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Abstract: We describe the use of dynamic combinatorial chemistry (DCC) to identify ligands 

for the stem-loop structure located at the exon 10-5’-intron junction of Tau pre-mRNA, which 

is involved in the onset of several tauopathies including frontotemporal dementia with 

parkinsonism linked to chromosome 17 (FTDP-17). A series of ligands that combine the 

small aminoglycoside neamine and heteroaromatic moieties (azaquinolone and two acridines) 

have been identified using DCC. These compounds effectively bind the stem-loop RNA target 

(EC50 = 2-58 µM), as determined by fluorescence titration experiments. Importantly, most of 

them are able to stabilize both wild-type and the +3 and +14 mutated sequences associated 

with the development of FTDP-17 without producing a significant change in the overall 

structure of the RNA (CD spectroscopy), which is a key issue for recognition by the splicing 

regulatory machinery. A good correlation has been found between the ligands’affinity for the 

target and their capacity to stabilize the RNA secondary structure. 

 

 

Introduction 

 

RNA plays an essential role in many cellular processes, from the regulation of gene 

expression to protein synthesis, as well as in the progression of viral diseases. This 

macromolecule is able to adopt more complex three-dimensional structures than DNA is; they 

are similar to those observed in proteins, and their tertiary structure is as yet difficult to 

predict. Hence, discovering selective and, more importantly, specific ligands for this 

macromolecule represents a challenge for medicinal and bioorganic chemistry and therapy.
[1]
 

However, most of the known RNA-binding ligands can each bind to several different RNA 

targets of unrelated sequence and structure,
[2]
 which compromises their biological 

applications. We hypothesize that higher affinity and better specificity could be achieved by 

combining two or more small molecules with different affinities and capacities to recognize 

some of the secondary structural motifs present in a particular RNA target.
[3]
 This fragment-

based lead-discovery searching approach,
[4]
 in combination with dynamic combinatorial 

chemistry (DCC),
[5]
 offers new perspectives and opportunities for identifying RNA ligands, as 

well as for improving our understanding of RNA recognition mechanisms. 

Over the past few years, DCC has demonstrated its potential as a tool for discovering ligands 

for biomolecules, mainly because both the library synthesis and the affinity screening steps 

are carried out simultaneously in a single process.
[5]
 In the field of nucleic acids DCC has 

been used to select a copper(II) coordination complex which binds to an RNA hairpin,
[6]
 as 

well as ligands that bind to DNA duplex or quadruplex structures,
[7]
 and also to stabilize 

oligonucleotide complexes by covalent linkage of small molecules.
[8]
 More recently, resin-

bound DCC has been used to identify ligands for RNA structures involved in HIV-1 

replication and in myotonic dystrophy type 1.
[9]
 Typically, most ligands for DNA and RNA 

targets that have been identified using DCC have high to medium affinities (∼ 2-50 µM). 
In the study reported here, we use DCC to identify ligands for the Tau exon 10 splicing 

regulatory element RNA involved in frontotemporal dementia with parkinsonism linked to 

chromosome 17 (FTDP-17).
[10]

 Tau is a microtubule-associated protein that is required for the 

polymerization and stability of microtubules as well as for axonal transport in neurons. In a 

normal adult human brain, alternative splicing of exons 2, 3 and 10 produces six tau isoforms 

with either three (3R) or four (4R) repeat domains, with a 4R/3R ratio of approximately 1.
[11]

 

However, mutations found in the tau gene of FTDP-17 patients, especially at the exon 10-5’-

intron junction, alter pre-mRNA splicing and result in an increase in the inclusion of exon 10. 

The normal one-to-one isoform balance is thus perturbed, with the 4R isoform being 

overproduced in most cases. This alters the microtubule function and consequently leads to 

the development of the tauopathy.
[12]

 The stem-loop structure located at the exon 10-5’-intron 



junction seems to be an important regulatory element in pre-mRNA splicing. Both in vitro 

and in vivo experiments have shown that the extent of exon 10 inclusion is inversely 

proportional to the stability of this structure; a stability which is considerably diminished by 

mutations (Figure 1a).
[13]

 Thus, small molecules that selectively bind to and stabilize this 

stem-loop structure, and in particular the mutated variants found in FTDP-17 patients, would 

allow the physiological balance between Tau isoforms to be restored and, consequently, the 

disease to be treated.
[14]

 Importantly, most of the ligands identified in this study using the 

DCC approach, in addition to binding with high to medium affinity and stabilizing wild-type 

(wt) RNA, are capable of stabilizing the two mutated sequences (+3 and +14) that cause the 

highest destabilization of the stem-loop structure.  

