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Abstract 

 

Social reciprocity may explain certain emerging psychological processes, which are 

likely to be founded on dyadic relations. Although some indices and statistics have been 

proposed to measure and make statistical decisions regarding social reciprocity in 

groups, these were generally developed to identify association patterns rather than to 

quantify the discrepancies between what each individual addresses to his/her partners 

and what is received from them in return. Additionally, social researchers are not only 

interested in measuring groups at the global level, since dyadic and individual 

measurements are also necessary for a proper description of social interactions. This 

study is concerned with a new statistic for measuring social reciprocity at the global 

level and with decomposing it in order to identify those dyads and individuals which 

account for a significant part of asymmetry in social interactions. In addition to a set of 

indices some exact analytical results are derived and a way of making statistical 

decisions is proposed. 
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Social psychology research has been mainly focussed on the individualistic approach, 

even though social phenomena involve two or more individuals. The individualistic 

approach ignores the social context within which individuals are embedded, a feature 

that may be its most important drawback. This probably explains why dyadic analysis 

has increasingly been applied to measure and to analyse groups (Kenny, 1994; Kenny, 

Kashy, & Cook, 2006). Furthermore, dyadic analysis enables social researchers to 

determine interaction effects between individuals in a dyad, a main effect that cannot be 

known by using the individualistic approach since individualistic research methods are 

not able to reveal patterns of mutual influence and interdependence (Bond, Horn, & 

Kenny, 1997; Campbell & Kashy, 2002; Gonzalez & Griffin, 1999; Griffin & Gonzalez, 

1995). 

Asymmetric social relationships in pairs of individuals are not uncommon. A simple 

example might be the number of times individuals help each other. Square matrices are 

useful to represent this and other similar examples of asymmetric relationships, where 

rows and columns correspond, respectively, to a set of individuals in one mode and the 

same individuals but in a different mode. In general, rows represent individuals as 

actors or initiators of some kind of behaviour, while columns correspond to them as 

partners or receivers of actors’ behaviours. These sociomatrices are usually 

asymmetrical and this lack of symmetry renders some established statistical methods 

inappropriate. However, since asymmetry embodies some important information 

contained in the data, asymmetric data should be analysed (Saito & Yadohisa, 2005). 

Hence, although one could carry out mathematical transformations and thus obtain 

symmetric matrices, this would ignore departures from symmetry that may be 

informative. 
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A number of studies have already dealt with asymmetrical sociomatrices. Regarding 

dominance hierarchy, two related linearity indices have been developed to measure this 

attribute in many groups, and statistical methods were also proposed to test whether the 

linearity is stronger than expected by chance (Landau, 1951; Kendall & Babington 

Smith, 1940). More recent research has proposed an improved method for those cases in 

which measurements include tied and/or unknown relationships (de Vries, 1995). Other 

statistical methods have been developed to rank individuals as a function of the 

outcomes of dyadic dominance encounters (de Vries, 1998; de Vries & Appleby, 2000; 

de Vries, Stevens, & Vervaecke, 2006). As for reciprocity, interchange and other social 

interaction patterns, some statistical methods, which consist of computing association 

between two matrices, have been recommended to analyse interaction data and, in order 

to avoid distorting effects due to mutual dependency, permutation tests should be 

applied (Hemelrijk, 1990a, 1990b). 

In the context of social psychology any sociomatrix could be decomposed into its 

variance components (Warner, Kenny, & Stoto, 1979). This model, called the Social 

Relations Model (SRM; Kenny & La Voie, 1984), is based on round-robin designs to 

gather interaction data. Actor, partner and relationship effects can be estimated and a 

random-effects ANOVA is used to partition variance into components. This statistical 

model also enables social researchers to estimate dyadic and generalized reciprocity by 

means of correlation coefficient values, although it does not allow social reciprocity to 

be measured at the global level. 

