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Abstract 

 

Due to recent progress, higher-order chemical instrumentation provides large amounts 

of data which need automated processing in order to extract relevant information. In 

most cases, the raw signals or spectra are too complex for manual analysis. The ability 

to detect, identify and quantitate chemical substances in gas phase in field operations 

is required in a huge number of applications. Among them, I would like to highlight the 

need for chemical sensing on diverse humanitarian, safety and security applications. In 

these cases, it becomes extremely important to continuously monitor the 

environments where chemicals are spread in order to be ready to act when abnormal 

events are discovered. 

In most critical scenarios the sample can not just be taken to the laboratory and 

analyzed, since an immediate answer is needed. In some other scenarios, the 

exploration of the area must be performed because the localization of the gas source 

or material of interest is unknown. This exploration can be performed using multiple 

mobile sensors in order to localize the chemical source or material. 

Different sensing technologies have been successfully used to detect and identify 

different chemical substances (gases or volatile compounds). These compounds could 

be either toxic or hazardous, or they can be signatures of the materials to be detected, 

for instance, explosives or drugs.  

Among these technologies, mobility based analyzers provide fast responses with high 

sensitivity. However, IMS instruments are not exempt of problems. Typically, they 

provide moderate selectivity, and overlapped peaks in the spectra are usual. 

Moreover, the presence of humidity makes peaks wider, thus worsening the resolving 

power and the resolution. Furthermore, the response of IMS is non-linear as substance 

concentration increases and more than one peak can appear in the spectra due to the 

same compound. Some authors advocate the use of multivariate data processing 

techniques for IMS, but further investigations are needed to set up the advantages and 

limits of this approach, compared to univariate alternatives.  

 

In the present thesis, these problems are addressed and applications using an Ion 

Mobility Spectrometer (IMS) and a Differential Mobility Analyzer (DMA) are shown. 

For the first time, multivariate data analysis tools have been applied to DMA. It is 

shown that DMA can be considered as a good instrumental approach  for the detection 

of explosives, and the detection and quantitation of environmental sensitive VOCs, 

provided that the instrument spectra are properly pre-processed and subsequently 

analyzed by multivariate data processing. 
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Furthermore, Multivariate curve resolution Alternating Least Squares (MCR-ALS) is 

shown to be suitable to analyze IMS spectra qualitatively when interfering chemicals 

appear in the spectra and even when their behaviour is non-linear. Partial Least 

Squares (PLS) methods are demonstrated to work properly for the quantitative 

analysis of these signals. 

 

It is also demonstrated in this thesis that the quantitative measurements from these 

sensors can be integrated in a gas source localization algorithm in order to improve the 

localization of the source in those scenarios where it is required. It is shown that the 

new proposal works significantly better in cases where the source strength is weak. 

This is illustrated presenting results from simulations generated under realistic 

conditions. 

Moreover, real-world data were obtained using a mobile robot mounting a photo 

ionization detector (PID). Experiments were carried out under forced ventilation and 

turbulences in indoors and outdoors environments. The results obtained validate the 

simulation results and confirm that the new localization algorithm can effectively 

operate in real environments. 

 

This thesis has been developed in the framework of the European project LOTUS 

(Localization of Threat Substances in a Urban Society) funded by the European’s 

Community Seventh Framework Programme (FP7/2007-2013) under Grant Agreement 

Nº 217925; and several CENIT projects funded by the Spanish Ministry of Science and 

Innovation: SEDUCE (Sistemas para la detección de explosivos en centros e 

infrastucturas públicas), PROSAVE (Proyecto de Investigación de Sistemas Avanzados 

para un Avión más Eco-Eficiente) and TECNO-CAI (Efficient and Intelligent Technologies 

Oriented to Health and Comfort in Interior Environments), and several minor industrial 

projects funded by RAMEM SA.  
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Chapter 1 

1Introduction 

1.1 Motivation 

As technology evolves, faster, smaller and more powerful processors are produced. 

Processors could take the form of microcontrollers, general purpose processors, digital 

signal processors, FPGAs or even embedded PCs. Processors can be integrated more 

easily in sensor systems and at lower cost; thus, when building instrumentation, 

incorporating intelligence becomes a standard practice. 

Today instrumentation is digital and features at least firmware for sensor and actuator 

interface, data-logging, digital communications, and user interface. It is also possible to 

embed intelligence beyond the basic functionality mentioned before. 

In analytical instrumentation, the ability to generate data is larger than the capacity to 

analyze it. Current instrumentation can produce large amounts of data, but the data 

are often complex, and manual analysis becomes either a bottleneck or it is just 

impossible. The analysis and interpretation of high throutput techniques requires 

automatic multivariate and data processing approaches to extract useful hidden 

information. 

The ability to detect and correctly identify chemical substances in gas phase in field 

operations is required in a large number of applications; among them environmental 

monitoring, exploration of areas where hazardous chemicals have been spread, 

detection of explosives, localization of clandestine chemical laboratories, or 

humanitarian and security operations. Moreover, in these cases, it becomes extremely 

important to continuously monitor the environments where chemicals are spread in 

order to be ready to act when an abnormal event is produced. 

In some scenarios the sample is taken manually and analyzed “in situ” or subsequently 

in a laboratory; but in many others, where the locations of the chemical sources are 

unknown, then area exploration is needed. If the chemical can be detected far from 

the source, but still the source location is unknown, we have today a number of 

algorithmic proposals to estimate the position of the source from the sequence of 

readings along the area being explored. In other occasions, the emission from the 

source is so weak (due to low vapour pressure of materials producing the vapours) 

that the detection has to be done in proximity. Exhaustive search is the only option, 

and to speed up explorations, extremely fast analysis is needed.  
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Figure 1.1. The ability to detect and identify chemical substances is required in many 

applications. Source localization is required if the source location is unknown. A substance 

quantitation step can help to solve the source localization problem. 

 

Chemical substances, which can be all sorts of molecules from simple atoms to 

complex biological molecules, can be detected using different sensing technologies. 

Ideally one would like to have as many different kinds of sensors as the number of 

different analytes, being each kind of sensor perfectly selective to a specific analyte, 

but practically this is difficult to achieve and typically one chemical sensor reacts to 

different analytes instead. Even biosensors featuring good selectivity (e.g. antibodies) 

are known to have cross-sensitivities to structurally related compounds (Calvo et al. 

2011). Moreover, it could be that a selective sensor for a certain substance does not 

exist, thus a non-selective sensor has to be used. 

The main advantage of using non-selective sensors, which potentially is also a 

disadvantage, is that the sensors respond to a large number of different substances 

and this allows using the sensors in different applications, minimizing costs compared 

to using different sensors selective to specific substances, which are usually more 

expensive since in many occasions adhoc development is needed. In addition, in some 

cases a global odour assessment is required. This is typically the case when evaluating 

the organoleptic profile of food product. This profile could depend on tens, if not 

hundreds, of volatiles (Buffo & Cardelli-Freire 2004). Then it is not generally feasible to 

have as many selective sensors as volatiles present in the food headspace. However, 

when using non-selective sensors, since they react with many different substances, 

interfering responses can appear potentially masking the signal of interest, thus 

hindering the detection.  

Non-selective sensors (as for instance Flame Ionization Detectors or Photo Ionization 

Detectors) can be combined with Chromatographic pre-separation. Correct 

optimization of the column (materials, temperatures, ramps, etc) can provide high 

selectivity at the expense of slower analysis (tens of minutes typically). In fact, it is 

well-known that speeding up the chromatographic pre-separation leads to a 

Detection Identification Localization 

Quantitation 



Scenarios 

  

 3 

degradation of the selectivity and makes co-elution more frequent. In most cases, 

chromatography is still too slow for the application scenarios described below.  

When performing chemical source localization, and in order to detect the substance of 

interest far from the source, typically low thresholds are desired. However, low 

thresholds together with low selectivity lead to large number of false alarms that 

degrade most of the localization algorithms. 

In order to deal with these issues, adequate signal processing techniques (adapted to 

the sensor technology) should be used to estimate qualitatively and quantitatively the 

sensor responses, so as to ameliorate the detection and localization of gas chemical 

sources. 

Chemometrics can generally be described as the application of mathematical and 

statistical methods to improve chemical measurement processes, and to extract more 

useful chemical information from measurement data. Nowadays, it is common to 

approach problems realizing that there are deeply hidden relationships between 

variables that can be tackled only by the use of newer data analysis techniques; thus 

chemometrics becomes a necessity (Workman et al. 1996). With this regard, signal and 

data processing become essential elements in most chemical sensing instruments. The 

multivariate responses obtained by chemical sensor arrays and spectrometers require 

signal and data processing to carry out the fundamental tasks of odour identification 

(classification) and concentration estimation (regression). Since the paper published by 

Gutierrez-Osuna (Gutierrez-Osuna 2002), the basic methodology for building the data 

processing of the instruments is firmly established and important advances in the 

chemometrics field have shown that proper processing of the sensor signals can 

improve the robustness of the instruments against diverse perturbations, namely, 

environmental variables, background changes or drift (Marco & Gutierrez-Galvez 

2012). 

1.2 Scenarios 

Scenarios where chemicals in vapour phase have to be detected and quantified are 

varied. Eventually, when the source location is unknown, it has to be localized. 

Moreover, the presence of interfering substances hinders carrying out these tasks. In 

this section, some scenarios which have important implications for security and safety 

issues are described. 
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1.2.1 Airport screening 

In the aftermath of the tragic events of September 11, 2001 in the USA, numerous 

changes have been made to aviation security policy and operations throughout the 

world, especially in the USA. 

In the past, the use of trained dogs was the preferred solution to the detection of 

explosives and drugs. Sniffer dogs have good mobility capabilities, they are fast, they 

are able to detect up to 9-14 explosives per dog and they achieve very low limits of 

detection; however the time of operation is usually limited (1 hour between breaks) 

and they need caring and special training (Furton & Myers 2001). 

Current challenges in security applications and the last changes in aviation security 

policy incentivize an increasing demand in alternative solutions. 

 

 
Figure 1.2. Sniffer dogs can detect a high number of different substances achieving low limits 

of detection. However, they need caring and special training. Image sources: 

(www.smh.com.au) and (www.bbc.co.uk). 

 

Explosive detection systems (EDS) (Singh & Singh 2003) and explosive trace detection 

(ETD) (Moore 2007) are considered nowadays an essential component of aviation 

security strategies designed to prevent and deter terrorist threats. The allocation and 

utilization of checked baggage screening devices is a critical component in aviation 

security systems (Jacobson et al. 2005). 

There is therefore an increasing focus on new technologies that can be applied to 

security screening, either to simplify or speed up the checking process, or to provide 

additional functionality. Reliable instrumentation able to operate with volatile 

samples, at trace levels, and with minor or inexistent sample preparation is required. 

High sensitivities and selectivities are also required to prevent the occurrence of false 

negatives and false positives. 
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Different technologies have been successfully applied to the detection of drugs and 

explosives, for instance: Mass Spectrometry (MS) in the detection of explosives 

analyzing solid surfaces (Na et al. 2007); Raman Spectrometry in the analysis of drugs 

(Hargreaves et al. 2008) and the detection of explosives and precursors on clothing 

(Ali, Edwards & Scowen 2009); Thermal-Neutron Analysis (TNA) for explosive detection 

in airline baggage (Shea, Gozani & Bozorgmanesh 1990); Terahertz Spectroscopy for 

explosives detection (Leahy-Hoppa, Fitch & Osiander 2009); Ultra-Low-Field Magnetic 

Resonance Imaging (ULF-MRI) to inspect liquids non-invasively at a security checkpoint 

for detecting hazardous material (Espy et al. 2010); Ion Mobility Spectrometry (IMS) 

(Eiceman & Karpas 2005) for drugs detection (Lai, Corbin & Almirall 2008) in human 

hair (Keller et al. 1998) or on the hands of subjects (Lawrence 1987), for explosive 

detection (Ewing et al. 2001; Ewing & Miller 2001; Lai et al. 2008; Hilton et al. 2010) 

and even for detecting TNT in the presence of interferents (Matz, Tornatore & Hill 

2001); among many other technologies (Wallin et al. 2009; Singh & Singh 2003). 

Ion Mobility Spectrometry (IMS) is probably one of the most used sensing technologies 

in airport security. Different commercial instruments in different configurations are 

available for this scenario, specially optimized to the detection of explosives and 

narcotics. For instance, Smiths Detection (Watford, UK) produced the IonScan which 

permits the simultaneous detection of different explosives (picogram range) and drugs 

(sub-nanogram range) in less than 8 seconds (IONSCAN) taking the sample from solid 

surfaces with a swap and then thermodesorbing the collected particles.  

Since 2001, the possibility to develop a portal for passenger screening has attracted 

many companies. However, for exhaustive screening, analysis time has to be less than 

1 minute putting enormous pressure on the sampling. With this regard, Smiths 

Detection manufactures the Sentinel II, which extracts and analyze particles from the 

hair, body, clothes and shoes of the subject generating an airflow (SentinelII). A similar 

instrument (EntryScan4) is commercialized by Morpho Detection (Paris, France). These 

solutions are mostly based on Ion Mobility Spectrometry due to its fast analysis times 

and good limits of detection for illicit substances.  
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Figure 1.3. Different IMS configurations for aviation security provided by Smiths Detection. 

 
Figure 1.4. IMS portals for drug and narcotic detection provided by Morpho Detection. 

 

In this thesis, different experiments were performed using an airport security 

checkpoint prototype for baggage inspection provided by RAMEM S.A (Madrid, Spain) 

(RAMEM) in order to study if different substances could be detected even in the 

presence of interfering chemicals. The details are given in chapter 4. 

1.2.2 Improvised explosive detection 

An Improvised Explosive Device (IED) is defined as a device placed or fabricated in an 

improvised manner incorporating destructive, lethal, noxious, pyrotechnic, or 

incendiary chemicals and designed to destroy, incapacitate, harass, or distract (O'Hara 

2008). 
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An IED may be prepared with very limited technical means and limited expertise using 

chemicals available in the drugstore. These homemade explosives may be used by 

terrorist in crowded infrastructures such as public streets, the underground, sports 

arenas, shopping centres or museums, for instance. 

Different methods of detection are employed: analyzing the electromagnetic 

spectrum, using unmanned aerial vehicles (UAVs) mounting electro-optical sensors, or 

through chemical sensors. From the chemical point of view, hyperspectral sensing, 

Raman spectroscopy and sodium-ion detectors to identify nitrogen-based explosives 

are used (O'Hara 2008). 

In this scenario we consider the specific case in which a suspicious bag, suitcase or 

package has already been identified and should be closely inspected. The investigation 

could be carried out using the sensor technologies mentioned in section 1.2.1. 

1.2.3 Uncontrolled release of hazardous compounds 

Although some compounds have a legitimate use mainly due to their industrial 

applications, an uncontrolled release at great scale could lead to dramatic 

consequences due to their toxicity (Hu & Raymond 2004). Some of them have been 

used in the past by terrorist or for chemical war (Berkowitz et al. 2002). For instance: 

phosgene is a precursor in the manufacture of plastics; ammonia is very valuable in 

agricultural industries for plant growth; sulphuric acid is used in fertilizers, insecticides 

or the production of detergent among other applications; or chloropicrin which is a 

fumigant but very irritant. These types of substances are known, in this context, as 

Toxic Industrial Compounds (TIC). 

TICs are defined by the Occupational Safety & Health Administration (OSHA) in the USA 

as industrial chemicals that are manufactured, stored, transported, and used 

throughout the world. They can be in the gas, liquid, or solid state. They can be 

chemical hazards (e.g., carcinogens, reproductive hazards, corrosives, or agents that 

affect the lungs or blood) or physical hazards (e.g., flammable, combustible, explosive, 

or reactive) which, if obtained by terrorists or caused to be released, may have 

extremely serious effects on exposed individuals. Many toxic industrial chemicals are 

highly toxic and may rapidly affect exposed individuals. Toxic industrial chemicals 

(whether as a gas, aerosol, or liquid) enter the body through inhalation, through the 

skin, or through digestion. The time that it takes for a toxic industrial chemical to begin 

working is dependent mainly on the route that the agent enters the body. Generally 

poisoning occurs more quickly if a chemical enters through the lungs (because of the 

ability of the agent to rapidly diffuse throughout the body). 

Unlike TICs, which need to be used in large quantities to be toxic, chemical warfare 

agents (CWAs) have a toxic effect at very small amounts. The chemical is either 
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injurious or lethal. These chemicals have been used in war in the past and different 

variants can be identified (Disaster_Information_Management_Research_Center): 

nerve agents, asphyxiant and blood agents, blister agents or pulmonary agents among 

others. For instance in 1995, sarin, a colorless and odorless liquid nerve agent, was 

released on the Tokyo underground in five coordinated attacks, killing thirteen people 

and severely injuring fifty. Each perpetrator carried approximately 900ml of sarin in 

plastic bags; a single drop can kill an adult. 

Fortunately, these substances can be detected using different technologies 

(Sferopoulos 2009), some examples are: IMS, Flame photometry, Infra-red (IR) 

spectroscopy, Raman spectroscopy, surface acoustic wave (SAW) or photo ionization 

detection (PID) among others. 

1.2.4 Leakage detection 

In this scenario hazardous substances released at local scale or at certain specific 

locations and typically by accident and not on purpose are considered. 

Typically, the budget is limited and cheap sensors are required. In these cases using an 

array of non-selective sensors can be very useful. For instance, a sensor array of 

different kinds of gas sensors (also known as electronic nose) is demonstrated in 

(Perera et al. 2006) to be useful for sensing air quality in high pressure lines where oil 

from an air compressor can contaminate the lines if the protection filters are damaged. 

The application allows an online analysis and continuous sensing of the correct 

functioning of the filters. 

In other safety-related applications, the detection of certain substances is critical. For 

instance, carbon monoxide is an odourless, colourless and non-irritating gas which is 

known as the silent killer. It is usually the result of incomplete combustion due to 

domestic burners and boilers, car exhausts, log or carbon-based stoves and chimneys, 

or fire at its initial stages. Thus, accidental poisoning can be caused by inadequate 

ventilation or obstructed furnaces. A system to detect fire using an array of three gas 

sensors is presented in (Kohl, Kelleter & Petig 2001). Data processing is applied looking 

at the correlation between the sensors and the development of the signals over time. 

Furthermore, it is shown in (Raub et al. 2000) that the installation of a static network 

of selective carbon monoxide detectors can be a way to compensate for the lack of 

sensitivity to this gas. 

1.2.5 Gas detection using mobile sensors 

A static network of gas sensors only provides sparse measurements at certain 

locations. Moreover, it is not always possible to have an operator taken manually 
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measurements at predefined locations or it is not safe for the operator due to the 

dangerousness of the released gases (TICs or CWA). This spatial and temporal sparsity 

in the measurements complicates the detection of leaks and ultimately, it causes a 

waste of resources. 

With this regard, mobile robotics can contribute to mitigate the spatial sparsity of the 

measurement by providing a versatile system that is able to adaptively collect 

measurement at different locations. 

In (Hernández-Bennetts et al. 2012) it is demonstrated the ability to detect and create 

a distribution map of methane in indoors and outdoors. Methane is not toxic; 

however, it is extremely flammable and may form explosive mixtures with air; 

moreover, it is an asphyxiant and may displace oxygen in an enclosed space. It is the 

main component of natural gas, a relatively potent greenhouse gas and probably the 

most abundant organic compound on earth. At room temperature and standard 

pressure, methane is a colourless and odourless gas. In the cited work, the 

environment is sensed remotely using a RMLD (Remote Methane Leak Detector). This 

detector is very selective to methane and belongs to the family of TDLAS (Tunable 

Diode Laser Absorption Spectroscopy). 

In another application (Kim et al. 2011), a rapid, flexible and remote technology as LIBS 

(Laser-induced Breakdown Spectroscopy) is used for detecting leakages of boric acid in 

a nuclear power plant.  

In other example (Distante, Indiveri & Reina 2009), it is shown the ability to detect 

multiple odour sources and differentiate between sources very close to one another, 

using an array of tin oxide chemical sensors mounted on a mobile robot which follows 

a predefined trajectory in a hazardous industrial site. The sensors provide a real-time 

olfactory map of the environment. 

In (Trincavelli, Coradeschi & Loutfi 2009) an array of five semiconductor gas sensors is 

mounted in a mobile robot for continuous monitoring and online classification. Three 

different substances are correctly identified in this work using the same sensor array. 

1.2.6 Gas sensor networks in an urban-like environment 

Diverse causes may require chemical surveillance within an urban environment. In 

some cases it is just pollution monitoring, but in this thesis we are mostly considering 

critical applications related to the fight against terror. 

There have been previous evidences of the presence of clandestine labs of explosives 

and most commonly labs of drugs in large cities. The chemical processes carried out in 

those labs produce exhaust chemicals that are dispersed either in the atmosphere or in 

the public sewage. For instance, it is known that explosions in London’s terrorist attack 

in 2005 were caused by homemade organic peroxide-based devices packed into 
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backpacks and that these explosives had been being prepared during the previous 

weeks in clandestine kitchens. Some neighbours also reported that they noted 

degradation of the plants surrounding the areas during those weeks. 

In an urban environment, it is necessary to detect explosives and their precursors 

during the production stage rather than preventing terrorist attacks while they are 

already in motion, which is extremely difficult. As pointed before (section 1.2.2), 

improvised explosives can be home-produced with minimal technology (kitchen-like). 

In the case of drug production, it is critical to find the illegal drug laboratory before the 

distribution of drugs on the black market. Fortunately, the production stage forms a 

window of opportunity, usually of substantial time duration (several weeks of active 

production), where it is possible to detect and pinpoint clandestine chemical 

laboratories; thus police and security forces can intervene opportunely. 

 

 
Figure 1.5. Terrorist attacks are extremely difficult to be stopped when they are already in 

motion. Explosives must be detected during the production stage. Image sources (from left to 

right and top to bottom): (www.julyseventh.co.uk), (www.bbc.co.uk), (news.bbc.co.uk) and 

(cnnespanol.cnn.com). 

 

Because of the last big terrorist attacks in the last years (New York 2001, Madrid 2004 

and London 2005), an increasing demand in reliable detection methods has appeared. 

Chemical precursors of drugs and explosives could be detected building a network of 

fixed and/or mobile sensors (typically included in police cars). These sensors 

continuously sample air while its carrier performs other tasks beyond chemical 
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surveillance. Sensor measurements together with GPS information can be transferred 

to a central system (using GPRS for instance) where all information is collected and 

stored. Then sensor data together with meteorological data (atmosphere stability, 

wind speed and direction, temperature, humidity...) can be processed and analyzed in 

order to identify and locate potential chemical sources.  

 

 

Figure 1.6. Scenario where there is a clandestine laboratory where illicit production of drugs or 

explosives takes place. A network of mobile sensors is deployed over the area. Real-time 

measurements by the sensors are sent to a central system where data is processed and 

analyzed. 

 

Since there are hundreds of hazardous chemicals which could be potential threats and 

must be monitored, the use of partially selective sensors is encouraged. For instance, 

in (Abbaspour & Mansouri 2005) a network of fixed local sites is designed. Each local 

site contains a Combustible Gas Detector (CGD) and a Photo Ionization Detector (PID), 

which is a very sensitive and non-selective sensor that reacts with almost all chemicals 

in the air (section 1.3.4). Each local site communicates through a radio frequency 

modem to a local control panel forming a unit and each unit communicates to the 

central control panel where data from the sensors and triggered alarms are stored, 

processed and analyzed. In the central panel a map of the city can be visualized thus 

potential threats can be identified. 

Another application when deploying gas sensor networks in this scenario is pollution 

monitoring in order to control air quality. Moreover, in some occasions, illegal 

emissions of pollutants also require source localization tasks. For instance, in (De Vito 

et al. 2011) and in (De Vito & Fattoruso 2012) preliminary results from a wireless 
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network of gas chemical sensors are presented. It is suggested that the system can 

effectively be used to detect and quantified pollutants in complex mixtures in real-time 

by applying trained artificial neural networks. Moreover, the three-dimensional 

distribution of gas is also estimated in real-time. 

Since in these applications it is extremely important to localize the gas source, the 

distributed system has to face some problems which are still open issues. In an urban-

like environment, dispersion of chemicals is more complex than in other open air 

scenarios, due to the complex topology and geometry of cities. The street structure 

leads in general to channelling effects and in consequence dispersion can change 

dramatically with small changes in wind direction. In addition to wind changes, 

meteorological conditions (atmosphere stability, temperature, humidity...) are also 

changing continuously and influence the dispersion. Finally, within a city we expect to 

find a background of interfering chemicals which evolves over space and time. All 

these problems are addressed in the present thesis and have a larger impact when the 

source strength is weak (this is the case for clandestine laboratories). 

1.3 Gas sensing technologies 

Different sensing technologies can be found in the literature and have been applied 

successfully to a huge number of different applications; however we focus here on the 

most relevant to the present thesis. 

1.3.1 Ion Mobility Spectrometry 

The term ion mobility spectrometry (IMS) (Hill et al. 1990) refers to the principles, 

methods and instrumentation for characterizing chemical substances on the basis of 

the velocity of gas-phase ions in an electric field (Eiceman & Karpas 2005). 

IMS technology provides high-speed analysis (1-5 seconds), portability, no sample 

preparation (handheld devices), high sensitivity (ppb levels for some compounds) and 

comparatively low cost of operation. Moreover, in some instruments it is possible to 

invert the electric field polarity in order to analyze positive and negative ions 

separately (positive or negative mode). On the other hand, compared to Gas 

Chromatography (GC), IMS technology has only a moderate chemical selectivity and it 

gets worse when the instrument dimensions are scaled down (Babis et al. 2009), and 

also in the presence of humidity (Vautz, Sielemann & Baumbach 2004). 

IMS technology was developed in the early 1970s and it has been mainly used in 

security applications such as chemical warfare agent detection (Kanu, Haigh & Hill 

2005; G. A. Eiceman 2002; Rearden & Harrington 2005), screening for illicit substances 

(Lawrence 1987; Keller et al. 1998; Ochoa & Harrington 2004; Lai et al. 2008; Lai, 
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Corbin & Almirall 2008) and protection against explosives (Lai et al. 2008; Ewing et al. 

2001; Buxton & Harrington 2003) and toxic compounds (Li et al. 2002; Utriainen, 

Kärpänoja & Paakkanen 2003). IMS has been also used in other scenarios such as 

environmental monitoring (Márquez-Sillero et al. 2011; Tuovinen, Paakkanen & 

Hänninen 2000; G.A Eiceman 2002) and pharmaceutical applications (O' Donnell, Sun 

& Harrington 2008; Strachan, Nicholson & Ogden 1995; Snyder, Blyth & Parsons 1996) 

and, gradually it is expanding its range of applications to food and beverage 

applications (Ogden & Strachan 1993; Vautz et al. 2006; Garrido-Delgado et al. 2011), 

clinical applications (Westhoff et al. 2007; Ruzsanyi & Baumbach 2005; Ruzsanyi et al. 

2005; Westhoff et al. 2005) and industrial applications (G.A Eiceman 2002; Baumbach 

2006; Eiceman et al. 1995; Lawrence, Barbour & Sutcliffe 1991), among many others 

(Borsdorf et al. 2011). With this regard, Armenta et al. published a review of recent an 

unconventional applications using IMS (Armenta, Alcala & Blanco 2011). 

Desktop and also handheld instruments are available from a number of vendors; 

namely: Bruker Daltonics (Leipzig, Germany), Smiths Detection (Watford, England) 

(Figure 1.7), Airsense Analytics (Schwerin, Germany), Environics (Mikkeli, Finland), 

Thermo Fisher (Waltham, Massachusetts, USA). Examples of commercial instruments 

based on IMS are shown in Figure 1.3, Figure 1.4 and Figure 1.15(a). 

Int

Time

Int

Time
 

Figure 1.7. Schematic of a traditional ion mobility spectrometer with a linear electric field drift 

tube including a 63Ni radioactive ionization source. Image adapted from (IONSCAN) (Smiths 

Detection). 
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The most important component of an IMS analyzer is the drift tube, since sensitivity 

and resolution depend on its design. There are two basic designs: the traditional 

configuration with a linear electric field drift tube (DC) and the field asymmetric design 

(AC or RF). Two main parts can be distinguished within the drift tube: the reactant 

region and the separation or drift region. In a traditional IMS with linear electric field, 

within the ionization chamber, gas phase molecules are ionized typically by a 

radioactive source, although a large variety of ionization sources are available, namely: 

UV-lamps (Baumbach et al. 2003), corona discharge (CD) (Sabo, Matúška & Matejčík 

2011), electro-spray (ESI) (Wittmer et al. 1994; Hilton et al. 2010), or Matrix Assisted 

Laser Desorption Ionization (MALDI) (Chen 2008). Depending on the ionization source, 

volatile (radioactive, CD and UV), semi-volatile and non-volatile compounds (ESI and 

MALDI) can be analyzed. In Table 1.1 a comparison among ionization sources is given. 

 

Source 
Type of 

chemicals 
Maintenance Cost Comments 

Radioactive Universal Low Medium/low 
Licensing 

required 

Corona 

discharge 
Universal High Medium 

Maintenance 

required 

Photoionization Selective Medium Medium Low efficiency 

Surface 

ionization 
Nitrogen bases High Medium Complex 

Electrospray Liquids Medium Medium Long clearance 

MALDI Solids High High Laboratory use 

Flame Selective Medium Low 
Molecular 

structure lost 

Table 1.1. Summary of ionization techniques used in ion mobility spectrometry. Extracted from 

(Eiceman & Karpas 2005). 

 

When using ionization sources of high energy (radioactive, CD), the ionization chamber 

provides a reservoir of ions, known as reactant ions, for the incoming molecules. This 

reservoir produces the reactant ion peaks (RIP) in the spectra. When a sample is 

introduced into the spectrometer, chemical reactions at atmospheric pressure (APCI: 

Atmospheric Pressure Chemical Ionization (Bell et al. 1994)) take place and ion 

products are formed due to interactions between the reactant ions and the molecules 

in the sample. At this stage, the sensitivity of the instrument to the different analytes 
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in the sample is given by the affinity to form ionized clusters (proton affinity for 

positive ions and electronegativity for negative ions). The formed ion products in the 

reactant region are prevented from entering into the linear drift region by an 

electrostatic shutter grid acting as an ion gate (Shamlouei & Tabrizchi 2008). The more 

time the gate is closed, the more ion products accumulate and the better the 

sensitivity, but peaks get wider (less resolution) and time of analysis increases. When 

the gate grid opens, an electric field of typically 200V/cm accelerates ions into the drift 

region until they reach constant velocity due to collisions with the surrounding gas 

molecules. Inside the drift region there is a drift flow going on opposite direction which 

keep neutral species out to the tube. At the end of the drift region there is a collector 

which takes the charge from the ions neutralizing them and producing a current 

output. The collected charge is visualized as a mobility spectrum in only a few tens of 

milliseconds. This mobility (K) depends on the ion’s size, shape and weight (Eiceman & 

Karpas 2005; Hill et al. 1990): 
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where e is the charge of an electron; N is the number density of neutral-gas molecules 

at the pressure of measurement; α is the correction factor; μ is the reduced mass of 

ion and gas of the supporting atmosphere; Teff is the effective temperature of the ion 

determined by thermal energy and the energy acquired in the electric field, and ΩD is 

the effective collision cross section of the ion in the supporting atmosphere. 

Since K depends on the temperature and the supporting atmosphere (pressure); for 

identification purposes, the reduced mobility (K0) is often used:  
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where typically, P0 = 760mm Hg, and T0 = 273K. The reduced mobility K0 allows 

comparing results between different IMS instruments using the same ionization 

source. 

In this traditional configuration, the mobility coefficient (K) is considered constant 

since the instrument operates in low electric fields (100-300V/cm). However, when the 

electric field is increased beyond the linear range (it depends on the analyte) it is 

observed that K becomes dependent on the electric field. This concept is exploited in 

the design of field asymmetric drift tubes. The technology is known as Differential 
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Mobility Spectrometry (DMS) or Field Asymmetric IMS (FAIMS) and different devices 

are based on this principle. For instance, in (Eiceman et al. 2004) a DMS is used for the 

separation of ions from explosives, or in (Krylov et al. 2002) the mobilities of ions 

related to different ketones are studied by Planar FAIMS (PFAIMS). 

   

The ion separation capabilities of IMS are quantified using either the “resolving power” 

(Rp) or the “peak-to-peak resolution” (Rpp) formalisms (Spangler 2002), being these 

parameters defined respectively as: 

 

(Eq. 1.3) Rp=td/wh 

 

where td is the drift time and wh is the temporal full-width-at-half-height (FWHH) for 

the mobility peak; 
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where subindices 1 and 2 refer to two neighbouring peaks. 

Typical values for the resolving power (Eq. 1.3) in IMS instruments are around 30 or 40. 

 

The main drawback of IMS technology is that it provides moderate chemical selectivity. 

This can be a problem when multiple substances are present in a sample or in the 

presence of interferences as pollutants or moisture in environmental analysis 

(Márquez-Sillero et al. 2011). In these cases multiple peaks appear in the spectra and 

typically overlapped. Therefore, the identification and quantitation of substances of 

interest becomes problematic. 

One way to improve selectivity in IMS is the use of doping agents which may be added 

to the drift gas in order to control ionization. For instance, in positive ion mode and no 

dopant, water, which has a low proton affinity, dominates the ionization process. This 

guarantees a response to any analyte with a proton affinity higher than water, but this 

can be problematic if interfering chemicals or humidity are present. When doping the 

instrument with an agent with a proton affinity higher than water, only those analytes 

with an even higher affinity will react, thus improving the selectivity of the instrument 

(Hill & Simpson 1997). A similar reasoning can be done for the negative ion mode. With 

this regard, explosives and some CWA are characterized by their high electronegativity, 

thus being IMS a suitable technique for their detection. 

When using IMS instruments based on radioactive ionization sources (the most 

common configuration), the ionization of the sample occurs by ion/molecule reactions 
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rather than by direct ionization of the analyte; thereby, this kind of sources typically 

have a nonlinear and narrow dynamic response range (Hill & Simpson 1997), thus 

hindering qualitative and quantitative analysis. In IMS atmospheric chemistry (with no 

dopant), the formation of protonated molecules (MH+) is due to an effect of proton 

transfer from the reactant ions, predominantly hydronium ions: (H2O)nH3O+, to the 

analyte molecules; this chemical process could occur either in the reactant region or in 

the drift region. Additionally, when the concentration of analyte molecules is 

adequately high, a proton-bound dimer is formed as a result of clustering of a 

protonated monomer with an additional analyte molecule (Jazan & Tabrizchi 2009; 

Eiceman & Karpas 2005).  

 

(Eq. 1.5) Protonated Monomer: ( ) ( ) OHnMHOHOHM
n 232 1++↔+ ++    

 

(Eq. 1.6) Proton-Bound Dimer: MMHMMH ++ ↔+   

 

High concentrations also favour the formation of proton-bound trimers, proton-bound 

tetramers and so on (Young et al. 1999; Borsdorf, Stone & Eiceman 2005; Krylov et al. 

2002; Ewing, Eiceman & Stone 1999), but normal IMS spectra do not show this ion 

species due to their extremely short lifetimes. In the presence of humidity, clusters 

with more water molecules can be formed, increasing the width of the peaks and thus 

reducing the resolving power (Eq. 1.3) and the peak-to-peak resolution (Eq. 1.4). 

The effect of sample concentration on IMS response is shown in Figure 1.8; first the 

intensity of protonated monomer raises when concentration of the analyte is 

increased, and at the same time the intensity of reactant ion peak decreases. On the 

other hand, when a proton-bound dimer peak appears with a further concentration 

increase, the intensities of the protonated monomer and reactant ion peaks decrease. 

When the analyte is removed from the ion source, its concentration decreases and 

intensity declines for the proton-bound dimer and it increases for the protonated 

monomer peak. Similar patterns are observed in negative polarity. In IMS, this is a 

typical behaviour of a system that has RIP-monomer-dimer in equilibrium (Eiceman & 

Karpas 2005). 
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Figure 1.8. Plots of ion intensities from vapour sampling of a moving plume of a chemical 

vapour. The numbers are time in seconds used to generate the plume. These plots show the 

ion dynamics in an IMS analyzer. Extracted from (Eiceman & Karpas 2005). 

 

Thereby, increasing the analyte concentration produces nonlinearities in the spectra. 

This effect worsens if more than one substance is present in the sample since 

nonlinear products among species can be formed, and it makes even worse in the 

presence of humidity (Puton et al. 2012). 

Another way to improve selectivity and minimize nonlinear effects is coupling 

additional instrumentation to the IMS (Dworzanski et al. 1994; Kanu, Wu & Hill 2008). 

For instance, Gas chromotography (GC) (Simpson et al. 1996; Kanu & Hill Jr 2008), 

liquid chromatography (LC) (Garrido-Delgado et al. 2011) or multicapillary columns 

(MCC) (Ruzsanyi et al. 2005) can be used as a pre-separation step prior to IMS. 

Selectivity can also be enormously enhanced when using the IMS as a pre-filter before 

a mass spectrometer (MS) (Kanu et al. 2008; Sabo & Matejčík 2012). 
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Figure 1.9. Example of signals obtained in (GC-IMS) (G.A.S, Dortmund, Germany). 

 

In order to improve IMS selectivity, the issues of detection of substances in the 

presence of interfering chemicals and quantitation when dealing with non-linearities 

and multiple peaks in the spectra are addressed in the present thesis. 

1.3.2 Differential Mobility Analyzer 

Differential Mobility Analysis (DMA) is a particular configuration within the family of 

Ion Mobility Spectrometry where ions with different electrical mobilities are separated 

in space instead of drift time as in a classical drift-time IMS. This configuration should 

not be confused with DMS or FAIMS, where ions are also separated in space instead of 

in time, but based on the different mobility showed by the compounds when are 

under the alternative application of a low and a high electric field. DMS or FAIMS 

instruments are smaller than DMAs, the achievable resolving power (Eq. 1.3) is smaller 

and the results do not refer to real collision cross sections of the molecules and, 

therefore their size. High resolving powers imply better selectivities. 

DMA has become the most common instrument widely used in the classification and 

generation of monodisperse aerosol nanoparticles; however, under certain conditions 

ionic detection can be achieved. The more used DMAs belong to the category of 

cylindrical and their evolution has been described in (Intra & Tippayawong 2008). 
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Cylindrical DMAs are based on Knutson and Whitby’s design (Knutson & Whitby 1975) 

consisting in two cylindrical and concentric metal electrodes. 

The DMA used in the present thesis has been developed by RAMEM S.A. (RAMEM) and 

corresponds to a parallel plate configuration (Santos et al. 2009; Alonso et al. 2009). 

The separation is done through the superposition of two perpendicular forces on the 

formed ion, one drag force given by a high sheath flow rate; and the second involved 

force comes from a perpendicular electric field. The planar ion-DMA scheme can be 

found in Figure 1.10, where the core of the instrument, the classification region, is 

shown. 

A carrier gas containing ionized species enters the DMA through a slit and joins a 

particle-free sheath air, which flows between two parallel plate electrodes. Ions are 

dragged downstream the inlet slit by the sheath gas. Additionally, ions also migrate 

from one electrode to the other under the action of a uniform electric field, which is 

established by applying a voltage between the plates, that is, perpendicular to the 

direction of the sheath air. Only the ions of a given electrical mobility leave the DMA 

through a slit which is made in the outer electrode and collected by an ion plate 

connected to an electrometer. Changing the electric field between plates, ions with 

different mobilities are selected to exit through the slit where the detector is placed. 

Scanning the electric field, a spectrum in mobilities is obtained. 

 

A similar configuration has been commercialised by Environics (Mikkeli, Finland) under 

the name of “aspiration type IMS” (ChemPro100). However, there are crucial 

differences between DMA and aspiration type IMS. The first difference is that the 

Environics´ device uses a much smaller sheath flow, leading to much lower resolving 

powers (Eq. 1.3). The second difference deals with the detection, which is done in a 

multichannel configuration, with additional sensors (temperature, humidity and two 

semiconductors). 

The classification in space using high sheath flow rates, instead of drift time have the 

advantage of achieving higher sensitivities since lower times are required to collect the 

charge from ions. Moreover, better resolving power might be achieved since shorter 

tubes can be used (Santos et al. 2009). 

On the other hand, the resulting DMA instrument is much bigger and expensive than 

traditional IMSs. Measurement time is also longer although the assembly of a multi-

collector can dismiss the needed time for the spectra recording. 
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Figure 1.10. Sketch of a parallel–plate ion–DMA (RAMEM). 

1.3.3 Other IMS configurations 

Recently, new IMS configurations, apart from DMA, have shown up. For instance, 

Travelling Wave IMS (TWIMS) (Shvartsburg & Smith 2008; Giles, Williams & 

Campuzano 2011) which has parallels to both FAIMS (use of a periodic waveform) and 

drift time IMS (separation by absolute mobility). Transversal Modulation Ion Mobility 

Spectrometry (TM-IMS) has been presented in (Vidal-de-Miguel, Macía & Cuevas 2012) 

and claims to reach a RP of 50, although only one publication can be found so far. 

Trapped IMS (T-IMS) has been presented by (Fernandez-Lima et al. 2011; Fernandez-

Lima, Kaplan & Park 2011) and also claim to reach RP of 80 to 120.  

However, these IMS configurations are relatively new and how to process their signals 

still needs further work. 
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1.3.4 Photo Ionization Detector 

A photo Ionization Detector (PID) is a field instrument that is relatively simple and easy 

to use. It provides rapid information (few seconds) about volatile organic compounds 

(VOCs) in air samples with high sensitivity (ppb levels). The critical component of a PID 

is a lamp, which produces photons in the ultraviolet (UV) energy range. 

