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Abstract: The index of maximum and minimum level is a very useful 

technique, especially for decision making, which uses the Hamming 

distance and the adequacy coefficient in the same problem. In this paper, 

we suggest a generalization by using generalized and quasi-arithmetic 

means. As a result, we will get the generalized ordered weighted averaging 

index of maximum and minimum level (GOWAIMAM) and the Quasi-

OWAIMAAM operator. These new aggregation operators generalize a 

wide range of particular cases such as the generalized index of maximum 

and minimum level (GIMAM), the OWAIMAM, the ordered weighted 

quadratic averaging IMAM (OWQAIMAM), and others. We also develop 

an application of the new approach in a decision making problem about 

selection of products. 

Keywords: Index of maximum and minimum level; OWA operator; 

Generalized mean; Quasi-arithmetic mean; Decision making. 

JEL Classification: C44, C49, D81, D89. 

 

Resumen: El índice del máximo y el mínimo nivel es una técnica muy útil, 

especialmente para toma de decisiones, que usa la distancia de Hamming y 

el coeficiente de adecuación en el mismo problema. En este trabajo, se 

propone una generalización a través de utilizar medias generalizadas y 

cuasi aritméticas. A estos operadores de agregación, se les denominará el 

índice del máximo y el mínimo nivel medio ponderado ordenado 

generalizado (GOWAIMAM) y cuasi aritmético (Quasi-OWAIMAM). 

Estos nuevos operadores generalizan una amplia gama de casos particulares 

como el índice del máximo y el mínimo nivel generalizado (GIMAM), el 

OWAIMAM, y otros. También se desarrolla una aplicación en la toma de 

decisiones sobre selección de productos. 

Palabras clave: Índice del máximo y el mínimo nivel; Operador OWA; 

Media generalizada; Media cuasi-aritmética; Toma de decisiones. 
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1. Introduction 

 

The index of maximum and minimum (IMAM) level (J. Gil-Lafuente, 

2001; 2002) is a very useful technique that provides similar results than the 

Hamming distance with some differences that makes it more complete. It 

includes the Hamming distance and the adequacy coefficient in the same 

formulation. Since its appearance, it has been used in a wide range of 

applications such as fuzzy set theory, business decisions, multicriteria decision 

making, etc. (J. Gil-Lafuente, 2002; Merigó and A.M. Gil-Lafuente, 2007a). 

 

A very common aggregation method is the ordered weighted averaging 

(OWA) operator (Yager, 1988). It provides a parameterized family of 

aggregation operators that includes the maximum, the minimum and the 

average, as special cases. Since its appearance, the OWA operator has been 

studied by different authors (Beliakov et al., 2007; Calvo et al., 2002; Merigó, 

2007; Xu, 2005; Yager, 1992; 1993; 1996a; 2007; Yager and Kacprzyk, 1997). 

An interesting generalization of the OWA operator is the generalized OWA 

(GOWA) operator (Karayiannis, 2000; Yager, 2004) that uses generalized 

means in the aggregation process. Then, we can obtain a wide range of mean 

operators such as the generalized mean (Dujmovic, 1974; Dyckhoff and 

Pedrycz, 1984), the weighted generalized mean, the OWA operator, the ordered 

weighted geometric (OWG) operator (Chiclana et al., 2000; Xu and Da, 2002), 

etc. The GOWA operator can be further generalized by using quasi-arithmetic 

means (Beliakov, 2005). Then, the result is the Quasi-OWA operator (Fodor et 

al., 1995). For further developments on the GOWA and the Quasi-OWA 

operator, see (Merigó and Casanovas, 2007a; 2007b; Merigó and A.M. Gil-

Lafuente, 2007b; Wang and Hao, 2006). 
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Recently, Merigó and A.M. Gil-Lafuente (2008b) have suggested the use 

of the OWA operator in the IMAM. They have called it the ordered weighted 

averaging index of maximum and minimum level (OWAIMAM). Going a step 

further, in this paper we suggest a generalization of the OWAIMAM by using 

generalized and quasi-arithmetic means. The result will be the generalized 

OWAIMAM (GOWAIMAM) and the quasi-arithmetic OWAIMAM (Quasi-

OWAIMAM). The main advantage of these operators is that they include a wide 

range of mean operators such as the normalized IMAM (NIMAM), the weighted 

IMAM (WIMAM), the OWAIMAM, the generalized IMAM (GIMAM), etc. 

We will study some of their main properties. 

 

We will also develop an application of the new approach in a decision 

making problem about the selection of products. We will focus on the selection 

of apartments because it is one of the main products for the consumers. With the 

GOWAIMAM, we will be able to evaluate different situations and results 

depending on the particular case used in the decision process. 

