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LIST OF ABBREVIATIONS 

 

AChE  Acetylcholinesterase 

Ado  Adenosine 

AMPA  α- amino-3-hydroxy-5-methylisoxazole-4-propionate 

Asp  Aspartate 

AUC  Area under the curve 

ChAT  choline Ο-acetyltransferase 

DBB  Diagonal band of Brocca 

DPCPX 1,3-dipropyl-8-cyclopentylxanthine 

Gln  Glutamine 

Glu  Glutamate 

Gly  Glycine 

KW  Kruskal-Wallis 

MK-801 Dizocilpine maleate 

MS  Medial septum 

NGS  Normal goat serum 

NSE  Neuron specific enolase 

OPA  O-phthaldialdehyde 

PBS  Phosphate buffered saline 

QNB  Quinuclidinil benzilate 

Ser  Serine 

Tau  Taurine
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ABSTRACT 

We present an overview of the long term adaptation of hippocampal neurotransmission to 

cholinergic and GABAergic deafferentation caused by excitotoxic lesion of the medial 

septum. Two months after septal microinjection of 2.7 nmol α- amino-3-hydroxy-5-

methylisoxazole-4-propionate (AMPA), a 220% increase of GABAA receptor labelling in 

the hippocampal CA3 and the hilus was evidenced, and also changes in hippocampal 

neurotransmission characterised by in vivo microdialysis and HPLC. Basal amino acid and 

purine extracellular levels were studied in control and lesioned rats. In vivo effects of 100 

mM KCl perfusion and adenosine A1 receptor blockade with 1,3-dipropyl-8-

cyclopentylxanthine (DPCPX) on their release were also investigated. In lesioned animals 

GABA, glutamate and glutamine basal levels were decreased and taurine, adenosine and 

uric acid levels increased. A similar response to KCl infusion occurred in both groups 

except for GABA and glutamate, which release decreased in lesioned rats. Only in 

lesioned rats, DPCPX increased GABA basal level and KCl-induced glutamate release, 

and decreased glutamate turnover. Our results evidence that an excitotoxic septal lesion 

leads to increased hippocampal GABAA receptors and decreased glutamate 

neurotransmission. In this situation, a coordinated response of hippocampal retaliatory 

systems takes place to control neuron excitability. 

 

Keywords: glutamate, GABA, taurine, adenosine, excitotoxicity, microdialysis.  

 

Running title: hippocampal neuromodulator interactions 
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Neurochemical features of normal brain aging, in particular those associated with memory 

impairments and neurodegenerative diseases, have generated intense research activities 

over the last decades. As a classical model, lesions of the basal forebrain causing 

disruption of the septohippocampal pathway have consistently mimicked some of these 

impairments in cognitive processing and revealed reductions in cholinergic markers in the 

hippocampus (Waite et al. 1994; Zapata et al. 2000). However, it appears evident that age-

related alterations in brain cholinergic activity cannot fully account for all those cognitive 

deficits and that other neurotransmitters are also involved. For instance, a reduction in the 

number of GABAergic neurons located in the medial septum (MS) and the diagonal band 

of Brocca (DBB) projecting to the hippocampus also contribute to some of these cognitive 

impairments (McAlonan et al. 1995; Venero and Hefti 1998). But among all 

neurotransmitters, glutamate (Glu) is considered of special relevance given its involvement 

in memory-related phenomena, such as long-term potentiation, and its central role in 

excitotoxicity. 

The excitotoxic hypothesis of CNS injury is based on an excessive glutamate-

mediated excitation that stands out as a critical factor common to a variety of neurological 

disorders (Obrenovitch and Urenjak 1997; Obrenovitch et al. 2000; Arundine and 

Tymianski 2004). It is generally accepted that excitotoxic injury to neurons results from 

excessive inward currents of Ca2+ and Na+ through glutamate-operated ion channels, 

supplemented by release of Ca2+ from intracellular stores subsequent to metabotropic Glu 

receptor activation, leading to intracellular Ca2+ overload (Arundine and Tymianski 2004). 

Excitotoxicity also involves an imbalance of transmembrane Na+, Cl− and K+ gradients, 

cell swelling (Katayama et al. 1995) and formation of calcium precipitates in most CNS 

areas (Nitsch and Scotti 1992; Mahy et al. 1995; Robledo et al. 1999). The complexity of 
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the mechanisms involved in glutamatergic neurotransmission makes it already apparent 

that a number of abnormalities, either pre-synaptic, post-synaptic or glial, alone or in 

combination, can be excitotoxic (Obrenovitch et al. 2000). 