 

Results and Discussion 

 

Construction of the Dynamic Combinatorial Library. First, we synthesized several 

building blocks, including known RNA binding ligands together with some other compounds 

with a potential to bind to a particular RNA motif, that could be assembled modularly into 

new lead ligands for Tau stem-loop targets (the structures are shown in Figure 1b).
[15]

 Thiol 

derivatization was chosen because disulfide exchange is relatively fast in aqueous solutions of 

pH near 7-8 and fully compatible with RNA. In addition, this approach increases the diversity 

of the dynamic combinatorial library (DCL) in comparison with non-symmetrical bonds, 

since formation of disulfide bridges can afford both homo- and heterodimers.
[16] 

 

Figure 1 

 

Aminoglycoside antibiotics are possibly the most studied RNA ligands. They are known to be 

able to discriminate A-type from B-type duplexes and to have relatively high affinity for RNA 

structures.
[2b,17]

 However, since natural aminoglycosides do not exhibit inherent specificity for 

biological RNA sequences, several groups have synthesized aminoglycoside analogues to 

tune specificity without compromising affinity. In order to reduce the risk of non-specific 

electrostatic interactions, we decided to select a neamine derivative, Nea, as a building block. 

This small aminoglycoside incorporates rings I and II of neomycin B and still presents a high 

charge density. In addition, two acridine derivatives (Acr1 and Acr2) that have the capacity 

either to intercalate in duplex regions or to stack with unpaired nucleobases were also 

included in the library of monomers.
[18]

 Although acridines are also promiscuous molecules, 

they have recently been used in the development of RNA ligands with high binding affinity 

and good specificity.
[19]

 We also selected a third heteroaromatic compound, an azaquinolone 

derivative, Azq, which could recognize the bulged adenine of the Tau stem-loop and provide 

higher specificity than the aminoglycosides or intercalators through the formation of 

complementary hydrogen bond acceptor-donors.
[20]

 Finally, two cationic tripeptides 

containing an aromatic residue, TyrP and TrpP, were assembled using solid-phase 

procedures, and included in the library of monomers. 

 

Selection of Ligands using Dynamic Combinatorial Chemistry. In order to facilitate the 

identification of RNA-interacting molecules, DCC experiments were carried out in solution-

phase in the presence of the biotinylated RNA target (Scheme 1). Previously, UV-monitored 

thermal denaturation experiments and circular dichroism had showed that the 5’-end biotin 

derivatization affects neither the overall stem-loop structure nor its stability (see the 

Supporting Information). In addition, the unique monophasic curve obtained at higher 

concentration (25 µM) was further evidence for the presence of a single intramolecular species 

(no transitions were detected at low temperatures) and the claim that no supramolecular 



aggregates are formed during DCC experiments. After incubation of the thiol-derivatized 

monomers and the target, the use of streptavidin anchored to magnetic beads allowed the 

RNA and the interacting ligands to be separated easily from the other members of the DCL.
[7] 

After denaturation of RNA at 90ºC to release any bound ligands, MS HPLC was used to 

identify and quantify the compounds. In all cases, a control experiment in the absence of the 

biotinylated RNA was performed in parallel to determine the effect of the target on the 

amplification of the ligands. 

 

Scheme 1 

 

The first DCC experiment was performed with wt RNA (25 µM) and the Nea, Acr1, Azq and 

TyrP monomers (100 µM each) in 50 mM Tris-HCl buffer, pH 7.7, 100 mM NaCl and 0.1 mM 

EDTA at room temperature, under an air atmosphere and without stirring. Comparison with 

the control experiment (in the absence of the RNA) indicated a clear amplification of two 

disulfide heterodimers, Acr1-Nea (∼100%) and Azq-Nea (∼75%).
[21]
 Equilibrium was 

reached within 48 h in both cases, and the composition of the mixture remained unchanged 

over the next 2 days (see the Supporting Information).
[22]

 Furthermore, when the Acr1 

monomer was replaced by its disulfide dimer, Acr1-Acr1 (50 µM), a similar distribution of 

products was produced, both in the presence and in the absence of the RNA. This 

demonstrated that a true thermodynamic equilibrium had been reached and that the air-

mediated oxidation process is sufficiently slow to allow for equilibration of the different 

species. 