 

In order to do so, this paper is organized as follows. In Section 2, we 

briefly describe some basic concepts about the IMAM, the OWA and the 

GOWA operator. In Section 3 we present the GOWAIMAM operator and in 

Section 4 we study different particular cases. Section 5 introduces the Quasi-

OWAIMAM operator and Section 6 develops an application of the OWAIMAM 

in a decision making problem. Finally, in Section 7 we summarize the main 

conclusions of the paper. 
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2. Aggregation operators 

 

In this Section, we briefly review the IMAM, the OWA and the GOWA 

operator. 

 

2.1. Index of maximum and minimum level 

 

The NIMAM (J. Gil-Lafuente, 2001; 2002) is an index used for 

calculating the differences between two elements, two sets, etc. In fuzzy set 

theory, it can be useful, for example, for the calculation of distances between 

fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets and interval-

valued intuitionistic fuzzy sets. It is a very useful technique that provides similar 

results than the Hamming distance but with some differences that makes it more 

complete. Basically, we could define it as a measure that includes the Hamming 

distance and the adequacy coefficient (Gil-Aluja, 1998; A.M. Gil-Lafuente, 

2005; Kaufmann and Gil-Aluja, 1986; 1987) in the same formulation. For two 

sets A and B, it can be defined as follows. 

 

Definition 1. A NIMAM of dimension n is a mapping K: Rn→R such that: 

 

η(P,Pj) = ( )⎥⎦
⎤

⎢⎣
⎡ ∑ −∨+∑ −

+ v

j
ii

u

j
ii vvuu

vu
))()((0)()(1 )()( μμμμ                (1) 

 

where ai and bi are the ith arguments of the sets A and B, and u + v = n.  

 

Sometimes, when normalizing the IMAM it is better to give different 

weights to each individual element. Then, the index is known as the WIMAM. It 

can be defined as follows. 
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Definition 2. A WIMAM of dimension n is a mapping K: Rn→R that has an 

associated weighting vector W of dimension n such that the sum of the weights 

is 1 and wi ∈ [0,1]. Then: 

 

η(P,Pj) = [ ]∑ −∨×+∑ −×
v

j
iii

u

j
iii vvvwuuuw ))()((0)()()()( )()( μμμμ         (2) 

 

where ai and bi are the ith arguments of the sets A and B, and u + v = n. 

 

2.2. OWA operator 

 

The OWA operator (Yager, 1988) provides a parameterized family of 

aggregation operators which have been used in many applications (Calvo et al, 

2002; Merigó, 2007; Xu, 2005; Yager, 1993; Yager and Kacprzyk, 1997). It can 

be defined as follows. 

 

Definition 3. An OWA operator of dimension n is a mapping OWA: Rn→R that 

has an associated weighting vector W of dimension n having the properties: 

 

(1) wj ∈ [0, 1] 

(2) ∑ =
n
j jw1  = 1 

 

and such that 

 

OWA(a1, a2,…, an) = ∑
=

n

j
jjbw

1
                                                             (3) 

 

where bj is the jth largest of the ai.  
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From a generalized perspective of the reordering step we can distinguish 

between the Descending OWA (DOWA) operator and the Ascending OWA 

(AOWA) operator (Yager, 1992). Note that the weights of these two operators 

are related by wj = w*n−j+1, where wj is the jth weight of the DOWA and w*n−j+1 

the jth weight of the AOWA operator. 

 

The OWA operator is a mean or averaging operator. This is a reflection of 

the fact that the operator is commutative, monotonic, bounded and idempotent. 

By choosing a different manifestation of the weighting vector, we are able to 

obtain different types of aggregation operators such as the maximum, the 

minimum, the average and the weighted average (Yager, 1988). For example, 

the maximum is found when w1 = 1 and wj = 0 for all j ≠ 1. The minimum is 

obtained when wn = 1 and wj = 0 for all j ≠ n. The average is found when wj = 

1/n for all j. Other families of OWA operators can be studied in (Merigó, 2007; 

Xu, 2005; Yager, 1993; 1994; 1996a; 2007; Yager and Filev, 1994; Yager and 

Kacprzyk, 1997). 

 

2.3. GOWA operator 

 

The generalized OWA (GOWA) operator (Karayiannis, 2000; Yager, 

2004) is an aggregation operator that generalizes a wide range of mean operators 

such as the OWA operator with its particular cases, the ordered weighted 

geometric (OWG) operator (Chiclana et al., 2000; Herrera et al., 2003; Xu and 

Da, 2002), the ordered weighted harmonic averaging (OWHA) operator (Yager, 

2004) and the ordered weighted quadratic averaging (OWQA) operator (Yager, 

2004). It can be defined as follows. 
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Definition 4. A GOWA operator of dimension n is a mapping GOWA: Rn→R 

that has an associated weighting vector W of dimension n such that the sum of 

the weights is 1 and wj ∈ [0,1], then: 

 

GOWA(a1, a2,…, an) = 
λ

λ
/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jjbw                                              (4) 

 

where bj is the jth largest of the ai, and λ is a parameter such that λ ∈ (−∞, ∞). 