Given these toxic effects, adaptations that act to decrease synaptic accumulation of 

Glu can potentially be protective. A number of these protective mechanisms are conducted 

to inhibit Glu release during insults, and some of them involve retrograde signalling of 

inhibitory neurotransmitters and neuromodulators. Thus, GABA, taurine (Tau) and 

adenosine (Ado) present a retaliatory activity that has shown neuroprotective properties 

during Glu-mediated neuronal insults (see Sapolsky 2001 for a review). For example, 

GABAergic retrograde signalling in hippocampus is multisynaptic, i.e. collaterals from 

glutamatergic pyramidal terminate on GABAergic interneurons which, in turn, inhibit 

glutamatergic neurons (Saransaari and Oja 1997). Astroglial Tau release during insults 

derived from potassium and water uptake decreases presynaptic neuronal excitability by 

increasing chloride influx (Saransaari and Oja 2004). Ado neuroprotective activity is 

accomplished through binding to A1 adenosine receptors linked by G proteins to both 

calcium and potassium channels (Pearson et al. 2004). In addition, the fine adaptation of 

the Glu-glutamine (Gln) cycle to neuronal activity and suffering is important to avoid 

excessive synaptic Glu and neuronal death (García and Massieu 2003; Massieu et al. 2003; 

Ramonet et al. 2004). 

Despite the general agreement about the interdependency of all these processes to 

avoid excessive synaptic Glu, to our knowledge, the coordinated adaptation of the major 

retaliatory systems to a chronic brain lesion has not been investigated. To better 

understand these interactions in the hippocampus, we firstly characterised the α- amino-3-

hydroxy-5-methylisoxazole-4-propionate (AMPA)-induced lesion in the MS in terms of 
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neuronal and receptor modifications. Then, in vivo alterations of hippocampal amino acid 

and purine release were investigated, with especial focus on A1 receptor-mediated Ado 

modulation of excitatory and retaliatory neurotransmission. 

 

MATERIALS AND METHODS 

Materials 

AMPA, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), O-phthaldialdehyde (OPA), 

amino acids, purines, mouse monoclonal anti-parvalbumin antibody, and rabbit policlonal 

anti-neuron specific enolase (NSE) were obtained from Sigma (St. Louis, MO, USA). 

Mouse monoclonal anti-choline Ο-acetyltransferase (ChAT, EC 2.3.1.6) antibody was 

purchased from Chemicon (Temecula, CA, USA). [3H] quinuclidinil benzilate (QNB) was 

from Du Pont-NEN, [3H] dizocilpine maleate (MK-801) was from ARC (Sant Louis, MO, 

USA) and [3H]muscimol was from Amersham (Bucks, UK). CMA/12 microdialysis 

probes (membrane length 4 mm, outer diameter 0.64 mm, cut off 20 kDa) were from 

Carnegie Medicine (Sweden). 

Animals 

Adult male albino Sprague-Dawley rats (Charles River, Barcelona) weighing 

between 250-300 g were used in the experiments. They were kept on a 12 hour light/12 

hour dark cycle, and were housed with free access to food and water. Animals were 

manipulated according to the European legislation (86/609/EEC) for animal handling and 

experimentation. Procedures were approved by the Ethic Committee of the Universitat de 

Barcelona, under supervision of the Generalitat de Catalunya. All efforts were made to 

minimise animal suffering and to use only the number of animals necessary to produce 

reliable scientific data.  
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Surgery 

Rats were anaesthetised with equithesin (a mixture of chloral hydrate and sodium 

pentobarbitone; 0.3 ml/100 g body wt, i.p.), and placed on a Kopf stereotaxic frame with 

the incisor bar set at -3.3 mm. Intracerebral injections aimed at the MS were performed 

through stainless steel cannulae connected by portex tubing to a Hamilton syringe 

activated by an infusion pump (CMA/100; Carnegie Medicine, Sweden). The cannula was 

inserted at an angle of 10º to a vertical line and positioned 0.7 mm rostral to bregma, 1.1 

mm lateral, and 5 mm ventral from dura (Paxinos and Watson 1986). 

Different groups of rats received either 0.5 µl of 5.4 mM AMPA dissolved in 50 

mM phosphate buffer saline (PBS, pH 7.4) (n = 34), 50 mM PBS (sham, n = 11), or no 

treatment (n = 6). All injections were made over a period of 5 min, and the needle was left 

in place for an additional 5 min to allow for passive diffusion, and to prevent spread of the 

excitotoxin up the cannula track upon removal. The dose of AMPA was selected according 

to previous studies showing neurodegenerative processes (Ramonet et al. 2004; Rodríguez 

et al. 2004). As values from sham and non-operated rats did not significantly differ in any 

of the parameters studied, they were pooled in a group (n=17) called control. 

Microdialysis procedure 

Two months after the injection of AMPA, 40 animals (AMPA n= 28, control n= 

12) were re-anaesthetised, placed on a stereotaxic frame, and microdialysis guide cannulae 

(Carnegie Medicine) were implanted unilaterally in the ventral hippocampus (5.2 mm 

caudal to bregma, ± 4.6 mm lateral to bregma, and 2.46 mm ventral from dura). In half of 

the animals, the probes were implanted in the right hippocampus, and in the other half they 

were placed in the left hippocampus. 
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Twenty-four hours after implantation of the guide cannulae, CMA/12 microdialysis 

probes were inserted into the hippocampus and 12 hours later they were connected to a 

microinjection pump (KDS220, Kd Scientific, Boston, MA, USA) as previously described 

(Boatell et al. 1995). The probes were continuously perfused with artificial CSF (126.5 

mM NaCl, 2.4 mM KCl, 1.1 mM CaCl2, 0.83 mM MgCl2, 27.5 mM NaHCO3, 0.5 mM 

KH2PO4, 0.5 mM Na2SO4, and 5.8 mM glucose; pH 7.4.) at a rate of 0.2 µl/min for 12 

hours. This procedure was carried out in order to ensure stability in basal amino acid 

release, and in order to minimise astroglial reaction. Then the perfusion rate was changed 

to 2.0 µl/min and, after a 30-min washout period, samples were collected in ice-cooled 

eppendorfs every 20 min during 460 min. Half of the total amount of each sample was 

used for amino acid detection and the other half for purine detection. Samples were then 

frozen immediately and stored at -80ºC until analysis. In these conditions basal amino acid 

and purine release was similar to that described elsewhere (Boatell et al. 1995; Britton et 

al. 1996). 