In general, the statistical methods mentioned above use association indices to 

estimate global reciprocity in social systems. Although these indices undoubtedly 

enable social researchers to identify the specific social relations that emerge in social 

interactions, association indices do not measure the correspondence between what an 
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individual gives others and what is received from them in return. The directional 

consistency index (van Hooff & Wensing, 1987), which is based on absolute differences 

between what each member of a pair gives to the other and what is received from 

her/him, enables researchers to obtain a measure of global reciprocity in which the 

magnitude of the behaviour is taken into account. Recently, another statistic for 

measuring global reciprocity has been developed to quantify the discrepancy between 

what is addressed to others and what is received in return (Solanas, Salafranca, Riba, 

Sierra, & Leiva, 2006). This reciprocity statistic can be partitioned in such a way that 

people who contribute more to the lack of reciprocity can be identified and dyadic and 

generalized reciprocity may also be measured. This reciprocity statistic, called the 

skew-symmetry statistic, can also be tested for statistical significance (Leiva, Solanas, 

& Salafranca, 2008). The skew-symmetry statistic ranges from 0 to .5 and the random 

variable is located at the denominator. Hence, it would be better to develop a statistic 

whose values range from 0 to 1 and, more importantly, one for which exact analytical 

results could be obtained. Furthermore, in order to make comparisons between different 

studies, the reciprocity statistic should be normalized for minimum and maximum 

values. Regarding statistical inference, there is also a need for a statistical method 

capable of making statistical decisions. 

The main aim of the present study is to propose a new statistic to quantify social 

reciprocity and a corresponding statistical method for making decisions regarding social 

reciprocity in groups. Although we assume that social phenomena depend on dyadic 

interactions and, hence, that the statistic should be based on dyadic data, we propose 

new indices of social reciprocity at global, dyadic and individual levels. Our study could 

be useful for those researchers who are interested in family interactions, play 

relationships, cooperative learning, agonistic behaviours, and other topics. 
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A new index for measuring social reciprocity 

 

Consider n individuals who are labelled i = 1, 2, …, n in an experiment involving 

dyadic interactions. Let cij = cji be the number of observed interactions between the 

individuals i and j, and let xij be the number of times i is recorded to address a specific 

behaviour to j. Note that cij = xij + xji, since xij and xji, respectively, represent the number 

of behaviours each individual of the dyad addresses to the other. It is assumed that the 

probability that an individual i addresses behaviour to j in each single interaction 

remains steady during the period of time the observations are made. The parameter πij 

denotes the probability that individual i addresses the behaviour of interest to j. It should 

be noted that πij + πji = 1, as it is assumed that only one individual of each dyad 

addresses the behaviour to the other in each social interaction. Thus, social reciprocity 

in a group can be represented in a matrix Π as follows: 

 

12 13 1

12 23 2

13 23

1 2

0
1 0
1 1 0

1 1 0

n

n

n n

π π π
π π
π π

π π

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟= − −
⎜ ⎟
⎜ ⎟
⎜ ⎟− −⎝ ⎠

Π
π

 

 

The parameters of the matrix Π can be used to define a new measurement of social 

reciprocity, since these parameters contain the essential information to quantify dyadic 

reciprocity among all pairs of individuals. Note that the values of πij are unknown since 

they are parameters, and also note that social reciprocity can be described by means of 
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n(n−1)/2 independent parameters. It should be stressed that independence among dyads 

is assumed. 

In order to define the new index the trace of the product matrix Π’Π is obtained as 

follows: 

 

( ) ( )( ) ( )2' 2 2 2

1 1 1 1 1 1 1 1

1
1 2 2

2

n n n n n n n n

ij ij ij ij ij
i j i j i i j i i j i

j i

n n
tr π π π π

= = = = + = = + = = +
≠

−
= = + − = + −∑∑ ∑∑ ∑∑ ∑∑ΠΠ π  

  

Note that tr(Π’Π) will take its maximum value if πij = 0 or πij = 1 for all i and j. 

Thus, the maximum value of tr(Π’Π) is equal to 

 

( )( ) ( )' 1
max

2
n n

tr
−

=ΠΠ  

 

Thus, the maximum value only depends on the number of individuals in a group and 

corresponds to those cases in which there is a complete lack of reciprocity in every 

dyad. 

