Universitat
de Barcelona
Treball de Fi de Grau

GRAU D'ENGINYERIA INFORMATICA
Facultat de Matematiques

Universitat de Barcelona

Stitching Images Using Android Devices

Francisco Villalba Carballo

Director: Simone Balocco
Realitzat a: Departament de Matematica Aplicada i Analisi. UB

Gener, 2013

ABSTRACT

On this report is described in what the stitching technique consist of, which the state of
art on stitching methods is and how this technique has been recently assimilated by
mobile devices market.

This report also includes a full description of the developed applications which allow
stitching images from pictures taken by an Android device. The first application is an
Android application. The second application is a Java server.

The development, the installation, the management and configuration of the Android
app and the service have been detailed in order to provide a correct understanding of the
work done.

Both applications are detailed by several diagrams and explanations, which represent its
internal design and how they have been implemented.

Table of Contents

L INEFOTUCTION ..o e et b bbbt eb s 6
1.1 SEAtE OF T8 AT . e 6
1.2 Motivation regarding the choice of the Project ... 8
1.3 MAIN GOAIS ...ttt e 9
A Tl DT o 4SS 10

1.4.1 Planning of the Time ReqUIrEMENTES..........ccviiiiiiieieieeee s 10
1.4.2 Summary of the Project DediCationccocvoiiiieieieieieeese s 11
1.5 REPOM SCREIME ...ttt et e st e e s reete e be s ae et e teeneenras 12

2 SHEChING BACKGIOUNG........oouiiiiiieiciee e 13

2.1 SMaArtphone SHECHINGcoov e s pe e e 13
2.1.1 What is the Image StItChING? ..o 13
2.2 State of the Art on Stitching Methodscccoiiiiiiiii e 15

3 APPIICATIONS OVEIVIEW.......iuiiieiieiieiieiei ettt sttt 17

K U N O el DT o - 1SR 18
3.1.1 Android Application Use Case DIagramscccuuererererrerieinenisesesie s 18
3.1.2 Server Application Use Case DIiagram..........ccocuvirerenerienienieieesese s 26

3.2 DOMAIN MO ...ttt 27

4 DEVEIOPIMENT ...ttt bbbttt b bbb et 28

4.1 System ConteXt DIAgIAMSciiiieiieie ettt st s re et e e st e s be e e sreereebesae e e e 29
4.1.1 Android Application Context DIagrams............coererereieieiieisise e 29
4.1.2 Server Application ContexXt DIagramscccceveieeieiiesieeie e sre e e 45
When launching the server, the user has nothing to configure............c.ccocveiveneieicisineens 45

4.2 FIOWCRAITS ...ttt 46
4.2.1 Android Application FIOWCHArTSccceoiiiiiiiiieee e 47
4.2.2 Server Application FIOWCNAITS..........ccoiiiiiiiiiiie e 50

O O F- LT B T To | - PR 52
4.3.1 DroidStitcher Class DIagramccccoererieiriniiisesie e 52
4.3.2 StitcherServer Class DIagramccccveieeiieeiieiieie e seeseeseesee e e see e e sreesreesnnesnes 54

4.4 Class SPECITICALIONS.eiveiiieieieiisie sttt bt neene s 55
4.4.1 DroidSHECNEr CIASSESecuviieiiiiieriiie e 55
4.4.2 SHILCNEISEIVEICIASSESvcvieiiii ittt 64

4.4 EVENT-LraCe DIagramScueiuiiieiieeieeie sttt ettt ee sttt e st e seesteaneeseeeneeneesneenee e 66
4.4.1 Android Application Event-trace Diagrams...........ccooevieeieneneeiene e sieee e 66
4.4.2 Server Application Event-trace Diagrams..........cccccvevvevieeieeieieeiiesesee e sesseesiesaennens 71

Lo L= T o [T RS 73

5.1 APPHCAtION SPECITICSvivieiieiieiees e 73
5.2 ANArOid rEQUITEMENTS.c.viiteiic ettt st sr e be e esresreebesre e e e 74
5.3 Installing the Android appliCation..........cc.ooiiiiieiiiieie e 75
5.4 SEIVET TEOUITEIMENTS. ... e iteteieiteie ettt sttt b e b et e bbbt b sn b nn e neane s 76
5.5 Back-end INSTAHATION. ..o 76
5.6 TULOTTAL ...ttt b e n e ere 79
5.6.1 DroidStitCher USEr GUIGE.........ccoiveiiiiiciiiiiesie s 79
5.6.2 SHICErServer USEr GUITE..........ccouiiiiiiieieee e 87

B CONCIUSION.iiit bbbt bbbt 88
6.1 ODJeCtiVES ACNIEVEMENT ..ot 88
8.2 RETEIBINCES ...ttt bbbt 89
LRI N o] o] (= ol I- ([0 o TSRS 90
6.4 POSSIDIE IMPIOVEIMENT ...t 91
AANINEX 1t 92
I HOW Java runS IMATLAB ... s 92
I WOrking With ACCEIEIOMELENS.......ccviiiieeiece ettt st sre s 93
SBINISONS ..ttt ekttt ettt bbb bttt b ke bbb bR R R R R R e R Rt ARt E e R R e R nreenn e 93
THE ACCEIEIOMELETS. ...ttt bbb 94
FHEPTOTOCON ...ttt b bbb 97
Connection: Waits and EITOIScoiiiiiiieiciscsese s 99
IV ANArOId MANITESE ..o 100
V Device camera usage reguIatioNScoeoeieiiininisise e 101
IMAGE COMPIESSION.....uiiiviitieie et etese et e te s et et e et s beste e be s ae e e e s besseesbesbaesbesbeeteesbesneeneenes 101
VI Data Distribution and STOFAQgE..........coeierierieieieisisesesie e 102
A LN [0)1 21 SO USRS 103
] | ISP OTPTRSPRTRRN 103
RAINSAC ..ttt ettt b e sbe e sae e sab e st b e be et e neeas 103
VT IMAQE CrOPPING ..ottt bbbttt st b enenne s 104
X EXAMIPIES ..ottt ettt sttt eeen et ene e e re e neas 107

1 Introduction
1.1 State of the Art

The aim of the project is to explore the possibility of implementing a stitching technique
on an Android device. Nowadays most of the smartphones available on the market
include cameras which allow the user easily record videos and take pictures.

In the first generation of telephones there were a few applications based on cameras. However,
nowadays the technological advance of the smartphone’s hardware allowed the
appearance of camera-based applications.

When we talk about camera applications from a development perspective, the first thing that
come in mind are Computer Vision techniques. One of the most popular camera
applications is the image stitching. This application consists in creating a panoramic
image from a collection of consecutive images.

Such applications are nowadays available on Android and iOS markets, allowing their
users creating panoramic images of its surroundings.

For instance Photaf, an application
that can accomplish such task.

Figure 1 illustrates an impressive
result using Photaf.

Figure 1: Photaf snapshot *

Other relevant application developed entirely by
Google is PhotoSphere, see Figure 2, which
creates not just a panoramic, but a 2D projection |
of the device 3D surrounding.

Easily ascertainable, is the fact that the state-of-
art in this kind of applications is booming into
the market.

Figure 2: Photosbﬁére-éa

So, which improvements can we provide into this field?

! www.photaf.com
2 www.androidpipe.com

The Android application developed for this project has not been created with
commercial purposes. To work properly it needs a running service which processes the
captured images. So the project is not just an Android app, is the result of combining the
possibilities which a smartphone offers, such as mobility, with the processing power of
a computer.

The project itself can be useful to obtain high resolution images of physical objects and
panoramas.

On the previous page a question can be found. If the Android market is populated with
panorama applications and stitching software can be found on the web, what can bring a
new application?

The answer is because this application can work with camera pictures, not just camera
previews as smartphone applications do. The stitched images can be camera previews
(low resolutions) or camera pictures (high resolutions). The panoramas build by Photaf,
for example, are created using camera previews.

Another achievement is the possibility of bringing such technique to old device series.
PhotoSphere does not work on devices with prior Android OS 4.0 versions installed.
This application also works with camera previews, not camera pictures.

So the project is a service able to provide a stitched image. This stitched image could be
created from low resolution images (camera preview frames) or high resolution images
(camera pictures). As the stitching process is not executed on the device, the Android
application is free from executing operations that consume several resources, such as
image stitching.

1.2 Motivation regarding the choice of the project

The main reason for choosing this concrete project was its development, which include
Android and Computer Vision.

The project development could bring the opportunity to improve and learn how to
develop an Android app, which is an interesting subject. The idea of also working with
Computer Vision techniques made this project a chance for gaining knowledge. This
combination also provides a great expectation for the results.

The project was initially thought as a skin mole finder software. The final application
would be Android native, and it would be capable of shooting images of the skin, locate
moles or irregularities presented and be able to measure changes on these moles. To top
it all the shooted pictures would be mapped in a virtual skin surface, allowing the
assessment of potential mole diseases.

Since the initial project was too ambitious, it was decided, in agreement with my tutor
to focus on a specific task, and to optimize it for the best performances.

The final project is a mix between Android and Computer Vision fields, consisting in an
application running in a mobile device able to connect with a back-end server in order
to send images and obtain a stitched result. The server application processes the images
given by the application, creating a new stitched image and returning it to the client.

1.3 Main Goals

The first goal to complete this project was discovering what possibilities could allow an
Android smartphone on the Computer Vision fields.

After understanding how the smartphone camera works and how to gather images with
the device, the next step to take was how about transferring the data wireless.

The third step was focused mainly on how to process that data and bring them back to
the client.

As a summary of the work done and as an introduction to the project development, the
following list explains the goals to achieve:

e Improve Android knowledge.

e Learn how to manage the smartphone camera.

e Research for the optimal way of transmitting data considering the requirements
of this case.

e Fusing the back-end application with a third party algorithm for stitching
images.

e Implementing an optimized way to return the result to the smartphone.

It must be noticed that the work has been mainly focused on the Android and server
development, not the image processing.

Additionally, along the project we explored the use of the Android sensor. Such feature
could be used in future implementation of this software for improving the results of the
stitching. On the Annex is exposed why the sensors, concretely accelerometers, were
useless on this case.

As a final objective for the project | decided to improve my level of technical English so
I decided to write entirely this report in this foreign language.

1.4 Gantt Diagrams

On this subchapter are presented two Gantt diagrams. The first one represents a first
estimation of time required on development. The second diagram corresponds to the
real time devoted to the project.

1.4.1 Planning of the Time Requirements

This diagram is not detailed as the real devoted time Gantt diagram is (1.4.2 Summary
of the project dedication).

MONTH SEP OoCT NOV DEC JAN
DAY 17 24 01 08 15 22 29 05 12 19 26 03 10 17 24 31 07
Android Application |
Server Application
MATLAB Code |
Report |
Figure 3

As it can be seen, the working time has been divided in four parts. Each part
corresponds to a general task.

Tasks explanation:
e Android Application: Estimated time on developing the Android application.
e Server Application: Estimated time devoted to the Server application
development.
e MATLAB code: Estimated time devoted to searching for stitching
techniques and its possible implementation on the project.
e Report: Estimated time devoted on the report writing.

10

1.4.2 Summary of the Project Dedication

MONTH SEP ocCT NOV DEC JAN
DAY 17 24 01 08 15 22 29 05 12 19 26 03 10 17 24 31 07
Android Application

Learning Android Basics

Camera acquisition system \:’

GUI

Client development I:
Accelerometers

Debug/Code improving]

Server Application

Initial evaluation

Host development | |

GUI
Debug/Code improving

MATLAB Code
Stitching ‘:
MATLAB wrapping with Java :l
Code optimization I:l

Report I:l

Figure 4

Tasks explanation:
e Android Application:
o Learning Android Basics: Android introduction, basic knowledge.
o Camera acquisition system: Learning the Camera basic knowledge and
its proper management.
GUI: Graphical User Interface.
Client development: Connection with the host.
Accelerometers: Working with the sensors.
o Debug/Code Improving: Clearing code, avoiding bugs.
e Server Application:
o Initial Evaluation: Searching the best way to connect client and host.
o Host development: Connection with the client.
o GUI: Graphical User Interface.
o Debug/Code Improving: Clearing code, avoiding bugs.
e MATLAB:
o Stitching: Understanding what stitching is.
o Adding MATLARB to Java: Searching for the best way.
o Code optimization: Adding new functionalities on the code.

o O O

11

1.5 Report Scheme

This report is divided in six chapters, explained below:

1 Introduction: In this chapter are explained an introduction to image stitching
on smartphones, the project personal motivation and the time devoted to the
project.

2 Stitching Background: This chapter is focused on the stitching methodology
and the issues that can arise when implementing on smartphones. It is also
explained the advantages of this application against others.

3 Applications Overview: This chapter explains the features of the application,
avaiable for the user. Use case and domain model diagrams are also commented.

4 Development: This chapter exposes the most relevant diagrams from a
development view, such flowcharts, system context diagrams or sytem sequence

diagrams.