All rats (AMPA n=28, control n=12) were initially perfused with CSF for 80 min 

(CSF 1), then with a high concentration of KCl (100 mM, KCl 1) for 40 min and again 

with CSF for 80 min (CSF 2). Subsequently, half of the rats (AMPA n=14, control n=6) 

were perfused with CSF for 40 min, then with 100 mM KCl for another 40 min and CSF 

for another 180 min. The other half (AMPA n=14, control n=6) were perfused with 0.1 

µM DPCPX for 40 min (DPCPX), then with KCl for 40 min (KCl 2) and CSF for another 

180 min (CSF 3). 

The DPCPX concentration chosen was in the range of A1 receptor specific 

saturation (Kaku et al. 1994; Lucchi et al. 1996) and its perfusion condition was selected to 

block the A1 receptor in basal and KCl-stimulated initial states. Six microdialysis probes 
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were selected to test the probe recovery as previously described (Ballarín et al. 1991). The 

mean relative probe recovery for each studied compound were: 24 ± 3% for aspartate 

(Asp), 25 ± 2% for GABA, 22 ± 2% for Glu, 26 ± 2% for Gln, 20 ± 2% for glycine (Gly), 

27 ± 3% for Tau, 20 ± 1% for Ado, 13 ± 1% for hypoxantine, 20 ± 2% for inosine and 50 

± 5% for uric acid. Extracellular concentrations of neurotransmitters were estimated 

according to these values. 

Amino acid and purine analysis 

Extracellular levels of Glu, Gln, GABA, Tau, Asp and Gly were analysed by HPLC 

with fluorescence detection (Waters, Barcelona, Spain), after derivatisation with OPA as 

previously reported (Boatell et al. 1995). Serine (Ser) was also included in our analysis as 

a control for non-specific changes. The content of amino acids in dialysate samples was 

quantified from peak areas using homoserine as an internal standard and a mixture of all 

the studied amino acids as external standard. The relation between peak areas and amount 

of amino acid injected was linear in the range of the dialysate sample concentrations. 

Extracellular levels of Ado, inosine, hypoxantine and uric acid were analysed by 

HPLC with ultraviolet detection (Waters, Barcelona, Spain) at 260 nm, by modification of 

previous protocols (Ballarín et al. 1995). In order to maximise the detection of Ado, two 

20-min samples were systematically pooled and directly injected on a C18 phase reverse 

column (µ-boundapack length 30 cm, 10 µm i.d.). Chromatograms were developed in 

isocratic 0.9 ml/min flow of 0.1 M Tris-HCl (pH 8.15) containing 10 % (v/v) methanol. 

The content of purines was quantified from peak areas using a mixture of all of them as 

external standard. The relation between peak areas and amount of purine injected was 

linear in the range of the dialysate sample concentrations.  
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Histochemistry and in vitro autoradiography procedures 

Two months after the injection of AMPA, 11 animals (AMPA n= 6, control n= 5) 

were used for the in vitro autoradiography studies. Rats were anaesthetised, decapitated 

and the brain quickly removed and frozen with dry ice. Sections were then obtained at the 

level of the MS (+0.7 mm to bregma) and dorsal hippocampus (-3.3 mm to bregma). 

Adjacent sections were processed for in vitro autoradiography, for immunohistochemistry 

(see below), for acetylcholinesterase (AChE, EC 3.1.1.7) histochemistry (Koelle and 

Friedenwald 1949), or for Nissl standard staining with Cresyl Violet.  

Muscarinic receptors were labelled with [3H]QNB as described elsewhere 

(Nagasawa et al. 1994). In brief, sections were incubated for 90 min in 0.015 M phosphate 

buffer (pH 7.4) containing 1 nM [3H]QNB (43 Ci/mmol). Non-specific binding was 

determined in presence of 1 µM atropine sulphate. GABAA receptor autoradiography was 

performed using [3H]muscimol as previously described (Ban et al. 1994; Schliebs et al. 

