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Abstract

Considering teams as complex adaptive systems (CAS) this study deals with 

changes in team effectiveness over time in a specific context: professional basketball. 

The sample comprised 23 basketball teams whose outcomes were analysed over a 

twelve-year period according to two objective measures. The results reveal that all the 

teams showed chaotic dynamics, one of the key characteristics of CAS. A relationship 

was also found between teams showing low-dimensional chaotic dynamics and better 

outcomes, supporting the idea of healthy variability in organizational behaviour. The 

stability of the squad was likewise found to influence team outcomes, although it was 

not associated with the chaotic dynamics in team effectiveness. It is concluded that 

studying teams as CAS enables fluctuations in team effectiveness to be explained, and 

that the techniques derived from nonlinear dynamical systems, developed specifically 

for the study of CAS, are useful for this purpose.
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This paper focuses on the temporal dynamics of team effectiveness in a specific 

work context: professional basketball teams. The premise is that seemingly random 

patterns of team effectiveness over time could actually reveal discernible trends. As 

such the study is of interest not only for team psychology research, which has 

emphasized the need to consider teams as complex systems (e.g. Arrow, McGrath & 

Berdahl, 2000), but also for the applied perspective, since it provides information about 

the possibility of predicting and intervening in team effectiveness.

Team effectiveness and teams as complex adaptive systems (CAS) 

Teams can be defined as a set of two or more people with specific roles who 

interact dynamically, interdependently and adaptively toward a common objective 

(Salas, Dickinson, Converse & Tannenbaum, 1992). In this study the focus is on 

effectiveness, the core of team research as it reflects the results of a team’s actions 

(Kozlowski & Bell, 2003).

Surprisingly there is no consensus regarding the definition of team effectiveness. 

Although Campbell, McCloy, Oppler and Sager (1993) clarified many years ago that 

performance refers to behaviour itself while effectiveness is an outcome of 

performance, team effectiveness is nowadays considered alternatively as behaviour (i.e. 

performance) and in terms of outcomes (Mathieu, Maynard, Rapp & Gilson, 2008). 

Here, we follow the proposal of Salas, Rosen Burke and Goodwin (2009), who have 

defined team effectiveness as an evaluation of the results of performance in accordance 

with certain standards. 

The explanation and prediction of effectiveness is a key question in the field of 

team research. As noted by Ilgen, Hollenbeck, Johnson and Jundt (2005), and more 

recently by Mathieu et al. (2008), various models based on the input-process-output (I-

P-O) framework of McGrath (1964) have been developed in an attempt to explain team 



effectiveness. However, these models have been criticized for ignoring the dynamic 

nature and temporal evolution of teams (Ilgen et al., 2005; Mathieu et al., 2008; 

McGrath, Arrow & Berdahl, 2000). Consideration of the temporal aspect may therefore 

provide new insights and enable researchers to ask questions that can only be answered 

with a dynamic approach (Ancona, Goodman, Lawrence & Tushman, 2001; Arrow, 

Poole, Henry, Wheelan & Moreland, 2004). For example, Mitchell and James (2001) 

show that a causal relationship between two variables can be affected by time in five 

different ways, with the number of such possibilities growing as more variables are 

added. Research that takes account of time is also useful for practitioners as it allows 

phenomena to be monitored from the moment they begin. By identifying critical 

changes in trajectories the practitioner may then be able to prevent unfavourable turns in 

them, thereby avoiding negative consequences (Roe, 2008).

Current explanatory models of team effectiveness have begun to include time 

and consider teams as complex, adaptive and dynamical systems (e.g. Arrow et al., 

2000; Ilgen et al., 2005; Mathieu et al., 2008). A complex adaptive system (CAS) can 

be defined as a set of independent agents that act in parallel, develop models of how 

things function in their setting and, most importantly, refine these models through 

learning and adaptation (Gell-Mann, 1994). According to McGrath et al. (2000) and 

Arrow et al. (2004), conceptualizing teams as CAS implies that teams interact with 

other systems, some smaller (i.e. the members of the team), some of the same size (i.e. 

other teams) and others larger (i.e. the organizations in which the teams find themselves 

and their context). These authors also argue that team research has shown a number of 

serious limitations, such as considering teams as simple systems characterized by 

unidirectional cause-effect relationships, failing to take into account the context in 

which teams operate, and studying them as static entities that do not change over time 



and which are comprised of generic individuals who can be exchanged without 

consequence (McGrath et al., 2000). One way of overcoming these limitations would be 

to consider teams as CAS. 

In addition to the above, Ilgen et al. (2005) point out that empirical research 

about teams is more problem-driven than theory-driven (i.e. the changing demands of 

the applied setting have constrained empirical research, with few studies being 

conducted on the development and testing of theories). One example is the construct of 

CAS itself: many authors talk about teams as CAS, but very little research has actually 

sought to demonstrate this.

According to McGrath (1991) the way to study teams as CAS is through 

nonlinear dynamical systems (NDS) theory, which is specifically designed for this 

purpose (Lewin, 1993). NDS theory considers CAS as a development of open systems 

that show an evolution over time, one in which their components interact in a nonlinear 

and dynamical way (Guastello & Liebovitch, 2009). From the perspective of NDS 

theory the characteristics of CAS are interdependence, interaction, uncertainty and 

chaos (Nowak & Vallacher, 1998). Interdependence occurs when team members need 

not only to cooperate to achieve shared goals (Cummings & Blumberg, 1987) but also 

to take into account how external factors influence the team (Kozlowski & Bell, 2003). 