5 User Guide: This chapter describe the user guide, illustrated with screenshots
and detailed explanations.

6 Conclusion

It is also included an annex at the end of the report.

12

2 Stitching Background
2.1 Smartphone Stitching

At this point it is explained what is the stitching, and what kind of problems arise when
such technique is implemented.

2.1.1 What is the Image Stitching?

Figure 5: Image stitching *

As it can be seen on the images above, image stitching consists on creating an image of
higher resolution from a set of images with lower resolution. The methodology is not a
simply collage, but the final result corresponds to a real object, in this case a cathedral.

We can note the following facts:

e Some details of each lower resolution image are overlapped.

e The stitching process deforms the images using affine transformations, then, the
final image frame has been cropped out.

e The final image might have a size approximately equal to the sum of the initial
images sizes.

e The final image is time-displaced. The first original images were taken in a short
time lapse, but their time stamps are different.

e The point of view on the initial images and the final image is the same. The
observer had not moved from his position.

These inferred tips are in fact the problems that stitching brings to reality.

¥ www.ptgui.com

13

2.1.2 Stitching and Smartphones

Consider the problem in which a bird appears on one picture, but not in others, and this
part of the image is overlapped to other image. In the stitched image such bird will
appear as an artifact.

Another issue that produces artifacts is the use of images not taken from the same place,
which can lead to parallax errors.

Figure 6: Stitched Image example 4

The above figure corresponds to a panorama taken on the London Aquatics Center
interior. At first glance it looks like a perfect result, but if a close look is taken:

Figure 7: The artifacts produced by time difference can be easily discovered on this zoom shot.”

In order to minimize the errors few advices should be followed:

e When capturing a panorama, the observer reference for the stitching is the
photographer himself. The observer should rotate on a vertical axis which can
ideally be drawn from the photographer head to his feet (stationary view).

e When the photographer shifts his camera for changing the point of view, he
should not toss or shake the device. The slowest the movement is, the more
images will be captured and a better result can be obtained.

* www.wikipedia.org
* www.wikipedia.org

14

Such advices should be carefully followed when the image stitching application is used

on a smartphone.

2.2 State of the Art on Stitching Methods

The most useful software employed on image stitching is PTGui (Graphical User
Interface for Panorama Tools). This software allows the user to stitch previously
obtained images and correct possible errors on the image.

= oks

File Edit View Images ControlPoints Tools Project Utilties Help

DE2FE e~ T A BE VB O

'Prbnle(t»Asﬁsia};t Source images | J

(omesss]
o
c

i

Camera | lens parameters
[¥] Automatic (use EXIF data from camera, iF available)

2. Align images...

3. Create panorama..

Figure 8: PTGui snapshot ’

As seen on Figure 8, images
should be acquired previously,
and then processed by the
software. This software is based
on Panorama Tools, a free
source code for stitching created
by Professor Helmut Dersch
from the University of Applied

Sciences Furtwangen® as a
toolkit to correctly stitch
images.

Another relevant free software kit, also based on Panorama Tools, is Hugin, which
provides a better experience to the user due to its capabilities on modifying images and
obtaining high quality results.

Live System User

C 460360
BoN CoRpoRATION

19 Sep 2008 02:01:20 9M EDT

205

2. slenamode: | no

s hare
© ost ancrama prevem 5

i

Figure 9: Hugin snapshot 8

® http://webuser.hs-furtwangen.de/~dersch/
” www.intpicture.com
® hugin.sourceforge.net

15

This is cross-platform software
and brings non-limit possibilities
over the image deformation in
order to improve the final
product.

Examples above are based on Panorama Tools suite, which is developed entirely on
C++ and has obtained a great reputation on the net. The panorama tool is software
which development is still active and it is constantly improved.

Panorama Tools is not the only project related with image stitching. Fortunately there
are other projects like the one developed by the TobW?® team which has been entirely
developed using MATLAB (plus a bash script). The code from this team has been used
on the project’s image stitching process.

The main steps followed by this software are the following:

Capture two images

Detect SIFT keypoints in both images and compute the set of matching points
Apply RANSAC to estimate a homography that transforms the images such that
the points coincide

Transform the images using this homography

Blend the images together

Capture the next image and repeat

® www.tobw.net

16

http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
http://en.wikipedia.org/wiki/RANSAC
http://en.wikipedia.org/wiki/Homography

3 Applications Overview

The diagram presented on Figure 10 illustrates how both applications, the Android
application and the server, work jointly.

4 h

Captures images Sends images

I
C—

Returns stitched image

and0ID

; (r‘).

Processes images

_ /

Figure 10

Before explaining the use case diagrams, is necessary to know which the application
functionalities are:

e Android application (DroidStitcher):

o Stream images to the server.
o Configure the quality of the images used on stitching.
o Check for images from old stitching sessions.

e Server application (StitcherServer):
o Offer connection to multiple devices.
o Session window generation with live-time streaming view from the

device camera.
o Stitch the images and return the result to the smartphone.

In this chapter is carefully explained the relation between the user and both applications
and what are the actions the user is able to do when working with them.

On this chapter there is also a second part where is shown the application domain
diagram.

17

3.1 Use Case Diagrams

On this subchapter will be explained the relation between the user and the application
by use case diagrams. Each diagram shows the user possible actions in different
contexts of the application. Due to the relevance that takes the user interaction on the
Android app, the possible situations have been thoroughly outlined.

3.1.1 Android Application Use Case Diagrams
On this concrete case, the installation should be completed on the device and the
application launched. The green labels found on the diagrams redirect to other diagrams,

located on the figure labeled as by Fig. XX.

The diagrams disposal corresponds to the hierarchy presented on Figure 11.

3.1.1.1 Main Menu Context, Fig.12 \

3.1.1.4 3.1.15
Gallery Notification
Context, Context,
Fig. 19 Fig. 22

3112

Camera : _
Context, ‘ | 3.1.1.3 Options Context, Fig.14

Fig.13

3.1.14.1
Open
Folder, Fig.
20

3.1.1.3 Extended Edit Options Fig. 15

3.1.1.3.2
Frames per

Fig. 16 | |>°°°0% POl Fig. 18 Fig. 21

3.1.1.3.3 311411
Resolution, Open Image,

3.1.1.3.1 Set
the Host IP,

Figure 11

18

3.1.1.1 Main Menu Context

3.1.1.2 (Fig. 13)

3.1.1.3 (Fig. 14)

Cpen Options

3.1.1.4 (Fig. 19)

Lser Cpen Gallery
Exit Application

Figure 12

On this case the user can choose between:
e Open Camera: To start a new streaming session.
e Open Options: To configure the application options.
e Open Gallery: To manage previous session contents.
e Exit Application: Exit from the application doing nothing.

19

3.1.1.2 Camera Context

3.1.1.2 (Fig. 13)

Start Streaming

Stop Streaming
Lser
Feturn to Main Menu

3.1.1.2 (Fig. 13)

3.1.1.1 (Fig. 12)

Figure 13

The user can:
e Start Streaming: Start a new Streaming Session.
e Stop Streaming: Finish current Streaming Session.
e Return to Main Menu

3.1.1.3 Options Context

3.1.1.3.1 (Fig. 14)

f @ 3.1.1.1 (Fig. 12)

Lise

r
3.1.1.1 (Fig. 12)

Figure 14

The user chooses between:
e Edit Options: This is NOT a new context, explained on 3.1.1.3 Extended (Figure
15).
e Save Changes: Save current changes and exit.
e Discard Changes: Discard current changes and exit.

20

3.1.1.3 (Extended) Edit Options

This subchapter is mainly focused on the “Edit Options” use case and describes these
possible options.

Check Device Id

3.1.1.3.1 (Fig. 16)

High Quality lmages

Lser

3.1.1.3.2 (Fig. 17)

3.1.1.3.3 (Fig. 18)

Save Frames

Figure 15

Options:
e Check Device Id: The device Id is composed by 2 values, the device name and
the Android Identifier.
e Set host IP: The user can change the host IP and PORT (socket).
e High Quality Images: The images to stitch will be camera pictures instead
previews.

e Frames per Second™: The user can select between different FPS ranges offered
by the device.

e Resolution™: Camera preview frames resolution.

e Preview quality: The quality of the camera preview frame compression into
JPEG.

e Image per Frames: This number represents the number of camera previews
frames have to pass before taking of image to stitch.

e Save Frames: Stores every preview frame captured by the camera on the host.

19 These values may differ between devices.
" These values may differ between devices.

21

These options grant access to configurations submenus, represented on the following
diagrams:

3.1.1.3.1 Set host IP

Type IP and Port

3.1.1.3 (Fig. 15)

) 3.1.1.3 (Fig. 15)

Figure 16

Available options:
e Type IP and Port: Enter the IP and Port for host connection.
e Update: Update the entered data.
e Dismiss: Exit without changes.

22

3.1.1.3.2 Frames per Second

Select FPS Range
Return to Options Menu

3.1.1.3 (Fig. 15)

Lser

3.1.1.3 (Fig. 15)

Figure 17

The user can choose one of the listed FPS ranges or return to the Options Menu.

3.1.1.3.3 Resolution

3.1.1.3 (Fig. 15)

Select resolution
ser

3.1.1.3 (Fig. 15)

Figure 18

The user can choose between one of the listed resolutions or return to the Options
Menu.

23

3.1.1.4 Gallery Context

3.1.1.4.1 (Fig. 20)

3.1.1.4 (Fig. 19)

Lzer
Feturn to Main Menu

3.1.1.1 (Fig. 12)

Figure 19

On this case the user can choose between:
e Open Folder: Opens the selected folder (short click).
e Delete Folder'?: Deletes the selected folder (long click).
e Return to Main Menu.

3.1.1.4.1 Open Folder

3.1.1.4.1.1 (Fig. 21)

Cpen lmage

3.1.1.4.1 (Fig. 20)

ser

Feturn to Application Root Folder

3.1.1.4 (Fig. 19)

Figure 20

On this case the user can choose between:
e Open Image: Opens the selected image (short click).
e Delete Image®®: Deletes the selected image (long click).
e Return to Folder List.

12°A deletion dialog will appear.
13 A deletion dialog will appear.

24

3.1.1.4.1.10pen Image

3.1.1.4.1.1 (Fig. 21)

Slide to Previous Image
Slide to Mext Image

Feturn to Image Folder Root

3.1.1.4.1.1 (Fig. 21)

Lser

3.1.1.4.1 (Fig. 20)

Figure 21

On this case the user can choose between:
e Slide to Previous Image: Get the previous image view.
e Slide to next Image: Get the next image view.
e Return to Image List (on the current folder).

3.1.1.5 Notification Context

(/;l\) Check Stitched lmage
se

Lser

Figure 22

On this concrete case it is supposed that the user have received a notification from the
service, notifying an image has been successfully, or not, stitched. If the user clicks on
the notification, will get the view of that image, or a null image if the stitched process
have found any problem.

25

3.1.2 Server Application Use Case Diagram

The server administrator has a quite simply diagram, because the only actions available
are launching the server or stop it.

Administrator
Stop Semvice

Figure 23

When a new session is started, a window will pop up on the screen allowing the user
(administrator) to check information about the connection. It is also show a live stream

video corresponding to the camera viewing.

26

3.2 Domain Model

FPrevious lmages
Id: String
==Allows checks== 0.
User DroidStitcher Configuration
==llzag==
==Hag a==
1
==Takes=»
0 ==5etg==
MNew [mages z2Hgs ge=
Id : String 0.
StitcherServer
==Are Sent To==
==Generates==
==|5 Resturned To== Stitched Image
Id ; String

Figure 24

This diagram shows the relation between the user, the Android application and the
server application. The use case diagrams can be explained inside this domain model.

The red labeled object is the user, while the green labeled objects are the applications.
On the diagram can be seen that the object called “Configuration” is related with the
Android Application and the server, due to necessary adjustments done on the server
when a new session starts.

As this diagram represents a concrete session, it is necessary to explain that the objects

named “New Images” and “Stitched Image” will be “Previous Images” on later
sessions.

27

4 Development
On this chapter are exposed the development related diagrams, which are:

e System Context Diagrams
e Flowcharts

e Class Diagrams

e System Sequence Diagrams

Due to the high level of interaction required by the Android application, the System
Context diagrams have been thoroughly schematized. The automatic processes, which
do not require the user interaction, have been detailed on flowcharts and system
sequence diagrams.

There are several web sites providing information about how to implement efficient
Android applications. Some of the facts that should bear in mind are the resources
consumed by the application in order to avoid memory consumption or the loading
time, which could deteriorate the user experience.

To not overload the application Main Ul it is heavily encouraged from Android
Developers to use threads when loading information, this way the user do not notice
about it and the application flows in a faster way.

The guides on Android Developers bring developers tricks and tips to develop in an
effectively way. For example, when creating the camera related methods, you can find a
full tutorial where every part of the code is fully explained and also it is possible to use
snippets to learn how to use the code.

As this chapter is focused on the implementations of both applications, should be
noticed that the advices found during the development have been followed in order to
design and develop well-structured applications.