The sample is collected by a small air pump and introduced into the PID where it 

passes in front of the lamp and is exposed to the UV radiation. Atoms and molecules in 

the sample that have an ionization potential (IP) lower than the energy of the UV lamp 

are ionized with some efficiency. UV lamps are typically in the energy range from 8.4 

to 11.7eV. An electric field then pulls ions to the appropriate electrode where a 

current can be measured. A diagram of a PID instrument is shown in Figure 1.11 (Daum 

et al. 2006). 

 

Figure 1.11. A PID instrument diagram (Daum et al. 2006). 

 

A PID is non-selective in the sense that all molecules below the IP are ionized and 

producing a response, therefore it provides information about the relative magnitude 

of contamination but it is unable to distinguish specific compounds. Isobutylene is 

typically used to calibrate PIDs as it is stable, relatively easy to handle, readily available 

and can be stored at high pressure. Instrument responses for other gases are then 

obtained by multiplying the reading by a correction factor which takes into account the 

response relative to isobutylene. 

Since the sensor is not selective to ionized compounds, PIDs can be used as a first 

screening tool to provide an initial warning; first responders can act and use a more 

specific sensor afterwards. The technology has been successfully applied to the 
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detection of CWAs, TICs and for environmental monitoring since the detector can 

respond to any chemical present in the air (Sferopoulos 2009). 

 

 

Figure 1.12. Example of two portable commercially available PIDs. They incorporate an 10.6eV 

UV lamp allowing the detection of VOCs with a resolution of 0.1ppm and a time response 

below 3s. Top: (MiniRAE3000) with concentration range from 0.1ppm to 15000ppm. Bottom: 

(MultiRAEplus) which, apart from the PID, incorporates additional sensors (O2  and selective 

sensors to typical toxic gases as CO, H2S, SO2, NO, NO2, Cl2, HCN, NH3 or PH3). (RAE systems, 

San Jose, USA). 

1.3.5 Metal oxide sensors (MOX) 

Metal oxide sensors (Meixner & Lampe 1996) are transducers that incorporate a 

chemical detection layer and transform a chemical interaction into an electrical signal. 

They are also usually capable of continuous measurements and are generally 

inexpensive. 

The principle of operation is based on the change in the conductance (resistance) of 

the oxide in interaction with a gas (Zohora, Khan & Hundewale 2013). The gases, which 

act as reducing or oxidizing agents at MOX operating temperatures, take part in redox 

reactions on the surface of the MOX. The change in resistance is dependent upon the 

VOC that reacts with the adsorbed oxygen on the sensing surface, as well as the metal 

oxide grain size. 

Selectivity can be gained by changing either the catalyst or the operating conditions for 

the sensor. MOXs generally function at 80-500ºC, allowing rapid and reversible 

reactions at the sensor surface and avoiding formation of a layer of chemisorbed water 

that would inhibit the reaction with VOCs. 
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Sensitivity is dependent upon the operating temperature, and careful temperature 

modulation has been shown to improve discrimination. 

Commercial sensors have typical detection limits of 5-500ppm, though this depends on 

the analyte (James et al. 2005). The time response is typically less than five seconds, 

however the recovery time depends on the operating temperature. At low 

temperatures the recovery time is around one minute. Figure 1.13 shows a simple 

diagram of a MOX. 

 

 
Figure 1.13. Basic MOX sensor diagram. (Nagle, Gutierrez-Osuna & Schiffman 1998). 

 

Metal Oxide gas sensors are usually used in combination with other gas sensors 

forming arrays of partially selective sensors. Persaud and Dodd first reported the 

design of an array of reversible but only partially selective sensors (Persaud & Dodd 

1982). This allowed increasing the selectivity of the system through the application of 

pattern recognition techniques to responses obtained from the sensor array (Scott, 

James & Ali 2006). They reported that the device, known later as an electronic nose (e-

nose) (Gardner & Bartlett 1994), could reproducibly discriminate between a wide 

variety of odours.  

Current sensor array technology devices are based upon the use of an array of several 

different chemical sensors such as conductive polymers, metal oxide, bulk acoustic 

wave and surface acoustic wave devices which can be used simultaneously for real 

time monitoring (Rock, Barsan & Weimar 2008; Vanneste & Geise 2004). 

Multiple applications have been proposed for e-noses and gas sensor arrays. However, 

most of the research has focused on food industry (Schweizerberberich, Vaihinger & 

Gopel 1994), medical diagnosis (Gardner, Shin & Hines 2000), environmental 

monitoring (Bourgeois et al. 2003) and process control (Perera et al. 2006). 



Gas sensing technologies 

  

 25

Continuous “in situ” monitoring of air, water and land quality is fundamental to most 

environmental applications. The ability and performance of gas sensor arrays under 

realistic conditions is discussed in (Bourgeois et al. 2003). One of the applications in 

the field of environmental monitoring is the detection of explosives (Yinon 2003) and 

toxic compounds (Mitzner, Sternhagen & Galipeau 2003). In (Hopkins & Lewis 2001) an 

array of composite polymer sensors is used for the detection of nerve agents in the 

presence of background VOCs such as benzene, methanol, toluene, lighter fluid, diesel 

fuel and tetrahydrafuran. 

Some commercial electronic noses with multiple configurations can be found in the 

market. The border between classical analytical systems, electronic nose technology, 

and detectors for specific substances or even single compounds becomes more and 

more fuzzy. Some manufacturers call their devices “electronic noses”, whereas others 

avoid mentioning this term even if their product operates in a similar way (Rock, 

Barsan & Weimar 2008).  

Classical electronic noses which incorporate arrays of chemical sensors are 

manufactured by several companies, for instance Airsense Analytics (Schwerin, 

Germany), Alpha MOS (Toulouse, France), AppliedSensor (Reutlingen, Germany) or 

Smiths Detection (Watford, England), among others. 
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Figure 1.14. Commercial e-noses with classical configuration. (a) (Cyranose320) by Smiths 

Detection is a portable e-nose with 32 nanocomposite sensors. (b) (FOX4000) by Alpha MOS 

incorporates 18 MOXs mainly for VOCs detection. (c) (ACM) by AppliedSensor is an Air 

classification module for detecting traffic-related gases an preventing them for entering the 

automotive cabin. (d) (PEN3) by Airsense Analytics includes 10 different MOXs single thick film 

sensors. 

 

The ACM Air Classification Module by AppliedSensor has been demonstrated to be 

highly successful (>100000 systems sold) to detect and quantify potentially harmful 

gases such as nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic 

compounds (VOCs), providing fast responses (around one second), through the 

combination of MEMS (microelectromechanical systems) and signal processing, at low 

cost. 

Additionally, configurations combining different sensing technologies in one 

instrument can also be found in the market (Figure 1.15). 

(a) 

(b) 

(c) 
(d) 
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(a)

(b)

(a)

(b)

 
Figure 1.15. Commercial instruments which include different sensing technologies. (a) (GDA2) 

by Airsense Analytics includes an ion mobility spectrometer (IMS), a PID, an electrochemical 

cell (EC) and 2 MOXs. (b) (RQbox) by Alpha MOS is a field based e-nose for odour and pollutant 

gases monitoring. It includes an EC, a PID and different MOXs. 

1.4 Introduction to signal processing for IMS spectra 

(IMS & DMA) 

Current instrumentation produces large amounts of data which need to be analyzed. 

Many times, depending on the application, it is not possible to analyze these data 

manually, for instance in continuous monitoring or real-time applications. Moreover, 

frequently, the relevant information provided by the instrumentation is hidden in 

complex signals or spectra. The detection and extraction of this relevant part in many 

cases is not trivial. With this regard, multivariate data analysis tools have been 

demonstrated useful for this purpose in numerous applications and diverse settings.  

While chemometrics and pattern recognition techniques have been largely applied in 

other instrumental techniques (Non-dispersive infrared sensors, e-noses, GC-MS, etc), 

the application to IMS techniques has been limited. 

As pointed before (section 1.3.1), compared to gas chromatography, IMS1 provides 

worse selectivity since wider peaks appear in the spectra, and this effect is aggravated 

by the presence of humidity, thus usually peaks appearing overlapped. 

IMS can be considered as a technology related to electronic noses and gas sensor 

arrays, in the sense that the technique exhibits only a moderate selectivity. Instead of 

having an array of partially selective sensors with overlapped specifities, the response 

of the instrument corresponds to a spectrum of multiple points (drift times or 

mobilities) where adjacent points are correlated. Therefore, from the point of view of 

                                                 
1
 Henceforth, when using the term IMS, we refer to the general concept, including any particular 

configuration, as DMA for instance, belonging to the family of ion mobility based techniques. 
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data analysis, the response at each spectral point is interpreted as if it was the 

response of a particular sensor of a hypothetical array.  

 

While limited selectivity is an issue, IMS spectra are plagued with other problems that 

can be corrected or at least partially compensated with signal and data processing. 

Spectra are often noisy (this is always the case when analytes are close to the 

detection limit), present a certain baseline which should be removed, and are sensitive 

to changes in humidity, pressure and temperature which makes the signal unstable, 

with peaks usually shifted leading to misalignments. Therefore, previously to applying 

multivariate techniques for analyzing IMS spectra qualitatively and quantitatively, a 

certain pre-processing of the signals is required. 

1.4.1 Pre-processing IMS spectra 

1.4.1.1 Filtering and baseline removal 

Noise is a very common problem in chemical instrumentation which may lead to the 

deterioration of accuracy and precision, thus affecting negatively qualitative or 

quantitative results. Many methods, such as mean filtering, exponential smoothing, 

Savitzky–Golay (Savitzky & Golay 1964), and digital filtering in general, have been used 

to cope with noise problems. Recently, wavelet techniques have got more interest 

(Barclay, Bonner & Hamilton 1997; Shao, Leung & Chau 2003; Coombes et al. 2005). A 

formal interpretation of the term “de-noising” is given in (Donoho 1995), where it is 

shown how wavelets transforms may be used to optimally “de-noise” signals. 

When removing noise from signals, baseline removal should be addressed specifically. 

While filtering of high frequency noise is a well established topic in the literature, the 

baseline problem (low frequency noise) is a relatively complicated one. Conventional 

frequency analysis cannot give a theoretic description of the baseline information, thus 

it is difficult to distinguish between baseline and other signals. 

 

Approximate estimation of baseline has been the general method. When dealing with 

a single peak that requires the estimation of a local baseline, a straight line is used to 

connect the two ends of a signal peak. However, sometimes is difficult to set up clearly 

where the peak deviates from the baseline to select the first and last point of this local 

estimation of the baseline. The straight line is taken as the baseline and further 

calculation of peak area or peak height for substance quantitation is based on it. 

A more general method that can be used to correct the baseline of the full spectrum 

consists in fitting a polynomial of a certain order to the first and last interval of the 
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spectrum, where usually no relevant peaks appear. However, if the straight line or the 

polynomial does not fit the real baseline, the baseline estimation will lead to errors.  

Recently, new approaches have been proposed to make a better estimate of the 

baseline. Although some parameters must be set initially, the main advantage of the 

new approaches is that signals are processed fully automatically through an iterative 

procedure (Komsta 2011). 

For instance, in (Gan, Ruan & Mo 2006) the automatic thresholding method is used. 

Initially a polynomial of a certain order is used to fit the signal. All parts of the signal 

above the fitted line are cut to this line, and then iteratively new fittings are computed 

resulting in lines lying in lower and lower part of the signal. After several iterations, 

when a convergence criterion is reached, only the baseline remains, which then can be 

substracted from the signal. 

The airPLS algorithm (available for R and MATLAB) is presented in (Zhang, Chen & 

Liang 2010). The method works by iteratively changing weights of sum squares errors 

(SSE) between the fitted baseline and original signals, and the weights of the SSE are 

obtained adaptively using the difference between the previously fitted baseline and 

the original signals. 

An alternative approach based on asymmetric least squares is presented in (Peng et al. 

2010). By means of the similarity among the multiple spectra, the algorithm estimates 

the baselines by penalizing the differences in the baseline corrected signals. In 

addition, a relaxation factor which measures the similarity of the baseline corrected 

spectra is incorporated into the optimization model and an alternate iteration strategy 

is used to solve the optimization problem. 

Since these algorithms are quite general, they can be applied to different spectra and 

signals, including chromatograms, vibrational spectroscopy, nuclear magnetic 

resonance (NMR) spectroscopy, Raman spectra and IMS spectra, for instance. 

1.4.1.2 Peak alignment 

Alignment of spectra is critical for analysis involving the comparison of multiple 

spectra. Analytical sensor data resulting from complex chemical mixtures can often be 

misaligned to time-varying biases resulting from instrument variability and shifts. In 

addition to the need for time alignment, data from IMS may be shifted when 

comparing various datasets due to the effect of temperature, pressure and humidity 

on the mobility of ions. 

With this regard, the effect of variations in temperature and pressure can be 

compensated using (Eq. 1.2) when spectra are expressed as function of the ion 

mobility, which is inversely proportional to the drift time. However, this first order 
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correction may be not enough for some applications. Therefore additional techniques 

should be used before analyzing IMS spectra qualitatively and quantitatively. 

Different algorithms have been proposed in the literature, for instance dynamic time 

warping (DTW) (Ramaker et al. 2003; Tomasi, van den Berg & Andersson 2004) or 

correlation optimized warping (COW) (Tomasi, van den Berg & Andersson 2004; Skov 

et al. 2006), which have been demonstrated to be effective on chromatographic data 

and also have been employed for solving simple NMR alignments with satisfactory 

results.  

The Interval Correlation Optimised Shifting algorithm (icoshift) (Savorani, Tomasi & 

Engelsen 2010) has recently been introduced for the alignment of nuclear magnetic 

resonance spectra. The method is based on an insertion/deletion model to shift 

intervals of spectra/chromatograms and relies on an efficient Fast Fourier Transform 

based computation core that allows the alignment of large data sets in a few seconds 

on a standard personal computer. Computation time is significantly reduced compared 

to the COW algorithm. Moreover, icoshift proved to perform better than COW in terms 

of quality of the alignment (simplicity and peak factor), but without the need for 

computationally expensive optimisations of the warping meta-parameters required by 

COW. The method has been proved to be suitable for chromatographic data (Tomasi, 

Savorani & Engelsen 2011). 

The alignment of IMS data usually requires a rigid shift in the drift time (or mobility) 

dimension due to linear changes in instrument detection (Krebs et al. 2006). This rigid 

shift ensures that spectra are not distorted, thus not losing their physical meaning. 

Since icoshift is based on intervals, the distortion in the signals is local and significantly 

reduced. Thereby, this method could be useful to align IMS spectra as it is shown in 

Figure 1.16. 

 
Figure 1.16. Example of pre-processing applied to IMS spectra. (a) Collection of IMS spectra 

with baseline and peaks shifted along measurement time due to changes in humidity and 

temperature. (b) IMS spectra with baseline removed through polynomial fitting and spectra 

aligned using the icoshift algorithm. 
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1.4.2 Multivariate data analysis 

Once spectra have been pre-processed properly (filtering, baseline removal and 

alignment), multivariate signal processing methods can be applied in order to extract 

the relevant information needed for the specific application. 

1.4.2.1 Dimensionality reduction and feature extraction 

When working with large sensor arrays or spectrometers, since it is not uncommon to 

have hundreds or thousands of sensors or spectral points, the dimensionality of the 

data is large. However, the number of analysis that can be performed usually is scarce, 

thus resulting in a low number of samples. It is well-known that the performance of 

predictive (either qualitative or quantitative) models worsens when the ratio 

dimensionality/samples increases beyond a certain value. This is the well known curse 

of dimensionality (Bellman, 1961). Moreover, when using this kind of instrumentation, 

sensor measurements and spectra provide highly correlated and redundant 

information. 

A dimensionality reduction step is useful for compressing and retaining the essential 

information from the data. After dimensionality reduction, data is more easily 

displayed and analyzed than each of the variables individually. Furthermore, essential 

information often lies not in any individual variable (sensor or spectral point) but in 

how the variables change with respect to one another; that is, how they co-vary. In this 

case, the information must be extracted capturing trends in the data. 

Different algorithms have been proposed in the literature for dimensionality reduction 

and extraction of relevant information. Principal Component Analysis (PCA) (Jolliffe 

2002; Wold, Esbensen & Geladi 1987) is probably the most used tool for 

dimensionality reduction and information extraction. PCA is an unsupervised 

exploratory analysis method which finds combinations of variables, or factors, which 

describe major trends where variance in the data is maximized. These factors are 

mutually orthogonal and form a new basis where data generally can be visualized 

more easily. It is found that data can be adequately described using far fewer factors 

than original variables with no significant loss of information. Additionally, PCA can 

find combinations of variables which are useful descriptions of particular events. 

Moreover, these combinations of variables are often more robust indicators than 

individual variables. 

Multivariate curve resolution alternating least squares (MCR-ALS) (Tauler, Kowalski & 

Fleming 1993) is an iterative algorithm that provides a bilinear decomposition of the 

original data matrix and which converges to a local solution based on the minimization 

of the squared sum of residuals. While in PCA the loadings are orthogonal, in MCR 
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other constraints are introduced: typically non-negativity of the loadings and/or 

scores. This algorithm is useful to refine initial estimations (e.g. found using PCA) since 

knowledge of the system is incorporated within the iterative process, thus meaningful 

solutions are obtained. The reader is referred to section 1.4.2.3 for more details. 

 

Unlike PCA and MCR-ALS which only use the responses from the instrument, other 

methods also incorporate information about the category or group each sample 

belongs to, also known as class. 

Representing class information using a 1-of-K coding scheme is usually convenient. 

Given a class Cj, t is a vector of length K where all elements tk are zero except element 

j, which takes value 1. Each sample has associated its vector t. 

For instance, Linear Discriminant Analysis (LDA) (Fisher 1936) finds linear discriminant 

functions (LDF), which are linear combinations of the original variables, with the 

objective to maximize the ratio of the between-class scatter and the within-class 

scatter, thus maximizing class separability at the same time that attempts to minimize 

dispersion within each class.  

Class information is also incorporated in Partial Least Squares Discriminant Analysis 

(PLS-DA). In (Barker & Rayens 2003) it is shown that PLS-DA is essentially the inverse-

least-squares approach to LDA producing similar results but incorporating the PLS (see 

section 1.4.2.4) advantages of noise reduction and variable selection. This method tries 

to maximize the correlation between the instrumental responses and the classes. 

 

Previous methods are based on linear functions of the input variables (instrumental 

responses). Although these methods have significant limitations particularly for 

problems involving input spaces of high dimensionality, they have nice analytical 

properties and form the basis for more sophisticated methods (Bishop 2006), such as 

nonlinear methods; for instance, artificial neural networks (ANN) and support vector 

machines (SVM).  

1.4.2.2 Substance classification 

The goal in classification is to take an input vector (instrumental response) and to 

assign it to one of K discrete classes Ck, where k is an index from 1 to K. In the most 

common scenario, the samples are assigned to only one class. The input space is 

thereby divided into decision regions whose boundaries are called decision boundaries 

or decision surfaces (Bishop 2006). These boundaries can be obtained from linear or 

nonlinear methods, including those which perform dimensionality reduction and 

feature extraction, such as LDA, PLS-DA, ANN and SVM. 
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Classification is a supervised method where samples obtained under known conditions 

(training dataset) are used to build a model. Using this model, unknown samples can 

be classified automatically. 

The simplest measure of classifier performance is the classification rate, the 

percentage of samples assigned to the correct class. 

The k-nearest neighbours (KNN) algorithm (Hastie, Tibshirani & Friedman 2003) is a 

simple and supervised technique to generate non-linear boundaries between classes in 

the training dataset. KNN finds the closest k samples to the new sample and assigns 

the predominant class to it. Typically the distance metric is either angular or Euclidean. 

The Euclidean distance (dij) is defined as: 

 

(Eq. 1.7) ( ) ( )Tjinjiij xxIxxd −−= ··  

 

 where x is a sample in a n-dimensional space, In is a n-dimensional unity matrix. The 

angular distance (dθij) is defined as: 
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The KNN algorithm is normally used after dimensionality reduction (PCA, LDA, PLS-DA), 

thus applying the classifier over the reduced space.  

1.4.2.3 Blind source separation 

Multivariate Curve Resolution (MCR) techniques, belonging more generally to the class 

of algorithms known as Blind Source Separation (BSS) techniques in Signal Processing 

(Cichoki et al. 2009), aim to recover the evolution of the source signals (in our case, 

concentration profiles) and the mixing matrix (spectral features) without any prior 

supervised calibration step. 

While BSS techniques (Amari, Cichocki & Yang 1996; Bell & Sejnowski 1995; Hyvärinen 

& Oja 2000) are popular in other domains (Young 2005; Vigário et al. 1998; Vigário 

1997; Hyvärinen 1999; Back & Weigend 1997), their application for embedded 

intelligence in chemical instrumentation is still limited. However, in some conditions, 

basically linearity, BSS may fully recover the concentration time evolution and the pure 

spectra with few underlying hypothesis. This is extremely helpful in conditions where 

non-expected chemical interferences may appear, or unwanted perturbations may 

pollute the spectra. Moreover, in real world scenarios, spectra may become messy 
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featuring overlapping peaks and bad signal-to-noise ratio (Hill & Simpson 1997). In 

these conditions, BSS techniques are an option for spectra deconvolution and 

exploratory data analysis. 

BSS methods are typically based on the assumption that the observed signals are linear 

superpositions of underlying hidden source signals, thus spectra and concentration 

profiles are obtained under the assumption of linearity: 

 

(Eq. 1.9) D = C·S
T 

+ E  

 

D is the data matrix (dimensions M x N) containing the observed signals from the 

instrument. Each row is a different spectrum/observation and each column is a 

different variable/sensor/component. C has dimensions M x K and contains the 

concentration profiles (concentration vs. time) related to the K pure components. S 

has dimensions N x K and contains the spectra associated with each pure component. 

E is a matrix of residuals (dimensions M x N). 

We observe the data matrix D and we are interested in obtaining C, that is, the 

evolution in time of the underlying components present in the sample. BSS techniques 

provide C without any prior knowledge about S. That means C is obtained without any 

prior knowledge about the composition of the mixture. BSS are unsupervised 

techniques that give us C and S, apart from a scale factor, and no calibration is needed.  

 

While techniques such as PCA calculate factors based on mathematical properties such 

as capturing maximum variance and orthogonality, the factors are often difficult to 

interpret because they are generally not directly related to the chemical process. For 

example, PCA loadings of a data set of measured spectra generally are not pure 

component spectra. Instead, the loadings are typically linear combinations of pure 

analyte spectra that have positive and negative intensities. 

In other BSS methods in the signal processing domain, the source signals (pure 

chemicals in the present work) are typically assumed to be statistically independent. 

This is the case for Independent Component Analysis (ICA) (Hyvärinen & Oja 2000). ICA 

is a popular technique that has been successfully applied in a large number of 

applications (Young 2005; Vigário 1997; Vigário et al. 1998; Hyvärinen 1999; Back & 

Weigend 1997): separation of artifacts in Magnetoencephalography (MEG) data, 

finding hidden factors in financial data, noise reduction in images or 

telecommunications. However, it can not be applied to IMS spectra since the 

assumption of statistical independence among the source signals is not fulfilled in 

general. In many occasions, reactions taking place among the analytes (either inside or 
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outside the instrument), produce correlated time evolutions that violate the 

assumption of statistical independence. Therefore, alternative BSS techniques should 

be applied to IMS spectra. 

A number of proposals have been originated in the chemometrics field. For instance, 

SIMPLISMA (SIMPLe-to-use-Interactive Self-modeling Mixture Analysis), proposed by 

Windig (Windig & Guilment 1991), has been applied to IMS data previously (Buxton & 

Harrington 2001; Cao, Harrington & Liu 2005). The algorithm looks for vectors 

maximally decorrelated and maximally pure. A pure variable is defined as that which 

has only contributions from one of the components in the sample. A geometrical 

interpretation of the purity concept is given in Figure 1.17 and in the original paper. 

 

 
Figure 1.17. Three-dimensional plot containing thirteen mixtures of up to three components. 

Samples 11, 12 and 13 contain pure substances. Due to the fact that the concentrations of the 

three components add up to one, all the points representing the mixtures lie in a plane. 

Extracted from (Windig & Guilment 1991). 

 

Another widely used algorithm is MCR-ALS proposed by Tauler (Tauler, Kowalski & 

Fleming 1993). An abundant literature exists on the use of MCR-ALS for resolving linear 

second order data and the algorithm has been applied to spectrophotometric (Azzouz 

& Tauler 2008; Jaumot et al. 2005), voltammetric (Antunes et al. 2002; Esteban et al. 

2000) or chromatographic datasets (Tauler 1995). However, as far as we know, the use 

of MCR-ALS to resolve IMS datasets has been scarcely reported (Chen 2003; Cao & 

Harrington 2004; Buxton & Harrington 2001; Cao, Harrington & Liu 2005; Lu, O'Donnell 

& Harrington 2009; Chen 2008). Only a few works combining IMS and MCR have been 

published: regarding explosives detection (Buxton & Harrington 2001; Cao, Harrington 

& Liu 2005), drug detection (Lu, O'Donnell & Harrington 2009), determination of active 

principal ingredients (APIs) at low concentrations in pharmaceuticals (Zamora & Blanco 

2012; Armenta & Blanco 2012; Armenta & Blanco 2011) and improved classification 

(Chen & Harrington 2008). 
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For instance, in (Armenta & Blanco 2011) it is shown the combination of IMS with 

MCR-ALS as an effective methodology for the detection of benzodiazepines in binary, 

ternary and higher order mixtures when peaks appear overlapped. 

 

In contrast to SIMPLISMA, a single-step algorithm, MCR-ALS is an iterative algorithm 

which requires initial estimations. Many different strategies could be used to obtain 

first estimations such as: singular value descomposition (SVD) (Golub & Reinsch 1970), 

PCA, evolved factor analysis (EFA) (Keller & Massart 1992) or SIMPLISMA (Windig & 

Guilment 1991; Windig et al. 2005). The number of components K can also be selected 

using SVD and visual inspection of C and S obtained from SIMPLISMA.  

For a given dataset, the solution of the bilinear decomposition (Eq. 1.9) is not unique 

and there is an infinite number of solutions for C and S due to the rotational (Jaumot & 

Tauler 2010) and scale (Tauler, Smilde & Kowalski 1995) ambiguities. 

Scale ambiguity is not a serious problem in qualitative identification and an arbitrary 

normalization is usually applied either to C or S. In order to minimize rotational 

ambiguity and reduce the space of possible solutions, some constraints must be 

introduced (Gemperline & Cash 2003; Juan et al. 2000; Juan et al. 1997). This also 

results in an improvement in selectivity and thus in the interpretation of the results. 

Basic constraints are: non-negativity, unimodality, closure, selectivity or local rank. 

These kinds of constraints are also called natural constraints since they frequently have 

a physical and chemical meaning and are frequently fulfilled by natural systems. Hard 

constraints modeling underlying physico-chemical processes (Juan et al. 2000) or the 

spectra shape can also be imposed in the solution. 

 

The algorithm assumes that experimental data follow a bilinear model consisting of the 

decomposition of a dataset into the product of two sub-matrices of reduced sizes. In 

matrix form, this model can be written as in (Eq. 1.9). Thus, from initial estimations, 

MCR-ALS optimizes and solves the concentration profiles and spectra matrices 

iteratively through two least-squares steps: 

 

(Eq. 1.10) DCST +=   

 

(Eq. 1.11) ( )+= TSDC   

 

Where +C  and  ( )+TS  are the pseudoinverse of the concentration and spectra matrix 

respectively. Figure 1.18 shows the MCR-ALS scheme used in this thesis. Initially, the 

original data matrix is filtered using principal component analysis (PCA) with K 
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components. Then, the ALS loop starts with initial estimations for spectra or 

concentrations profiles. 

In each iterative step, different constraints can be used within the main ALS loop after 

computing (Eq. 1.10) or (Eq. 1.11). Convergence of the algorithm is assessed 

calculating the root mean squared error (RMSE): 

 

(Eq. 1.12) 
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where Dm,n represents the elements in the experimental data matrix D, and 

( ) nm

T

nm SCD ,, ·ˆ =  represents values computed by using concentration profiles and 

spectra obtained from the MCR-ALS method. The algorithm stops when the relative 

differences between RMSE for successive iterations is small enough (0.1%) or the 

maximum number of iterations is achieved. Typically the algorithm converges to local 

minima depending on the initial conditions. 
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Figure 1.18. Block diagram of the MCR-ALS procedure applied to IMS spectra. 
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When having little knowledge about a mixture, it is seen that different multivariate techniques 

can be applied in order to obtain a qualitative estimation of the instrumental response (in 

particular IMS).  

1.4.2.4 Quantitative prediction 

Similar to the classification problem, quantitative prediction of samples is a supervised 

problem. Samples obtained under known conditions are required in order to build a 

calibration model, but instead of assigning a class to new samples, a quantitative value 

is assigned, which usually is the concentration of the substance. 

 

In most of the applications, IMS or DMA instruments are used only as qualitative 

detectors and only the absence or presence of the target substance is of interest. 

However, in some other applications in certain scenarios, substance quantitation can 

become very important. 

 

Quantitative determination of analytes with IMS is typically univariate. A calibration 

could be performed using the information of peak area or height and then applying an 

appropriate fitting function, which typically is polynomial. 

However, such techniques are not useful if peaks are overlapped (unless a previous 

deconvolution is done). While it is possible to keep the instrument in a linear regime 

for low input concentrations, this seriously damages the dynamic range (ratio of 

maximum concentration to the limit of detection) of the instrument for most analytes. 

Moreover, if peaks behaviour is non-linear as concentration is increased, and more 

than one peak is related to the same substance, quantitation is degraded if only one of 

the peaks is used. As it can be seen in Figure 1.8, a calibration model based on the 

protonated monomer is very sensitive at low concentrations and provides no 

information at high concentrations; on the other hand, a calibration model based on 

the protonated-bound dimer is quite the opposite. Therefore, multivariate calibration 

techniques appear to be a good choice dealing with non-linearities and peak 

overlapping. 

 

Different general purpose multivariate calibration techniques have been proposed in 

the literature: multiple linear regression (MLR) (Wise et al. 2006), principal component 

regression (PCR) (Vigneau et al. 1997) or partial least squares (PLS) (Wold, Sjöström & 

Eriksson 2001; Stone & Brooks 1990), among others. 

These techniques are based on a linear relationship between the matrix X of spectral 

responses and the matrix Y of concentrations: 
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(Eq. 1.13)  Y=X·B 

 

being B the matrix of regression coefficients which are obtained in the calibration step. 

Although the relationship between X and Y is linear, non-linearities can be modelled as 

well. The methodology to obtain B depends on the technique into consideration. 

MLR, also known as ordinary least squares (OLS), is an easy way to perform a 

multivariate calibration; however, in spectroscopy, usually the number of samples is 

less than the number of variables and highly collinear variables are often found. In 

such conditions MLR is very sensitive to overfitting, which means that the calibration 

model may fit very well data but fails when used to predict the properties of new 

samples. 

PCR is one way to deal with the problems of MLR. Instead of regressing the properties 

of interest (concentrations) onto a set of the original response variables (spectral 

response variables), the properties are regressed onto the principal component scores 

of the measured variables which, by definition, are orthogonal and therefore well-

conditioned. Because it directly addresses the collinearity problem, PCR is less 

sensitive to overfitting than MLR, but one could overfit if the number of components 

to retain in the model is too high. In this sense, the PCR solution converges to the MLR 

solution as more components are added to the calibration model. 

PLS regression is related to both MLR and PCR. PLS attempts to find factors which both 

capture variance (MLR case) of the spectral responses and achieve correlation (PCR 

case) between the spectral responses and the magnitude to be predicted 

(concentrations). Nevertheless, since loadings (in PCR) or latent variables (in PLS) are 

obtained from linear combinations of the original variables, the interpretation of the 

regression coefficients is usually difficult in such techniques. Moreover, the regression 

coefficients can have negative values, which have no sense from a physical or chemical 

point of view, and leading to compensation effects which increase even more the 

difficulty of physical or chemical interpretation. Furthermore, despite the fact that PLS 

algorithm is able to handle slightly non-linear data by increasing the number of latent 

variables in the calibration model, this approach is less successful for datasets 

containing moderate and severe non-linearities (Yang, Griffiths & Tate 2003). 

Several variants of linear PLS have been developed so as to deal with non-linear 

datasets (Rosipal 2008), for instance using splines (Wold 1992) or using a polynomial of 

a certain order (Wold, Kettaneh-Wold & Skagerberg 1989; Baffi, Martin & Morris 

1999). 
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However, latent variables remain difficult to interpret and for a physical and chemical 

interpretation of the process, MCR-ALS should be used instead as pointed in section 

1.4.2.3. 

  

Multivariate calibration has been applied to IMS only scarcely (Zheng, Harrington & 

Davis 1996; Fraga, Kerr & Atkinson 2009; Ochoa & Harrington 2005; Zamora & Blanco 

2012; Lu, O'Donnell & Harrington 2009). 

Recently, (Fraga, Kerr & Atkinson 2009) compared the performance of  PLS and PCR 

with univariate regression based on peak area in the quantification of TNT and RDX in 

explosives. It is shown that multivariate calibration methods can be applied directly for 

quantitative prediction in IMS spectra and they provide better IMS quantitative 

precision and accuracy than univariate methods even when the peaks are resolved. 

Also recently, Zamora et al. (Zamora & Blanco 2012) showed how two active principal 

ingredients (API) at low concentrations measured with IMS were also successfully 

quantified using PLS models, although peaks appeared overlapped. 

1.5 Introduction to source localization algorithms 

The environments where chemicals could propagate are very diverse and include 

underwater, above ground, below ground and enclosed spaces. Moreover, the 

dispersion of these chemicals in real scenarios is usually a very complex process where 

different factors participate, mainly: atmospheric stability, fluid flow direction and 

velocity, temperature, humidity and the presence of obstacles. Therefore, it is almost 

impossible to design a general source localization strategy capable to perform 

efficiently under all conditions. 

Odour source localization is the act of finding the location of a volatile chemical source 

in the environment (Kowadlo & Russell 2008). Solving the source localization problem 

could be very useful for a large number of potential applications, often humanitarian: 

finding the source of dangerous substances such as airborne biological material and 

hazardous chemicals in industrial and other settings; detecting materials such as plant 

matter and drugs in a customs or quarantine application; searching for survivors in 

earthquake-damaged buildings, landslides or avalanches; detecting fire in its initial 

stages; locating unexploded mines and bombs; or detection and localization of 

clandestine drug/explosive laboratories, among many others.  

 

A great number of approaches have been proposed in the literature trying to solve the 

source localization problem. Being these approaches implemented in both simulated 
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and practical experiments, with a wide variety of platforms, in several environments 

and for different applications. 

Some reviews have also been published in order to group the different algorithms in 

categories, which is really useful so as to have an overview of the current state-of-the-

art methods. 

The basic issues regarding gas source localization includes the tasks of gas finding, gas 

tracking and source declaration. However, some strategies deal with gas distribution 

mapping rather than gas tracking. In the review published by Lilienthal et al. (Lilienthal, 

Loutfi & Duckett 2006) all these issues are covered, focusing mainly on experimental 

work and airbone chemical sensing. The paper presents a detailed summary of 

different methods and emphasizes the difficulty of the source localization problem in a 

real environment. 

The different source localization strategies could be grouped based on different 

criteria, but probably the most comprehensive classification provided in the field is the 

one published by Kowadlo and Russell (Kowadlo & Russell 2008). In this paper, the 

different methods are grouped depending on the environmental conditions (fluid flow) 

and the localization method (taxonomic classifications). This provides a framework in 

which to evaluate the methods and compare them qualitatively. The article presents a 

survey of the existing approaches (until 2008) implemented in both simulation and 

practical experiments.  

The more recent review of methods is the one published by Ishida et al. (Ishida, Wada 

& Matsukura 2012). It provides a brief history, the current trends of research and an 

overview of the existing methods for localizing chemical sources including useful 

references. Moreover, future directions and open issues are commented in the paper. 

With this regard, little attention has been paid to the problem of localizing multiple 

time-varying sources, which can be of different kinds (physical, chemical, biological, 

electromagnetic), using multiple mobile robots (swarms of robots) and avoiding 

obstacles and collisions with other robots. In (Mcgill & Taylor 2011) general solutions 

are provided to address these issues; however, the results come mainly from 

simulations and, as it is stated in the paper, no common set of validation cases and 

reference algorithms are available for comparative analysis. 
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Figure 1.19. Venn diagram of the reported odour localization approaches until 2008. (Kowadlo 

& Russell 2008). 

 

In the present section the difficulties associated to odour dispersion in a real 

environment are stated and the existing approaches are summarized taking as a basis 

the classifications provided by (Kowadlo & Russell 2008) but also considering the other 

reviews in the field (Lilienthal, Loutfi & Duckett 2006), (Mcgill & Taylor 2011) and 



Introduction to source localization algorithms 

  

 43

(Ishida, Wada & Matsukura 2012). At the end of the section, open issues and directions 

for future work are pointed. 

1.5.1 Odour dispersal 

The success in solving the source localization problem depends on how the given 

algorithm is suited to the environmental conditions, which determine how the odour is 

dispersed. The Reynolds number provides a measure of the level of turbulence in a 

fluid flow. 

At low Reynolds numbers dispersion is dominated by viscosity and odours are 

dispersed by diffusion creating smooth concentration gradients. The maximum 

concentration is found at the source location and it decreases following a Gaussian 

distribution as the distance to the source increases (Hinze 1975). These are the 

conditions encountered by bacteria and where there is no fluid flow. 

At medium to high Reynolds numbers, dispersion is dominated by turbulence. In these 

cases, odour dispersal is considerably faster than molecular diffusion, creating an 

odour plume downwind from the source (Figure 1.20). Under turbulent and time-

varying flows, plume can meander and creates patches of odour gas, thus appearing 

intermittent regions with high concentration (much higher than the average) with 

steep gradients at their edges. Moreover, instantaneous concentration gradients 

fluctuate in intensity and direction (Figure 1.21 and Figure 1.22). These are the 

conditions which we should expect in a real environment where robots are deployed 

so as to localize gas chemical sources. 
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Figure 1.20. Plume released at different fluid flows with Reynolds numbers based on the 

relative velocity to the flow. (a) 0, (b) 227, (c) 454, (d) 908, (e) 1816. (Webster & Weissburg 

2001). 

 

 
Figure 1.21. Example of instantaneous concentration fluctuations encountered in a turbulent 

fluid flow at different distances downwind (x) and crosswind (y) from the source. 

Concentrations are normalized to the source intensity (C0) and distances are normalized to the 

flow depth (H). (Webster & Weissburg 2001). 
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Figure 1.22. Example of sample concentration time series, comprising quantized values at 10Hz 

from a detector at a fixed point downwind of a continuously emitting source. (a) 80m from the 

source at a point off the plume centerline (y/σy=1). (b). 620m from the source and in the 

plume centerline (y/σy=0). In the graph it is shown, the mean concentration (<C>) and standard 

deviation σC of each time series, and the fluctuation intensity (σC/<C>), skewness (S) and 

kurtosis (K). Extracted from (Mylne & Mason 1991). 

 

Although in a turbulence dominated flow the instantaneous characteristics of the 

plume are patchy, previous works have demonstrated that the time-averaged plume 

concentration follows a Gaussian distribution across the flow direction (Sutton 1947; 

Fackrell & Robins 1982; Crimaldi, Wiley & Koseff 2002; Webster & Weissburg 2001). 

This model has been widely used for its simplicity and is appropriate when dispersion 

is governed by atmospheric turbulence. Atmospheric turbulence is determined by the 

stability of the atmosphere and the height above the surface layer (Bakkum & Duijm 

2005). The basic expression for the Gaussian Plume Model (GPM) for a continuous 

release is: 
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where C is the mean concentration in g/m3 in a location with coordinates x 

(downwind), y (crosswind) and z (vertical); q is the continuous source release rate in 

g/s; Ua is the mean wind speed in the downwind direction in m/s; h is the plume height 

in metres; and σy, σz are the diffusion coefficients (in metres) modelled as: σy=a·x
b, 

σz=c·x
d, where a, b, c and d are parameters obtained from a table (Bakkum & Duijm 

2005) and their values depend on the atmospheric conditions which can be organized 

in six levels (from A-very unstable to F-very stable). In (Eq. 1.14), the resulting 

concentration distribution is due to the transport of chemicals by advection (due to 

the mean wind speed) and due to concentration gradients within the plume width 

(lateral dispersion due to diffusion, but also turbulent mixing). The decay of mean 

concentration is exponential, thus concentration levels below the sensor detection 

limit are achieved very fast. 

 

(a) (b)(a) (b)

 
Figure 1.23. Mean plume characteristics in a turbulent flow at different distances downwind 

(x) and crosswind (y) from the source. Concentrations are normalized to the source intensity 

(C0) and distances are normalized to the flow depth (H). (a) Time-averaged concentration field. 

(b) Standard deviation of the concentration field. Adapted from (Webster & Weissburg 2001). 

 

The GPM only takes into account the time-averaged characteristics of a plume 

dispersed in a turbulent flow, but the sensors will be navigating and sensing the 

instantaneous plume characteristics. In this thesis, we assume that the sensor time 

response is much faster than the typical 10 min time-averages considered in the GPM. 

