Let p be a polynomial in one variable of degree [Lε] and such that
p(1) = 1. Then given Q ∈ ΠL one has for a fixed z ∈ Sd

R(w) = Q(w)p(〈z, w〉) ∈ ΠLε

and therefore we obtain our weighted representation formula:

Q(z) =

πLε∑
j=1

p(〈z, zLε,j〉)Q(zLε,j)`Lε,j(z).

We define the operator QL from CπLε → ΠL2ε as

QL[v](z) =

πLε∑
j=1

vjp(〈z, zLε,j〉)`Lε,j(z) ∀v ∈ CπLε .

We want to prove that

(2)
∫

Sd

|QL[v](z)|p dσ(z) . 1

πLε

πLε∑
j=1

|vj|p,

with constants uniform in L which is the right-hand side of (1). We need to choose the weight p
with care. We need a polynomial p that peaks at one point, has degree [εL] and decays fast far
away from the peak point. For this purpose we will use powers of the Jacobi polynomials which
are natural in this context because they are the reproducing kernels in ΠL, see [7]. The Jacobi
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polynomials P
(α,β)
L of degree L and index (α, β) are the orthogonal polynomials on [−1, 1] with

respect to the weight function (1− x)α(1 + x)β with α, β > −1. We take the normalization

P
(α,β)
L (1) =

(
L + α

L

)
' Lα.

We can use the estimates in [11, Section 7.34] to obtain, for any v ∈ Sd

(3)
∫

Sd

|P (d/2,d/2−1)
L (〈u, v〉)|2dσ(u) ' 1, ∀L > 0.

We will use as auxiliary polynomial

p(t) = L−d
(
P

(d/2,d/2−1)
[εL/2] (t)

)2

,

then p(1) ' 1 and by the estimate (3)∫

Sd

|p(〈z, zLε,j〉)|dσ(z) ' L−d

∫

Sd

|P (d/2,d/2−1)
[εL/2] (〈z, zLε,j〉)|2dσ(z) ' L−d ' π−1

L .

Now as |`Lε,j(z)| ≤ 1 one has
∫

Sd

|QL[v]|dσ(z) ≤
πLε∑
j=1

|vj|
∫

Sd

|p(〈z, zLε,j〉)|dσ(z) . 1

πL

πLε∑
j=1

|vj|

and also for any fixed z ∈ Sd

|QL[v](z)| ≤ sup
j
|vj|

πLε∑
j=1

|p(〈z, zLε,j〉)|

. sup
j
|vj|

∫

Sd

πL|p(〈z, zLε,j〉)|dσ(z) . sup
j
|vj|.

Then the result follows by the Riesz-Thorin interpolation theorem. ¤
The corresponding result for interpolation reads as follows:

Theorem 2.3. Given ε > 0 let L−ε = [(1− ε)L] and let

Z−ε(L) = Z(L−ε) = {zL−ε,1, . . . , zL−ε,πL−ε
},

where Z(L) is a set of Fekete points of degree L, then the array Z−ε = {Z−ε(L)}L≥0 is Lp-
interpolating, for any 1 ≤ p ≤ ∞.

Proof. Given an array of values {vL−ε,j}πL−ε

j=1 , we can define the polynomials in ΠL

RL[v](z) =

πL−ε∑
j=1

vL−εjp(〈z, zL−ε,j〉)`L−ε,j(z),

and RL(zL−ε,j) = vL−ε,j . This time the map RL is from CπL−ε → ΠL and the Lp-estimates on
the norm of RL follow exactly as the estimates of QL in the previous theorem. ¤
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3. GEOMETRIC PROPERTIES OF FEKETE POINTS

We will draw some geometric information on Fekete points. For a given z ∈ Sd and 0 < R < 1
we denote by B(z, R) the spherical cap B(z, R) = {w ∈ Sd; d(z, w) < R}. We will prove that
as L → ∞ the number of Fekete points in B(z, R) gets closer to πLσ̃(B(z,R)) where σ̃ is the
normalized Lebesgue measure on Sd, i.e. σ̃ = σ/σ(Sd). We need first information on the density
of MZ and interpolation arrays.

Definition 3.1. For Z a uniformly separated triangular array in Sd we define the upper and
lower density of the array respectively as

D−(Z) = lim inf
α→∞

lim inf
L→∞

minz∈Sd #(Z(L) ∩B(z, α/L))/πL

σ̃(B(z, α/L))
,

D+(Z) = lim sup
α→∞

lim sup
L→∞

minz∈Sd #(Z(L) ∩B(z, α/L))/πL

σ̃(B(z, α/L))
.

The main result in [7, Theorem 1.6] is (with a slight different notation).

Theorem 3.2. Let 1 ≤ p ≤ ∞. Let Z be a uniformly separated array. If Z is an Lp-
Marcinkiewicz-Zygmund array then D−(Z) ≥ 1. On the other hand if Z is an Lp-interpolating
array then D+(Z) ≤ 1.

From this result and the two theorems in the previous section we will deduce the asymptotic
equidistribution of Fekete points on Sd.