28

4.1 System Context Diagrams

These diagrams show the interaction between the user and the applications. On these
diagrams the applications are represented as black boxes and no internal performance is
revealed.

4.1.1 Android Application Context Diagrams

This subchapter is focused on the context diagrams related with the Android
application.

On figures 25, 26, 27 and 28 is explained the diagram hierarchy.

Starting from the application main menu, the user has three options.

System Context

4.1.1.10pen @ 4.1.1.2 Open @ 4.1.1.3 Open
Camera, Options, Gallery,

Fig. 29 Fig. 36 Fig. 45

Figure 25

29

The context hierarchy explained on Figure 26 is produced when the user works with the
camera.

4.1.1.1 Open Camera, Fig. 29

4.1.1.1.1 Start
Streaming, Fig. 30

4.1.1.1.2 Stop Streaming, Fig. 31

4.1.1.1.2.1 Enough 4.1.1.1.2.2 Not Enough
Images to Stitch, Fig. 32 Images To Stitch , Fig. 33

4.1.1.1.2.1.1 Stitching
Process, Fig. 34

4.1.1.1.2.1.2 Notification,
Fig. 35

Figure 26

The context hierarchy on Figure 27 is produced when managing the application
configuration.

4.1.1.2 Open Options, Fig. 36

4.1.1.2.2 Save AEIEES
Options Discard Options

Configuration, Configuration,
Fig. 43 Fig. 44

4.1.1.2.1 Edit Options, Fig. 37

4.1.1.2.1.2 Edit

4.1.1.2.1.1 Edit Connection, Fig. Preview
38 Resolution,

4.1.1.2.1.3 Edit
FPS Range,

Fig. 41 Fig. 42

411.2.11.1 411.2.11.2
Update Discard
Connection, Connection,

Fig. 39 Fig. 40

Figure 27

30

Figure 28 represents the context hierarchy available when exploring the gallery.

4.1.1.3 Open Gallery, Fig. 45

4.1.1.3.1 Open Folder, 4.1.1.3.2 Delete
Fig. 46 Folder, Fig. 47

411321 411322
4.1.1.3.1.1 Open . Confirm Folder Discard Folder
image. Fig. = 4.1.1.3.1.2 Delete Image, Fig. 51 Deletion. Deletion,

Fig. 48 Fig. 49

I I 4113121 4113122
Slide Image, Confirm Image Discard Image
Fig. 52 Deletion , Fig. 52 § Deletion , Fig. 53

Figure 28

31

4.1.1.1 Open Camera

ser System DroidStitcher

Selects Camera

Displays Camera Preview

Figure 29

On this case the user has selected the option “Camera” on the application main menu.

4.1.1.1.1 Start Streaming Session

IUsar ISysterm DroidStitcher

Clicks Streaming Button

Generates Session Instance ==thread==
’ [Systerm StitcherServer

Starts Streaming (Blue Button)

<_ ___________________________

Displays Session Information

Figure 30

On this context the user clicks on the streaming button. When doing this, a new instance
of the server is launched, and the Android application starts streaming preview frames.
The user can also check on the computer screen the session information, as well as the

images captured by the device.

32

4.1.1.1.2 Stop Streaming Session

IUser I8ystermn DroidStitcher ==thread==
ISystermn StitcherServer

Clicks Streaming Button

Stops Current Session

Staps Streaming (Red Button)

Checks Mumher of Images

Figure 31

When the user clicks the streaming button, the session is closed. When this happens,
two things can occur: have enough images to launch a stitching process on the server or
not.

4.1.1.1.2.1 Enough Images to Stitch

ISystern DroidStitcher ==thread==
ISystem StitcherServer

Sends Images To Stitch

Ends Session Instance ’

Figure 32

In this case the device has captured enough images to start the stitching process. The
images are sent to the server. Then the current session is finished.

33

4.1.1.1.2.2 Not Enough Images to Stitch

User

Motifies not Enough Images

I3ystem DroidStitcher

==thraads==
I8ystern StitcherServer

Ends Session Instance |

Figure 33

Otherwise, the session is finished and the user receives a message telling that there are
not enough images to start the stitching process.

4.1.1.1.2.1.1 Stitching Session

Mser

ISystermn DraidStitcher

Motifies Mew Image Received

Generates Stitching Instance

Sends Folder to Stitch

==thread==
ISystem StitcherServer

Returns Stitched Image

Finishes Stitching Instance

S

Stitches Images

Figure 34

If the minimum number of images is achieved, a new stitching instance is created. The
stitching result is returned to the Android application and the user receives a notification

when this occurs.

The image could have been correctly stitched or not. In both cases the notification is
received, the only thing that differs between a correct result and an incorrect result is the
notification message.

34

4.1.1.1.2.1.2 Notification

ser rSystem DroidStitcher

Clicks Motification

Displays Stitched Image

Figure 35

When the user clicks on the notification, the stitched image is displayed. Is the image is
null, which means the stitching process has not been successful; a “no image” icon will
be displayed when clicking the notification instead the stitched image.

4.1.1.2 Open Options

User ISystermn DroidStitcher

Selects Options

Displays Options

Figure 36

On this case the user has selected the option “Options” on the application main menu.

35

4.1.1.2.1 Edit Options

ser iSystern DroidStitcher

Edits an Option

Displays Changes

Figure 37
Every time the user changes an option value it is visible on the Options Menu.

4.1.1.2.1.1 Edit Connection

Uszer ISystem DroidStitcher

Clicks "Connection” Buttan

Displays Connection Configuration Dialog

.(_ ___________________________

Figure 38

When the user clicks on the “Connection” button, represented by an IP and a port
(XXXXXX XXX XXX XXXXX), a dialog is shown.

36

4.1.1.2.1.1.2 Update Connection Configuration

Mser rSystem DroidStitcher

Clicks "Update" Button

Walues Lipdate
Displays Updated Options Menu

Figure 39

If the user adds a new connection configuration, it is stored and the updated
configuration displayed on the Options menu.

4.1.1.2.1.1.3 Discard Connection Configuration

ser rSysterm DroidStitcher

Clicks "Dlscard” Button

Displays Options Menu Without Changes

Figure 40

The user can also exit without making any change.

37

4.1.1.2.1.2 Selecting Preview Resolution

ser r'System DroidStitcher

Clicks "Preview Resolution”

Shows Available Resolutions Listed

L o e e]
[

Selects an Availahle Resalution
|- Displays Updated Options Menu
e P e

Figure 41
When selecting a new Preview Resolution, the user must choose one from the given list.

4.1.1.2.1.3 Selecting FPS Range

IUser Isystem DroidStitcher

Clicks "FPS Range”

Shows Available FPS Ranges Listed

'(T _____________________________

Selects an Awvailable FPS Range

Displays Updated Options Menu

Figure 42

The user has to choose one of the available FPS Ranges from the given list.

38

4.1.1.2.2 Save Options Configuration

User

[8ysterm DroidStitcher

Clicks "Save" Button

Displays ain Menu

Stores Configuration

Figure 43

Once the application has been properly configured, the changes can be stored.

4.1.1.2.3 Discard Options Configuration

ser

raystem DroidStitcher

Clicks "Discard" Buttan

Displays Main Menu

Figure 44

The user can also exit without saving changes.

39

4.1.1.3 Open Gallery

User ISystem DroidStitcher

Selects Gallery

Displays Gallery

Figure 45

On this case, the user has clicked “Gallery” on the application main menu. The
application root folder is listed.

4.1.1.3.1 Open Folder

ser rSysterm DroidStitcher

Selects Folder

Displays Folder Content

Figure 46

The user can open a listed folder by short clicking. The folder content will be displayed
on the screen.

40

4.1.1.3.2 Delete Folder

Mser ISysterm DroidStitcher

Selects Delete Folder

Displays Canfirmation Dialag

{ ____________________________

Figure 47

The user can also delete the folder by long clicking over it. A confirmation dialog will
appear in this case.

4.1.1.3.2.1 Confirm Folder Deletion

Mser [Bystern DraidStitcher

Clicks "Delete" Button

Deletes Folder
Displays Update Gallery

Figure 48

If the user wants to delete the folder, it is necessary to confirm.

41

4.1.1.3.2.2 Discard Fold

er Deletion

MWser

System DraoidStitcher

Clicks "Discard" Button

Displays Gallery without Changes

,{ ____________________________

Figure 49

Otherwise, the folder is not deleted.

4.1.1.3.1 Open Image

ser

ISystem DroidStitcher

Selects Image

Displays Image

Figure 50

By a short click over an

image, it is displayed on full screen.

42

4.1.1.3.2 Delete Image

MUser

ISystem DroidStitcher

Selects Delete Image

Displays Confirmation Dlalog

Figure 51

The images can also be deleted by a long click.

4.1.1.3.2.1 Confirm Image Deletion

Mzar

ISystern DroidStitcher

Clicks "Delete" Buttan

‘E _____________________________

Displays Updated Folder Content

Deletes Image

Figure 52

Confirmation is also needed in this case.

43

4.1.1.3.2.2 Discard Image Deletion

Mser rSystem DroidStitcher

Clicks "Discard" Button

Displays Folder Content without Changes

Figure 53
It is also possible to not delete the image.

4.1.1.3.1.1 Slide Image

Lser System DroidStitcher

Slides Image (Right'Lef

Displays Image (MextiPrevious)

Figure 54

When the user has opened an image, it is easy to open the next or the previous one just
sliding.

44

4.1.2 Server Application Context Diagrams

Due to the low interaction with the server application, two diagrams can explain the
possible contexts.

4.1.2.1 Launching the Server Application

Lser IstitcherSenver

launches

Figure 55

When launching the server, the user has nothing to configure.

4.1.2.2 Checking a new Streaming Session

Mser IstitcherSenver

Session Information Display

Figure 56

When a new Streaming Session is launched, the user can check the information
received on the session display.

45

4.2 Flowcharts

In this subchapter are represented the most relevant workflows by flowcharts.
The signs presented on the workflows are illustrated on Table 1.

Sign Description

Visible change for the user.

Requires user interaction.

Instruction.

Send Information Instruction.

Long Wait.

©
™
<> Condition.
-
D

Table 1

At this point it is necessary to explain which the session behavior on the application is.
There are two types of sessions:

e Streaming Session: This session is launched by the user. It starts when the user
clicks the streaming button and it finishes when the images for stitch are
completely uploaded to the server.

e Stitching Session: This session is started by an Android Service just after the
Streaming Session has finished. Its creation and destruction are hide to the user.

46

4.2.1 Android Application Flowcharts

Due to the Android Activities, which mainly work is related with user interaction; these chapter
flowcharts represent the application parts which have a minimum user interaction.

4.2.1.1 Streaming Session

% Start Streaming

Load Configuration

v

Connect to Server

¥

@ Change Streaming Button Color

Send Configuration

% %, Stop Streaming
NO

While Streaming

Save Image?

@ Update Image Counter [« Save Image

Enough Images?
YES

Create Uploading Dialog

Toast Message

v

Disconnect From Server

v

@ Reset Image Counter
v

@ Change Streaming Button Color

While Images to Send

Close Dialog

@ Update Dialog

h 4

Disconnect From Server

v
@ Reset Image Counter

v

@ Change Streaming Button Color

Figure 57

47

Figure 57 description:

Once the user has clicked the Streaming Button (Start Streaming) the applications load
the necessary data from the stored configuration, previously modified on the Options
menu.

The next step is to establish a connection with the server. If no errors are produced on
this step, the Streaming Button will change its color from red to blue, so the user can
check the Streaming Session has already started. Otherwise the button will not change
its color and an error message will be displayed, so the user will know what is exactly
producing the error and not making possible the connection.

After the connection establishment, necessary data is sent to the server, in order to
configure the Streaming Session properly.

While the Streaming Session is running, all the frames taken by the camera smartphone
are sent to the server, in order to display them on live-streaming. The Android
application saves some of these frames (or takes a picture) while the Streaming Session
is running. These images will be sent to the server in order to stitch them.

When the Streaming Session is finished, due to the user has clicked on the Streaming
Button or has pressed the Back key on the smartphone, the stored images can be sent to
the server.

The first thing to check on this case is the number of images taken and stored on the
device. If the device has not stored a minimum number of images (at least two images),
the stitching cannot be done, so the images are not sent and the Android application
displays a message telling the number of images is too low.

If the number of images taken is high enough, then the images are sent to the server.
This process is displayed to the user on a dialog which contains an uploading bar.

When the sending images process is completed, the connection with the server is closed.
The Streaming Session finishes in order starting a Stitching Session.

48

4.2.1.2 Stitching Session

Conned To Server

2

Send Folder to Stitch

Wait for Result)

Successful Result?

@ Display Succes Notification @ Display Error Motification

Figure 58

During the stitching session the user has no interaction with the application. Once the
Streaming Session has finished, an Android Service is launched, which opens a new
connection with the server. The Service asks for a folder to stitch, which corresponds to
the path where the images have been stored.