1997). In brief, after 15 min washing in an ice cold 0.05 M Tris-citrate buffer (pH 7.4) 

containing 2.5 mM CaCl2, sections were incubated for 30 min in presence of 12 nM 

[3H]muscimol (16.4 Ci/mmol) in the indicated buffer solution. The non-specific binding 

was determined by incubation with 100 µM GABA. Binding to the non-competitive site of 

the NMDA receptor complex was measured according to the procedure previously 

described (Beaton et al. 1992) and slightly modified by Petegnief et al. (1999). A 2-h 

incubation was performed in presence of 10 nM [3H]MK-801 (20 Ci/mmol), at 0-4ºC in a 

0.005 M Tris-acetate buffer (pH 7.9) containing 10 mM Gly and 10 mM Glu. The non-

specific binding was determined in the presence of 10 mM (+)-MK-801. Rinses were 

performed in ice-cold 5 mM Tris-acetate containing 5 mM CGS-19755. 
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After washes in ice-cold appropiate buffer, slides were dried under a stream of air 

and apposed to 3H-sensitive films (HyperfilmTM, Amersham) for two to six weeks. Films 

were then developed and densitometrically analysed after calibration with plastic scales 

(3H-microscales, Amersham) using a computer–assisted image analysis system 

(OPTIMAS®, BioScan Inc., Washington, USA). The average brain protein content was 

8%. For each brain, eight sections were processed for total binding and two others for non-

specific binding at both stereotaxic levels. AChE staining was densitometrically quantified 

using the same image analysis system. Morphometric evaluation was performed by 

measuring the hippocampal subfield areas in Nissl stained sections with the same image 

analysis system.   

Immunohistochemistry procedure 

Sixteen hours after microdialysis, each rat was anaesthetised and transcardially 

perfused, and then, the brains were isolated and frozen as previously described (Saura et al. 

1995; Rodríguez et al. 2004). Cryostat sections (12 µm) were obtained at the level of the 

MS (+0.7 mm to bregma), dorsal (-3.3 mm to bregma) and ventral (-5.2 mm to bregma) 

hippocampus. Adjacent sections were either stained with Cresyl Violet in order to assess 

the septal lesion, and the microdialysis probe positioning, or processed for 

immunohistochemical methods. Only those animals properly lesioned and with correctly 

implanted probes were included in the study. Four rats were eliminated because of 

incomplete lesions. Also, adjacent sections of rat brain from the autoradiography study 

were processed for immunohistochemistry.  

Immunohistochemistry was carried out by the avidin-biotin-peroxidase method. 

Sections were incubated at 4ºC separately with either, mouse monoclonal anti-parvalbumin 

diluted 1:1500 (v/v), mouse monoclonal anti-ChAT diluted 1:400 (v/v), or rabbit 
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policlonal anti-NSE diluted 1:400 (v/v) as previously described (Rodríguez et al. 2001; 

Ramonet et al. 2004). Cell counts were made at x100 magnification using an ocular grid. 

The total number of parvalbumin and ChAT-imunopositive neurons was counted in the 

MS-DBB region of all animals at the level of +0.7 mm to bregma. The border between MS 

and DBB was delimitated according to Mahy et al. (1995). NSE-imunopositive neurons 

were counted in the hippocampus at -3.3 mm to bregma. The cell numbers were corrected 

for section thickness using the method of Floderus (1944). 

Data analysis 

For each parameter, Kurtosis and Skewness moments were calculated to test the 

normal distribution of data. When normality was reached, Student’s t-test and one-way 

ANOVA, followed by the LSD post-hoc test, were performed to compare the data. 

Otherwise, values of all groups were compared using the non-parametric Mann-Whitney U 

test and Kruskal-Wallis (KW) test. For histological and in vitro autoradiography studies, 

differences between control and AMPA lesioned rats were analysed using the Student's t 

or the Mann-Whitney U tests. For the microdialysis study, the effects of the lesion on basal 

and KCl-evoked neurotransmitter release were assessed with a two-way ANOVA: 1 

between subject factor: lesion with 2 levels (AMPA and control), and 1 within subject 

factor: treatment with 2 levels (CSF, KCl). Following significant interactions, one-way 

ANOVA or KW test were used for individual comparisons. The effects of treatment with 

DPCPX on basal and KCl-evoked neurotransmitter levels in lesioned and control rats were 

evaluated with a three-way ANOVA: 1 between subject factor: lesion with 2 levels 

(AMPA and control), 1 between subject factor: DPCPX with 2 levels (CSF and DPCPX), 

and 1 within subject factor: KCl with 2 levels (CSF and KCl). Since each factor only had 2 

levels, when significant two or three-way interactions were observed, individual 
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comparisons were performed using one-way ANOVAs. In addition to extracellular 

neurotransmitter content analysis, Glu and Ado turnover were also calculated by 

estimating the Gln/Glu and Uric acid/Adenosine ratios respectively for each time point. 

Then, the area under the curve (AUC) was calculated as the summatory of the semiareas 

for each treatment in order to compare the differences between groups, which were 

assessed by performing the Student’s t test. In all cases, p < 0.05 was considered as 

significant. Results are expressed as mean ± SEM. 

 

RESULTS 

Assessment of the septal lesion 

 Two months after AMPA septal microinjection, neuronal damage was observed in 

the MS. Compared to control, cell counts showed a reduction of 70 ± 4% in ChAT-

immunopositive neurons, whereas cholinergic neurons of the horizontal limb of the DBB 

were not modified (Figure 1). Reduction in GABAergic neurons of the MS was evidenced 

by the decrease of parvalbumin-immunopositive neurons (54 ± 5%) (Figure 1). Significant 

7% AChE staining reduction was observed in the MS but not in the DBB nor lateral 

septum (data not shown).  

