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Abstract:  
 
Business and consumer surveys have become an essential tool for gathering information about different 
economic variables. While the fast availability of the results and the wide range of variables covered made 
them very useful for monitoring the current status of the economy, there is no consensus on their utility for 
forecasting macroeconomic developments. 
 
The objective of the paper is to analyse the possibility of improving forecasts for selected macroeconomic 
variables for the euro area using the information provided by these surveys. After analyzing the potential 
presence of seasonality and the issue of quantification, we have tested if these indicators provide useful 
information to improve forecasts of the macroeconomic variables. With this aim, different sets of models 
have been considered (AR, ARIMA, SETAR, Markov switching regime models and VAR) to obtain 
forecasts for the selected macroeconomic variables. Then, information from surveys has been considered to 
forecast these variables in the context of the following models: autoregressive, VAR models, Markov 
Switching Regime models and leading indicators models. In both cases, the Root Mean Square Error 
(RMSE) has been computed for different forecast horizons. 
 
The comparison of the forecasting performance of the two sets of models permit to conclude that in most 
cases, models that include information from the survey obtain lower RMSE than the best model without 
survey information. However, this reduction is only significant in a limited number of cases. In this sense, 
the obtained results extend the results of previous research that have considered information from business 
and consumer surveys to explain the behaviour of macroeconomic variables, but are not conclusive about its 
role. 
 
 
Keywords: Macroeconomic forecasts, forecast competition, business and consumer surveys. 
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1. Introduction and objectives 

 

Business and consumer surveys have become an essential tool for gathering information about 

different economic variables. While the fast availability of the results and the wide range of 

variables covered make them very useful for monitoring the current status of the economy, there is 

no consensus on their utility for forecasting macroeconomic developments. 

 

The objective of the paper is to analyse the possibility of improving the forecasts for some selected 

macroeconomic variables for the euro area using the information provided by business and 

consumer surveys. As pointed out by Pesaran (1987), this type of data are less likely to be 

susceptible to sampling and measurement errors than surveys that require respondents to give point 

forecasts for the variables in question. One can think that the information provided by qualitative 

indicators could be useful to improve forecasts for quantitative variables due to two reasons. First, 

statistical information from business and consumer surveys is available much more in advance to 

quantitative statistics; and, second, these indicators are usually related with agents’ expectations, so 

they are likely to bear a relation to future developments of macroeconomic variables. 

 

In this paper, we have considered all the information available for the business and consumer 

surveys indicators in the euro area. The dataset analysed includes 38 indicators (33 of which are 

monthly and 5 quarterly) and 6 composite indicators. Although the starting date of these indicators 

differs, most of them begin in January 1985 (or in the first quarter of 1985). The latest period to be 

included in the analysis is December 2005 (or the last quarter of 2005).1 More details on the dataset 

can be found in Table 1. 

 

TABLE 1 

 

The strategy to test if these indicators provide useful information to improve forecasts of the 

macroeconomic variables has been the following: 

 

First, macroeconomic variables that could be related with the information provided by business and 

consumer surveys have been selected and statistical information for the longest time-span available 

has been collected from the Eurostat and the ECB databases.2 Tables 2 and 3 show more details 

about this dataset of macroeconomic variables and the correspondence between the business and 

consumer surveys indicators and these macroeconomic variables. 
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TABLES 2 and 3 

 

Second, five different sets of models have been considered (AR, ARIMA, Self-exciting threshold 

autoregressions –SETAR-, Markov switching regime models and vector autoregressions –VAR-) to 

obtain forecasts for the different quantitative variables and the Root Mean Square Error (RMSE) 

and the Mean Absolute Percentual Error (MAPE) have been computed for different forecast 

horizons. The comparison of these values with the ones obtained with models where information 

from business and consumer surveys has been considered would permit to assess whether these 

indicators permit to improve the forecasts or not. 

 

Fourth, information from surveys is considered to forecast the quantitative variables using three 

different types of models: 

 

(i) Lagged selected indicators are introduced as explanatory variables in autoregressive and 

VAR models. For Markov Switching Regime models, the probability of changing 

regime depends on the information of the qualitative indicators rather than on the own 

evolution of the series. 

 

(ii) Leading indicators models are constructed for each of the quantitative variables using 

information from business and consumer surveys indicators.  

 

(iii) One problem with survey data is that, in contrast to other statistical series, their results 

are weighted percentages of respondents expecting an economic variable to increase, 

decrease or remain constant. Therefore, the information refers to the direction of change 

but not to its magnitude. And this is the reason why we think that the considered list of 

qualitative indicators should be previously quantified in order to obtain more reliable 

forecasts of businessmen’ opinions. The conversion of qualitative data into a quantitative 

measure of the expected rate of change provides more detailed information about agents’ 

opinions and intentions. For this reason, a third strategy to improve quantitative 

forecasts from qualitative indicators would consist in quantifying the information 

provided by business and consumer surveys. There have been different proposals in the 

literature on how to obtain these quantified series of expectations. In this sense, one 

common feature of all them is that they permit to obtain directly one-period forecasts. 
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Another possibility consists in using the quantified series of expectations as explanatory 

variables of the related quantitative variable.  

 

One additional aspect that has also been considered is whether raw data or seasonal adjusted data 

from business and consumer surveys should be used in order to improve forecasts of the selected 

macroeconomic variables.  

 

The structure of the paper is as follows. In the next section our methodological approach is 

described, including both benchmark models and models where business and consumer surveys 

information is included. Next, results of the forecasting competition are discussed in Section 3. 

Last, conclusions are given in Section 4. 

 

 

2. Methodology 

 

2.1. Benchmark models 

 

The five proposed models (AR, ARIMA, SETAR, Markov switching regime models and VAR 

models) have been applied to obtain forecasts for the quantitative variables (expressed as year-on-

year growth rates. 

 

2.1.1. Autoregressions 

 

The widely known autoregressive model (also known as distributed-lags model) explains the 

behaviour of the endogenous variable as a linear combination of its own past values: 

 

 tptpttt xxxx    ...2211  (1) 

 

The key question is how to determine the number of lags that should be included in the model. For 

monthly data, we have considered different models with a minimum number of 1 lag up to a 

maximum of 24 (including all the intermediate lags), selecting that model with the lowest value of 

the Akaike Information Criteria (AIC). For quarterly data, we have considered a maximum number 

of lags equals to 8. 

  



 

 4

2.1.2. ARIMA models 

 

Since the work by Box and Jenkins (1970), ARIMA models have been widely used and their 

forecast performance has also been confirmed. 

 

The general expression of an ARIMA model is the following: 
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is a seasonal moving average polynomial, 
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is a seasonal autoregressive polynomial, 

 

    q
q L...LLL  2

2
1

11  (5) 

 

is a regular moving average polynomial, 

 

    p
p L...LLL  2

2
1

11  (6) 

 

is a regular autoregressive polynomial,  is the value of the Box-Cox (1964) transformation, D
s  is 

the seasonal difference operator, d  is the regular difference operator, S is the periodicity of the 

considered time series, and t  is the innovation which is assumed to behave as a white noise. 

 

In order to use this kind of models with forecasting purposes it is necessary to identify the best 

suited model (i.e., to give values to the order of the different polynomials, to the difference 

operator, etc.). For monthly data, we have considered models with up to 12 AR and MA terms (4 in 
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the case of quarterly data) selecting the model with the lowest value of the AIC. The statistical 

goodness of the selected model has also been checked. 

 

2.1.3. TAR models 

 

In the case of the ARIMA model the relationship between the current value of a variable and its lags 

is supposed to be linear and constant over time. However, when looking at real data it can be seen 

that expansions are more prolonged over time than recessions (Hansen, 1997). In fact, in the 

behaviour of most economic variables there seems to be a cyclical asymmetry that lineal models are 

not able to capture (Clements and Smith, 1999). 

 

A Self-Excited Threshold Autoregressive model (SETAR) for the time series tx  can be summarised 

as follows: 

 

 tt uxLB )·(  if xx kt   (7)  

 

 tt vsL )·(  if xx kt   (8)  

 

where tu  and tv  are white noises, )(LB  and )(L  are autoregressive polynomials, the value k  is 

known as delay and the value x  is known as threshold. 

 

This two-regime self-exciting threshold autoregressive process is estimated using monthly and 

quarterly data for each indicator and the Monte Carlo procedure is used to generate multi-step 

forecasts. 

 

The selected values of the delay are those minimising the sum of squared errors among values 

between 1 and 12 for monthly data and 1 and 4 for quarterly data. The values of the threshold are 

given by the variation of the analysed variable. 

 

2.1.4. Markov switching regime models 

 

Threshold autoregressive models are perhaps the simplest generalization of linear autoregressions. 

In fact, these models were built on developments over traditional ARMA time series models. As an 

alternative to these models, time series regime-switching models assume that the distribution of the 
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variable is known conditional on a particular regime or state occurring. When the economy changes 

from one regime to another, a substantial change occurs in the series. 

 

Hamilton (1989) presented the Markov regime-switching model in which the unobserved regime 

evolves over time as a 1st-order Markov process. The regime completely governs the dynamic 

behaviour of the series. This implies that once we condition on a particular regime occurring, and 

assume a particular parameterization of the model, we can write down the density of the variable of 

interest. However, as the regime is strictly unobservable, it is necessary to draw statistical inference 

regarding the likelihood of each regime occurring at any point in time. So, it is necessary to obtain 

the transition probabilities from one regime to the other. 