The folder contents are processed, and a MATLAB instance is created to stitch the
images. If the result of the stitching is properly produced, a Success Notification is
displayed on the user device. The final product is shown if the Notification is clicked. It
is also stored on the Session folder.

Otherwise, an Error Notification is displayed, so the user knows the images have not
been correctly stitched.

49

4.2.2 Server Application Flowcharts

The flowcharts presented on this subchapter correspond to the Server Application processes.
The user has no interaction on these cases.

4.2.2.1 Streaming Session

MNew Connection

!

Configure Session

:

Launch Session Display

While New Frames Received Increase and Display Frame Counter

l

@ Display Frame
|

NO

Dismiss Session Display

!

Close Connection

Figure 59

When a device establishes server connection, a new thread is launched and configured
to the concrete session requirements. On the Streaming Session, a display is launched,
in order to show relevant information from the device. While the connection is up,
frames are constantly received and displayed on the screen, producing the live-
streaming effect.

When the session is dismissed from the smartphone, the display is closed and also the
connection.

50

4.2.2.2 Stitching Session

Mew Connection

!

Open Folder to Stitch

!

Stitching Process

YES MO

Save Image Send Error Message

I 1

Send NO Error Message

Close Connection

Send Stitched Image

Close Connection

Figure 60

On the Stitching Session no display is shown. Once the necessary information is
received, a MATLAB stitching process is launched.

Depending on the operation result, a different notification is sent to the device. If
success, it is also sent the stitched image. This image is also stored on the server.

51

4.3 Class Diagram

The figures on this subchapter illustrate the code classes and their relation among the
implementation. Due to the amount of methods and attributes that each class possesses,
this data has not been represented on the diagrams in order to provide a clear viewing.
Some classes such TextWatchers, Comparators or AsyncTask which deployment is not
required for the application understanding have been deliberately omitted. Inheritance
to internal Android classes has been omitted too.

4.3.1 DroidStitcher Class Diagram

‘HandletFrameCounter 1=
z=gtores preview framegs== '

==<count frameg==

‘SavePhotoTask |

<=frame processing== 1

==gtares pictures taken==

! ‘PhotoCall

-] :‘CustomCamera

CustomCameradctivity ConnectCall

==launch image stitching=»

‘StitchingSenvice

==connects with the server==

:Connection

==launch camera=s,

==gend images==

‘SenderTask

==fakes pictures== :PhotographerTask

==configured by==

DroidStitcherMainActivity OptionsActivity

==check old images=»

==navigate through images==

‘GalleryListActivity : AmagesliderActivity
L 1

Figure 61

Figure 61 illustrates the relation between DroidStitcher Classes. The name of each class
depends on its role. The names finished with “Activity” represent activities, the word
“Task” 1s for the AsyncTask (threads) and the word “Call” represents callbacks.

The diagram starts from a simply root, which is the application main activity and
extends its branches to other activities.

While OptionsActivity does not have any relevant interaction with other classes,
CustomCameraActivity does. GalleryListActivity rules an ImageSliderActivity, which
allows slide through images.

CustomCameraActivity generates CustomCamera. This class is responsible of the
preview holder, which allows checking camera previews. This class also generates the
connection with the host, managed by Connection class, the images taken counter,
which is HandlerFramCounter, the sending images to server process, which is
SenderTask, the responsible of retrieving the Stitched image, StitchingService, and the
callback ConnectCall, which allows sending data to the host.

52

If the images sent to the server will be preview frames, ConnectCall directly stores them
on the device using SavePhotoTask. Otherwise, the images that will be sent are camera
pictures, such task will be accomplished by PhotoCall, a callback launched into the
PhotographerTask that will save the image just before its shoot.

The diagram represented from CustomCameraActivity till the end corresponds to an
only session. For each session just one CustomCamera will be created, just one
Connection will be created, etc. The only objects that will be constantly created are the
ones focused on taking pictures and saving images.

The diagram shows no relation between StitchingService and Connection, but it is clear
that this service also establishes a connection with the host in order to create a Stitching
Session. Actually the service accomplish its task, but without the need from other
classes. The service implements on its code a new low-level socket configuration, as
Connection class does.

The reason why the service starts a new connection is because the Android services run
on the application main Ul. To avoid that, the only possible way is to make the service
run an internal thread. This thread is the one which connects with the host allowing the
user exiting from the application without interrupting the connection. Hence it is not
necessary the application to be opened.

The ternary relation composed by ConnectCall, PhotographerTask and SavePhotoTask
allows sparing not repeating code. The image saving process is the same on both cases.

53

4.3.2 StitcherServer Class Diagram

lzerinterface

==ohn Streaming Session==

==create== _
StitcherServer | 1 0. | stitcherThread

hatlakbStitching

==0n Stitching Session==

Figure 62

StitcherServer just has four relevant classes which can explain its behavior.

The first class, called StitcherServer, is one which is launched when the server starts.
Once a device tries to connect with the host, StitcherServer generates a new thread
which manages that concrete connection entirely.

At this point, there are two types of connections. The Streaming Sessions launched by
DroidStitcher itself or the Stitching sessions launched by the StitchingService, which
has been created at the end of the Streaming Session.

Depending on the session kind, established by the client, the host generates a
UserlInterface, which provides information about the connected device and the live-
streaming video, or the MatlabStitching, a static class which allows opening a
MATLAB instance and work on stitching.

StitcherServer allows multithreading, so several Sessions can be running at the same
time. For example, if two devices are streaming images at the same time, two graphical
interfaces will be shown on the server screen.

The MatlabStitching class is synchronized in order to avoid multiple services asking for
a stitching process, the reasons for doing this are two:

e The stitching process consumes many resources from the computer. This fact
could produce a collapse.

e The MATLAB stitching code generates local files. This data are images
generated while stitching, files containing key points, etc. If two Stitching
Sessions are running at the same time, these files can be overwritten and the
final product could be erroneous.

54

4.4 Class Specifications

On this subchapter are explained all the classes belonging to both applications.
Attributes and methods are included on every figure, and the most relevant are included
on the class description.

4.4.1 DroidStitcher Classes

4.4.1.1 MainActivity

com:droidStitcher:Droid Stitcher:MainActivity

anCreate{savedinstanceState | Bundle) :woid
anPaused :void

createdppFolderd boolean

setStyled : boolean
[aunchCustomCameradctivityfview Wiew) : boolean
launchGalleryListActivitedview: Wiewd ©void
launchOptionsActivitydview Wiewd void

Figure 63

This activity is the first created when the application is launched. This activity basically
grants access to other activities, each one of them accessible by a button (view) located
in its display.

4.4.1.2 CustomCameraActivity (corregir)

comedroidStitcher:: CustomcameraActivity

mizamera ;. Camera
mPreview CustomcCamera
igStreaming : boolean

onCreate{savedinstanceState - Bundle) : void
openCamd ;vaid

streamerButtonConfigd ; void
onBackPressedd void
StreamerButtonConfia

Figure 64

This activity checks the camera availability, launches its preview and configures the
streaming button behavior with listeners.

55

4.4.1.3 CustomCamera

com:droidStitcher: CustomCamera

TAG . String

mHolder : SurfaceHolder
mearmera ; Camera
streaming : boolean

chte s Context

sname ; String

con s Connection

005 ObjectOutputStream
nis : OhjectinputStream
framestaken : TextWiew
appont: : Context

hfc . :HandlerFrameCounter
shutton : ImageButtan
connectionStatus - hoolean

==create== CustomCamerafcontext : Context, appocontext | Context,camera : Camera,sessionMame ; String)
getPreviewResolution{appeontext | Contexd) : int])
getFrameRatefappcontext : Context) : ind]

setFramesCounteritextyiew : TextView) (void

resetFramesCounter(: void

surfaceCreatedihalder : SurfaceHaolder) : void

streami{mode : int) : boolean

streaming¥alued : hoolean

surfaceDestrovedi{holder : SurfaceHolder) ;- vaid
surfaceChangediholder : SurfaceHolder format : intyw ;inth ©inf) - void
connect{user: String) : hoolean

autoToast{string : String) : void

setStreamerBution{streamButton : ImageButton) : void
setFramesCounter))

setStreamerButtan()

connectd

Werifil

Figure 65

This class extends from Android SurfaceView and implements SurfaceHolder.Callback.
These relations and its implementation allows this class to work as a preview holder,
displaying on the device screen every frame captured by the camera.

The camera is configured loading the values stored on the Options Activity. The
relevance of this class lies in the objects, such the HandleFrameCounter or Connection,
which are created and managed from its code.

56

4.4.1.4 HandleFrameCounter

com:droidStitcher::HandlerFrameCounter

counter ;int
mytextframecounter ; TextWiew

==create== HandlerFrameCounterity | Textvisw)
increased : hoolean
resetd) : boolean

Figure 66

This handler is the responsible of managing a counter which value represents the
number of images or frames stored on the Streaming Session.

4.4.1.5 Connection

cormcdroidStitcher::Connection

requestSocket - Socket
applicationCaontext | Context
oo0s OhjectOutputStream
ois : ObjectinputStream
errarToast: Toast

==cregte== Connection{applicationContext | Context)
getlPandFPortd : String[)

setSocketd - hoolean

setStream(: boolean
sendintRequestToServer{requesttumber : int) : boolean
sendstringRequesiToserver{requeststring © String) ; boolean
sendByvtesrravR equestToSenver(requestByteArray - byvtell) : boolean
readintAnswerFromServerd | int

verify{devicename : String,saveFrames : hoolean) : hoolean
sendlmagefileContent : byte]) - boolean

sendFramefimadge : bytel]) : boolean

discokilld) - boolean

sendlmageFolder(folder : String) : boolean
toastErrorsierrormumber ;int) ; boolean

sendlmageFalderd

sendFramen

sendlmage)

Figure 67

This class manages the connection. Every network operation required by other
components like threads or objects must submit their petitions to this class.

Due to its condition its methods are synchronized and the possible network issues are
corrected by returning Booleans representing the success of the operation.

The function toastErrors() is run when an error occurs, so the user can check the
problem on the device screen.

57

4.4.1.6 SenderTask

com:droidStitcher::SenderTask

foldernow : String

can o Connection
context : Context
senderdialog : Dialog
interrupted : hoaolean
huttond?ifi - ImageButton

==creater= senderTask{folderbase ; String,mycaon - .Connection,context | Context, shutton : ImageButtan
dolnBackaround{params : String) : Boolean

onPostExecuteisuccess Boolean) : void

anPreBxecute :void

anProgresslUpdatedprogress | Integer]) : woid

Figure 68

This Android Asynctask sends the stored images from the device to the computer host.
It is also responsible of updating the Upload Dialog which appears when sending those
images.

4.4.1.7 Stitching service

com:droidStitcher:: StitchingService

folderSavelmage ; String
foldersplit : String(
modeldevice : String
stitchedimage : byte)
reguestSocket : Socket
nos ;- OhjectOutputstream
nis : OhjectinputStream

onBindiargd ; Intent) ; IBinder

stopService : void

oncreated void
sethndShowbklotification{success : boolean) :woid
anStartiintent : Intent,startid © int) : void

Figure 69

This Android Service asks the host for stitching a concrete folder, corresponding to the
previous Streaming Session. It also stores the returned image and notifies its arrival to
the user. This service runs regardless of the application status or context.

58

4.4.1.8 ConnectCall

droidStitcherThreading:: ConnectCall

imagecounter :int

mycon ;Connection
takepicture : hoolean
photocounter :int

foldern : String
modeimageperframes ;int
modeHQimages : hoolean
modepreviewquality : int
rmydialog : Dialog
framelabel : Textview
myhfc ;- HandlerFrameCounter
chbe: Context

mycca [CustomCamera

==create== ConnectCallicea : :CustomCamera,cony : Context HQimages | Boolean imageperframes | int previewguality : inthfc - ‘HandlerFrameCounter,con - :Connection,folder : String)

onPreviewFrame(argl ; bytel,cam ; Camera) ; void

preparePreviewlmagedrawpic : byte[,cam : Camera,compressionguality © inf) © byte]

preparePreviewlmagel)

Figure 70

This Android Callback is responsible of the image post-processing. Once a frame is
taken, this callback will change its format, store it if necessary and send it to the server.

4.4.1.9 SavePhotoTask

droidStitcherThreading::SavePhotoTask

folderToSaveThelmange : String
imageCounter : int
ImageMame : String

==create=»= SavePhotoTaskifolderToSaveThelmage ; String,imageCounter ;int)
dolnBackaround(jpen : bytefl) : String

Figure 71

Whenever a camera picture or preview frame needs to be stored, this AsyncTask will
store it on the required folder with the required name.

59

4.4.1.10 PhotographerTask

droidStitcherThreading: :PhotographerTask

mCamera : Camera
ryfalder : String
imagecounter :int

==create== PhotographerTaskimCamera : Camera,folderToSavelmage © String,imageCounter :inb
onPostExecutelresult Void) : void

dolnBackaround(params : Woid) Woid

takePicture()

Figure 72

This AsyncTask launches the camera method takePicture(), necessary for obtaining
camera pictures.