The minimum value of tr(Π’Π) corresponds to πij = 1/2 for all i and j. Thus, we can 

obtain the minimum value of tr(Π’Π) as follows: 

 

( )( ) ( ) ( ) ( ) ( )2
' 1 1 11 1min 2 2

2 2 2 2 2
n n n n n n n n

tr
− − −⎛ ⎞ ⎛ ⎞= + − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
ΠΠ

1
4
−

 

 

The minimum value of tr(Π’Π) once again depends only on the number of 

individuals in a group. 
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We can now define a new index to measure overall social reciprocity in groups, 

taking into account that it should be bounded between 0 and 1, as follows: 

 

( ) ( )( )
( )( ) ( )( )

' '

' '

min
, 0 1

max min
r r

tr tr

tr tr

−
Φ = ≤ Φ ≤

−

ΠΠ ΠΠ

ΠΠ ΠΠ
 

 

This index takes its minimum value if all πij are equal to .5, while the maximum 

value corresponds to those cases in which πij = 1 and πji = 0 or πij = 0 and πji = 1 for 

every dyad. If the index value equals zero, it indicates that individuals are completely 

reciprocal with respect to others. On the other hand, the group will show a large lack of 

reciprocity if is close to 1. In other words, if rΦ 0rΦ = , it denotes symmetrical 

relationships among all individuals regarding the behaviour of interest, while  

corresponds to the maximum level of asymmetry. 

1rΦ =

It can be shown, by means of some algebraic operations, that the index  can also 

be obtained from the following equation: 

rΦ

 

( ) ( )
( )

( )

( )

( )

2
'

1 1 1 1

2

1 1 1 1

8 84 1
1 1

8
1

1

n n n n

ij ij
i j i i j i

r

n n n n

ij ij
i j i i j i

n ntr n n
n n n n

n n

π π

π π

= = + = = +

= = + = = +

1− + −− −
Φ = =

− −

⎛ ⎞
−⎜ ⎟

⎝ ⎠= −
−

∑ ∑ ∑∑

∑∑ ∑∑

ΠΠ

 

 

Note in the last expression that if πij = π for all i < j, the mathematical expression 

can be written in the following way: 
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( ) ( )

( ) ( )
2

2

1 1
8

2 2
1 1

1r

n n n n

n n

π π
4 π π

− −⎛ ⎞
−⎜ ⎟

⎝ ⎠Φ = − = − −
−

 

 

This means that if πij = π for all i < j, the value of the index does not depend on the 

number of individuals, but is only a function of π. Figure 1 shows how the value of the 

index  increases as a function of the value π. rΦ

 

INSERT FIGURE 1 ABOUT HERE 

 

As an example, suppose that the matrix Π of a group is as follows: 

 

0 .8 .8 .8
.2 0 .8 .8
.2 .2 0 .8
.2 .2 .2 0

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

Π  

 

Then the index rΦ  is equal to 

 

( ) ( )2 21 4 1 4 .8 .8 .36r π πΦ = − − = − − =  

 

Now we can define the index rΨ as follows: 

 

  1 , 0r r rΨ = −Φ ≤ Ψ ≤1
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Conversely to rΦ , the index rΨ  takes a value close to 0 if dyadic interactions 

within a group are asymmetrical, while it is equal to 1 if there is complete reciprocation. 

 

Estimating asymmetry in social relations 

 

Social researchers do not know the value of rΦ since they collect empirical data. 

Thus, an estimator of asymmetry in social relations is required to obtain some 

information about social reciprocity. An estimator of the index rΦ  can be defined as 

follows: 

 

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1
1

/ min /

ˆ ˆ, 0 1

max / min /

n n n n

ij ij ij ij
i j i j

j i j i
r r

n n n n

ij ij ij ij
i j i j

j i j

x c x c

x c x c

= = = =
≠ ≠

= = = =
≠ ≠

⎛ ⎞
⎜ ⎟− ⎜ ⎟⎜ ⎟
⎝ ⎠Φ = ≤ Φ ≤

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑ ∑∑

∑∑ ∑∑

 