 

There have been three different approaches to estimating these models (Potter, 1999). First, 

Hamilton (1989) developed a nonlinear filter to evaluate the likelihood function of the model and 

then directly maximized the likelihood function. Second, in a later article, Hamilton (1990) 

constructed an EM algorithm that is particularly useful for the case where all the parameters switch. 

Finally, Albert and Chib (1993) developed a Bayesian approach to estimation. 

 

In this work, we employ a Markov-switching threshold autoregressive model (MK-TAR) where we 

allow for different regime-dependent intercepts, autoregressive parameters, and variances. The 

estimation of the models is carried out by maximum likelihood using the Hamilton (1989) filter 3 

together with the smoothing filter of Kim (1994). 

 

Once we have estimated the probabilities of expansion and recession, we construct the following 

model for the time series tx  using the estimated probabilities of changing regime: 

 

 tt uxLB )·(  if   PxExpansionP kt /  (9) 

 

 tt vxL )·(  if   PxExpansionP kt /  (10) 

 

where, as in SETAR models, tu  and tv  are white noises, )(LB  and )(L  are autoregressive 

polynomials, the value k  is known as delay and the value P  is known as threshold.4 The selected 

values of the delay are those minimising the sum of squared errors among values between 1 and 12 

for monthly data and 1 and 4 for quarterly data. The values of the threshold are given by the 

variation of the probability. 
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2.1.5. VAR models 

 

The VAR models that have been specified try to pick up, as far as possible, the classical Economic 

Theory assumptions in order to reflect the economic dynamic. In this sense, the VAR models that 

have been estimated could be defined as “total of the economy”, “supply”, “industry”, 

“construction” and, by the demand side, “exports”, “consumption” and “saving”. In particular, the 

considered quantitative VAR models are shown in table 4. 

 

TABLE 4 

 

2.2. Models where business and consumer surveys information is incorporated 

 

2.2.1. “Augmented” autoregression, Markov switching regime and VAR models 

 

One way to use the information of the qualitative indicators to improve the forecasts of the 

quantitative variables consists in introducing selected indicators as explanatory variables in 

autoregressions and VAR models. Recently, different works have estimated autoregressive and 

VAR models for some target variable (consumer spending, GNP), adding current and lagged values 

of a consumer confidence index to the models in order to test its significance and consider the 

extent of its effects. The approach applied in this section is quite similar. In this sense, it is worth 

mentioning that, as shown in table 2, more than one quantitative variable could be related to the 

evolution of the considered indicators. So, different possibilities have been considered for each 

autoregressive model. For the case of “augmented” VAR models, the strategy has been slightly 

different: only selected indicators have been included. This information is shown in table 5. 

 

TABLE 5 

 

2.2.2. Leading indicators models 

 

In spite of their well-known limitations pointed by the literature, leading indicators can also provide 

reliable forecasts of the analysed quantitative variables considering the whole set of information of 

business and consumer surveys. 
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According to Clements and Hendry (1998), p. 207 “an indicator is any variable believed 

informative about another variable of interest”. In this context, a leading indicator is any variable 

whose outcome is known in advance of a related variable which is desired to forecast. Usually, 

there are several leading indicators for every variable to be forecasted and, for this reason, 

composite leading indicators are constructed. A composite leading index is a combination (e.g. a 

weighted average) of this set of simple leading indicators. Composite leading indicators are useful 

to provide estimates of the current state and short-term forecasts of the analysed economy. The 

main advantage of composite leading indicators in relation to other methods is that it is not 

necessary to obtain forecasts for exogenous variables as their lagged values are known in advance. 

Of course, leading indicators will only provide reasonably accurate short term forecasts. However, 

we extend the analysis up to two years as an additional benchmark for the results using other 

procedures. 

 

The procedure for the selection of the simple leading indicators for each endogenous variable is 

based on the bilateral correlations between different lags of each of the variables in the business and 

consumer surveys indicators and the endogenous variable. The simple leading indicators have been 

chosen among those with highest values of the correlation coefficient. The length of the lead has 

been determined by cross-correlation analysis. In this sense, as an automatic identification 

procedure, different values of the bilateral correlation coefficient have been explored as a limit for a 

variable to be considered as a leading indicator. These values range from zero (all explanatory 

variables would be considered as leading indicators) to 0.8 (only variables with a strong correlation 

with the endogenous would be considered). Eventually we fixed this limit at 0.5. 

 

As there could be several simple leading indicators for every endogenous variable and the available 

sample is quite short, it is necessary to reduce the dimensionality of the exogenous variables matrix 

before using this information set to obtain the desired forecasts. It is also necessary to eliminate 

from this set of simple leading indicators, the part of their behaviour attributable to noise which 

would not be useful to forecast the endogenous variables (the noise would be higher with lower 

values of the correlation coefficient). With this aim, we extracted the principal components of the 

explanatory variables. The idea is that the first principal components capture the commonalities in 

the set of simple leading indicators (the relevant information to forecast the endogenous variables). 

After experimenting with different values, we retain as many components as necessary to explain 

70% of the total variance of the simple leading indicators. 
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Once the simple leading indicators have been selected and have been summarised in a few 

components (in most cases, the number of considered components ranges from one to three), these 

components are used as explanatory variables in the forecasting equations. 

 

The description of the leading indicators models applied in this case and their selected variables are 

available from the authors on request. 

 

2.3. Other aspects related to the nature of business and consumer surveys indicators 

 

2.3.1. Seasonal patterns  

 

One feature of business and consumer survey data is the presence of seasonal patterns. The 

treatment of seasonal patterns is relevant in our context in order to determine whether is better to 

forecast macroeconomic variables using raw data or seasonal adjusted data. In order to verify the 

importance of seasonality, we computed the Kruskal-Wallis test for all the indicators in our 

database. Table 6 summarises the obtained results (more details are given in Annex A). As it can be 

seen in this table, in almost an 80% of the cases, the null hypothesis of non-seasonality was not 

rejected, that is, most series did not present a seasonal component. Taking into account these 

results, and in order to keep homogeneity, in our forecasting competition we decided to use raw 

data for all the indicators obtained from the surveys. 

 

TABLE 6 

 

2.3.2. Quantification of expectations 

 

An additional problem with survey data is that, in contrast to other statistical series, their results are 

weighted percentages of respondents expecting an economic variable to increase, decrease or 

remain constant. Therefore, the information refers to the direction of change but not to its 

magnitude. In the literature, different methods have been proposed in order to convert qualitative 

data into a quantitative measure of agents’ opinions and intentions. The problem with these methods 

is that only one-period forecasts can be directly computed (for further details, see Claveria et al., 

2006), and for this reason, in this paper, the quantification of expectations will only be used to 

transform survey indicators before including them as regressors in autoregressions and VAR 

models. With this aim, six different possibilities are considered: the balance, the principal 
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components based procedure, the Anderson procedure, the Carlson-Parkin and Augmented Carlson-

Parkin methods and State-Space models. 

 

Assuming that the percentage change expected remains constant in time for the categories expecting 

an increase and a decrease of the variable, Anderson (1951) defined the balance statistic as a 

measure of the average changes expected in the variable. Ever since, the balance statistic has been 

widely used as a short-term forecast as well as for the construction of several economic indicators. 

 

There have been a variety of quantification methods proposed in the literature. These methods are 

based on the assumption that respondents base their answer on a subjective probability distribution 

defined over future changes in the variable and conditional to the information available up to that 

moment, which has the same form for all agents. Differences between methods have usually been 

related to theoretical considerations regarding rationality tests rather than based on their forecasting 

ability. 

 

The accuracy of the balance statistic as a means for extracting the maximum degree of information 

from survey data on the direction of change has been widely studied since the introduction of this 

new source of information in Europe by the IFO-Institut für Wirtschaftsforschung at the beginning 

of the fifties, for example by Anderson (1951, 1952), Theil (1952, 1955), Anderson, Bauer and Fels 

(1954), De Menil and Bhalla (1975) and Defris and Williams (1979). This line of research has led 

some authors to look for alternative procedures and statistics oriented towards the conversion of 

qualitative data into quantitative series of expectations. 

 

While most of the emphasis was given to the justification of the balance statistic within a theoretical 

framework and the evaluation of its performance as predictor of inflation and economic activity, as 

well as to the analysis of the rationality and the formation of expectations (i.e. Papadia, 1983), some 

other studies have been more empirically oriented. The fact that business and consumer surveys 

seem to be a valuable tool for anticipating economic activity has given rise to a line of research 

more focused on the construction of indexes and indicators of activity with survey data. 

 

In spite of the valuable information contained in the balance statistic, our experience with this type 

of data has led us to find some limitations of the balance statistic as a forecasting measure. Some of 

these shortcomings concerning the degree of response, the relative importance of each category for 

every question, etc. depend to a large extent on the specific features of the survey under 
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consideration. Some other problems, such as the volatility and the escalation of the series, are 

related to the nature of the data on the direction of change. 

 

For this reason, we have considered other possibilities of “quantifying” the information from 

business and consumer surveys. A first possibility consists in summarising all the possible 

answering categories contained in the business and consumer surveys in an indicator that also takes 

account of the percentage of “stable” answers. This indicator can be constructed using a principal 

component analysis (PCA) of all the answers for each question, which shows the linear combination 

of the three/five/six percentages that captures the most variability between the successive surveys. 