In subsequent DCC experiments we included two additional monomers, Acr2 and TrpP, both 

to increase the diversity of the DCL (21 theoretical compounds may be formed) and to study 

the competition between the two acridines and the two peptides. As shown in Figure 2, a 

small amplification of Acr1-Nea (60%) and Azq-Nea (40%) was again observed. However, 

two new ligands were amplified in much higher proportion, Acr2-Nea (3600%) and Acr2-

Acr2 (2300%), and to a lesser extent TyrP-Acr2 (140%), TrpP-Acr2 (190%) and Azq-Acr2 

(200%).
[23]

 This result indicates that ligands incorporating the Acr2 moiety have a higher 

affinity for the target RNA than those containing Acr1 or Azq. Importantly, the same species 

were amplified when the DCC experiment was carried out in the presence of the biotinylated 

+3-mutated sequence instead of wt RNA (see the Supporting Information). This suggests that 

their binding site is not close to the mismatched base pair in the +3-mutated sequence. 

 

Figure 2 

 

A crucial parameter in our fragment-based approach is the selection of the appropriate 

distance between the building blocks to allow the simultaneous recognition of two or more 

structural motifs in a particular target RNA. This parameter may be used to tune both the 

binding affinity and specificity of the ligand, as found by Tor et al. in some neomycin-

acridine conjugates.
[24]

 With these premises in mind, we decided to carry out a new DCC 

experiment with five monomers: Acr2, TyrP, Azq, Nea and a neamine derivative with a 

shorter spacer between the aminoglycoside core and the thiol group, Nea2 (Figure 1b). As 

expected, the Azq-Nea, Acr2-Nea and Acr2-Acr2 ligands were amplified in a relative ratio 

similar to that obtained in the previous experiments (see the Supporting Information). 

Interestingly, the amplification of the neamine-acridine ligand containing the shorter linker, 

Acr2-Nea2, was slightly higher than that of Acr2-Nea, suggesting a higher affinity. 

 

Binding Affinities and Specificities of the Selected Ligands. In most cases, the selected 

dimeric ligands were synthesized on a larger scale by replacing the disulfide linkage by the 



non-reversible thioether isoster (CH2-S). Then, quantitative binding studies were carried out 

to determine their binding affinities. Titration experiments were performed by monitoring the 

quenching of the fluorescence intensity of the fluoresceine-labelled wt RNA as a function of 

the increasing the concentration of the ligand.
[25]

 In all cases, a characteristic dose-dependent, 

saturatable change in fluorescence was observed, which can be attributed to a slight 

conformational change in the RNA target induced by the ligand upon complexation (see 

below the CD results). EC50 values (the effective ligand concentration required for 50 % RNA 

response) of 28.6 µM and 58 µM were obtained for Acr1-Nea and Azq-Nea, respectively, by 

fitting the data in a dose-response curve. As shown in Table 1, the overall results are 

consistent with DCC amplification data since the highest binding affinities are exhibited by 

the most amplified ligands; this confirms the power of this methodology for identifying 

ligands for RNA targets. Indeed, ligands containing Acr2 showed higher binding affinities 

than those containing Azq or Acr1 (5.9 µM and 2.9 µM for Acr2-Nea and Acr2-Acr2, 

respectively). Interestingly, the binding was observed to be approximately 3 times stronger for 

the ligand containing the shorter spacer between acridine and neamine, Acr2-Nea2. 

 

Table 1 

 

These results prompted us to evaluate the specificity of the ligands. Fluorescence binding 

assays were repeated in the presence of a 30-fold nucleotide excess of a commercially 

available tRNA (Table 1), which is a relevant competitor since it contains a mixture of both 

pre- and mature tRNAs.
[9b,24b,25b,26 ]

 Interestingly, the specificity (EC50 in the presence of the 

competitor/EC50 in the absence of the competitor) of the ligands was shown to be highly 

dependent on the nature of the acridine building block (the specificity of Azq-Nea could not 

be determined because the emission maximum of fluoresceine varied more than 3 nm at high 

ligand concentrations). In the presence of the competitor, the EC50 values of Acr2-Nea and 

Acr2-Acr2 for wt RNA were increased by 11-fold and 14-fold, respectively, whereas that of 

Acr1-Nea was only increased by 4-fold. Hence, replacement of the Acr2 moiety by Acr1 in 

the acridine-neamine ligands increases their specificity. On the other hand, as shown in Table 

1, the specificity ratio for Acr2-Nea2 was the highest. This result indicates that in the Acr2-

neamine ligands a longer spacer confers higher specificity. This trend is different from that 

previously reported for some acridine-neomycin conjugates with another target, the HIV-1 

RRE RNA.
[24b]

 

All these experiments with Tau RNA provide three important conclusions, some of which 

have also been previously observed in different RNA targets. First, the covalent attachment of 

an heteroaromatic moiety, either azaquinolone or acridine causes a substantial increase in the 

binding affinity of the aminoglycoside scaffold (see the Neamine entry in Table 1). Second, 

ligands containing Acr2 have higher binding affinities than those containing Acr1 and Azq, 

and it seems that a shorter spacer is preferred in the acridine-neamine ligands with Tau RNA. 