 

From a generalized perspective of the reordering step, we have to 

distinguish between the descending generalized OWA (DGOWA) operator and 

the ascending generalized OWA (AGOWA) operator. Note that it is possible to 

use them in situations where the highest value is the best result and in situations 

where the lowest value is the best result. The weights of these operators are 

related by wj = w*n−j+1, where wj is the jth weight of the DGOWA and w*n−j+1 the 

jth weight of the AGOWA operator.  

 

As it is demonstrated in (Yager, 2004), the GOWA operator is a mean 

operator. This is a reflection of the fact that the operator is commutative, 

monotonic, bounded and idempotent. It can also be demonstrated that the 

GOWA operator has as special cases the maximum, the minimum, the 

generalized mean and weighted generalized mean. Other families of GOWA 

operators can be found in (Karayiannis, 2000; Merigó, 2007, Yager, 2004).  

 

If we look to different values of the parameter λ, we can also obtain other 

special cases as the usual OWA operator, the OWG operator, the OWHA 

operator and the OWQA operator. When λ = 1, we obtain the usual OWA 

operator. When λ = 0, we obtain the OWG (OWG) operator. When λ = −1, we 



 9

obtain the OWHA (OWHA) operator. When λ = 2, we obtain the OWQA 

(OWQA) operator. 

 

Note that if we replace bλ with a general continuous strictly monotone 

function g(b), then, the GOWA operator becomes the Quasi-OWA operator. It 

can be formulated as follows. 

 

Definition 5. A Quasi-OWA operator of dimension n is a mapping QOWA: Rn 

→ R that has an associated weighting vector W of dimension n such that the sum 

of the weights is 1 and wj ∈ [0,1], then: 

 

QOWA(a1, a2,…, an) = ( )( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

− n

j
jj bgwg

1

1                                     (5) 

 

where bj is the jth largest of the ai. 

 

 

3. Generalized index of maximum and minimum level 

 

The D-S theory of evidence The IMAM can be generalized by using 

generalized means. Then, the result is the generalized index of maximum and 

minimum level (GIMAM). Going a step further, it is also possible to use the 

weighted generalized mean, obtaining the weighted generalized index of 

maximum and minimum level (WGIMAM). It can be defined as follows.  

 

Definition 6. A WGIMAM operator of dimension n is a mapping WGIMAM: 

Rn→R that has an associated weighting vector W of dimension n such that the 

sum of the weights is 1 and wj ∈ [0,1], then: 
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WGIMAM(Pk  → P) =  

= [ ]
λλλ

μμμμ
/1

)()( ))()((0)()()()( ⎟
⎠
⎞

⎜
⎝
⎛ ∑ −∨×+∑ −×

v

j
iii

u

j
iii vvvwuuuw   (6) 

 

where μi and μi
k are the ith arguments of the sets Pk and P, u + v = n, and λ is a 

parameter such that λ ∈ (−∞, ∞).  

 

As we can see, if wi = 1/n, we get the GIMAM operator. Note that if we 

look to the parameter λ we also find a wide range of mean operators. For 

example, if λ = 1, we get the weighted IMAM (WIMAM), and if λ = 2, we get 

the weighted quadratic averaging IMAM (WQAIMAM). 

 

Going a step further, it is possible to present a wider generalization of the 

WGIMAM operator by using the OWA operator. Then, we get the following. 

 

Definition 7. A GOWAIMAM operator of dimension n is a mapping 

GOWAIMAM: Rn→R that has an associated weighting vector W of dimension n 

such that the sum of the weights is 1 and wj ∈ [0,1], then: 

 

GOWAIMAM(p1, p2,…, pn) = 
λ

λ
/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jj Kw                                        (7) 

 

where Kj represents the jth largest of all the |μi – μi
(k)| and the [0 ∨ (μi - μi

(k))]; k = 

1,2,…,m; and λ is a parameter such that λ ∈ (−∞, ∞). Note that we have given 

this definition for all R, but we should note that sometimes we may find 

problems, especially when the arguments are 0. Basically, these problems 

appear for values in the parameter λ ≤ 0. 
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From a generalized perspective of the reordering step, it is possible to 

distinguish between the descending generalized OWAIMAM (DGOWAIMAM) 

operator and the ascending generalized OWAIMAM (AGOWAIMAM) 

operator. The weights of these operators are related by wj = w*n−j+1, where wj is 

the jth weight of the DGOWAIMAM and w*n−j+1 the jth weight of the 

AGOWAIMAM operator.  

 

Analogously to the GOWAIMAM operator, we can suggest an equivalent 

removal index that it is a dual of the GOWAIMAM because Q(Pk → P)  = 1 -  

K(Pk → P). We will call it the generalized ordered weighted averaging dual 

IMAM (GOWADIMAM). It can be defined as follows. 