 

In order to standardize values the following maximum value should be obtained ˆ
rΦ

 

( )2 2 2 2

1 1 1 1

max / / 1 / 2
n n n n

ij ij ij ij
i j i j i

j i

x c c c n n
= = = = +

≠

⎛ ⎞
⎜ ⎟ = =⎜ ⎟⎜ ⎟
⎝ ⎠
∑∑ ∑∑ −  

 

Three cases should be distinguished to obtain the minimum value. Firstly, if all cij 

are even, the minimum value is obtained from the following expression 
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( ) ( )
2 2

2 2
2 2

1 1 1 1 1 1

/ 2 1
min /

4 4

n n n n n n
ij ij

ij ij
i j i j i jij ij

j i j i j i

c c n n
x c

c c= = = = = =
≠ ≠ ≠

⎛ ⎞ −⎜ ⎟ = = =⎜ ⎟⎜ ⎟
⎝ ⎠
∑∑ ∑∑ ∑∑  

 

Secondly, if all cij are odd, the minimum value is equal to 

 

( ) ( ) ( )
2 2

2 2
2 2

1 1 1 1 1 1

1 1 1 1 1min /
4 4 4 2

n n n n n n
ij ij

ij ij
i j i j i i j iij ij ij

j i

c c n n
x c

c c= = = = + = = +
≠

⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟= + = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑∑ ∑∑ ∑∑ 2c

 

 

Thirdly, in the general case, if there are p and n(n−1)/2 − p dyads in which the 

values cij are even and odd, respectively, the minimum value equals 

 

( )

( )

2 2
2

1 1 1 1

2
1 1

1
2

22 1min /
4 4 2

1 1 1
4 2

ij

ij

n n n n

ij ij
i j i j i ij

j i c odd

n n

i j i ij
c odd

n n
p

px c
c

n n
c

= = = = +
≠

= = +

−⎛ ⎞
−⎛ ⎞ ⎜ ⎟

⎝ ⎠⎜ ⎟ = + +⎜ ⎟⎜ ⎟
⎝ ⎠

−
= +

∑∑ ∑ ∑

∑ ∑

1

r i j<

 

 

We denote this minimum value by m in what follows. 

We have previously supposed that cij ≠ 0 for all i and j, where i ≠ j. If there are 

dyads for which cij = 0, the maximum is as follows: 

 

{ }2 2

1 1

0

max / 0 ;

ij

n n

ij ij ij
i j

j i
c

z x c card c fo
= =

≠
≠

⎛ ⎞
⎜ ⎟
⎜ ⎟= = ≠
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑∑  
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where card denotes the number of different dyads for which cij is not equal to 0.   

As regards the minimum  

 

2 2
2

1 1 1 1

0

1 1min /
2 2

ij
ij

n n n n

ij ij
i j i j i ij

j i c odd
c

zm x c
c= = = = +

≠
≠

⎛ ⎞
⎜ ⎟
⎜ ⎟= = +
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑∑ ∑ ∑  

 

Now, the expression corresponding to the statistic ˆ
rΦ  can be written as follows: 

 

( )

2 2

1 1

/

ˆ
1 / 2

n n

ij ij
i j

j i
r

x c m

n n m

= =
≠

−

Φ =
− −

∑∑
 

 

If there are some cij = 0, the statistic equals 

 

2 2

1 1

0

/

ˆ ij

n n

ij ij
i j

j i
c

r

x c m

z m

= =
≠
≠

−

Φ =
−

∑∑

 

 

Decomposing individuals’ contribution to social asymmetry 

 

Note that the following expression enables us to know each individual’s 

contribution to asymmetry in social interactions 
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2 2 2 2
2