 This MS lesion did not induced changes in the size of the hippocampal area at –3.3 

mm to bregma, but a 14% reduction was detected at this level in the area size of CA1-CA3 

pyramidal layers with respect to control. NSE-immunopositive neuronal counts evidenced 

a discrete mean 10% neuronal loss in these layers and in granular dentate gyrus. 

Significant 6% AChE staining reduction was only observed in the pyramidal layer of the 

hippocampal CA3 (data not shown).  
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Receptor labelling by in vitro autoradiography 

[3H]muscimol specific binding showed medium levels (between 1,187 and 2,193 

fmol/mg prot) in the septal area, caudate putamen and the internal layers of frontal cortex, 

with higher values in the external layers of this last area (Figure 2). In the hippocampus, 

[3H]muscimol binding was specially low in all CA3 sublayers and the hilus, with values 

lower than 1,000 fmol/mg prot. The remaining hippocampal subfields presented medium 

[3H]muscimol binding levels. Non-specific binding was homogeneous and very low, 

representing less than 10% of the total binding. The septal area of MS-lesioned rats did not 

show any modification in the amount of [3H]muscimol binding sites with respect to 

controls. The same was true for the other brain areas studied except for the hippocampal 

formation that presented a 220% and a 198% increase in the CA3 and the hilus 

respectively (Figure 2). 

[3H]QNB binding was high (between 2,099 and 5,629 fmol/mg prot) in most brain 

areas, specially in the cerebral cortex and all hippocampal CA1 subfields. Non-specific 

binding was homogeneous and low, amounting to less than 12% of total binding in cortical 

areas. In MS-lesioned animals no significant change of [3H]QNB binding was found in any 

of the studied areas. 

Specific [3H]MK-801 binding was low (less than 1,000 fmol/mg prot) in the MS 

and the internal layers of the frontal cortex. Medium [3H]MK-801 binding levels were 

found in the lateral septum and caudate putamen, whereas high levels (more than 2,000 

fmol/mg prot) were present in the cerebral cortex and the hippocampal formation. Non-

specific binding was homogeneous and low, representing less than the 15% of the total 

binding. In MS-lesioned animals, no significant changes were found in any of the studied 

areas. 
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Extracellular hippocampal neurotransmitter levels 

 Two months after the MS lesion, hippocampal extracellular levels of GABA, Glu, 

Gln, Tau, Asp, Gly, Ser, Ado, uric acid, inosine and hypoxantine were estimated by in vivo 

microdialysis and HPLC. Negligible changes were observed in the hippocampal Ser 

extracellular concentration along the study. No lesion effect was found in the Ser basal 

level nor with the KCl and DPCPX treatments. Perfusion with CSF containing 100 mM 

KCl induced in control and lesioned rats a significative increase of all other amino acids 

and purine contents, with a 20-min delayed response for GABA, Tau, Ado and uric acid. 

Return to basal values was rapid for all compounds except for Tau, which level remained 

high for 100 min. In absence of DPCPX treatment, no differences were observed in the 

levels reached after the first and the second 100 mM KCl perfusion in any of the studied 

compounds (figure 3). 

 Extracellular hippocampal GABA basal level was 40% decreased by the MS 

deafferentation and its increase caused by 100 mM KCl infusion was 34% lower than in 

control animals (F1,24 = 8.44, p < 0.01 for AMPA effect; F1,24 = 73.89, p < 0.001 for KCl 

effect, and F1,24 = 6.15, p < 0.05 for AMPA-KCl interaction). Perfusion with 0.1 µM 

DPCPX did not modify GABA level in control rats, whereas in lesioned animals a marked 

tendency to increase that did not reach statistical significance (p < 0.57) was observed 

(Figure 3).  

 With regard to Glu, its basal level was 30% reduced and its increase after KCl 

reduced 34% by the MS lesion (F1,24 = 7.53, p < 0.01 for AMPA effect; F1,24 = 105.53, p < 

0.001 for KCl effect, and F1,24 = 4.99, p < 0.05 for AMPA-KCl interaction). Perfusion with 

0.1 µM DPCPX induced a 68% increase in the Glu basal level of control rats and this 

effect was not modified by the MS lesion (Figure 3). However, a significant interaction 
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between KCl and DPCPX treatments was observed in lesioned rats (F1,20 = 4.62, p < 0.05), 

showing a differential effect of KCl perfusion before and after 0.1 µM DPCPX. In MS 

lesioned rats, 100 mM KCl administered after DPCPX induced a higher outflow of Glu 

that took longer to recover (F1,12 = 7.80, p < 0.01). 

 Basal hippocampal Gln level was 34% decreased by the MS lesion. The KCl-

induced increase of this level was not modified by the lesion (F1,25 = 7.02, p < 0.014 for 

AMPA effect; F1,24 = 65.34, p < 0.01 for KCl effect, and no AMPA-KCl interaction). 