Interaction is intrinsically related to interdependence, because teams need to be related 

to their context in order to perform their task in a mixed-motive situation, as suggested 

by studies about cooperation and competition (Stewart & Nandkeolyar, 2007). 

Uncertainty refers to the lack of surety about the results of team effectiveness due to 

within-team dynamics and context interdependence. Last but not least, chaos refers to a 

type of temporal dynamics that characterizes certain processes which appear to behave 

stochastically (i.e. they are apparently non-deterministic) when in fact their 



development is determined by rules and is predictable to some degree. Following 

Lorenz (1993) we can distinguish three main characteristics of chaos: 1) sensitive 

dependence (i.e. the possibility of establishing a predictive horizon but not a complete 

prediction of the future evolution of chaotic phenomena); 2) fluctuations in dynamics 

are deterministic, not random; and 3) fluctuations describe non-overlapping trajectories 

through time. 

Chaos has a central role in the empirical study of CAS. Given the dynamical 

nature of CAS, NDS theory approaches their study by means of time series (Heath, 

2000). A time series is a collection of sequential observations made over time 

(Chatfield, 1996), and within these sequences certain patterns can be found. Following 

Nowak and Vallacher (1998) time series patterns can be classified according to their 

predictive capacity (see Figure 1). As we can see, a distinction can be made between 

deterministic (i.e. predictable) and non-deterministic (i.e. non-predictable) patterns. 

Deterministic patterns can be further divided into linear patterns, which maintain cause-

effect proportionality, and nonlinear ones, which do not. The most frequent nonlinear 

pattern is the chaotic one, i.e. a phenomenon pattern that is characterized by chaos. 

Moreover, chaotic patterns can be low-dimensional or high-dimensional (Mathews, 

White & Long, 1999), a distinction which refers to the number of variables that 

adequately determine the pattern (few or many). Additionally, low-dimensional chaos is 

much more orderly than high-dimensional chaos (Kauffman, 1993). This means that 

low-dimensional chaos can fluctuate a lot, but the rules which determine these 

fluctuations are discernible and predictions can be made, at least in the short term. By 

contrast, in high-dimensional chaotic series many values are possible, the fluctuations 

are greater and sudden changes occur very often, which makes any kind of prediction 

quite difficult.



[INSERT FIGURE 1 HERE]

Although near-linear patterns can be studied using the techniques developed 

under the assumptions of the generalized linear model (such as ARIMA models), the 

study of non-linear patterns requires specific techniques that are rarely used in 

psychology (e.g. visual recurrence analysis, phase space maps, etc.; Guastello & 

Liebovitch, 2009). This is especially true for the analysis of chaotic patterns, where 

chaos and randomness could be confounded when using linear models (Heath, 2000). 

However, NDS techniques are able to determine whether a time series is deterministic 

or not. If it is deterministic, one can then identify the kind of deterministic pattern 

(linear, low-dimensional chaos or high-dimensional chaos) and, therefore, the most 

suitable method for analysing the data (Ramos-Villagrasa & García-Izquierdo, 2011).

Given that teams are now widely considered as CAS, and taking into account the 

growing research that shows how NDS theory can be applied to team dynamics (e.g. 

Gorman, Amazeen & Cooke, 2010; Pincus, Fox, Perez, Turner & McGeehan, 2008; 

Wheelan & Williams, 2003), our goal here is to analyse patterns of team effectiveness 

across time and to determine whether or not they are chaotic. Specifically, we seek to 

provide empirical evidence that can help to clarify whether it is indeed appropriate to 

conceptualize teams as CAS.  Furthermore, we would like to contribute knowledge 

about the effects of time on teams, this being a question that remains largely unexplored 

to date (Conroy, Kaye & Schantz, 2008). If, as expected, teams are CAS and their 

effectiveness shows chaotic patterns, it will then be necessary to conduct more in-depth 

research into their dynamics (e.g. monitoring, predicting, optimizing) so as to obtain 

new insights and, consequently, to propose ways of intervening in teams (Roe, 2008). 

The present study



The aim of this study was to analyse team effectiveness over time. Specifically, 

we sought to determine if there were chaotic patterns in the behaviour of a sample of 

Spanish professional basketball teams and, secondly, if there was some kind of 

dynamical pattern associated with the achievement of better team outcomes. 

Team research in sport settings offers certain advantages to researchers. 

Following Browne and Mahoney (1984) and Loy, McPherson and Kenyon (1978) these 

advantages are: a) research is conducted mainly in the natural context; b) the rules, 

organizational systems and hierarchy of sport enable a better analysis and control of 

variables; c) the activity usually develops under zero-sum circumstances, enabling the 

analysis of cooperation, competition and conflict between teams; and d) objective 

measures of effectiveness are available, thereby allowing a longitudinal approach.

The sport studied here, basketball, is described by Barnes and Morgeson (2007) 

as follows: “At any given time, only 5 members are actively participating in the 

competition, though other team members may be substituted in at any time […]. Each 

team has the opportunity to attempt to both score points (i.e., accumulate points for their 

team by having the player put the ball through a hoop) and prevent the other team from 

scoring points” (p. 266). In line with Landis (2001), García-Izquierdo, Ramos-

Villagrasa and Navarro (in press), and Wolfe et al. (2005) we consider basketball as an 

organizational setting. Sports teams are a part of organizations (Carron & Brawley, 

2008) in which the same processes and behaviours occur as in the case of conventional 

work organizations (Dirks, 2000). Additionally, professional players are employees of 

their sports clubs and have job duties that are set out in law (in Spain, Law on Sport 

10/1990, art. 46).