1 1 1 1

0 0

1 1

1 1 1/ /
4 2

ˆˆ
ij

ij ij

n n n n

ij ij ij ij
i j j j i ij

j i j i c oddn n
c c

r ia
i i

x c m x c
c

z m z m
φ

= = = = +
≠ ≠
≠ ≠

= =

⎛ ⎞− − −⎜ ⎟
⎝ ⎠

Φ = = =
− −

∑∑ ∑ ∑

∑ ∑  

where îaφ  denotes the contribution of individual i to asymmetry as an actor. Note that 

this quantity is a measure at the individual level. Positive values for îaφ  denote that 

individuals address more behaviour to others than they receive in return. On the other 

hand, negative values correspond to those individuals who address less behaviour to 

others than they receive in return. In addition, the following expression provides the 

contribution of individual j to asymmetry as a partner 

 

2 2
2

1 1

0

1 1

1 1 1/
4 2

ˆˆ
ij

ij

n n

ji ij
i i j ij
i j c oddn n
c

r p
j j

x c
c

z m jφ

= = +
≠
≠

= =

⎛ ⎞− −⎜ ⎟
⎝ ⎠

Φ = =
−

∑ ∑

∑ ∑  

 

A positive value of this measurement means that the individual receives more 

behaviour from others than she/he gives in return, while negative values indicate the 

opposite. 

Now, note that the expression for ˆ
rΦ can be written as follows: 

 

( )

( )

( )

2 2 2 2
2 2

1 1 1

0 0

1 1

2 2
2

1 1

0

1 1

1 1 1 1/ 4 / 1
4 2

ˆ
4 4

14 / 1

ˆ ˆ ˆ
4 4

ij ij
ij ij

ij ij

n n n n

ij ij ij ij
j j i j j iij ij
j i c odd j i c oddn n
c c

r
i i

n n

ij ij
j j ij
j i j in n
c c odd

ia ij ji
i i j i

x c x c
c c

z m z m

x c
c

z m
φ φ φ

= = + = = +
≠ ≠
≠ ≠

= =

= =
≠ ≠
≠

= = = +

⎛ ⎞− − − −⎜ ⎟
⎝ ⎠

Φ = =
− −

− −

= = = +
−

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

∑ ∑
1 1 1 1

ˆ
n n n n

ij
i i= =

= Φ

1
2

j i= +
∑ ∑ ∑∑
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where corresponds to each dyad’s contribution to asymmetry. This measure is a 

dyadic one, and, in particular, it quantifies the contribution of each dyad to the overall 

asymmetry in groups. Additionally, 

ˆ
ijΦ

îjφ  corresponds to a directional dyadic measure. 

Specifically, it measures the contribution of individual i to asymmetry that is due to 

individual j.   

These dyadic and individual contributions to asymmetry can be useful to identify 

those individuals and dyads that are associated with larger differences between what is 

given and received from others. 

 

Mathematical expectancy of ˆ
rΦ  

 

We denote the expected value of ˆ
rΦ  by ˆ

rE ⎡ ⎤Φ⎣ ⎦ . Note that we can write the 

expression for  as follows: ˆ
rΦ

 

( )

2 2

1 1

2 /

ˆ
1 2

n n

ij ij
i j

j i
r

2x c m

n n m

= =
≠

−

Φ =
− −

∑∑
 

 

The mathematical expectancy of the estimator under a specific null hypothesis is 

(see Appendix A) 
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( )

( )

2

1 1 1 1

1
2 1/

ˆ
1 2

n n n n
ij ij

ij
i j i i j ij

j i
r

c
c m

c
E

n n m

π

= = + = =
≠

⎛ ⎞−⎜ ⎟+ −⎜ ⎟⎜ ⎟
⎝ ⎠⎡ ⎤Φ =⎣ ⎦ − −

∑ ∑ ∑∑
 

 

If πij = .5 for all i and j, the expected value equals 

 

( )
1 1 1 1

1
2 1/ 2

2
ˆ

1 2

n n n n
ij

ij
i j i i j ij

j i
r

c
c m

c
E

n n m

= = + = =
≠

−
+ −

⎡ ⎤Φ =⎣ ⎦ − −

∑ ∑ ∑∑
 

 

Furthermore, if πij = .5 for each i and j individual and cij = c for all dyads, 

 

( )( )
( )
1 1 4ˆ

2 1 4r

n n c cm
E

n n c cm
− + −⎡ ⎤Φ =⎣ ⎦ − −  

 

Knowing the expected value for the proposed whole statistic allows social 

researchers to make proper comparisons and suitable decisions since the estimator is 

biased. In other words, if complete reciprocation is supposed, note that the expected 

value is not equal to 0. 