 

But, the strong correlation of the balance statistic with the percentage changes of its corresponding 

quantitative index of reference found by Anderson (1952) opened the door for the quantification of 

ordinal responses using more complex methods. Theil (1952) suggested a theoretical framework, 

later referred as the subjective probability approach, to convert qualitative responses of the direction 

of change into quantitative expectations, e
tx 1 . The basic idea behind the method is that there is 

some indifference interval around zero within which respondents report “no change”, whereas 

outside they report a change in the variable. 

 

Let 1tx  be the percentage change of the variable from period t  to period 1t  and e
tx 1  its 

expectation conditional on the respondent’s information set. Hence, an expected increase is reported 

if a
e
tx 1  with a relative frequency 1t

tA  and an expected decrease b
e
tx 1  with a relative 

frequency 1t
tB . Assuming the standard normal distribution one can derive: 
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1  stands for the inverse of the cumulative standard normal distribution. As pointed out by 

Zimmermann (1999), the logistic and the scaled- t  have also been used in the literature, usually 

leading to very similar results. Since the limit of the interval of indifference   is unknown, Carlson 

and Parkin (1975) used the following method of escalation: 
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This method was first applied by Carlson and Parkin (1975) and widely employed in the literature 

ever since. Recent contributions have relaxed the assumption of a symmetric indifference interval 

and the unbiasedness condition introduced by Carlson-Parkin escalating procedure: 
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As parameters b  and a  are unknown they have to be estimated usually by the following OLS 

regression t
t

ta
t
tbt ufex   11  . This alternative procedure implies that the aggregate 

distribution and the indifference intervals for both expectations and realizations are the same. As it 

happened with Carlson-Parkin method, this may cause problems when using the derived data for 

testing the rationality of expectations. 

 

Recent econometric techniques have been incorporated in the methodology in order to overcome 

some of its shortcomings, basically the restrictive assumptions on which it is based. As a result, new 

methods have been suggested and applied with the aim of obtaining accurate series of expectations. 

Recent papers have focused in the possibility of using State-Space models to estimate series of 

expectations and to forecast reference quantitative variables. For example, Seitz (1988) applied the 

time-varying parameter model of Cooley and Prescott (1976) and used the Kalman filter to derive a 

dynamic and asymmetric indifference interval. 

 

Our proposal consists in using a State-Space model where the Kalman filter is used to estimate time 

varying and asymmetric indifference intervals that can be used to obtain series of expectations but 

also to forecast reference quantitative series. 
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By relaxing the assumption that thresholds 1, ta  and 1, tb  are symmetric and are fixed across time, 

the asymmetric Carlson-Parkin conversion equation turns into: 
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Instead of using the Cooley and Prescott time-varying parameter model and regressing the outturn 

on retrospective survey responses in order to obtain estimates of e
tx 1  as done by Seitz (1988), we 

purpose a more general state-space representation for the threshold parameters that would include 

Seitz’s method as a particular case: 
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where  2,0~ ut Nu  , and 

 

 












ttbtb

ttata

w

v

1,,

1,,




 (16) 

 

where   and   are the autoregressive parameters and tv  and tw  are two independent and 

normally distributed disturbances with mean zero and variance 2
v  and 2

w , respectively. The 

relationship between tx  and the response thresholds is linear and it is expressed in the measurement 

equation. The unknown state is supposed to vary in time according to the linear transition equation. 

In order to estimate the variances and the autoregressive parameters and derive estimates of e
tx 1  the 

Kalman filter is used. 

 

This generalization of the probability approach introduces a more flexible representation, allowing 

for asymmetric and dynamic response thresholds generated by a first-order Markov process. 

Additionally, estimates of e
tx 1  can be derived by means of just survey responses about 

expectations, without the need of perceptions about past changes of the variable. 
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We also consider a particular case of this general model where threshold parameters follow a 

random walk instead of an autoregressive process. Therefore,   and   are supposed to be zero and 

the state-space representation of the model is: 
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where  2,0~ ut Nu   and 
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When initialising the Kalman filter two options have been considered. First, we have supposed that 

the initial conditions of the filter are obtained by regressing tx  on 1t
te  and 1t

tf  in the first fourth of 

the sample. We have also supposed that both initial conditions are equal to zero. As a result, we end 

up with four different state-space representations: 

 

SS1: autoregressive process with initial conditions estimated by OLS regression. 

SS2: random walk process with initial conditions estimated by OLS regression. 

SS3: random walk process with null initial conditions. 

SS4: autoregressive process with null initial conditions. 

 

Further details on the estimation procedure can be found in Harvey (1982) and (1987). 

 

The output of these quantification procedures can be considered as one period ahead forecasts of the 

quantitative variable used in the analysis or as exogenous proxies (quantified indicators) introduced 

in AR and VAR models to forecast quantitative variables. This second alternative is the one 

considered in this paper. 

 

 

3. Results of the forecasting competition 

 

In order to evaluate the relative forecasting accuracy of the models, for each variable to be 

forecasted all models were estimated until 2001.12 (or 2001.III or IV for quarterly indicators) and 

forecasts for 1,2,3,6 and 12 months (or 1,2,4 quarters) ahead were computed. The specifications of 
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the models are based on information up to that date and, then, models are re-estimated in each 

month or quarter and forecasts are computed. Given the availability of actual values until 2005.12 

or 2005.III or IV, forecast errors for each indicator and method can be computed in a recursive way 

(i.e., for the 1 month forecast horizon, 48 forecast errors can be computed for each indicator or 16 

for the 1 quarter forecast horizon). In order to summarise this information, the Root Mean Squared 

Error (RMSE) has been computed. These values provide useful information in order to analyse the 

forecast accuracy of each method, so methods can be ranked according to their values. It is worth 

mentioning that in all cases we have assumed that the information of business and consumer 

surveys is known in advance, which is not a strong assumption for shorter forecasting horizons but 

it could be for longer ones. A possible strategy that is beyond the scope of this paper is to apply 

univariate forecasting methods to business and consumer surveys indicators (see Clar et al., 2006). 

 

The results of our forecasting competition are shown in tables B.1 to B.19 of appendix B. These 

tables present the values of the Root of the Mean Squared Error (RMSE) obtained from recursive 

forecasts for 1,2,3,6 and 12 months during the period 2002.1-2005.12 or for 1,2 and 4 quarters 

during the period 2002.I-2005.IV for both, the benchmark models and the models including 

information from surveys.  

 

The obtained results permit to conclude that, as expected, forecasts errors increase for longer 

horizons in most cases. Regarding the forecast accuracy of the different methods, in most cases the 

autoregressions, leading indicators models and VAR models are not outperformed by the rest of the 

methods, being the ARIMA and the modified Markov model the ones usually displaying the highest 

RMSE values.  

 

But, do models with information from business and consumer surveys improve the forecasting 

performance of models that do not? Table 7 summarises the results from the forecasting 

competition. In particular, it shows for each variable which is the model with the lower value of the 

RMSE for every forecasting horizon. As we can see, when comparing the performance of the 

models including survey data to the ones that do not, the conclusion seems to be that in most cases 

some model that includes information from the survey obtains lower RMSE than the best model 

without survey information.  

 

TABLE 7 
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In particular, for monthly variables (top panel of table 7) only for forecasting horizons of 1, 2  and 3 

months, models without survey information show lower values of the RMSE than models with 

survey information. The exceptions are the number of persons employed in construction (qv2), the 

industry production index (qv4) and the number of new car registrations (qv6). For 6 and 12 months 

forecasting horizons, augmented AR models, augmented VAR models and leading indicator models 

show a better forecasting performance. 

 

For quarterly variables (bottom panel of table 7), the results show a similar pattern: models with 

survey information show lower values of the RMSE with some exceptions for 1 quarter forecasting 

horizon. In particular, autoregressions and VAR models without survey information achieve better 

results for gross domestic product (qv14), gross fixed capital formation: construction work - other 

constructions (qv15) and final consumption expenditure: household and NPISH (qv18). 

 

However, one key aspect that should be addressed is if the reduction in RMSE when comparing 

models with and without survey information is statistically significant.5 With this aim, we have 

calculated the measure of predictive accuracy proposed by Diebold-Mariano (1995) between the 

two best models with and without survey information for the first 12 months or the first 4 quarters 

of the forecasting horizon. Given these two competing forecasts and the actual series for each 

quantitative variable, we have calculated the S(1) measure which compares the mean difference 

between a loss criteria (in this case, the root of the mean squared error) for the two predictions using 

a long-run estimate of the variance of the difference series.6 In order to estimate this long-run 

variance from its autocovariance function, we have used the Bartlett kernel, as it guarantees that 

variance estimates are positive definite, while the maximum lag order has been calculated using the 

Schwert criterion as a function of the sample size. These results are shown in table 8. 

 

TABLE 8 

 

If we look at the results from table 8, we can see that in 9 out of 19 cases there is no significant 

difference between both forecasts. However, in ten cases, the difference is significant and in five of 

them, this difference is in favour of models with survey information7. The actual values and the two 

competing forecasts for these seven series where the difference is significant are shown in figure 1. 

 

FIGURE 1 
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As we can see from table 8 and figure 1, the consideration of information from business and 

consumer surveys improves significantly the forecasting performance of the considered models but 

in a similar number of cases than models without survey information. These results are in line with 

the ones shown in table 7 and in the annex B. 