Third, there is an inverse correlation between affinity and specificity since the higher the 

affinity, the less specific the ligand seems to be. 

 

Effect of the Selected Ligands on the Thermal Stability of Tau RNA Targets. As 

previously stated, besides binding with good affinity and specificity to the Tau RNA targets, 

effective ligands for these targets must stabilize them, in particular the mutated sequences. So, 

our next objective was to evaluate the capacity, if any, of the most amplified ligands to 

produce stability. The impact of the ligands on the thermal stability of the stem-loop 

structures (wt and mutated) was estimated by UV-monitored melting experiments (Table 2).  

In the presence of Azq-Nea or Acr1-Nea a slight increase in the Tm value was observed in all 

RNAs (∆Tm ≈ +1ºC), with the exception of Acr1-Nea and the +14 mutant, where no 



significant shift occurred. This small stabilization, similar to that obtained with neamine 

alone, could suggest that the Azq or the Acr1 fragments do not interact with RNA. However, 

binding affinities (Table 1) and spectroscopic data (see below) have demonstrated the active 

participation of the heteroaromatic moiety in the RNA binding. Replacement of Acr1 by 

Acr2 in the acridine-neamine ligand (Acr2-Nea) caused a greater increase in Tm values for 

both the mutated sequences (∆Tm = +2.8ºC and +2ºC for +3 and +14 mutants, respectively) 

and wt RNA (∆Tm = +2.1ºC). To our surprise, the Tm of the +3 mutant was clearly increased 

(∆Tm = +5.7 ºC; Table 2) in the presence of the ligand with the shortest spacer, Acr2-Nea2. 

The effect of this ligand on wt RNA and the +14 mutant was smaller (∆Tm = +2.4ºC and 

3.2ºC, respectively) but still higher than that induced by the ligand with the longest spacer, 

Acr2-Nea. It is particularly relevant that the degree of stabilization of the +3 mutant with 

Acr2-Nea2 is higher than that produced by neomycin B alone, and of the same order as that 

produced by Mitoxantrone, a ligand for Tau RNA recently identified in a high-throughput 

fluorescent binding assay.
[14a,14b,27]

  

All together, these results show a direct correlation between the Tm of the RNA-ligand 

complex, the level of amplification observed in the DCC experiments and the binding 

affinities determined by fluorimetry, which is consistent with previous observations in 

different systems.
[7,8]

 The most amplified ligands (Acr2-Nea and Acr2-Nea2) have higher 

binding affinities and produce a higher degree of stabilization than the least amplified ligands 

(Azq-Nea and Acr1-Nea). No stabilization was observed upon incubation with Acr1-Acr1 

since this compound was not templated by the RNA. As expected, a significant increase in Tm 

also occurred with Acr2-Acr2. These results indicate that the 9-(alkylamino)acridine is more 

stabilizing than that bearing the 9-carboxamide group. Both the positive charge of the former 

(pKa ≈ 5 for Acr1 vs pKa ≈ 8 for Acr2) and its ability to establish additional stabilizing 

interactions may account for this stabilizing effect and the high binding affinity.
[28]

 

 

Table 2 

 

Spectroscopic Studies of the Complexes formed between Tau RNA and the Selected 

Ligands. Considering the fact that all of the best ligands included a heteroaromatic moiety, 

we wanted to gain some insight into its role upon complexation with RNA. When Acr1-Nea, 

Acr2-Nea and Acr2-Nea2 were titrated with increasing amounts of wt RNA, a strong 

hypochromism was observed in their UV-Vis spectra (30-40% at a 1:1 ratio; Figure 3). In 

addition, the 423- and 444-nm bands of the free Acr2-Nea and Acr2-Nea2 ligands exhibited 

a 7- and 9-nm red-shift, respectively. This shift to higher wavelengths was smaller for Acr1-

Nea (2 nm for the 360-nm band), which is consistent with previously reported results.
[29]

 

Although a similar hypochromism was observed in the case of Azq-Nea, the interference of 

the RNA absorbance near the azaquinolone band prevented the titration experiment from 

being completed (see the Supporting Information). Similar bathochromic effects were 

observed in fluorescence titration experiments, including reduction in the fluorescence 

intensity of the acridine moieties together with changes in the spectral profiles (see the 

Supporting Information). These effects are commonly observed when planar heteroaromatic 

compounds bind to nucleic acids via an intercalative mechanism, or at least when stacking 

occurs with base-pair nucleobases. 