4.4.1.11 PhotoCall

droidStitcherThreading: :PhotoCall

folder : String
imadecauntar : int
mCamera: Camera

=2=praate== PhotoCallimCamera : Camera folderToSavelmage : String,imageCountar : inf)
onPictureTakenidata : byte[),camera : Camera) : void

Figure 73

If the images which will be stored are camera pictures and not preview frames, this
callback is passed onto the takePicture() method, located on the PhotographerTask. This
callback will launch the SavePhotoTask thread in order to save the image.

60

4.4.1.12 OptionsActivity

com:droidStitcher::OptionsActivity

onCreate{savedinstanceState | Bundle) :woid
setStyled void

seekBaratchersd : void

displayPreviewr PSRangeLlistiview : Wiew) ; void
displayPreviewResolutionListiview : Wiew) ; waid
showlPDialogiview : Wiewd :woicd
[oadOIdIP(dialon : Dialog) : hoolean
setatchersidialog : Dialog) © void
UpdatelPidialog : Dialod) ©waid
finishOptionsfview : Wiew) D vaid
savedptionsfwiew : Viewd Dwaid
storeFPreferences : hoolean

[oadOptionsd : hoolean

Figure 74

This Activity is responsible of allowing changing the application settings. It is also
responsible of the dialogs which appear when modifying some settings.

The configuration, which is stored and loaded when launching and closing this activity,
is stored on the Shared Preferences of the Application Context, allowing this data to be
accessible from other activities.

The Shared Preferences is a .xml based data storage system. On Android, each activity
can own its Shared Preferences in order to store and load values. Accessing from other
activity to these values is not easy and requires the addition of explicit code. In order to
avoid it, Android allows creating SharedPreferences for the application context, not just
one activity, this way the data can be easily accessible from other activities or objects
that have access to this context.

61

4.4.1.13 MyTextWatcher

com:droidStitcher:myTexdatcher

editText : EditText

=<=preates= myTedivatcher(editexdsecond ; EditTexd)

afterTedtChangedis ; Editatle) ; void

heforeTextChanged(s : CharSegquence, start: int count : intafter : inf) ; waid
onTextChanged(s : CharSequence start: int hefore : int,count : inf) : void

Figure 75

This TextWatcher allows jumping between the Connection Dialog fields.

4.4.1.14 GalleryListActivity

com:droidStitcher::HandlerF rameCaunter:: GalleryListActivity

mCurrenttlade : File
mlLasthode ; File
mRootkode ; File

f:File

mFiles : ArrayList
mAdapter | CustomaAdapter

onCreate(savedinstanceState | Bundle) : void

onBackPressedd : woid

refreshFilelist() : vaid

ohResumed : void

deleteCialogffileToDelete : File) : waoid

deleteConfirmDialogfileTaDelete : File) : vaid

ohSavelnstanceState(outState : Bundle) : vaid

onListtemClick{parentListiew ; Listview view : View position : intid : long) : waid

Figure 76

This activity allows the user managing the files stored on previous sessions. It works as
a file explorer, allowing navigating through the stored files. Its root is the application
main folder. It is also responsible of displaying the deletion dialogs and launching the
image slider when necessary.

62

4.4.1.15 CustomAdapter

Custornddapter

terns : Arraylist

context : Context

assetM anager : AssetManager
typeFace : Typeface

==create=>= Custornddapter[context : ContexttextviewResourceld : int,iterns : ArrayList, assetManager : AssetManager)
getviewlposition : int, convertyiew ; Wiew, parert : WiewGroup) : Wiew

Figure 77

This adapter loads items on the gallery list. If the item is a folder, a folder icon will
appear before its name. If the item is an image, the AsyncTask Loadlmage will load its
miniature.

4.4.1.16 Loadlmage

Loadimage

f: Fil=
iy Imageisiew

==create=>> Loadlrmagelirny : Imagetiew, file : Fil)
onPreExecutel) : woid

dolnB ackground() : Edrnap

onP ostE xecute(result : Btrnap) @ woid

Figure 78

This AsyncTask loads the image miniatures to provide a preview of the image. While
loading the images a question mark icon could be seen. This icon replaces the miniature
since the image thumbnail is loaded.

4.4.1.17 ImageSlider

comcdroidStitcher:lmageSlideractivity

currentimage : String
currentFaolder ; String
currentFolderFile : File
currentimageFile : File
currentFolderFiles : File[
comp : Comparatar

img : lmagehfiew
termp: int

onCreateisavedinstanceState : Bundle) : woid
onTouch{argD : Wiew motionBvent : MotionEvent) : hoolean

Figure 79

This activity allows sliding between images from a concrete folder.

63

4.4.2 StitcherServerClasses

4.4.2.1 ServerLauncher

ServerLauncher

socket:int
nume :int

InToSleep] Secd - haolean
firstLaunch - wvaid
mainfargs . String[) : woid

Figure 80

This class is the first created when launching the server. It is responsible of the server
root folder creation, and launching connection threads when necessary.

4.4.2.2 StitcherThread

StitcherThread

myServersocket | Socket
foldernarme : String
modevalue : int
framesReceivedCounter :int
imageToSaveCounter : int
protocolReguest :int
frameToSaveCounter ; int
connectioniode :int
errarStitchinglmane : boolean
saveFrames : haolean
connectionQn : boolean

ex Userinterface
deviceMame : String

==create== StitcherThreadi{mySenerSocket . Socket)
rung ;void
removeConnectiond : void

Figure 81

This thread manages the entire connection with the devices. Once a device is connected
to the server, a new StitcherThread is launched and will handle that connection till its
end. It is responsible of launching the User Interface on the Streaming Sessions and
updating its contents.

64

4.4.2.3 MatlabStitching

MatlabStitching

errarStitfchinglmade : hoolean

retrieveStitchedlmangeService(devicename : String folder : String) © bytel]

Figure 82

This class launches the stitching process. The functions called are located in the .jar
compressed library deployed with MATLAB.

4.4.2.3 UserInterface

zerlnterface

lahel : JLahel
phonelabel : JLabel
connectionlabel : JLabel
northinfa : Label
northpanel : JPanel
imagepanel ; JPanel
eastpanel : JPanel
myframe : JFrame

cubic : Font

fliphash : Font

==preate== Lserinterfacen
addEmisarhame : String) : woid
addlmagei{myFicture : Bufferedlmade) : void
sethorthinfodest ; String) © woid

loadFonts(void

setblornPannel Testtext ; String) ; void
closed :woid

Figure 83

This class is responsible of creating the user interface. Its structure is based on modular
panels. It is easy to change or add new panels. The three main panels are:

¢ NorthPanel: Display the number of frames received.
e Video Panel: Displays each received frame.
e Connection Panel: Displays the device running that concrete session.

65

4.4 Event-trace Diagrams

On this subchapter are presented the Event-trace diagrams corresponding to the
applications implementation.

4.4.1 Android Application Event-trace Diagrams

4.4.1.1 Launching the Camera

(CustomCameraActivity

P
[i apenCame

=

I iyt
==craates» ‘CustomCarnera
sefFramesCounterd ’
==treate=» ‘HandlerFrameCounter
setStreamerBution(’

Eaamerﬂuﬁunmnﬂgﬁ

=

e -

Figure 84

When opening the CustomCameraActivity, the first thing that is checked is the
availability of the hardware camera. Once the camera is loaded, a preview holder,
CustomCamera, is launched. Some of the parameters from the CustomCamera have to
be set from the CustomCameraActivity, like the frame counter or the Streaming Button.

To handle the frame counter a new object is created, the HandleFrameCounter.

To finish the loading the Streaming Button listeners are set on the
CustomCameraActivity.

66

4.4.1.2 Start Streaming Session

(CustomCameraActivity (CustomCamera

T
I

stream (1) !
B connect)

z=praatass Connection
|: setSocket(
P
[ﬁatstreamo
>
< ________________________
T
werify()
sendlimageFalder))
<_ _______________________
<=create=» :ConnectCall
------------------- - U
1
1
L I L
Figure 85

When the Streaming Sessions is launched, the CustomCamera object creates a new
Connection object, which will handle all the connection related instructions.

The Connection object sets the socket (connect to the server) and establishes a data
stream over them, in order to exchange information.

The next step to take is to send necessary session related information calling the
methods verify() and sendimageFolder().

To finish this process a ConnectCall is launched. ConnectCall is a Callback that sets the
Preview Holder behavior. It allows sending every frame taken to the server and store
images.

67

4.4.1.3 Sending Preview Frames for subsequent Stitching

:connectCall ‘Connection HandlerFrameCounter
; ;
While Previews | |
Taken 1 1
|: preparePreviewlmage() } }
I I
o | !
| |
sendFrarmef - | !
|
|
I
|
<_______________________"|_I |
| |
| |
Iffrarme has } }
ta be stared ==create== : ==thread== :
T “SavePhotoTask I
I I
| |
I, |
‘lncrease() =
|
I
} U
_________________________ L _______
| |
T T
L
LI I L |

Figure 86

On Figure 86 is presented what ConnectCall does in order to send images to the server
and update information on the screen. On this concrete case the mages to stitch will be

preview frames, not camera pictures.

Once a frame is taken, it needs to be casted to a compressed image format type. The

method preparePreviewlmage compresses this frame before sending it to the server.

After the frame has been compressed and sent to the server, it could be stored if needed.
If the image is stored, it will be sent again to the server when the session finishes, but
this time as an image to stitch. After storing the frame, the image counter is increased.

Note that the quality of the compression and the image storage rate are configured on

the Options menu.

68

4.4.1.4 Sending Captured Images for subsequent Stitching

ConnectCall HandlerFrameCounter
' i
T T
1 I
1 I
i

While Previews Ly

Taken
preparePreviewlmage]

sendFramef) - :

A—

If Image have

to be taken
==thread==

1 ‘PhotographerTask

|:RPCW PhotoCall

==threai=»
—F SavePhotoTask

i
increasen) .

Figure 87

On this case the images stored, and consequently sent, for stitching are pictures taken by
the smartphone camera.

The preview frames are sent as in 4.4.1.3 Sending Preview Frames for subsequent
Stitching, but instead of saving a concrete frame, a new picture is taken.

A new Android Asynctask is created, which will load the takePicture process.

To store the image and restart the image preview on the Preview Holder a new callback
is created, called Photocall. After taken the picture, the image counter is increased.

69

4.4.1.5 Finish Streaming Session

HandlerF rameCounter Connex tion

i Enough
Images

SitchingSenice

Figure 88

When the user clicks on the streaming button while the streaming session is running, the
session is finished. Figure 88 illustrates how the application solves this situation.

The first thing done is a reset over the frame counter. After that, is checked the number
of images stored on this session. If enough, these images are sent one by one to the

server. This function is handled by the Asynctask SenderTask.

Once this is done, the connection with the server is closed and the StitchingService is
launched. This service request for the image stitching and waits for the final product.

70

4.4.2 Server Application Event-trace Diagrams

4.4.2.1 Streaming Session

- ServerLauncherstitcher

==rregtes==
==thread==

’ . Btitcher Thread

=arregte== Userlnterface
addEmisord ’
While recieving AN
images D addimage(
addlmage)
P
{ ________________________
i
setharthPannelinfol ’
Mo]
closel

Figure 89

When a new Streaming session is launched from the smartphone, a new thread is
created on the server side to handle that concrete connection. This thread, called
StitcherThread, launches a new display, called UserlInteface, which has the live-
streaming panel and gives relevant information about the session.

When a frame is received, it is set on the view panel located on the display. Also a

frame counter is increased on the Northpannel. Once the session has finished, the
display is dismissed and the StitcherThread dies.

71

4.4.2.2 Stitching Session

‘BaerverLauncher

==greate== z=thread==
P sticherThread

IatlabStitching

Figure 90

When stitching images a StitcherThread is also created. Instead of opening the session
information panel the thread launches a new MatlabStitching instance, which tries to
create the stitched image.

72

5 User Guide

On this chapter will be explained the necessary steps to properly run the Android
application, DroidStitcher, and the server application, StitcherServer, and their
requirements. It also contains the user guide which explains how to manage the Android
application.

5.1 Application Specifics

DroidStitcher:

This app has been entirely developed using Eclipse and its
Android SDK. The applications involved on its user interface
have been Photoshop CS6, AAA Logo.

It is quite simply to use as explained below on this chapter.
Its weight is about 2,22 MegaBytes.

Figure 91: DroidStitcher logo

StitcherServer:

The server application has been also developed on Eclipse. The user interface has been
developed using Java Swing.

The interface on both applications has been devolved under the same pattern. The
typography used is Flipbash™* and the color gamma used is white for the digits and dark
electric green and black or grey for the backgrounds.

Due to the code deployment is easy to change the user interface pattern on both
applications. The main aim for applying a custom style over the applications has been
debugging.