 

However, looking at figure 1, it can also be observed that information from business and consumer 

surveys is particularly helpful in the presence of turning points in the forecasting horizon. For 

example, in the case of the savings rate (qv13), the leading indicator models with survey 

information is able to capture more quickly the downward trend in its evolution. A similar result is 

obtained for the gross fixed capital formation (qv15) when the construction confidence indicator 

(v28) is included as an exogenous variable in a VAR model. 

 

Summarising, the comparison of the forecasting performance of the two sets of models permit to 

conclude that in most cases, models that include information from the survey obtain lower RMSE 

than the best model without survey information, particularly at longer forecasting horizons. 

However, this reduction is only significant in a limited number of cases. In this sense, the obtained 

results extend the results of previous research that have considered information from business and 

consumer surveys to explain the behaviour of macroeconomic variables, but are not conclusive 

about its role. 

 

 

4. Conclusions 

 

The objective of the paper was to analyse the possibility of improving the forecasts for some 

selected macroeconomic variables for the euro area using the information provided by business and 

consumer surveys. With this aim, we have carried out a forecasting competition between models 

with and without survey information and considering the presence or not of seasonal patterns in the 

data and the need of quantification the information from surveys. 

 

The obtained results allow us to conclude that, only in a limited number of cases, the consideration 

of information from business and consumer surveys has improved significantly the forecasting 

performance of the different models for the considered macroeconomic variables.  

 

Last, it is important to highlight that we have extended in a more systematic way8 the results of 

previous research9 that have considered information from business and consumer surveys to explain 
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the behaviour of macroeconomic variables. As previously mentioned, the consideration of business 

and consumer surveys reduces the value of the RMSE in nearly the 80% of cases, but the results are 

not conclusive in a statistical sense (the reduction of forecasts errors is only significant in a limited 

number of cases). Moreover, the economic interpretation of the results is not always clear: for 

example, in the case of the number of persons employed in construction (qv2) when employment 

expectations for the months ahead (v31)  is included as an additional explanatory variable, a 

significant improvement is achieved in forecasting the future evolution of the macroeconomic 

variable, which is the expected result. However, in other cases, such as the evolution of industrial 

production (qv4) and production expectations for the months ahead (v7), although RMSE is 

reduced, the differences are not significant. Why some survey indicators help to improve forecasts 

and why others do not is an aspect that will be considered in further research.  
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Endnotes 

 
1 Data used in this paper was obtained from the European Commission DG ECFIN website 

http://europa.eu.int/comm/economy_finance/indicators/business_consumer_surveys/bcsseries_en.ht

m) in March 2006. 

 
2 Data used in this paper was obtained from the Eurostat website 

(http://europa.eu.int/comm/eurostat) and the ECB website (http://www.ecb.int) in March 2006. 

 
3 The Hamilton filter is an iterative procedure which provides estimates of the probability that a 

given state is prevailing at each point in time given its previous history. These estimates are 

dependent upon the parameter values given to the filter. Running the filter through the entire 

sample, provides a log likelihood value for the particular set of estimates used. This filter is then 

repeated to optimise the log likelihood to obtain the MLE estimates of the parameters. With the 

maximum likelihood parameters, the probability of state 0 at each point in time is calculated and 

these are the probabilities of recession and expansion. 

 
4 An alternative approach would have consisted in imposing the value of P and k instead of 

estimating them. These models are known as Markov Switching Autoregressive Models (MS-AR) 

and, in general, the values of P are 0.7 or 0.8 and the values of k, 0 or 1. 

 
5 We are grateful to an anonymous referee for this suggestion. 

 
6 This measure has been calculated using the Stata routine by Christopher F. Baum which is 

available at http://fmwww.bc.edu/repec/bocode/d/dmariano.ado and 

http://fmwww.bc.edu/repec/bocode/d/dmariano.hlp. 

 
7 We have carried out similar analysis for different periods and results have been similar. For 

example, using information up to 2000.12 or 2000.IV for estimating the model and forecasts until 

2001.12 or 2001.IV, in 12 out of 19 cases there is no significant difference between forecasts 

including survey information or not. However, in seven cases the difference is significant and in 

five of them, this difference is in favour of models with survey information.  
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8 To our knowledge, no other study covers such a high number of macroeconomic variables and 

indicators (attention has been usually paid to industrial production, inflation and GDP). The number 

of econometric methods and models applied is also considerable higher than in previous research. 

 
9 Among others, it is worth mentioning the works by Easaw and Heravi (2004), Garret et al. (2004), 

Souleles (2004), Vuchelen (2004) for consumption, Kauppi et al. (1996) and Bodo et al. (2000) for 

industrial production, Howrey (2001) and Forsells and Kenny (2002) for inflation, Sédillot and Pain 

(2003) for GDP and the more broad works by the European Commission (the BUSY and BUSY II 

models or the approach by Grasmann and Keereman, 2001) or by the European Central Bank . 
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Table 1. List of business and consumer surveys indicators for the euro area (continues next page) 
 

Description Freq. Sample Obs. Categories 

v1 Economic Sentiment Indicator month jan-85 dec-05 252            

v2 Industrial Confidence Indicator (v7+v4-v6)/3 month jan-85 dec-05 252            

v3 Production trend observed in recent months month jan-85 dec-05 252 P E M      B

v4 Assessment of order-book levels month jan-85 dec-05 252 P E M      B

v5 Assessment of export order-book levels month jan-85 dec-05 252 P E M      B

v6 Assessment of stocks of finished products month jan-85 dec-05 252 P E M      B

v7 Production expectations for the months ahead month jan-85 dec-05 252 P E M      B

v8 Selling price expectations for the months ahead month jan-85 dec-05 252 P E M      B

v9 Employment expectations for the months ahead month jan-85 dec-05 252 P E M      B

v10 New orders in recent months quarter 1985-I 2005-IV 84 P E M      B

v11 Export expectations for the months ahead quarter 1985-I 2005-IV 84 P E M      B

v12 Consumer Confidence Indicator (v14+v16-v19+v23)/4 month jan-85 dec-05 252            

v13 Financial situation over last 12 months month jan-85 dec-05 252 PP P E M MM N B

v14 Financial situation over next 12 months month jan-85 dec-05 252 PP P E M MM N B

v15 General economic situation over last 12 months month jan-85 dec-05 252 PP P E M MM N B

v16 General economic situation over next 12 months month jan-85 dec-05 252 PP P E M MM N B

v17 Price trends over last 12 months month jan-85 dec-05 252 PP P E M MM N B

v18 Price trends over next 12 months month jan-85 dec-05 252 PP P E M MM N B

v19 Unemployment expectations over next 12 months month jan-85 dec-05 252 PP P E M MM N B

v20 Major purchases at present month jan-85 dec-05 252 PP E MM N    B

v21 Major purchases over next 12 months month jan-85 dec-05 252 PP P E M MM N B

v22 Savings at present month jan-85 dec-05 252 PP P M MM N  B

v23 Savings over next 12 months month jan-85 dec-05 252 PP P M MM N  B

v24 Statement on financial situation of household month jan-85 dec-05 252 PP P E M MM N B

v25 Intention to buy a car within the next 2 years quarter 1990-I 2005-IV 64 PP P M MM N  B

v26 Purchase or build a home within the next 2 years quarter 1990-I 2005-IV 64 PP P M MM N  B

v27 Home improvements over the next 12 months quarter 1990-I 2005-IV 64 PP P M MM N  B
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Table 1. List of business and consumer surveys indicators for the euro area (continuation) 
 

Description Freq. Sample Obs Categories 

v28 Construction Confidence Indicator (v30+v31)/2 month jan-85 dec-05 252            

v29 Trend of activity compared with preceding months month jan-85 dec-05 252 P E M    B 

v30 Assessment of order books month jan-85 dec-05 252 P E M    B 

v31 Employment expectations for the months ahead month jan-85 dec-05 252 P E M    B 

v32 Price expectations for the months ahead month jan-85 dec-05 252 P E M    B 

v33 Retail Trade Confidence Indicator (v34-v35+v37)/3 month jan-86 dec-05 240            

v34 Present business situation month jan-85 dec-05 252 P E M    B 

v35 Assessment of stocks month jan-85 dec-05 252 P E M    B 

v36 Orders placed with suppliers month feb-85 dec-05 251 P E M    B 

v37 Expected business situation month jan-86 dec-05 240 P E M    B 

v38 Employment month abr-85 dec-05 249 P E M    B 

v39 Services Confidence Indicator (v40+v41+v42)/3 month abr-95 dec-05 129            

v40 Assessment of business climate month abr-95 dec-05 129 P E M    B 

v41 Evolution of demand in recent months month abr-95 dec-05 129 P E M    B 

v42 Evolution of demand expected in the months ahead month abr-95 dec-05 129 P E M    B 

v43 Evolution of employment in recent months month abr-95 dec-05 129 P E M    B 

v44 Evolution of employment expected in the months ahead month jan-97 dec-05 108 P E M    B 

The letters refer to positive answers (pp and p), neutral answers (e), negative answers (mm and m), non answers (n), balance (b) and composite indicators (i). 
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Table 2. List of considered macroeconomic variables  
 