 

Figure 3 

 

Finally, we used CD spectroscopy to check whether these ligands might substantially change 

the overall conformation of the target RNA structures upon binding. This is a key issue for the 

recognition of the ligand-stabilized stem-loop by the splicing regulatory machinery. Although 



+3 and +14 mutations decrease the thermal stability of the stem-loop RNAs, they exhibit CD 

spectra that are very similar to that of wt RNA. This indicates that mutations do not produce a 

significant change in the structure (see the Supporting Information). When CD spectra were 

registered in the presence of the selected ligands, minimal alterations were observed (a 

decrease in the ellipticity of the positive band at 234 nm, and a concomitant increase in both 

the intensity and the wavelength shift of the positive band around 267 nm). These results 

indicate that the overall stem-loop structure in the Tau RNA target is maintained in all cases. 

These data, together with the UV-Vis and fluorescence spectroscopy results, suggest that the 

heteroaromatic moiety of the ligands might intercalate or stack around the bulged adenine, as 

described by Varani et al. for the binding of Mitoxantrone to the Tau-RNA.
[14c] 

 

Conclusion 

 

In conclusion, we have shown the usefulness of the dynamic combinatorial chemistry 

approach to identify ligands that bind with high to medium affinity (EC50 = 2-58 µM), as 

determined by fluorimetry, to the Tau exon 10 splicing regulatory element RNA. This 

confirms the potential of this methodology for developing new RNA-binding compounds. 

Importantly, most of the selected compounds, which combine a small aminoglycoside and a 

heteroaromatic moiety, are able to stabilize the +3 and +14 mutated sequences associated with 

the development of FTDP-17 as well as the wt RNA. Furthermore, they bind the RNA target 

without producing a significant change in the overall structure of the stem-loop (CD), and 

some of them could have a preferred binding site near the bulged adenine of the stem-loop 

structure as suggested by the biophysical experiments. The overall results show a direct 

correlation between the affinity of the ligands and their stabilizing properties. It is important 

to point out that the most specific ligands, such as Acr1-Nea, have a moderate affinity for the 

RNA target whereas those with high affinities (compounds containing Acr2) are less specific 

as inferred from the competition studies performed in the presence of an excess of tRNA. 

The identification of ligands that stabilize the mutated Tau stem-loop may open the way for 

the generation of drugs that restore the physiological balance of Tau isoforms, thus allowing 

for the treatment of frontotemporal dementias such as FTDP-17 as well as other 

neurodegenerative tauopathies including Alzheimer’s disease. Moreover, these ligands may 

become valuable tools for studying and understanding the alternative splicing of exon 10 and, 

for instance, how pre-mRNA secondary structures influence the regulation of alternative 

splicing.
[12b,30]  

Efforts are underway to improve the affinity and especially the specificity of the most 

promising ligands, as well as to elucidate the structure by NMR of their complexes with both 

wt RNA and mutated sequences, using labelled oligoribonucleotides. 

 

Experimental Section 

 

General procedures for DCC experiments. In general, DCC experiments were repeated at 

least twice in order to confirm their reproducibility. A typical experiment includes the 

following steps: 

A) Quantitation of building blocks and target oligoribonucleotides. In general, building 

blocks containing thiol were quantified by Ellman’s test. Procedure: Add 50 µL of Ellman’s 

reagent (2 mM dithio-bis-2-nitrobenzoic acid (DTNB) in 50 mM aqueous NaOAc), 100 µL of 

aqueous 2 M Tris-HCl pH 8 and H2O (850 µL minus the sample volume) into a 1-cm path-

length quartz cuvette, and mix thoroughly. Zero the UV spectrometer at 412 nm. Prepare the 

sample containing thiol by adding the appropriate volume (10 µL, 20 µL, 30 µL, etc.). Mix 

well and incubate at RT for 2 min. Measure the absorbance at 412 nm and calculate the 



concentration using the extinction coefficient (ε412: 13,600 M-1
 cm

-1
). Although building 

blocks were dissolved in 0.1% TFA in H2O to increase their solubility, the pH of the Ellman 

solution was not affected.  

For the quantitation of the acridine derivatives Acr1 and Acr2, the extinction coefficient of 

their amino precursors, ε343: 1,979 M-1
 cm

-1
 and ε361: 9,910 M-1

 cm
-1
 respectively, was used 

(determined in 0.1% TFA in H2O).  

The concentration of oligoribonucleotides was determined from the 260 nm absorbance value 

at 25ºC. The extinction coefficient was calculated on the basis of dinucleotide frequencies and 

composition using the nearest-neighbor model. The following molar extinction coefficients of 

ribonucleosides were used for the UV-quantitation of oligoribonucleotides: εi (L/mol/cm, 260 

nm): U, 9,900; A, 15,400; C, 7,200; and G, 11,500.  