¥ http:/www.dafont.com/flipbash.font

73

5.2 Android requirements

Android OS versions overview:

Version Code name Release date API level (De(I:Delrsgtl;lebru?E:oz%lz)
15 Cupcake April 30, 2009 3 0.1%
1.6 Donut September 15, 2009 4 0.3%

2.0-2.1 Eclair October 26, 2009 7 2.7%
2.2 Froyo May 20, 2010 8 10.3%

2.3-2.3.2 Gingerbread December 6, 2010 9 0.2%

2.3.3-2.3.7 Gingerbread February 9, 2011 10 50.6%
3.1 Honeycomb May 10, 2011 12 0.4%
3.2 Honeycomb July 15, 2011 13 1.2%
4.0.x Ice Cream Sandwich December 16, 2011 15 27.5%
4.1.x Jelly Bean July 9, 2012 16 5.9%
4.2 Jelly Bean November 13, 2012 17 Bieks
Table 2

The Android application was developed for working on Android 2.2 (Froyo API Level
8) and below versions. Due to technical advantages it has been finally developed for
Android 2.3 (Gingerbread — API Level 9) versions and below and it does NOT work on
previous versions. This is explained more accurately on the development chapter.

Considering the table above, the application compatibility is:

Android Version Distribution
(December 3, 2012)

Device Compatibility

® No compatible = Compatible

3%

m Cupcake m Donut

= Eclair = Froyo

m Gingerbread = Honeycomb

= Ice Ceam Sandwich = Jelly Bean

Figure 92

74

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Cupcake_(operating_system)
http://en.wikipedia.org/wiki/Cupcake_(operating_system)
http://en.wikipedia.org/wiki/Donut_(operating_system)
http://en.wikipedia.org/wiki/Donut_(operating_system)
http://en.wikipedia.org/wiki/Android_version_history#Android_2.0.2C_2.1_Eclair
http://en.wikipedia.org/wiki/Android_version_history#Android_2.0.2F2.1_Eclair
http://en.wikipedia.org/wiki/Android_Froyo
http://en.wikipedia.org/wiki/Android_Froyo
http://en.wikipedia.org/wiki/Android_2.3
http://en.wikipedia.org/wiki/Android_2.3
http://en.wikipedia.org/wiki/Android_2.3
http://en.wikipedia.org/wiki/Android_2.3
http://en.wikipedia.org/wiki/Honeycomb_(operating_system)
http://en.wikipedia.org/wiki/Honeycomb_(operating_system)
http://en.wikipedia.org/wiki/Honeycomb_(operating_system)
http://en.wikipedia.org/wiki/Honeycomb_(operating_system)
http://en.wikipedia.org/wiki/Ice_Cream_Sandwich_(operating_system)
http://en.wikipedia.org/wiki/Ice_Cream_Sandwich_(operating_system)
http://en.wikipedia.org/wiki/Jelly_Bean_(operating_system)
http://en.wikipedia.org/wiki/Jelly_Bean_(operating_system)
http://en.wikipedia.org/wiki/Jelly_Bean_(operating_system)
http://en.wikipedia.org/wiki/Jelly_Bean_(operating_system)

5.3 Installing the Android application

The Android device should have the next requirements to properly run the application:
e Android smartphone with 2.3 version installed (or next)
e SD card on the device with space to write on it
e Back side camera
e Local Area Network Connection

There are two possible ways of installing the application on an Android smartphone:
1 — Installing directly the APK file:

BE@ 2216
SRS a) Connect the smartphone via USB to the computer
Unknown sources | b) Check that the connection mode mounts the
o smartphone SD

c) Store the .APK file on a folder chosen by the user.

ge applications

nd remove installed applications d) On the smartphone application settings menu, be sure
e — Insta_llatlon from unkqown resources is ticked
View and control currently running services E) Disconnect the device from the USB port or Change

its connectivity to load battery.
d) Search for the stored APK file, run it and complete
the installation.

Figure 93

2 — Installing from Eclipse: p——

Development

a) Connect the smartphone via USB to the computer USB debugging

b) On the smartphone Development options be sure |HeEat——

debug mode is checked Stay aylvake I []
¢) Right click on the project R

d) Click on Run As > Android application Allow mock locations 99

Steps ¢) and d) could be avoided by opening a class from
the project and clicking ctrl+F11 (forces to run selected
source code on Eclipse).

Figure 94

75

5.4 Server requirements

It is necessary a computer to run the server-side application. Its requirements are:

e Local Area Network Connection
e MATLAB/MCR installed on computer

The MCR, or MATLAB Compiler Runtime, is a runtime which allows execute MATLAB compiled files on a
computer without MATLAB installed.

5.5 Back-end Installation

For the back-end running there are three things that should be considered:
e The need of configuring environmental variables depending on the Operating
System.
e The need of changing the JRE (Java Runtime Environment) due to the JVM.
e The reference of necessary libraries.

In order to add the environmental variables needed to configure for the server run is
necessary to consider the Operating System and the MATLAB runtime, which could be
MATLAB itself or the MCR.

If the back-end is running on a Linux-based OS the environmental variables to
configure are:

Environmental Variable | Path Deployment
LD_LIBRARY_PATH <matlabroot>/runtime/glnxa64

XAPPLRESDIR <matlabroot>/X11/app-defaults MATLAB
LD _LIBRARY _PATH <mcrroot>/<version>/runtime/glnxa64

XAPPLRESDIR <mcrroot>/<version>/X11/app-defaults S
Table 3

If the back-end is running on a PC:

Environmental Variable | Path Deployment

PATH C:\Program Files\MATLAB\bin MATLAB

PATH C:\Program Files\MATLAB\MATLAB Compiler |MCR
Runtime\<version>

Table 4

What are these variables?

XAPPLRESDIR: This variable is used by part of the X11 software that MATLAB uses to display most graphics on
Linux/UNIX/Mac.

LD_LIBRARY_PATH: Linux specific, is an environment variable pointing to directories where the dynamic loader
should look for shared libraries.

PATH: Windows specific, this environmental variable specifies a set of directories where executable programs are
located. In general, each executing process or user session has its own PATH setting.

76

http://en.wikipedia.org/wiki/Directory_(file_systems)
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Login_session

Where:
e <matlabroot>: isthe rootto MATLAB.
e <mcrroot>: isthe roottothe MCR.
e <version>: isthe MCR version.

The second step is to change the JRE. Usually Java programs run over the system’s
default JRE, which has the JVM. In this concrete case the JRE must be changed, in
order to avoid OS library dependency issues. (For example, working on Linux, an error
is generated because the system’s default JRE uses the libjpeg.so.8 version to
encode/decode jpeg images, when compiling the MATLAB code into .jar the library
used is libjpeg.s0.6).

In order to proceed, the JRE must be the one included in MATLAB, which path is:
<matlabroot>/sys/java/jre/glnxa64/jre

After configuring the JRE, it is also necessary to reference the next library:

Library Path

javabuilder.jar <matlabroot>\toolbox\javabuilder\ja
r\javabuilder.jar
or

<mcrroot>/<version>/toolbox\javabui
lder\jar\javabuilder.jar

Table 5

This library could be copied and pasted on the preferred directory, for example the
directory where the project is. This library allows the communication between Java and
MATLAB.

To finish it is also necessary to reference the .jar library compiled with the MATLAB
command “deploytool”, which contains the compiled MATLAB code.

To setup this entire previous running configuration is useful Eclipse, which allows
modifying the application environment.

77

Using Eclipse, the configuration could be modified following these steps:

1 - To add environment variables.
a) Click on Run>Run Configurations
b) Locate the Java application, click on it
¢) Select Environment label
d) Add the environmental variables

2 - To change the JRE:
a) Right click on the project
b) Click on properties
¢) Click on Java Build Path
d) Select the JRE System library
e) Click on Edit
f) Click on Alternate JRE > Installed JRES
e) Click on Search and add the path to MATLAB JRE.

3 - To add referenced libraries:
a) Right click on the project
b) Click on Properties
c) Click on Java Build Path
d) Click on Add External Jar
e) Type the path to the new library

78

5.6 Tutorial
This tutorial aim is to illustrate a how-to guide to manage both applications.
5.6.1 DroidStitcher User Guide

5.6.1.1 First Launch

DROIDSTITCHER

CAmMERA

OPTIONS

GALLERY

Figure 95

When launching for first time DroidStitcher, it is necessary to configure the application.
If the Camera button is pressed before configuring the application, a message will pop
on the screen, asking for configure the application.

As is the first time the application is launched, the Gallery will be a black screen, which
means there are no stored images. In fact no sessions have been taken.

79

5.6.1.2 Configuration

On Figure 96 can be seen the application
configurable options, which are:

1- Device ldentifier: Not modifiable

Y o — 2- Socket configuration: IP and port

Model and identifier 3- ngh Quallty Images* Camera pICtUFES
HTC Desire-72f4f9126c788df5 4- Frames per second: FPS range
P CONFIGURATION 5- Resolution: Preview resolution

Set the host IP 000.000.0:00000

IDEO CONFIGURATION o) _
w *1f the checkbox is ticked, the images stored will

be camera pictures, not preview frames. When a
Frames per Second WM camera picture is taken the camera will freeze for
few seconds due to the camera loading time and
the picture preview display. It is recommended not
to move the device while this is happening.

High Quality Images

Resolution g 480320

Preview Quality: 50 p

SAVE DiscARD

Figure 96

6- Preview Quality: Quality of the jpeg @& 11:29

compression applied to the previews (10-100, w=¥ mlwe G h=r gy e
one by one). Model and identifier
7- Image per Frames: Number of preview frames il kbl
that have to be taken to store a frame or take ~ Lgilma iglc BTyl
picture to stitch (10-100, 10 by 10). Set the host IP | 000.000.000.000:00000
8- Save Frames: This checkbox allows storing all U —
the preview frames on the server.

IDEO CONFIGURATION
High Quality Images .

This context corresponds to diagram 3.1.1.3
(Figure 15).

Frames per Second 9-30

Resolution 480x320
Preview Quality: 50 _na

Image per Frames: 60 _'E

Save Frames n .

SAVE DiscAaRD

Figure 97

80

Note that all changes will be stored for subsequent
DEVICE CONFIGURATION . .) .
Model and identifier sessions. When launching the Options menu again, the

HTC Desire-72f4f9126c788df5 - - - - -
configured options will display their current value.
P CONFIGURATION

BAMAMRGRREI "% A\san example, on Figure 98 can be seen he

IDEC CONFIGURATION displacement over the Preview quality bar, allowing the
High Quality Images (-] user to know its old value.
Frames per Second 9-30
Resolution 640x480
Preview Quality: 30 B
[mage per Frames: 60 B
Save Frames .

SAVE DiscarD

Figure 98

Configuration tips:

e Alow resolution improves live time streaming performance.

e Alow quality improves live time streaming performance.

e If High Quality Images is not selected, the images that will be stitched are NOT
camera preview frames, so the quality and the resolution will alter the final
stitched image.

e If High Quality Images is selected, the JPEG quality compression will be 100%,
and the image resolution will be decided by the camera performance
(megapixels).

5.6.1.2.1 Setting the Socket

When changing the socket configuration a new ! TP
dialog will pop on the screen. This dialog allows the
user type the host IP and port. The server default
port is 2004.

Type the host IP and Port

- (2 62 N 3

. ielgs 2004
Once the new data is entered, the user may press the z -
Update button in order to save the changes. UPDATE

Otherwise the changes will be dismissed.
[1]2]3][s]e|7]s]s]o
N [o]#]s[n[a]] 2]/
JH P EEE

For a comfortable typing and improving the user
experience, these fields have TextWatchers, which
change the field focus when 3 digits have been
entered (IP).

The diagram 3.1.1.3.1 (Figure 16) represents this
dialog context. Figure 99

81

5.6.1.2.2 Setting the FPS Range

SEFEERED On Figure 100 is shown the dialog that will appear if the
Frames per Second button is pressed.

As devices cameras do not work with fixed FPS, a range
should be chosen from the list.

On this concrete case a single FPS range is available.

9-30 FPS

On last generation smartphones (1-2 years old models) the
number of FPS ranges has been increased compared to old
devices.

Diagram 3.1.1.3.2 (Figure 17) corresponds to this action.

Figure 100

5.6.1.2.3 Setting the Preview Resolution

SRl =113

When pressing the Preview Resolution button, a new
dialog will be shown, similar as the presented on Figure

This dialog provides a list of the resolutions supported by g ****°

the device camera. As not all the devices have the same [720x4g0
camera, this values may differ between them. 268x432

The values are first ordered by width decrease, and if the [640480
width coincides, by height decrease. 640x384

Diagram 3.1.1.3.3 (Figure 18) corresponds to this action. 576x432

480x320

Figure 101

82

5.6.1.3 Saving the Configuration

On Figure 102 is shown an example of configuration.
DEVICE CONFIGURATION When all the values have been properly configured then
Model and dentifier can be stored by pressing the Save Button.

HTC Desire-72f4f9126c788df5

P CONFIGURATION
eorraereny® 1he values will remain the same while not changed or

application uninstalling. Hence it is important to check
v them to know in which conditions the application is
running.