Endogenous variables 
 

 Description Freq. sample Obs 

qv1 Harmonized consumer price index Monthly jan-90 dec-05 192 

qv2 Construction - number of persons employed index Monthly jan-91 dec-05 180 

qv3 Building permits index - New residential buildings Monthly jan-85 nov-05 251 

qv4 Industry Production index  Monthly jan-85 dec-05 252 

qv5 Industry Producer price index Monthly jan-85 dec-05 252 

qv6 Number of new car registrations Monthly jan-85 dec-05 252 

qv7 Retail Deflated turnover index  Monthly jan-94 dec-05 144 

qv8 Unemployment rate Monthly jan-93 dec-05 156 

qv9 Industry Gross value added Quarterly 1991-I 2005-IV 60 

qv10 Construction Gross value added Quarterly 1991-I 2005-IV 60 

qv11 Wholesale and retail trade & other Gross value added Quarterly 1991-I 2005-IV 60 

qv12 Financial intermediation Gross value added Quarterly 1991-I 2005-IV 60 

qv13 Savings rate Quarterly 1991-I 2005-III 59 

qv14 Gross domestic product Quarterly 1991-I 2005-IV 60 

qv15 Gross fixed capital formation: construction work - other constructions Quarterly 1991-I 2005-III 59 

qv16 Gross fixed capital formation: metal products and machinery Quarterly 1991-I 2005-III 59 

qv17 Exports of goods Quarterly 1991-I 2005-IV 60 

qv18 Final consumption expenditure: household and NPISH Quarterly 1991-I 2005-IV 60 

qv19 Gross fixed capital formation: construction work - housing Quarterly 1991-I 2005-III 69 

 
Exogenous variables 
 

 Description Freq. Sample Obs 

qv20 Interest rate Quarterly 1990-I 2005-IV 64 

qv21 Exchange rate Quarterly 1993-I 2005-IV 52 
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Table 3 Correspondence between business and consumer surveys indicators and the selected macroeconomic variables (continues) 
 
 

Description       

v1 Economic Sentiment Indicator  qv13     

v2 Industrial Confidence Indicator (v7+v4-v6)/3       

v3 Production trend observed in recent months  qv4 qv8 qv13   

v4 Assessment of order-book levels  qv4 qv8 qv13   

v5 Assessment of export order-book levels  qv4 qv8 qv13 qv16  

v6 Assessment of stocks of finished products  qv4 qv8 qv13   

v7 Production expectations for the months ahead  qv4 qv8 qv13   

v8 Selling price expectations for the months ahead  qv1 qv5    

v9 Employment expectations for the months ahead  qv4 qv8 qv13 qv19  

v10 New orders in recent months  qv4 qv8 qv15   

v11 Export expectations for the months ahead  qv4 qv8 qv13 qv16  

v12 Consumer Confidence Indicator (v14+v16-v19+v23)/4  qv13 qv17    

v13 Financial situation over last 12 months  qv6 qv13 qv17   

v14 Financial situation over next 12 months  qv6 qv13 qv17   

v15 General economic situation over last 12 months  qv6 qv13 qv17   

v16 General economic situation over next 12 months  qv6 qv13 qv17   

v17 Price trends over last 12 months  qv1     

v18 Price trends over next 12 months  qv1     

v19 Unemployment expectations over next 12 months  qv13 qv17 qv19   

v20 Major purchases at present  qv13 qv17    

v21 Major purchases over next 12 months  qv13 qv17    

v22 Savings at present  qv12     

v23 Savings over next 12 months  qv12     

v24 Statement on financial situation of household  qv12     

v25 Intention to buy a car within the next 2 years  qv6     

v26 Purchase or build a home within the next 2 years  qv18     

v27 Home improvements over the next 12 months  qv18     
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Table 3 Correspondence between business and consumer surveys indicators and the selected macroeconomic variables (continuation) 
 

Description       

v28 Construction Confidence Indicator (v30+v31)/2  qv3 qv10 qv14 qv15 qv19 

v29 Trend of activitiy compared with preceding months  qv3 qv10 qv14 qv15 qv19 

v30 Assessment of order books  qv3 qv10 qv14 qv15 qv19 

v31 Employment expectations for the months ahead  qv2 qv8    

v32 Price expectations for the months ahead  qv1     

v33 Retail Trade Confidence Indicator (v34-v35+v37)/3  qv11 qv14    

v34 Present business situation  qv11 qv14    

v35 Assessment of stocks  qv11     

v36 Orders placed with suppliers  qv11     

v37 Expected business situation  qv11 qv14    

v38 Employment  qv8     

v39 Services Confidence Indicator (v40+v41+v42)/3  qv11 qv12 qv14   

v40 Assessment of business climate  qv11 qv12 qv14   

v41 Evolution of demand in recent months  qv11 qv12 qv14   

v42 Evolution of demand expected in the months ahead  qv11 qv12 qv14   

v43 Evolution of employment in recent months  qv8     

v44 Evolution of employment expected in the months ahead  qv8     
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Table 4. VAR models specification 
 

VAR model Considered quantitative variables 
Total of the economy Harmonized consumer price index 

Gross domestic product 
Unemployment rate 

Supply Industry Gross value added 
Construction Gross value added 
Wholesale and retail trade & other Gross value added 
Financial intermediation Gross value added 

Industry (a) Industry Production index 
Industry Producer price index 

Industry (b) Industry Production index 
Industry Producer price index 
Gross fixed capital formation: metal products and machinery 

Building Construction - number of persons employed index 
Building permits index - New residential buildings 
Gross fixed capital formation: construction work - other constructions 
Gross fixed capital formation: construction work – housing 
Interest rates 

Exports Gross domestic product 
Exports of goods 
Exchange rates 

Consumption Harmonized consumer price index 
Gross domestic product 
Final consumption expenditure: household and NPISH 
Unemployment rate 
Interest rates 

Savings Harmonized consumer price index 
Savings rate 
Gross domestic product 
Interest rates 

 
 
Table 5. Specification of “augmented” VAR models  
 

 Macroeconomic variables Indicators 

Total qv1 qv14 qv8   v1    

Supply qv9 qv10 qv11 qv12  v1    

Industry (a) qv4 qv5    v7b v8b   

Industry (b) qv4 qv5 qv16   v2    

Building (a) qv2 qv3 qv15 qv19 qv20 v28    

Building (b) qv2 qv3 qv15 qv19 qv20 v31b v32b   

Exports qv14 qv17 qv21   v5b    

Consumption (a) qv1 qv8 qv14 qv18 qv20 v12    

Consumption (b) qv1 qv8 qv14 qv18 qv20 v14b v16v v18b v19b 

Savings qv1 qv13 qv14 qv20   v23b v24b     

 

  



 

 31

Table 6. Summary of the results of the Kruskal Wallis test 

 

  Rejection of the Null Non-rejection of the Null TOTAL 

Month 9 30 39 

Quarter 1 4 5 

TOTAL 10 34 44 

    

  Rejection of the Null Non-rejection of the Null TOTAL 

Month 23.08% 76.92% 100.00% 

Quarter 20.00% 80.00% 100.00% 

TOTAL 22.73% 77.27% 100.00% 

Null hypothesis: Non-seasonal pattern in the considered serie 

 

 

Table 7. Summary of the results from the forecasting competition 
 

Monthly models 

 

    1 month 2 months 3 months 6 months 12 months 

N
on

-s
ur

ve
y 

 AR 
qv1, qv3, qv5, 
qv6, qv7, qv8 

qv1, qv3, qv5, 
qv7, qv8 

qv1, qv3, qv5, 
qv6, qv7, qv8 

qv1, qv6, qv7 qv1 

ARIMA      

TAR      

MK-TAR      

VAR      

S
ur

ve
y 

 

AR qv4 qv4 qv4 qv4 qv7, qv8 

MK-TAR      

VAR     qv4 

Leading indicator qv2 qv2, qv6 qv2 
qv2, qv3, 
qv5, qv8 

qv2, qv3, 
qv5, qv6 

 

Quarterly models 

 

    1 quarter 2 quarters 4 quarters 

N
on

-s
ur

ve
y 

 AR qv10 qv10  

ARIMA    

TAR    

MK-TAR   qv9 

VAR qv14, qv15, qv16, qv19 qv15 qv14, qv18 

S
ur

ve
y 

 AR  qv16 qv10, qv17 

MK-TAR qv9 qv9  

Leading indicator  qv11, qv13, qv17, qv18, qv19 qv13, qv14, qv17, qv18, qv19 qv12, qv13 

VAR qv12 qv11, qv12 qv11, qv15, qv16 
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Table 8. Results of the Diebold-Mariano test 
 

Monthly data: 2002m1-2002m12   Quarterly data: 2002q1-2002q4 

qv1 -1.26 qv9 -0.12 

qv2 -2.24* qv10 -1.92 

qv3 0.29 qv11 -0.01 

qv4 -1.72 qv12 1.02 

qv5 -3.81* qv13 3.84* 

qv6 3.81* qv14 -2.18* 

qv7 2.97* qv15 3.14* 

qv8 2.64* qv16 -2.45* 

   qv17 -1.49 

   qv18 -1.67 

   qv19 -10.88* 
Null hypothesis: The difference between the two competing series is non-significant.  
A positive sign of the statistic implies that the RMSE associated to the forecast from the model with survey information is lower while a 
negative sign implies the opposite. 
* significant at the 5% level. 
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Figure 1. Comparison of actual values and significantly different competing forecasts according to the Diebold-Mariano test  

 

 

 

 
 
 