B). RNA free exchange experiments. 24 nmol of each building block (in 0.1% TFA in H2O) 

were combined in an Eppendorf tube, and freeze dried or evaporated in a Speed-Vac. Then, 

240 µL of buffer (50 mM Tris-HCl, pH 7.7, 100 mM NaCl and 0.1 mM Na2EDTA) was added 

and the mixture was shaken gently. The DCL mixtures were left to stand at RT under air 

without stirring. After the desired time, an aliquot was taken (approximately 1/3 part) and the 

disulfide exchange was stopped by the addition of 100 µL of a 0.1% TFA solution in water 

(pH ∼2-3), and analysed by UV-MS HPLC. 

In some DCC experiments the building blocks were incorporated as the corresponding 

disulfide homodimers. In those cases, 12 nmol were used in order to keep the same final 

concentration of monomer.  

C). RNA templated exchange experiments. 6 nmol of biotinylated RNA (wt or +3) were 

annealed in 240 µL of buffer (50 mM Tris-HCl, pH 7.7, 100 mM NaCl and 0.1 mM Na2EDTA) 

by heating to 90ºC for 5 min and then slowly cooling to room temperature. After overnight 

incubation at RT, the solutions were stored at 4ºC. Then, annealed biotinylated RNA was 

added to the Eppendorf tube containing the evaporated building blocks, and the resulting 

mixture left to stand for 4 days at RT under air without stirring. At the desired time, an aliquot 

was withdrawn (approx. 1/3) and the disulfide exchange was stopped by the addition of 45-70 

µL of 0.1% TFA solution in water (pH ∼ 5-6).  
Streptavidin-coated magnetic beads (Biomag

 
Streptavidin, 5 mg/mL suspension, Qiagen) were 

used to isolate the biotinylated RNA and the binding ligands. In all washing procedures, a 

magnet was used to retain the beads in the tube while the supernatant was pipetted off. First, 

the beads (500 µL of suspension for each DCL aliquot) were separated from the commercial 

buffer solution and washed with an acidic buffer (3 x 500 µL of 50 mM Tris-HCl, pH 5.8, 100 

mM NaCl and 0.1 mM Na2EDTA). DCL aliquots were added to the washed beads and 

incubated at room temperature. After 20 min, the beads were retained in the vessel using the 

magnet and the supernatant solution was pipetted off again. Then, the beads were treated to 

remove the non-interacting ligands and building blocks (3 x 200 µL of 50 mM Tris-HCl, pH 

5.8, 100 mM NaCl and 0.1 mM Na2EDTA). Finally, the beads were washed with a hot solution 

of 0.1% TFA in H2O in order to liberate RNA-binding ligands (3 x 200 µL, incubation at 90ºC 

for 10 min). The solutions were combined and evaporated in a Speed-Vac. The final residue 

was dissolved in 0.1% TFA in H2O and analysed by UV-MS HPLC. 

D) UV-MS HPLC analysis. UV-MS HPLC analysis of DCC libraries was performed using a 

Micromass ZQ mass spectrometer equipped with an electrospray source and a single 

quadrupole detector coupled to a Waters 2695 HPLC (photodiode array detector). The 

detection wavelength was set to 260 nm. Elution was performed on a GraceSmart C18 column 

(150 x 2.1 mm, 5 µm, flow rate: 0.25 mL/min) with linear gradients of H2O and ACN 

containing both solvents either 0.1% formic acid or 0.1 % formic acid and 0.01% TFA. 

Typical gradient: 0 to 35% B in 15 min and from 35% to 80 % B in 10 min. In some cases, 



UV-MS HPLC analysis was carried out with both elution conditions to avoid the overlapping 

of some peaks in order to allow a more accurate integration. 

All peak areas of the HPLC traces were integrated and normalized taking into account the 

extinction coefficient of each compound at the detection wavelength: ε260: Acr1 37,090, Acr2 
13,334, Azq 2,930, TyrP 596, TrpP 3,484 M

-1
 cm

-1
. Histograms showing the change in the 

mol percentage for all DCL members at different times were generated in order to verify that 

thermodynamic equilibrium had been reached. In addition, histograms showing the mol 

percentage changes in each species of the equilibrium mixture (amplification %) upon 

introduction of the target RNA were also generated. 

 

Evaluation of the interaction between RNA and ligands. A. UV-monitored melting 

experiments. The impact of the ligands on the thermal stability of wt and mutated (+3 and 

+14) stem-loop RNA structures was estimated by cooling/heating experiments. Samples were 

placed in 1-cm path-length quartz cuvettes in a Jasco V-550 spectrophotometer equipped with 

a thermoregulated cell holder. Melting curves were recorded by cooling the samples from 

90ºC to 20ºC at a constant rate of 0.5 ºC/min and measuring the absorbance at 260 nm as a 

function of temperature. Then, the reverse denaturation curve (20ºC to 90 ºC) was recorded. 