IDE0 CONFIGURATION
High Quality Images
Frames per Second 9-30

Resolution 640x384

preview Quality: 30 —f— Diagram 3.1.1.3 (Figure 14) corresponds to this context.

Image per Frames: 60 E

Save Frames .

SAVE DiscARD

Figure 102

5.6.1.4 The Gallery
A S 2 ™= 11:32
When the Gallery button is pressed a scrollable list is s mas =y (s,
opened. This list contains all the stored session folders. [] ———————)
M 2234os-19122012 (1 mAGes)
The folders are ordered by its creation date, so the last
session folder will be on the top of the list.

M e=eses-1912202 (4 meces)
M 2222331912202 (1 maAces)

i B B 2==157-1912202 (1 mAces)
The folder name corresponds to the session starting

time in the following format: HourMinuteSecond-
DayMonthYear.

i 2=22012-191220R2 (2 mAces)

M 2215371912202 (1 maces)

M 2214091912202 (2 maces)

The data shown in brackets corresponds to the number it ———————

of images stored from a concrete session. W ==nz—m@ec= (1 macss)
M 220uss-1912202 (B meces)

Diagram 3.1.1.4 (Figure 19) corresponds to this context. RelesasEami=c =Nl
Figure 103

83

5.6.1.4.1 Session Folder Content

A

¥ PHOTOO.UPG

PHOTOLJPG

Figure 104

5.6.1.4.2 Deleting Data

@ File Options

Delete

Figure 105

Each folder contained on the gallery has the structure
presented on Figure 104. The images are displayed in the
order they when taken. In this case, PhotoO.jpg was the
first image taken on the session; Photol.jpg was the
second one, etc. The last picture is the result from that
session, the stitched image returned from the server.

The images name will be the same on all session folders.
To avoid the confusion this fact can generate, a thumb is
located before the name, so the user can check a preview
of an image before opening it.

Diagram 3.1.1.4.1 (Figure 20) corresponds to this
situation

As the images take up so much space, they can be
deleted. The images can be deleted one by one or an
entire folder can be deleted instead. On both cases a
deletion option pops on the screen by a long click on an
item.

If the “Delete” option is clicked, then a new dialog will
appear. This dialog will offer the user the opportunity to
not delete the image, Figure 106.

@ Delete entry

Are you sure you want to delete

this entry?

Figure 106

84

5.6.1.4.3 Sliding images

To improve the user experience the
images contained on one folder can
be swapped as slides. In order to
proceed, the user has to click on the
screen and drag his finger to the tight
(next image) or the left (previous
image).

Figure 107

5.6.1.5 Managing a Streaming Session

-

DISCONNECTED

Figure 108 Figure 109

Once the Streaming Session has started, the Streaming button will change its color to
blue. If any problem occurs while establishing the connection the color will remain read
and an error message will be pop on the screen.

The user can check the number of images stored (1) on the north pan on the screen. This
number will increase depending on the configuration the used has applied over that

concrete session.

Once the user press again the streaming button (2 ,3) it will send the images to the
server, after that the button will be red again.

85

5.6.1.6 Uploading Images

While the images are being sent to the
server a dialog will appear on the
screen. This dialog will inform the
Sending Images... user about the uploading status.

Figure 110

5.6.1.7 Notifications

&J Droidstitcher &¥ Droidstitcher
Failure Stitching Image! 17:11 Success Stitching Image! 17:22
Figure 111 Figure 112

Depending on the stitching result, different notification will appear on the device.
Figure 111 illustrates the notification that appears when the image has not been
correctly stitched. Otherwise a notification like the one shown on Figure 112 will
appear on the device.

If the notification is clicked, the stitched image, which is already stored on the device on
its session folder, will be displayed. If the error notification is clicked a null image icon
will be shown.

86

5.6.2 StitcherServer User Guide

During the Streaming Session no user interface is shown, so the only graphic support
for the user when working with the server will be the Streaming Session user interface.

When the server is launch for first time, a new window will pop up. This window is not
the Streaming Session interface, but provides information about the files directory and a
3 seconds countdown before launching the server listener.

5.6.2.1 Streaming Session User Interface

As seen on Figure 113, the window displayed has a compact appearance. The window
is not resizable and it has 3 pans:

1 - Information pan: On this panel is shown the number of frames received on that
concrete session

2 - Video pan: On this panel is shown the images captured by the device in real time.

3 - Connection pan: This panel displays the name of the device which is connected to
the server.

At the end of the Streaming session the user interface is automatically closed.

Video Connection Thread

INFORMATION PPaAaN

FRAMES RECEIVED: 41

Figure 113

87

6 Conclusion
6.1 Objectives Achievement

I would like to stress that the main goals proposed along the project have been achieved.

From learning Android basic knowledge to creating a working service, each part of the
project has been analyzed in order to obtain the better results.

I consider working with sensors has been a great experience, because it has been proved
why in this case have not been useful. On the annex can be found a full explanation
about this topic.

All my tutor recommendations have been considered and implemented while
developing the project achieving his proposals. My recommendations were also
considered and the result of our ideas has been pretty impressive.

The camera management, the method used on image stitching, how to run an Android
Service, embedding MATLAB in Java, are just few things needed to understand and
properly create this service.

88

6.2 References

For this project the main search resource has been the net. Most useful websites, in
order of relevance, are:

e www.developer.android.com: Android development official website. Provides
information about how to start developing, good practices and examples.

e www.stackoverflow.com: This website offers community solutions for
problems found while developing.

e www.oracle.com: Provides guides and tutorials about how to develop using
Java.

e www.vogella.com: Offers several tutorials about Android development
o www.jdk7.java.net: Oracle Java official website.
¢ www.mkyong.com: Personal blog which offers Java tutorials and examples.

e www.mobile.tutsplus.com: Website which has smartphone development
tutorials.

o www.developerlife.com: All kind of tutorials for developers.
e www.android-pro.blogspot.com.es: Android basic knowledge tutorials.
e www.fourcc.org: Offers complete explanations about image formats.

¢ www.mathworks.es: MATLAB official website.

A book have been consulted:
e Programming Android (Java programming for the new Generation of Mobile

Devices) — Z.Mednieks, L.Dornin, G. Blake Meike & M. Nakamura. — O’Reilly
2011

89

6.3 Appreciation

As a conclusion of this project, I would like to thank everyone not just for the support during the
project, but for these four years coursing the major.

Without these years of learning it would have been impossible for me to finish this project, so
first of all 1 would like to thank all the professors who have tough me most of the things | know.

I would like to thank also my university colleagues. With their company these years have
become one of the most important parts of my life.

My relatives have become a strong support during these years, so it is fair to mention them on
this chapter.

Last but not least, 1 would like to thank my tutor, Simone Balocco. Without his help,
recommendations and patience this project could not have been what it is.

90

6.4 Possible Improvement
During the development some possible improvements were found:

The first possible improvement is the data transmission. Applying a data compression
algorithm over the images that have to be sent will make the data transmission faster
than it is.

Another possible improvement is related with the stitching process. As has been
explained, the stitching technique is processed by MATLAB. As this code is embedded
into Java, it can be modified without making any change on the server code. The fact is
that the modularity achieved with this code disposal facilitates the stitching procedure
improvement.

An improvement of the Streaming Session user interface could be a great achievement
too. Right now is quite simply and with more work it could be a pretty useful
workstation. For example, changing its viewing panels, adding additional information
like the IP of the streaming device or adding more video panels on one window, this
way several devices view can be checked from just one interface.

Adding new functionalities could generate a greater application. Imagine the user could
choose between image stitching and other kind of procedures. If this change is
introduced into the application, it would generate a device image transformation suite,
allowing the user obtaining impressive results from an ordinary device.

91

Annex

| How Java runs MATLAB

The software used to run MATLAB code on Java is called MATLAB Builder JA. This
builder encrypts MATLAB functions and generates a Java wrapper around them so that
they behave just like any other Java class. These classes are portable and run on all
platforms supported by MATLAB.

MATLAB Compiler

MATLAB MATLAB MATLAB
Bullder EX BullderJA Bulider NE

y

¥ @B

Figure 114

As seen on Figure 114 the Compiler allows to run code developed in different
platforms. On this case the opposite has been done, MATLAB code has been embedded
on Java.

To deploy the MATLAB code used on this project, it has been necessary to use the
deploytool instruction, which allows compacting the MATLAB code in a .jar library.
The available formats to compact the MATLAB code by using the deploytool are
specified by the toolboxes added with MATLAB installation, so it is not possible to
compact on .jar libraries if the Java toolbox is not installed.

92

Il Working with Accelerometers
Sensors
It is known that Android devices own a great sort of sensors. Magnetometer,

accelerometer, proximity sensor... these are just a few sensors that could be found on
most of Android devices.

Table 6 illustrates the whole set of sensors:

TYPE ACCELEROMETER Hardware Measures the acceleration force in m/s? that

i lied devi Il th hysical Motion
is applie toazj ew_ce Ior;_a thret: p y5|:a detection
axes (X, y, and z), including the force o .
_(J) . (shake, tilt,
ravity.
gravity etc.).
TYPE AMBIENT TEMPER Hardware Measures the ambient room temperature in e
ATURE degrees Celsius (°C).
temperature
TYPE GRAVITY Software or Measures the force of gravity in m/s” that is Motion
Hardwar li vice on all three physical .
ardware applied to a device on all three physical axes detection
X, Y, 2).
TYPE GYROSCOPE Hardware Measures a device's rate of rotation in rad/s Rotation
around each of the three physical axes (x, y, detection
and z).
TYPE LIGHT Hardware Measures the ambient light level Screen
illumination) in Ix. .
(illumination) in Ix brightness.
TYPE LINEAR ACCELERA Software or Measures the acceleration force in m/s? that Axis
TION Hardware is applied to a device on all three physical .
] acceleration
axes (X, y, and z), excluding the force of
gravity.
TYPE MAGNETIC FIELD Hardware Measures the ambient geomagnetic field for Creatinga
all three physical axes (X, y, z) in uT.
Py .y, 2)inp compass.
TYPE ORIENTATION Software Measures degrees of rotation that a device Device
makes around all three physical axes (X, y, .
phy:) (xy position.
z). As of API level 3 you can obtain the
inclination matrix and rotation matrix for a
device by using the gravity sensor and the
geomagnetic field sensor in conjunction with
thegetRotationMatrix() method.
TYPE PRESSURE Hardware Measures the ambient air pressure in Air
hPa or mbar.
pressure.

93

http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ACCELEROMETER
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_AMBIENT_TEMPERATURE
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_AMBIENT_TEMPERATURE
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GRAVITY
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GYROSCOPE
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LIGHT
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LINEAR_ACCELERATION
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LINEAR_ACCELERATION
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_MAGNETIC_FIELD
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ORIENTATION
http://developer.android.com/reference/android/hardware/SensorManager.html#getRotationMatrix(float[], float[], float[], float[])
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PRESSURE

TYPE PROXIMITY

TYPE RELATIVE HUMI

DITY

TYPE ROTATION VEC
TOR

TYPE TEMPERATURE

Table 6

Hardware

Hardware

Software
or
Hardware

Hardware

Measures the proximity of an object in
cm relative to the view screen of a
device. This sensor is typically used to
determine whether a handset is being

held up to a person's ear.

Measures the relative ambient humidity

in percent (%).

Measures the orientation of a device by
providing the three elements of the

device's rotation vector.

Measures the temperature of the device
in degrees Celsius (°C). This sensor
implementation varies across devices
and this sensor was replaced with
theTYPE AMBIENT TEMPERATU

REsensor in API Level 14

It is important two know two important tips about the sensors:
e Not all sensors require a hardware implementation.
e Not all devices own the full set of sensors.

Phone
position
during a
call.

Humidity.

Motion
detection
and
rotation
detection.

Temperatu
res.

As an example, the linear acceleration sensor, which is a software sensor, was

introduced on Android Gingerbread 2.3.

The Accelerometers

The first thing to learn about accelerometers is how do
they work, which means what is the data gathered by

eh accelerometers.

Figure 115 illustrates how the coordinate system is

superimposed over the device. So, if the device is tilted

=

laterally achieving a landscape position, is deductible
that the X and Y axis will be swapped, and the Z axis

will retain its position.

94

Figure 115

http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PROXIMITY
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_RELATIVE_HUMIDITY
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_RELATIVE_HUMIDITY
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ROTATION_VECTOR
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ROTATION_VECTOR
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_TEMPERATURE
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_AMBIENT_TEMPERATURE
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_AMBIENT_TEMPERATURE

The next thing to know is how to initiate this sensor and how to retrieve the measured
data. On code, it is necessary to start a SensorManager object:

private SensorManager mSensorManager;
private Sensor mSensor;

mSensorManager = (SensorManager) getSystemService(Context. SENSOR_SERVICE);
mSensor = mSensorManager.getDefaultSensor(Sensor. TYPE_LINEAR_ACCELERATION);

Of course it is highly recommended from Android Developers to check if our device
has the concrete sensor we are going to use. The following snippet illustrates how to do
it:

private SensorManager mSensorManager;

mSensorManager = (SensorManager) getSystemService(Context. SENSOR_SERVICE);
if (mSensorManager.getDefaultSensor(Sensor. TYPE_LINEAR_ACCELERATION) != null){
/I Success

}

else {
/Il Failure

}

Quiet simple to use, this sensor provide a great amount of information, but is important
to know what are for the accelerometers useful.