 

Definition 8. A GOWADIMAM operator of dimension n, is a mapping 

GOWADIMAM: Rn→R that has an associated weighting vector W, with wj ∈ 

[0,1] and the sum of the weights is equal to 1, then: 

 

 GOWADIMAM(q1, q2,…, qn) =  
λ

λ
/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jjQw                              (8) 

 

where Qj represents the jth largest of all the [1 − |μi – μi
(k)|] and the [1 ∧ (1 - μi + 

μi
(k))]; and k = 1,2,…,m, and λ is a parameter such that λ ∈ (−∞, ∞). The final 

result will be a number between [0,1]. Note that in this case, we also find 

inconsistencies when λ ≤ 0. 

 

In this case, we can also distinguish between the descending 

GOWADIMAM (DGOWADIMAM) and the ascending GOWADIMAM 

(AGOWADIMAM) operator. Their weights are related by wj = w*n−j+1, where wj 
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is the jth weight of the DGOWADIMAM and w*n−j+1 the jth weight of the 

AGOWADIMAM operator. 

 

If K is a vector corresponding to the ordered arguments Kj, we shall call 

this the ordered argument vector, and WT is the transpose of the weighting 

vector, then the GOWAIMAM aggregation can be expressed as:  

 

GOWAIMAM(p1, p2,…, pn) = KW T                                                 (9) 

 

Also note that the GOWAIMAM operator is commutative, monotonic, 

bounded and idempotent. These properties can be demonstrated with the 

following theorems. 

 

Theorem 1 (Monotonicity). Assume f is the GOWAIMAM operator, if pi ≥ qi, 

for all pi, then: 

 

f (p1, p2,…, pn) ≥ f (q1, q2,…, qn)                                                  (10) 

 

Proof. Let 

 

f (p1, p2,…, pn) = 
λ

λ
/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jj Kw                                                 (11) 

 

f (q1, q2,…, qn) = 
λ

λ
/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jjQw                                                 (12) 

 

Since pi ≥ qi, for all i, it follows that, pi ≥ qi, and then 
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f (p1, p2,…, pn) ≥ f (q1, q2,…, qn)                                                    ■ 

 

Theorem 2 (Commutativity). Assume f is the GOWAIMAM operator, then: 

 

f (p1, p2,…, pn) = f (q1, q2,…, qn)                                                (13) 

 

where (p1, p2,…, pn) is any permutation of the arguments (q1, q2,…, qn). 

 

Proof. Let 

 

f (p1, p2,…, pn) = 
λ

λ
/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jj Kw                                                  (14) 

 

f (q1, q2,…, qn) = 
λ

λ
/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jjQw                                                  (15) 

 

Since (p1, p2,…, pn) is a permutation of (q1, q2,…, qn), we have pj = qj, for all j, 

and then 

 

f (p1, p2,…, pn) = f (q1, q2,…, qn)                                                     ■ 

 

Theorem 3 (Idempotency). Assume f is the GOWAIMAM operator, if pi = p, 

for all pi, then: 

 

f (p1, p2,…, pn) = p                                                               (16) 

 

Proof. Since pi = p, for all pi, we have 
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f (p1, p2,…, pn) = 
λ

λ
/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jj Kw = 

λ
λ

/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
j pw  = 

λ
λ

/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jwp         (17) 

 

Since ∑ ==
n
j jw1 1, we get 

 

f (p1, p2,…, pn) = p                                                                   ■ 

 

Theorem 4 (Bounded). Assume f is the GOWAIMAM operator, then: 

 

Min{pi} ≤ f ( p1, p2,…, pn) ≤ Max{pi}                                             (18) 

 

Proof. Let max{pi} = b, and min{pi} = a, then 

 

f (p1, p2,…, pn) = 
λ

λ
/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jj Kw  ≤ 

λ
λ

/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jbw  = 

λ
λ

/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jwb         (19) 

 

f (p1, p2,…, pn) = 
λ

λ
/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jj Kw  ≥ 

λ
λ

/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jaw  = 

λ
λ

/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jwa         (20) 

 

Since ∑ ==
n
j jw1 1, we get 

 

f (p1, p2,…, pn) ≤ b                                                                (21) 

 

f (p1, p2,…, pn) ≥ a                                                                (22) 

 

Therefore, 



 15

 

Min{pi} ≤ f ( p1, p2,…, pn) ≤ Max{pi}                                                 ■     

 

A further interesting problem to consider in the GOWAIMAM operator is 

the unification point with distance measures. As it was explained in Merigó and 

A.M. Gil-Lafuente (2007a), the unification point between the IMAM and the 

Hamming distance appears when μi ≥ μi
(k) for all i. In the GOWAIMAM 

operator, we find a similar situation with the difference that now the unification 

is with the Minkowski distance or with the Minkowski ordered weighted 

averaging distance (MOWAD) operator (Karayiannis, 2000; Merigó and A.M. 

Gil-Lafuente, 2008a). Then, we get the following.  