 

Standard error of ˆ
rΦ  

 

The variance of ˆ
rΦ  can be expressed as follows: 
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( ) ( )

( )( )

2
2 2

1 12 2 2 2

2
2 2 2 2

1 1

2 / 2
ˆ ˆ ˆ

1 2

ˆ4 1 2 /

n n

ij ij
i j

r r r

n n

ij ij r
i j

x c m
E E E E

n n m

n n m E x c m E

σ = =

−

= =

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤Φ = Φ − Φ = − Φ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎜ ⎟− −
⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞
⎡ ⎤⎢ ⎥= − − − − Φ⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

∑∑

∑∑

ˆ
r

2/ m
⎤

⎦

2m+

 

 

Note that  is known since the expected value for the estimator has already 

been derived. Now, the other term of the previous expression is decomposed as follows: 

2 ˆ
rE ⎡ ⎤Φ⎣ ⎦

 

2 2

2 2 2 2 2 2

1 1 1 1 1 1

/ / 2
n n n n n n

ij ij ij ij ij ij
i j i j i j

E x c m E x c mE x c
= = = = = =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡
⎢ ⎥ ⎢ ⎥− = − +⎜ ⎟ ⎜ ⎟ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣⎣ ⎦ ⎣ ⎦
∑∑ ∑∑ ∑∑

 

 

where 

 

( )( )2 2 2 2

1 1 1 1

ˆ2 / 2 / 1 2
n n n n

ij ij ij ij r
i j i j

E x c E x c E n n m
= = = =

⎡ ⎤
⎡ ⎤⎡ ⎤= = Φ − −⎢ ⎥ ⎣ ⎦ ⎣ ⎦

⎣ ⎦
∑∑ ∑∑

 

 

Then, 

 

( )
( )( )( )

( )( )

( )( )

( )( )

2

2 2 2

1 1
2 2

2

2

2 2 2

1 1
2

2

ˆ4 / 1 2 2
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∑∑

∑∑
Φ
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It thus only remains to solve the following term in order to obtain the expected 

variance for the estimator under a specific null hypothesis (see Appendix B) 

 

2

2 2

1 1
/

n n

ij ij
i j

E x c
= =

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
∑∑  

 

Finally, its standard error is equal to 
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+ + = − + − +
4 +− + − +

− + −
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Note that the estimator is consistent since its standard error tends to zero as n 

increases. 

If πij = .5 for all i and j, the standard error can be computed by means of the 

following formula 
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1
2

ˆ
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i j i ij
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c
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−
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− −
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Social researchers can be interested in comparing ˆ
rΦ  with other measures of social 

reciprocity (e.g., directional consistency; van Hooff and Wensing, 1987). This 

comparison can be carried out by means of the mean square error (MSE), which is 

computed as follows for an estimatorθ̂ : 

 

( ) ( ) ( ) ( )2 2 2ˆ ˆ ˆ ˆMSE E Bias 2 ˆθ θ θ σ θ θ σ θ⎡ ⎤= − + = +⎣ ⎦  

 

Then, the MSE for  equals ˆ
rΦ

 

( ) ( ) ( ) (2 2 2ˆ ˆ ˆ ˆ
r r r r rMSE E Biasσ σ⎡ ⎤Φ = Φ −Φ + Φ = Φ + Φ⎣ ⎦ )2 ˆ

r  

 

The null hypothesis 

 

Social researchers are often interested in testing whether social relations among 

individuals in a group are symmetrical, as they often test dyadic and generalized 

reciprocity. In this regard the null hypothesis for complete reciprocation can be 

expressed as follows: 

 

 0 : 0rH Φ =  

 

This statistical hypothesis is equivalent to πij = πji = .5 for all i and j. Thus, if the null 

hypothesis is rejected, we can conclude that social interactions within a group are 

partially asymmetrical, at least as regards the behaviour of interest. In other words, 

individuals do not completely reciprocate one another. Note that rejecting the null 