This cooling/heating experiment ensures that the initial state corresponds to a thermodynamic 

equilibrium. In all cases the two curves were superimposable, which indicated that the 

transition was kinetically reversible. Unless otherwise indicated, the solutions were 1 µM both 

in RNA and ligands, in 10 mM sodium phosphate buffer pH 6.8, 100 mM NaCl and 0.1 mM 

Na2EDTA. The corresponding melting temperature values (Tm) were determined using the 

baseline method. All experiments were repeated at least three times until coincident Tm values 

were obtained. The error in Tm values was ± 0.2ºC.  

 

B. Circular dichroism. Samples were prepared as described in the UV-monitored melting 

experiments section (3 µM both in RNA and ligands, in 10 mM sodium phosphate buffer pH 

6.8, 100 mM NaCl and 0.1 mM Na2EDTA). Spectra were recorded on a Jasco J-720 

spectropolarimeter with a thermoregulated cell holder and interfaced with a Neslab RP-100 

water bath, at 20ºC. All CD spectra were baseline subtracted with a separately acquired buffer 

spectrum.  

 

C. UV-Vis titration experiments. A 45-55 µM solution of the ligand (Acr1-Nea, Acr2-

Nea/Nea2 or Azq-Nea) and the corresponding amount of wt RNA (0, 0.02, 0.05, 0.1, 0.2, 0.5, 

1 and 2 eq) was prepared in 10 mM sodium phosphate buffer pH 6.8 containing 100 mM NaCl 

and 0.1 mM Na2EDTA. The mixture was heated for 5 min to 90ºC and left to slowly cool to 

RT. The absorption spectra were recorded at RT. The percentage of absorption quenching was 

determined at the following absorption bands: 360 nm (31%) for Acr1-Nea and 423 (40%) 

and 444 nm (35%) for Acr2-Nea. 

 

D. Fluorescence titration experiments. A solution of the ligand (Acr1-Nea or Acr2-Nea) 

and the corresponding amount of wt RNA was prepared in 10 mM sodium phosphate buffer 

pH 6.8 containing 100 mM NaCl and 0.1 mM Na2EDTA. The mixture was heated for 5 min to 

90ºC and left to slowly cool to RT. The fluorescence emission spectra were recorded at RT.  

 

E. Fluorescence binding assays. Fluorescence measurements were performed in 1-cm path-

length quartz cells on a QuantaMaster fluorometer (PTI) at 20ºC, with an excitation slit width 

of 4.0 nm and an emission slit width of 5.2 nm. Upon excitation at 490 nm, the emission 

spectrum was recorded over a range between 500 and 550 nm until no changes in the 



fluorescence intensity were detected. All binding assays were performed in 10 mM sodium 

phosphate buffer, pH 6.8, 100 mM NaCl and 0.1 mM Na2EDTA. 

For each experiment, the fluorescence spectrum of 120 µL buffer solution without RNA or 

ligand was first taken, to be used as the baseline. Following this buffer blank, the spectrum of 

a 0.25 µM solution of refolded RNA containing fluoresceine (120 µL) was recorded, and the 

baseline blank subtracted. Subsequent aliquots of 1 µL of an aqueous ligand solution 

(increasing in concentration from 0 to 0.75 mM, 0.0005-3000 eq, depending on the ligand 

affinity) were added to the solution containing RNA, and the fluorescence spectrum was 

recorded after addition of each aliquot until the fluoresceine fluorescence signal at 517 nm 

reached saturation (typically 5-10 min). Over the entire range of ligand concentrations, the 

emission maxima varied less than 1 nm. The total volume of the sample never changed more 

than 20%. The full titration was repeated in the absence of labelled RNA to correct for the 

presence of the ligand’s fluorescence. These spectra were subtracted from each corresponding 

point of the labelled RNA titrations, and the resulting fluorescence intensity was corrected for 

dilution (F*V/V0).  

The emission fluorescence at 517 nm was normalized by dividing the difference between the 

observed fluorescence, F, and the initial fluorescence, F0, by the difference between the final 

fluorescence, Ff, and the initial fluorescence, F0. This normalized fluorescence intensity was 

plotted as a function of the logarithm of the total ligand concentration. Finally, nonlinear 

regression using a sigmoidal dose-response curve was performed with the software package 

GraphPad Prism 4 (GraphPad Software, San Diego, CA) to calculate the EC50 values. 