 

Theorem 5. Assume MOWAD(P,Pk) is the MOWAD operator and 

GOWADIMAM(Pk  → P) the GOWADIMAM operator. If μi ≥ μi
(k) for all i, 

then: 

 

 MOWAD(P,Pk) = GOWADIMAM(Pk  → P)                                       (23)   

 

Proof. Let 

 

      MOWAD(P,Pk) = ∑ −
=

n

j

k
iijw

1

)( || μμ                                                   (24) 

 

 GOWADIMAM(Pk  → P) = 
λ

λ
/1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jjQw                                          (25) 

 

Since μi ≥ μi
(k) for all i, [0 ∨ (μi - μi

(k))] = (μi - μi
(k)) for all i, then 
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GOWADIMAM(Pk  → P) = )( )(

1

k
ii

n

j
jw μμ −∑

=
= MOWAD(P,Pk)              ■ 

 

As we can see, the unification appears with the dual IMAM. As it was 

explained in Merigó and A.M. Gil-Lafuente (2007a), it is possible to distinguish 

between different types of unifications depending on the situation found such as 

partial or total unification point. The partial unification point appears if at least 

one of the alternatives but not all of them enters in a situation of unification 

point. The total unification point appears if all the alternatives are in a situation 

of unification point. Note that it is straightforward to prove these unifications by 

looking to (Merigó and A.M. Gil-Lafuente, 2007a) and following Theorem 5. 

 

Note that this unification has been studied with the general case, but it is 

also possible to consider different particular cases by giving different values to 

the parameter λ. For example, if λ = 1, we get the unification found with the 

IMAM and the Hamming distance. If λ = 2, we get the unification with the 

quadratic IMAM and the Euclidean distance. 

 

Another interesting issue to analyze is the different measures used for 

characterizing the weighting vector of the GOWAIMAM operator. Based on the 

measures developed for the OWA operator by Yager (1988; 1996b; 2002) and 

for the GOWA (Yager, 2004), they can be defined as follows. The attitudinal 

character can be formulated as follows. 

 

α(W) = 
λλ /1

1 1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ ⎟

⎠
⎞

⎜
⎝
⎛

−
−

=

n

j
j n

jnw                                                             (26) 
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It can be shown that α ∈ [0, 1]. Note that for the optimistic criteria α(W) 

= 1, for the pessimistic criteria α(W) = 0, and for the average criteria α(W) = 0.5.  

 

The dispersion is a measure that provides the type of information being 

used (Yager, 1988). It can be defined as follows. 

 

H(W) = ∑−
=

n

j
jj ww

1
)ln(                                                                   (27) 

 

For example, if wj = 1 for some j, then H(W) = 0, and the least amount of 

information is used. If wj = 1/n for all j, then, the amount of information used is 

maximum. 

 

Another interesting measure is the divergence of W (Yager, 2002). It can 

be defined as follows. 

 

Div(W) = 

2

1
)(

1
∑ ⎟

⎠
⎞

⎜
⎝
⎛ −

−
−

=

n

j
j W

n
jnw α                                                      (28) 

 

A further interesting measure that we could study is the balance of W 

(Yager, 1996b). It can be formulated as follows. 

 

Bal(W) = ∑
−
−+

=

n

j
jw

n
jn

1 1
)21(                                                             (29) 

 

Note that these measures can also be used with an ascending order by 

using wj = w*n−j+1, where wj is the jth weight of the DGOWAIMAM and w*n−j+1 

the jth weight of the AGOWAIMAM operator. 
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4. Families of GOWAIMAM operators 

 

In this Section, we analyze different particular cases of the GOWAIMAM 

operator. 

 

4.1. Analysing the parameter λ 

 

By looking to the parameter λ, we find a wide range of mean operators 

such as the OWAIMAM, the OWGIMAM, the OWQAIMAM, etc. 

 

When λ = 1, the GOWAIMAM operator becomes the OWAIMAM 

operator.  

 

GOWAIMAM(p1, p2,…, pn) = ∑
=

n

j
jj Kw

1
                                            (30) 

 

Note that it is possible to distinguish between the DOWAIMAM operator 

and the AOWAIMAM operator. In both cases, the formulation is the same with 

the difference that the DOWAIMAM operator has a descending order and the 

AOWAIMAM operator an ascending order. Note that if wj = 1/n, for all i, we 

get the normalized IMAM (NIMAM) and if the ordered position of j is the same 

than the position of i, we get the weighted IMAM (WIMAM). 

 

When λ = 0, we get the OWGIMAM operator.  

 

GOWAIMAM(p1, p2,…, pn) = ∏
=

n

j

w
j

jK
1

                                            (31) 
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In this case, we get the descending OWGIMAM (DOWGIMAM) operator 

and the ascending OWGIMAM (AOWGIMAM) operator. Note that if wj = 1/n, 

for all i, we get the normalized geometric IMAM (NGIMAM) and if the ordered 

position of j is the same than the position of i, we get the weighted geometric 

IMAM (WGIMAM). 