Like other sports teams, basketball teams have been considered as CAS (Davids, 

Aráujo & Shuttleworth, 2005; García-Izquierdo et al., in press). As regards the 



abovementioned characteristics of CAS, i.e. interdependence, uncertainty, interaction 

and chaos (Nowak & Vallacher, 1998), at least three are present in the basketball 

setting: high task interdependence (Landis, 2001), high interaction, and uncertainty, as a 

consequence of the interaction between team members and their context (Wall, Cordery 

& Clegg, 2002). In other words, basketball teams are task-interdependent because they 

cannot play a match without there being interaction between players and the context 

(i.e. the other team, the spectators, and so on), and uncertainty is high because in every 

match the composition of each team changes several times and the final outcome also 

depends on the rival team’s performance; the circumstances may also change from one 

match to another. 

Regarding chaos, García-Izquierdo et al. (in press) have shown that more than 

80% of professional basketball players reveal chaotic dynamics in their individual 

outcomes, but to the best of our knowledge no one has yet studied the effectiveness 

dynamics of basketball teams. Indeed, very little research has been conducted into the 

chaotic nature of team effectiveness, although the empirical evidence suggests that team 

sports such as indoor football and water polo do show typical chaotic dynamics (e.g. 

Davids, Vilar, Travassos & Araújo, 2010; Passos et al., 2011). Given the 

conceptualization of CAS and the empirical evidence derived from other sports, it 

therefore seems reasonable to expect that basketball teams will show chaotic patterns in 

their outcomes. Thus, our first hypothesis is: 

H1: The patterns of team effectiveness in professional basketball teams will be 

mostly chaotic in nature, as opposed to other types of patterns.

Additionally, and inspired by the work of Bak and Chen (1991), we are 

interested in identifying which chaotic pattern (i.e. low-dimensional or high-

dimensional) is the most frequent. The empirical evidence suggests that low-



dimensional chaos (i.e. deterministic and predictable to some degree) is more frequent 

than high-dimensional chaos (i.e. deterministic but unpredictable and near to random) in 

organizational settings. For instance, Cheng and Van de Ven (1996) studied the 

innovation processes in a biomedical context by analysing three time series: decisions 

made by innovation teams, the results obtained by these teams, and the number of 

contextual events relevant to the innovation processes. Their results revealed low-

dimensional chaos in decisions and results, but a random pattern in contextual events. 

For their part Navarro and Arrieta (2010) used a diary method to examine the work 

motivation of 48 workers, and found that 42 of them (87.5%) showed a low-

dimensional pattern. Finally, Richards (1999) studied the dynamics of three different 

decision-making processes, one in an experimental context and two in the real context. 

Both the real-context series had low-dimensional chaotic patterns. 

Given their preponderance in organizational settings we would also expect to 

find patterns of low-dimensional chaos in the present study of basketball teams. As 

such, our second hypothesis is:

H2: The chaotic patterns found in the team effectiveness of professional 

basketball teams will be mostly of the low-dimensional kind.

In the context of professional sports it is common practice to change some squad 

members each season in order to improve team results and introduce innovations in 

playing style (Montanari, Silvestre & Gallo, 2008). The empirical evidence suggests 

that squad changes do improve team effectiveness provided a certain degree of stability 

is guaranteed (e.g. Arrow & McGrath, 1995; Berman, Down & Hill, 2002; Montanari et 

al., 2008), i.e. a core group of players is retained from one season to another. These 

changes may influence the dynamics of team outcomes, and one might postulate that 

team stability would generate fewer fluctuations in outcomes (i.e. they will tend to 



display linear or low-dimensional chaotic patterns, but not high-dimensional or random 

ones). As such, the third hypothesis is sub-divided into two:

H3a: The stability of the squad will be positively associated with team 

effectiveness.

H3b: Teams with more stability in their squads will tend to show more 

predictable patterns of team effectiveness (linear or low-dimensional chaos).

A final aim of the study is to understand the relevance of chaotic dynamics for 

team effectiveness. Research in the field of psychophysiology has demonstrated that 

low-dimensional chaotic patterns are associated with healthy outcomes, while linear 

patterns (and the absence of any pattern as well, i.e. random dynamic) are linked to 

malfunctions (e.g. Freeman, 1991; Goldberger, 1991; Kaplan et al., 1991). This 

phenomenon, termed healthy variability by Ceja and Navarro (2011), has also been 

reported in the context of organisational psychology, where low-dimensional chaos has 

been shown to be associated with better results in work motivation (Arrieta, Navarro & 

Vicente, 2008), flow experiences (Ceja & Navarro, 2011) and teams (Guastello, 2010). 

The work of Guastello (2010), for instance, shows that the more effective emergency 

response teams exhibit indicators of low-dimensional chaotic patterns. 

Generalizing these results to the team sports context, one would expect to find 

healthy variability in our study. Basketball teams that respond flexibly and creatively to 

the uncertainty of their environment, changing their behaviour so as to adapt 

continuously and to evolve with the environment, should achieve better outcomes. One 

of the reasons for this is that the wide variety of behaviours displayed by CAS makes 

them capable of adapting to changing and unpredictable environments. Applied to the 

present study the healthy variability phenomenon would mean that a team showing low-

dimensional chaotic patterns would obtain better outcomes (e.g. better results, reaching 



play-offs, etc.) than would teams with other patterns. Thus, our final hypothesis is as 

follows:

H4: Teams with low-dimensional chaotic patterns in their effectiveness tend to 

obtain better results at the end of the competition than do those teams with other 

patterns.