For short-time-scale studies, the chemical filament movement can be modelled as a 

random walk (due to velocity fluctuation) superimposed on the downflow advection 

(due to mean velocity); this is the idea published in (Farrell et al. 2002). An alternative 

idea to model the unpredictable and random fluctuations in concentration due to 

turbulent stirring and plume meandering is to consider the works by Eugene Yee et al. 
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(Yee, Wang & Lien 2009; Yee 2009; Yee 2008; Yee & Biltoft 2004; Yee & Chan 1997). 

They have carried out empirical studies on plume statistics in urban areas using a scale 

fluid model in a variety of plume conditions and urban geometries. Their results prove 

that instantaneous concentration fluctuations fit very well the clipped-gamma 

probability density function (PDF) over a very wide range of atmospheric conditions 

(from moderately convective to extremely stable stratification) and with receptor 

positions in both lateral and vertical cross-sections through the plume at downwind 

distances between 12.5m to 1km from the source (Yee & Chan 1997). The reader is 

referred to chapter 6 for the details. 

1.5.2 Diffusion dominated fluid flow 

In initial works in the field of odour localization in the 1990s, it was assumed that 

odour dispersion was dominated by diffusion creating a smooth chemical gradient 

which was used by a robot to move towards the source. This searching strategy is 

known as “chemotaxis” (Bell & Tobin 1982; Louis et al. 2008). The first implementation 

in a mobile robot was done by (Rozas, Morales & Vega 1991), and with swarm 

simulations by (Genovese et al. 1992), (Sandini, Lucarini & Varoli 1993) and (Buscemi & 

Prati 1994). Although these works were pioneering, opening a new field of study, the 

assumption of a chemical gradient is inaccurate in airborne chemical sensing, since at 

least a weak fluid flow is always expected to be found. However, in certain scenarios, 

for instance underground, the chemical gradient assumption is valid. Finding a 

chemical source underground has important applications, as identifying gas/fuel leaks 

from pipes and storages facilities, finding unexploded mines, victims of avalanches or 

earthquakes. With this regard, algorithms have been published to localize odours 

underground using a buried probe moved by a robotic manipulator in two (Russell 

2004b) and three dimensions (Russell 2004a; Russell 2011).  

Other works based on a concentration gradient, but using sensor networks have been 

published recently (Fiorelli, Bhatta & Leonard 2003; Zhang, Sobelman & He 2009). The 

ability to find multiple sources is also tested (Borah & Balagopal 2004). 

1.5.3 Turbulence dominated fluid flow 

The fluid flow could be affected by forced ventilation or convections due to 

temperature gradients; moreover, the presence of obstacles could complicate the 

plume dispersion. 

Although chemotaxis was initially defined as “orientation or movement of an organism 

in relation to a chemical gradient in a diffusion dominated flow”, more recent works 
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have extend the definition to “orientation or movement in relation to chemical agents” 

(Kowadlo & Russell 2008), which also applies under turbulent flows. 

Similarly, “anemotaxis” is defined as “orientation or movement in response to a fluid 

flow”, typically air or water. 

Many searching strategies based on chemotaxis and anemotaxis have been inspired by 

bacteria or animal behaviour, which use olfaction for foraging or mating, for instance: 

Eschericia coli bacteria (Russell et al. 2003), lobsters (Grasso et al. 2000), blue crabs 

(Webster, Volyanskyy & Weissburg 2012), ants (Russell 1999), moths (Pyk et al. 2006; 

Edwards et al. 2005), dung beetles (Ishida et al. 1994), among others (Murlis, Elkinton 

& Carde 1992). These approaches are known as bio-inspired algorithms. 

1.5.3.1 Reactive plume tracking strategies 

All bio-inspired algorithms can be classified in the group of reactive plume tracking 

strategies. Basically, in these strategies, the gas source localization problem is divided 

in three stages: gas finding, plume tracking and source declaration (Lilienthal, Loutfi & 

Duckett 2006; Kowadlo & Russell 2008). 

In the gas finding stage, the robot tries to make contact with the odour; in the plume 

tracking stage, the robot moves reactively along or within the plume until it finds the 

source, which is decided in the source declaration stage and thus the search is finished. 

 

Four reactive chemotaxis algorithms are implemented and evaluated in (Russell et al. 

2003). Bio-inspired approaches based on the behaviour of Eschericia coli bacteria, 

silkworm moth Bombyx mori and dung bettle, and a gradient-based approach based on 

the Braitenberg vehicle (Braitenberg 1986) are compared in the paper. 

Three algorithms are adapted from the behaviour of E. coli bacteria and cooperation 

between robots is added in (Lytridis, Virk & Kadar 2005). It is shown that using multiple 

cooperative robots is more efficient to localize the source than using a single robot. 

In (Ishida et al. 2004), the first autonomous robotic odour localization in 3D using a 

blimp is reported. An array of ten tin-oxide sensors is mounted over the balloon 

surface. It is seen that the sensors facing toward the gas source exhibit “active” 

responses whereas the sensors behind the large balloon body show “quiet” responses. 

Moreover, two algorithms are implemented and tested experimentally. 

In order to improve the localization of the source, anemotaxis is used together with 

chemotaxis. Not all strategies use anemometric sensors, but if the fluid flow can be 

indirectly sensed (distributed chemical sensors), it is considered that the algorithm 

implements anemotaxis. 

The zigzag approach based on the dung beetle behaviour was implemented above 

ground (Ishida et al. 1994; Ishida et al. 1996) and underwater (Farrell, Pang & Li 2005). 
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The work by Farrell et al. appears to be the largest scale odour localization experiment 

(hundreds of square metres) by at least two orders of magnitude greater than typical 

experiments. 

A plume-centered upwind search strategy was implemented successfully by (Russell et 

al. 1995); later Ishida et al. (Ishida et al. 2005) integrated a similar strategy into a 

multiphase approach which improved the zigzag method. 

Inspired by the mating dance of the silkworm moth Bombix mori, odour compasses 

were implemented for two-dimensional (Nakamoto, Ishida & Moriizumi 1996) and 

three-dimensional localization (Ishida et al. 1999). In these works, the fluid flow is 

actively manipulated. Similar to the animal behaviour of moving its wings to draw air 

samples with pheromones from the front to the antennae, multiple sensors were 

placed in front of a propeller fan in order to improve sensitivity. 

A search strategy based on the surge-cast-turn behaviour of a silkworm moth using 

one chemical sensor and one anemometer was implemented by (Marques, Nunes & 

Almeida 2002). In (Russell et al. 2003) and (Pyk et al. 2006) two chemical sensors are 

used. The results showed the method to be more effective than the gradient-based 

and E. coli methods. The silkworm strategy was adapted to be used in a swarm of 

robots (Hayes, Martinoli & Goodman 2002). The method successfully located the 

odour source in simulations and in practical experiments. Furthermore, similar to other 

works (Marjovi & Marques 2011), it is seen that chemical sources are localized faster 

and more robustly when using multiple mobile robots. 

A reactive algorithm for a swarm implementing a silkworm moth casting to find the 

plume, called “fluxotaxis”, was presented by (Zarzhitsky, Spears & Spears 2005). 

Information about fluid velocity, chemical concentration and mass flux is used in 

algorithm to find the source and not a local maximum in the averaged chemical 

distribution. Successful simulation results are presented in the article; nevertheless 

practical experiments are required so as to establish fluxotaxis as an effective method. 

An alternative chemical reactive method, called “infotaxis”, is presented in 

(Vergassola, Villermaux & Shraiman 2007). In this approach information plays a role 

similar to concentration in chemotaxis. Odour patches are expected to be found 

intermittently in the medium, and then information is sparse. It is assumed that more 

odour patches are found close to the source. In this strategy, the algorithm chooses 

the move that locally maximizes the expected rate of information gain. The rate of 

acquisition of information is quantified by the rate of reduction of entropy, which 

depends on the probability for the location of the source. This probability is updated as 

odour patches are encountered. The more information, the less the expected time to 

localize the source. Results from simulations and practical experiments shown that 
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infotactic trajectories feature “zigzagging” and “casting” paths similar to those 

observed in the flight of moths. 

Four different searching strategies were implemented in turbulent flows using swarms 

of robots and tested through simulations in (Lo Iacono 2010). Two strategies only 

consider the rate of odour patches and the other two also consider the variation of 

odour concentrations. It is suggested that the algorithms which use concentration 

information are more effective to localize the source. 

 

As it is pointed in previously cited works and in (Mcgill & Taylor 2011), swarming 

algorithms have provided more robust solutions to the single-source localization 

problem; moreover, they appear to be appropriate methods for the multiple-source 

problem. However, little attention has been paid to it. McGill and Taylor provides a 

review of methods focusing on the detection of multiple sources (Mcgill & Taylor 

2011). 

In (Cui et al. 2004) the Biasing Expansion Swarm Approach (BESA) is presented in order 

to localize an unspecified number of hazardous chemical sources in a large, unknown 

area. Inspired in the social foraging behaviour of E. coli bacteria, a robust swarming 

algorithm in the presence of multiple nutrient sources is presented in (Liu & Passino 

2002). Also inspired by the chemotaxis of E. coli bacteria, the Biased Random Walk 

(BRW) algorithm applied on a large robotic network to localize multiple gradient 

sources is described in (Dhariwal, Sukhatme & Requicha 2004). Another bio-inspired 

algorithm is the Glowworm Swarm Optimization (GSO), which features an adaptive 

decision domain which enables the formation of subgroups in the swarm where the 

goal is to partition the swarm to track multiple sources concurrently (Krishnanand & 

Ghose 2009).  

 

One of the main problems in reactive plume tracking strategies is that a source 

declaration stage should be implemented so as to decide when finishing the search. In 

general, in order to avoid too many complications in the published experiments, the 

tracking is stopped simply when the robots came near to the chemical sources. 

Concerning the source declaration problem, very little work can be found in the 

literature. Some works try to find indicators to decide when a gas source has been 

found, for instance analyzing series of concentration measurements (Lilienthal et al. 

2004; Lilienthal et al. 2006; Loutfi & Coradeschi 2006). In other works additional 

capabilities like vision are added to the robotic systems; using vision it is possible to 

recognize obstacles and determine, from the sensor readings, if it is a candidate to gas 

source or not (Martinez & Perrinet 2002; Kowadlo et al. 2006; Ishida et al. 2006). 
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1.5.3.2 Plume modelling 

In some applications it is sufficient to know the distribution of a target chemical in a 

given environment without tracking the entire length of the plume. Unlike reactive 

plume tracking approaches, one interesting characteristic of plume modelling methods 

is that it is not strictly necessary to track the plume to localize the chemical source. 

Usually the source location is a parameter which is integrated within the model and is 

updated in real-time. This implies that the robots could be intended for other tasks in 

addition of finding the source (Larionova et al. 2006). Therefore, the problem of source 

declaration is avoided since the end of the search is not determined by any tracking 

algorithm.  

Apart from the information from the sensors, typically chemical and anemometric, 

these approaches integrate additional knowledge about the plume dispersion. Since it 

is not feasible to model the turbulent wind and gas distribution in a realistic 

environment with the current technology, plume information can be modelled in a 

computationally inexpensive way using analytic gas distribution models (Ishida, 

Nakamoto & Moriizumi 1998; Marques, Nunes & Almeida 2002) or 

stochastic/probabilistic methods (Pang & Farrell 2006). As in the case of vision, adding 

additional knowledge to the robotic system helps to solve the source localization 

problem.  

The first example of plume modelling was reported in (Ishida, Nakamoto & Moriizumi 

1998). The algorithm was designed to remotely localize the odour source. The model 

parameters, including the source location, are continuously updated while the robot 

zigzags toward the source. 

An analytic gas distribution model is integrated into plume tracking in (Marques, 

Nunes & Almeida 2002). As the robot navigates, the model is continuously updated. 

Although in these two works the robot tracks the plume, it is important to note that 

the localization of the source is decoupled of the algorithm used to guide the robot. In 

fact, an algorithm to move the robot would not be strictly needed. 

This is the idea followed in (Lilienthal & Duckett 2004), where predefined paths are 

implemented in a robot in order to map an area with a gas chemical source. Gaussian 

weighting functions are used to model the decreasing likelihood that a particular 

reading represents the true concentration with respect to the distance from the point 

of measurement. A map of the area is obtained and updated in real-time. The 

proposed method was later improved so that not only the mean gas distribution was 

estimated but also the predictive variance (Lilienthal et al. 2009). It is observed that 

the variance map provides more accurate information about the source location than 

the mean concentration map. In (Stachniss, Plagemann & Lilienthal 2009) two-
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dimensional gas distribution models are learnt from the data using sparse Gaussian 

process mixtures. This method allows to model areas of high concentration and areas 

with smooth background signal, thus improving the accuracy of the gas concentration 

prediction. In (Reggente & Lilienthal 2010) is shown that airflow measurements are 

useful to improve the gas distribution mapping. Also in this work multiple gas sensors 

are placed at different heights so as to perform a three-dimensional mapping. 

Alternatively, three-dimensional gas mapping is done in (Ishida 2009) using a blimp. 

The flying robot moved randomly and collected gas concentration measurements at 

different locations in the environment. 

In (Reggente et al. 2010) is proposed to use a gas distribution mapping algorithm as an 

effective method to measure air-pollutant distribution in a city.  

 

Instead of using analytic gas distribution models, plume modelling using stochastic 

methods has also been proposed in the literature. These techniques show a great 

potential and bring probability to the field of odour localization. 

Farrell published an approach based on computationally efficient Hidden Markov 

Models (HMM) (Farrell 2003). The main idea behind the algorithm consists in 

implementing a “Hidden Markov Plume Model” and estimating the likelihood of odour 

detection, the likelihood of source location, the most likely path taken by an odour to a 

given location and the path between two points most likely to result in odour 

detection. It uses the measurements from the chemical sensors and anemometers. 

The algorithm was later improved to incorporate Bayesian inference and to be more 

efficient (Pang & Farrell 2006). This new approach takes into account the sequence of 

detection/non-detection events and fluid flow measurements along the trajectory of 

the robot to build a source probability map. From the probability map, which is 

updated recursively using Bayesian inference, the most likely source location is 

estimated in real-time. Dispersion of chemical filaments is modelled as a random walk 

(due to velocity fluctuations) superimposed on downwind advection (due to mean 

velocity). Experiments using real-world data show that this approach can be effective 

to predict the likely source location of a chemical source over a large area, with 

increasing accuracy, as more measurements are gathered. In addition, the source 

probability map provided by Bayesian reasoning can be used to design new tracking 

strategies in order to minimize the searching time. 

In (Li et al. 2011) a particle filter algorithm is proposed. In this work the plume is 

modelled as a collection of particles, each one with its own location and with a certain 

weight. The weights are updated while the robot is exploring the area and the location 

of the source is estimated in real-time. Experimental results show that the proposed 
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approach performs better than the Bayesian-inference-based algorithm by Pang and 

Farrell (Pang & Farrell 2006). 

 

Single-source tracking has also been applied to swarms of robots or mobile sensor 

networks using probabilistic models, for instance Bayesian-based distributed target 

tracking (Zou & Chakrabarty 2007) or integrating a network of cooperative Kalman 

filters with a flocking-based mobility model (Olfati-Saber 2007). 

Other proposals are based on Particle Swarm Optimization (PSO) (Kennedy & Eberhart 

1995; Jatmiko, Sekiyama & Fukuda 2007; Jatmiko et al. 2008), where swarms of 

particles, or robots, move in a virtual space to find an optimal solution. It is assumed 

that robots can communicate with each other and evaluate their fitness to the solution 

at each location. Collisions are avoided by treating other robots or obstacles as 

repulsive forces. 

Modifications have been performed in order to adapt the algorithm to the multi-

source problem (Marques, Nunes & Almeida 2006). Additionally, Jakuba and Ferri et al. 

have adapted Bayesian occupancy grid mapping to localize multiple gas sources 

(Jakuba 2007; Ferri et al. 2011). They improved the work by Pang and Farrell (Pang & 

Farrell 2006) by eliminating the assumption of a single-source and modifying the 

updating rule applied to the source probability map so as to account for the low prior 

probabilities in multi-source searches. 

1.5.4 Turbulence dominated weak fluid flow 

In certain indoor environments like narrow corridors, factory buildings, tunnels, caves 

or mines, strong and constant airflows are not likely to found. In these cases, 

difficulties associated with variations in temperature, humidity and flow arise. The 

fluid flow can be very small, sometimes smaller than the detection limit of ultrasonic 

anemometers; moreover, due to the walls surrounding the environment, circulating 

convective airflows are generated and if the temperature distribution is complicated, 

the flow field becomes highly irregular (Trincavelli et al. 2008). 

 

Since it appears to be too difficult to develop a chemical source localization algorithm 

which could be used in any scenario, specialized robots designed for a specific target 

application are often used in enclosed environments, for instance using one robot 

(Russell 2001) or multiple robots (Marjovi & Marques 2011). 

In (Kowadlo & Russell 2006) naive physics are used to model the airflow in the 

environment. This provides approximate solutions with enough degree of accuracy for 

the source localization task. Using the modelled airflow map, the robot moves to 
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specific target locations and the likelihood that the odour was emitted from these 

locations is computed. 

In (Lilienthal et al. 2001) a robot to locate an odour source without the presence of a 

strong airflow is presented. Experiments were performed in two standard corridors. 

The results showed that the location of the source corresponds only roughly to the 

location of the maximal instantaneous measured concentration. Moreover, the 

averaged concentration peak does not remain stationary at the location of the source 

due to convective airflow currents. A version of the algorithm for building gas 

concentration gridmaps (Lilienthal & Duckett 2004) but focused on weak fluid flows is 

presented in (Lilienthal, Streichert & Zell 2005). In this work the robot movement is not 

controlled by a reactive tracking strategy and a Gaussian gas distribution model is used 

to build a map to localize the source. 

An adaptation of the silkworm moth algorithm, for weak fluid flows, avoiding the surge 

behaviour, which requires knowledge of the airflow direction, is described in 

(Lilienthal, Reimann & Zell 2003). Purnamadjaja and Russell implemented and adapted 

E. coli bacteria algorithm in a swarm of cooperative robots for pushing a dead robot 

(Purnamadjaja & Russell 2005). Experimental results show that the method is able to 

localize the source effectively and reliably, from a relatively large distance, with only 

one chemical sensor, with no airflow information and without the presence of a strong 

airflow. 

1.5.5 Gas identification and localization in a real environment 

Although previously cited algorithms focus on the localization of a gas chemical source 

or multiple sources, using one robot or multiple robots, the majority of them only 

consider the detection of a specific target substance. However, in a real environment, 

where multiple substances are expected to be present, the sensors (unless selective 

sensors are used) will respond to many different chemical compounds, regarded as 

interfering, apart from the substance of interest. 

 

In many works, when using one sensor, the typical procedure consists in setting a 

threshold level to the sensor signal in order to minimize the impact of interfering 

compounds in the localization of the source. If the sensor reading is above the 

threshold, it is considered that the robot is making contact with the plume. 

Deciding the threshold level is another issue which has not been addressed properly in 

the literature. This issue is especially important when the gas source that has to be 

detected is weak compared to the background of interfering substances. Setting the 

threshold too high will cause too many miss-detections, setting the threshold too low 

will cause too many false alarms; thus leading the algorithm to fail. 
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Most of the robotic systems which incorporate more than one sensor use gas sensor 

arrays. Typically, each particular substance is associated with a certain pattern of 

response in the sensor array. Therefore, when using gas sensor arrays, it is possible to 

discriminate among different substances and separate the contribution of the target 

from the contribution of the interfering substances. 

However, not many works have addressed this issue. The most used kind of gas 

sensors is metal-oxide sensors because of their reasonably high sensitivities, good 

response times (typically less than five seconds), low price and long lifetimes. 

Nevertheless, the recovery time of these sensors is very slow (typically tens of 

seconds), which is not enough to capture the instantaneous plume fluctuations 

encountered in turbulent flows (typically less than one second), that can reach a 

bandwidth of 100 Hz. 

In order to overcome this problem, instead of setting a threshold to the direct 

response, the transient signal of the sensors, which carries important information 

about instantaneous plume characteristics, is used in (Ishida et al. 2005); however, the 

discrimination problem among different substances is not addressed. 

As far as we know, only (Marques, Nunes & Almeida 2002) used transient signals of a 

gas sensor array for tracking a target source (ethanol) in the presence of an interfering 

source (methanol). 

 

Additionally, some recent works from the group of Prof. Dr. Achim J. Lilienthal have 

been published focusing on the identification and localization of odours in a real 

environment. In these works, instead of tracking the plume, a plume mapping is 

performed. For instance, in (Loutfi et al. 2009) the transient response of four MOX 

sensors is used to classify odours (acetone, ethanol and air) and then creating a 

combined map where the multiple trained substances can be identified. Experimental 

results using one robot in indoors and outdoors are presented. 

In the thesis published by Dr. Marco Trincavelli (Trincavelli 2010) the problem of gas 

discrimination in a real environment using a mobile robot is also addressed. 

Experimental results in indoors, outdoors, using predefined paths or different 

searching strategies and with the presence of different gas sources (ethanol, acetone, 

isopropyl, 2-propanol and air) are presented. MOX sensors are also used in the thesis 

and what features are better for odour discrimination is discussed in detail. 

 

Even though, in these works, different substances are discriminated and a gas 

distribution mapping separating the contributions of the different substances is 
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performed, there is not any quantitative step, thus only qualitative results are 

provided. 

The use of MOX sensors for real-time applications limits the capabilities of the robotic 

system. Since the recovery time is slow, instantaneous concentrations can be hidden 

after a peak of high concentration, thus losing important information for 

quantification. This problem is solved in (Hernández-Bennetts, Lilienthal & Trincavelli 

2012) using six MOX sensors and the readings of a PID sensor to obtain calibrated 

measurements. First, the MOX readings at a certain location are classified to come 

from one of the trained substances (ethanol, 2-propanol and fresh air); secondly, the 

calibrated PID readings are used to create calibrated maps of each one of the 

substances. Therefore, concentration information from the PID is fused with the MOX 

readings within the gas mapping algorithm. 

Thereby, as it has also been pointed before (Lo Iacono 2010), instead of having binary 

detections above a certain threshold, integrating concentration information within the 

source localization algorithm could be useful to improve the localization of the gas 

source, especially under the presence of interfering substances. However, to the best 

of our knowledge, apart from the work by (Hernández-Bennetts, Lilienthal & Trincavelli 

2012), there are no more proposals in the literature. 

1.6 Summary 

This chapter introduces the general problems of gas detection, identification and 

source localization in different scenarios. In some of these scenarios the sample can be 

taken and analyzed, but in many others an exploration of the area must be performed 

because the localization of the gas source is unknown. This exploration can be carried 

out using multiple sensors (fixed or mobile). 

Different sensing technologies have been successfully used to detect and identify 

different chemical substances, such as explosives or volatile organic compounds 

(VOCs). Among these technologies, mobility based analyzers provide fast responses 

with high sensitivity. 

However, IMS instruments are not exempt of problems. Typically, they provide 

moderate selectivity, appearing overlapped peaks in the spectra. Moreover, the 

presence of humidity makes peaks wider, thus worsening the resolving power and the 

resolution. Furthermore, the response of IMS is non-linear as substance concentration 

increases and more than one peak can appear in the spectra due to the same 

compound. 

In order to deal with these issues, IMS spectra can be processed using multivariate 

techniques. The more relevant approaches to analyze the spectra qualitatively and 
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quantitatively have been reviewed. Moreover, techniques to classify chemical samples 

have been presented. 

Despite the advantages of using multivariate signal and data processing in IMS, the 

application of multivariate signal and data processing to IMS spectra is limited. 

Understanding the advantages and limitations of chemometrics for IMS still requires 

further investigations. 

 

In the last part of this introduction, the problem of gas dispersion in a real 

environment is presented. Different strategies have been proposed in the literature 

adapted to different fluid flows so as to solve the source localization problem. It is 

shown that the use of multiple mobile sensors help to localize the gas source. 

Among the different algorithms, plume modelling approaches provide strategies to 

localize the source without performing plume tracking, thus the mobile robots can be 

used for other tasks. 

In general, the algorithms only focused on one target substance and only its presence 

or absence is important. Thereby, the source localization is usually based on a binary 

threshold. 

With this regard, little work has been done in the discrimination of multiple substances 

in a real environment and in the use of the concentration measurements provided by 

the sensors, thus not discarding useful information. 
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Chapter 2 

2Objectives 

 

The first objective of the present thesis is providing signal processing approaches to 

ameliorate the detection, identification and quantitation of analytes in the presence of 

interfering substances when using mobility based chemical analyzers, such as Ion 

Mobility spectrometers (IMS) and Differential Mobility Analyzers (DMA). 

In this thesis we are going to explore the capabilities of multivariate signal and data 

processing techniques for mobility spectra through particular applications. 

Among the myriad of techniques that can be applied to IMS spectra we are especially 

interested in Multivariate Curve Resolution (MCR) techniques since they are able to 

provide dimensionality reduction with interpretable bilinear decompositions. 

Since IMS spectra are non-linear as substance concentration increases, this thesis 

explores how to circumvent this potential problem and combining with Partial Least 

Squares (PLS) the chemical concentrations of the target substances are obtained. 

DMA is a recent configuration for the analysis of mobility spectra. The analysis of DMA 

spectra by multivariate techniques has not been attempted before. In this thesis, it is 

explored if DMA performance for qualitative and quantitative analysis can be 

improved by proper signal and data processing. 

 

The second objective of the thesis is the design and implementation of a gas chemical 

source localization algorithm which integrates the chemical concentration 

measurements of the target substance from multiple sensors. 

We intend that the algorithm provides a map of probability of the presence of the 

source in the explored arena, without explicitly performing plume tracking. Therefore, 

this implies that the mobile carriers (mounting gas sensors) could be intended for 

other tasks additionally to find the source. 

In the proposed scenario, the chemical concentration is provided by IMS instruments 

and in consequence it could have been obtained using the proposed signal processing 

approaches in this thesis. 

To test different algorithmic approaches we will develop a realistic chemical plume 

readings simulator for a set of vehicles carrying the mobility spectrometers (chemical 

sensors in general). 
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Moreover, in order to validate the results from simulations, real chemical source 

localization experiments were carried out in indoors and outdoors environments, with 

forced ventilation and turbulent flows. 

 

The structure of the present doctoral dissertation is as follows: 

 

• Chapter 1 provided a general introduction. Some scenarios where chemicals have 

to be detected and quantified and others where the location of the gas source is 

unknown were described. An overview of the most relevant sensing technologies 

to the present thesis so as to detect and quantify chemicals was also provided. 

Signal processing approaches to deal with the signal of the sensors were discussed; 

and finally, a review of algorithms for chemical source localization was given. 

• Chapter 2 summarizes the objectives of the thesis. 

• Chapter 3 presents the results of applying multivariate data techniques for the first 

time to DMA. The performance for explosive detection, and classification and 

quantitation of volatile organic compounds (VOCs) is assessed. 

• Chapter 4 presents the qualitative results obtained from a new technique based on 

MCR. The data were obtained using IMS in a baggage security checkpoint where 

interfering chemicals appear. 

• Chapter 5 provides a new methodology to deal with non-linearities in IMS spectra. 

Qualitative and quantitative results are analyzed. 

• Chapter 6 presents a gas chemical source localization algorithm which integrates 

concentration information. Simulated and real-world data are used in order to test 

and compare this new approach with an existing algorithm based on binary 

detections. 

• Chapter 7 summarizes the more relevant conclusions of this doctoral dissertation. 

• Chapter 8 summarizes the thesis in Spanish. 

• Chapter 9 lists the publications and participations in conferences. 

 



79 

Chapter 3 

3Multivariate techniques applied to a novel 

Differential Mobility Analyzer (DMA) for explosives 

detection and VOCs identification and quantitation  

3.1 Introduction 

In most of the applications, IMS or DMA instruments are used only as qualitative 

detectors and only the absence or presence of the target substance is of interest. 

Quantitative determination of analytes with IMS technologies is typically univariate, 

that is, a resolved peak area or height is related to a specific concentration. However, 

this approach fails catastrophically when interfering chemicals produce overlapped 

peaks due to the limited selectivity of mobility-based technologies.  

Although several papers have reported the use of multivariate signal processing to 

analyze either qualitative (Rauch, Harrington & Davis 1998; Reese & Harrington 1999; 

Ochoa & Harrington 2005; Bota & Harrington 2006; Prasad et al. 2008; Pomareda et al. 

2010; Karpas et al. 2012) or quantitative information (Boger & Karpas 1994; Zheng, 

Harrington & Davis 1996; Fraga, Kerr & Atkinson 2009; Zamora & Blanco 2012; 

Pomareda et al. 2012) from IMS data, to the best of our knowledge there is a complete 

lack of contributions in multivariate data analysis using DMA instruments. 

This chapter aims to demonstrate that explosive detection (section 3.5) and 

identification and quantitation of VOCs (section 3.6) with a relatively similar chemical 

structure are feasible with a novel Differential Mobility Analyzer. For the first time, 

multivariate data analysis tools are applied to the spectra obtained from a novel 

Differential Mobility Analyzer (DMA).  

3.2 Instrumentation: DMA specifications 

A fully integrated DMA prototype developed by RAMEM S.A. (Madrid, Spain) (RAMEM) 

has been used for all the measurements. The configuration corresponds to a planar 

parallel plate. The working principle of this kind of DMA is described in chapter 1 

(section 1.3.2) and a scheme is shown in Figure 1.10. 
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The classification region has been manufactured following the most advanced 

machining techniques of 3D Laser sintering. The sheath gas flow is propelled by a 

homemade compressor and the flow rate is controlled by a turbine flow meter, model 

FT-16, from FTI Flow Technology (http://www.ftimeters.com/). The flow rates can 

range from 100L·min
-1

 until 800L·min
-1

. The dimensions of the classification region are 

5mm length and 5mm wide and the theoretical contribution to the Resolving Power 

(RP) achievable by the ratio between flows (sample flow and sheath flow) is as high as 

250 for reduced mobilities of 0.90cm
2
V

-1
s

-1
. Temperature and pressure are measured 

using thermocouples (type T) and pressure sensors (TCDirect model 716-090), and 

when necessary, the sheath flow is heated with an electric resistance of nicron to 

reach the desired temperature. While the instrument allows heating the sheath air up 

to 90ºC, data shown in this work have been recorded with the sheath air at room 

temperature. The ion current is determined by an electrometer developed by RAMEM 

to measure ultra-low currents down to 1fA (EL-5020). Sample introduction and exhaust 

flow rates through the inlet and outlet slits are controlled by PID loops in order to 

control quantitative response. Ionization of the analytes has been done using a 

Heraeus UV lamp with energy of 10.6eV, located as close as possible to the inlet of the 

classification region. All the components are controlled by an OPLC (Open 

Programmable Logic Computer) from Unitronics V1040 and with specific software 

developed using LabView 2009 (National Instruments, Austin, Texas, USA) that also 

includes the data processing capabilities. 

 

 

Figure 3.1. Picture of the High Resolution Mobility Spectrometer (HRIMS) based on DMA 

manufactured by RAMEM and its graphical interface for instrument control, data acquisition, 

data processing and data visualization. 

 

The time needed to complete one spectrum is given by the time it takes to the High 

Voltage source to change from the starting point to the end point of the voltage; this is 

normally less than 1 minute. The voltage, where certain peak appears, increases with 
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the sheath flow rate. A maximum sheath flow rate of 600L·min
-1

 is achieved in the 

current model of the DMA and maximum voltages of 6KV are allowed by the electrode 

configuration. 

The measurements were done using low sheath flow rates to keep the sensitivity, as 

low as 160L·min
-1

. The resulting voltages ranged from 1.0kV to 4.0kV. Theses values 

allow classification of molecules with mobilities ranging from 0.2 to 3cm
2
V

-1
s

-1
. The 

formula for the calculation of the mobility can be seen in (Eq. 3.1): 

(Eq. 3.1) 
zx

y

V

Q
K

∆∆

∆
=  

Where Q is the sheath flow-rate, V is the applied voltage and Δy, Δx and Δz are the 

three dimensions of the classification region. The DMA has been tested in RAMEM 

(Madrid, Spain) with a mobility standard like TetraHeptyl tetraAmonium Bromide 

(THABr), which was ionized using ElectroSpray Ionization (ESI). 

The maximum value of the RP reached for the presented DMA at low sheath flow rate 

(300L·min
-1

) is 45. Further experiments are being done with higher sheath flow rates 

for a new prototype taking special care of the mentioned problems that can be found 

in DMAs (Vidal-de-Miguel, Macía & Cuevas 2012). However, the obtained RP seemed 

good enough to differentiate among the substances presented in this chapter. 

3.3 DMA software 

The DMA operated by means of software implemented in LabView (National 

Instruments) which provided instrument configuration and control, data acquisition 

and data visualization. Later on, a library of functions to process DMA spectra was 

developed (by the author of this thesis) and integrated within the software. This library 

provides new functionalities for DMA spectra analysis. Some pre-processing, 

multivariate signal processing approaches and diagnostic tools have been 

implemented. 

Within pre-processing methods, several functions have been included: interpolation, 

baseline removal, filtering, and spectra normalization (see section 3.4.1). 

Within multivariate data processing approaches: PCA, LDA and PLS are included. 

Moreover, the KNN classifier has also been implemented. 

The library also incorporates different diagnostic tools: 

• Suggestions about the optimum number of components for building calibration 

models are made. While in the case of PCA the suggestion is based on the 

explained variance by each principal component, in the case of PLS this suggestion 

is based on different cross-validation procedures (random selection, k-fold and 
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leave-one-out). In the case of LDA, the number of components is decided to be the 

number of classes minus one. 

• Based on a confidence level defined by the user (95% by default), Q (residuals) and 

Hotelling’s T
2
 statistics, abnormal samples are labelled as outliers and they should 

be removed before building the final calibration model. 

• After substance classification using a KNN classifier, a confidence value based on 

the Mahalanobis’ distances to the centroids of each class (substance) is assigned to 

each predicted/unknown sample. The distance of Mahalanobis (dij) is defined as: 

 

(Eq. 3.2) ( ) ( )Tjinjiij xxCxxd −−= ··  

 

where x is a sample in a n-dimensional space, Cn is the n-dimensional covariance 

matrix. 

 

The confidence is defined as: 

(Eq. 3.3) 

∑
=

=
N

i i

k
k

d

d
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1

1

1

 

where k is the sub-index related to the assigned class to the predicted/unknown 

sample and N is the total number of classes. From the last expression, it is seen 

that when the Mahalanobis distance dk tends to 0, the confidence in the class k 

tends to 1. When dk is exactly 0, in order to avoid a numerical problem, the 

confidence is forced to be 1, which is what one would expect. 

• Additionally, the user can define a threshold on the confidence of classification 

below which predicted/unknown samples are classified as “none”. 

3.4 DMA spectra analysis 

3.4.1 Spectra pre-processing 

The first step in the pre-processing of DMA datasets consists in the homogenization of 

the spectra in terms of reduced mobilities (K0) (Eq. 1.2), which are defined as the 

mobilities in standard conditions (20ºC and 1 bar) according to the Environmental 

Protection Agency (EPA) and the National Institute of Standards and Technology 

(NIST). In order to have homogeneous, uniform sampling in the reduced mobility axis, 
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a linear interpolation of the spectra is performed. In order to remove mathematical 

artefacts due to signal acquisition problems and reduce noise, a median filter (narrow 

enough to ensure no deformations in the signal) and a Savizky-Golay filter (Savitzky & 

Golay 1964) with a polynomial order of 3 and a window of 11 are applied. Afterwards, 

the baseline of each spectrum is removed independently by applying the automatic 

thresholding method described in (Gan, Ruan & Mo 2006). In qualitative analysis, after 

interpolation, filtering and baseline removal, each spectrum was normalized to unit 

area. Finally, only the richest part of the spectra was used, which corresponds to 

values of K0 between 0.84cm
2
/(V·s) and 2.14 cm

2
/(V·s). 

3.4.2 DMA spectra multivariate analysis 

As pointed before, for the first time multivariate signal processing approaches have 

been applied to DMA spectra. Since the DMA is designated to operate identifying and 

quantifying unknown samples in real-time in field applications in real environments, 

calibration models must be used. 

3.4.2.1 Building calibration models (off-line) 

When building calibration models, training data is used. Data for training usually 

contains a large number of measurements (spectra) obtained under controlled 

conditions. These data correspond to the responses of the instrument to different 

substances and mixtures of substances and the known concentrations of each 

substance present in the sample. 

Using these training data, classification models (section 1.4.2.2) based on 

dimensionality reduction methods such as PCA, LDA or PLS-DA can be built. On the 

model subspace, k-NN classifiers are used. Moreover, calibration models for substance 

quantitation based on PLS can also be built.  

All this calibration procedure can be executed off-line. This means that all the data is 

previously obtained under controlled conditions, for instance in a laboratory, and the 

different models are built offline afterwards. 

These models of reference can be used then in a real environment for prediction of 

unknown samples in real-time. 

3.4.2.2 Prediction of unknown samples (real-time) 

Data for prediction can be considered as responses obtained from the instrument 

under uncontrolled conditions (e.g. real environment) and it is data which needs 

further analysis in order to detect different substances and quantify them regarding to 

a library of known substances measured in a calibration step (see section 3.4.2.1). 



Multivariate techniques applied to a novel Differential Mobility Analyzer (DMA) for 

explosives detection and VOCs identification and quantitation 

 

 84

When the instrument operates in the field in a real environment, data for prediction is 

produced in real-time and must be processed as it is generated (Figure 3.2). 

Based on PCA, LDA or PLS models, a substance from the library of training data is 

assigned to unknown samples using a KNN classifier on the scores of the training 

model. Moreover, a confidence in substance identification is also given, and there is 

the possibility that a sample is classified as “none” or as “outlier” if it is very different 

from anything known. These unknown samples are also quantified using PLS models 

based on the training substances. 

  

 

Figure 3.2. Block diagram of the DMA operating in real-time in a real environment (scenario 

described in chapter 1, 1.2.6). 

3.5 DMA for explosive detection 

3.5.1 Facilities 

This study for explosive detection was carried out using the DMA manufactured by 

RAMEM in the “Instituto Tecnológico La Marañosa (ITM)” (Madrid, Spain) in different 

runs between May and November 2010. 

The experiments are inspired in the improvised explosive detection scenario (section 

1.2.2) and in the framework of the SEDUCE project (Sistemas para la detección de 

explosivos en centros e infrastucturas públicas). 
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3.5.2 Data description 

Samples of different substances, mainly explosives, were measured in different runs in 

different days. Some of the measured substances were: acetone, DNT (Dinitrotoluene), 

TNT (Trinitrotoluene), NG (nitroglycerin), TATP (acetone peroxide), DMMP (Dimethyl 

MethylPhosphanate), PETN (pentrite). The DMA operated in positive and negative 

polarity. 

3.5.3 Multivariate data processing for explosive identification 

In order to study if different explosives can be discriminated, measurements of a 

certain substance obtained in one day are used to build training models, and 

measurements obtained in another day are used to test the model. By doing so, it is 

ensured that the influence of the substance is what is being studied, not cross-

sensitivities which may pollute the shape of the spectra as temperature or humidity. 

When building calibration models, PCA is used as a first step for dimensionality 

reduction; the optimum number of components to build the model is based on the 

cumulative variance. Then LDA is applied using the sample scores returned by PCA and 

the class information (substance) of each sample, thus enhancing the discrimination 

between substances. Validation samples, the ones which must be predicted, are 

projected onto the PCA and LDA spaces built in the training step and a KNN classifier 

with K=1 is applied on the scores to assign a class (substance) to each validation 

sample. A confusion matrix can be obtained so as to compare the predicted classes vs. 

the real classes. 

3.5.4 Experimental results 

3.5.4.1 Experiment 1 

This first experiment was conducted in May 2010 with the DMA operating in positive 

ion mode. The substances and the number of samples used in training and in validation 

are shown in Table 3.1. Training and validation samples were obtained in different 

days. Figure 3.3 show the mobility spectra obtained for the different substances. 

 

Substance # samples training # samples validation 

Acetone 3 3 

TNT 8 4 

Pentrite 9 4 

Gunpowder 4 4 

Table 3.1. Substances analyzed in experiment 1. 
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Figure 3.3. Mobility spectra of different substances (training data) obtained using the DMA in 

positive ion mode. (a) acetone. (b) pentrite. (c) TNT. (d) gunpowder. 

 

It is seen in Figure 3.4(a) that samples of the different substances can be discriminated. 

This is verified in Table 3.2 where the predicted classes for each sample are compared 

with the real classes. It is observed that one validation sample of pentrite is classified 

as gunpowder and one validation sample of gunpowder is classified as pentrite. This is 

in agreement with Figure 3.4(b) where it is seen that pentrite and gunpowder samples 

are classified with low confidence values. 

 

 

Figure 3.4. (a) Scores after PCA and LDA. Training samples (‘o’) and validation samples 

(squares). (b) Confidence in substance classification for each validation sample. 
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 CONFUSION MATRIX (VALIDATION) 

Real class 

 Acetone TNT Pentrite Gunpowder NONE Outlier 

Acetone 2 0 0 0 0 0 

TNT 0 4 0 0 0 0 

Pentrite 0 0 3 1 0 0 

Gunpowder 0 0 1 3 0 0 

NONE 0 0 0 0 0 0 

P
re

d
ic

te
d

 c
la

ss
 

Outlier 0 0 0 0 0 0 

Table 3.2. Confusion matrix for experiment 1. 