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

20
00

-1

20
00

-4

20
00

-7

20
00

-1
0

20
01

-1

20
01

-4

20
01

-7

20
01

-1
0

20
02

-1

20
02

-4

20
02

-7

20
02

-1
0

qv2

qv2_ar

qv2_ar_survey

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

20
00

-1

20
00

-4

20
00

-7

20
00

-1
0

20
01

-1

20
01

-4

20
01

-7

20
01

-1
0

20
02

-1

20
02

-4

20
02

-7

20
02

-1
0

qv5

qv5_ar

qv5_lead_survey

-20.00

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

20
00

-1

20
00

-4

20
00

-7

20
00

-1
0

20
01

-1

20
01

-4

20
01

-7

20
01

-1
0

20
02

-1

20
02

-4

20
02

-7

20
02

-1
0

qv6

qv6_ar

qv6_lead_survey
-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

20
00

-1

20
00

-4

20
00

-7

20
00

-1
0

20
01

-1

20
01

-4

20
01

-7

20
01

-1
0

20
02

-1

20
02

-4

20
02

-7

20
02

-1
0

qv7

qv7_ar

qv7_ar_survey

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

20
00

-1

20
00

-4

20
00

-7

20
00

-1
0

20
01

-1

20
01

-4

20
01

-7

20
01

-1
0

20
02

-1

20
02

-4

20
02

-7

20
02

-1
0

qv8

qv8_ar

qv8_ar_survey

-20.00

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

20
00

-I

20
00

-I
I

20
00

-I
II

20
00

-I
V

20
01

-I

20
01

-I
I

20
01

-I
II

20
01

-I
V

20
02

-I

20
02

-I
I

20
02

-I
II

20
02

-I
V

qv13

qv13_ar

qv13_lead_survey

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

20
00

-I

20
00

-I
I

20
00

-I
II

20
00

-I
V

20
01

-I

20
01

-I
I

20
01

-I
II

20
01

-I
V

20
02

-I

20
02

-I
I

20
02

-I
II

20
02

-I
V

qv14

qv14_var

qv14_var_survey
-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

19
99

-I
V

20
00

-I

20
00

-I
I

20
00

-I
II

20
00

-I
V

20
01

-I

20
01

-I
I

20
01

-I
II

20
01

-I
V

20
02

-I

20
02

-I
I

20
02

-I
II

20
02

-I
V

qv15

qv15_ar

qv15_var_survey

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

19
99

-I
V

20
00

-I

20
00

-I
I

20
00

-I
II

20
00

-I
V

20
01

-I

20
01

-I
I

20
01

-I
II

20
01

-I
V

20
02

-I

20
02

-I
I

20
02

-I
II

20
02

-I
V

qv16

qv16_var

qv16_var_survey

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

20
00

-I

20
00

-I
I

20
00

-I
II

20
00

-I
V

20
01

-I

20
01

-I
I

20
01

-I
II

20
01

-I
V

20
02

-I

20
02

-I
I

20
02

-I
II

20
02

-I
V

qv19

qv19_var

qv19_lead_survey



 

 34

 
Appendix A.  
 
Table A.1. Detailed results of the Kruskal-Wallis test 
 

Variable KW-statistic P-value  

v1 6.04 0.87 Non RH0 

v2 8.26 0.69 Non RH0 

v3b 29.23 0.00 RH0 

v4b 1.84 1.00 Non RH0 

v5b 1.59 1.00 Non RH0 

v6b 4.74 0.94 Non RH0 

v7b 73.50 0.00 RH0 

v8b 25.06 0.01 RH0 

v9b 5.16 0.92 Non RH0 

v10b 14.06 0.00 RH0 

v11b 5.67 0.13 Non RH0 

v12 5.85 0.88 Non RH0 

v13b 1.53 1.00 Non RH0 

v14b 4.25 0.96 Non RH0 

v15b 1.27 1.00 Non RH0 

v16b 8.13 0.70 Non RH0 

v17b 0.43 1.00 Non RH0 

v18b 2.46 1.00 Non RH0 

v19b 7.34 0.77 Non RH0 

v20b 4.11 0.97 Non RH0 

v21b 1.10 1.00 Non RH0 

v22b 1.06 1.00 Non RH0 

v23b 4.73 0.94 Non RH0 

v24b 2.10 1.00 Non RH0 

v25b 0.88 0.83 Non RH0 

v26b 0.27 0.97 Non RH0 

v27b 0.38 0.94 Non RH0 

v28 27.01 0.00 RH0 

v29b 150.68 0.00 RH0 

v30b 14.52 0.21 Non RH0 

v31b 70.02 0.00 RH0 

v32b 9.81 0.55 Non RH0 

v33 7.45 0.76 Non RH0 

v34b 1.91 1.00 Non RH0 

v35b 48.11 0.00 RH0 

v36b 21.40 0.03 RH0 

v37b 9.42 0.58 Non RH0 

v38b 34.70 0.00 RH0 

v39 0.88 1.00 Non RH0 

v40b 0.39 1.00 Non RH0 

v41b 7.94 0.72 Non RH0 

v42b 7.53 0.75 Non RH0 

v43b 3.90 0.97 Non RH0 

v44b 14.62 0.20 Non RH0 

H0: Non-seasonality / HA: seasonality 
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Appendix B. 
 
Table B.1 
 
qv1: HCPI. Year-on-year growth rates of raw data 

Average RMSE - Recursive forecasts from January 2002 to December 2005 

      

Models without survey information  1 month 2 months 3 months 6 months 12 months

AR 0.20* 0.26* 0.30* 0.30* 0.28* 

ARIMA 1.55 1.85 2.18 2.32 2.53 

TAR 2.04 3.12 3.91 6.03 13.13 

      

Models with survey information 1 month 2 months 3 months 6 months 12 months

AR (+v18b) 0.20 0.26 0.33 0.41 0.58 

AR (+v18 quantified) 0.20 0.27 0.34 0.41 0.57 

Leading indicators model 1 0.56 0.55 0.66 0.43 0.52 

Leading indicators model 2 0.42 0.37 0.43 0.53 0.82 

      

v18: Price trends over next 12 months      

b: balance      

      

Italics: best model without survey information      

Bold: Better forecast performance than best model without survey information    

* Best model      
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Table B.2 
 
qv2. Construction - number of persons employed index: Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from January 2002 to December 2005 

      

Models without survey information  1 month 2 months 3 months 6 months 12 months 

AR 0.78 0.95 1.10 1.32 1.38 

ARIMA 6.19 7.93 8.75 10.14 10.66 

TAR 25.89 26.49 52.13 230.52 1102.48 

MK-TAR 0.99 1.35 9.25 52.58 10.76 

      

Models with survey information 1 month 2 month 3 month 6 months 12 months 

AR (+v31b) 0.77 0.93 1.05 1.24 1.15 

AR (+v31b quantified) 0.77 0.93 1.06 1.27 1.22 

Leading indicators model 1 0.42* 0.37* 0.43* 0.53* 0.82* 

Leading indicators model 2 1.55 2.01 1.04 2.39 3.82 

      

v31: Employment expectations for the months ahead      

b: balance      

      

Italics: best model without survey information      

Bold: Better forecast performance than best model without survey information  

* Best model      
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Table B.3 
 
qv3: Building permits index. Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from December 2001 to November 2005 

      

Models without survey information  1 month 2 months 3 months 6 months 12 months 

AR 5.55* 5.92* 6.19* 7.04 6.48 

ARIMA 39.87 43.83 47.42 53.18 56.89 

TAR 68.87 97.78 125.16 172.36 261.11 

MK-TAR 6.47 7.98 8.98 10.20 7.83 

      

Models with survey information 1 month 2 months 3 months 6 months 12 months 

AR (+v29b) 6.47 6.93 6.96 7.71 7.07 

AR (+v30b) 6.14 6.39 6.49 7.23 6.96 

AR (+v29b+v30b) 5.87 6.57 6.61 7.38 6.46 

AR (+v29b quantified) 6.24 6.49 6.64 7.44 7.13 

AR (+v30b quantified) 5.87 6.57 6.59 7.34 6.40 

Leading indicators model 1 6.46 6.19 6.38 6.37 5.85* 

Leading indicators model 2 6.83 7.00 8.35 6.08* 7.65 

   

v29: Trend of activity compared with preceding months   

v30: Assessment of order books   

b: balance      

     

Italics: best model without survey information      

Bold: Better forecast performance than best model without survey information   

* Best model      
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Table B.4 
 
qv4: Industry Production Index. Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from January 2002 to December 2005 

      

Models without survey information   1 month 2 months 3 months 6 months 12 months 

AR 1.47 1.57 1.69 2.35 3.06 

ARIMA 10.06 10.64 10.86 14.36 15.71 

TAR 14.86 16.29 22.51 33.58 52.52 

VAR industry (a) 1.53 1.53 1.40 1.64 1.57 

      

Models with survey information 1 month 2 months 3 months 6 months 12 months 

AR (+v7b) 1.37* 1.39* 1.39* 1.55* 1.66 

AR (+v7b quantified) 1.48 1.49 1.46 1.59 1.60 

Leading indicators model 1 1.45 1.53 1.44 1.96 1.38 

Leading indicators model 2 1.49 1.33 1.73 1.95 2.80 

VAR-industry  (a) (+v7b quantified+v8b quantified) 1.48 1.58 1.54 1.61 1.56* 

      

v7: Production expectations for the months ahead      

v8: Selling price expectations for the months ahead     

b: balance      

      