 19



PRODUCTION NUMBER BMB904 
 

hypothesis does not tell us anything about the degree of asymmetrical relations since we 

only have some evidence that  is different from zero. At all events, the values of rΦ ˆ
rΦ  

are point estimates of the actual degree of asymmetry in groups, and researchers should 

take into account the estimator’s bias when interpreting their results. On the other hand, 

if the null hypothesis were accepted, this would still not allow social researchers to 

conclude that individuals within a group completely reciprocate, as statistical tests do 

not completely control Type II error. 

Social relations within a group will be asymmetrical if πij ≠ πji for any i and j and, 

therefore, we should conclude that there is at least one dyad for which πij ≠ πji if the null 

hypothesis were rejected.  

 

Statistical significance 

 

For any value of the test statistic it is useful to know its exact statistical significance. 

In order to obtain exact statistical significance it is necessary to establish all possible cij 

values for a given n and to compute the test statistic for all admissible xij results. 

However, there are such a number of possibilities that this task is not practical, a 

difficulty that has been encountered in other dyadic methods (Rapoport, 1949; Landau, 

1951). To assess statistical significance we propose employing Monte Carlo sampling. 

This statistical method becomes particularly useful if the population distribution is 

known but the sampling distribution of the estimator of interest has not been 

analytically derived (Noreen, 1989). Note that the sampling distribution of the test 

statistic can be estimated since all xij are supposed to be binomially distributed.  

A computer code has been developed for testing asymmetry in groups, specifically 

SAS/IML and R functions which are delivered on request. To carry out the simulation 
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the program needs the original matrix X to compute the values cij from xij and xji and the 

number of individuals n. Additionally, the null hypothesis must also be specified, that 

is, the values πij. The program then computes ˆ
rΦ , its mathematical expectancy and 

standard error, as well as the dyadic and individual indices.  

Probabilities πij = .5 are used to obtain simulated sociomatrices if the complete 

reciprocation hypothesis is tested. For each dyad the value xij is drawn at random and xji 

is computed by subtracting xij from cij. The simulated interaction matrix is then used to 

compute the test statistic. This process is iterated NS times, where NS denotes the 

number of simulated sociomatrices. The one-tailed statistical significance of the test 

equals p = (NOS+1)/(NS+1), where NOS denotes the number of significant samples. 

That is, NOS is equal to the number of simulated sociomatrices for which the value of 

the test statistic is at least as large as the observed value in the original sociomatrix. This 

Monte Carlo procedure included in the computer program allows social researchers to 

obtain statistical significance for the global, dyadic and individual statistics under any 

null hypothesis regarding the degree of social reciprocity. 

 

An example 

 

The following matrix concerns aggressive behaviour in children and represents the 

number of aggressive acts that each child has addressed to others during play interaction 

(Kenny et al., 2007. Printed with permission), with rows and columns representing 

individuals as actors and partners, respectively: 
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0 17 12 57 11 14
15 0 6 95 18 128
20 59 0 89 19 59
30 38 47 0 83 294
25 8 4 140 0 36
6 87 11 272 31 0

X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 

The value of the statistic for the matrix X is approximately equal to .1712 and the 

expected value for the estimator equals .0201 under the null hypothesis of complete 

reciprocation. This shows that the empirical value is clearly larger than the expected 

one. Regarding the variance and the standard error of the estimator, these are equal, 

respectively, to .000082 and .009038 under the null hypothesis of social reciprocity in 

the group. Note that the difference between the statistic’s value and the expected value 

is large enough in comparison with the standard error. As an initial descriptive analysis 

these results suggest that the individuals of the group are nonreciprocal at the global 

level as regards aggressive behaviour. 