 

The rate of overall classification was 85%. 

3.5.4.2 Experiment 2 

This second experiment was conducted between October and November 2010 with 

the DMA operating in positive ion mode. The substances and the number of samples 

used in training and in validation are shown in Table 3.3. Training and validation 

samples were obtained in different days. 

 

Substance # samples training # samples validation 

DMMP 10 4 

TATP 4 2 

Table 3.3. Substances analyzed in experiment 2. 
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Figure 3.5. Mobility spectra of different substances (training data) obtained using the DMA in 

positive ion mode. (a) DMMP. (b) TATP. 
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Figure 3.6. (a) Scores after PCA and LDA. Training samples (‘o’) and validation samples 

(squares). (b) Confidence in substance classification for each validation sample. 

 

In this case it is seen that DMMP can be perfectly differentiate from TATP (Figure 3.6). 

Moreover, the confidence in the assigned class is pretty high for all validation samples. 

The confusion matrix is shown in Table 3.4. The rate of overall classification was 100%. 

 

CONFUSION MATRIX (VALIDATION) 

Real class 

 DMMP TATP NONE outlier 

DMMP 4 0 0 0 

TATP 0 2 0 0 

NONE 0 0 0 0 

P
re

d
ic

te
d

 c
la

ss
 

outlier 0 0 0 0 

Table 3.4. Confusion matrix for experiment 2. 

3.5.4.3 Experiment 3 

This third experiment was also conducted between October and November 2010 with 

the DMA operating in negative ion mode. The substances and the number of samples 

used in training and in validation are shown in Table 3.5. Training and validation 

samples were obtained in different days. 
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Substance # samples training # samples validation 

DNT 9 6 

NG 7 1 

TATP 5 1 

Trilite 6 5 

Table 3.5. Substances analyzed in experiment 3. 
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Figure 3.7. Mobility spectra of different substances (training data) obtained using the DMA in 

negative ion mode. (a) DNT. (b) TATP. (c) NG. (d) trilite. 
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Figure 3.8. (a) Scores after PCA and LDA. Training samples (‘o’) and validation samples 

(squares). (b) Confidence in substance classification for each validation sample. 

 

CONFUSION MATRIX (VALIDATION) 

Real class 

 DNT NG TATP Trilite NONE outlier 

DNT 4 0 0 0 0 0 

NG 0 1 0 0 0 0 

TATP 0 0 1 0 0 0 

Trilite 2 0 0 5 0 0 

NONE 0 0 0 0 0 0 

P
re

d
ic

te
d

 c
la

ss
 

outlier 0 0 0 0 0 0 

Table 3.6. Confusion matrix for experiment 3. 

 

The rate of overall classification was 85% with some DNT samples being classified as 

trilite (Table 3.6). This is in agreement with what is shown in Figure 3.8(b) where the 

confidence in substance classification of some DNT samples is low. 

3.6 DMA for identification and quantitation of VOCs 

3.6.1 Facilities and description of the experimental procedure  

The measurements of the compounds for the present section were performed in one 

of the two chambers belonging to EUPHORE. EUPHORE (EUropean PHOto REactor) is 

one of the largest outdoor simulation chamber facilities in the world, used to study 
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atmospheric chemistry, belonging to the “Centro de Estudios Ambientales del 

Mediterraneo (CEAM)” in Valencia (Spain). 

The tested volatile organic compounds (VOCs) were: acetone, benzene, toluene, ortho-

xylene and para-xylene. P-xylene and toluene were purchased to Sigma Aldrich 

(Missouri, USA) with purities of 99% and 99.8%. O-xylene was purchased in Merck 

(New Jersey, USA) with purity of 98%. Benzene was bought in Scharlab (Barcelona, 

Spain) with purity 99% and acetone for HPLC to VWR with purity 99.8%. 

Chemicals were injected into a PTFE chamber of clean air (200m
3
) at increasing 

concentrations. The injection of the analytes was done using a small port where a glass 

flask was connected with a vial containing the analyte inside. A heater was used to 

evaporate the analyte and a gas flow was used to inject it into the chamber. Once 

inside the chamber, it was spread by the use of several fans. The chamber contents 

were continuously monitored with a calibrated FTIR analyzer (NICOLET). The FTIR 

signal for the analyte was followed until a constant signal was reached and at this 

point DMA measurements started. FTIR was also used to control the concentration of 

chemicals in the chamber. Concentration must be followed using calibrated techniques 

to consider the diminution that can be found by the sampling analyzers. FTIR cell is 

inside the chamber and is composed by White-type mirror system coupled to a FTIR 

spectrometer (NICOLET magna 550 MCTB/A detector). The total absorption path 

length is of 553.5m due to the reflection of the IR light inside the camera. FTIR data will 

be used as reference data to build PLS models for quantitation. The Limits of Detection 

(LOD) for the considered analytes are low enough for using them as reference data for 

the PLS model. LODs are 0.0060ppm for o-xylene, 0.0075ppm for benzene, 0.003ppm 

for acetone, 0.004ppm for toluene and 0.0019 por p-xylene. It must be remarked that 

the FTIR installed in the EUPHORE cameras is a quite complex device with two mirrors 

separated around 3m between them. 

For DMA analysis, air was sampled from inside the chamber using a clean pump and 

PTFE pipes. 500ml·min
-1

 of air sampled from the chamber were injected inside the 

DMA without any sample preparation. After completion of the required experiments, 

in order to build each calibration curve, the air was humidified to check the spectral 

differences for each compound at higher concentrations and humidities. Once the 

chamber reached the desired humidity, generally 40%, the flushing process allowed 

measuring the calibration curve in the reverse mode, from higher concentrations to 

lower ones, and in this way, check the influence of humidity in the whole 

concentration range. 
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3.6.2 Data description 

Acetone, benzene, o-xylene and toluene were measured on dry conditions (less than 

15% relative humidity) at different levels of concentration. Acetone was measured at 

14 increasing levels of concentration from 0.05 to 4ppm, with a total number of 116 

DMA measurements. The range of concentrations measured for benzene was from 

0.05 to 2.22ppm that included 7 different steps of concentrations. The total amount of 

measurements of benzene made with the DMA was 89. Up to 10 levels of 

concentration of o-xylene were measured from 0.05 to 3.05ppm, obtaining 69 DMA 

spectra. Finally, the studied range of concentrations of toluene was from 0.05 to 

4.250ppm, made also in 11 levels and recording 124 measurements. Table 3.7 

summarizes the measured concentrations. 

 

Substance 
Number 

scans 

Conc. 

range 

(ppm)  

Conc. 

levels 

Number 

Clevels 

training 

Number 

Clevels 

validation 

Number 

scans 

training 

Number 

scans 

validation 

Acetone 116 0.05-4 14 8 6 66 50 

Benzene 89 0.05-2.22 7 4 3 55 34 

o-xylene 69 0.05-3.05 10 6 4 38 31 

Toluene 124 0.05-4.25 11 6 5 66 58 

Table 3.7. Measured substances at different concentrations on dry conditions (less than 15% 

of relative humidity). 

 

Additionally, acetone, benzene and toluene were measured with relative humidity 

levels from 20 to 40%. p-xylene was measured with the same relative humidity levels 

instead of o-xylene. In this case the dataset comprises: 28 samples of acetone, 78 

samples of benzene, 33 samples of p-xylene and 27 samples of toluene. 

DMA datasets for each substance were pre-processed as explained in section 3.4.1. 
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3.6.3 Qualitative analysis 

3.6.3.1 Methodology 

Two pattern recognition models were built for qualitative analysis using the same 

training data used in quantitative analysis. Table 3.7 summarizes the number of 

concentration levels and the number of samples selected for training and for validation 

per each substance. Dimensionality reduction was based on either principal 

component analysis (PCA) or partial least squares (PLS-DA). A k-NN classifier was used 

to classify the samples in the validation subset after dimensionality reduction. In both 

cases, k (number of nearest neighbours) was taken as 3. 

Leave-one-block-out (LOBO) methodology was used in order to establish the best 

number of principal components or latent variables that were used to build the 

dimensionality reduction models (see section 3.6.4.1). In this case, since a classifier 

was built, the total percentage of correct classification was taken as figure of merit. 

The number of components or latent variables which maximizes the percentage of 

classification is taken to build the calibration model. 

Classification results are presented with the 95% confidence intervals. Additionally, 

results are presented in a confusion matrix that contains the classification rate per 

analyte, and the confusions between analytes. If the model predicts perfectly, the 

confusion matrix shows values with 100% in its diagonal. Different approaches have 

been proposed in the literature for the limit of detection (LOD) and quantification 

(LOQ) (Mocak et al. 1997; Vogelgesang & Hadrich 1998). Moreover, the used 

approaches may depend on the instrumentation (Tahboub, Zaater & Al-Talla 2005). A 

less common figure of merit is the limit of identification (LOI). In this work, we define 

the limit of identification (LOI) as the concentration above which the classification for a 

substance achieves 100% in the test set. 

 

The effect of humidity 

In order to see the effect of humidity in DMA samples, two analyses have been 

performed. In the first case, samples obtained under high humidity conditions are 

projected over the PLS-DA model built with samples at low humidity levels. In the 

second case, a specific PLS-DA model is built for samples at high humidity levels. In this 

case, training samples were selected randomly from the original set of samples with 

high humidity level. 70% of the samples were for the training dataset and 30% for 

validation. This cross-validation procedure is repeated 100 times, and the final 

percentages of classification are obtained averaging over these 100 trials. 
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3.6.3.2 Results 

Table 3.8 contains the classification results of the two tested approaches (PCA and PLS-

DA + KNN). The first approach that was based on PCA with a K-NN classifier had a total 

rate of good classification of 66% with 95% confidence intervals (57-72)%. This model 

was built using the first 2 principal components. The easiest analyte to detect was 

benzene with a rate of 97% with intervals (85-99)% of correct classification. The other 

three compounds were well detected in more than 40% of the samples. The LOI, as 

defined before (minimum concentration above which the analytes were perfectly 

assigned to their group), was estimated to be 0.7ppm, 0.9ppm, 1.5ppm and 2.0ppm for 

acetone, benzene, o-xylene and toluene, respectively.  

The model based on PLS-DA using a K-NN classifier improved the total rate up to 77% 

with 95% confidence intervals (70-83)% for external validation samples using three 

latent variables. The improvement in the total rate of correct classification was done 

especially for benzene that is detected correctly in 94% of the test samples with 

confidence intervals (76-98)%. The identification limits were approximately equal to 

the PCA model using a KNN classifier for benzene and toluene, but it was decreased to 

0.85ppm for o-xylene. PLS-DA-KNN approach provided a worse limit of identification 

than PCA-KNN approach in the unique case of acetone samples (1.5ppm). 

 

 Substance 
Classification 

intervals (%) 

Limit of 

identification (ppm) 

Acetone 41-70 0.70 

Benzene 85-99 0.87 

o-xylene 25-61 1.55 

PCA-KNN model 

(2 PC, K=3) 

(Total rate = 66%) 
Toluene 52-77 2.00 

Acetone 73-94 1.50 

Benzene 76-98 0.87 

o-xylene 33-70 0.85 

PLS-KNN model 

(3LV, K=3) 

(Total rate = 77%) 
Toluene 63-86 2.00 

Table 3.8. Summary of results for different qualitative models. Classification intervals are 

shown with 95% confidence value. 

In general, PLS-DA-KNN provided better results in qualitative prediction of samples. 

The main reason is that building the PLS model, information about the substances is 

provided in an additional matrix. Whereas PLS tries to maximize the covariance 

between this extra matrix and the matrix of spectral responses, building a PCA model 

only the matrix of spectral responses is used. Figure 3.9 shows the PLS-DA scores plot. 

Scores projected over latent variable 1 and latent variable 2 are depicted. Training 
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samples are shown in black and validation samples in white. In Figure 3.9, all samples 

appear together for low concentrations since spectra did not show signal, whereas 

samples of the different substances can be identified increasing substance 

concentration. In order to analyze the results, Figure 3.9 should be used together with 

Table 3.9. Some samples of o-xylene and toluene are confused with acetone at low 

concentrations; moreover, some samples of o-xylene are confused with benzene at 

low concentrations. 
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Figure 3.9. Score plot for PLS-DA classification model with 3 latent variables for all substances 

at low humidity level (less than 15%). Training samples are shown in black and validation 

samples in white. 

 

Total rate = 

77% 

Expected 

acetone 

Expected 

benzene 

Expected 

o-xylene 

Expected 

toluene 

Obtained 

Acetone 
86 (73-94) 3 29 20 

Obtained 

benzene 
2 94 (76-98) 16 2 

Obtained 

o-xylene 
4 3 52 (33-70) 2 

Obtained 

toluene 
8 0 3 76 (63-86) 

Table 3.9. Confusion matrix for qualitative model PLS-DA-KNN with 3 latent variables and K=3 

(Rate of classification in %) at low humidity level (less than 15%). 95% confidence intervals are 

shown in parentheses. 
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The effect of humidity 

The visual inspection of the spectra with high levels of humidity (more than 15%) 

shows a peak at K0=1.40cm
2
/(V·s). This distortion in the spectra made the classification 

with humidity impossible. Samples measured at high humidity levels were projected 

over the PLS model built with samples at low humidity levels. All samples were 

classified as acetone due to the peak at K0 =1.40cm
2
/(V·s), therefore it is concluded 

that samples measured with high humidity levels cannot be classified with calibration 

models built with samples at low humidity levels. It is well known that humidity has a 

huge influence in mobility because ions at atmospheric pressure are likely to form 

hydration cluster, depending on their chemical nature. Hydration clusters of similar 

substances like benzene, toluene or xylene might drive to similar mobility values. 

Building a different model, enhancing the subtle differences for highly hydrated ions 

with a multivariate approach can be very useful when no membranes are used at the 

inlet of a mobility instrument. This is in agreement with other studies that have 

reported the increase of the detection limits with humidity in the sample using IMS 

(Vautz, Sielemann & Baumbach 2004). 

When samples with high humidity level are used to build a new calibration model, 

results improve significantly. Figure 3.10 shows the score plot obtained from a PLS-DA 

model with 3 latent variables. Although Figure 3.10 shows a particular random 

selection it can be seen the averaged behaviour. On average (after 100 random 

selections) it is observed that some validation samples of p-xylene are classified as 

benzene (19%) and some samples of toluene are classified as p-xylene (15%). The 

averaged classification rate (Table 3.10) after 100 random selections of each one of the 

substances were: 98% for acetone, 93% for benzene, 71% p-xylene and 82% toluene, 

with 95% confidence intervals: (97-99)% for acetone, (92-94)% benzene, (68-74)% p-

xylene and (79-84)% toluene. The averaged classification rate was 87% with 95% 

confidence intervals (86-88)%. 
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Total rate = 

87%  

Expected 

acetone 

Expected 

benzene 

Expected 

p-xylene 

Expected 

toluene 

Obtained 

Acetone 
98 (97-99) 0 2 1 

Obtained 

benzene 
0 93 (92-94) 19 2 

Obtained 

p-xylene 
1 6 71 (68-74) 15 

Obtained 

toluene 
1 1 8 82 (79-84) 

Table 3.10. Confusion matrix for qualitative model PLS-DA-KNN with 3 latent variables and K=3 

(Rate of classification in %) at high humidity level (more than 15%). 95% confidence intervals 

are shown in parentheses. 
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Figure 3.10. Score plot for PLS-DA classification model using 3 latent variables. Samples with 

high humidity levels (more than 15%). One random selection of samples (70% for training and 

30% for validation). Training samples are shown in black and validation samples in white. 
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3.6.4 Quantitative analysis 

3.6.4.1 Methodology 

Three different approaches were used for obtaining quantitative models of acetone, 

benzene, o-xylene and toluene. All of them were based on Partial Least Squares (PLS) 

method (Geladi & Kowalski 1986). Reference concentrations were taken from the FTIR 

data. 

The first approach consisted of building a single PLS model for each compound, 

without taking into account the contribution of other compounds. 

The second one was also a single PLS model for each compound but including the rest 

of compounds as interferences. In this case, the spectra of interfering compounds 

were included in the model assuming that concentration of the substance of interest 

was zero in these interfering samples. 

The last quantitative model tested was a unique PLS model including all compounds.   

The set of samples were divided into two subsets, one training subset for building the 

calibration model and another validation subset for evaluating the predictive ability of 

the PLS models.  

In the PLS models, the best number of latent variables was selected using the leave-

one-block-out (LOBO) methodology on the training subset of samples, that is for a 

given substance, the whole set of spectra corresponding to a certain concentration is 

all taken out to be validated and the remaining set of samples is used to build the 

calibration model. The set of spectra corresponding to the first and last measured 

concentrations are always used to build the calibration model avoiding the possibility 

to predict concentrations out of the calibration range.  

The set of scans to be validated is used to calculate and minimize the root mean 

squared error of validation (RMSEV): 

 

(Eq. 3.4) 

( )

N

CC

RMSEV

N

i

ii∑
=

−

= 1

2)

 

 

where Ci is the concentration of the sample, iC
)

 is the predicted concentration of the 

sample by the model, and N is the number of validated samples. The optimum number 

of components to build the calibration model is the one which minimizes the RMSEV. 

In order to compare quantitative results among the different substances, the RMSEV 

can be expressed as a percentage of the maximum substance concentration. 
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3.6.4.2 Results 

Three different approaches for quantification of acetone, benzene, o-xylene and 

toluene were obtained with the same data. 

The first one corresponds to four different PLS models; each one was built without 

taking into account the other three compounds. As it can be observed in Table 3.11, 

the regression of the obtained vs. expected concentrations for the test samples shows 

the ideal behaviour, with slopes close to one, intercept close to zero and high 

correlations. Moreover, the RMSEV values are quite low: 0.15ppm (3.8%), 0.18ppm 

(8.6%), 0.14ppm (4.6%) and 0.33ppm (7.8%) for acetone, benzene, o-xylene and 

toluene, respectively; which means that the quantification errors are low on average. 

However, these models built using only one substance do not incorporate information 

about the interference of the other compounds and thus they are not useful in a real 

scenario. 

 

 Substance Slope 
Intercept 

(ppm) 
R 

RMSEV(% 

max conc) 
#LV opt 

Acetone 
1.05 ± 

0.02 
-0.11 ± 0.03 0.99 3.8 4 

Benzene 
0.91 ± 

0.04 
0.10 ± 0.05 0.96 8.6 2 

o-xylene 
0.98 ± 

0.06 
-0.04 ± 0.04 0.95 4.6 3 

Individual PLS 

model 

Toluene 
0.89 ± 

0.03 
-0.10 ± 0.05 0.96 7.8 2 

Acetone 
0.92 ± 

0.02 
-0.01 ± 0.02 0.97 5.3 6 

Benzene 
0.94 ± 

0.02 
-0.01 ± 0.01 0.96 6.3 9 

o-xylene 
0.83 ± 

0.04 
0.02 ± 0.01 0.86 4.9 8 

Individual PLS 

model with 

other 

substances at 

0 

concentration 
Toluene 

0.90 ± 

0.02 
0.02 ± 0.02 0.95 5.2 12 

Acetone 
0.92 ± 

0.02 

-0.004 ± 

0.02 
0.96 5.8 7 

Benzene 
0.96 ± 

0.02 
-0.01 ± 0.01 0.96 6.3 7 

o-xylene 
0.81 ± 

0.04 
0.02 ± 0.01 0.86 5.2 7 

Global PLS 

model 

Toluene 
0.91 ± 

0.02 

-0.003 ± 

0.02 
0.96 4.9 7 

Table 3.11. Summary of results for different quantitative models. RMSEV is presented as a 

percentage of the maximum substance concentration. Errors in slope and intercept are given 

within one standard deviation. 
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The second studied approach is based also in four different PLS models, each one for 

each substance but in this case the samples of the other three substances were added 

to the model as samples with zero concentration for the studied substance, which 

means that they were considered as interferences. The optimum number of latent 

variables to build the calibration models was found to be higher in the second 

approach. The reason is that more components are needed in order to explain 

nonlinearities due to the presence of interfering substances. This set of individual PLS 

models performed well for quantifications of acetone, benzene and toluene (see their 

slopes in Table 3.11), and only slightly well for o-xylene, with a slope of 0.83. The 

RMSEV values of this set of models, reported in Table 3.11, are quite similar to those 

obtained using the first approach. Although this set of models worked less successfully 

for each single compound in absence of interferences, the study of cross-sensitivity to 

interference substances shows that can be used in more realistic situations because 

the addition of interferences in the training step improved their selectivity. 

The last tested quantitative approach was based on unique PLS model that included 

the information of the four compounds. The optimum number of latent variables was 

found to be 7. The comparison between obtained and expected concentrations (see 

also Table 3.11 and Figure 3.11) has similar slope values, intercepts and correlations as 

the second approach and the RMSEV are also similar. The unique PLS model also takes 

into account interferences and shows good cross-sensitivity behaviour. The main 

reason for this is that although spectra of the different substances look like very similar 

among them, using a high number of latent variables, the model is able to capture 

unique information for each substance thus providing good predictive results. 
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Figure 3.11. Quantitative results for the unique PLS model. (A) Acetone; (B) Benzene;  (C) o-

Xylene;  (D) Toluene.  (Concentrations and RMSEV in ppm). 

3.7 Conclusions 

In this chapter, the first measurements with a stand-lone DMA instrument and the 

analysis of the spectra with multivariate processing techniques are presented. In 

section 3.5 explosives are correctly identified and in section 3.6 different VOCs are 

identified and quantified. 

 

Although the presented experimental results in section 3.5 show that the system (DMA 

+ multivariate data processing) is able to correctly discriminate among different 

explosives, the low number of samples makes that this study can only be considered as 

preliminary. New runs of experiments should be carried out in the future in order to 

establish the DMA by RAMEM as effective tool for explosive detection. 

 

In section 3.6, four VOCs (acetone, benzene, o-xylene and toluene) has been detected, 

identified and quantified with the DMA instrument with good performance. Limits of 

identification (LOI) of 0.7ppm for acetone, 0.9ppm for benzene, 1.5ppm for o-xylene 

and 2.0ppm for toluene were found. The PLS models have been able to quantify the 
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four analytes. The RMSEV for acetone, benzene, toluene and o-xylene were in the 

range from 0.1 to 0.3ppm in validation. Identification and classification of the 

compounds has been done based on PLS-DA with a K-NN classifier built on the latent 

variable space. The rate for global classification was 77% with 95% confidence intervals 

of (70-83)%. However, most of the confusions are due to the concentrations that are 

below the limit of identification. 

Current results also show the great influence of the humidity. Next DMA prototype will 

include conditioning of the sheath gas, with heating elements and a filter to test 

several molecular sieves. This will reduce the great influence of the humidity in the 

resulting spectra, and more reproducible results are expected.  

 

Furthermore, the general procedure to predict (identification and quantitation) 

unknown samples in a real environment in real-time is described. First, training models 

are built using data obtained from the DMA under controlled conditions in the 

laboratory; second, these models are used in the real environment to predict the new 

measurements in real-time. Although this procedure has been explained for the DMA 

case, since it is general, it can be applied to any instrumentation providing multi-

dimensional data (gas sensor arrays, IMS or spectroscopy in general). 

We would like to remark that a full suite of tools for DMA spectra processing, including 

pre-processing, dimensionality reduction, classifiers and regressors has been 

developed in Mathscript (LabView) from scratch and integrated on the on-board 

LabView programme that currently is offered with the instrument by the producer. 
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Chapter 4 

4Sparse MCR-ALS using L1 regularization and 

Gaussian peak shape models  

4.1 Introduction 

As it was described in chapter 1, Multivariate Curve Resolution Alternating Least 

Squares (MCR-ALS) aims to recover the evolution of the source signals (in our case, 

concentration profiles) and the mixing matrix (spectral features) without any prior 

supervised calibration step. Additionally, it is well known that imposing additional 

knowledge about the methods, or the processes, by using constraints can lead to 

better solutions and easier interpretation of the results since rotational ambiguities 

(Jaumot & Tauler 2010) are minimized and the space of possible solutions is reduced. 

In this sense, constraining the solution by imposing several constraints is a standard 

practice in MCR (Juan et al. 1997). For instance, some soft-constraints (Tauler 1995; 

Gemperline & Cash 2003; Bro & Sidiropoulos 1998) are: 1) number of pure 

components expected to be found in the mixture, 2) Non-negativity, 3) Unimodality, 4) 

Selectivity and 5) Closure. Nevertheless, when using IMS, in a real scenario where 

interfering substances are expected to be present, it is almost impossible to known in 

advance if a spectrum is unimodal or which regions are selective to one or more 

specific ions. Therefore, in the experiments presented in this chapter, only the 

constraints 1 and 2 were applied so as to force the solution as less as possible. 

While, in its basic form, MCR is a soft-modelling technique (not underlying model is 

imposed), several authors have proposed hard-modelling versions of MCR where 

physical-chemical models characterizing the underlying process are imposed in the 

solution (Juan et al. 2000). When using these models, additional knowledge is 

incorporated, therefore the solution is even more constrained (hard constraint) and 

rotational ambiguities are minimized as well. 

For some spectroscopic measurements, spectra are characterized by the presence of a 

series of peaks. In some instruments, approximate models of the peak shape are 

known (e.g. Gaussian peaks) (Felinger 1998). However, in a blind source separation 

(BSS) scenario, neither the number of peaks nor their position is known in advance. 

This point seriously hinders the application of peak shape models within the 

alternating least square solution loop of MCR. 
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We propose to model the source spectra as a dense superposition of Gaussian peaks 

and then rely on L1-norm regularization to obtain a sparse solution in the model, thus 

obtaining automatically the proper number of peaks and their location without 

imposing a priori either the location or the number. To do so, we have introduced the 

LASSO (Least Absolute Shrinkage and Selection Operator) technique within the MCR-

ALS loop. We call the new algorithm MCR-LASSO. LASSO was proposed by Tibshirani 

(Tibshirani 1996) and it is known as basis pursuit (Chen, Donoho & Saunders 1998) or 

compressed sensing (Donoho 2006) in the field of signal processing. To test this 

concept we have applied basic MCR-ALS and MCR-LASSO to both synthetic and real 

signals. Real signals correspond to Ion Mobility Spectra (IMS) recorded using a baggage 

scanner prototype which mimics an airport security checkpoint (section 4.3.4). 

4.2 New proposed BSS technique: MCR-LASSO 

The main motivation to propose a new BSS technique is to improve the quality of the 

estimation using the less possible number of constraints. The shape of IMS spectra is 

very dependent on the combination of substances present in a sample. Moreover, in 

real scenarios, where interfering chemicals are present, the spectra could become 

even more complicated, thus it is unknown if some constraints can be applied to IMS 

spectra, for instance: unimodality, selectivity or local chemical rank. 

The proposed MCR-LASSO technique is based on MCR. A flexible mathematical model 

for the spectrum shape is introduced in the algorithm and the complexity of this model 

is controlled by a regularization parameter. Spangler showed that, for IMS, the shape 

for a migrating ion cloud arriving at the collector could be considered Gaussian as a 

first approximation. If there are losses due to ion conversion, recombination or 

transverse diffusion, the peak gives up being Gaussian and gets wider (Spangler 2002). 

In our model, spectrum Sj is modeled as a linear superposition of Gaussians of variable 

width (regressors): 

(Eq. 4.1) )()(
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forms the basis of regressors which is used for the linear regression problem; t is the 

drift time, ti is the centre of each Gaussian in the x-axis, N is the number of Gaussians 

(eigenvectors) to reconstruct a spectrum, and 
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(Eq. 4.3) 
2·ln2·2·p

i
i
R

t
=σ  

 

is the standard deviation of each one of these Gaussians located on each drift time 

point. Rp is the resolving power of the IMS defined in Eq. 1.3 and in (Rokushika et al. 

1985; Siems et al. 1994; Spangler 2002). N is equal to the number of drift time points 

per spectrum. 

This dense linear combination of Gaussians has the capability to model a large diversity 

of peaks. The only constraint being that they cannot be narrower than σi. 

It is very important to understand that the only fitting parameters are the set of 

weights {ai} in (Eq. 4.1). In such a way, the model becomes linear in the parameters. 

We rely on this dense Gaussian model to fit wider non-Gaussian peaks. Please note, 

that in our approach N is very large, or in other words, the sampling time Δ=ti+1-ti, is 

much smaller than the peak FWHM (Full Width at Half Maximum). While the fitting 

parameters {ai} can be estimated by ordinary least squares, this estimation is ill 

conditioned when the correlation among the regressors is large (Eldén 1977; Golub 

1965). The condition number with respect to inversion gives us estimation on the 

sensitivity of the solution of a system of linear equations to errors in the data. The 

condition number is defined as the ratio of the largest singular value of the matrix of 

regressors (Eq. 4.2) to the smallest. Large condition numbers indicate a nearly singular 

matrix. In our spectrum model, each Gaussian is highly correlated with a number of 

neighbouring Gaussians and the condition number is around 3·10
19

. This fact can lead 

to singularities and instabilities producing a poor estimation for the aij coefficients, 

which will exhibit high variance. A large positive coefficient in one regressor can be 

cancelled by a similarly large negative coefficient in a correlated neighbour. The 

problem can be regularized by imposing a constraint on the coefficients. 

Regularization to MCR-ALS solution has been previously considered by Wang (Wang et 

al. 2003) using Ridge Regression which does a proportional shrinkage to all the 

coefficients. However, in order to have a sparse solution minimizing the number of 

Gaussians in the model, we propose to use LASSO (Tibshirani 1996; Hastie, Tibshirani & 

Friedman 2009). LASSO is an iterative least squares solver using an L1-norm penalty. 

The LASSO shrinks some fitting coefficients and sets many others to zero. It is accepted 

that LASSO produces more parsimonious models providing better prediction accuracy 

and more interpretable models (Hastie, Tibshirani & Friedman 2009). 

We propose to introduce LASSO within Multivariate Curve Resolution in the estimation 

of pure spectra in each ALS iterative step. Unlike the ridge regression, which uses a L2-

norm penalty in the coefficients (∑ 2
ja ), the LASSO does not have a closed form 
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because it uses a L1-norm (∑ ja ); however an estimation can be derived from a 

linear approximation in such a way that the vector of weights aj for the j-th spectrum 

can be written as the ridge regression estimator (
j

j
j

a

a
a

2

≅ ) and the solution can be 

found by iteratively computing the ridge regression (Fan & Li 2001): 

 

(Eq. 4.4) ( ) j
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where φ is the regression matrix of gaussians (Eq. 4.2) at each time; λ is the tuning or 

regularization parameter which, in general, is adjusted by cross-validation (Hastie, 

Tibshirani & Friedman 2009). The tuning parameter λ ≥ 0 controls the amount of 

shrinkage on the coefficients. The larger the value of λ, the greater the amount of 

shrinkage. Moreover, λ regularizes the estimation of the aij coefficients adding a 

positive constant to the diagonal of ϕϕT  before inversion (Eq. 4.4). This makes the 

problem non-singular, even if ϕϕT  is not of full rank, which is our case. For a 

description about linear methods for regression and specifically shrinkage methods, 

the reader is referred to (Tibshirani 1996; Hastie, Tibshirani & Friedman 2009). 

4.3 Materials and Methods 

4.3.1 MCR-LASSO algorithm 

MCR-LASSO algorithm starts filtering the data matrix with PCA (using the same number 

of pure components which will be used later in the main loop) and using the first 

estimations for spectra from SIMPLISMA (Windig et al. 2005). Then C is obtained by 

means of fast non-negative least squares (FNNLS) (Bro & Jong 1997) from (Eq. 4.5), and 

S is estimated using C and FNNLS (which impose non-negativity in a least squares 

sense). 

 

(Eq. 4.5) D = C·S
T 

+ E 

 

S is normalized to unit area before being used by LASSO, which, given a penalty 

parameter λ, estimates the best aij coefficients for each spectrum using (Eq. 4.4) 

iteratively. At this point, the most of the aij coefficients are zero, generating a sparse 

solution producing a small and stable subset of Gaussians even in the presence of 

noise. Using these aij coefficients, spectra are reconstructed and consequently filtered, 
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removing most of the high frequency noise, and normalized to unit area. The algorithm 

enters in an iterative procedure recalculating C, S and aij and goes on until it converges 

(the relative difference between root mean squared errors (RMSE) for successive 

iterations is small enough) or the maximum number of iterations is achieved. The 

RMSE is defined as: 

 

(Eq. 4.6) 
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where D is the original data matrix filtered with PCA and D̂  is the reconstructed data 

matrix using C and S for the current iteration (Eq. 4.5). 

The block diagram of the MCR-LASSO algorithm is given in Figure 4.1, which is the 

same as that of MCR-ALS but for the additional LASSO step. Thereby, intuitively, when 

λ tends to zero, the MCR-LASSO solution tends to the MCR-ALS solution with slight 

differences due to the rigidity of the Gaussian model. 
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Figure 4.1. Block diagram of MCR-LASSO algorithm. The additional blocks added with regard to 

MCR-ALS algorithm are shown shaded. 

4.3.2 Non-Gaussian peak fitted from a Gaussian model using LASSO 

First, we want to prove that a non-Gaussian peak with a long tail can be modelled as a 

linear superposition of Gaussian peaks. Secondly, we want to prove that LASSO is more 

suitable than OLS (Ordinary Least Squares) for fitting purposes (aij determination) in 

the presence of noise. In order to demonstrate the previous hypotheses, a non-

Gaussian peak is synthetically generated. We use the Breit-Wigner function, also 

known as Cauchy or Lorentz distribution, previously applied to model IMS signals 

(Vogtland & Baumbach 2009). A peak is composed of a left Gaussian part and a right 

Breit-Wigner part which models the peak’s tail. A measurement of asymmetry is the 

ratio between the FWHM and the FWHM for a Gaussian of the model at the same 

position. For the current non-Gaussian peak this ratio is 1.51 (a value of 1 would 

indicate that the peak is perfectly Gaussian). LASSO and OLS are tested under noisy 
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conditions. Additive normally distributed noise is added to the spectrum to reach a 

signal-to-noise ratio (SNR) of 10dB. The SNR is defined as: 

 

(Eq. 4.7) 







=

noise

signal

P

P
dBSNR 10·log10)(   

 

where Psignal and Pnoise are the mean power of the signal and the noise, respectively. 

In the case of LASSO, since, in this example, the solution is known and so as to 

demonstrate the hypothesis, the tuning parameter λ is determined from a sweep. 

Given λ, the RMSE (Eq. 4.6) is evaluated between the original asymmetrical peak and 

the LASSO fit. The λ which provides the minimum RMSE is selected. 
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Figure 4.2. Comparison between OLS and LASSO fit for a noisy (SNR=10dB) asymmetrical peak 

(half width at half height left part wg=4.7 and half width at half height right part wbw=9.5). (a) 

OLS fit compared to original noisy peak. (b) OLS coefficients. (c) LASSO fit (λ=0.014) compared 

to original noisy peak. (d) LASSO shrunk coefficients, giving a small and stable subset of 

Gaussians to reconstruct the original peak. 
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Figure 4.2 shows the fitting results for OLS (Figure 4.2(a)) and LASSO (Figure 4.2(c)) 

using the dense Gaussian model as basis of regressors. The long tail is fitted in both 

approaches. Even though the noisy conditions and the high asymmetry in the original 

peak, the LASSO solution is able to fit the peak giving a RMSE of 3·10
-4

 and only 3% of 

the coefficients are different from 0. The OLS solution is fitting the noise giving a RMSE 

of 1·10
-3

 and all the coefficients are different from 0 (100%). Moreover, the coefficients 

are much more stable and regularized in the LASSO solution (Figure 4.2(d)) with much 

smaller values than in the OLS solution (Figure 4.2(b)). In the OLS solution, there are a 

great number of positive and negative coefficients trying to compensate each other; 

this shows the instability of the solution if there is a great correlation among 

regressors, which leads to a poor estimation of the coefficients. Unlike OLS, the LASSO 

provides an optimal, small and stable subset of Gaussians to reconstruct the original 

asymmetrical peak in the presence of noise. 

4.3.3 Synthetic dataset 

A collection of datasets (training, validation and test) of synthetic spectra were 

generated to test the algorithms under noisy conditions (Gaussian additive noise to 

reach SNR=10dB (Eq. 4.7) and highly overlapped spectra. Each dataset contains its own 

series of noise. One dataset was used for training, 10 for validation and one as a test 

dataset. The training and validation datasets were used for the determination of the 

parameter λ, and the test set was used for final evaluation of algorithms performance. 

For the spectra, two Breit-Wigner peaks were generated with a relative separation of 

0.35, defined in terms of the ratio between the distance between maxima and the 

FWHM (a value of 0 would indicate the peaks are completely overlapped; a value of 1 

would indicate the peaks are resolved at half height). Regarding the ratio between the 

peak FWHM and the FWHM for a Gaussian of the model at the same position, for the 

current synthetic dataset this ratio is 1.51 (a value of 1 would indicate that the peak is 

perfectly Gaussian). The concentration profiles related to each peak were very similar 

in order to test the algorithms under challenging conditions. The angular distance 

between profiles, which provides an estimation of the difficulty of the problem, can be 

calculated as: 

(Eq. 4.8) 











=

ji

ji

ij
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Where Cx is the vector containing the evolution in time for the selected spectrum 

(concentration profile) and ||Cx|| is the Euclidean norm. An angular distance of 0º 

would indicate that the concentration profiles are identical. The angular distance was 
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24º for the training dataset, 18º for validation and 10º for test. The relative maximum 

intensities for the contributions were 1000 and 700 for training, 1000 and 800 for 

validation, and 1000 and 500 for test; therefore second peaks appear in the tail of the 

first ones. 

In the case of LASSO, the tuning parameter λ is determined by cross-validation using 

the training and validation datasets. In order to prevent overfitting in the selection of 

λ, the training, validation and test datasets were created with different concentration 

profiles as described previously. Given a certain value for λ, the LASSO method is 

applied to the training dataset; the recovered spectra Strain are used to estimate the 

concentration profiles Cval using a validation dataset and FNNLS in a single step. The 

RMSE (Eq. 4.6) is evaluated between the validation dataset and the reconstructed 

dataset using Cval and Strain. An averaged RMSE is obtained for each λ value. High values 

of λ constrict too much the model; low values of λ allow noise appearance. Therefore, 

the best value for lambda is that around a change in the slope in the graph RMSE vs. λ 

(Figure 4.3). Usually, values within a range around the optimum provide similar results; 

thereby, the selection of the value is not critical. After selecting the λ value, this is 

applied to the test dataset to compare the MCR solutions.  
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Figure 4.3. Determination of the tuning parameter λ by cross-validation. The λ value is selected 

as that around the change in the RMSE slope. Other possible values around the selected value 

are shown within the ellipse. 

4.3.4 Ion Mobility Experiments with a Baggage Scanner 

Experiments were performed using a baggage scanner provided by RAMEM S.A. 

(Madrid, Spain) (RAMEM). The scanner comprises a conveyor belt with a moving 

velocity of 0.5m/s and a chamber, located in the middle of the conveyor belt, with an 

approximate effective volume of 200l. Inside the chamber there are 8 compressed air 

nozzles. The compressed air has a pressure up to 6 bars and a flow up to 300l/min. 
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Furthermore, within the chamber, there is a 1000W infrared lamp. Both, the 

compressed air and the infrared lamp, can be switched on in order to favor the 

vaporization of volatiles present in the sample. The chamber’s air is extracted using an 

extractor fan with a flow up to 77m
3
/h which is located into a chimney connected with 

the chamber. In the chimney there is a connection with the instrument. 

The measurements were performed using a gas detector array (GDA) manufactured by 

Airsense Analytics GmbH (Schwerin, Germany). The GDA includes an IMS with a 

radioactive ionization source of 
63

Ni, it is based on water chemistry and its resolving 

power (Rokushika et al. 1985) is 32 at least (Eq. 1.3). The GDA incorporates an internal 

pump with a flow of 400ml/min. The IMS provides a different sample spectrum of 

length 28ms every 3 seconds. This spectrum corresponds to an average of 16 

consecutive spectra for noise reduction. The sampling time for the drift spectra is 

0.03ms. A picture of the instrument is shown in Figure 1.15(a). 

The luggage scanner can be controlled using a specific software designed using 

LabView 8.5 (National Instruments, Texas, USA), provided by RAMEM. This software 

allows controlling the duty cycle of the compressed air nozzles, the time that a suitcase 

remains within the chamber and the time that the infrared lamp is switched on. 

The sample was pipetted on a glass fiber substrate located over a suitcase with 

dimensions 30x15x20cm
3
. The suitcase is introduced within the chamber using the 

conveyor belt. A picture of the mechanical system is shown in Figure 4.4. 

 

 

Figure 4.4. Scanner for baggage inspection. The schematic shows the locations of the IMS and 

the extractor fan. 



Sparse MCR-ALS using L1 regularization and Gaussian peak shape models 

 

 114 

 

Two experiments using the baggage scanner are presented in this chapter. In the first 

experiment, 10µl of benzaldehyde were pipetted on the glass fiber substrate. The 

sample was 6 seconds inside the chamber with the infrared lamp permanently turned 

on. In the second experiment, the sample consists of 0.5µl of ethanol and 0.5µl of 

ortho-nitrotoluene (o-MNT), a taggant for explosive detection (Ewing et al. 2001). The 

sample was 12 seconds inside the chamber with the infrared lamp and the air 

compressed nozzles permanently turned on. 

The reader should notice that although the samples were in the µl range on the glass, 

the chamber had a volume of 200l and the extractor fan had a flow of 77m
3
/h, 

therefore the concentration of chemicals arriving at the detector had been strongly 

diluted. 