Italics: best model without survey information      

Bold: Better forecast performance than best model without survey information   

* Best model      
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Table B.5 
 
qv5: Industry Producer Price Index. Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from January 2002 to December 2005 

      

Models without survey information  1 month 2 months 3 months 6 months 12 months 

AR 0.42* 0.68* 0.88* 1.37 2.04 

ARIMA 2.93 4.94 6.48 10.04 15.08 

TAR 4.88 6.76 8.57 15.01 23.74 

VAR industry (a) 0.44 0.70 0.90 1.42 2.15 

      

Models with survey information 1 month 2 months 3 months 6 months 12 months 

AR (+v8b) 0.44 0.70 0.91 1.42 2.15 

AR (+v8b quantified) 0.43 0.69 0.89 1.39 2.10 

Leading indicators model 1 1.56 1.49 1.44 1.28* 1.84* 

Leading indicators model 2 1.95 1.55 1.66 3.13 4.63 

VAR-industry (a) (+v7b quantified+v8b quantified) 0.44 0.71 0.92 1.41 2.12 

   

v7: Production expectations for the onths ahead 

v8: Selling price expectations for the months ahead 

b: balance      

      

Italics: best model without survey information 

Bold: Better forecast performance than best model without survey information

* Best model      
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Table B.6 
 
qv6: Number of new car registrations. Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from January 2002 to December 2005 

      

Models without survey information 1 month 2 months 3 months 6 months 12 months 

AR 4.95* 5.09 5.37* 5.33* 5.19 

ARIMA 40.81 42.26 43.82 38.38 40.65 

TAR 77.25 79.33 78.06 81.21 116.51 

      

Models with survey information 1 month 2 months 3 months 6 months 12 months 

Leading indicators model 1 5.46 4.61* 5.85 6.31 5.14* 

Leading indicators model 2 5.76 6.78 6.95 6.01 8.16 

      

Italics: best model without survey information 

Bold: Better forecast performance than best model without survey information 

* Best model      
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Table B.7 
 
qv7: Retail Deflated turnover index : Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from January 2002 to December 2005 

      

Models without survey information 1 month 2 months 3 months 6 months 12 months 

AR 1.11* 1.12* 1.13* 1.26* 1.42 

ARIMA 8.79 8.48 7.92 8.62 9.13 

TAR 14.20 14.24 14.34 17.04 19.53 

MK-TAR 1.89 3.14 2.48 2.27 7.15 

      

Models with survey information 1 month 2 months 3 months 6 months 12 months 

AR (+v34b) 1.25 1.24 1.22 1.31 1.39* 

AR (+v35b) 1.31 1.28 1.25 1.44 1.59 

AR (+v36b) 1.42 1.37 1.34 1.48 1.46 

AR (+v37b) 1.31 1.29 1.28 1.37 1.47 

AR (+v34b +v35b +v36b +v37b) 2.27 2.58 2.64 2.68 2.64 

AR (+v34b quantified) 1.23 1.22 1.22 1.32 1.49 

AR (+v35b quantified) 1.33 1.29 1.25 1.38 1.47 

AR (+v36b quantified) 1.40 1.36 1.33 1.52 1.62 

AR (+v37b quantified) 1.32 1.29 1.24 1.35 1.47 

Leading indicators model 1 1.22 1.19 1.28 1.71 1.91 

Leading indicators model 2 1.24 1.17 1.21 1.42 1.59 

  

v34: Present business situation v36: Orders placed with suppliers  

v35: Assessment of stocks v37: Expected business situation   

b: balance     

     

Italics: best model without survey information    

Bold: Better forecast performance than best model without survey information  

* Best model     
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Table B.8 
 
qv8: Unemployment rate. Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from January 2002 to December 2005 

 

Models without survey information 1 month 2 months 3 months 6 months 12 months 

AR 2.44* 2.73* 2.94* 3.83 4.63 

ARIMA 20.31 21.27 22.81 29.29 47.49 

TAR 21.54 26.82 32.74 58.39 135.12 

      

Models with survey information 1 month 2 months 3 months 6 months 12 months 

AR (+v19b) 2.47 2.85 3.15 4.20 4.56* 

AR (+v19b quantified) 2.48 2.80 3.03 3.98 4.98 

MK-TAR(+v19b) 2.51 5.72 8.63 13.06 28.89 

Leading indicators model 1 3.81 3.85 3.67 3.66 7.16 

Leading indicators model 2 5.00 4.85 4.24 3.56* 8.95 

      

v19: Unemployment expectations over next 12 months    

b: balance      

      

Italics: best model without survey information     

Bold: Better forecast performance than best model without survey information  

* Best model      
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Table B.9 
 
qv9: Industry Gross value added. Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from 1st quarter 2002 to 4th quarter 2005 

    

Models without survey information 1 quarter 2 quarters 4 quarters 

AR 1.79 1.98 2.11 

ARIMA 8.00 9.95 10.34 

TAR 16.97 16.46 15.54 

MK-TAR 2.61 3.27 2.09* 

VAR- supply 2.27 2.96 2.94 

    

Models with survey information 1 quarter 2 quarters 4 quarters 

AR (+ICI) 2.61 3.06 3.39 

MK-TAR(+ICI) 2.34 2.57 2.25 

Leading indicators model 1 1.57* 1.95* 3.44 

Leading indicators model 2 1.69 2.55 3.16 

VAR- supply (+ESI) 1.95 2.15 2.15 

  

VAR-supply: Industry Gross value added + Construction + Wholesale and retail trade + Financial intermediation 

  

Italics: best model without survey information  

Bold: Better forecast performance than best model without survey information

* Best model  
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Table B.10 
 
qv10: Construction Gross value added. Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from 1st quarter 2002 to 4th quarter 2005 

    

Models without survey information 1 quarter 2 quarters 4 quarters 

AR 1.58* 1.74* 1.99 

ARIMA 8.03 9.08 11.12 

TAR 12.14 15.24 19.55 

MK-TAR 1.81 3.11 4.13 

VAR- supply 2.28 2.96 2.94 

    

Models with survey information 1 quarter 2 quarters 4 quarters 

AR (+CCI) 2.24 2.29 1.55* 

Leading indicators model 1 1.72 1.79 3.29 

Leading indicators model 2 2.48 2.67 3.65 

VAR- supply (+ESI) 1.99 1.96 1.73 

  

VAR-supply: Industry Gross value added + Construction + Wholesale and retail trade + Financial intermediation 

  

Italics: best model without survey information  

Bold: Better forecast performance than best model without survey information

* Best model  
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Table B.11 

qv11: Wholesale and retail trade & other Gross value added. Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from 1st quarter 2002 to 4th quarter 2005 

    

Models without survey information 1 quarter 2 quarters 4 quarters 

AR 1.20 1.22 1.19 

ARIMA 5.41 5.57 5.22 

TAR 8.37 7.93 9.70 

VAR- supply 1.24 1.16 1.42 

    

Models with survey information 1 quarter 2 quarters 4 quarters 

AR (+v34b) 1.17 0.99 1.08 

AR (+v34b quantified) 1.16 1.00 0.99 

Leading indicators model 1 0.91* 1.08 1.64 

Leading indicators model 2 1.04 1.03 1.51 

VAR- supply (+ESI) 1.14 0.94* 0.82* 

    

VAR-supply: Industry Gross value added + Construction + Wholesale and retail trade + Financial intermediation 

    

v34: Present business situation    

b: balance    

    

Italics: best model without survey information  

Bold: Better forecast performance than best model without survey information

* Best model  
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Table B.12 
 
qv12: Financial intermediation Gross value added. Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from 1st quarter 2002 to 4th quarter 2005 

    

Models without survey information 1 quarter 2 quarters 4 quarters 

AR 1.05 1.49 1.87 

ARIMA 4.28 5.99 7.73 

TAR 8.25 9.69 13.36 

VAR- supply 1.07 1.57 2.04 

    

Models with survey information 1 quarter 2 quarters 4 quarters 

AR (+v13b) 11.64 13.76 22.66 

AR (+v14b) 13.62 15.47 19.29 

AR (+v13b +v14b) 1.05 1.58 2.23 

AR (+v13b quantified) 11.65 13.77 22.67 

AR (+v14b quantified) 13.62 15.47 19.29 

Leading indicators model 1 1.45 1.69 1.71* 

Leading indicators model 2 1.10 1.64 1.78 

VAR- supply (+ESI) 1.00* 1.42* 1.86 

    

VAR-supply: Industry Gross value added + Construction + Wholesale and retail trade + Financial intermediation 

    

v13: Financial situation over last 12 months    

v14: Financial situation over next 12 months    

b: balance    

    

Italics: best model without survey information    

Bold: Better forecast performance than best model without survey information

* Best model    
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Table B.13 
 
qv13: Savings rate. Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from 4th quarter 2001 to 3rd quarter 2005 

    

Models without survey information 1 quarter 2 quarters 4 quarters 

AR 7.94 9.70 8.27 

ARIMA 32.27 42.92 50.93 

TAR 53.88 58.98 62.78 

VAR- savings 9.27 9.14 12.45 

    

Models with survey information 1 quarter 2 quarters 4 quarters 

AR (+v22b) 11.65 13.77 22.67 

AR (+v23b) 13.62 15.47 19.29 

AR (+v22 +v23b) 17.45 17.99 22.62 

AR (+v22b quantified) 11.64 13.76 22.66 

AR (+v23b quantified) 13.62 14.47 19.30 

Leading indicators model 1 6.73* 7.24* 7.72* 

Leading indicators model 2 8.86 8.55 9.55 

VAR- savings (+v23b+v24b) 8.72 9.24 10.14 

    