 

When λ = −1, we get the OWHAIMAM operator. 

 

GOWAIMAM(p1, p2,…, pn) = 
∑
=

n

j j

j

K
w

1

1                                               (32) 

 

In this case, we obtain the descending OWHAIMAM (DOWHAIMAM) 

operator and the ascending OWHAIMAM (AOWHAIMAM) operator. In both 

cases, the formulation is the same although the reordering step is different. Note 

that if wj = 1/n, for all i, we get the normalized harmonic IMAM (NHIMAM) 

and if the ordered position of j is the same than the position of i, we get the 

weighted harmonic IMAM (WHIMAM). 

 

When λ = 2, we get the OWQAIMAM operator. 

 

GOWAIMAM(p1, p2,…, pn) = 
2/1

1

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

n

j
jj Kw                                     (33) 

 

Note that we can distinguish between the descending OWQAIMAM 

(DOWQAIMAM) operator and the ascending OWQAIMAM (AOWQAIMAM) 

operator. Note that if wj = 1/n, for all i, we get the normalized quadratic IMAM 

(NQIMAM) and if the ordered position of j is the same than the position of i, we 

get the weighted quadratic IMAM (WQIMAM). 
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4.2. Analysing the weighting vector W 

 

By using a different manifestation in the weighting vector of the 

GOWAIMAM operator, we are able to obtain different types of aggregation 

operators. For example, it is possible to obtain the maximum, the minimum, the 

GIMAM and the WGIMAM operator. 

 

The maximum is found if w1 = 1 and wj = 0, for all j ≠ 1. The minimum, if 

wn = 1 and wj = 0, for all j ≠ n. More generally, if wk = 1 and wj = 0, for all j ≠ k, 

we get for any λ, GOWAIMAM(p1, p2,…, pn) = Kh, where Kh is the hth largest 

argument of all the |μi – μi
(k)| and the [0 ∨ (μi - μi

(k))]. This case is known as the 

step-GOWAIMAM operator. The GIMAM is found when wj = 1/n, for all ai and 

the WGIMAM obtained when the ordered position of i is the same than j.  

 

Following a similar methodology as it has been developed in (Merigó, 

2007; Yager, 1993), we could study other particular cases of the GOWAIMAM 

operator such as the window-GOWAIMAM, the olympic-GOWAIMAM, the 

median-GOWAIMAM, the centered-GOWAIMAM operator, the S-

GOWAIMAM operator, etc.  

 

For example, when wj* = 1/m for k ≤ j* ≤ k + m − 1 and wj* = 0 for j* > k 

+ m and j* < k, we are using the window-GOWAIMAM operator. Note that k 

and m must be positive integers such that k + m − 1 ≤ n. Also note that if m = k = 

1, the window-GOWAIMAM becomes the maximum. If m = 1, k = n, the 

minimum. And if m = n and k = 1, the window-GOWAIMAM is transformed in 

the GIMAM. 
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If w1 = wn = 0, and for all others wj* = 1/(n − 2), we are using the olympic-

GOWAIMAM that it is based on the olympic average (Yager, 1996a). Note that 

if n = 3 or n = 4, the olympic-GOWAIMAM is transformed in the median-

GOWAIMAM and if m = n − 2 and k = 2, the window-GOWAIMAM is 

transformed in the olympic-GOWAIMAM. 

 

Note that the median and the weighted median can also be used as 

GOWAIMAM operators. For the median-GOWAIMAM, if n is odd we assign 

w(n + 1)/2 = 1 and wj* = 0 for all others. If n is even we assign, for example, wn/2 = 

w(n/2) + 1 = 0.5 and wj* = 0 for all others. For the weighted median-GOWAIMAM, 

we select the argument Kh that has the hth largest argument such that the sum of 

the weights from 1 to k is equal or higher than 0.5 and the sum of the weights 

from 1 to k − 1 is less than 0.5. 

 

Another interesting family is the S-GOWAIMAM operator based on the 

S-OWA operator (Yager, 1993; Yager and Filev, 1994). It can be divided in 

three classes: the “orlike”, the “andlike” and the generalized S-GOWAIMAM 

operator. The “orlike” S-GOWAIMAM operator is found when w1 = (1/n)(1 − 

α) + α, and wj = (1/n)(1 − α) for j = 2 to n with α ∈ [0, 1]. Note that if α = 0, we 

get the GIMAM and if α = 1, we get the maximum. The “andlike” S-

GOWAIMAM operator is found when wn = (1/n)(1 − β) + β and wj = (1/n)(1 − 

β) for j = 1 to n − 1 with β ∈ [0, 1]. Note that in this class, if β = 0 we get the 

GIMAM and if β = 1, the minimum. Finally, the generalized S-GOWAIMAM 

operator is obtained when w1 = (1/n)(1 − (α + β)) + α, wn = (1/n)(1 − (α + β)) + 

β, and wj = (1/n)(1 − (α + β)) for j = 2 to n − 1 where α, β ∈ [0, 1] and α + β ≤ 

1. Note that if α = 0, the generalized S-GOWAIMAM operator becomes the 

“andlike” S-GOWAIMAM operator and if β = 0, it becomes the “orlike” S-



 22

GOWAIMAM operator. Also note that if α + β = 1, we get the generalized 

Hurwicz criteria. 