Three replicates (training, validation and test) per experiment were performed. 

In the MCR-LASSO case, using the training and validation datasets, the regularization 

parameter λ is estimated as explained in section 4.3.3 and applied to the test dataset. 

From our results, the tuning parameter λ depends on the width of the peaks and the 

noise level. Regarding the width of the peaks, the wider the peak is, the more number 

of Gaussians are needed to reconstruct the spectrum; thus λ needs to be small enough 

to not constrict too much the growth of the coefficients. Concerning the noise, the 

higher the noise level is, the higher the λ is needed for filtering purposes. Since the 

experiments were performed using the same instrument in similar operating 

conditions, it seems a reasonable assumption to fix a λ value for the IMS experiments. 

The parameter λ was estimated from the experiment with benzaldehyde. An 

appropriate value for λ has been found at 0.1. This value is used within MCR-LASSO in 

the two experiments (test datasets). 

4.3.4.1 Baseline subtraction 

Baseline from each spectrum was identified from the initial and final part of the 

spectrum where no peaks were identified. The first 150 points (from 1ms to 5.51ms) 

and the last 295 points (from 19.15ms to 28.09ms) were fitted to a polynomial of 4
th

 

order. Figure 4.5 shows and example of baseline correction for a spectrum from the 

dataset of the second experiment (similar results were obtained for the first 

experiment). The baseline correction was applied independently spectrum by 

spectrum. 
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Figure 4.5. Example of baseline correction for the spectra recorded using the IMS. (a) Baseline 

for a spectrum from the dataset of the second experiment using the baggage scanner. (b) 

Spectrum after applying the 4
th

 order polynomial correction. 

4.3.5 Algorithms Implementation Details 

MCR-LASSO was programmed using MATLAB 7.5 (Mathworks) and PLS toolbox 5.2 

(EigenVector Research, Seattle, USA). The MATLAB software for MCR-ALS is available in 

(Tauler & Juan 2005). The algorithm used for SIMPLISMA corresponds to the MATLAB 

function purity, which can be found in PLS Toolbox 5.2. SIMPLISMA was applied using 

the pure variable approach in all the cases; the description of the function can be 

found in (Windig et al. 2005). For comparison, the MCR-LASSO will be compared with 

the MCR-ALS in exactly the same conditions regarding initialization and convergence 

criteria. 

In the experiments presented in this chapter, only a fixed number of components and 

non-negativity were applied as constraints to MCR techniques since we consider that, 

in a real scenario, other constraints are non-sense. Non-negativity was applied through 

FNNLS in both techniques (MCR-ALS and MCR-LASSO). Spectra were normalized to unit 

area in each iterative step within the algorithms. The stop criterion (the same for both 

algorithms) was based on the RMSE (Eq. 4.6) between the data matrix filtered with 

PCA and the reconstructed matrix using C and S. At each iteration, the RMSE is 

calculated and the algorithms stop if the relative difference between iterations is less 

than 0.1%. 

While some approaches to find the optimal number of pure components (K) have been 

reported (Windig & Guilment 1991; Windig et al. 2005; Buxton & Harrington 2001; 

Gourvénec, Massart & Rutledge 2002), in our case the choice has been based on the 

Singular Value Decomposition (SVD) of the data matrix and visual inspection of the 

estimations for S and C using SIMPLISMA.  
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4.3.6 Figures of merit 

4.3.6.1 Synthetic dataset 

For the synthetic dataset, since the underlying solutions for spectra and concentration 

profiles are known, the RMSE (Eq. 4.6) and an orthogonal distance (Eq. 4.8) can be 

calculated. Equation (Eq. 4.6) is used taking the matrix of real spectra (profiles) and the 

matrix of recovered spectra (profiles) instead of the data matrices (D and D̂ ). (Eq. 4.8) 

is used assessing the orthogonal distance between the real spectrum (profile) and the 

recovered spectrum (profile) by the MCR algorithms. An orthogonal distance of 0º 

would indicate that the recovered spectrum (profile) is identical to the synthetic one. 

Moreover, the recovered power, which is related to the RMSE, can also be calculated 

(see next section). 

4.3.6.2 Experimental datasets 

For the experimental datasets, since the underlying solutions are not known, as figure 

of merit, we consider the power recovered by the algorithms regarding the original 

data matrix. The power of the original data matrix D can be calculated as 

∑∑
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power can be obtained as: 

 

(Eq. 4.9) ( ) 100·/(%) 00 PPPP resrec −=  

 

4.4 Results 

4.4.1 Results for synthetic dataset 

Figure 4.6 shows a comparison of the results provided by MCR-ALS (Figure 4.6(a) and 

(c)) and MCR-LASSO (Figure 4.6(b) and (d)) after selecting the first estimations from 

SIMPLISMA. The regularization parameter λ for MCR-LASSO was selected as explained 

in section 4.3.3 (Figure 4.3). 
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Figure 4.6. Results for synthetic dataset (SNR=10dB) with asymmetrical peaks (half width at 

half height left part wg=4.7 and half width at half height right part wbw=9.5) compared to MCR 

solutions. (a) Spectra recovered by MCR-ALS. (b) Spectra recovered by MCR-LASSO (λ=0.03). (c) 

Concentration profiles by MCR-ALS. (d) Concentration profiles by MCR-LASSO (λ=0.03). 

 

Due to the challenging conditions, the first estimations from SIMPLISMA were very 

noisy in the concentration profiles and showing bad resolution in the spectra (not 

shown). MCR-ALS is not able to recover the peaks in the correct position (Figure 4.6 

(a)) and the shape of the peaks is distorted due to noise. Moreover, the estimations for 

the concentration profiles are very noisy (Figure 4.6(c)). On the contrary, for a certain 

range of λ values, although the shapes of the peaks are a little bit distorted due to the 

rigidity of the Gaussian model, MCR-LASSO is able to recover properly the peak 

position for the spectra (Figure 4.6(b)) and provides stable, regularized and much less 

noisy estimations for the profiles (Figure 4.6(d)). In that sense, for suitable values of λ, 

MCR-LASSO is performing as a filter at the same time that regularizes the solution. 
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RMSE (A.U) Angle (º) 
 

Spectra Profiles Spectra Profiles 
Power (%) 

MCR-ALS 2.6·10
-3

 4.9·10
3
 10, 19 14, 40 91 

MCR-LASSO 1.2·10
-3

 1.2·10
3
 4, 6 3, 6 91 

Table 4.1. Comparison of quantitative results obtained with the synthetic dataset. Figures of 

merit are RMSE (Eq. 4.6), orthogonal angle (Eq. 4.8) and recovered power (Eq. 4.9). 

 

The quantitative results are presented in Table 4.1. It is shown that MCR-LASSO 

provides better solutions in terms of orthogonality (Eq. 4.8) and RMSE (Eq. 4.6). 

Regarding the recovered power (Eq. 4.9), both MCR-ALS and MCR-LASSO recover 91% 

of the total variance for the original noisy dataset. 

4.4.2 Results for experimental datasets from the luggage scanner 

4.4.2.1 Experiment 1: Benzaldehyde 

This experiment shows a clear example of non-linearity; for high concentrations the 

main peak shifts to a longer drift time, maybe due to dimering. This leads to a dramatic 

spectrum distortion depending on concentration. This experiment will show that non-

linearity can be dealt properly using additional components in the model. Ultimate 

correct model interpretation will depend on the criteria and previous knowledge of the 

human observer. 
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Figure 4.7. Spectra collection obtained using the IMS for the experiment with benzaldehyde 

after baseline correction. Left: Intensity vs. drift time. Right: Time of the experiment vs. drift 

time. 

The data matrix obtained from the IMS after baseline correction is shown in Figure 4.7 

(test dataset). The matrix comprises 17 spectra with 271 drift time points from 6.42ms 
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to 14.60ms, where relevant peaks appear. The total time of the experiment was 48 

seconds. Figure 4.7 shows the peaks related to each substance and their drift time. The 

first two peaks are the reactant ion peaks. Figure 4.7 also shows the three peaks 

related to benzaldehyde, which have a different evolution in time.  

First estimations for spectra and profiles are obtained using SIMPLISMA (Figure 4.8(a) 

and (d)) selecting 5 pure components. Negative values appear in SIMPLISMA, which do 

not have physical meaning. Moreover, the fourth and fifth components in spectra are 

very noisy and contain contributions in regions where other peaks appear, trying to 

compensate its evolution. 
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Figure 4.8. Results for SIMPLISMA and MCR approaches for the experiment with benzaldehyde 

imposing 5 components. Left (spectra):  (a) SIMPLISMA, (b) MCR-ALS, (c) MCR-LASSO (λ=0.1). 

Right (concentration profiles): (d) SIMPLISMA, (e) MCR-ALS, (f) MCR-LASSO (λ=0.1). 



Sparse MCR-ALS using L1 regularization and Gaussian peak shape models 

 

 120 

Figure 4.8(b) shows the spectra recovered by MCR-ALS imposing non-negativity, 

therefore no negative values appear. The component spectra have contributions in 

regions where other peaks appear for other spectra (peak overlapping). This is clearly 

visible in the fourth and fifth components, which try to model the behaviour for the 

first RIP and the second benzaldehyde peak, respectively. Moreover, these 

components are very noisy due to the estimation introduced by SIMPLISMA for them, 

thus MCR-ALS is not able to provide an easy interpretation for the behaviour of these 

variables. This fact hinders the interpretation of the results. 

Figure 4.8(c) shows the spectra recovered by MCR-LASSO with λ=0.1 (selected from 

cross-validation). The noise in the spectra has been highly reduced and practically 

there are no contributions of one spectrum in regions where peaks appear for other 

spectra. Even though the noisy estimation for the fourth and fifth components, the 

algorithm is able to regularize and stabilize the solution. This fact makes easier the 

interpretation of the concentration profiles related to each spectrum (Figure 4.8(f)). 

When the sample is introduced into the chamber transference of charge, from the 

reactant ion peaks to the incoming molecules, occurs. Three peaks are related to 

benzaldehyde and they have a different evolution in time depending on the 

concentration of the substance. The first two peaks appear at low concentrations, 

while the third peak appears only at higher concentrations. After sample introduction, 

the first two peaks appear but very fast charge is transferred to the third peak. When 

concentration decreases, the third peak disappears and the two initial peaks gain 

importance only to finally disappear again when benzaldehyde solution goes to zero. 

When the sample is extracted from the chamber, the reactant ion peaks begin to 

recover its charge at the same time that the concentration of benzaldehyde decreases 

in intensity. This variation in concentration is complex from the chemical point of view 

of the IMS and it is reflected in the different evolution of the benzaldehyde peaks. 

In terms of recovered variance (Eq. 4.9) by the different algorithms with regard to the 

original data matrix, SIMPLISMA and MCR-ALS provide almost 100% of the original 

variance; MCR-LASSO 99%. Despite that MCR-LASSO is providing less variance than the 

other approaches, the recovered power is still highly significant. This decreasing in 

variance is attributed to the rigidity of the Gaussian model. 

4.4.2.2 Experiment 2: Ethanol + o-MNT + interferences 

This second experiment provides a good example to see how the algorithms perform 

in the presence of interference substances, thereby in a more complex mixture. The 

data matrix obtained from the IMS after baseline correction is shown in Figure 4.9 (test 

dataset). The matrix comprises 91 spectra with 301 drift time points from 5.51ms to 

14.60ms, where relevant peaks appear. The total time of the experiment was 273 
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seconds. Figure 4.9 shows the peaks related to each substance present in the mixture 

and their drift time. The first two peaks are the reactant ion peaks (RIP). Figure 4.9 also 

shows the peak related to ethanol and the three peaks related to o-MNT. Moreover, a 

peak due to interfering chemicals appears overlapped with the peak of ethanol 

(according to our interpretation, this interference is related to compressed air since it 

disappears if air compressed flow is turned off) and also there is an acetone remainder 

from previous experiments. 
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Figure 4.9. Spectra collection obtained using the IMS after baseline correction for the mixture 

of ethanol and o-MNT in the presence of interferences. Left: Intensity vs. drift time. Right: 

Time of the experiment vs. drift time. 

 

First estimations for spectra and profiles are obtained using SIMPLISMA. Figure 4.10 

shows the results provided by SIMPLISMA for five (Figure 4.10(a), (b) and (c)) and six 

components (Figure 4.10(d), (e) and (f)). For five components, a peak with very high 

intensity appears in the resolved spectrum due to interfering chemicals present in 

compressed air (Figure 4.10(a)). This peak with high intensity tries to compensate 

negative values for this contribution in other drift time intervals. Moreover, negative 

values appear in the spectra (Figure 4.10(a) and (d)), which do not have physical 

meaning. Concerning the concentration profile, for the interfering contribution (Figure 

4.10(c)), this is close to zero. Thus, results provided by SIMPLISMA seem to be bad in 

these cases but still they provide a good initial point for the bilinear matrix 

decomposition (Eq. 4.5). 
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Figure 4.10. First estimations for MCR approaches using SIMPLISMA. Left (5 components):  (a) 

Spectra, (b) Profiles for the two reactant ion peaks, (c) Profiles for ethanol, compressed air and 

o-MNT. Right (6 components): (d) Spectra, (e) Profiles for the two reactant ion peaks, (f) 

Profiles for ethanol, compressed air, o-MNT and acetone remainder. 

 

Figure 4.11 and Figure 4.12 show the spectra and concentration profiles recovered by 

MCR-ALS and MCR-LASSO (λ=0.1) imposing five and six components, respectively. 
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Figure 4.11. Spectra and concentration profiles recovered imposing 5 pure components using 

MCR-ALS (left) and MCR-LASSO with λ=0.1 (right). Non-negativity constraint was applied 

through FNNLS. (a) MCR-ALS spectra, (b) MCR-ALS reactant ion peaks profiles, (c) MCR-ALS 

profiles for ethanol, compressed air and o-MNT, (d) MCR-LASSO spectra, (e) MCR-LASSO 

reactant ion peaks profiles, (f) MCR-LASSO profiles for ethanol, compressed air and o-MNT. 

 

Concerning the case with five components (Figure 4.11), Figure 4.11(a), (b) and (c) 

show the results provided by MCR-ALS. A high degree of overlapping can be observed 

among the recovered spectra related to each pure component (Figure 4.11(a)). 

Regarding concentration profiles (Figure 4.11(b)), at the beginning of the experiment 

(measurement time), the pure components associated to the two RIPs are trying to 
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compensate to each other. This effect can not be explained taking into account the 

transference of charge from the RIPs to the incoming molecules in the IMS. Then, 

MCR-ALS is not separating properly the fraction of charge transfer due to each RIP. 

Figure 4.11(d), (e) and (f) show the results provided by MCR-LASSO. Compared to MCR-

ALS, overlapping is smaller among spectra, then, MCR-LASSO results can be 

interpreted in an easier manner (Figure 4.11(d)). Moreover, signal-to-noise ratio (SNR) 

is significantly improved in MCR-LASSO due to the hard constraint imposed by the IMS 

Gaussian model. Concerning concentration profiles (Figure 4.11(c) and (f)), both 

algorithms are providing similar results. 

As can be seen in Figure 4.11(e), when the sample is introduced into the chamber, the 

two RIPs decrease in intensity due to the transference of charge to the incoming 

molecules, and the intensity of the peaks related to ethanol, compressed air and o-

MNT increase (Figure 4.11(f)). Ethanol, with a higher volatility, appears first in time at 

69s and it reaches its maximum intensity at 78s because it has fully evaporated from 

the fiber glass substrate. o-MNT appears secondly at 72s and it begins to decrease at 

84s. This is in perfect agreement with the time that the suitcase remained inside the 

chamber (12s). Compressed air nozzles were turned on a few seconds before the 

suitcase entered within the chamber, and they were turned off 30s later then, 

concerning the interference due to compressed air, it appears at 66s (before the 

appearance of ethanol) and grows slowly in intensity until it reaches a maximum value 

at 105s (39s), which is in agreement with the experimental conditions. Exactly the 

same analysis can be done analyzing Figure 4.11(c), although the shapes of the curves 

are slightly different from Figure 4.11(f).  

An extra component can be introduced in the algorithms in order to model the 

behaviour of the acetone remainder (Figure 4.12). The analysis of the results is very 

similar to the previous case (Figure 4.11) with slight differences. Regarding 

concentration profiles (Figure 4.12(c) and (f)), MCR-ALS is not modelling correctly the 

evolution of acetone, which increases significantly its intensity in time. MCR-LASSO 

provides a better result but still gives a slight increase in intensity for the component. 

Only a decreasing in intensity should be expected since the component was not 

present in the mixture and is a remainder from previous experiments. MCR-LASSO is 

still providing better results in terms of overlapping among spectra and signal-to-noise 

ratio (Figure 4.12(d)), which makes easier the interpretation of the concentration 

profiles. 

Although MCR-LASSO captures a little less variance than MCR-ALS (almost 100% for 

five and six components), basically due to the rigidity of the Gaussian model plus the 

sparse solution, the recovered power (Eq. 4.9) is still highly significant (99% for five and 

six components). 
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Figure 4.12. Spectra and concentration profiles recovered imposing 6 pure substances using 

MCR-ALS (left) and MCR-LASSO with λ=0.1 (right). Non-negativity constraint was applied 

through FNNLS. (a) MCR-ALS spectra, (b) MCR-ALS reactant ion peaks profiles, (c) MCR-ALS 

profiles for ethanol, compressed air, o-MNT and acetone remainder, (d) MCR-LASSO spectra, 

(e) MCR-LASSO reactant ion peaks profiles, (f) MCR-LASSO profiles for ethanol, compressed air, 

o-MNT and acetone remainder. 
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4.5 Conclusions 

It is well-known that imposing constraints in MCR-ALS leads to better solutions and 

results that are easier to interpret qualitatively. However, when using ion mobility 

spectrometry, some constraints are not applicable in a real scenario where interfering 

chemicals are expected to be found, since the spectra could be very complicated. In 

these cases, integrating as much knowledge about the system as possible could be 

critical to detect certain chemicals. 

We have presented MCR-LASSO, a technique for multivariate curve resolution that 

introduces a flexible model for the spectra in the form of a dense superposition of 

Gaussian peaks. The LASSO technique is introduced within the ALS loop for spectra 

modelling. Model complexity is limited by the use of L1-norm regularization. 

Synthetic experiments have shown that in challenging conditions (high noise, very 

similar concentration profiles, overlapped spectra, and asymmetric peaks) MCR-LASSO 

provides better estimation of the time evolution and spectra of the underlying 

components. The dense superposition of Gaussian is able to model wider asymmetric 

peaks usually found in spectroscopy. 

On the other hand, MCR-LASSO has been found also to provide better resolution in 

two real experiments using a baggage scanner prototype. The first has shown that IMS 

non-linearities can be dealt by the introduction of additional pure components. The 

second experiment presents a more complex mixture including the presence of 

interfering chemicals. MCR-LASSO results contain less noise, not only in the spectra but 

also in the concentration evolution, and their interpretation is easier than that from 

MCR-ALS or SIMPLISMA. At this point, it is also important to mention that the LASSO 

approach can be used with other peak models apart from the Gaussian one chosen in 

this work. 

The use of a regularized solution using the L1-norm permits to use a flexible model (in 

this case a very dense superposition of Gaussian peaks) that would otherwise result in 

a very ill-conditioned least squares problem, and still find a sparse solution of limited 

complexity. 

Although our work has been based on IMS spectra and Gaussian peaks, we believe that 

MCR-LASSO can be applied to other analytical settings provided that spectra models 

can be based on dense linear superposition of regressors. 
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Chapter 5 

5Qualitative Analysis and Quantitative Prediction of 

Non-Linear Ion Mobility Spectra 

5.1 Introduction 

In this chapter, a new methodology to analyze spectra time-series obtained from ion 

mobility spectrometry (IMS) is investigated with the ultimate purpose of quantitative 

prediction. Quantitative prediction in IMS is hindered by the presence of strong non-

linearities due to the appearance of dimers or even more complex clusters of ions. 

Those non-linearities are particularly important in the presence of humidity since ions 

can be protonated at different levels. In the presence of mixtures, mixed ions cluster 

are also possible (Puton et al. 2012). In the current chapter, the analyzed IMS spectra 

present a strong non-linear behaviour as substance concentration increases (section 

1.3.1 and Figure 5.1). 

The proposed method combines the advantages of multivariate curve resolution-

alternating least squares (MCR-ALS) for an optimal physical and chemical 

interpretation of the bilinear decomposition (Eq. 1.9) of the data matrix (qualitative 

information) and a multivariate calibration technique such as polynomial partial least 

squares (poly-PLS) (Wold, Kettaneh-Wold & Skagerberg 1989; Rosipal 2008) for a final 

quantification (quantitative information) of new samples. This method allows coping 

with cases where spectrum behaviour is non-linear with the concentration. 

 

Figure 5.1. Synthetic representation of the effect of concentration response in traditional ion 

mobility spectrometry. (a) Concentration profiles as concentration increases. (b) Spectral 

responses for two particular concentrations. 
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In order to build a predictive calibration model in IMS, univariate techniques appear as 

the first solution. A calibration could be performed using the information of peak area 

or height of protonated monomer or protonated-bound dimer and then applying an 

appropriate fitting function. Typically, fitting functions are polynomial. However, such 

techniques are not useful if peaks are overlapped (unless a previous deconvolution is 

done). While it is possible to keep the instrument in a linear regime for low input 

concentrations, this seriously damages the dynamic range (ratio of maximum 

concentration to the limit of detection) of the instrument for most analytes. Moreover, 

if peaks behaviour is non-linear as concentration is increased, quantitation is degraded 

if only one of the peaks is used. As it can be seen in Figure 5.1, a calibration model 

based on protonated monomer is very sensitive at low concentrations and provides no 

information at high concentrations; on the other hand, a calibration model based on 

protonated-bound dimer is quite the opposite. Therefore, multivariate calibration 

techniques appear to be a good choice dealing with non-linearities and peak 

overlapping. 

Only in the last twenty years multivariate calibration models have been proposed to 

process IMS for quantitative analysis (Zheng, Harrington & Davis 1996; Fraga, Kerr & 

Atkinson 2009; Ochoa & Harrington 2005; Zamora & Blanco 2012; Lu, O'Donnell & 

Harrington 2009). Recently, Fraga et al. in (Fraga, Kerr & Atkinson 2009) compared the 

performance of  PLS and PCR with univariate regression based on peak area in the 

quantification of TNT and RDX in explosives. It is shown that multivariate calibration 

methods provide better IMS quantitative precision and accuracy than univariate 

methods even when the peaks are resolved. 

Also recently, Zamora et al. (Zamora & Blanco 2012) demonstrate that MCR can be 

effectively applied to improve the resolution of overlapped peaks in IMS. In this work, 

two active principal ingredients (API) at low concentrations are also successfully 

quantified using PLS models. 

While previous works have shown that PLS can be applied directly for quantitative 

prediction in IMS spectra, the interpretation of PLS models for IMS is not easy. PLS 

attempts to find factors which both capture variance of the spectral responses and 

achieve correlation between the spectral responses and the magnitude to be predicted 

(concentrations). However, both loadings and final regression coefficients can have 

negative values leading to compensation effects which increase even more the 

difficulty of physical or chemical interpretation. Furthermore, despite the fact that PLS 

algorithm is able to handle slightly non-linear data by increasing the number of latent 

variables in the calibration model, this approach is less successful for datasets 

containing moderate and severe non-linearities (Yang, Griffiths & Tate 2003). Several 
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variants of linear PLS have been developed to deal with non-linear datasets (Rosipal 

2008), for instance using splines (Wold 1992) or using a polynomial of a certain order 

(Wold, Kettaneh-Wold & Skagerberg 1989; Baffi, Martin & Morris 1999). However, 

loadings remain difficult to interpret. 

 

A different approach to analyze IMS spectra is the use of multivariate curve resolution 

techniques (MCR) that aim to recover the evolution of the source signals 

(concentration profiles) and the mixing matrix (spectral features) without any prior 

supervised calibration step. We use MCR with alternating least squares (MCR-ALS) 

(Tauler, Kowalski & Fleming 1993). The bilinear decomposition obtained leads to a 

feasible physical and chemical interpretation of the results. Since MCR-ALS is a linear 

method, nonlinear contributions can be modelled adding extra components. 

As it is shown in Figure 5.1, since a single analyte could produce more than one ionic 

species with different evolution as concentration increases, we would need additional 

dimensions to model the variation of the overall spectra. In general it is reasonable to 

think that as many dimensions are needed as different ions appear. 

Although MCR-ALS has been demonstrated in many different applications to resolve 

properly different contributions present in a sample, it only provides qualitative 

information. Since no prior knowledge about the composition of the mixture is 

assumed, MCR-ALS does not provide concentration information and cannot be used 

directly for quantification of new samples in its basic form.  

However, posterior quantitation on the basis of MCR decomposition has been 

previously described. Antunes et al. (Antunes et al. 2002) and later Azzouz and Tauler 

presented the correlation constraint in (Azzouz & Tauler 2008). This constraint is 

introduced within the main ALS loop and provides a way to quantify new samples using 

MCR-ALS. However, the correlation constraint cannot be applied when different ion 

species produced by the same analyte are modelled as separated components, since 

only the analyte concentration is available and not the concentration of each ion 

species (Figure 5.1). 

Specifically, for the analysis of traditional IMS spectra where the same analyte 

produces several ion peaks, Harrington et al. (Harrington & Chen 2004) proposes to 

use a set of equilibrium equations to model the relative concentration of the different 

ions in the drift tube. However, this approach is very dependent on the validity of the 

equilibrium model. If the model fit fails (e.g. because equilibrium conditions are not 

reached), the quantitative prediction accuracy degrades. 

It is also shown in (Armenta & Blanco 2012) the effective use of MCR-ALS to obtain 

qualitative and quantitative individual component information from overlapped peaks. 

In this application, active pharmaceutical ingredients (APIs) are monitored in the air of 
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a workplace in a pharmaceutical industrial site using IMS. Qualitative profiles are 

obtained using MCR-ALS and they are averaged and interpolated to the corresponding 

calibration curve in order to obtain a quantitative measurement. However, this 

methodology can only be applied when only one peak is related to each component 

(slight non-linearities).  

 

In the present work, we aim to provide a multivariate calibration method for IMS 

spectra combining the advantages of MCR-ALS for qualitative interpretation and a non-

linear multivariate technique such as poly-PLS (Wold, Kettaneh-Wold & Skagerberg 

1989; Rosipal 2008) for an improved quantification of substance concentration. 

Thereby, MCR-ALS is used as a prior step to multivariate calibration modelling 

nonlinear contributions properly and with an easier interpretation. This method can be 

useful especially in cases where peak intensity behaviour is non-linear as concentration 

increases.  

5.2 Materials 

5.2.1 Ion Mobility Spectrometer 

In the present work, a handheld 
63

Ni-based ion mobility spectrometer (GDA2, Airsense 

Analytics) is used (Figure 1.15(a)). The IMS is based on water chemistry, incorporates 

an internal pump with a flow of 400ml/min and provides a different sample spectrum 

of length 28ms every 3 seconds. This spectrum corresponds to an average of 16 

consecutive spectra for noise reduction. The sampling frequency for the drift spectra is 

33 KHz and the temperature of the drift tube reaches 45ºC in operating conditions. 

The IMS operated in positive ion mode. 

For identification purposes the reduced mobility (K0) is often used (Eq. 1.2), which 

allows comparing results between different IMS instruments using the same ionization 

source. 

5.2.2 Sample preparation 

Controlled and calibrated concentrations of 2-butanone and ethanol (at least 99% 

pure, provided by Sigma-Aldrich, St. Louis, USA) were prepared using synthetic air 

premier (pure at 99.995%, provided by Carburos Metálicos, Spain). The concentrations 

were obtained by dilution of the stream exiting the oven of a volatile generator system 

based on permeation tubes (OVG4, Owlstone, Cambridge, UK). The permeation tubes 

were previously calibrated in our facilities by gravimetric methods after one week in 

the OVG4 at constant temperature and flow. 
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The analytes were measured using the ion mobility spectrometer at ten different 

concentrations. Table 5.1 shows the measured concentrations for each substance. A 

certain number of spectra (stable consecutive scans) are obtained for each 

concentration. The same measurements were replicated in three different days. In the 

case of 2-butanone, the total size of the data matrix is 108 scans x 198 spectral points 

for each replicate. In the case of ethanol, the total size of the data matrix is 196 scans x 

198 spectral points for each replicate. 

 

2-butanone 

(ppm) 

Ethanol 

 (ppm) 

0 0 

0.05 0.39 

0.10 0.89 

0.16 1.5 

0.23 2.1 

0.29 2.7 

0.33 3.0 

0.38 3.6 

0.44 4.1 

0.51 4.7 

0.57 5.3 

Table 5.1. Concentrations for 2-butanone and ethanol generated using the volatile generator 

system. 

5.3 Methods 

5.3.1 Pre-processing of IMS datasets 

Performing an appropriate spectral pre-processing in IMS data is critical to obtain 

reliable results. Three pre-processing steps have been applied to data matrices prior to 

MCR-ALS: baseline correction, noise reduction and spectra alignment. As it was shown 

in (Pomareda et al. 2010), baseline from each spectrum can be corrected fitting and 

subtracting a polynomial of 4th order using the initial and final part of each spectrum. 

In particular, the first 150 points (from 1ms to 5.51ms) and the last 295 points (from 

19.15ms to 28.09ms) of each spectrum where no relevant peaks were identified 

(Figure 4.5). Additionally, noise reduction was performed using Savitzky-Golay filtering 

(Savitzky & Golay 1964) using a polynomial of second order of window length fifteen 

samples and finally, misalignment was corrected applying a shifting in drift time taking 
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as reference the position of the reactant ion peak (RIP). The last step is crucial in order 

to obtain good qualitative and quantitative results. 

5.3.2 Qualitative analysis: MCR-ALS 

MCR-ALS is used for a qualitative analysis of IMS datasets. The algorithm is described 

in chapter 1, 1.4.2.3. In each iterative step, non-negativity, unimodality and closure are 

used as constraints within the main ALS loop after computing (Eq. 1.10) or (Eq. 1.11). 

Non-negativity has been used because concentration profiles and spectra are expected 

to be positive in order to have a physical and chemical meaning. This constraint has 

been applied through fast nonnegative least squares (FNNLS)(Bro & Jong 1997). 

Moreover, unimodality has been applied in peaks which were expected to be unimodal 

(for instance, the reactant ion peak and the monomer). The closure constraint has also 

been applied because, in IMS with APCI (Atmospheric pressure chemical ionization), 

available charge is transferred among ions but this charge remains constant during the 

whole process; this constraint is applied to all concentration profiles. 

Initial estimations for MCR-ALS are obtained using SIMPLISMA (Windig et al. 2005).  

5.3.3 Quantitative analysis: univariate and multivariate calibration 

Although MCR-ALS provides a powerful way to resolve different contributions 

measured in the spectra, the results are only qualitative. Therefore it cannot be used 

directly to quantify new samples. In this sense, calibration techniques are required for 

quantification. 

Different univariate and multivariate calibration techniques have been tested and 

compared. Univariate techniques correspond to peak area and peak height calibration. 

Multivariate techniques correspond to PLS and poly-PLS. 

5.3.3.1 Univariate calibration 

Peak area calibrations have been performed adding up the areas of each one of all the 

peaks related to the substance and then fitting a polynomial of a certain order to the 

relationship between substance concentration and peaks area in order to build the 

calibration model. In this work, we define the peak area as the integral of the peak 

corresponding to the FWHM (Full Width Half Maximum) region, that is, the sum of 

intensities above the 50% of the maximum. The polynomial order is optimized using 

the cross-validation procedure described in section 5.3.3.3. Peak height calibrations 

have been performed in a similar way to area calibration but taking the maximum of 

the monomer peak. 
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5.3.3.2 Partial least squares (PLS) and nonlinear polynomial PLS (poly-PLS) 

In the present work, PLS and poly-PLS methods have been applied to the original 

matrices of spectral responses. In these cases, the number of latent variables (PLS and 

poly-PLS) and the polynomial order (poly-PLS) were optimized using a cross validation 

procedure in order to build the calibration model (see section 5.3.3.3).  

The main proposal in this work is to build multivariate calibration models using the 

concentration profiles extracted by a pre-processing MCR-ALS step. For that purpose, 

PLS and poly-PLS have also been applied to the matrices constructed using the 

concentration profiles of monomer and dimer (obtained from MCR-ALS). In these 

cases, the number of latent variables was set to be 2 (monomer and dimer) and only 

the polynomial order (poly-PLS) was needed to be optimized using the cross validation 

procedure (see section 5.3.3.3). 

5.3.3.3 Cross validation: Leave-One-Block-Out  

Cross-validation can be used to achieve two main objectives: assessing the 

performance of the different calibration techniques (univariate and multivariate cases) 

and optimizing some parameters (the number of latent variables in PLS and poly-PLS 

and the polynomial order in the univariate techniques and the poly-PLS case). 

The cross-validation procedure used in the present work corresponds to leave-one-

block-out (LOBO). First of all, the set of spectra corresponding to the first and last 

measured concentrations are always used to build the calibration model, which means 

that this set of samples is not available for validation. The reason is that we are 

interested in predicting concentrations within a certain range and not out of this 

range. This requirement could not be fulfilled if the first or last concentration were 

taken out to be validated. Secondly, leaving one block out means that, given a 

substance, the set of spectra corresponding to a certain test concentration is taken out 

to be validated and the remaining set of samples is used to build the calibration model. 

In other words, the estimation dataset never has the concentration value that is going 

to be predicted. In this way, the interpolation performance of the model is tested. The 

set of scans to be validated for each concentration is used to calculate the root mean 

squared error of validation (RMSEV). This procedure is repeated as many times as 

concentrations to be validated are (Table 5.1 shows the measured concentrations per 

each substance). Each validated concentration has its own RMSEV, therefore an 

averaged RMSEV can be calculated giving the final root mean squared error of cross-

validation (RMSECV). See section 5.3.4 to see how the RMSEV and RMSECV are 

computed. 
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The RMSECV can be calculated for a different number of latent variables and for a 

different number of polynomial orders. For the univariate techniques (area and peak 

height), the polynomial order which minimizes the RMSECV is taken to build the 

calibration model. For the PLS case, the number of latent variables which minimizes 

the RMSECV is considered optimum and is taken to build the calibration model. For the 

poly-PLS case, the combination of the number of latent variables and polynomial order 

which minimizes the RMSECV is taken to build the poly-PLS calibration model. 

In the proposed method, when MCR-ALS is applied as prior step to multivariate 

calibration, only the polynomial order needs to be optimized in the poly-PLS case, since 

the number of latent variables is set to be 2 (monomer and dimer) by MCR-ALS. 

5.3.4 Figures of merit 

In order to assess the performance of MCR-ALS, the explained variance is used as 

figure of merit: 
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where C and S correspond to the concentration profiles and spectra matrices 

recovered by MCR-ALS algorithm and D corresponds to the original matrix of spectral 

responses. The explained variance is equivalent to the recovered power in (Eq. 4.9). 

In the case of calibration techniques (univariate and multivariate), it is important to 

assess the error of prediction in the quantification of new samples. To achieve this, the 

root mean squared error of validation is calculated: 

 

(Eq. 5.2) 
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where cv corresponds to the original concentration, 
v
ĉ  to the concentration predicted 

by the calibration model, and V corresponds to the number of validated samples. 

The set of spectra to be validated for each concentration is used to calculate a RMSEV 

(Eq. 5.2). Therefore, for each concentration a RMSEV is calculated. In the end, an 

averaged RMSEV can be obtained: 
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(Eq. 5.3) 
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where RMSECV is the root mean squared error of cross-validation, RMSEVi 

corresponds to the validation error calculated using (Eq. 5.2) for a particular 

concentration, and I corresponds to the number of validated concentrations. This 

result is presented as a percentage of the maximum substance concentration (see 

Table 5.2). 

The squared correlation coefficient R
2 

also gives a measure of the quality of the 

prediction. It assesses the correlation between the predicted concentrations by the 

calibration model and the expected concentrations (Table 5.1). The quality of the 

prediction is better as R
2
 is closer to 1 ( 10 2 ≤≤ R ). 

5.3.5 Algorithms implementation details 

All calculations were performed using MATLAB 7.9 (MathWorks, Massachusetts USA). 

MCR-ALS codes are available on the Internet (Tauler & Juan 2010). MATLAB routines 

for SIMPLISMA (function purity), PLS (function pls) and poly-PLS (function polypls) are 

available in PLS toolbox 5.8 by Eigenvector Research. 

5.4 Results and discussion 

Measured IMS spectra for 2-butanone and ethanol include a protonated monomer (Eq. 

1.5) and a proton-bound dimer (Eq. 1.6). 2-butanone spectra at different 

concentrations after preprocessing are shown in Figure 5.2(a). The spectra show four 

main peaks. The first peak with a reduced mobility K0=2.10 cm
2
/(V·s) is related to the 

ionization of water vapour in the ambient air within the reactant region and is always 

present. The second peak with K0=1.95 cm
2
/(V·s) is related to the protonated 

monomer of 2-butanone. The proton-bound dimer of the analyte appears at high 

concentrations with K0=1.64 cm
2
/(V·s), and an additional third peak, whose behaviour 

is strongly correlated with proton-bound dimer, appears at the right of proton-bound 

dimer with K0=1.55 cm
2
/(V·s). 

Figure 5.2(b) represents the ethanol spectra at different concentrations. In this case, 

the spectra show five peaks. The first two peaks (RIP0 and RIP1) are related to reactant 

ions from the Ni
63

 ionization source with K0=2.35 cm
2
/(V·s) and K0=2.10 cm

2
/(V·s) 

respectively. RIP0 is related to the ionization of ammonia which is present in small 
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concentrations in the ambient air within the instrument and is very difficult to remove 

it from the spectrometer. RIP1 is related to the ionization of water vapour. Protonated 

monomer comes out with K0=1.99 cm
2
/(V·s), and the proton-bound dimer shows up at 

K0=1.83 cm
2
/(V·s). The last peak appears with K0=1.65 cm

2
/(V·s)

 
has a behaviour which 

is strongly correlated with ethanol dimer. 
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Figure 5.2. IMS spectra for 2-butanone and ethanol at different concentrations (legends in 

ppm units). a) 2-Butanone. b) Ethanol. 

 

To the best of our knowledge, only in the case of ethanol, K0 values have been 

reported using Ni
63

 ionization sources, but only regarding the monomer peak (1.91 

cm
2
/(V·s)

 
 (Eiceman & Karpas 2005) and 1.99 cm

2
/(V·s)

 
(Sielemann et al. 2001)). This is 

in agreement with our experiments (1.99 cm
2
/(V·s)). Other works reported K0 values 

(monomer and dimer) for ethanol using other ionization sources, therefore these 

values cannot be compared with those obtained in our experiments. For instance, 

using a 10.6eV UV lamp (Sielemann et al. 2001) or a Tritium ionization source (Tiebe et 

al. 2009). 

In the case of 2-butanone, only K0 values for the monomer peak have been reported 

and none of these values have been obtained using a Ni
63

 ionization source. For 

instance, using a UV hydrogen lamp (Leasure et al. 1986) or a high speed capillary 

column (HSCC-UV-IMS) (Xie et al. 2002). 

MCR-ALS was applied to both datasets to resolve the evolution of formed species of 2-

butanone and ethanol. SIMPLISMA was used to extract initial estimations for spectra 

and concentration profiles prior to MCR-ALS. Non-negativity, unimodality and closure 

were the constraints used within the ALS loop. The analysis was performed using the 

spectra region from 6ms to 12ms where relevant peaks appear. SIMPLISMA was 

applied imposing 3 components in the case for 2-butanone and 4 components in the 

case for ethanol. 
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Figure 5.3. 2-butanone. (a) Recovered spectra by MCR-ALS. (b) Recovered concentration 

profiles by MCR-ALS. 
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Figure 5.4. Ethanol. (a) Recovered spectra by MCR-ALS. (b) Recovered concentration profiles 

by MCR-ALS. 

 

Figure 5.3 and Figure 5.4 show the results by MCR-ALS for 2-butanone and ethanol 

respectively. 2-butanone and ethanol have a nonlinear behaviour as substance 

concentration increases. Moreover, since protonated-bound dimers appear at high 

concentrations and their behaviour differs from that of the monomers, the 

concentration of the substances needs to be explained using more than one 

component in SIMPLISMA and MCR-ALS. In the studied cases, MCR-ALS is able to 

resolve the different components properly. As it can be seen in Figure 5.3(b) and 

Figure 5.4(b), the intensity of the reactant ion peaks decreases as substance 

concentration increases. Although protonated monomers start increasing their 

intensities at low concentrations, they reach their maximum intensity in a certain 

substance concentration and then start to drop off. At the same time, proton-bound 

dimer peaks increase their intensity when substance concentration rises further, but 
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they reach a saturated behaviour at very high concentrations. Furthermore, 

sometimes clustering formation takes place between the analyte and water molecules 

either in the reactant region or in the drift tube (Eiceman & Karpas 2005), as a result of 

this chemical process a new peak could appear in the signal. This is observed in the 

MCR-ALS results where a secondary peak appears in the dimer components; the peak 

located at the right of the dimers is related to a product formed by the proton-bound 

dimer and a water molecule. 

 

The explained variance (Eq. 5.1) by MCR-ALS models were 99.7% for 2-butanone and 

99.8% for ethanol, which indicates that MCR-ALS models are able to explain almost the 

total variance of the original data matrix and at the same time provide an easy 

interpretation for the different contributions.  