Perfusion with 0.1 µM DPCPX significantly increased Gln level in control (p < 0.021) and 

in lesioned rats (p < 0.012) to similar values in both groups (Figure 3). The ratio Gln/Glu 

calculated as an estimation of hippocampal Glu turnover evidenced that 0.1 µM DPCPX 

treatment produced a decrease in the AUC of Glu turnover (p<0.043) that was still present 

during the subsequent 100 mM KCl perfusion (p < 0.04) (Figure 4). 

 MS-lesion did not induced any significant effect in the hippocampal Tau basal and 

100 mM KCl-induced levels. However, when each individual time point for CSF treatment 

was compared (Figure 3) a significant increase was found in lesioned rats with respect to 

controls. Perfusion with 0.1 µM DPCPX did not modify basal nor 100 mM KCl-induced 

levels of Tau in either group. 

 Basal level of Asp in the hippocampus was not significantly different in MS-

lesioned rats (Figure 5). Perfusion with 100 mM KCl produced a similar increase in the 

concentration of extracellular Asp in both groups and 0.1 µM DPCPX did not significantly 

affect basal nor KCl-evoked levels in any of the groups. Similarly, the MS-lesion did not 

modify the Gly extracellular basal nor KCl-evoked levels in the hippocampus (Figure 5). 

Perfusion with 0.1 µM DPCPX did not modify basal levels of Gly in either group, nor 

induced changes in the levels reached during the subsequent KCl perfusion. 
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 No effect of the MS deafferentation was found in the extracellular hippocampal 

Ado levels when two-way ANOVAs were performed and the same was true for the 100 

mM KCl treatment. However, one-way ANOVAs between groups receiving a similar 

treatment revealed a 60% higher Ado basal level in lesioned rats (F1,6 = 6.07, p < 0.05) and 

a 26% increase following 100 mM KCl perfusion (F1,6 = 9.14, p < 0.05) as compared to 

control animals (Figure 5). When 0.1 µM DPCPX was applied, a 63% increase in basal 

Ado level was evidenced in the lesioned group, which was not detected in control rats. In 

addition, 100 mM KCl perfusion following DPCPX increased Ado levels a 44% with 

respect to KCl treatment in control rats, but not in lesioned animals (F1,14 = 42.58, p < 

0.001 for DPCPX effect, F1,14 = 6.13, p < 0.05 for the AMPA-DPCPX interaction and F1,14 

= 10.74, p < 0.01 for AMPA-DPCPX-KCl interaction).  

 MS lesion resulted in 71% increase of basal hippocampal uric acid level but did not 

modify the 100 mM KCl response (F1,17 = 13.32, p < 0.002 for AMPA effect; F1,17 = 17.63, 

p < 0.0006 for KCl effect, and no AMPA-KCl interaction). 0.1 µM DPCPX presented no 

significant effects on uric acid levels and the subsequent 100 mM KCl perfusion in either 

group (Figure 5). We also calculated the ratio uric acid/Ado as an estimation of 

hippocampal Ado turnover (Figure 4). MS lesion induced an increase in the AUC of Ado 

turnover in lesioned rats in basal (p<0.05) and 100 mM KCl (p < 0.02) conditions. This 

increase disappeared during the 0.1 µM DPCPX and its subsequent 100 mM KCl 

perfusion. 

In several cases, extracellular levels of hypoxantine and inosine were not detectable 

due to values of inosine and hypoxantine < 30 nM. However when they could be detected 

no significant changes were observed between groups (data not shown). 
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DISCUSSION 

 Two months after the AMPA-induced MS lesion, characterised by a significant 

decrease in cholinergic and GABAergic afferences to the hippocampus, a huge increase of 

GABAA receptor content and a discrete neuronal loss are observed in the hippocampus. 

The cholinergic deafferentation reduces the presynaptic function but not the acetylcholine 

hippocampal level, which remains unvaried (Waite et al. 1994; Zapata et al. 2000). NMDA 

receptor activation has been involved in maintaining choline availability for acetylcholine 

synthesis when choline is in short supply (Zapata et al. 2000). Thus, one of the putative 

agents for the maintenance of that level is NMDA receptor, since we here demonstrate that 

its hippocampal content is not modified by the lesion, as it happens with Gly level, a co-

agonist of the receptor. This adaptation may also involve a reduction in the degradation of 

acetylcholine, since the AChE activity is decreased in the CA3. Nevertheless, the 

excitotoxic MS-lesion also leads to a lack of KCl-induced acetylcholine release in the 

hippocampus (Waite et al. 1994; Zapata et al. 2000). This presynaptic deficit, in 

combination with the stability of the muscarinic receptor content here found, evidences a 

MS-lesion-induced dysfunction of the hippocampal cholinergic system.  

 We also demonstrate that hippocampal GABAergic neurotransmission is 

substantially reduced 2 months after the MS lesion. This reduction is accompanied by a 

similar decrease in Glu and Gln levels, whereas Tau, Ado and uric acid are increased. The 

lack of variation of Asp, Gly and Ser levels argues for the specificity of these 

modifications and suggests the presence of compensatory neurotransmitter interactions to 

control Glu activity and avoid neuronal damage. To our knowledge, this is the first study 

where Asp and Glu have a different response to brain injury, which must be taken into 

account in further studies on Asp neurotransmission.  
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 The decrease in hippocampal basal GABA level is in agreement with a tonic septal 

GABAergic input to this structure (Freund and Buzsáki 1996) whose neuronal loss is also 

supported by the decrease in KCl-stimulated GABA release observed in lesioned rats. 