Method

Participants

The study sample comprised teams from the Spanish Premier Basketball League 

(known as the ACB), in which eighteen teams participate each year. As in other 

European competitions the teams with the worst end-of-season results are relegated to a 

lower league (Wolfe et al., 2005). In this regard, a prerequisite for inclusion in the 

sample was that a team had played for at least three consecutive seasons in the league 

during the twelve-year observation period (1996 – 2008), thus ensuring a sufficient 

number of recordings for a time-series analysis from the perspective of NDS theory 

(Heath, 2000). Twenty-three of the 29 possible teams (79.31%) that made up the sample 

pool fulfilled this condition and were entered into the analyses, with the remainder 

being excluded. The data were gathered between January and June 2009 from the 

league’s official website. 

Measures

Two effectiveness measures time series were used bymeasured using robust time 

series based on team outcomes recorded during every match by trained observers. Team 

statistics and the results of each match were published on the league’s official website, 

from where the research team gathered these data. In accordance with the classification 



of Guzzo and Dickson (1996) the two measures used referred to group-produced 

outputs.

The first measure was a composite criterion established by the league and which 

includes various positive and negative results that a team achieves in every match. This 

criterion captures the behavioural outcomes of the team (shots, rebounds, turnovers, 

etc.), is referred to as Statistics (‘S’) and is calculated via the following formula:

S=( a+ b+ c+ d+ e+ f )− (w+ x+ y+ z )

where a is the number of points per game, b is the number of rebounds obtained per 

game, c is the number of assists per game, d is the number of steals per game, e is the 

number of personal fouls committed by the other team per game (), f is the number of 

blocked shots per game, w is the number of missed shots per game, x is the number of 

turnovers per game, y is the number of rebounds failed per game, and z is the number of 

personal fouls committed per game.

The second measure of team effectiveness was the position of each team in the 

league at the end of each day’s play (‘Ranking’). This position varies according to the 

number of matches won by the team, and in the event that two teams have won the same 

number of matches, the ranking is decided by the number of points scored and conceded 

during the season. The best rankings are represented by the lowest values (i.e. 1 for first, 

2 for second, and so on).

We also measured the teams’ end-of-season results by the number of play-offs 

(‘Play-offs’) for the title of champion in which they were involved during the 

observation period (12 years). The play-offs are the final phase of the competition, and 

only eight teams qualify for this each season. Being able to reach a play-off position at 

the end of the league is seen as a sign of success by all teams. 



Finally, team stability was measured by the mean proportion of players in the 

squad who remained from one season to another. This piece of data was also recorded 

for teams that were relegated and later returned to the Premier League.

All these measures are objective, thereby avoiding the problems associated with 

perceptual measures (Humphrey, Morgeson & Mannor, 2010). Moreover, the use of 

robust time series (i.e. with hundreds of records) reduces the likelihood of committing 

Type I and Type II errors when establishing relationships between variables in research 

involving time (see McGrath, Arrow, Gruenfeld, Hollingshead & O’Connor, 1993).

Procedure and analysis

The first step involved conducting a descriptive analysis of the time series 

(Statistics and Ranking) for the participating teams. Then, in order to test hypotheses 1 

and 2, the patterns were analysed by means of three complementary techniques which 

have been developed within the framework of NDS theory: maximal Lyapunov 

exponent, recurrence plot and surrogate data. As stated above,  techniques derived from 

NDS theory are used because they enable us not only to identify patterns that other 

techniques do not (i.e. linear and near-to-linear ones), but also to differentiate between 

chaotic and random patterns, a critical distinction in contexts involving dynamic 

systems such as teams. All the analyses were performed using specific software: Chaos 

Data Analyzer (Sprott & Rowlands, 1995) for the maximal Lyapunov exponent, Visual 

Recurrence Analysis 4.8 (Kononov, 2005) for the recurrence plots, and TISEAN 3.0 

(Hegger, Kantz & Schreiber, 2007) for surrogate data. Given that these techniques have 

not been widely used in research on teams they are briefly described below. A more 

detailed review can be found in Heath (2000).

Lyapunov exponents indicate the rate of divergence of two initially-close 

trajectories in phase space. Phase space is a geometric representation in which the 



values adopted by the variable over time are the coordinates of an m-dimensional space 

(where m is the number of variables necessary to describe the behaviour of a system, 

also called the embedding dimension). If the rate of divergence is greater than zero then 

the series is regarded as chaotic, whereas a value of zero or less indicates that the series 

is linear. If all we are interested in knowing is the time series pattern then we only need 

to calculate the maximal Lyapunov exponent, since a single positive exponent is 

sufficient for a series to be considered as chaotic (Heath, 2000). However, it is advisable 

to use this measure in combination with other statistics because the maximal Lyapunov 

exponent is not adequate for distinguishing between random and chaotic cases.

The recurrence plot can be used as a complement to the results derived from 

Lyapunov exponents. A recurrence plot is a graph that calculates the proximity of points 

on a two-dimensional graph containing all the possible trajectories of the time series, 

distinguishing between deterministic series (both linear and chaotic) and non-

deterministic series (i.e. random; Heath, 2000). Its main limitation is that the 

identification of the pattern represented by the recurrence plot always depends on the 

interpretations made by the researcher. This is especially problematic when it comes to 

differentiating between random and high-dimensional chaotic patterns. However, one 

way of resolving any discrepancies between the maximal Lyapunov exponent and the 

recurrence plot is to use surrogate data.