Once we have modelled the qualitative evolution of monomers and dimers for 2-

butanone and ethanol using MCR-ALS, this information can be seized in order to build 

calibration models for quantification. Since substances present a strong nonlinear 

behaviour as concentration increases and especially monomers and dimers peaks, 

polynomial PLS should be used to construct the calibration model rather than PLS or 

any other univariate technique. The output information from MCR-ALS concentration 

profiles is used to construct a new matrix (X) with dimensions M x N, where M is the 

total number of samples (including all scans at all concentrations) and N = 2 (monomer 

and dimer concentration profiles from MCR-ALS). A matrix of concentrations (Y) with 

dimensions M x R can also be constructed, where R=1 since we only have one 

substance per model. Using X and Y matrices (Eq. 1.13), an optimum calibration model 

can be built using the cross-validation methodology explained in section 5.3.3.3. 

Moreover, this cross-validation methodology can be used to assess the performance of 

the calibration model. 
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Figure 5.5. Predicted concentrations vs. substance concentrations for validation samples 

projected over constructed poly-PLS models. (a) Predicted 2-butanone concentrations using 

poly-PLS models with 2 latent variables and polynomial order = 3. (b) Predicted ethanol 

concentrations using poly-PLS models with 2 latent variables and polynomial order = 4. 

 

Figure 5.5 shows the predicted concentrations versus the original concentrations for 2-

butanone and ethanol using poly-PLS as calibration method after obtaining MCR-ALS 

concentration profiles. The figure shows only the validation results. The reader should 

notice that although the validation results are depicted on the same graph, each set of 

scans (belonging to a particular substance concentration) has a different calibration 

model (built from leave-one-block-out cross validation method). The optimum 

polynomial order was found to be 3 for 2-butanone data and 4 for ethanol data. The 

RMSECV (Eq. 5.3) was 5.6% (relative to full scale input range) for 2-butanone and 1.2% 

for ethanol (relative to full scale input range). The squared correlation coefficient was 

0.98 for 2-butanone and 0.998 for ethanol. The results show that prediction accuracy is 

quite good using the proposed method. 

In order to compare with the proposed method, univariate and multivariate calibration 

models can also be built without using MCR-ALS concentration profiles. Figure 5.6 and 

Figure 5.7 show predicted concentrations for 2-butanone and ethanol respectively, 

using the same cross-validation methodology. 
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Figure 5.6. Predicted concentrations vs. substance concentrations for validation samples 

projected over different calibration models. (a) Predicted 2-butanone concentrations using 

area calibration and fitting a polynomial of 7th order. (b) Predicted 2-butanone concentrations 

using height calibration and fitting a polynomial of 8th order. (c) Predicted 2-butanone 

concentrations using PLS models with 6 latent variables. (d) Predicted 2-butanone 

concentrations using poly-PLS models with 3 latent variables and polynomial of order 3. 
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Figure 5.7. Predicted concentrations vs. substance concentrations for validation samples 

projected over different calibration models. (a) Predicted ethanol concentrations using area 

calibration and fitting a polynomial of 9th order. (b) Predicted ethanol concentrations using 

height calibration and fitting a polynomial of 5th order. (c) Predicted ethanol concentrations 

using PLS models with 11 latent variables. (d) Predicted ethanol concentrations using poly-PLS 

models with 8 latent variables and polynomial of order 1. 

 

Previous results were obtained using spectra acquired within one day (day 1). 

Numerical results comparing univariate and multivariate techniques using and not 

using MCR-ALS concentration profiles are presented in Table 5.2. Additionally, Table 

5.2 presents results from replicated datasets obtained in different days. Henceforth 

the analysis of the results is referred to day 1, but similar analyses could be done from 

day 2 and 3. 
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R
2
 RMSECV (% max conc) 

Calibration method 
2-butanone Ethanol 2-butanone Ethanol 

Peak area calibration (U) 

Day 1 0.96 0.95 5.6 6.3 

Day 2 0.998 0.96 1.1 5.8 

Day 3 0.87 0.96 12 6.1 

Peak height calibration (U) 

Day 1 0.993 0.91 2.3 7.9 

Day 2 0.94 0.90 6.4 8.4 

Day 3 0.990 0.92 2.7 7.8 

PLS (M) 

Day 1 0.91 0.993 7.7 2.3 

Day 2 0.998 0.995 1.2 1.8 

Day 3 0.996 0.992 1.4 2.3 

poly-PLS (M) 

Day 1 0.992 0.991 3.0 2.6 

Day 2 0.998 0.992 2.7 2.3 

Day 3 0.995 0.992 1.6 2.4 

MCR-ALS + PLS (M) 

Day 1 0.85 0.97 10 5.7 

Day 2 0.994 0.97 2.4 5.2 

Day 3 0.89 0.97 8.8 5.8 

MCR-ALS + poly-PLS (M) 

Day 1 0.98 0.998 5.6 1.2 

Day 2 0.9990 0.998 0.88 1.2 

Day 3 0.997 0.998 1.2 1.3 

Table 5.2. Comparison between different optimized calibration methods using leave-one-

block-out cross validation with datasets obtained in different days. Results include univariate 

(U) and multivariate (M) methods. The best results for each day are shown shaded. 

 

As it can be seen in Figure 5.6 and in Table 5.2, univariate techniques can provide good 

results if peaks in the spectra do not appear overlapped and thus can be easily 

identified to calculate their area or extract their height, this is the case for 2-butanone. 

However, when peaks appear overlapped (case of ethanol) these techniques can fail 

since contributions from other peaks appear in the region of the peak of interest 

(Figure 5.7). In situations with a high overlap between peaks the use of univariate 

calibration techniques can be unfeasible, unless a prior deconvolution step is carried 

out. Using multivariate techniques better calibration models than univariate 

techniques can be built as it was already proved by Fraga et. al in (Fraga, Kerr & 

Atkinson 2009).  
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Regarding multivariate techniques, although PLS and poly-PLS directly applied to IMS 

spectra provide similar prediction accuracy to that of the methodology proposed in the 

present work, the optimum number of latent variables is too high. For the PLS case, 6 

and 11 latent variables for 2-butanone and ethanol respectively. For the poly-PLS case, 

3 and 8 latent variables for 2-butanone and ethanol respectively. This fact hinders the 

qualitative interpretation of the results since many different contributions need to be 

taken into account in order to understand the chemical process involved in the 

substance behaviour as concentration increases. Moreover, since no constraints are 

imposed to the regression coefficients, negative values which do not have any physical 

and chemical meaning can be found. 

For instance, Figure 5.8 shows the scores and loadings from a poly-PLS calibration 

model with the same number of latent variables as the number of components used in 

MCR-ALS for 2-butanone (Figure 5.8(a) and (b)) and ethanol (Figure 5.8(c) and (d)). The 

cross-validation procedure has been applied in order to optimize the polynomial order. 

The difficulty to interpret the results compared to MCR-ALS solutions (Figure 5.3 and 

Figure 5.4) is shown since many contributions need to be taken into account. If the 

optimum calibration model includes more latent variables, although prediction can be 

better, the interpretation of the results is even more difficult, which is the case for the 

results presented in Table 5.2 (day 1). 
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Figure 5.8. Scores and loadings from poly-PLS calibration models using the same number of 

latent variables as the number of components used to build MCR-ALS models. (a) Loadings for 

2-butanone. (b) Scores for 2-butanone. (c) Loadings for ethanol. (d) Scores for ethanol. 

 

Results in Table 5.2 and Figure 5.5 show how the methodology proposed in the 

present work provides similar or better prediction accuracy compared to other 

univariate or multivariate methodologies. Moreover, the number of parameters to be 

optimized by cross-validation in PLS and poly-PLS is one less since the number of latent 

variables is set by the number of components used in MCR-ALS, thus reducing the 

complexity of the calibration model. Furthermore, interpretation of the results is much 

easier since it can be done directly analyzing MCR-ALS concentration profiles. 

Similar results were obtained from different replicates in different days, with the 

calibration and validation samples obtained within the same day. Otherwise, 

instrumental drift would degrade prediction accuracy. This point has been already 

observed by different authors, see e.g. Fraga and references there in (Fraga, Kerr & 

Atkinson 2009).  

From days 2 and 3, using MCR-ALS as prior step to poly-PLS calibration provides the 

best results. PLS and poly-PLS directly applied to IMS spectra also provide good 

prediction accuracy but, as explained before, the interpretation of the chemical 

process is difficult since the optimum number of latent variables is too high.  
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As it is shown in Table 5.2, calibration models can be built within the same day and be 

used for prediction within the same day; however, there is a large variability in the 

evolution of monomer and dimer among different days, especially in the 2-butanone 

case. This variability is much less in the case of ethanol. This result suggests that in 

general for some substances, calibration models built in one day cannot be used to 

predict new samples measured in another day. In the ethanol case, although 

calibration models built in one day could be used in different days, the study of the use 

of calibration models for prediction in different days is out of the scope of the present 

thesis. 

5.5 Conclusions 

This work presents a methodology to be applied to IMS spectra which combines the 

advantages of MCR-ALS for qualitative interpretation and poly-PLS for quantitative 

prediction of new samples which present a strong nonlinear behaviour as substance 

concentration increases. 

MCR-ALS has been demonstrated to be a suitable method to the study of ion mobility 

second order data. Using SIMPLISMA and MCR-ALS, IMS spectra are resolved into pure 

components and a qualitative estimation for the spectral and concentration profiles of 

these components is obtained. MCR-ALS allows the description of the chemical 

changes observed when concentration increases. Although protonated monomer and 

proton-bound dimer belong to the same substance, their IMS peaks were modelled as 

separate components in the studied analytes (2-butanone and ethanol). Therefore, 

MCR-ALS provides a powerful way to obtain a physical and chemical interpretation of 

the system even in the presence of strong nonlinear behaviours. Although this 

qualitative information cannot be used directly to perform a calibration, it can be used 

effectively by a multivariate calibration technique such as poly-PLS to build calibration 

models. In this work, it has been demonstrated that these models provide similar or 

better predictive capacity compared to standard univariate and multivariate 

methodologies. 

For the studied datasets, quantitative results show how standard multivariate 

calibration techniques work in general better than univariate techniques, especially 

when peaks in the spectra appear overlapped. Multivariate techniques are able to 

model nonlinear behaviours adding more components to the model. The datasets 

included strong nonlinear behaviours as substances concentration increased. While 

PLS is able to handle slightly nonlinear behaviours, strong nonlinear evolutions are 

better modelled using poly-PLS. Although prediction accuracy is similar, the results 

obtained from these standard techniques are often difficult to interpret, since, in order 
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to model nonlinearities, the number of latent variables in the model is usually higher 

than the number of peaks. Using MCR-ALS prior to the calibration step provides a way 

to interpret properly the results and fix the number of latent variables, thus reducing 

the complexity of the calibration model. Moreover, since the number of latent 

variables is set to be equal to the number of pure components in MCR-ALS, the 

number of parameters to be optimized by cross-validation is one less.  

Additionally, results obtained from different replicates have been presented. The 

results suggest that calibration models can be used for prediction in the same day but 

not between days. This is especially significant in the case of 2-butanone. Using an IMS 

calibration model built in one day to predict new samples in another day is an 

interesting topic for future work. 
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Chapter 6 

6Chemical Plume Source Localization with Multiple 

Mobile Partially Selective Sensors using Bayesian 

Inference in the presence of Chemical Background 

Interference 

6.1 Introduction 

Navigation experiments towards chemical sources are strongly limited by the rapid 

decay in the chemical concentration of the source of interest with increasing distance. 

Poor detection limits result in a reduced area where the plume can effectively be 

detected. This is especially important in applications where the search zone has an 

area of hundreds of thousands of square meters. Unless the source is very strong, the 

task of source localization becomes practically impossible. In such situations, it 

becomes very important to set the detection thresholds very close to the noise level, 

but this would result in a high number of false alarms and most localization algorithms 

would fail catastrophically. To the best of our knowledge, none of the published 

methods have addressed this problem. 

On the other hand, low cost chemical sensors and even medium-priced detectors (e.g. 

ion mobility spectrometers) have only limited selectivity. In any real scenario, there 

could be background levels of a multitude of chemicals due to environmental 

pollution. Due to limited selectivity, there will be substances which will produce 

interference in the detector reading, hindering the detection and localization tasks. 

The combination of some detector electronic noise and mainly interfering chemical 

agents result in background readings that may change with time and the position of 

the detector. These shifts in background levels hamper the selection of an optimum 

threshold. As far as we know, this problem has not been tackled previously in the 

source localization literature. 

In order to address these problems, probabilistic approaches like plume mapping 

Bayesian methods appear to be a good choice. Such techniques have been effective in 

many areas of robotics and provide a good starting point to tackle the problem. Pang 

and Farrell published a source-likelihood mapping approach based on Bayesian 
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inference in 2006 (Pang & Farrell 2006). The main idea behind the algorithm consists in 

implementing a stochastic approach (Farrell et al. 2002; Papoulis 1984b) for plume 

modelling and in estimating the most likely source position taking into account the 

sequence of detection/non-detection events and fluid flow measurements along the 

robot‘s trajectory. Although in the original work, results on plume tracking are 

presented, it is not strictly necessary to track the plume to obtain a good estimation of 

the source location. Recursively building a probability map using Bayesian inference, 

the most likely source position is estimated during the robot's mission. 

However, this aforementioned algorithm uses only binary detection events. In other 

words, it does not use the chemical concentration information to build the probability 

map, since it only considers the concentrations above a certain threshold as detection 

or non-detection events. Moreover, after setting the threshold level, the approach 

assumes that the rate of false alarms is very low; such an assumption is far from the 

truth in a real scenario where background signals arise unless the threshold is set at a 

high level– but using this option seriously reduces the maximum plume detection 

distance. Therefore, there is a trade-off; on the one hand, the threshold needs to be 

set low enough (close to the sensor detection limit) if chemicals from the source are to 

be detected at large distances; on the other hand, it needs to be high enough to 

prevent false alarms. So, how to set the threshold level becomes a critical issue in real 

environments using existing approaches, especially when no information about the 

background or the source strength is available. 

One of the motivations for the present thesis was to improve the Bayesian plume 

source localization algorithm, previously described by Pang and Farrell (Pang & Farrell 

2006), using the chemical concentration and extending it to real environments where 

background signals may arise. In our proposal, the algorithm assesses the posterior 

probability that a given chemical concentration reading comes from the background or 

from a source emitting at a greater distance with a specific release rate. This removes 

the need to set any concentration threshold. Thus, Pang’s algorithm is reformulated 

for use with continuous concentration readings instead of merely binary detections. 

Moreover, the algorithm is extended to work with multiple mobile robots, 

simultaneously integrating their readings. This new approach requires a probabilistic 

model for the background and for the plume which are described in the following 

sections. 

This chapter is structured as follows: in Section 6.2 a summary of the work by Pang and 

Farrell is given which establishes the basis of our proposal. Section 6.3 explains the 

different parts of our algorithm. Section 6.4 describes the assumptions and the 

simulation scenario devised to test both approaches. Results from simulations are 
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discussed in detail in section 6.5. In order to support the conclusions obtained from 

simulations, real-world data is needed, thus the experimental set-up built to obtain 

these data is described in section 6.6 and their results are analyzed in section 6.7. 

Finally section 6.8 closes the chapter with the conclusions. 

6.2 Brief description of Pang and Farrell’s work (binary-

based approach) 

For computational feasibility, as illustrated in Figure 6.1, the search area is divided into 

rectangular cells Ci, where i is an index running from 1 to Nc, where Nc is the total 

number of cells in the grid area. Then the area contains mx x my rectangular cells each 

of size Lx x Ly, where Nc = mx x my and Lx and Ly are the cell lengths in the x and y 

directions of the grid map, respectively. Let 1'0 ≤≤ iα  represent the probability that 

there is a chemical source in Ci. It is assumed that the search area contains exactly one 

source, hence 1'
1

=∑ =

cN

i iα . Initially (t0), if no information about the source location is 

available, we assume uniform priors, i.e. all cells are initialized to be equally likely to 

contain the chemical source: ( ) [ ]cci NiNt ,1;/1)(' 0 ∈∀=α . If previous information is 

available, different selections of the priors are possible. 

y

· · · · ··· cmxmy

· · · · ··· ·

· · · · ··· ·

· · · · ··· ·

cmx+1 · · · ··· c2mx
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Figure 6.1. Cellular subdivision of the region to be searched. 

 

The source is modelled according to a stochastic plume model based on localized 

chemical filaments ("puffs") (Farrell et al. 2002). In this model, it is supposed that 

chemical filaments are continuously released from the source. Although the source is 
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continuously emitting filaments, let us start by studying the case of a single chemical 

release. The location of a filament at time tk released at time tl (tl < tk) is modelled as:  

 

(Eq. 6.1) ( ) s

t

t

t

t

kl XdttNdttXUttX
k

l

k

l

∫∫ ++= )·(·)(),(  

where X(tl,tk)=(x,y) is the chemical-filament location at time tk given that the chemical 

filament was released from a source located at Xs=(xs,ys) at time tl. U=(ux,uy) is the 

mean flow velocity and N=(nx,ny) is a Gaussian random process with zero mean and 

),( 22

yx σσ variance. If the released chemical filament at time tl is detected within cell Cj 

at time tk, what is the probability that the source is located in some cell Ci? Solving (Eq. 

6.1) for the possible source location yields: 

 

(Eq. 6.2) ),(),(),( klkljklS ttWttVXttX −−=  

 

where Xj is the center of cell Cj; ( ) dttXUttvttvttV
k

li irklyklxkl ·))((),(),,(),(
1∑ −

=
==  is the 

flow vector along the trajectory of the robot, where Xr(ti)=(xr(ti),yr(ti)) is the position of 

the sensor at time ti; and W(tl,tk) is a zero-mean Gaussian random variable. 

For each single chemical release, the algorithm computes Sij(tl,tk) which stands for the 

probability of there being a source in Ci which released a single filament at time tl, 

given that the sensor detected the chemical in Cj at time tk (tk > tl). Sij(tl,tk) is a function 

of the relative position of cell Ci and cell Cj, the flow vector V(tl,tk), and the time period 

[tl,tk]. 

If the sensor does not detect any chemical in Cj at time tk, there is still a certain 

probability of being a source in Ci. μ is the probability of detecting a chemical, given 

that there is detectable chemical in the cell Cj. Then, assuming that there is a source in 

Ci, the probability of detecting the chemical in Cj is [μ·Sij(tl,tk)] and the probability of 

not detecting the chemical is [1- μ·Sij(tl,tk)]. Detection and nondetection events are 

decided based on a threshold. Sij(tl,tk) is computed for all the cells in the map with i 

being an index running from 1 to Nc. 

This explanation is valid for one single chemical filament, but it is assumed that the 

source will be continuously emitting chemical filaments, starting at t0. As the sensor 

moves and senses the environment, detection and nondetection events are generated 

along the robot's trajectory. These events are incorporated recursively into the 

algorithm in order to update the source probability map: ( ))(|)(' kikij tBAPt =α ; where 



Brief description of Pang and Farrell’s work (binary-based approach) 

 

 155 

Ai stands for the event that there is a source in cell Ci, B(tk) stands for a sequence of 

detection and nondetection events from t0 to tk and )(' kij tα  stands for the probability 

of cell Ci of containing a source. Please note that, since the sequence B(tk) depends on 

the trajectory of the robot, it depends on the index j (related to the cells visited by the 

robot) and )(' kij tα  as well; however this index j is not explicitly used in (Pang & Farrell 

2006). Events are incorporated using Bayesian inference and considered to be 

independent. 

Given a detection event, applying the law of total probability 
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l YPYZPZP  and assuming uniform probability distribution for the time 

of filament emission, βij(t0,tk) is computed. This stands for the probability of there 

being a source continuously emitting filaments in Ci, given that there is detectable 

chemical in Cj at time tk : 
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Given a nondetection event, γij(t0,tk) is computed. This stands for the probability of 

there being a source continuously emitting filaments in Ci, given that no chemical was 

detected in Cj at time tk: 
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The source probability map )(' kij tα  is updated either by means of (Eq. 6.3) or (Eq. 6.4) 

and, using Bayesian theory, depending on whether the sensor detects or does not 

detect a chemical filament in cell Cj at time tk. 

Since the false-alarm rate is considered to be very low, detection events are 

incorporated taking into account that the detection comes from the source. Given a 

detection event, the map is updated using (Eq. 6.3): 

 

(Eq. 6.5) ),()('·)(' 01 kijkijCkij tttNt βαα −=  

 

On the other hand, nondetection events are incorporated taking into account that it is 

still possible that the cell contains the source. Given a nondetection event, the map is 

updated using (Eq. 6.4): 
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(Eq. 6.6) 
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βij(t0,tk), γij(t0,tk) and α’ij(tk) are computed for all the cells in the map being i an index 

from 1 to Nc, and j the index related to the cells visited by the robot. 

Since t0 is the time when the source starts emitting chemical filaments and tk is the 

current measurement time which grows as the exploration time increases, for 

computational feasibility a certain time-window (tk – tl) is considered, and only the last 

emitted filaments are taken into account. Moreover, only those filaments within the 

search area are considered in the calculations. This imposes some constraints on the 

computation of V(tl,tk) and Sij(tl,tk) and consequently on the calculation of equations 

(Eq. 6.3) to (Eq. 6.6). The reader is referred to the original work of Pang et. al. for the 

details (Pang & Farrell 2006). 

Despite the fact that Pang’s algorithm has been tested successfully using an 

autonomous underwater vehicle (Farrell, Pang & Li 2005; Pang & Farrell 2006), the 

work does not address the problem of the presence of interfering substances in the 

background. Additionally, although all the work is described considering only one 

robot, the algorithm can easily be extended to work with multiple robots. 

Independently of the number of robots, for the algorithm the only information needed 

is: the position where the measurement was obtained, whether it was a detection or a 

nondetection event, and the fluid flow measurement. However, a new issue needs to 

be dealt with when using multiple robots. As reported in other works (Li et al. 2011), 

the binary-based approach is very sensitive to false alarms and unexpected 

measurements caused by airflow  turbulence. Since the sensors mounted on the 

robots are deployed over the area at different locations and the algorithm uses their 

readings to build a single probability map, the most likely source location might change 

too quickly from cell to cell, depending on the location of the last measurement. This 

effect is worsened if the threshold is too low, since many of readings are considered as 

detection events. In order to minimize this problem, a filtering step with time constant 

τ is added to the original algorithm after equations (Eq. 6.5) and (Eq. 6.6). The filtered 

source probability map is computed as: 

 

(Eq. 6.7) 
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where )(' kij tα  comes from (Eq. 6.5) or (Eq. 6.6); and τ is a parameter which weights 

current and previous values ( 1≥τ ). 

6.3 Concentration-based approach 

Unlike Pang’s work, our proposal is not based on detection and nondetection events. 

Instead, our approach uses continuous concentration information in order to 

recursively update the probability map. Therefore, from the point of view of Pang’s 

work, now we always have detection events (concentrations). This new approach 

requires making some assumptions about the dispersion of the plume (the stochastic 

model in section 6.3.1) and a background model (section 6.3.2) for each cell of the 

search area. Given an instantaneously measured concentration c, it is assumed that 

there are two additive contributions: one due to the background (cb) and one due to 

the plume (cp), thus: 

 

(Eq. 6.8) c = cb + cp 

The aim of the algorithm is to estimate whether the concentration c comes from the 

background at the current cell Cj, or from a source emitting chemicals further away in 

cell Ci, –it then calculates the probability of having a source at Ci by weighting both 

possibilities. Since the algorithm is based on continuous readings, no threshold is 

needed, which eliminates the problem of losing information when concentrations are 

close to the sensor detection limit.  

6.3.1 Stochastic time-averaged plume model 

The basis of our stochastic model (Papoulis 1984b) for the chemical plume is the 

analytical Gaussian plume model (GPM) (Turner 1994; Beychok 2005) which has been 

pointed in the introduction (section 1.5.1). Previous work has demonstrated that the 

time-average plume concentration follows a Gaussian distribution along the flow 

direction (Sutton 1947; Fackrell & Robins 1982; Crimaldi, Wiley & Koseff 2002; Webster 

& Weissburg 2001). This model has been widely used for its simplicity and is 

appropriate when dispersion is governed by atmospheric turbulence. The basic 

expression for the GPM for a continuous release is given in (Eq. 6.9). 
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where C is the mean concentration in g/m3 in a location with coordinates x 

(downwind), y (crosswind) and z (vertical); q is the continuous source release rate in 

g/s; Ua is the mean wind speed in the downwind direction in m/s; h is the plume height 

in m; and σy, σz are the diffusion coefficients (in metres) modelled as: σy=a·x
b, σz=c·x

d, 

where a, b, c and d are parameters obtained from a table (Bakkum & Duijm 2005) and 

their values depend on the atmospheric conditions which can be organized in six levels 

(from A-very unstable to F-very stable). In (Eq. 6.9), the resulting concentration 

distribution is due to the transport of chemicals by advection (due to the mean wind 

speed) and due to concentration gradients within the plume width (lateral dispersion 

due to diffusion, but also turbulent mixing). 

The decay of mean concentration is exponential, thus concentration levels below the 

sensor detection limit are very quickly achieved. This issue would make the setting of 

the threshold level critical; especially, if the source has to be detected far from the 

release point. The GPM takes into account the time-averaged characteristics of a 

plume dispersed in a turbulent flow, but the sensors will be responding to the 

instantaneous plume characteristics. We propose an alternative approach to that 

published in (Farrell et al. 2002), for which an additional component needs to be added 

to the GPM in order to model the unpredictable and random fluctuations in 

concentration due to turbulent stirring and plume meandering. The empirical works by 

Eugene Yee et al. (Yee, Wang & Lien 2009; Yee 2009; Yee 2008; Yee & Biltoft 2004; Yee 

& Chan 1997) demonstrate that, in the absence of background, instantaneous 

concentration fluctuations fit very well the clipped-gamma probability density function 

(PDF). The clipped-gamma distribution is specified in terms of four parameters γ, k*, s 

and λ as: 
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where )ˆ(cΓ is the gamma function, )ˆ(cδ  is the Dirac delta function, and ĉ  is an array 

of all possible instantaneous concentrations c. The total PDF is composed of a mixed 

fluid part due to in-plume mixing of eddies containing the target substance (the first 

term on left-hand side), and an unmixed ambient fluid part (the second term on right-

hand side) caused by plume meandering which produces intermittent periods of zero 

concentration for a fraction of time (1- γ). Although (Eq. 6.10) is specified in terms of 

four parameters, it can be uniquely modelled by the mean and the standard deviation 

(SD) of a series of readings including an additional constraint. This constraint (based on 



Concentration-based approach 

 

 159 

previous studies (Yee et al. 1995; Yee et al. 1994; Yee et al. 1993)) provides a simple 

relation between the mean, the SD and the plume intermittency; thus, the 

intermittency factor γ is determined as: 

 

(Eq. 6.11) 
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where );( cνΓ corresponds to the incomplete gamma function and Kint is defined as: 

 

(Eq. 6.12) 
M
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=int  

 

which is the ratio between the SD ( SDσ ) and the mean (M) of the series of readings at 

a fixed position. 

For a specified value of Kint, the parameters k*, s and λ can be obtained solving a set of 

transcendental equations, thus making (Eq. 6.10) totally defined. The details for 

computing the parameters are given in (Yee, Wang & Lien 2009). 

While the mean concentration decreases rapidly in the downwind direction (Eq. 6.9), 

the magnitude of the fluctuations decreases even more rapidly. As described in 

(Webster 2007), Kint (Eq. 6.12) is estimated to decrease as xθ (where x is distance from 

the source and θ<0). Therefore, this parameter can be modelled as: 
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In order to model the instantaneous concentrations due to a chemical plume at a 

certain distance from the source, the clipped-gamma distribution is used (Eq. 6.10). 

The mean value of the series of concentrations due to the plume is related to the GPM 

(Eq. 6.9) and the SD can be modelled using equations (Eq. 6.12) and (Eq. 6.13): 
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Since the PDF depends on the mean and the SD, and these parameters depend on the 

distance from the source, the PDF of the instantaneous readings contains information 

about the relative position between the sensor and the source.  
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Since concentrations fluctuations (intermittencies) decrease faster than the mean 

value with the downwind distance to the source, the plume becomes homogeneous 

faster than the mean concentration dilutes. It is important to note that this effect 

happens when no background is present and dispersion is dominated by turbulences 

(Jones & Thomson 2006; Yee, Wang & Lien 2009). In other studies, it has been 

reported that the mean concentration decreases in the vertical direction as SD 

increases, thus increasing intermittency (Crimaldi, Wiley & Koseff 2002). However, this 

last phenomenon is not considered in the present work, since only measurements at a 

constant height are obtained. 

6.3.2 Background estimation 

The problem of source localization in a complex environment under uncontrolled 

background signals has not yet been tackled in the published literature. In real 

scenarios such as forests, flat terrain, residential areas or urban environments, some 

kind of pollution or interfering substances are expected to be found. This problem 

becomes even more serious due to the common use of partially selective sensors like 

Metal Oxide Sensors, or Photo Ionization Detectors, which can provide large readings 

in the absence of the target substance merely due to the presence of interfering 

chemicals. 

Although, as it has been reported in previous works (Hahn et al. 2009; Soriano et al. 

2000; Martín, Cremades & Santabàrbara 1999), the meteorological conditions (wind 

conditions and atmospheric stability) could change within a timescale of several hours, 

or there might be changes in polluting emissions due to day-night cycles of human 

activity (including motor vehicles or factories), the background can be considered 

constant if the exploration time is comparatively short. 

Based on the recorded sensor readings, our algorithm builds a statistical background 

model per cell. Assuming that the background changes slowly over time, and that no 

intermittencies are associated with it (all intermittency is considered to come from the 

plume), the SD of the series of concentrations is smaller than the mean value when no 

plume is present. Under these conditions, the clipped-Gamma distribution tends to a 

Gaussian distribution as it is shown in Figure 6.2. The main advantage of using a 

clipped-Gamma distribution rather than a Gaussian distribution for background 

modelling is that the former has only a positive range and thus has always a physical 

interpretation. Thus the background is modelled based on the clipped-Gamma 

distribution which can be estimated using two parameters. 
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Figure 6.2. The clipped-Gamma distribution tends to a Gaussian distribution as the standard 

deviation decreases relative to the mean value. 

As it has been described in previous work, in the absence of background, the 

dispersion of a chemical plume in a turbulent flow shows a highly intermittent nature 

with low or zero concentration for long periods of time separated by extremely high 

peaks of concentration (Webster 2007). However, in a real environment, in addition to 

this turbulent and chaotic dispersion of the plume, the background will appear 

overlapped with the plume (Eq. 6.8); therefore, given the instantaneous sensor 

readings, the true background needs to be extracted from this superposition of 

chemical signals.  

As the robots explore the area, the instantaneous readings measured by each sensor 

are stored in separate buffers which contain the last Nb measurements. In the 

estimation of the two parameters of the background model, robust statistical 

estimators are needed in order to minimize the problem introduced by plume 

intermittency. The median and the median absolute deviance (MAD) are used rather 

than the mean and the SD, because the former are robust up to 50% of outliers 

(Gijbels & Hubert 2009). The background model for a specific cell is updated each time 

a sensor enters that cell. The median and the MAD are calculated using the 

measurements stored in that sensor's buffer. Then the statistical background model 

parameters of the cell are updated as follows: 

 

 (Eq. 6.15) 
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where E is the updated PDF parameter; Eold is the old PDF parameter; and Ei is the 

median or the MAD calculated from the measurements stored in the buffer. Under the 

assumption that the background evolves slowly over time, the updated values tend 

asymptotically to the true values as new measurements become available. 

6.3.3 Source location probability map (concentration-based approach) 

Following Pang’s approach, the search area is divided into a grid with rectangular cells 

Ci (Figure 6.1). At the beginning of the exploration, the prior probability of source 

location is uniformly distributed among all cells with probability 1/Nc. (In the presence 

of additional information, other prior distributions may be used to initialize the 

algorithm). Given that we measure a concentration at time tk in cell Cj, we can 

calculate the source probability map based on this single reading. The two probabilities 

that the reading comes from the current background at cell Cj, or from a source at cell 

Ci, are weighted in order to calculate the final probability. From the simplest form of 

Bayes’ theorem: 

 

(Eq. 6.16) 
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using the law of total probability: )(·)|()( ϕ
ϕ

ϕ APAcPcP jj ∑= , and considering the case 

of a binary partition (ϕ =1,2), where A1=A corresponds to the event “the concentration 

reading was caused by an emitting source upstream”, A2= A  to the event “the 

concentration is caused by background levels” and cj to the event “a certain 

concentration of chemical, c, has been measured in cell Cj”, Bayes’ formula can be 

rewritten as: 

 

(Eq. 6.17) 
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Now the problem that we want to solve is: given a certain measured concentration c at 

cell Cj: what is the probability of having a source in cell Ci? 

From (Eq. 6.17): 
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where subindex i refers to cell Ci where the source may be located, and subindex j to 

the current cell Cj where the measurement was taken. cj  refers to a concentration 

reading in cell Cj. 

We consider that a background of interfering substances is always present. From (Eq. 

6.8): in the absence of plume, only the background component cb is present; in the 

presence of plume, both components (cb and cp) are present and the concentrations 

are modelled with the convolution of the plume PDF and the background PDF. 

However, even in the presence of the plume, cp may be zero due to plume 

intermittency. Plume PDF and background PDF are modelled using the clipped-Gamma 

distribution (Eq. 6.10). For the source, the PDF is computed from the mean and the SD 

of a hypothetical series of concentrations which would be observed in cell Cj due to a 

source at cell Ci. Since the readings are assessed independently and no time series is 

available, the mean is obtained from the GPM (Eq. 6.9) and the SD from (Eq. 6.14), as 

explained in section 6.3.1. 

Taking these considerations into account, the previous probabilities have the following 

interpretation: )( iAP  is the prior probability of the presence of a source at the cell Ci 

and is obtained from the PDF of the plume at cell Cj assuming that the source is at Ci; 

)|( ij AcP  is the probability that the measurement at cell Cj is due to addition of the 

background at cell Cj and a plume due to a source at cell Ci, and it is obtained by the 

convolution between the PDF of the plume and the PDF of the background at cell Cj. 

)|( ij AcP  is the probability that the measurement of chemical at cell Cj is not due to a 

source emitting at cell Ci, therefore the measured concentration is due to the current 

background at cell Cj, and it is obtained from the PDF of the background at cell Cj. 

)|()( jikij cAPtS ≡  is the probability of having a source in cell Ci given that a certain 

amount of chemical was measured at cell Cj at time tk.  

In order to better illustrate how the algorithm works, we consider a possible scenario 

in the following example. 
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(a) (b)(a) (b)

 

Figure 6.3. (a) PDF due to the background at current cell Cj (dotted line), PDFs due to the 

source (assumed to be at different distances) at current cell Cj (dash dotted line) and PDFs due 

to the convolution of background PDF and source PDFs. (b) Probability of there being a source 

at different upwind distances from the current cell Cj as a function of the measured 

concentration. 

Figure 6.3 illustrates how the PDFs and the probability assigned to different cells look 

as a function of the measured concentration. It is supposed that a concentration has 

been measured in cell Cj having a certain background level (mean=0.45ppm and 

SD=0.09ppm in this example). 

Figure 6.3(a) shows the background PDF at the measurement cell Cj, the plume PDFs at 

Cj assuming that the source is at different possible cells Ci (different distances from Cj), 

and the PDFs generated by the convolution of the plume PDFs and the background 

PDF. For each possible concentration, and for each cell Ci (each distance to Cj), a 

probability value can be extracted from the background PDF, the plume PDF and the 

PDF of the convolution. Please note that the background PDF is unique since we are 

considering one measurement, and the measurement cell Cj is fixed. Using these 

values in (Eq. 6.18) the probability Sij (tk) of having a source in Ci is obtained. This is 

illustrated in Figure 6.3(b), where Sij (tk) is depicted for different possible locations for 

the source (different distances to Cj) as a function of the measured concentration. It 

can be observed that, if the measured concentration is small or similar to the 

background level in Cj, the probability of there being a source in any cell Ci is close to 

zero. The probability starts to increase as the concentration becomes significantly 

higher than the background level. The slope of this increase depends on the distance 

from Ci to Cj. As the distance is increased, the slope decreases, consequently it is 

necessary to detect higher concentrations in order to come to believe that there is a 

source in Ci. 
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Although only some distances (cells Ci) are considered in Figure 6.3, equation (Eq. 6.18) 

can be calculated for each cell of the map (i=1,..., Nc), thus obtaining a probability for 

each cell. However, since the measured concentration in Cj could take any value, 

∑
=

=
Nc

i

kij tS
1

1)(  is not guaranteed. Moreover, it could be possible that all Sij values 

(i=1,...,Nc) were below the initial value (1/Nc). Therefore, an offset is added to Sij and 

the result is normalized to ensure a total probability of 1 when individual cell 

probabilities are added up. The nomenclature is henceforth the same as that used in 

Pang’s work. 
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Now ∑
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Nc

i

kij t
1

1)(  is guaranteed and )( kij tβ  calculated over all cells (i=1,...,Nc) gives 

the source probability map at time tk based on a single measured concentration at cell 

Cj . 

Using Bayesian theory (Papoulis 1984b) and following the same procedure explained in 

Pang’s work (Pang & Farrell 2006), each new measurement can be incorporated 

recursively in order to update the source probability map. ))(|()(' kikij tBAPt =α  is 

defined as the probability of cell Ci containing the source, given the sequence of 

concentrations B(tk) along the trajectory of the robots up to time tk. 

Defining )())(|( kijkji ttDAP β= , where Dj(tk) is the measured concentration at time tk; 

))(|( ki tBAP  is computed from B(tk-1) and Dj(tk), which are supposed to be 

independent events. 
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(Eq. 6.21) 
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where, if )(' kij tα  is computed over all cells (i=1,...,Nc), an updated source probability 

map is obtained recursively.  

Furthermore, in order to minimize the effect of false alarms and to compare the 

binary-based and the concentration-based algorithms under exactly the same 

conditions, the source probability map is also filtered using the time constant τ in (Eq. 

6.7): 
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The following table summarizes the notation used in this chapter. 

 

Ci Rectangular cell i within the search area (grid) 

Nc Number of cells in the grid area 

mx Number of subdivisions of the grid area along the x-axis 

my Number of subdivisions of the grid area along the y-axis 

Lx Length of each cell along the x-axis 

Ly Length of each cell along the y-axis 

c Instantaneously measured concentration 

cb Concentration contribution due to the background 
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cp Concentration contribution due to the chemical plume 

c  Mean concentration at a fixed location 

q Source strength or release rate 

Ua Mean wind speed in the downwind direction 

σy Diffusion coefficient in the crosswind direction 

σz Diffusion coefficient in the vertical direction 

ĉ  Array of all possible instantaneous concentrations c 

γ Intermittency factor related to the chemical plume 

M Mean concentration of a series of readings at a fixed location 

SDσ  Standard deviation of a series of readings at a fixed location 

Nb 
Number of readings stored in the concentration buffer per each 

sensor 

cj Measured concentration within cell j 

Ai Event “there is a chemical source within cell i” 

B(tk) 
Sequence of measured concentrations along the trajectory of the 

robots until time tk 

)( iAP  Prior probability of the presence of a chemical source within cell i 

)|( ij AcP  

Probability that the measurement within cell j is due to the 

addition of the background at cell j and a chemical plume due to a 

source within cell i 

)|( ij AcP  

Probability that the measurement of chemical at cell j is not due 

to a source emitting at cell i, thus cj is due to the current 

background at cell j 

)|()( jikij cAPtS ≡  
Probability of having a source in cell i given that a certain amount 

of chemical was measured at cell j at time tk 

)( kij tβ  

Normalized probability (over all cells) of having a chemical source 

within cell i based on a single measured concentration within cell j 

at time tk 

)(' kij tα  

Normalized probability (over all cells) of having a chemical source 

within cell i based on the sequence of measured concentrations 

along the trajectory of the robots (index j) until time tk 

τ Time constant for source probability map filtering  

)( kij tα  Filtered )(' kij tα probability using τ 

 

Table 6.1. Summary of the notation used for the concentration-based approach. 
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6.4 Scenario description and simulation 

6.4.1 Scenario description 

In the present chapter, an adaptation of Pang’s algorithm (Pang & Farrell 2006) 

(binary-based) and our implementation (which we name concentration-based and 

which uses continuous readings) are tested through realistic simulations.  

The scenario envisioned considers atmospheric plumes in an urban area encompassing 

hundreds of thousands of square meters. The simulator devised allows a number of 

different functions: (i) generating a grid map of specified size where the actual 

localisation task takes place, (ii) changing the number of robots which will explore the 

area and their mean velocity, (iii) creating a certain background distribution in the 

area, (iv) simulating the emission of a chemical source with a certain release rate 

under (v) different wind and atmospheric conditions. It is considered that there is only 

one chemical source. As has been described in (Pang & Farrell 2006) and section 6.2, 

for computational feasibility, the search area is divided into rectangular cells Cj of a 

certain size (Figure 6.1). The sensors located in mobile robots can transmit their 

current position in the grid (e.g. using a GPS sensor) together with the chemical sensor 

readings, and they will explore the search area by moving across the cells performing 

random exploration. It is assumed that each robot mounts a single sensor. It is 

considered that the main task of the robots is not that of tracking the plume; rather 

the main interest is that of performing a mapping of the mean background level at the 

same time as updating a probability map for the source location using the available 

information. During the mission, the robots will sense the instantaneous chemical 

concentration at a certain sampling rate (a parameter which can also be set in the 

simulator); therefore a set of measurements will be available from each sensor in a 

separate buffer of Nb samples. The buffer size can also be set. 