Although one must consider that KCl does not mimick a purely neuronal stimulus and that 

the induced neurotransmitter release can be from a non-neuronal origin or from spreading 

depression effects. The enhanced GABAA receptor content in the CA3 layer and the hilus 

may reflect a compensatory mechanism to maintain, as possible, the functionality of this 

afferent connection. Additionally, the lack of excitatory cholinergic transmission (Zapata 

et al. 1998; Zapata et al. 2000) may also have contributed to the decrease in basal GABA 

outflow, since acetylcholine modulates GABAergic interneuronal activity through its 

action on muscarinic receptors (Freund and Buzsáki 1996), which labelling remains 

unvaried after the lesion.  

 In short-term fimbria-fornix lesions, Glu outflow from the hippocampus is 

increased (Herrera et al. 1993), indicating a prevalent action of acetylcholine over the 

GABA inhibitory effect. This Glu increase may also occur initially after the AMPA MS 

microinjection. However after the long-term deafferentation, the basal level and the KCl-

induced release of Glu are decreased, whereas the content and distribution of NMDA 

receptors remain unvaried. This neuroprotective adaptation may result from a coordinated 

response that, with time, reduces glutamatergic activity through increased Ado and Tau 

activities. As this takes place when GABAergic activity is compromised, these two 

neuromodulators would not only control basal Glu activity, but also the KCl-induced 

release in a coupled synergistic inhibitory response. As shown previously, adaptation of 

the Glu/Gln cycle with a reduction of glutaminase (EC 3.5.1.2) activity also participates in 

the reduction of synaptic Glu (Ramonet et al. 2004). In conjunction with the cholinergic 
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and GABAergic lesion, the resultant glutamatergic reduction would thus account for part 

of the cognitive impairment associated to the MS lesion, limiting for instance long-term 

potentation. The maintenance of NMDA receptors here found would reflect the intent to 

preserve this function. According to all this, cognitive studies have shown that the memory 

deficits dependent on the cholinergic system appears between 15 days (McAlonan et al. 

1995) and one month (Paban et al. 2005) after the MS lesion. As the post-lesion time 

increases new mnemonic impairments are detected, being a putative result of non-

cholinergic system decompensations (Paban et al. 2005).  

 Enhancement of Tau released from glial cells decreases presynaptic excitability by 

binding to the GABAA (O'Byrne and Tipton 2000; Louzada et al. 2004) and Gly (Mori et 

al. 2002) receptors. By means of these interactions, Tau can help maintain the 

hippocampal inhibitory tone, as also suggested by the stability of Gly levels after the MS-

lesion and the increased GABAA receptors. The enhanced hippocampal Ado level and 

turnover here described in lesioned rats may serve a neuroprotective role by inhibiting 

glutamatergic activity through binding to A1 receptors (Simpson et al. 1992; Sapolsky 

2001). In this situation, perfusion with DPCPX induced a major increase in basal Glu 

outflow, a reduction in Glu turnover, and a long-lasting increase in KCl-evoked Glu 

release. These results strongly suggest that the control exerted by Ado on basal and evoked 

Glu release through A1 receptors is necessary to avoid further excitotoxic damage when 

cholinergic and GABAergic processes are compromised. CNS response to Ado is a 

balance between A1 and A2 receptor activation, and the stimulatory effects of A2 receptors 

can be masked by activation of A1 receptors (Okada et al. 1999; Dunwiddie and Masino 

2001). Therefore, it is plausible that the increased KCl-evoked Glu release observed in our 

study with lesioned rats after DPCPX infusion could be due to the action of a new pathway 
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regulated by A2 receptors. The A type of A2 receptors are proposed not only to control Glu 

and acetylcholine release, but also to control the release of GABA and of noradrenaline, 

which are mostly insensitive to A1 receptors (reviewed by Cunha 2005). However, in 

physiological conditions the effect of A1 receptors must be prevalent in the hippocampus, 

since its density is considerably greater in this brain area (Fastbom et al. 1987; 

Svenningsson et al. 1999). With the MS lesion, this hippocampal A1 receptor density may 

even increase, an effect that also would explain the DPCPX-induced Glu increase. On the 

other hand, the increase in Glu release may also be attributed to a decreased efficacy of the 

Glu transporter system, as described one month after fimbria-fornix lesions (Ginsberg et 

al. 1996), or to an increase in astroglial consumption of Glu to render energy (Haberg et al. 

2000).  

 This Ado modulation of Glu activity also extends to the other studied systems. 

After MS lesion and following DPCPX perfusion, the extracellular concentration of 

GABA increases, reaching levels similar to those observed in control rats, suggesting an 

Ado modulation of GABA activity. This hypothesis is supported by previous data showing 

that following ischemia, Ado receptor agonists inhibit in the cortex the release of GABA 

(O'Regan et al. 1992). Furthermore, as shown in cardiovascular tissue (Andresen et al. 