Surrogate data are used to rule out the possibility that the time series pattern is 

due to chance, in other words, the possibility that although the values of the series are 

distributed in this way it is equally likely that they could have been distributed in any 

other way. The logic behind the surrogate data procedure is simple: random series are 

generated from the original series and a rank-order test is then performed in order to 

rule out the possibility that the original series is also random (Theiler, Eubank, Longtin, 



Galdrikian & Farmer, 1992). If previous analyses (Lyapunov exponents and recurrence 

plot) have identified a given series as random but the surrogate data rule out this 

possibility, then the series in question is considered to show high-dimensional chaos. If 

all the analyses (Lyapunov exponents, recurrence plot and surrogate data) produce 

congruent results (e.g. they all indicate chaotic behaviour) the series is considered to 

show low-dimensional chaos.

In order to test hypothesis 3a we analysed the correlations between the stability 

of each team and its effectiveness. The association between variables was established by 

means of Spearman correlations, which do not require the assumption of normality to be 

fulfilled. Lastly, ANOVA was used to test hypotheses 3b and 4.

Results

Table 1 shows information regarding the teams that made up the sample, along 

with the results of the descriptive analysis of the time series used in the present study. It 

can be seen that the squad size ranged between 11 and 15, and squad stability between 

28.85% and 58.69%. The number of play-offs contested by the teams varied between 0 

and 12. As regards the size of the time series these ranged between 102 and 408 points, 

which is sufficient for the analyses performed (Heath, 2000). As expected, teams with 

better mean statistics have longer time series (more years in the Premier League), 

whereas those with poorer statistics tend to get relegated and have shorter time series. 

The mean value for the Statistics measure ranged between 71.27 and 92.05. As regards 

the Ranking, this is an ordinal variable and it was therefore analysed using the median 

(whose values ranged between 2 and 17) and the mode (values between 1 and 18). It is 

also worth noting that all the teams occupied the first and eighteenth league positions at 

one time or another.



[INSERT TABLE 1 HERE]

The next step involved identifying the pattern of each time series. Table 2 shows 

the results broken down by effectiveness measure (Statistics and Ranking), while Figure 

2 provides examples of results derived from each technique for each pattern (linear, 

low-dimensional chaos, high-dimensional chaos and random). It can be seen that all the 

teams show chaotic patterns in their effectiveness, thus confirming the first study 

hypothesis. Because neither linear nor random patterns were found in the sample, Figure 

2 also includes, for illustrative purposes, an example of each of these dynamics. As 

regards the second hypothesis it was expected that chaotic patterns would be low-

dimensional for both measures (Statistics and Ranking), but the results show that this 

was only the case with respect to Statistics, specifically in 65.22% of cases. Therefore, 

the second hypothesis is only partially supported.

[INSERT TABLE 2 HERE]

[INSERT FIGURE 2 ABOUT HERE]

Hypothesis 3a was tested by obtaining the correlations between the mean squad 

stability and team effectiveness. As can be seen in Table 3 the Spearman correlations 

reveal a strong association between team stability and Statistics (rs = .83, p<.01), 

Ranking (rs = -.81, p<.01) and the number of play-offs contested (rs = .88, p<.01). These 

results therefore support hypothesis 3a. 

[INSERT TABLE 3 HERE]

With respect to hypothesis 3b we tested for the presence of a relationship 

between team stability and the patterns found in team effectiveness. As our sample is 

small, Durbin-Watson, Kolmogorov-Smirnov and Levene’s tests were first applied to 



analyse independence, normality and homoscedasticity, respectively, prior to 

performing the ANOVA. The results showed that homoscedasticity was not supported 

in the case of Ranking. Welch’s test was therefore used instead of the F test in the 

analyses regarding Ranking. As all the cases were identified as chaotic by the surrogate 

data analysis, the differences were examined by considering the type of chaos, i.e. 

distinguishing between time series according to whether they showed low- or high-

dimensional chaos. We then compared team effectiveness with the stability of the series, 

but as Table 4 shows there were no significant differences between the teams with 

respect to either Statistics (F=0.62, p<.44) or Ranking (Welch=1.64, p<.22). Given that 

squad stability was not related to patterns in team effectiveness, hypothesis 3b was not 

supported.

[INSERT TABLE 4 HERE]

The final study hypothesis was related to the phenomenon of healthy variability. 

This was tested by using ANOVA to analyse the association between the observed 

patterns and the number of play-offs contested. As before, we tested for independence, 

normality and homoscedasticity, and as the same results were obtained Welch’s test was 

again used for Ranking. The ANOVA results are shown in Table 5, where it can be seen 

that the relationship was significant in the case of Statistics (F= 5.68, p<.03). 

Additionally, and as illustrated in Figure 3, teams with low-dimensional chaotic patterns 

were involved in more play-offs (M=5.67) than were teams with high-dimensional 

chaotic patterns (M=1.38). Therefore, the fourth hypothesis is partially confirmed.

[INSERT TABLE 5 HERE]

[INSERT FIGURE 3 HERE]

Discussion and Conclusions



This paper reports the analysis of two objective measures of team effectiveness 

in 23 professional basketball teams over a period of twelve seasons (12 years). The aim 

was to identify any chaotic patterns characteristic of CAS, and to determine whether any 

pattern was associated with better team outcomes. As noted above, teams have been 

considered as CAS by various authors, but few studies to date have provided empirical 

evidence that teams show a defining characteristic of CAS (e.g. Gorman et al., 2010; 

Pincus et al., 2008; Wheelan & Williams, 2003) and, to the best of our knowledge, there 

is no research of this kind in relation to professional basketball. The main findings of 

this study were as follows: 1) all the teams showed a deterministic pattern; 2) this 

deterministic pattern was chaotic; 3) the pattern was not related to team stability; and 4) 

teams with low-dimensional chaotic patterns achieved better results at the end of the 

season. Let us consider each of these findings in more detail.