The model for chemical source dispersion is the time-averaged Gaussian plume model 

(GPM) (Turner 1994; Beychok 2005) which is the same model as that assumed by the 

source localization algorithm (section 6.3.1). Since the sensors measure instantaneous 

continuous readings and not time-averaged characteristics, concentration fluctuations 

need to be simulated. As has been described in section 6.3.1, concentration 

fluctuations due to the plume can be modelled using the clipped-gamma PDF and their 

statistical properties (mean, SD and intermittency) depend on the distance to the 

source. It is considered that plume dispersion is dominated by turbulence. 

To generate realistic plume readings in each cell (different distances to the source), we 

have to generate random concentration signals –not only the PDF of the readings 
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needs to be taken into account, but also the expected power spectral density (PSD). 

Jones et al. in (Jones & Thomson 2006) present empirical studies of the PSD of 

chemical plumes obtained in short-range field dispersion experiments using an array of 

fast-response instruments deployed downwind from a point source of propylene gas. 

From the results presented in this work, we build a digital filter (FIR) to shape the PSD 

of the generated synthetic sequence of readings. The PSD is additionally band-limited 

with a maximum frequency given by half of the sensor sampling frequency. 

Once we have defined the PDF and the PSD which will be used to model concentration 

fluctuations, we use the percentile transformation method (PTM) described in Papoulis 

(Papoulis 1984a) to generate a series of concentration fluctuations with the desired 

PDF and PSD. 

Specifically, the procedure to generate realistic plume readings consists of the 

following steps: (i) generate a time series of Gaussian white noise, (ii) filter the 

previous time series with the designed FIR filter in order to achieve the desired PSD, 

(iii) and apply the PTM. This method is based on the following expression: 

 

(Eq. 6.23) ( ))(1

izci zFFc −=  

where zi is a random sequence of Gaussian white noise having the desired PSD with 

cumulative distribution function (CDF) Fz(z); ci is the sequence of realistic readings in 

the cell with CDF Fc(c). This CDF corresponds to the clipped-Gamma CDF which can be 

derived from the clipped-Gamma PDF (Eq. 6.10): 

 

(Eq. 6.24) 
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and 1−
cF  is the inverse clipped-Gamma CDF. The clipped-Gamma PDF (and its CDF) 

depends on the distance to the source. Its two parameters, the mean and the SD, are 

obtained from the GPM (Eq. 6.9) and from (Eq. 6.14), respectively; subsequently, these 

parameters are used to compute γ, k*, λ and s, as indicated in section 6.3.1 and 

explained in detail in (Yee, Wang & Lien 2009).  

The background concentrations in each cell (with the desired mean and SD) are 

simulated using the same procedure and they are added to the series of plume 

readings. We consider that the background changes over time are relatively small 

compared to the exploration time. 
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This forms the final map of instantaneous concentrations which will be measured by 

the sensors. With each cell is associated its own series of instantaneous readings. An 

example of concentration fluctuations is shown in Figure 6.4. Simulated series of 

fluctuations at different fixed positions from the source are shown. When close to the 

source there are long periods of time where the sensor readings are equal to the 

background level. Additionally, the SD of the fluctuations decreases faster than the 

mean concentration, making it difficult to differentiate between plume and 

background far from the source. Figure 6.4 can be compared to Figure 1.22 which 

shows real concentration time series at two downwind distances. 
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Figure 6.4. Simulated concentration fluctuations (under the specified conditions) at different 

fixed positions downwind from the source over a certain background level. 

6.4.2 Evaluation of the algorithms by synthetic scenarios 

In order to test both algorithms, a synthetic scenario is generated. A grid with a size of 

1km x 1km is generated. The area is divided into cells of size 100m x 100m. A square 

sub-grid of lanes (100m separation between lanes) is interlaced over the main grid 

(Figure 6.5). The sensors will randomly explore the area over this last sub-grid of lanes 

which simulate streets within an urban environment (Manhattan style). Using this 

configuration, the movement of the sensors is constrained to certain points over the 

main grid, which is what we would expect in a real scenario with obstacles (buildings, 

parks, rivers...). A continuous Gaussian plume, emitting with a source strength 

q=2.90g/s, is placed in the grid with the source at the position (440m, 440m), which 

corresponds to coordinates (5, 5) on the rectangular grid. The dispersed substance is 
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acetone (molecular weight: 58.08g/mol) at one atmosphere pressure and 25ºC. This 

Gaussian plume distribution has been generated from (Eq. 6.9) as described in 

(Bakkum & Duijm 2005) with the plume being dispersed in a 2D plane at the same 

height as the sensors (z=h=2m). It is assumed that there is no deposition of the 

substance on surfaces. In the simulations, the wind field is constant with the wind 

speed at Ua=2.5m/s and the wind direction at 45º. The dispersion coefficients σy and σz 

depend on wind conditions and atmospheric stability which has been set to neutral 

(‘D‘ on the Pasquill-Gifford scale (Bakkum & Duijm 2005)). Moreover, a mean 

background distribution is deployed over the area with a different mean level in each 

cell and with SD equal to 60% of the mean value in all cells (this 60% is based on our 

own recorded data using a PID sensor measuring outdoors in an open environment 

over a period of several hours); therefore all intermittencies come from the plume. 

The mean background level is different in each cell, but is constant over time. As 

described in section 6.4.1, series of concentration fluctuations are generated in each 

cell taking into account the wind field created, the atmospheric conditions and the 

background. 

Five mobile sensors with a velocity of 15Km/h sense the area continuously. The sample 

time of the sensors is set to 3s, the detection limit to 0.1ppm and the sensor resolution 

to 0.01ppm. Thus, here we assume that the sensor time response is much faster than 

the typical 10 min time-average considered in the GPM (Eq. 6.9). 
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Figure 6.5. Randomly explored area (1km x 1km) using 5 sensors (coloured dots). Dashed lines 

(--) show the lanes over which sensors move; continuous lines (-) show cell boundaries. The 

source is located at (440,440) metres at cell (5, 5). Mean wind speed is set to 2.5m/s and wind 

direction to 45º. 
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The time constant τ related to probability maps filtering (binary-based and 

concentration-based) has been set to 450s. This time is related to the mean time taken 

by the group of robots to revisit a certain cell when performing random exploration. 

The simulation time was set to 300 minutes. 

In the binary-based approach, it is assumed that the ratio of false alarms is very low, 

but the ratio of missed detection can potentially be very high, thus we define μ = 0.3 

(70% missed detections). However, the value of this parameter was not defined in the 

original work (Pang & Farrell 2006).  

In the concentration-based approach, initially we assume that the source strength is 

known (2.90g/s), but since it is almost impossible to know this information in advance, 

we have studied the case when the assumed source strength is different from the real 

value within more than two orders of magnitude. For the simulation studies presented 

in this work, the parameters used in equations (Eq. 6.13) and (Eq. 6.14) are: K0=2.5, 

x0=50m and θ=-0.75, taking into account previous studies (Webster 2007). The buffer 

size (section 6.3.2) is set to Nb=50 which is neither too small (we have enough samples 

for computing the background parameters reliably) nor too high (samples from 

adjacent cells are taken and it is assumed that the background is similar). 

Different simulations (three cases) were performed in order to compare the binary-

based algorithm and our proposal, the concentration-based algorithm. 

6.4.2.1 Case 1 

The first simulation consisted in assessing the reliability of the binary-based approach 

when changing the concentration threshold, for two background levels (mean values: 

0.05ppm and 0.45ppm). Thus, only in this case, the background was set constant over 

all cells. The reader should note that a background level is low or high depending on 

the source strength; therefore, studying the case where the background is low is 

equivalent to saying that the source is potent, and studying the case where the 

background is high is equivalent to saying that the source is weak. Ten random sensor 

trajectories were computed for each threshold level (30 values in the linear range 

between 0.05ppm and 3ppm) and for each trajectory a probability at the real source 

location is assigned by the algorithm after 300 minutes of exploration time. Finally, 

averaging over all trajectories, a mean probability is obtained as function of the 

concentration threshold. 

6.4.2.2 Case 2 

In the second simulation, both algorithms are compared for the same ten trajectories. 

Results show the probability evolution at real source location as the exploration time 
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increases. Moreover, the probability maps provided by both approaches after 300 

minutes of exploration time can be compared and only in the case of the 

concentration-based algorithm is a mean background map recovered, which can be 

compared to the designed background distribution. Results are obtained for two 

background distributions (maximum mean values: 0.05ppm and 0.45ppm). Both 

distributions were the same except for a scale factor. The binary-based approach was 

tested using the optimum threshold level and the concentration-based approach using 

the same source strength as the one set in the simulator (2.90g/s). 

6.4.2.3 Case 3 

Finally, the third simulation shows the influence of the source strength in the overall 

performance of the concentration-based approach. Since it is difficult to know the 

source strength in advance, the performance of the algorithm has been assessed 

assuming different source strengths across more than two orders of magnitude in the 

range between 0.1g/s and 30g/s (the real value in the simulator being 2.90g/s). Results 

are shown for the same background distributions as in case 2 (section 6.4.2.2). 

6.5 Simulation results and discussion 

6.5.1 Case 1 

The first result (Figure 6.6) shows the change in the overall performance of the binary-

based approach as the concentration threshold is changed. Figure 6.6 shows the 

dependency for two different background levels: the former with a mean value of 

0.05ppm (Figure 6.6(a)) and the latter with a mean value of 0.45ppm (Figure 6.6(b)). 

The mean probability assigned by the algorithm at the real source location is depicted 

as a function of the concentration threshold. It can be seen in the figure that there is a 

different optimal concentration threshold depending on the background level. 

Moreover, the optimum value is shifted to higher thresholds as the background level is 

increased. These optimal values have been found to be 0.15ppm and 1.48ppm, 

respectively. Relative to the background level, setting the threshold too low produces 

a high ratio of false alarms leading the algorithm to failure; on the other hand, setting 

the threshold too high could lead to an increase in false negatives with abnormal 

concentrations considered as non-detection events and a consequent worsening of the 

overall performance. This can be critical if the source which is to be detected is weak –

this being equivalent to the case with a high background level. In Figure 6.6(b), it is 

observed that setting the threshold either too low or too high causes the algorithm to 
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fail, since the probability assigned to the real source location is below the 

equiprobable value of 1/Nc assigned initially to every cell. 
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Figure 6.6. Dependency of the assigned mean probability (averaged over 10 different random 

trajectories) with the concentration threshold at source location by the binary-based 

approach. (a) Low background level (mean = 0.05ppm and SD = 0.03ppm). (b) High background 

level (mean = 0.45ppm and SD = 0.27ppm). The orange line shows the initial equiprobable 

value (1/Nc) assigned to every cell. 

 

The main problem using the binary-based approach is that the threshold needs to be 

set arbitrarily if no information about the background is available, and this background 

can be different in various areas within the exploration zone. A priori, we do not know 

whether the threshold is too high or too low, but even if we knew this, the background 

could evolve over space and time and the threshold would need to be adjusted 

continuously. The concentration-based algorithm removes the necessity of any 

threshold because, instead of adjusting the threshold level, our approach builds a 

background model for each cell. This background model allows us to distinguish 

between the background and the plume without using any threshold and is updated 

recursively. 

6.5.2 Case 2 

Results from the second simulation are shown from Figure 6.7 to Figure 6.14. Figure 

6.7 to Figure 6.10 show the results obtained with a background distribution having a 

maximum mean value of 0.05ppm. Figure 6.11 to Figure 6.14 show the results 

obtained with a background distribution having a maximum mean value of 0.45ppm.  

With a low background level (0.05ppm), Figure 6.7 shows the probability assigned by 

both algorithms at the real source location as exploration time increases. Figure 6.7(a) 
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shows the increase in the probability for ten different random trajectories. Figure 

6.7(c) (concentration-based) and Figure 6.7(d) (binary-based) show the increase the 

mean probability (averaged over all trajectories) with the margins related to two 

standard deviations. Figure 6.7(b) shows the results of a statistical test (the Wilcoxon 

test). The test is applied at each time, considering the probabilities at each time of 

each algorithm as two variables (10 points for each variable from the trajectories). A p-

value is returned by the test. The closer the value is to 0, the more doubt there is of 

the validity of the null hypothesis (that the medians are equal). It can be seen how the 

concentration-based approach performs significantly better and how this increases 

with the exploration time, even though the binary-based algorithm has been optimized 

with the best concentration threshold (0.15ppm). 
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Figure 6.7. Probability at real source location with a maximum mean background level of 

0.05ppm, as exploration time is increased. (a) Probability for 10 random trajectories using both 

approaches. (b) Wilcoxon test applied to both approaches. (c) Mean probability (averaged over 

all trajectories) and confidence intervals within two standard deviations for the concentration-

based approach. (d) Mean probability (averaged over all trajectories) and confidence intervals 

within two standard deviations for the binary-based approach. 

 

Figure 6.8 shows the comparison between the mean probability maps (averaged over 

all trajectories) provided by both algorithms after 300 minutes of random exploration. 

The probability assigned to the real source location is higher using the concentration-

based approach (P=0.24 in Figure 6.8(b)) as compared to the binary-based approach 

(P=0.11 in Figure 6.8(a)). Moreover, the probability is spread among a lower number of 

cells in the wind direction.  
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Figure 6.8. Mean probability maps (averaged over all trajectories) after 300 minutes of random 

exploration with a maximum mean background level of 0.05ppm. Source location at (5,5). (a) 

Binary-based approach. (b) Concentration-based approach. 

 

Figure 6.9 shows a comparison between the real designed background distribution and 

the recovered background distribution by the concentration-based approach after 300 

minutes of random exploration. The estimated background distribution is quite similar 

to the original one. This estimation is only possible using the concentration-based 

algorithm. 
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Figure 6.9. (a) Designed background distribution with a maximum mean background level of 

0.05ppm. (b) Recovered mean background distribution (averaged over all trajectories) using 

the concentration-based algorithm. 

 

Figure 6.10 shows the root mean squared error (RMSE) between the recovered 

background and the designed one. It can be seen that after 50 minutes of exploration 

the error remains approximately constant. The RMSE is computed as: 
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(Eq. 6.25) 
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where Bi is the designed mean background level at cell Ci; iB̂  is the recovered mean 

background level; and Nc is the number of cells in the map. 
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Figure 6.10. Root mean squared error (RMSE) for the differences between the designed 

background distribution (maximum mean level of 0.05ppm) and the recovered one, as the 

exploration time increases. The graph shows the RMSE evolution for the 10 trajectories. 

 

With a high background level (0.45ppm), which is the same as saying that the source 

strength is small compared to the background, Figure 6.11 shows similar results to that 

shown in Figure 6.7. However, now the differences between the performances of both 

approaches are higher. Although the probability at real source location is now 

increasing more slowly (compared to Figure 6.7) due to a high background level, the 

slope is higher in the concentration-based approach as compared to the binary-based 

algorithm. The binary-based approach performs well under the assumption that no 

false alarms arise. This is shown in Figure 6.7 where, due to a low background level, 

the number of missed detections and false alarms arising from the background are 

small, and the binary-based algorithm performs a little worse compared to the 

concentration-based approach if the optimum threshold can be identified. 

Nevertheless, such an assumption is far from the truth in a real scenario where 
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pollution and interfering substances are expected to be found. Additionally, this can 

also be the case when the source to be detected is weak. This is shown in Figure 6.11  

where, due to a high background level (or weak source), the number of false alarms is 

higher, thus forcing setting the threshold higher, which leads in turn to an increase in 

the number of missed detections and worsens dramatically the performance of the 

binary-based approach. The performance of the concentration-based approach has 

also been worsened due to the low background levels, however is significantly more 

robust than the binary-based algorithm, although the latter has been optimized with 

its optimum concentration threshold. 
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Figure 6.11. Probability at the real source location with a maximum mean background level of 

0.45ppm, as exploration time is increased. (a) Probability for 10 random trajectories using both 

approaches. (b) Wilcoxon test applied to both approaches. (c) Mean probability (averaged over 

all trajectories) and confidence intervals within two standard deviations for the concentration-

based approach. (d) Mean probability (averaged over all trajectories) and confidence intervals 

within two standard deviations for the binary-based approach. 

 

Figure 6.12 shows the probability maps obtained with a high background level. It is 

seen that the threshold is very high, which minimizes the number of false alarms but 

increases the number of missed detections, thus the binary-based estimation is very 

uncertain at the source location (position (5, 5), Figure 6.12(a)). Therefore, the 

probability is spread over the cells in the grid, decreasing the probability at real source 

location (P=0.013). Figure 6.12(b) shows the robustness of our algorithm which 

minimizes false alarms and missed detections. The concentration-based algorithm 

tends to increase the probability at the real source location while the robots are 

performing random exploration. After 300 minutes of random exploration, the 

probability assigned to real source location was 0.08. In this approach, false alarms 

arising from the background can correctly be assigned lower weights in the probability 
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calculations because the algorithm has created a background model per each cell and a 

dispersion model for the plume. Additionally, these models allow minimizing the 

number of missed detections. 
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Figure 6.12. Mean probability maps (averaged over all trajectories) after 300 minutes of 

random exploration with a maximum mean background level of 0.45ppm. Source location at 

(5,5). (a) Binary-based approach. (b) Concentration-based approach. 

 

Figure 6.13 shows that the concentration-based approach is also able to recover 

properly the background distribution in this case (maximum mean background level: 

0.45ppm). 
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Figure 6.13. (a) Designed background distribution with a maximum mean background level of 

0.45ppm. (b) Recovered mean background distribution (averaged over all trajectories) using 

the concentration-based algorithm. 

 

Figure 6.14 shows how the RMSE (Eq. 6.25) evolves as the exploration time increases 

and that the error remains approximately constant after 50 minutes. The error is 

higher compared to that of Figure 6.10. 
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Figure 6.14. Root mean squared error (RMSE) for the differences between the designed 

background distribution (maximum mean level of 0.45ppm) and the recovered one, as the 

exploration time increases. The graph shows the RMSE evolution for the 10 trajectories. 

6.5.3 Case 3 

The results obtained from the third simulation are displayed in Figure 6.15. It shows 

the mean probability at the real source location as a function of the source strength 

assumed by the concentration-based approach. Results show the decrease in the 

overall performance as the assumed source strength deviates from the real value 

(2.90g/s). It is observed that the selection of the source strength becomes more critical 

when the background level is low (or the source is potent compared to this 

background), but, if the source strength could be estimated somehow, the 

concentration-based approach performs much better. When the source to be detected 

is weak (or the background is comparatively high, Figure 6.15(b)), the selection of the 

source strength is not so critical in the range studied. It can be observed that the 

concentration-based approach is more robust against false alarms and missed 

detections (even though the optimum source strength is not selected) as compared to 

the binary-based approach which performs badly even setting its optimum threshold. 
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Figure 6.15. Mean probability (averaged over 10 trajectories) at real source location after 300 

minutes of random exploration as a function of the source strength assumed by the 

concentration-based approach. Error bars show confidence levels within two standard 

deviations. (a) Results with a maximum mean background level of 0.05ppm. (b) Results with a 

maximum mean background level of 0.45ppm. 

 

It is important to say that, although the binary-based algorithm works without 

assuming explicitly any source strength, setting an optimum threshold is only possible 

when collecting real measurements which implicitly contain information about the 

source strength and the background. However, this optimum threshold might be 

different depending on the explored cell. In the case of the concentration-based 

approach, the background is estimated by the algorithm and, if this background is low, 

the source strength needs to be known to within one order of magnitude. If the 

background is high, the algorithm behaves more robustly in the range studied as 

compared to the binary case except in the first case (the assumed source strength is 

very small). 

We consider that estimating the source strength provides a more promising direction 

for future research rather than trying to optimize the threshold in the binary-based 

approach, especially in cases where a weak source has to be detected. In the 

concentration-based approach no information is dismissed since all readings are used, 

which allows the minimization of the number of false alarms and missed detections. 

6.6 Real-world data using a mobile robot 

In order to validate and support the obtained results from simulations, real-world data 

is required. In this section, the materials and the experimental set-up built to obtain 

these data are described. 

The experiments were carried out in the Mobile Robotics and Olfaction Lab (Örebro, 

Sweden). 
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6.6.1 Materials 

A mobile robot (Figure 6.16) was used in all the experiments carried out. It 

incorporates the following elements: 

• Embedded PC with Ubuntu (Linux) as operating system. 

• Router  WIFI provides wireless communication with the robot. 

• Laser scanner SICK LMS 200. Robot localization indoors. 

• Xsens MTI-G with GPS antenna. Robot localitzation outdoors. 

• Ultrasonic Anemometre. Wind measurements (speed and direction) at 

sampling frequency 2Hz in the range between 0 and 60m/s with resolution 

0.01m/s. 

• Gas sensor array. Sensor array (model Figaro TGS) which includes 4 MOXs 

(Metal Oxide Sensor) and one electrochemical sensor for  CO2 detection. 

• Photoionization detector (PID) ppbRAE 3000 (RAE systems) with 10.6eV UV 

lamp. It provides calibrated measurements (chemical concentrations in ppmv) 

at sampling frequency 1Hz. It incorporates an internal pump at 500ml/min. 
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Figure 6.16. Mobile robot and instrumentation used for the chemical source localization 

experiments. 
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6.6.2 Evaluation of the algorithms by real scenarios 

6.6.2.1 Experimental set-up 

Twenty experiments were carried out under forced ventilation, indoors (Figure 6.17) 

and outdoors (Figure 6.18), with and without obstacles and with one or two chemical 

sources at the same time. 

The selection of chemical substances was based on commercial availability, hazard, 

toxicity, chemical volatility and sensitivity; thus acetone, ethanol and 2-propanol were 

chosen. The substances were placed in a container in liquid state. A small pump 

connected to a plastic tube was used to generate bubbles in the liquid and thus to 

favour the vaporization of the substances (Figure 6.17). Two fans are placed in one of 

the boundaries of the exploration area in order to create a forced airflow (turbulent). It 

is assumed that the atmospheric stability is neutral. 

The robot was programmed to explore the area randomly (velocity ≈ 0.2m/s) stopping 

for 30 seconds at different fixed positions. The robot captures wind information (speed 

and direction) and chemical readings continuously. The area size was 7x6m2 (indoors) 

and 9x7m2 (outdoors) and the cell size was set to 1x1m2 in order to have enough 

measurements to compute and update the background model of each cell. 

It is important to note that, although measurements from the gas sensor array were 

available, our source localization algorithm requires chemical concentrations 

(calibrated measurements) in order to update the source probability map. Since 

specific data processing would be needed to obtain calibrated concentrations from the 

sensor array and the objective is to validate the simulation results, for simplicity, only 

the PID measurements are taken into account. This sensor is calibrated using gas 

isobutylene and a correction factor must be applied to obtain the concentration of 

different target gases. A table with correction factors is available from the 

manufacturer (RAE systems). 
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Figure 6.17. One of the experiments performed indoors with two chemical sources and plume 

dispersion in the presence of obstacles. 

 

Figure 6.18. One of the experiments performed outdoors. 
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6.6.2.2 Algorithms evaluation 

Since the objective is to test the performance of both approaches and multiple 

experiments were carried out, we should consider some figures of merit in order to 

analyze and summarize the results. 

In the experiments with one chemical source, three figures of merit are considered: 

• Final probability at the real source location. 

• Distance between the probability maximum and the real source location. 

• Overall entropy of the final probability map, defined as: 

 

(Eq. 6.26) ∑
=

−=
cellsN

i

iNcellsi PPH
1

)(·log  

 

Pi is the probability assigned to cell i in the grid map, and Ncells is the total number of 

cells. Taking Ncells as the basis of the logarithm ensures that (1 ≥ H ≥ 0) and different 

experiments can be compared. Lower values of H correspond to a higher certainty 

regarding the source location. 

 

A Wilcoxon test at the 0.05 significance level is performed in the different figures of 

merit so as to evaluate if the concentration-based approach performs significantly 

better than the binary-based approach.  

 

Due to the fact that both the binary-based and the concentration-based algorithms 

assume that there is only one source in the search area, the experiments containing 

two sources are analyzed separately. In these experiments, therefore, the distance to 

the real source location and the probability at the real source location cannot be taken 

as figures of merit.  

 

As it is shown in section 6.5, the performance of the algorithms mainly depends on the 

selection of their parameter: the concentration threshold (binary-based) and the 

source strength (concentration-based). For each experiment, each parameter is 

optimized independently and it is selected from a parametric sweep after testing 20 

different values. It is important to remark that, in this section, we are interested in 

testing the performance of both approaches under the optimum conditions rather 

than finding a method to identify the optimum parameters. Finding such a method is 

an open issue for further work. 
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6.7 Real-world data results and discussion 

6.7.1 Single-source experiments 

The results of a representative experiment are shown in this section (indoors, with 

obstacles, 2-propanol). 

The instantaneous measurements from the PID and the anemometer at each point in 

the random trajectory of the robot are shown in Figure 6.19. In both approaches, 

(binary-based and concentration-based) a probability map of the source location is 

updated as new measurements are available. Figure 6.20 shows the probability maps 

at the end of the exploration, obtained with the optimum parameters. 
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Figure 6.19. Left: Instantaneous concentrations measured with a photo-ionization detector 

(PID), shown in a specific heatmap (higher concentrations are additionally indicated by larger 

dots) together with measured mean wind vectors (cyan). The source is located at (6, -0.5)m, 

depicted using a green dot. Obstacles appear as green squares.  

Right: Instantaneous concentration measurements from the PID during the full experiment. 
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Figure 6.20. Final probability maps provided by the binary-based (left) and concentration-

based (right) approach using optimized parameters. The source is located at (6, -0.5) m. 
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From these results, the three figures of merit can be computed: the probability at the 

real source location (Pbin and Pconc), the distance between probability maximum and 

source location (Dbin and Dconc), and the entropy (Eq. 6.26) over the final probability 

map (Hbin and Hconc). 

This is done for the 12 experiments with a single source, obtaining the following 

boxplots: 
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Figure 6.21. Final probability at real source location. Boxplot of the distribution of the results 

for the binary-based and concentration-based algorithms. The top and bottom of the box are 

the 25th and 75th percentiles. The point within the box is the mean and the horizontal line is 

the median. The whiskers extend to the most extreme data points which are not considered 

outliers, which are represented as circles (‘o’). 

 

 



Chemical Plume Source Localization with Multiple Mobile Partially Selective Sensors 

using Bayesian Inference in the presence of Chemical Background Interference 

 

 188 

Bin-based Conc-based
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Algorithm

D
is

ta
n
c
e
 t
o
 r
e
a
l 
s
o
u
rc

e
 l
o
c
a
ti
o
n
 (
m

)

Experiments with one source

 
Figure 6.22. Distance to real source location. Boxplot of the distribution of the results for the 

binary-based and concentration-based algorithms. The top and bottom of the box are the 25th 

and 75th percentiles. The point within the box is the mean and the horizontal line is the 

median. The whiskers extend to the most extreme data points which are not considered 

outliers. 
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Figure 6.23. Entropy. Boxplot of the distribution of the results for the binary-based and 

concentration-based algorithms. The top and bottom of the box are the 25th and 75th 

percentiles. The point within the box is the mean and the horizontal line is the median. The 

whiskers extend to the most extreme data points which are not considered outliers, which are 

represented as circles (‘o’). 
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Although these results confirm that the concentration-based approach behaves more 

robust on average, the results from the Wilcoxon test suggest that its performance is 

not significantly better (p-values: 0.08, 0.5, 0.98, for entropy, distance and probability 

at real source location, respectively). 

As it is extracted from the results from simulations, the concentration-based approach 

provides similar results compared to those from the binary-based approach when the 

background of interfering signals is low (which is the same as saying that the source is 

potent) (Figure 6.7). On the other hand, when the source to be detected is weak (high 

background level) the concentration-based algorithm provides much better results 

(Figure 6.11). In the experiments with the mobile robot which were carried out there is 

no real background of interfering chemicals or it is very low, thus the algorithms are 

tested in favourable conditions for Pang’s approach. Therefore, the obtained results 

using real-world data are in agreement with the simulation results (Figure 6.7). 

Nowadays, a database of real-world data designed to validate and test the case with a 

high background level (or weak source) has not been created. Under these conditions 

it would be expected that the concentration-based approach would perform much 

better as shown in the simulation results (Figure 6.11). 

6.7.2 Two-source experiments 

One could think that a second source could be considered as a high chemical 

interference in the background and then test the algorithms under these conditions. 

However, a second source cannot be considered as interfering because statistically 

would be characterized as a source by the concentration-based algorithm. This 

approach relies on statistics to discriminate between plume and background. Since the 

typical sensors are not selective (PID included), they react to a high number of 

substances, and moreover, since the algorithm assumes that there is only one source, 

assuming statistical distributions is necessary for the discrimination. 

It is assumed that a chemical source produces peaks of high concentration combined 

with long periods of time where no chemical is detected. Moreover, this depends on 

the distance to the source and there is a statistical model which takes it into account. 

The algorithm builds the background model from the instantaneous readings from the 

sensor (plume + background) and relies on robust statistics (median and MAD) to 

extract the background from the readings. If there is a second source, the algorithm 

will “see” it as a source, since statistically it is characterized as it, and the background 

will be what is “behind”, supposed to be something smooth with no abnormal peaks of 

high concentration; in fact these peaks are discarded by the median and the MAD 

since they are considered to come from the chemical source. 
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The results of a representative experiment using two sources are shown in this section 

(outdoors, no obstacles, acetone and ethanol). 
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Figure 6.24. Left: Instantaneous concentrations measured with a photo-ionization detector 

(PID), shown in a specific heatmap (higher concentrations are additionally indicated by larger 

dots) together with measured mean wind vectors (cyan). The sources are located at (1, -4)m 

for acetone (‘A’) and (5, -4) for ethanol (‘E’), depicted using coloured letters.  

Right: Instantaneous concentration measurements from the PID during the full experiment. 
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Figure 6.25. Final probability maps provided by the binary-based (left) and concentration-

based (right) approach using optimized parameters. The sources are located at (1, -4)m for 

acetone (‘A’) and (5, -4) for ethanol (‘E’), depicted using letters. 

 

In the cases with more than one source, since the algorithms assume that there is only 

one in the area, it does not make sense to take the probability at real source location 

and the distance to real source location as figures of merit. Only the entropy over the 

final maps is informative. 
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The statistics of the entropy for the experiments with two sources are summarized in 

the following boxplot:  
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Figure 6.26. Entropy. Boxplot of the distribution of the results for the binary-based and 

concentration-based algorithms. The top and bottom of the box are the 25th and 75th 

percentiles. The point within the box is the mean and the horizontal line is the median. The 

whiskers extend to the most extreme data points which are not considered outliers. 

 

It is seen in Figure 6.26 that the concentration-based approach provides more 

certainty in the location of the sources. The results from the Wilcoxon test suggest that 

the concentration-based approach performs significantly better in terms of entropy (p-

value: 0.03). 

In Figure 6.25 it is observed in the final probability maps that both source traces can be 

clearly identified in the concentration-based approach. However, these traces cannot 

be observed in the binary-based approach. In this last case, as the threshold level is 

increased, it is expected that all the readings from one of the sources will be discarded, 

then the algorithm only seeing the readings of the other source. Probably this 

threshold could be considered as optimal but then this becomes problematic if in fact 

the source that we want to detect is the weak one. On the other hand, in the 

concentration-based approach all the readings are computed, no information is 

discarded, and the algorithm finally can identify two clouds of probability in the map, 

which is advantageous. 
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6.8 Conclusions 

In the present chapter, modifications of the previous work by Pang and Farrell (binary-

based algorithm) have been introduced.  

It is shown that the original algorithm by Pang and Farrell can be easily extended to 

work with multiple mobile sensors. All the information from the mobile sensors can be 

integrated in the algorithm, whatever their positions are. The algorithm only needs to 

know in which cell the concentration readings were obtained, and then a probability 

map will be recursively updated. Moreover, the mobile sensors do not need to solely 

perform plume tracking and might be used for other tasks at the same time as the 

most likely source position is being estimated using the available information found 

along the trajectory of the sensors. 

Additionally, in a real scenario, pollution and some interfering substances may appear 

in the background, increasing the number of false alarms. Unlike the binary-based 

algorithm, which uses a threshold to assess whether a concentration is considered as a 

detection or non-detection event; our algorithm, based on continuous concentrations, 

builds a background model to assess whether a concentration comes from the 

background or from a source located further away. In addition, knowledge about the 

plume dispersion is introduced. This knowledge is based on previous work about 

plume dispersion in turbulent flow environments. Simulation results show that our 

algorithm behaves much more robustly in the presence of false alarms and better 

estimates the real source location. 

All concentration readings are considered in our algorithm, incorporating them in a 

continuous manner instead of just using them as binary detections above a certain 

threshold. This fact removes the need for a threshold level, thereby improving the 

performance of the algorithm proposed by Pang and Farrell. Against to what might be 

expected, increasing the threshold in the binary-based approach does not always lead 

to an improvement in the algorithm's performance. There is a trade-off between the 

false alarm rejection and the false negatives (concentrations from the plume which are 

not detected). Increasing the threshold too much could lead to a very long sequence of 

non-detection events, making the source localization problem infeasible. This depends 

on the unknown background level; therefore the threshold would need to be set 

arbitrarily. Saying that the background is unknown is equivalent to saying that the 

source strength is unknown, because the background is low or high compared to the 

source strength, and it cannot be determined where the reading comes from. 

In the concentration-based approach, considering all the concentration values reduces 

the number of false alarms (a background model is estimated) and reduces the 
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number of missed detections arising from setting the threshold too high since no 

threshold value is needed. However, the algorithm assumes that the source strength is 

known. Since this is a critical point in our proposal, a study of the robustness of the 

algorithm against deviations from the true value has been presented. It is shown that 

in cases where the source to be detected is weak (or the background is high) the 

concentration-based approach behaves more robustly if the source strength can be 

estimated to within at least two orders of magnitude. However, in cases where the 

source is very potent (or the background is low) using the binary-based algorithm and 

optimizing the threshold by some means or other might be adequate to solve the 

source localization problem; even though, as it has been shown, the results improve 

significantly using the concentration-based algorithm if the source strength can be 

estimated. Therefore, we consider that estimating the source strength instead of 

optimizing the threshold in the binary-based approach is a more promising direction 

for future research, since no information is dismissed when the concentration-based 

approach is used and it is thus more robust against false alarms and missed detections. 

Furthermore, the simulation results have been validated using real-world data 

acquired from a PID mounted on a mobile robot. In these results it is demonstrated 

that the concentration-based approach behaves as well as the optimum binary case; 

and that, unlike the binary-based approach, the algorithm could be suitable when 

more than one source is present in the exploration area, since no chemical information 

is discarded. However, tests have not been performed in the presence of high levels of 

interfering chemicals, which are the conditions that favour the most the present 

proposal.  
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Chapter 7 

7Conclusions of this Thesis 

 

In the present thesis, signal processing approaches to improve the detection, 

identification, and quantitation of analytes when using mobility based analyzers have 

been presented. Applications using an Ion Mobility Spectrometer (IMS) and a 

Differential Mobility Analyzer (DMA) are shown. 

 

We have demonstrated that standard multivariate data analysis tools are effective in 

DMA for explosive detection and identification and for identification and quantitation 

of volatile organic compounds (VOCs). 

In chapter 4, a blind source separation method based on a modification of Multivariate 

curve resolution Alternating Least Squares (MCR-ALS) using L1 regularization LASSO 

(least absolute shrinkage and selection operator) is presented. It is shown that peaks in 

IMS spectra can be modelled as a dense superposition of Gaussian functions. The 

resulting bilinear decomposition is sparse and by virtue of the underlying peak model 

shape provides filtered spectra and also concentration signals. 

We show that we can rely on the method in order to improve the detection of certain 

substances even in the presence of interfering chemicals. The provided results are 

based on synthetic generated data and real IMS data obtained from a continuous 

monitoring application such as a baggage security checkpoint. 

 

As substance concentration increases, IMS spectra become more non-linear and more 

than one peak related to the target substance may appear. In chapter 5, a new 

methodology is proposed based on MCR-ALS followed by polynomial Partial Least 

Squares (poly-PLS) and it is shown capable of qualitative and quantitative analysis of 

IMS signals. Separate ionic concentration profiles and their corresponding spectral 

features are obtained from MCR-ALS, which provides a meaningful interpretation of 

the analysis.  

 

Finally, it is shown even with partially selective sensors that the use of substance 

concentration can help to solve the source localization problem, especially in cases 

where the source strength is weak (or the background of interfering chemicals is high). 

Furthermore, we consider that integrating continuous concentration information 



Conclusions of this Thesis 

 

 198 

within the source localization algorithm provides a more promising direction for future 

research than managing responses of the sensors as detections or non-detections 

above a certain threshold. This is illustrated in chapter 6, where results from 

simulations and from real-world data are presented. Real experiments were carried 

out using a mobile robot mounting a photo ionization detector (PID) in indoors and 

outdoors environments under forced ventilation and turbulences. The obtained results 

validate the results obtained from simulations, thus the source localization algorithm 

developed in the thesis is effective in real scenarios. 
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Chapter 8 

8Resumen de la tesis 

8.1 Introducción 

A medida que la tecnología evoluciona, la instrumentación genera mayores volúmenes 

de datos, lo que dificulta que estos puedan ser tratados manualmente. Así que 

técnicas de procesado de señal y datos son necesarias con la finalidad de extraer la 

información relevante de las señales, que usualmente además son ruidosas. 

La habilidad de detectar e identificar correctamente sustancias químicas se requiere en 

un gran número de aplicaciones, desde control medioambiental, aplicaciones 

biomédicas, evaluación de la calidad en comida y bebidas, exploración de áreas donde 

se han dispersado sustancias tóxicas, hasta operaciones humanitarias y de seguridad. 

En algunas de estas aplicaciones y escenarios, la muestra se toma manualmente y se 

analiza a posteriori en un laboratorio, así identificando y cuantificando los compuestos 

presentes; en otros en cambio, la localización de la fuente química es desconocida y 

por lo tanto las muestras no pueden tomarse manualmente. Es en este tipo de 

escenarios donde las sustancias deben ser identificadas y cuantificadas a distancia y 

además algoritmos de localización deben ser empleados para encontrar la posición de 

la fuente. Sin embargo, este problema está lejos de estar resuelto debido a la elevada 

complejidad que comporta la dispersión de agentes químicos en entornos reales 

(Kowadlo & Russell 2008). Además la presencia de interferentes dificulta las tareas de 

detección, cuantificación y localización. 

Para la presente tesis nos centramos en sustancias químicas en fase gas y aplicaciones 

de campo las cuales requieren una monitorización continua. 

8.1.1 Escenarios 

De entre los distintos escenarios, algunos tienen implicaciones muy importantes por 

temas de seguridad. Por ejemplo, después de los atentados del 11-S (2001) en USA, 

hay una demanda creciente en cuanto a nuevas tecnologías sensoras complementarias 

al uso de perros entrenados para el escaneo de equipaje en aeropuertos para la 

detección de drogas y explosivos (Singh & Singh 2003; Moore 2007). Se precisa de 

instrumentación fiable para el análisis de volátiles, con gran sensibilidad (ppb o ppt) y 

selectividad y que requiera de poca preparación para la muestra. En la presente tesis, 

en el capítulo 4 y en (Pomareda et al. 2010), se presentan resultados empleando un 
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prototipo para el control de equipaje utilizando un espectrómetro de movilidad de 

iones (IMS) (Eiceman & Karpas 2005). 

En aeropuertos, al escanear maletas, las muestras pueden tomarse manualmente y 

analizarse, en otros sin embargo la posición de la fuente puede ser desconocida. Por 

ejemplo, hay múltiples productos que se usan en la industria para distintas 

aplicaciones, como agentes químicos de guerra (CWA) o compuestos tóxicos 

industriales (TICs), pero que pueden producir efectos perniciosos para la salud en el 

caso de fugas incontroladas. Se ha demostrado la eficacia de múltiples tecnologías 

sensoras para la detección de estos compuestos (Sferopoulos 2009). No obstante, 

estas sustancias en manos de terroristas son un peligro para la sociedad. En un 

escenario urbano, es de importancia capital la detección de explosivos y sus 

precursores durante la fase de producción antes de que se produzca un atentado. Es 

posible la creación de una red sensores fijos y/o móviles parcialmente selectivos con la 

finalidad de muestrear el aire en busca de varias sustancias de interés. Las medidas de 

los sensores y su posición pueden ser enviadas a un sistema central donde se 

almacena y procesa toda la información con el objetivo de localizar posibles amenazas 

(Abbaspour & Mansouri 2005). Además, otra potencial aplicación de las redes de 

sensores es la monitorización ambiental, para controlar los niveles de contaminación.  

Es importante remarcar que en escenarios de este estilo la localización de fuentes 

químicas (presumiblemente débiles) puede ser verdaderamente complicada debido 

además a condiciones meteorológicas cambiantes (atmósfera, temperatura, viento,...) 

o a cambios espaciales y temporales en las sustancias interferentes. Estos problemas 

son tratados en el capítulo 6. 