1999), Ado may modulate its own extracellular level through A1 adenosine receptor 

stimulation, since DPCPX increases Ado level and normalises its enhanced turnover. In 

addition, an increased Ado turnover results in an enhancement of uric acid level. Uric acid, 

a potent antioxidant, preserves mitochondrial activity and acts as a neuroprotective agent 

against the rise in Glu-induced intracellular calcium concentration (Yu et al. 1998; Mahy 

et al. 1999). 
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 We previously demonstrated that the long term MS lesion-induced neuronal loss in 

hippocampus is apoptotic with enhancement of neuronal glycolisis. This is linked to a 

cleavage of caspase 3, non necrotic processes, and Gln/Glu cycle displacement towards 

Gln production to reduce Glu synthesis (Ramonet et al. 2004). The reduction of 

extracellular Gln in MS-lesioned animals indicates that it could be expelled to vessels to 

reduce Glu released by injured neurons (Gorovits et al. 1997). In vessels, Gln exerts a 

vasodilatory effect through nitric oxide synthesis inhibition (Matés et al. 2002). Activation 

of adenosine A1 receptors may also be involved in that Gln/Glu cycle modification through 

a modulation of Glu transport, since we observed a reduction in Glu turnover after 

perfusion with DPCPX. Activation of the apoptotic program evidenced by cleavage of 

caspase 3 requires energy consumption and underlies the neurodegenerative process 

(Nicotera et al. 1999). In this situation Glu signalling and neuronal energy metabolism are 

uncoupled and the retaliatory adaptations appear deficient. 

 In summary, we present evidence that, following long-term lesion of the MS, in the 

hippocampus, extracellular GABA levels are reduced and GABAA receptor content 

increased. Moreover, extracellular levels of Glu are decreased and blockade of A1 

adenosine receptors reverses this reduction. These results demonstrate a direct control by 

Ado on Glu neurotransmission through A1 adenosine receptor stimulation, and unveil a 

coordinated interaction between GABA, Tau and Ado systems to control neuronal 

excitability. Further experiments need to be performed in order to determine the neuronal 

and glial contribution to this interactions, and to characterise the adenosine A2A receptor 

involvement in the control of extracellular hippocampal levels of Glu and GABA.  
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FIGURE LEGENDS 

Figure 1: Number of neurons in the medial septum-diagonal band complex. Illustrative 

microphotographs of ChAT (a,b) and parvalbumin (Parv) (c,d) immunostained 

sections of control and AMPA rats. Histograms show the quantification of 

ChAT (e) and Parv (f) immunopositive cells in adjacent sections. Values are 

mean ± SEM. * p < 0.05; ** p < 0.01 different from control (Student's t-test), (n 

=12 control + 24 AMPA). Bar = 75 µm. 

Figure 2: Specific in vitro binding of [3H]muscimol to rat brain sections after long-term 

MS lesion. Distribution of the GABAA receptor labelling to rat brain sections at 

the level of MS and hippocampus of control and AMPA rats. Units are fmol/mg 

prot. (I-III) means I to III cortical layers; (IV-VI) means IV to VI cortical layers. 

*, p<0.05 related to control (Mann-Whitney U test), (n =5 control + 6 AMPA).  

Figure 3: Longitudinal study of extracellular concentrations for GABA, glutamate (Glu), 

glutamine (Gln), and taurine (Tau) in the hippocampus after the long-term MS 

lesion. Extracellular hippocampal GABA (a), Glu (b), Gln (c) and Tau (d) levels 

were assessed by in vivo microdialysis with (right column) and without (left 

column) DPCPX administration. CSF 1, KCl 1 (100 mM), CSF 2, DPCPX (0.1 

µM), KCl 2 and CSF 3 correspond to the microdialysis procedure phases (see 

for details Materials and Methods section). (n = 6 control + 14 AMPA for each 

experimental condition) * p < 0.05 different from control values at the same 

time point (Student’s t-test). 

Figure 4: Hippocampal effects of MS lesion on glutamate and adenosine turnover. 

Longitudinal study of extracellular Gln/Glu (a) and uric acid /adenosine (b) 
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ratios of control and lesioned rats. CSF 1, KCl 1 (100 mM), CSF 2, DPCPX (0.1 

µM), KCl 2 and CSF 3 correspond to the microdialysis procedure phases (see 

Materials and Methods section). The inset histograms correspond to the percent 

change of the area under the curve with respect to the control group (100%; 

discontinuous line) during the treatments. * p< 0.05 different from control 

(Mann-Whitney U test). 

Figure 5: Extracellular hippocampal concentrations of amino acids and purines after the 

long term MS lesion. Aspartate (a), Gly (b) Ado (c) and Uric acid (d) levels 

were assessed by in vivo microdialysis. CSF 1, KCl 1 (100 mM), CSF 2, 

DPCPX (0.1 µM), KCl 2 and CSF 3 correspond to the microdialysis procedure 

phases (see Materials and Methods section). The values for CSF 1, KCl 1 and 

CSF 2 represent pooled data of the rats dialysed in the two experimental 

conditions * p < 0.05, ** p < 0.01 different from CSF 1; # p < 0.05, ## p < 0.01 

different from control values (LSD, post-hoc test).  
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