VAR-savings: HCPI + Savings rate + GDP + Interests rates  

    

v22: Savings at present v24: Statement on financial situation of household 

v23: Savings over next 12 months    

b: balance    

    

Italics: best model without survey information    

Bold: Better forecast performance than best model without survey information

* Best model    
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Table B.14 
 
qv14: Gross Domestic Product. Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from 1st quarter 2002 to 4th quarter 2005 

         

Models without survey information 1 quarter 2 quarters 4 quarters  Models with survey information 1 quarter 2 quarters 4 quarters 

AR 0.94 1.02 1.11  AR (+ESI) 0.87 0.89 0.91 

ARIMA 4.15 4.80 4.69  AR (+v15b) 0.90 0.90 0.94 

TAR 7.93 10.49 14.16  AR (+v16b) 0.80 0.85 0.86 

MK-TAR 1.10 1.86 2.29  AR (+ESI+v15b+v16b) 1.11 1.41 1.39 

VAR-total 0.70* 0.67 0.76*  AR (+v15 quantified) 0.94 1.00 1.09 

VAR-consumption 0.89 1.10 1.57  AR (+v16 quantified) 0.94 1.00 1.11 

VAR-savings 1.28 1.67 1.88  MK-TAR (+v1) 1.19 1.17 1.59 

VAR-exports 0.94 1.24 2.53  Leading indicators model 1 0.96 0.64* 2.14 

     Leading indicators model 2 1.04 1.66 1.89 

v14: Financial situation over next 12 months     VAR-total (+ ESI) 0.99 0.93 0.88 

v15: General economic situation over last 12 months     VAR-exports (+v5b) 1.01 1.13 1.82 

v16: General economic situation over next 12 months  VAR-consumption (+ CCI) 0.98 1.07 0.97 

v18: Price trends over next 12 months  VAR-consumption (+v14b+v16b+v18b+v19b) 1.18 1.09 0.85 

v19: Unemployment expectations over next 12 months  VAR-savings (+v23b+v24b) 1.68 1.66 1.44 

v23: Savings over next 12 months      

v24: Statement on financial situation of household      

b: balance      

      

VAR-total: HCPI+ GDP + Unemployment   

VAR-consumption: Consumption + HCPI + GDP + Unemployment + Interest rates Italics: best model without survey information 

VAR-savings: Savings rate + GDP + HCPI + Interest rates Bold: Better forecast performance than best model without survey information

VAR-exports: GDP + Exports of goods + Exchange rate * Best model    
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Table B.15 
 
qv15: Gross fixed capital formation: construction work - other constructions. Year-on-year growth rates of raw data 

Average RMSE - Recursive forecasts from 4th quarter 2001 to 3rd quarter 2005 

    

Models without survey information 1 quarter 2 quarters 4 quarters 

AR 2.55 2.93 2.69 

ARIMA 11.96 12.82 13.49 

TAR 21.37 21.41 21.61 

MK-TAR 2.75 3.55 3.73 

VAR- building 2.06* 1.43* 3.22 

    

Models with survey information 1 quarter 2 quarters 4 quarters 

AR (+v29b) 2.81 2.82 3.32 

AR (+v30b) 2.56 2.44 2.55 

AR (+v29b +v30b) 4.80 4.93 7.00 

AR (+v29b quantified) 2.76 3.33 3.29 

AR (+v30b quantified) 2.57 2.66 2.74 

Leading indicators model 1 2.74 2.71 2.90 

Leading indicators model 2 2.88 2.88 3.84 

VAR-building (a) (+CCI) 5.17 3.74 2.45* 

VAR-building (b) (+v31b+v32b) 4.76 3.05 3.85 

    

VAR-building: construction + Building permits index + construction work (other constructions) + construction work (housing) 

 

    

v29: Trend of activity compared with preceding months 

v30: Assessment of order books    

v31: Employment expectations for the months ahead 

v32: Price expectations for the months ahead    

b: balance    

    

Italics: best model without survey information    

Bold: Better forecast performance than best model without survey information

* Best model    
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Table B.16 
qv16: Gross fixed capital formation: metal products and machinery. Year-on-year growth rates of raw data 

Average RMSE - Recursive forecasts from 4th quarter 2001 to 3rd quarter 2005 

    

Models without survey information 1 quarter 2 quarters 4 quarters 

AR 2.15 3.44 4.81 

ARIMA 8.41 14.31 17.32 

TAR 21.73 34.09 57.61 

VAR- industry (b) 1.67* 2.91 3.94 

    

Models with survey information 1 quarter 2 quarters 4 quarters 

AR (+v3b) 1.90 2.76* 4.21 

AR (+v7b) 2.89 3.77 6.63 

AR (+v3b +v7b) 5.59 9.03 37.16 

AR (+v3b quantified) 1.94 2.78 4.18 

AR (+v7b quantified) 3.23 3.98 5.04 

MK-TAR(+v7b) 2.89 5.37 6.75 

Leading indicators model 1 1.72 3.23 4.01 

Leading indicators model 2 2.44 4.56 7.95 

VAR-industry (b) (+ICI)  2.26 3.15 2.34* 

    

VAR-industry (b): Industry production index + Industry producer price index + metal products and machinery 

    

v3: Production trend observed in recent months    

v7: Production expectations for the months ahead    

b: balance    

    

Italics: best model without survey information    

Bold: Better forecast performance than best model without survey information

* Best model    
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Table B.17 
 
qv17: Exports of goods. Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from 1st quarter 2002 to 4th quarter 2005 

    

Models without survey information 1 quarter 2 quarters 4 quarters 

AR 3.38 5.22 6.12 

ARIMA 5.62 5.68 6.61 

TAR 22.23 30.80 44.41 

VAR- exports 3.39 5.76 9.80 

    

Models with survey information 1 quarter 2 quarters 4 quarters 

AR (+11b) 4.63 6.02 5.13 

AR (+v5b) 4.15 5.75 4.39* 

AR (+v11b +v5b) 4.62 6.73 7.77 

AR (+v11b quantified) 4.39 7.25 8.74 

AR (+v5b quantified) 3.86 6.71 8.83 

MK-TAR(+v11b) 3.01 5.65 6.92 

Leading indicators model 1 2.98 1.90* 6.42 

Leading indicators model 2 2.39* 2.68 6.58 

VAR-exports (+v5b) 3.54 4.47 4.41 

    

VAR-exports: GDP + Exports of goods + Exchange rate 

    

v5: Assessment of export order-book levels    

v11: Export expectations for the months ahead    

b: balance    

    

Italics: best model without survey information    

Bold: Better forecast performance than best model without survey information

* Best model    
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Table B.18 
 
qv18: Consumption. Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from 1st quarter 2002 to 4th quarter 2005 

    

Models without survey information 1 quarter 2 quarters 4 quarters 

AR 1.16 1.03 0.87 

ARIMA 5.62 5.67 6.60 

TAR 7.65 7.15 6.42 

MK-TAR 1.31 1.41 7.52 

VAR- consumption 1.27 1.19 0.80* 

    

Models with survey information 1 quarter 2 quarters 4 quarters 

AR (+v20b) 1.14 1.01 0.92 

AR (+v20b quantified) 1.19 1.06 0.86 

Leading indicators model 1 1.04* 0.95* 0.84 

Leading indicators model 2 1.11 1.38 1.89 

VAR-consumption (a) (+ CCI) 1.33 1.29 0.83 

VAR-consumption (b) (+v14b+v16b+v18b+v19b) 1.43 1.18 0.99 

    

VAR-consumption: Consumption + HCPI + GDP + Unemployment + Interest rates 

    

v14: Financial situation over next 12 months    

v16: General economic situation over next 12 months   

v18: Price trends over next 12 months    

v19: Unemployment expectations over next 12 months   

v20: Major purchases at present    

b: balance    

    

Italics: best model without survey information    

Bold: Better forecast performance than best model without survey information

* Best model    
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Table B.19 
 
qv19: Gross fixed capital formation: construction work – housing. Year-on-year growth rates of raw data

Average RMSE - Recursive forecasts from 4th quarter 2001 to 3rd quarter 2005 

    

Models without survey information 1 quarter 2 quarters 4 quarters 

AR 2.86 3.31 3.14 

ARIMA 13.31 14.72 19.81 

TAR 16.98 18.92 21.21 

VAR- building 2.78* 3.27 2.51 

    

Models with survey information 1 quarter 2 quarters 4 quarters 

AR (+v26b) 4.85 5.29 5.70 

AR (+v26b quantified) 4.61 4.42 4.92 

Leading indicators model 1 2.85 2.69* 2.45* 

Leading indicators model 2 3.64 4.86 5.78 

VAR-building (a) (+CCI) 5.09 3.91 3.57 

VAR-building (b) (+v31b+v32b) 4.71 4.07 5.22 

    

VAR-building: construction + Building permits index + construction work (other constructions) + construction work (housing) 

    

v26: Purchase or build a home within the next 2 years   

v31: Employment expectations for the months ahead   

v32: Price expectations for the months ahead    

b: balance    

    

Italics: best model without survey information    

Bold: Better forecast performance than best model without survey information

* Best model    

 
 
 