Theorem 3.3. Let Z = {Z(L)}L≥0 be any array such that Z(L) is a set of Fekete points of
degree L and µL = 1

πL

∑πL

j=1 δzL,j
, then µL converges in the weak−∗ topology to the normalized

surface area measure on Sd.

Proof. We know that for any ε > 0 the array Zε = {Zε(L)}L≥0 is L2-MZ, so if we unwind the
definitions corresponding to the densities, we get that for any ε > 0, there is a big α = α(ε) such
that for all L and z ∈ Sd

1
πL

#(Z(L) ∩B(z, α
L
))

σ̃(B(z, α
L
))

≥ (1− ε).

Similarly since Z−ε is interpolating, whenever Z is a Fekete array, from the density condition
we get that there is a big α = α(ε) such that for all L and z ∈ Sd

1
πL

#(Z(L) ∩B(z, α
L
))

σ̃(B(z, α
L
))

≤ (1 + ε).

We have

(µL ∗ χB(N,α/L))(z) =

∫

ν∈SO(d+1)

χB(N,α/L)(ν
−1z)µL(νN)dν

=
1

πL

#(Z(L) ∩B(z, α/L))

and
(σ ∗ χB(N,α/L))(z) = σ(B(z, α/L)),
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where N = (0, . . . , 0, 1) stands for the north pole of Sd. So finally for any ε > 0 there is a big α
such that

(4) (1− ε)(σ̃ ∗ χB(N,α/L))(z) ≤ (µL ∗ χB(N,α/L))(z) ≤ (1 + ε)(σ̃ ∗ χB(N,α/L))(z),

for any z and L ≥ 1.
We take an arbitrary spherical cap B(z, r). We want to check that µL(B(z, r)) → σ̃(B(z, r))

as L → ∞. We fix an ε > 0 and we take the convolution of (4) with the function χB(N,r)

σ̃(B(N,α/L))

with a very big L and this proves

(1− ε)(σ̃ ∗ χB(N,r−α/L))(z) ≤ (µL ∗ χB(N,r+α/L))(z)

and
(µL ∗ χB(N,r−α/L))(z) ≤ (1 + ε)(σ̃ ∗ χB(N,r+α/L))(z),

for any z and L big. We take limits as L → ∞ and since Z is uniformly separated that means
that µL(B(z, r + α/L) \B(z, r − α/L)) → 0 uniformly in z ∈ Sd as L →∞. Thus

lim
L→∞

µL(B(z, r)) = σ̃(B(z, r))

for an arbitrary spherical cap. This already implies the convergence in the weak−∗ topology of
the measures, see [3], i.e.

lim
L→∞

1

πL

πL∑
j=1

f(zL,j) =
1

σ(Sd)

∫

Sd

f(z)dσ(z)

for any f ∈ C(Sd). ¤
From the uniform density condition on Fekete points we may obtain other geometric conse-

quences on the distribution of Fekete points Z(L). We give one example. It is well known that
using the bound given by Fejes Tóth [4] for the maximum of the minimal spherical distance be-
tween any set of πL = (L + 1)2 points on S2, there exist at least two points in Z(L) at distance
dL with

dL ≤ arccos
cot2 ωL − 1

2
, ωL =

(L + 1)2

(L + 1)2 − 2

π

6
,

but as

L arccos
cot2 ωL − 1

2
↗ κ = 3.80925 . . . , when L →∞

one has
min
i6=j

d(zL,i, zL,j) ≤ κ

L
.

However the numerical results in [10, p. 122] suggest that the right asymptotic should be

lim
L→∞

L min
i 6=j

d(zL,i, zL,j) = π.

To bound the maximal number, N , of disjoint spherical caps in S2 of radius η/L to be found
in a larger spherical cap of radius α/L we use the following result due to Molnár

N ≤ π√
12

σ(B(z, α
L
))

σ(B(z, η
2L

))
,
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see [8]. Then substituting in the density condition one gets

η ≤ 4

√
π√
12

= κ.

So, we get not only that there exists a pair of points in each generation Z(L) at distance smaller
than κ/L but a more uniform estimate: for any ε > 0 there is an α such that:

inf
zL,i,zL,j∈B(z,α/L)

d(zL,i, zL,j) ≤ κ + ε

L

for any spherical cap B(z, α/L).
Up to now we have drawn information from MZ-arrays and interpolating arrays to get new

information on Fekete points, but the reverse direction can also be useful. For instance, since
any Fekete array has density one and a small perturbation makes it a MZ-array (or interpolation),
then we obtain the following corollary

Corollary 3.4. Given any ε > 0, there are arrays Zε and Z−ε with densities D+(Zε) =
D−(Zε) = 1 + ε,D+(Z−ε) = D−(Z−ε) = 1 − ε, such that Zε is an Lp-MZ array for any
p ∈ [1,∞] and Z−ε is an Lp-interpolating array for any p ∈ [1,∞].

Thus the necessary density conditions that MZ-arrays and interpolating arrays satisfy are
sharp.
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