 

A further family of aggregation operator that could be used is the 

centered-GOWAIMAM operator, that it is based on the OWA version (Yager, 

2007). We can define a GOWAIMAM operator as a centered aggregation 

operator if it is symmetric, strongly decaying and inclusive. It is symmetric if wj 

= wj + n −1. It is strongly decaying when i < j ≤ (n + 1)/2 then wi < wj and when i > 

j ≥ (n + 1)/2 then wi < wj. It is inclusive if wj > 0. Note that it is possible to 

consider a softening of the second condition by using wi ≤ wj instead of wi < wj. 

We shall refer to this as softly decaying centered-GOWAIMAM operator. Note 

that the GIMAM is an example of this particular case of centered-GOWAIMAM 

operator. Another particular situation of the centered-GOWAIMAM operator 

appears if we remove the third condition. We shall refer to it as a non-inclusive 

centered-GOWAIMAM operator. For this situation, we find the median-

GOWAIMAM as a particular case. 

 

 

5. Quasi-OWAIMAM operator 

 

As it was explained in (Beliakov, 2005), a further generalization of the 

GOWA operator is possible by using quasi-arithmetic means. Following the 

same methodology than (Fodor et al., 1995), we can suggest a similar 

generalization for the GOWAIMAM operator by using quasi-arithmetic means. 

We will call this generalization, the Quasi-OWAIMAM operator. It can be 

defined as follows. 
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Definition 9. A Quasi-OWAIMAM operator of dimension n is a mapping 

QOWAIMAM: Rn→R that has an associated weighting vector W of dimension n 

such that the sum of the weights is 1 and wj ∈ [0,1], then: 

 

QOWAIMAM(p1, p2,…, pn) =  ( )( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

− n

j
jj Kgwg

1

1                           (34) 

 

where Kj represents the jth largest of all the |μi – μi
(k)| and the [0 ∨ (μi - μi

(k))]; k = 

1,2,…,m.  

 

As we can see, we replace bλ with a general continuous strictly monotone 

function g(b). Note that in the Quasi-OWAIMAM operator we also find 

problems when the arguments are 0. Basically, these problems appear for values 

in the parameter λ ≤ 0. 

 

In this case, the weights of the ascending and descending versions are also 

related by wj = w*n−j+1, where wj is the jth weight of the Quasi-DOWAIMAM 

and w*n−j+1 the jth weight of the Quasi-AOWAIMAM operator. 

 

Note that it is also possible to suggest an equivalent removal index that it 

is a dual of the Quasi-OWAIMAM because Q(Pk → P)  = 1 -  K(Pk → P). We 

will call it the Quasi-OWADIMAM. 

 

Also note that all the properties and particular cases commented in the 

GOWAIMAM operator are also applicable in the Quasi-OWAIMAM operator. 

For example, if wj = 1/n, for all ai, then, we get the Quasi-NIMAM operator, and 

if the ordered position of i is the same than j, then, we get the Quasi-WIMAM. 
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6. Illustrative example 

 

In the following, we are going to develop an illustrative example where 

we will see the applicability of the new approach. We are going to consider a 

decision making problem about selection of products. We will focus on the 

selection of apartments. We will use different types of GOWAIMAM operators 

such as the NIMAM, the QIMAM, the WIMAM, the WQIMAM, the 

OWAIMAM, the AOWAIMAM, the OWQAIMAM, the step-OWAIMAM, the 

olympic-OWAIMAM, the median-OWAIMAM, etc. 

 

Assume a person wants to buy an apartment and he considers 5 possible 

alternatives to follow. 

 

• A1: Apartment A. 

• A2: Apartment B. 

• A3: Apartment C. 

• A4: Apartment D. 

• A5: Apartment E. 

 

In order to evaluate these apartments the decision maker considers 

different general characteristics about the apartments that can be summarized in 

6 characteristics: C1 = Prize, C2 = Size, C3 = Quality, C4 = Age, C5 = Zone, C6 = 

Connection to other places. 