8.1.2 Tecnologías de sensores de gas 

Dependiendo del escenario, el abanico de sustancias químicas que deberían detectarse 

y/o cuantificarse puede ser muy amplio. Idealmente, uno querría tener tantos 

sensores específicos como sustancias a detectar. No obstante, esto en la práctica no 

siempre es posible, ya sea por precio, porque el sensor no existe o porque las 

sustancias a detectar son desconocidas. Como solución se propone el uso de sensores 

no selectivos los cuales responden a un gran número de sustancias diferentes y con un 

coste generalmente menor. Como contrapartida, sucede que sustancias interferentes 

enmascaran la señal de interés, lo cual dificulta la detección, cuantificación y 

localización de la fuente de volátiles. En la presente tesis se propone el uso de 

sensores de gas parcialmente selectivos para la detección y cuantificación de volátiles 

y explosivos mediante un procesado de señal adecuado (capítulos 3, 4 y 5). 

Múltiples tecnologías pueden encontrarse en el mercado, de entre las cuales las más 

relevantes para la presente tesis doctoral son: detectores de fotoionización (PID) 
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(Daum et al. 2006), sensores de óxido metálico (MOX) (Meixner & Lampe 1996), 

espectrómetros de movilidad iónica (IMS) (Eiceman & Karpas 2005; Hill et al. 1990) y 

analizadores de movilidad diferencial (DMA) (Alonso et al. 2009; Pomareda et al. 

2013). Típicamente, sensores parcialmente selectivos de distintos tipos (no solo MOXs) 

pueden agruparse en un mismo sistema con la finalidad de mejorar la selectividad. 

Esta es la filosofía seguida en las narices electrónicas (Persaud & Dodd 1982). En el 

caso de IMS y DMA, la mejora en la selectividad viene dada por la 

multidimensionalidad de la respuesta espectral y una buena resolución espectral; esto 

combinado con una mayor sensibilidad (menores límites de detección) y un 

decreciente coste hace que estos instrumentos sean cada vez más utilizados en un 

mayor número de aplicaciones. 

8.1.2.1 Espectroscopía de movilidad de iones (IMS) 

La tecnología IMS (Eiceman & Karpas 2005) es probablemente una de las más maduras 

para la detección de explosivos, CWA y TICs. Proporciona rápidos tiempos de análisis 

(1-5s), portabilidad, alta sensibilidad (ppb-ppt), no es necesario preparar la muestra y 

con un relativo bajo coste. El instrumento básico se compone de dos partes 

principales: la región reactiva y el tubo de derivas. La región reactiva incorpora una 

fuente de ionización, la cual determina la selectividad del instrumento y puede basarse 

en distintos principios de operación: radioactivo, lámpara UV (Baumbach et al. 2003), 

descarga de corona (Sabo, Matúška & Matejčík 2011), ESI (Hilton et al. 2010) o MALDI 

(Chen 2008). Los compuestos de la muestra son ionizados en esta región antes de 

entrar al tubo de derivas, el diseño del cual determina la sensibilidad y resolución del 

instrumento. Principalmente existen dos configuraciones para el tubo: lineal (DC) y 

asimétrico (AC). A grandes rasgos el funcionamiento es similar, los iones son separados 

dentro del tubo por masa, forma y carga al aplicarse un campo eléctrico (DC y/o AC) 

hasta llegar a un detector el cual recoge la carga de los iones generando un espectro 

de movilidad. En la presente tesis nos centramos en la configuración IMS típica (fuente 

radioactiva y tubo lineal). 

Típicamente, el principal problema de IMS es la moderada selectividad. El problema se 

agrava cuando múltiples sustancias están presentes en la muestra y en presencia de 

interferentes (Hill & Simpson 1997; Márquez-Sillero et al. 2011) y humedad (Puton et 

al. 2012). Además, en la configuración típica, la respuesta del instrumento es no lineal 

al incrementarse la concentración de la sustancia y se pueden generar monómeros y 

dímeros dando como resultado múltiples picos en el espectro (Ewing, Eiceman & Stone 

1999; Pomareda et al. 2012). Una manera de minimizar estos problemas es acoplar 

instrumentación adicional como paso previo a IMS para preseparar compuestos 

(Dworzanski et al. 1994; Kanu, Wu & Hill 2008). Otra solución complementaria consiste 
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en el uso de técnicas de análisis multivariante, lo cual se trata en los capítulos 4 y 5 y 

en (Pomareda et al. 2010; Pomareda et al. 2012). 

8.1.2.2 Analizador de movilidad diferencial (DMA) 

DMA es una configuración particular dentro de la familia IMS donde iones de distintas 

movilidades son separados en espacio en lugar de en tiempo de deriva. Una de las 

ventajas de esta configuración es que proporciona gran resolución lo cual implica una 

mayor selectividad, por contra el tiempo de análisis es un poco mayor. El DMA usado 

en la presente tesis ha sido desarrollado por (RAMEM) y se corresponde con la 

configuración de placas paralelas (Alonso et al. 2009; Santos et al. 2009). El 

instrumento se describe en (Pomareda et al. 2013), donde además se presentan 

resultados utilizando el DMA para detección y cuantificación de compuestos orgánicos 

volátiles (VOCs). Esto también se presenta en el capítulo 3, donde además se 

presentan resultados identificando varios explosivos. 

8.1.3 Procesado de señal para espectros de IMS (IMS y DMA) 

Para la detección y cuantificación de sustancias, la multidimensionalidad de los 

espectros de IMS y DMA hace que puedan ser utilizadas técnicas de procesado 

multivariante, las cuales proporcionan una mejora en la selectividad. Estas técnicas 

fueron anteriormente usadas para tratar datos procedentes de narices electrónicas o 

matrices de sensores (Scott, James & Ali 2006). 

Sin embargo, los espectros de IMS son típicamente ruidosos, presentan una cierta 

línea de base y son sensibles a cambios en la humedad, la presión y la temperatura lo 

cual hace que la señal sea inestable, con desplazamiento de picos, lo cual conduce a 

desalineamientos de la señal; así que los espectros deben ser preprocesados antes de 

aplicar las técnicas multivariantes para detectar y cuantificar las sustancias de interés. 

Para la reducción del ruido pueden utilizarse filtros de mediana, de Savitzky-Golay 

(Savitzky & Golay 1964) o wavelets (Barclay, Bonner & Hamilton 1997). La línea de 

base puede ser sustraída mediante algoritmos iterativos (Komsta 2011; Zhang, Chen & 

Liang 2010; Gan, Ruan & Mo 2006) y algoritmos inspirados en dynamic time warping 

(DTW) (Ramaker et al. 2003; Tomasi, van den Berg & Andersson 2004) o correlation 

optimized warping (COW) (Tomasi, van den Berg & Andersson 2004; Skov et al. 2006) 

son útiles para corregir desplazamientos de los picos debidos a la humedad o la 

temperatura, por ejemplo icoshift (Savorani, Tomasi & Engelsen 2010). 

Cuando se maneja gran cantidad de datos multidimensionales, mucha de la 

información contenida es redundante por lo que es útil reducir la dimensionalidad del 

espacio reteniendo solo la información esencial. Con esta finalidad existen diversas 
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técnicas, entre las cuales: redes neuronales, principal component analysis (PCA) (Wold, 

Esbensen & Geladi 1987), partial least squares (PLS) (Wold, Sjöström & Eriksson 2001), 

SIMPLISMA (Windig et al. 2005) o multivariate curve resolution (MCR) (Tauler, Kowalski 

& Fleming 1993). 

Uno de los objetivos de la presente tesis es el de identificar y cuantificar sustancias en 

presencia de interferentes. Al usar métodos supervisados, modelos de entrenamiento 

pueden crearse en una fase previa, con muestras obtenidas en condiciones conocidas 

(supervisado), para luego clasificar automáticamente muestras desconocidas 

(asignación de clases) en la fase posterior de predicción. En esta última fase se 

requiere de un clasificador para asignar una clase a cada muestra desconocida. 

Típicamente el clasificador se aplica después de una etapa de reducción de 

dimensionalidad; para tal fin, pudiendo utilizarse alguno de los algoritmos anteriores y 

otras técnicas como Linear discriminant analysis (LDA) (Fisher 1936) o PLS-DA (Barker 

& Rayens 2003), las cuales incorporan información de las clases en el modelo para 

mejorar la clasificación de muestras nuevas. Como clasificador pueden utilizarse 

funciones lineales o no-lineales que proporcionan fronteras de decisión (Bishop 2006). 

Estas fronteras se generan en la etapa de entrenamiento a partir de los algoritmos 

mencionados anteriormente, por ejemplo. Una opción alternativa es usar el 

clasificador KNN, el cual es no-lineal y ha sido ampliamente utilizado en la literatura 

(Hastie, Tibshirani & Friedman 2003). 

Cuando se analizan muestras de IMS (moderada selectividad y no linealidades) sin 

tener conocimiento acerca de la composición de la muestra, técnicas de separación 

ciega como PCA, SIMPLISMA o MCR proporcionan análisis cualitativos acerca de los 

componentes presentes en la muestra y la variación de su concentración con el 

tiempo. MCR-ALS (sección 1.4.2.3) es un método iterativo que puede inicializarse a 

partir de PCA o SIMPLISMA, y que permite la incorporación de conocimiento al modelo 

con el objetivo de mejorar el análisis de las muestras. Por ejemplo, puede imponerse 

que el resultado sea no negativo, que solo aparezca un pico por componente o que se 

conserve la carga del sistema, entre otros. En el capítulo 4 se demuestra que MCR es 

útil para interpretar el sistema en presencia de interferentes y en el capítulo 5 que es 

útil para analizar no linealidades causadas por variaciones en las concentraciones de 

las sustancias. Además de realizar una interpretación cualitativa de los resultados es 

importante cuantificar las sustancias presentes en las muestras (sección 1.4.2.4), para 

lo cual existen algoritmos robustos como PLS o poly-PLS (Wold, Kettaneh-Wold & 

Skagerberg 1989); este último útil para tratar con las no linealidades típicas en 

espectros de IMS. En el capítulo 5 muestras de IMS son cuantificadas, lo mismo se hace 

en el capítulo 3 con muestras de DMA. 
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8.1.4 Algoritmos de localización de fuentes químicas 

Una vez tratado el problema de clasificar y cuantificar muestras desconocidas 

utilizando las técnicas mencionadas anteriormente, existe el problema de localizar la 

fuente química cuando ésta es desconocida. No obstante, la dispersión de volátiles es 

complicada en distintos entornos y el éxito del algoritmo de localización viene 

determinado por como éste está adaptado al entorno. 

Principalmente, pueden diferenciarse dos grandes grupos: dispersión dominada por 

difusión y por turbulencias. Cuando los volátiles se dispersan debido a difusión, se 

forman distribuciones de gas con suaves gradientes de concentración; en el caso de 

dispersión por turbulencias, el gas forma meandros y se dispersa formando nubes de 

gas, existiendo así regiones intermitentes de alta concentración con gradientes muy 

abruptos en sus bordes, además estas regiones fluctúan en intensidad y dirección. 

Afortunadamente, la dispersión puede modelizarse mediante un modelo de pluma 

Gaussiana (GPM) (Bakkum & Duijm 2005). Sin embargo este modelo solo sirve para las 

características temporales promedio de la pluma. Para modelizar las características 

instantáneas (que serán las que los sensores medirán) se requieren modelos 

alternativos (Farrell et al. 2002). En la presente tesis, en el capítulo 6, se propone el 

uso de estadísticas basadas en la distribución clipped-gamma (CGD). Múltiples estudios 

empíricos demuestran que la CGD es apropiada para un gran rango de condiciones 

atmosféricas y a distintas distancias de la fuente (de metros a 1km) (Yee, Wang & Lien 

2009; Yee 2009; Yee 2008; Yee & Biltoft 2004; Yee & Chan 1997). 

 

Múltiples algoritmos de localización han sido propuestos en la literatura según las 

condiciones de flujo (difusión o turbulencias), donde se presentan resultados 

procedentes de simulaciones así como de experimentos en entornos reales utilizando 

robots móviles. Muchos de estos algoritmos han sido clasificados y recopilados en 

distintas reviews (Lilienthal, Loutfi & Duckett 2006; Kowadlo & Russell 2008; Mcgill & 

Taylor 2011; Ishida, Wada & Matsukura 2012). 

Los primeros trabajos en el campo se realizaron asumiendo flujos dominados por 

difusión y suaves gradientes de concentración, guiando el robot hacia la dirección 

donde se maximizaba el gradiente (Rozas, Morales & Vega 1991). Esta técnica 

conocida como chemotaxis (Bell & Tobin 1982; Louis et al. 2008) fue posteriormente 

extendida a casos en los que los flujos eran turbulentos. En estos casos, distintos 

algoritmos empezaron a explotar también la información proporcionada por el flujo 

(anemotaxis), para guiar el robot hacia la fuente. Muchos de estos algoritmos fueron 

inspirados por el comportamiento de bacterias o animales como cangrejos, 

escarabajos, langostas, polillas, hormigas entre otros, los cuales son llamados 
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algoritmos bioinspirados. Todos estos algoritmos pueden incluirse en el grupo reactive 

plume tracking, el cual puede subdividirse en tres etapas: búsqueda de gas, rastreo de 

la pluma y declaración de la fuente (Lilienthal, Loutfi & Duckett 2006; Kowadlo & 

Russell 2008). Con la finalidad de mejorar la localización de la fuente, se implementan 

algoritmos que combinan chemotaxis y anemotaxis. Además, en la estrategia 

denominada fluxotaxis (Zarzhitsky, Spears & Spears 2005), se combina también la 

información del flujo de masa. Un enfoque alternativo denominado infotaxis, fue 

presentado en (Vergassola, Villermaux & Shraiman 2007), donde el robot debe decidir 

si moverse hacia la dirección donde se maximiza la ganancia de información o 

quedarse parado adquiriendo más datos para posteriormente ser explotados. 

En la literatura además se demuestra que el uso simultáneo de múltiples robots 

móviles trabajando en equipo permite la implementación de algoritmos de localización 

más robustos (Mcgill & Taylor 2011). Sin embargo, algunos de los problemas en estos 

algoritmos de rastreo de plumas está en el hecho de que los robots están dedicados 

plenamente a la tarea de localizar la fuente y que debe decidirse cuando finalizar la 

búsqueda; este último problema solo se ha tratado en algunos trabajos (Lilienthal et al. 

2004; Lilienthal et al. 2006; Loutfi & Coradeschi 2006). 

No obstante, en algunas aplicaciones tan solo es necesario conocer la distribución de 

gas en el entorno o los robots deben ser destinados a otras tareas además de localizar 

la fuente. Para estas aplicaciones son apropiados los algoritmos de modelización de 

plumas (plume modelling). En estos algoritmos, la posición de la fuente es un 

parámetro más a estimar además de la distribución de gas, los cuales se actualizan en 

tiempo real a medida que nuevos datos están disponibles; así que el problema de 

decidir cuando finalizar la búsqueda desaparece. Información acerca de la dispersión 

de plumas se tiene en cuenta al implementar estos algoritmos ya sea mediante 

modelos analíticos (Ishida, Nakamoto & Moriizumi 1998; Marques, Nunes & Almeida 

2002) o métodos probabilísticos/estocásticos (Pang & Farrell 2006). La integración de 

esta información adicional mejora la estimación de la posición de la fuente. Estos 

últimos métodos muestran un gran potencial, especialmente cuando se incorpora 

inferencia Bayesiana. Por ejemplo, en (Pang & Farrell 2006) se presenta un algoritmo 

eficiente el cual actualiza en tiempo real un mapa de probabilidad en la posición de la 

fuente integrando la secuencia de detecciones/no-detecciones a lo largo de la 

trayectoria del robot. Sin embargo, información importante de la concentración es 

descartada, lo cual puede ser crítico si quiere detectarse la fuente a grandes distancias. 

En algunos trabajos ya se sugiere que el utilizar la información de la concentración 

química puede ser útil para mejorar la localización de la fuente (Lo Iacono 2010). El 

tema de integrar todas las medidas dentro del algoritmo de localización no ha sido 
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tratado en profundidad en la literatura; por lo que es una de los objetivos de la tesis el 

demostrar que aporta una mejora (capítulo 6). 

8.2 Técnicas Multivariantes aplicadas a un Analizador de 

Movilidad Diferencial (DMA) para la Detección de 

Explosivos e Identificación y Cuantificación de VOCs 

En esta sección se expone un breve resumen del capítulo 3, donde varios compuestos 

orgánicos volátiles (VOCs) son identificados y cuantificados. También se identifican 

varios explosivos. 

 

En la mayoría de aplicaciones, los instrumentos IMS y DMA solo se usan como 

detectores cualitativos por lo que solo interesa la ausencia o presencia de la sustancia 

de interés (target substance). La cuantificación de los analitos de interés suele ser 

típicamente univariante en tecnologías IMS, de modo que el área de un pico o su 

altura suele relacionarse con una concentración específica, pero esta solución no 

debería aplicarse cuando aparecen picos solapados debidos a interferencias. Tal y 

como se ha demostrado en los capítulos 4 y 5, el procesado de datos multivariante de 

espectros IMS permite minimizar los problemas debidos a una baja selectividad 

(interferencias cruzadas) así como detectar múltiples sustancias incluyendo 

interferencias. Además, con estas técnicas la cuantificación de las sustancias se 

mejora.  

Aunque varios artículos han reportado el uso de técnicas de procesado de señal para 

análisis cualitativos (Rauch, Harrington & Davis 1998; Reese & Harrington 1999; Ochoa 

& Harrington 2005; Bota & Harrington 2006; Prasad et al. 2008; Pomareda et al. 2010; 

Karpas et al. 2012) o cuantitativos (Boger & Karpas 1994; Zheng, Harrington & Davis 

1996; Fraga, Kerr & Atkinson 2009; Zamora & Blanco 2012; Pomareda et al. 2012) en 

datos de IMS, hasta donde sabemos, hay una falta de contribuciones analizando datos 

de instrumentos DMA usando técnicas multivariantes. 

En el capítulo 3 se demuestra que la detección de explosivos y la identificación y 

cuantificación de VOCs con una estructura química similar, es viable mediante DMA. 

Por primera vez, se presentan resultados obtenidos aplicando técnicas multivariantes 

sobre espectros obtenidos usando un DMA de configuración original (RAMEM). 

A pesar de que los resultados experimentales muestran como el sistema (DMA + 

procesado multivariante de datos) es capaz de discriminar correctamente entre 

distintos tipos de explosivos, el reducido número de muestras hace que tan solo puede 

considerarse este estudio como preliminar. Nuevas rondas de experimentos se 
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deberían llevar a cabo en el futuro con el objetivo de establecer el DMA de (RAMEM) 

como una herramienta efectiva para la detección de explosivos. 

También se muestra como 4 VOCs (acetona, benceno, o-chileno y tolueno) han sido 

detectados, identificados y cuantificados usando el DMA. Se han determinado como 

límites de detección: 0.7ppm para acetona, 0.9ppm para benceno, 1.5ppm para o-

chileno y 2.0ppm para tolueno. Los modelos PLS de calibración han sido capaces de 

predecir las concentraciones de los 4 analitos. El RMSEV (root mean-squared error of 

validation) para acetona, benceno, tolueno y o-chileno están en el rango entre 0.1ppm 

y 0.3ppm en validación. La identificación y clasificación de los compuestos está basada 

en PLS-DA y un clasificador KNN. El porcentaje global de clasificación fue del 77% con 

intervalos del (70-83)% al 95% de confianza. 

Los resultados también muestran la gran influencia de la humedad. El próximo 

prototipo de DMA incluirá un condicionamiento del gas sheath, con elementos 

calefactores y un filtro para testar varios tamices moleculares. Esto reducirá la gran 

influencia de la humedad en los espectros de DMA, por lo que se espera que los 

resultados en general sean más reproducibles. 

En el capítulo 3, además también se describe el procedimiento general para predecir 

(identificación y cuantificación) muestras desconocidas, en un entorno real en tiempo 

real. Primero, modelos de entrenamiento deben ser construidos usando datos 

obtenidos bajo condiciones controladas en el laboratorio; seguidamente, estos 

modelos serán usados en un entorno real con la finalidad de predecir las sustancias 

presentes y su concentración en tiempo real. A pesar de que el procedimiento se 

explica para el caso del DMA, es general y puede aplicarse a cualquier tipo de 

instrumentación que proporcione datos multidimensionales (matrices de sensores de 

gas, IMS o espectroscopía en general). 

8.3 MCR-ALS sparse usando regularización L1 y Modelos 

de Forma de Pico Gaussiana 

En esta sección se expone un breve resumen del capítulo 4. 

 

Tal como se ha descrito en el capítulo 1, Multivariate Curve Resolution Alternating 

Least Squares (MCR-ALS) tiene como objetivo recuperar la evolución de la señales 

fuente (perfiles de concentración, en nuestro caso) y la matriz de mezclado 

(características espectrales) sin ningún paso previo de calibración supervisada. 

Adicionalmente, es bien conocido que imponer conocimiento adicional acerca de los 

métodos o los procesos, mediante restricciones (constraints) puede llevar a mejores 

soluciones y a interpretaciones de los resultados más fáciles ya que las ambigüedades 
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rotacionales (Jaumot & Tauler 2010) se minimizan y el espacio de las posibles 

soluciones se reduce. En este sentido, restringir la solución imponiendo varias 

constraints es una práctica habitual en MCR (Juan et al. 1997). Por ejemplo, algunas 

constraints blandas (Tauler 1995; Gemperline & Cash 2003; Bro & Sidiropoulos 1998) 

son: 1) número de componentes que se espera encontrar en la muestra, 2) no-

negatividad, 3) unimodalidad, 4) selectividad y 5) clausura. Sin embargo, al tratar con 

señales de IMS, debido a su moderada selectividad (espectros complicados con 

múltiples picos y solapados), en un escenario real donde múltiples sustancias 

interferentes estarán presentes, es casi imposible el conocer de antemano si un 

espectro será unimodal o qué regiones son selectivas a uno o más iones específicos; no 

obstante, el integrar tanto conocimiento acerca del sistema como sea posible puede 

ser determinante para la detección de ciertos agentes químicos. Por lo tanto, en los 

experimentos que se presentan en el capítulo 4, tan solo se aplican las constraints 1 y 2 

para condicionar las soluciones lo menos posible. 

Mientras en su forma básica, MCR es una técnica blanda (soft) de modelización (no se 

impone ningún modelo subyacente), varios autores han propuesto versiones rígidas 

(hard) dónde modelos físico-químicos, los cuales caracterizan los procesos 

subyacentes, se imponen en la solución (Juan et al. 2000). Al usar estos modelos, se 

está incorporando conocimiento adicional, por lo que la solución está incluso más 

restringida (hard constraint) y las ambigüedades rotacionales se minimizan también. 

Para algunas medidas espectroscópicas, los espectros se caracterizan por la presencia 

de series de picos. Para algunos instrumentos, existen modelos aproximados acerca de 

la forma de los picos (e.g. picos Gaussianos) (Felinger 1998). Sin embargo, en un 

escenario de separación ciega de fuentes (Blind source separation), ni el número de 

picos ni su posición son conocidos de antemano. Este hecho dificulta seriamente la 

aplicación directa de modelos para la forma de los picos dentro del bucle de 

alternating least squares (ALS) de MCR. 

En esta tesis se propone modelizar los espectros fuente como una densa superposición 

de picos Gaussianos y aplicar una regularización basada en norma L1 (L1-norm) para 

obtener una solución sparse y así extraer automáticamente el número correcto de 

picos y su posición sin haber impuesto a priori ni su posición ni su número. Para 

conseguir esto, se introduce la técnica LASSO (Least Absolute Shrinkage and Selection 

Operator) dentro del bucle MCR-ALS para modelizar los espectros. El nuevo algoritmo 

se ha denominado MCR-LASSO. LASSO fue propuesto por Tibshirani (Tibshirani 1996) y 

se conoce como basis pursuit (Chen, Donoho & Saunders 1998) o compressed sensing 

(Donoho 2006) en el campo de procesado de señal. Para testar este concepto se ha 

aplicado el MCR-ALS básico y MCR-LASSO a señales sintéticas y reales. Las señales 

reales corresponden a espectros de IMS obtenidos usando un prototipo para el 
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escaneo de equipaje, el cual imita un control de seguridad de aeropuerto. 

Los resultados de experimentos sintéticos demuestran que en condiciones exigentes 

(alto nivel de ruido, perfiles de concentración similares, espectros solapados, y picos 

asimétricos) MCR-LASSO proporciona mejores estimaciones en la evolución temporal y 

los espectros de las componentes subyacentes. Se ha demostrado que la densa 

superposición de Gaussianas es capaz de modelizar picos asimétricos más anchos de 

los habitualmente encontrados en espectroscopía. 

Por otro lado, se ha demostrado que MCR-LASSO proporciona mejor resolución en dos 

experimentos reales usando el citado prototipo de escaneo de equipaje. En el primer 

experimento se muestra que las no-linealidades típicas de IMS pueden ser tratadas 

mediante la introducción de componentes adicionales en el sistema. El segundo 

experimento presenta una mezcla más complicada y la presencia de agentes químicos 

interferentes. Los resultados obtenidos de MCR-LASSO contienen un nivel de ruido 

inferior, no solo en los espectros sino también en los perfiles de concentración, lo cual 

provoca que la interpretación cualitativa de los resultados resulte más sencilla si lo 

comparamos con los resultados obtenidos a partir de MCR-ALS y SIMPLISMA. Es 

importante remarcar que el método basado en LASSO puede usarse en combinación 

con otros modelos de picos aparte del modelo Gaussiano escogido para la presente 

tesis. 

El uso de una solución regularizada a partir de la norma L1 permite usar un modelo 

flexible (en este caso una densa superposición de picos Gaussianos) que de otra 

manera derivaría en un problema de mínimos cuadrados muy mal condicionado, y aún 

así encontrar una solución sparse de complejidad limitada. 

A pesar de que el trabajo realizado se ha basado en espectros de IMS y picos 

Gaussianos, MCR-LASSO puede aplicarse a otras configuraciones dado que los modelos 

espectrales pueden basarse en una densa superposición lineal de regresores. 

8.4 Análisis cualitativo y Predicción cuantitativa de 

Espectros IMS no lineales 

En esta sección se expone un breve resumen del capítulo 5, donde se propone una 

nueva metodología para el análisis de series temporales de espectros de IMS. 

 

El método propuesto combina las ventajas de MCR-ALS para una interpretación óptima 

de las características físicas y químicas del sistema (información cualitativa), y de una 

técnica de calibración multivariante como polynomial partial least squares (poly-PLS) 

(Wold, Kettaneh-Wold & Skagerberg 1989; Rosipal 2008) para una mejor cuantificación 

(información cuantitativa) de nuevas muestras. Los datos analizados presentan un 
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comportamiento fuertemente no-lineal a medida que se incrementa la concentración 

de la sustancia. 

Se ha demostrado en esta tesis que MCR-ALS es un método adecuado para el estudio 

de datos de IMS de segundo orden. Usando SIMPLISMA y MCR-ALS, los espectros de 

IMS se resuelven en componentes puras y se obtiene una estimación cualitativa para 

los espectros y los perfiles de concentración de estas componentes. A pesar de que 

estas técnicas se basan en una decomposición bilineal (D=C·ST+E), comportamiento no-

lineal puede ser modelizado añadiendo más componentes al modelo. Después del 

preprocesado de los espectros, MCR-ALS se aplica con la finalidad de obtener 

información acerca de las especies iónicas que aparecen en el tubo de deriva de IMS y 

su evolución con la concentración del analito. Resolviendo la matriz de datos, se 

obtienen los perfiles de concentración y los espectros puros de las diferentes especies 

iónicas. 

A pesar de que los monómeros y los dímeros pertenezcan a la misma sustancia, sus 

picos son modelizados como componentes separadas en los analitos estudiados (2-

butanona y etanol). Por lo tanto, MCR-ALS proporciona una buena manera para 

obtener una interpretación física y química del sistema incluso en presencia de 

comportamientos fuertemente no-lineales. A pesar de que esta información cualitativa 

no puede usarse directamente para realizar una calibración, puede ser usada de 

manera efectiva por métodos de calibración multivariante tales como poly-PLS para 

construir modelos de calibración. Se usa poly-PLS con la finalidad de construir modelos 

de calibración usando los perfiles de concentración que se obtienen de MCR-ALS. Los 

resultados obtenidos muestran que se consiguen predicciones similares o mejores 

comparado con otras metodologías estándar de calibración univariante y 

multivariante. Así que, se demuestra que esta nueva metodología puede ser útil en 

casos en los cuales el comportamiento de las intensidades de los picos es no-lineales a 

medida que se incrementa la concentración de la sustancia. 

Para las matrices de datos estudiadas, los resultados cualitativos muestran como las 

técnicas estándar de calibración multivariante funcionan en general mejor que las 

técnicas univariantes, especialmente cuando picos en los espectros aparecen 

solapados. Las técnicas multivariantes son capaces de modelizar comportamientos no-

lineales a partir de la adición de más componentes al modelo. Los datos presentados 

incluyen comportamientos fuertemente no-lineales al incrementar la concentración de 

la sustancia. Mientras que PLS es capaz de manejar comportamientos ligeramente no-

lineales, comportamientos fuertemente no-lineales son manejados de manera más 

eficiente por métodos como poly-PLS. A pesar de que la capacidad predictiva es 

similar, los resultados obtenidos son usualmente difíciles de interpretar usando estas 

técnicas de calibración, ya que, con el objetivo de modelizar no-linealidades, el número 
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de variables latentes en el modelo es típicamente mayor que el número de picos. Si se 

usa MCR-ALS como paso previo a la calibración, la interpretación cualitativa de los 

resultados es más sencilla y además el número de variables latentes queda fijado, de 

esta manera reduciendo la complejidad del modelo de calibración y reduciendo el 

número de parámetros a optimizar mediante validación cruzada. 

Además, se han mostrado los resultados obtenidos a partir de réplicas. Estos 

resultados sugieren que los modelos de calibración construidos en un día determinado 

no pueden transferirse a otros días. Este punto queda abierto para trabajo futuro. 

8.5 Localización de Fuentes Químicas usando Múltiples 

Sensores Móviles mediante Inferencia Bayesiana en 

presencia de Niveles Químicos Interferentes 

Los experimentos de navegación hacia fuentes químicas están fuertemente limitados 

por el rápido decaimiento de la concentración de la fuente de interés al incrementarse 

la distancia. Límites de detección pobres hacen que la pluma solo puede ser detectada 

de manera efectiva en un área reducida. Esto es especialmente importante en 

aplicaciones en las cuales la zona de búsqueda tenga una extensión de cientos de miles 

de metros cuadrados. A no ser que la fuente sea muy potente, la tarea de localización 

de fuentes químicas resulta prácticamente imposible. En tales casos, debería situarse 

el umbral de detección muy cercano al nivel de ruido, pero esto generaría un gran 

número de falsas alarmas lo que conduciría a que la mayoría de algoritmos de 

localización fallaran de manera catastrófica. Por lo que se sabe, ninguno de los 

métodos públicos trata este problema. 

Por otro lado, sensores químicos de bajo coste e incluso detectores de gama media 

(e.g. espectrómetros de movilidad iónica) tienen tan solo una selectividad limitada. En 

un escenario real, pueden existir señales de fondo (background) debidas a una 

multitud de sustancias químicas procedentes de la contaminación ambiental. Debido a 

la limitada selectividad de los detectores, habrá sustancias que generarán 

interferencias en las lecturas del detector, dificultando las tareas de detección y 

localización de la sustancia de interés. La combinación de ruido electrónico en el 

detector y principalmente sustancias interferentes resultará en lecturas remanentes 

los cuales pueden cambiar con el tiempo y la posición del detector. Estas derivas en los 

niveles de background dificultan la selección del umbral de detección óptimo. Por lo 

que se sabe, este problema no ha sido abordado previamente en la literatura. 
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Con el objetivo de tratar estos problemas, los algoritmos probabilísticos como los 

métodos Bayesianos de mapeo de pluma parecer ser una buena elección. Tales 

técnicas han resultado ser efectivas en muchas áreas de la robótica y proporcionan un 

buen punto de inicio para tratar los problemas. Pang y Farrell publicaron un algoritmo 

de mapeo de la verosimilitud en la posición de la fuente basado en inferencia 

Bayesiana (Pang & Farrell 2006). La principal idea consiste en implementar una 

aproximación estocástica (Farrell et al. 2002; Papoulis 1984) para la modelización de la 

pluma y en estimar la posición más probable de la fuente teniendo en cuenta la 

secuencia de eventos de detección/no-detección y las medidas del flujo a lo largo de la 

trayectoria del robot. A pesar que en el trabajo original, se presentan resultados 

realizando un rastreo de la pluma, tal rastreo no es estrictamente necesario para 

obtener una buena estimación de la posición de la fuente, con lo que los robots 

podrían ser destinados a otras tareas además de localizar la fuente. Actualizando 

recursivamente un mapa de probabilidad mediante inferencia Bayesiana se estima la 

posición más probable para la fuente. 

Sin embargo, el citado algoritmo tan solo considera el uso de eventos de detección 

binarios. En otras palabras, no se usa la información procedente de las 

concentraciones químicas medidas por los sensores para construir el mapa de 

probabilidad. El algoritmo tan solo considera concentraciones por encima de un cierto 

umbral como eventos de detección o no-detección. Además, después de situar el 

umbral a un cierto nivel, se asume que la tasa de falsas alarmas es muy baja; no 

obstante, tal asunción no puede tomarse como cierta en un escenario real donde 

señales interferentes estarán presentes, a no ser que el umbral se sitúe a un nivel muy 

elevado, pero esta opción reducirá drásticamente la distancia máxima a la que podrá 

detectarse la fuente. Por lo tanto, existe un compromiso; por un lado, el umbral tiene 

que situarse lo suficientemente bajo (cerca del límite de detección) si la fuente quiere 

detectarse a grandes distancias; por otro lado, tiene que ser lo suficientemente alto 

como para minimizar la aparición de falsas alarmas. Por lo que, como situar el umbral 

es un tema crítico en entornos reales al utilizar las estrategias actuales, especialmente 

cuando no se tiene ninguna información acerca del background o de la potencia de 

emisión de la fuente. 

Una de las motivaciones para la presente tesis es la de mejorar el algoritmo de 

localización de plumas basado en inferencia Bayesiana previamente descrito por Pang 

y Farrell (Pang & Farrell 2006), usando la información de las concentraciones químicas 

y extendiéndolo a entornos reales donde señales interferentes pueden aparecer. En 

nuestra propuesta, el algoritmo evalúa la probabilidad posterior que una cierta 

concentración química proceda del background o de una fuente química emitiendo 

continuamente a mayor distancia. Este enfoque elimina la necesidad de utilizar un 
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umbral. Así que, se reformula el algoritmo de Pang para ser usado con concentraciones 

continuas en lugar de simples eventos de detección binarios. Además, el algoritmo se 

extiende para trabajar con múltiples robots móviles, integrando simultáneamente sus 

lecturas sin importar de donde proceden. Esta nueva propuesta requiere un modelo 

probabilístico para el background y para la pluma, los cuales se han descrito en el 

capítulo 6. Estos modelos están basados en trabajos previos acerca de dispersión de 

plumas en entornos con flujos turbulentos (Yee, Wang & Lien 2009; Yee 2009; Yee 

2008; Yee & Biltoft 2004; Yee & Chan 1997). 

Los resultados obtenidos mediante simulaciones realistas muestran que el algoritmo 

desarrollado durante la tesis se comporta de manera mucho más robusta que el 

algoritmo de Pang en presencia en falsas alarmas y que la estimación en la posición 

real de la fuente química es más exacta. A pesar de lo que uno podría esperar 

inicialmente, no siempre el incrementar el umbral en el algoritmo de Pang conduce a 

una mejora. Situar el umbral demasiado alto conduce a situaciones en las cuales se 

generan largas secuencias de eventos de no-detección lo que provoca que el problema 

de localización de fuentes resulte inviable. Esto además depende del nivel de 

background, el cual es desconocido, por lo que en principio el umbral debe situarse a 

un nivel arbitrario. El decir que el nivel de background es desconocido es equivalente a 

afirmar que la potencia de emisión de la fuente también lo es, ya que el background es 

alto o bajo relativo a la potencia de la fuente. 

En nuestra propuesta, el hecho de utilizar todas las medidas procedentes de los 

sensores reduce el número de falsas alarmas (se modeliza el background) y reduce el 

número de falsos negativos ya que no existe ningún umbral. Sin embargo, el algoritmo 

asume que la potencia de emisión de la fuente es conocida. Ya que esto es un punto 

crítico en nuestra propuesta, se ha realizado un estudio de la robustez del algoritmo 

contra desviaciones respecto al valor real. En los resultados se muestra que en los 

casos en los que la fuente es débil (o background alto), nuestra estrategia se comporta 

de manera mucho más robusta si la potencia de la fuente se puede estimar dentro de 

un rango de dos órdenes de magnitud alrededor del valor real. Sin embargo, en los 

casos en los que la fuente es potente (o background bajo), el algoritmo de Pang puede 

ser suficiente para resolver el problema de localización de la fuente (optimizando el 

umbral de alguna manera), a pesar de que, tal como se muestra en los resultados, 

nuestro algoritmo proporciona mucho mejores resultados si la potencia de emisión 

puede estimarse. Por lo tanto, consideramos que estimar la potencia de emisión de la 

fuente ofrece una mejor dirección para trabajo futuro que no el hecho de intentar 

encontrar un método para optimizar el umbral en el algoritmo de Pang. Además, la 
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potencia de emisión de la fuente es un parámetro de directo interés para un usuario a 

diferencia del umbral de detección. 

En el capítulo 6 también se validan los resultados obtenidos de las simulaciones a 

partir de datos reales obtenidos de experimentos realizados en el  Mobile Robotics and 

Olfaction Lab (Örebro, Suecia). Veinte experimentos fueron llevados a cabo utilizando 

un robot móvil el cual incorporaba un detector PID y un anemómetro ultrasónico, en 

condiciones de flujo forzado turbulento, en interiores y exteriores, con obstáculos y sin 

obstáculos y con una o dos fuentes. El robot se programó para explorar el área 

aleatoriamente parando durante 30s en distintas posiciones. Los resultados muestran 

que el algoritmo desarrollado durante la tesis se comporta de manera más robusta en 

promedio en términos de: 1) distancia del máximo de probabilidad a la posición real de 

la fuente, 2) probabilidad en la posición de la fuente, 3) certidumbre en la posición de 

la fuente medida mediante la entropía; y que, a diferencia del algoritmo de Pang y 

Farrell, nuestra propuesta puede ser adecuada cuando más de una fuente está 

presente en el área de exploración al observarse nubes de probabilidad alrededor de 

las posiciones de las fuentes. 

8.6 Conclusiones 

En la presente tesis, se han presentado técnicas de procesado de señal para mejorar la 

detección, identificación y cuantificación de analitos usando analizadores basados en 

movilidad iónica (IMS y DMA); para los cuales se han presentado algunas aplicaciones. 

Además, se ha demostrado que la información de la concentración química, obtenida 

después de procesar los datos de los sensores, puede integrarse de manera efectiva en 

un algoritmo de localización de fuentes de gas con el objetivo de mejorar la 

localización de la fuente. 

En el capítulo 3 se muestra como técnicas estándar de análisis multivariante se aplican 

de manera efectiva a la tecnología DMA para la detección de explosivos y la 

identificación y cuantificación de VOCs. 

En el capítulo 4, se propone un nuevo método basado en MCR-ALS y LASSO (least 

absolute shrinkage and selection operator). Se muestra que los picos de los espectros 

de IMS se pueden modelizar como una superposición de funciones Gaussianas. 

Mostramos que podemos usar el método para mejorar la detección de ciertas 

sustancias incluso en presencia de agentes químicos interferentes. Los resultados 

están basados en datos generados de manera sintética y en datos de IMS obtenidos a 

partir de una aplicación de monitorización continua, tal como un portal de seguridad 

para el control de equipaje. 
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A medida que la concentración de la sustancia aumenta, los espectros de IMS son cada 

vez más no-lineales y es posible que aparezcan más picos relacionados con la sustancia 

de interés. En el capítulo 5 se propone una nueva metodología basada en MCR-ALS y 

poly-PLS para mejorar los análisis cualitativo y cuantitativo de las señales de IMS. Los 

perfiles de concentración y las características espectrales se obtienen a partir de MCR-

ALS, método el cual proporciona una buena interpretación de las distintas especies 

iónicas con total sentido físico y químico. 

A pesar de que las técnicas de procesado de señal utilizadas durante la tesis han sido 

testadas en condiciones de laboratorio, se muestra que son útiles para construir 

modelos de calibración, los cuales podrán ser usados en escenarios reales para 

predecir muestras desconocidas (identificación y cuantificación). 

  

A pesar de utilizar sensores no-selectivos en un entorno abierto, se muestra que el uso 

de la información continua de la concentración química puede ayudar a resolver el 

problema de localización de fuentes químicas, especialmente en esos casos en los que 

la potencia de emisión de la fuente sea débil. Además, consideramos que la 

integración de la concentración química dentro del algoritmo proporciona dirección 

más prometedora para trabajo futuro que no el simple hecho de tratar los sensores 

como detectores binarios situando un umbral a su respuesta. Todo esto se ilustra en el 

capítulo 6, donde se presentan los resultados obtenidos mediante simulaciones 

realistas y datos reales. 

Se llevó a cabo una serie de experimentos reales utilizando un robot móvil que 

incorporaba un detector de fotoionización (PID). Los experimentos se realizaron en 

interiores y exteriores bajo condiciones de ventilación forzada y flujo turbulento. Los 

resultados obtenidos validan aquellos obtenidos mediante las simulaciones; así que se 

muestra la efectividad del algoritmo de localización desarrollado durante la tesis 

operando en entornos reales. 
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