Pattern identification is basic to NDS theory because it reveals any noteworthy 

consistency in the phenomenon under study (in this case, team effectiveness). 

Consequently, it shows that prediction is possible despite apparent irregularity (see time 

plots in Figure 2). This occurs because CAS tend to display changes that result from 

intrinsic dynamics, although external variables may also produce changes in them 

(Guastello & Liebovich, 2009; Nowak & Vallacher, 1998). As Nowak and Vallacher 

(1998, p. 33) state, “the causal effects of external variables are difficult to describe 

without taking into account the system’s internally generated sources of change. In 

attempting to model and predict change, then, it is necessary to consider the interaction 

of both external and internal forces.” Our data are consistent with this assertion: when 

team effectiveness is measured by Ranking, characterized by high external influence 

(the results of all matches are taken into account), it is less predictable than when 



measured by the Statistics measure, which depends solely on the effectiveness of the 

team and its rival.

The predictive capacity of a given team depends on whether its effectiveness is 

characterized by low- or high-dimensional chaos. This aspect must clearly be taken into 

account in professional practice, in which decisions are frequently based on the most 

recent results, even though this would only be valid if the team shows a linear or near-

linear pattern. In our view it would be advisable, when making decisions, to begin by 

identifying and analysing the pattern so as to determine the type of fluctuations shown 

by the team in the past, before considering this information alongside current results.

The study also examined the stability of teams. The literature suggests that squad 

changes can lead to better results provided a certain degree of stability is ensured, 

although research into effectiveness patterns over time is scarce. On the basis of the 

present results it can be concluded that stability is related to team effectiveness (i.e. 

greater stability leads to greater effectiveness), although surprisingly the patterns found 

in team effectiveness are not attributable to team stability (i.e. greater stability is not 

related to the pattern shown). One possible explanation for this result, which was 

unexpected, is provided by findings in other team contexts (e.g. Gorman et al., 2010; 

Guastello, Bock, Caldwell & Bond, 2005; Weick & Gilfillan, 1971). For example, 

Guastello et al. (2005) found that team coordination (see Weick & Gilfillan, 1971) 

persisted after changing up to two members of a four-person group; the original study 

by Weick and Gilfillan (1971) showed that effectiveness patterns persisted in a group 

after everyone had sequentially changed. More recently, Gorman et al. (2010) analysed 

the dynamics in intact vs. mixed teams across time, reporting that mixed teams (i.e. 

teams with changes to their members) were more stable but also more adaptive. In the 

sports context Montanari et al. (2008) found that team stability had a positive impact on 



effectiveness up to a critical point, after which it might be detrimental. Our results are 

consistent with this literature. Indeed, a possible explanation for our results is that 

patterns are intrinsic to the team and its collective, dynamic and changing nature 

(McGrath et al., 2000), regardless of team stability (Guastello et al., 2005; Weick & 

Gilfillan, 1971). Obviously, these results and their corresponding explanation, founded 

on NDS theory and its proposal regarding intrinsic dynamics, must be tested with 

further research. Nonetheless, the findings have both theoretical and practical relevance. 

Specifically, we suggest that introducing a few squad changes, even when a team’s 

evolution over time is unknown (i.e. in the case of high-dimensional chaotic patterns) 

could increase effectiveness by making the team more adaptive.

Another noteworthy finding was that teams with low-dimensional chaotic 

patterns in Statistics had better results at the end of the season. In addition to providing 

further evidence of healthy variability (Ceja & Navarro, 2011) this raises the question as 

to which variables predict the type of pattern that a team will show. This aspect should 

be addressed in future research as it would enable the formation of more effective 

teams. The variables proposed as being predictive of team effectiveness by dynamic 

models, such as those based on the IMOI framework (Ilgen et al., 2005; Mathieu et al., 

2008), would be a good starting point for research into this question. These models 

conceptualize teams as CAS whose outputs influence the organizational system, 

contextual contingencies, and environmental dynamics and complexity, which, in turn, 

influence the inputs, thereby generating a cyclical and reciprocal process (Kozlowski & 

Ilgen, 2006). 

A further finding of note is that no association was found between the pattern of 

the Ranking measure and teams that were involved in more play-offs. This could be due 

to the fact that whereas the Statistics measure depends mainly on the team and its most 



immediate context (the opposing team), a team’s ranking is also influenced by the 

behaviour of other teams, which would explain the increased presence of high-

dimensional chaotic patterns (i.e. a higher number of variables is necessary to explain 

Ranking dynamics).

Given the above, we suggest that coaches need to acknowledge the inherent 

instability in teams, avoiding attempts to control the team and trying, by contrast, to 

manage uncertainty. In other words, they should embrace the instability that is inherent 

in teams and use it to their benefit. As stated by Zimmerman, Lindberg and Plsek (2001) 

this implies: managing teams through flexible criteria that can be modified according to 

the situation; encouraging a variety of opinions so as to foster innovation and 

adaptation; creating the right conditions for facing challenges; establishing guidelines 

that are not so specific that they cannot be altered; taking into account informal 

relationships; and promoting cooperation and competition at the same time. The 

research by Bourbousson, Poizat, Saury and Seve (2011) is an example of how this kind 

of management can be applied to the sports context. According to these authors, shared 

knowledge of the team promotes effectiveness, but this shared knowledge changes 

during the course of a match. Consequently, coaches must teach team members to use 

the opportunities for coordination as they appear in a match, thereby updating the shared 

knowledge of the team.