 

The decision maker evaluates these characteristics that can be summarized 

in Table 1 depending on the characteristic Ci and the alternative Ak. Note that 

values near 1 imply that the results are good and values near 0, bad. 
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Table 1. Expected results 

 C1 C2 C3 C4 C5 C6 

A1 0.7 0.6 0.9 0.9 0.7 0.7 

A2 0.8 0.4 0.7 0.6 0.8 0.9 

A3 0.6 0.7 0.7 0.8 0.9 0.7 

A4 0.5 0.8 0.8 0.8 0.6 0.9 

A5 0.7 0.8 0.9 1 0.8 0.4 

 

 

The decision maker considers the following weighting vector for all the 

cases: W = (0.1, 0.1, 0.1, 0.2, 0.2, 0.3). Note that this weighting vector reflects 

the attitudinal character of the company when using the OWA operator. In order 

to develop the analysis, the decision maker calculates the results that an ideal 

apartment should have. The results of the ideal apartment are shown in Table 2. 

 

Table 2. Ideal apartment 

 C1 C2 C3 C4 C5 C6 

Ideal 0.8 0.9 1 0.8 1 0.8 

 

 

In this example, we will assume that the decision maker considers the 

three first characteristics with the Hamming distance and the other three with the 

adequacy coefficient. The usefulness of the IMAM is that if we believe that the 

Hamming distance is a good method we can use it, but if we believe that for 

some characteristics we need a more specific analysis, then, we can use the 

adequacy coefficient. 

 

With this information, we can aggregate the expected results in order to 

obtain a representative result for each alternative. First, we are going to consider 



 26

the NIMAM, the QIMAM, the WIMAM, the WQIMAM and the OWAIMAM 

operator. The results are shown in Table 3. 

 

Table 3. Aggregated results 1 

 NAC QAC WAC WQAC OWAAC 

A1 0.85 0.857 0.86 0.867 0.81 

A2 0.8 0.818 0.84 0.854 0.73 

A3 0.85 0.855 0.88 0.884 0.81 

A4 0.83 0.846 0.86 0.875 0.77 

A5 0.85 0.859 0.81 0.824 0.8 

 

 

Now, we are going to consider the results obtained by using other 

particular cases of the GOWAIMAM operator such as the AOWAIMAM, the 

OWQAIMAM, the step-OWAIMAM (k=2), the median-OWAIMAM and the 

olympic-OWAIMAM operator. The results are shown in Table 4. 

 

Table 4. Aggregated results 2 

 AOWAAC OWQAAC step median olympic 

A1 0.89 0.817 0.9 0.9 0.85 

A2 0.86 0.751 1 0.8 0.825 

A3 0.89 0.815 0.9 0.85 0.85 

A4 0.89 0.784 1 0.85 0.85 

A5 0.89 0.812 0.9 0.9 0.875 

 

 

As we can see, depending on the aggregation operator used the results are 

different. A1 is optimal with the NAC, the OWAAC, the AOWAAC, the 

OWQAAC and the median-OWAAC. A2 is optimal only with the step-
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OWAAC. A3 with the NAC, the WAC, the WQAC, the OWAAC and the 

AOWAAC. A4 with the AOWAAC and the step-OWAAC. Finally, A5 is 

optimal with the NAC, the QAC, the AOWAAC, the median-OWAAC and the 

olympic-OWAAC. 

 

Another interesting issue is to establish an ordering of the alternatives. 

Note that this is useful when we want to consider more than one alternative. The 

results are shown in Table 5. Note that ⎬ means preferred to. 

 

Table 5. Ordering of the strategies 

 Ordering  Ordering 

NIMAM A1=A3=A5⎬A2=A4 AOWAIMAM A1=A3=A4=A5⎬A2

QIMAM A5⎬A1⎬A3⎬A4⎬A2 OWQAIMAM A1⎬A3⎬A5⎬A4⎬A2 

WIMAM A3⎬A1=A4⎬A2⎬A5 Step A2=A4⎬A1⎬A3⎬A5 

WQIMAM A3⎬A4⎬A1⎬A2⎬A5 Median A1=A5⎬A3=A4⎬A2

OWAIMAM A1=A3⎬A5⎬A4⎬A2 Olympic A5⎬A1=A3=A4⎬A2

 

 

As we can see, depending on the aggregation operator used, the ordering 

of the apartments is different. Then, these results may lead to different decisions. 

 

 

7. Conclusions 

 

We have presented the GOWAIMAM operator. It is a generalization of 

the OWAIMAM operator by using generalized means. The main advantage of 

this aggregation operator is that it includes a wide range of mean operators such 

as the OWAIMAM, the NGIMAM, the WGIMAM, the IMAM, the 
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OWQAIMAM, etc. Then, with this generalization, we can consider a wide range 

of results depending on the particular case used. We have further generalized the 

GOWAIMAM by using quasi-arithmetic means. As a result we have obtained 

the Quasi-OWAIMAM operator. 

 

We have also developed an application of the new approach in a decision 

making problem about selection of products, and more specifically, selection of 

apartments. We have seen that depending on the particular type of 

GOWAIMAM operator used, the results are different and they may lead to 

different decisions. 

 

In future research, we expect to develop further extensions of the 

GOWAIMAM operator by adding new characteristics in the problem such as the 

use of inducing orders and applying it to other decision making problems. 
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