The accelerometers usage is mainly focused on detecting movement, not on distance
measurement, easily estimable having time and acceleration, because of the drift
produced on the acceleration measurements.

Hence it is strongly discouraged to use the accelerometers as a distance measurement
tool.

A test can be useful to note the importance of this drift. It consists on laying the

smartphone down a table, store the sensors measurement and check its values. The
smartphone must not be moved will it is capturing data.

95

The result of this experiment is illustrated on Figure 116.

Acceleration m/s2

Acceleration over X Axis

0,06

0,04 —
00 a / N\
) / \ / \ IN / \ y = -1E-05x - 0,0025

0,02 —'ﬁ-—'—"_j ~ \ / \/ \

\ \

0,06 \ /

0,08 \ /

o1 \v/

0,12

oy 188 | 406 | 702 | 936 | 1168 | 1280 | 1485 | 1696 | 1985 | 2275 | 2377 | 2707 | 2820 | 3119 | 3312 | 3507
| ——Measurement -0,0135|-0,0174|-0,0124 0,03652 0,01277|-0,0113|0,02146|0,02146| -0,1122 0,01224 -0,0185 0,04404|0,04448|0,00171| -0,0439 | -0,005 | -0,005

Figure 116: Graph from 18 measured samples. Actually the test had hundreds of samples taken on
various sessions.

The X axis on the graph corresponds to time in milliseconds, while the Y axis
corresponds to acceleration measurements on the X axis of the smartphone.

As the smartphone has not been moved while capturing acceleration measurements, all
these values are closer to zero, and they do not represent anything but drift.

If the smartphone has not been shifted, the acceleration may be 0 theoretically.

The red line represents the acceleration average and as seen on its equation, it has a
minimum displacement.

Considering position a summation of velocities, and velocity a summation of
accelerations, the error, which is dragged through the operations, is highly increased.

Obviously this error could be threated, but it is not easy at all, because the real problem
is the gravity.

On the Android lecture titled Sensor Fusion on Android Devices: A Revolution in Motion
Processing *° is explained how this drift makes impossible to work with the accelerometers in this
sense.

This issue has a lot of importance on the project, because at a first glance it had to
contain a skin mole distance measurer.

1> www.youtube.com/watch?v=C7JQ7Rpwn2k

96

111 Protocol

When working with two applications the way of transmitting information between them
takes a lot of relevance.

Some of the published open source Android applications which functionality is to
stream data captured by the camera implement http servers on its code. There are also
well-known protocols that could be implemented, like RTSP. Implementing existing
protocols takes a lot of knowledge and time to properly introduce them into an
application; it could be an entire project for itself.

On this case, assuming the amount and size of the data sent, the best way to transmitting
data is using sockets. It is also important to include on the protocol decision what will

be done with the data transmitted and how to manage it when sent.

Sockets provide advantages like the platform, for example allow communication
between C and Java, and the protocol customization.

For this project has been developed a request-answer protocol, which grants a correct
communication between the applications.

The protocol is specified on Table 7.

Request Answer Description Android Application | Android Service
11 12 New connection
21 22 Send new frame X
41 42 Close connection
61 62 Create stitching folder X
81 82 Create session folder X
91 92 Stitching request X ~
Table 7

As seen above, the request and answer petitions are integers. The server will not answer
a request if an error occurs while processing data. If an error happens, both applications
will close the connection.

Table 7 has two fields called Android Application and Android Service. These fields
represent from which part of the application is sent the request. Both are contained on
the Android application, but the second one is called from the service launched when
finishing the Streaming Session.

97

Each request is explained below:

New connection:

When a Streaming Session or Stitching Session is launched, this is the first request
sent to the server. After sending this request, the client must send its identification
(device model and OS identification) in order to proceed.

After it, is necessary to send another integer that will configure the session:
e 1: New Streaming Session
e 2: New Stitching Session

If the new session is a Streaming Session, then the client must sent an integer. This
integer must be one of these values 1 (affirmative) or (0) negative. This integer
represents the user choice to saving the preview frames.

Otherwise, the server has nothing to do.

Before answering, the server will create a folder for the concrete device.

Create session folder:

When starting the Streaming Session, this should be the second request sent to the

Server.

After sending this request, the client must provide a session folder name. This folder
will store all the information related with this concrete session.

If the user has chosen to save the preview frames, the folder that will contain them will
be also created.

Send new frame:
A new frame follows this request. The server will store it if necessary, and will display
it at the viewing panel located on the user interface.

The server will also increase the frame received counter and will display its new value
on the screen.

Close connection:

This request finishes the connection. The server will answer just before receiving it and
then will close the data streams and the socket.

98

Create Stitching Folder:

When the server receives this request creates a new folder that will contain the images
to stitch. This will happen on the first call of this request.

This request is also the called when sending images to stitch, at the end of the Streaming
Session.

Stitching Request:

This request is sent to the server in order to stitch images. The images are stored on a
folder which name is supplied by the client just after calling this request. The server can
also send two different types of answer before sending the protocol answer (92).

The first kind is “NERROR”. This answer means no error has happened while stitching,
and after it the stitched image is sent. Otherwise the server will sent “ERROR?”,
allowing the device application to know that a problem has occurred and the stitched
image has not been generated properly.

Connection: Waits and Errors

If a connection error is produced both applications will automatically try to close it and
dismiss all the processes involving the connection.

DroidStitcher will exit the Streaming/Stitching Session and will warn the user, while
StitcherServer will dismiss the corresponding thread.

No timeouts have been established over the sockets, so in the case the StitcherServer
falls when DroidStitcher is sending information, the connection interruption is not
produced by a long wait. In this concrete case, the interruption comes from the data
streams.

The data streams are deployed over the sockets as ObjectOutputStream®® and
ObjectInputStream®’ on both applications. These objects allow writing and reading Java
primitive data types. When the stream is interrupted, an exception is launched, which
allows to handle the issue.

Although these objects are not restricted for using a network socket as a data stream, on
the project have been used for sending integers, byte arrays or strings.

18 http://docs.oracle.com/javase/1.4.2/docs/api/java/io/ObjectOutputStream.html
7 http://docs.oracle.com/javase/1.4.2/docs/api/java/io/ObjectinputStream.html

99

IV Android Manifest

The Android Manifest is a XML file present in all applications. The manifest contains
relevant data about the application, like the activities and their configurations,

permissions, etc.

When using an application, especially on smartphones, it is important to know which
are the resources used by the application and why is necessary.

DroidStitcher manifest requirements are listed on Table 8.

Permission Description
CAMERA Allows the application to access the
device camera.
WRITE_EXTRENAL_STORAGE Allows writing data on the SD.
VIBRATE Allows device vibration. Used on the
notifications.
INTERNET Allows the application performing
network operations.
STORAGE Allows accessing data stored on the SD.

Table 8

100

V Device camera usage regulations

Working with a device camera requires a well-structured implementation when
launching or closing it.

As the camera is a shared resource between applications, if an app takes control over the
camera is needed to release it at the appropriate moment. If the camera is not released
and an application requests it, the camera preview will be not shown and the application
would be useless.

Another thing to keep in mind is the fact the function takePicture is an asynchronous
camera method. As each device takes its time to load the camera hardware, a picture
cannot be taken in a synchronous way.

To take a picture properly, it is necessary to load that method on an Android Asynctask,
which will take the picture when the camera hardware has been prepared.

After taking the picture, the camera preview is always destroyed, so it is necessary to
launch it again.

Image Compression

The image data format in which the camera preview frames are stored usually is YUV
NV21. In order to compress them on JPEG format it is necessary to apply the following
instructions:

YuvImage image = new YuvImage (rawpic, formats, w, h, null);
ByteArrayOutputStream out = new ByteArrayOutputStream() ;
Rect area = new Rect (0, , w, h);
image.compressToJdpeg (area, compressionquality, out);

byte[] previewframetosend = out.toByteArray() ;

The rawpic variable is a byte array containing the picture in YUV NV21 format. The
variable formats, w and h are camera settings variables. The image is compressed in a
Rect object (rectangle) which has the size of the original picture.

Once these operations have been done, the result is a byte array which contains the
picture in JPEG format.

101

VI Data Distribution and Storage

The data stored, fully composed by images, has been stored on the device following the
hierarchy present on Figure 117.

Root Folder
DroidStitcher

Session Folder (0...n)

HHmmss - ddmmyyyy

Images (0...n) Stitched Image (1)
PhotoN.jpg StitchedImage.jpg

Figure 117

e Root Folder: Called “DroidStitcher” is located on the device SD root folder and
contains the session folders.

e Session Folder: Contains the images related to a concrete session.

e Photo: Are the images taken on the session. N represents its number.

e Stitched Image: Is the result the session.

On the following figure it is shown how the images are stored on the server side:

Root Folder
Files

Device Folder (0...n)
Device ID

Session Folder (0...n)
HHmmss - ddmmyyyy

Stitching Images Stitched Image (1)
Folder (1) Frames Folder (1) StitchedImage.jpg

Figure 118

The root folder contains a subfolder for each device. These subfolders contain the
session folders from concrete sessions. Inside each Session Folder there are the images
to stitch inside the Stitching Images folder and the Stitched Image. If the user has
chosen to store the frames, they are located on the Frames folder.

All images are stored in JPEG format.

102

V1l Algorithms
SIFT

Scale-Invariant Feature Transform *® is a Computer Vision algorithm which allows detecting
features in images. It is applied in several fields like object recognition, robotic mapping
or image stitching amongst others.

The extracted features bring a description of the objects presented in the image. These
features are located in high contrast points such the edges of an object and are called
SIFT keypoints.

. E':.' Y
3 3
; o -
* Ve 3 »
T SR

As can be seen on Figure 119, the SIFT keypoints
are located on areas were the viewing conditions,
such the illumination or color, have a major
contrast.

Figure 119: Image with its keypoints.

RANSAC

RANdom SAmple Consensus ' is an iterative method to estimate parameters from a
model which contains a set of data. The distance between these data must be
numerically measurable.

In order to proceed with the stitching, the RANSAC algorithm will generate pairs of
keypoints located on different images. From this pairing a homography is determined
for each pair of images. After that, a warping process will fuse the images.

Figure 120: Pair of images with RANSAC correlation.

'8 | owe, David G. (1999). "Object recognition from local scale-invariant features"
9 Martin A. Fischler and Robert C. Bolles (June 1981). "Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartography"

103

V11l Image Cropping

A script for image cropping has been added to the MATLAB code in order to improve
the final result. This script was developed by a third party * and published as open
source on MATLAB Central. This script allows finding the largest inscribed rectangle
inside the figures presented on an image.

Taken as example the images given by the TobW Team for their stitching script, the
image cropping procedure has been added as follows.

The first step is to obtain the images to stitch, three on this case:

Figure 121 Figure 122 Figure 123

The next step is to apply the stitching technique:

Figure 124

As can be seen on Figure 124 the final product has an irregular black frame. This frame
is produced when deforming the images to produce the stitched image.

The inscribed rectangle script cannot work directly over this image because it contains
too many figures. Each color cluster could be considered as a figure.

2 www.mathworks.com/matlabcentral/fileexchange/28155-inscribedrectangle

104

In order to solve this problem, the colored image must be turned into a greyscale image.
After changing the color disposal, a threshold must be applied two obtain just two
figures, the irregular frame and the “image body”:

L

Figure 125

As seen on Figure 125 just two figures are on the image. Once this step is done, the
script can process the image.

I

...

Figure 126

Figure 126 shows the largest rectangle found on the image. The image is a panorama,
so the largest rectangle found is a panorama. If the stitched image had been square
shaped, the largest rectangle would have had a squared shape.

Indeed this script finds any kind of rectangle inside a figure. Properties as the width or
the height are not taken into account. So this script is able to work with any kind of

image.

Run this code takes several time on MATLAB, so adding it to the stitching process have
produced the server working time to increase.

105

Figure 127

On Figure 127 is shown the found rectangle over the original stitched image. As can be
noticed, some parts of the image will be lost during the image cropping.

Figure 128

The final product is shown on Figure 128. The irregular black frame has been
completely removed from the stitched image and it looks quite an impressive result.

With the exception of the data loss, this modification is a great achievement in the
project. Not for the stitching process, which it does not alter, but the user experience.

106

IX Examples

This example has been created using preview frames (low resolution images). The
dimensions of each original frame were 640x384 pixels and the stitched image
dimensions are 1377x385 pixels.

Figure 129

On this case the images used on the stitching process have been camera pictures (high
resolution). The original images dimensions were 2592x1952 pixels and the stitched
image dimensions are 5491x1896 pixels.

Figure 130

107