Experimental errors were less than or equal to ± 25% of each value. 

For competitive experiments, a tRNA from baker’s yeast (S. cerevisiae) was purchased from 

Sigma. Stock solutions of tRNA
mix

 were quantified using an average extinction coefficient of 

9,640 cm
-1
 per base.

[24b]
 The fluorescence binding assays were carried out as described above 

with the exception that a 30-fold excess (base) of the tRNA
mix

 was added to the refolded 

fluoresceine-labelled RNA (or to the buffer for the titration without target RNA). 
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Scheme and Figure legends 

 

Figure 1. a) Sequences and secondary structure of wild-type (wt) and mutated Tau stem-loop 

target RNAs. Exonic sequences are shown in capital letters and intronic sequences in lower 

case, with the +3 and +14 FTDP-17 mutations indicated. Nucleotides involved in base pairs 

identified previously by NMR are connected by a dash.
[13a]

 When required, biotin or 

fluoresceine derivatization was performed at the 5’ end. The ends of the chains were modified 

with 2’-O-methylribonucleosides to increase stability with RNases (denoted by an asterisk). 

b) Structure and peptide sequences of the building blocks used in the DCC experiments. 

 

Scheme 1. Schematic representation of a DCC process. 

 

Figure 2. DCC experiments involving wt RNA and Nea, Acr1, Acr2, Azq, TyrP and TrpP 

monomers. a) HPLC traces showing the composition of the DCL in the absence (left) and in 

the presence (right) of wt RNA, after 48 h. b) Histograms showing the changes in the DCL 

composition (left) and the percentage changes (% amplification) of each species (right) upon 

introduction of the wt RNA. 

 

Figure 3. UV-Vis titration of the Acr1-Nea (a) and Acr2-Nea (b) ligands (50 µM) with 

increasing amounts of wt RNA (0-1 eq) in a 10 mM sodium phosphate buffer, pH 6.8, 

containing 100 mM NaCl and 0.1 mM Na2EDTA. 

 

 

Tables 

 

Table 1. Binding of the ligands to wt RNA in the absence or in the presence of a tRNA 

competitor. 

 

 

 

 

 

 

[a] All fluorescence measurements (25 µM RNA) were performed in 10 mM sodium 

phosphate buffer pH 6.8, 100 mM NaCl and 0.1 mM Na2EDTA. [b] Measured in the presence 

of a 30-fold nucleotide excess of a mixture of tRNA (tRNA
mix

).  

 

 

 

 

 

 

 

 

Ligand 
EC50 

(µM)[a] 

EC50 (µM) 

+tRNA[b] 
EC50+tRNA  

/ EC50  

Neamine 3300 nd nd 

Azq-Nea 58.0 nd nd 

Acr1-Nea 28.6 112.2 3.9 

Acr2-Nea 5.9 63.1 10.7 

Acr2-Nea2 2.1 47.0 22.4 

Acr2-Acr2 2.9 41.0 14.0 



Table 2. Melting temperature (Tm) values for the complexation of ligands with target RNAs (1 

µM both in RNA and in ligands in 10-mM sodium phosphate buffer, pH 6.8, 100 mM NaCl 

and 0.1 mM Na2EDTA).  

 

 

 

 

 

 

 

[a] ∆Tm= (Tm of the RNA in the presence of ligand) – (Tm of RNA alone).  

 

Text for the Table of Contents 

 

Dynamic combinatorial chemistry has allowed the identification of several ligands that bind 

with high to medium affinity and stabilize the stem-loop structure located at the exon 10-5’-

intron junction of pre-mRNA which is involved in the onset of several tauopathies. The 

overall results show a good correlation between the ligand’s affinity for the target and its 

stabilizing properties. These results contribute to enhancing our knowledge of how to design 

more specific RNA ligands. 
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 Tm wt
[a] ∆Tm

 Tm +3 ∆Tm
 Tm +14 ∆Tm

 

No ligand 66.4 - 50.8 - 54.0 - 

Neamine 67.6 +1.2 51.8 +1.0 54.4 +0.4 

Azq-Nea 67.5 +1.1 51.9 +1.1 54.9 +0.9 

Acr1-Nea 67.1 +0.7 52.0 +1.2 54.1 +0.1 

Acr2-Nea 68.5 +2.1 53.6 +2.8 56.0 +2.0 

Acr2-Nea2 68.8 +2.4 56.5 +5.7 57.2 +3.2 

Acr1-Acr1 65.4 -1.0 50.6 -0.2 53.8 -0.2 

Acr2-Acr2 67.6 +1.2 53.4 +2.6 55.4 +1.4 