Finally, the study has demonstrated the appropriateness of the chosen statistical 

methods and techniques for studying teams as CAS, this being an aspect which other 

authors had previously recommended (Mack, Huddleson, Dutler & Mintah, 2000; 

Mathieu et al., 2008; McGrath, 1997). The advantage of these techniques is that they 

focus on whether the series are deterministic or not, but without presupposing a given 

data structure. Thus, they can be used as a form of screening, after which the 



appropriate analytical technique (linear or nonlinear) can be applied (Ramos-Villagrasa 

& García-Izquierdo, 2011).

Limitations and recommendations for future research

The present study does have certain limitations. Firstly, although conducting the 

research in the context of professional basketball makes it easier to replicate, caution 

should be exercised when extrapolating the results. For example, it may be that the 

particular features of basketball, such as the relationships between team components and 

the need for high-level effectiveness in a competitive setting, lead to the emergence of 

chaotic patterns. Another example is the low stability of the squad compared with other 

organizational settings. In longitudinal sports research a team’s name remains the same 

yet its composition may change drastically (Montanari et al., 2008). This turnover does 

not mean that sports teams cannot be studied, but it is an aspect that must be considered 

in the future. Further research should therefore aim to determine the degree to which the 

present results can be generalized to other similar teams and contexts. Other teams to 

which these results might generalize must share at least the three characteristics that we 

stated above: interdependence between team members, uncertainty about the future, and 

a close interaction between the team and its immediate context. 

A second limitation of the study is the possible effect of range restriction due to 

the uniqueness of the sample. The study has focused on the highest level of competition 

in Spain, where both teams and players are more homogeneous than at lower levels due 

to the entry requirements and the standard of results and resources required in order to 

participate, etc. This circumstance could have influenced the results. It would therefore 

be advisable to conduct similar studies at other competitive levels which are 

characterized by greater diversity.



A third limitation concerns the measures used in the study. The use of archival 

data has both critics and supporters. Critics such as Campbell et al. (1993) argue that 

objective measures are influenced by context and that they are related to results rather 

than to behaviour. Conversely, authors such as Landis (2001) and Stewart and 

Nandkeolyar (2007) consider that such measures show consistency and objectivity. In 

our view, both objective and subjective measures are useful, and which kind is used will 

depend on the purpose of the study (Muckler & Seven, 1992). In this regard, we believe 

that our measures of effectiveness are consistent with our objectives.

Lastly, the number of teams studied here is too low to rule out any effect of 

methodological artefacts (e.g. low statistical power in correlations) on the results, and 

hence more research is needed to provide additional support. Furthermore, the 

techniques used do not test if the time series are affected by seasonality, i.e. periodic 

fluctuations derived from context (e.g. the beginning or the end of the league). Further 

research about the potential presence and influence of seasonality in relation to 

basketball time series is therefore required. Nonetheless, we believe that our research is 

valuable as an important step towards understanding how professional basketball teams 

might be conceptualized as CAS, even if the conclusions should be regarded as 

preliminary. 

As regardsContinuing with recommendations for future research there is a need 

to determine which variables predict the patterns of team effectiveness. To this end the 

potential of the NDS framework should be explored in greater depth so as to develop 

predictive short-term models that explain a high proportion of variance with a few 

variables (Mathews et al., 1999). An especially interesting example of these applications 

is the work of Keil and Cortina (2001), who performed a meta-analysis about the 

temporal consistency of cognitive ability and its relationship to performance at the 



individual level, showing that the methodology based on NDS theory provides a new 

and promising perspective.

In terms of predictive capacity, and as already stated, one can distinguish what is 

known as low-dimensional chaos, which can be described with a few variables and in 

which short-term predictions are possible. One avenue for further research would 

therefore be to use dynamical and nonlinear models of prediction to investigate which 

variables are key when it comes to explaining the greater amount of variance. In this 

regard it would also be interesting to analyse how team effectiveness emerges out of the 

individual effectiveness of team members, as Arrow et al. (2004) and García-Izquierdo 

et al. (in press) have suggested. One could tentatively assume that teams will tend to 

show more complex patterns than would their members, due to the interaction and 

interdependence of the latter, and this would generate emergent processes (e.g. cohesion 

or shared mental models) and results that act as feedback. As such, team effectiveness 

would appear as showing new properties that cannot be reduced to individuals, but 

which nonetheless remains predictable, at least in most cases.

Conclusion

The present study continues a line of research conducted over the last two 

decades which has shown that in order to understand group behaviour it is necessary to 

consider teams as complex, adaptive and dynamical systems. This paper brings the 

question to the professional sports context, where effects of time have been largely 

unexplored. Having provided new empirical evidence in support of the 

conceptualization of teams as CAS the next step is to determine precisely how this can 

be used to improve team effectiveness. Our study has four key findings: firstly, team 

effectiveness fluctuates considerably; secondly, it is possible to find discernible trends 

in team effectiveness; thirdly, these trends are not related to stability of the squad; and 



lastly, a low-dimensional chaotic pattern is related to better team results. Further 

research using the longitudinal, dynamical and nonlinear approach of the NDS 

framework will add greater depth to these findings, increasing our knowledge about 

team effectiveness and about teams themselves.
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Table 1

Squad, team results and descriptive statistics of the time series

Statistics

Team
Size of the 

squad

Mean stability  

of the squad

Number of  

play-offs 

Time 

series size
M SD Min. Max. Mdn

A 13 44.65% 2 204 78.73 19.81 35 135 14
B 14 56.34% 12 408 90.94 19.58 39 151 3
C 15 34.87% 1 136 76.93 18.14 23 117 12
D 13 34.44% 0 238 74.67 19.53 23 140 13
E 12 33.36% 0 238 77.14 19.38 29 128 13
F 13 28.85% 0 170 72.67 19.83 17 133 16 14 / 17
G 13 58.69% 10 408 85.57 20.22 25 143 7
H 12 38.38% 3 340 76.49 19.98 10 128 11
I 11 29.30% 0 102 71.27 21.99 17 122 17
J 13 40.74% 4 408 82.16 20.07 17 154 11
K 13 44.83% 6 408 79.15 19.37 16 135 8

Table 1 (continued)

Squad, team results and descriptive statistics of the time series

Statistics

Team
Size of the 

squad

Mean stability  

of the squad

Number of  

play-offs 

Time 

series size
M SD Min. Max. Mdn

L 14 35.23% 0 306 78.27 18.69 33 149 14
M 14 48.22% 8 408 88.42 18.98 42 156 8
N 13 29.12% 1 170 73.71 20.38 33 123 14
O 14 37.10% 1 136 80.49 18.56 29 129 13
P 12 42.00% 2 306 80.66 18.95 20 132 11
Q 12 32.13% 0 102 73.98 17.78 32 125 16
R 14 49.41% 9 408 89.14 18.95 33 151 2
S 14 40.87% 12 408 79.28 17.85 17 124 10
T 14 38.26% 2 408 92.05 20.79 13 167 4
U 13 45.60% 11 408 83.50 20.33 31 146 7



Table 1 (continued)

Squad, team results and descriptive statistics of the time series

Statistics Ranking

Team
Size of the  

squad

Mean stability  

of the squad

Number of  

play-offs 

Time 

series size
M SD Min. Max. Mdn Mode Min. Max.

V 14 46.06% 11 408 85.16 19.75 28 139 6 5 1 18
W 12 37.80% 1 408 77.90 19.39 24 138 13 16 1 18

Note. N = 23. The names of the teams have been replaced by a letter to avoid their identification.



Table 2

Patterns of team effectiveness

Step 1. Maximal Lyapunov exponent Statistics Ranking

   Linear patterns 0 (0.00%) 0 (0.00%)

   Chaotic patterns 23 (100.00%) 23 (100.00%)

Step 2. Recurrence plot

   Linear patterns 0 (0.00%) 0 (0.00%)

   Low-dimensional chaotic patterns 15 (65.22%) 7 (30.43%)

   High-dimensional chaotic patterns or random patterns 8 (34.78%) 16 (69.57%)

Step 3. Surrogate data (final results)

   Linear patterns 0 (0.00%) 0 (0.00%)

   Low-dimensional chaotic patterns 15 (65.22%) 7 (30.43%)

   High-dimensional chaotic patterns 8 (34.78%) 16 (69.57%)

   Random patterns 0 (0.00%) 0 (0.00%)

Note. N = 23.



Table 3

Spearman correlations

 1  2 3 4

1. Statistics  1

2. Ranking -.87**  1

3. Number of play-offs .76** -.84** 1

4. Team stability  .83** -.81** .

88**

1

Note. N = 23.

** = p ≤ .01, one-tailed.



Table 4

ANOVA between team effectiveness and team stability

Statistics
Sum of 

Squares

Degrees of 

freedom

F Sig. F

Inter-groups 45.81 1 .62 .44

Intra-groups 1552.72 21

Total 1598.53 22

Ranking
Sum of 

Squares

Degrees of 

freedom

Welch Sig. F

Inter-groups 106.92 1 1.64 .22

Intra-groups 1491.60 21

Total 1598.52 22

Note. N = 23.



Table 5

ANOVA between team effectiveness patterns and number of play-

offs contested

Statistics
Sum of 

Squares

Degrees of 

freedom

F Sig. F

Inter-groups 96.10 1 5.68* .03

Intra-groups 355.20 21

Total 451.30 22

Ranking
Sum of 

Squares

Degrees of 

freedom

Welch Sig. F

Inter-groups .65 1 .03 .86

Intra-groups 450.65 21

Total 451.30 22

Note. N = 23. 

* ≤  .05



Figure 1

Classification of time series according to their predictive capacity
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Figure 2

Sample cases of linear, low-dimensional chaos, high-dimensional chaos and random patterns

Example 1 (sine function) Example 2 (Team R) Example 3 (Team T) Example 4 (white noise)
Linear Low-dimensional chaos High-dimensional chaos Random

Time plots

Recurrence plots

Maximal Lyapunov exponent = 0.00±0.06 Maximal Lyapunov exponent =0.13±0.03 Maximal Lyapunov exponent = 0.27±0.05 Maximal Lyapunov exponent = 0.01±0.03

Significance of surrogate data testing: 99.00% Significance of surrogate data testing: 99.00% Significance of surrogate data testing: 99.00% Significance of surrogate data testing: N.S.

Note. Examples of low-dimensional chaos and high-dimensional chaos belong to the sample. The two remaining series were generated ad hoc.

Figure 3



Mean differences between low-dimensional chaotic patterns and high-dimensional chaotic patterns with respect to the number of play-offs 

contested
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