Although descriptive analysis is illustrative, a statistical decision regarding the null 

hypothesis that establishes the complete reciprocation between individuals is also 

needed. In order to make a statistical decision with respect to the null hypothesis of 

complete reciprocation the statistical significance for the value of the asymmetry 

statistic was estimated by Monte Carlo simulation, in which we established 99,999 

iterations. The obtained p value was less than .0001, which clearly suggests that the null 

hypothesis is unlikely. As a conclusion, at least one pair of children is responsible for 

the asymmetry in these dyadic relations. That is, there is at least one child in the group 

who does not reciprocate in aggression. 

We know that the lack of social reciprocity in the group at the individual level is 

mainly explained by individual 3 as an actor, but, as a partner, individuals 3 and 6 
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account for the main part of asymmetry (see Table 1). That is, individual 3 is the child 

who addresses the most aggression and receives less from others (positive value of îaφ  

and negative value of ˆ
pjφ , respectively). Additionally, individual 6 receives more 

aggressive behaviour from partners than she/he addresses to them.  

At the dyadic level the dyad 2-3 makes the largest contribution to asymmetry (see 

Table 2).  However, all dyads show very low values of contribution to asymmetry. 

When a Monte Carlo procedure is carried out for testing the null hypothesis of complete 

reciprocation, six of the fifteen dyads in the group appear not to make a significant 

contribution to asymmetry in the dyadic relationship ( ˆ
ijΦ ), specifically, dyads 1-2, 1-3, 

1-6, 2-5, 4-6 and 5-6. These results are also confirmed when a Monte Carlo sampling is 

carried out for the directional dyadic contributions to asymmetry (see îjφ  measures in 

Table 1) with the exception of the dyad 2-5. Thus, individual 1’s asymmetry addressed 

towards individuals 2, 3 and 6 (and vice versa) and individual 6’s asymmetry addressed 

to individual 5 (and vice versa) are not significantly different from what is expected 

under the null hypothesis, which states complete reciprocation in  aggressive behaviour. 

In contrast, the directional dyadic contributions to the lack of balance in aggression for 

individuals 2 and 5, both 25φ̂  and 52φ̂ , are significant at 5% the level.  

 

INSERT TABLES 1 AND 2 ABOUT HERE 

 

Conclusion 

 

The present research is intended for use by researchers interested in measuring and 

testing asymmetric relationships in groups. The proposed statistic is founded on values 
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xij of sociomatrices X. This statistic enables social researchers to assess social 

asymmetry since discrepancies between what each individual gives others and what is 

received in return is taken into account. Note that the product-moment correlation 

coefficient remains unchanged under location and scale transformations. This 

characteristic of the correlation coefficient is adequate if social researchers are 

interested in estimating generalized reciprocity, but it does not lead them to a precise 

assessment of absolute dyadic reciprocity, as the product-moment correlation coefficient 

does not take into account differences between what individuals give others and what 

they receive from them in return. 

The proposed statistic  is bounded between 0 and 1, which refer, respectively, to 

the maximum and minimum of social reciprocity. Thus, if the statistic is equal to 0, 

there will be a complete reciprocation in groups, while a value close to 1 denotes 

asymmetric relationships (i.e., the larger the value of the index the lower the dyadic 

reciprocity among individuals). Hence, the statistic allows social researchers to measure 

the degree of social reciprocity at the group level. Additionally, the statistic has been 

decomposed into components to determine the contribution of each individual and dyad 

to asymmetry. 

ˆ
rΦ

Regarding statistical inference, we have demonstrated that the estimator  is 

biased and this kind of statistical error should be considered when interpreting estimated 

values of social reciprocity in groups. Since mathematical expectancy has been 

analytically derived for this estimator, social researchers are able to determine whether 

the test statistic takes a value larger than the expected value under the null hypothesis. 

In other words, researchers should not expect the test statistic to be equal to 0 in 

samples if there is actually complete reciprocation in populations. 

ˆ
rΦ
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We have also analytically derived the standard error for the sampling distribution of 

the estimator. Since the bias and the standard error of the estimator are known, it is 

feasible to compare this test statistic with others. Thus, the mean square error can be 

computed and used to select the best estimator. Unfortunately, we cannot propose an 

exact statistical test as the sampling distribution of the estimator is not known. Further 

work is thus needed to determine the exact sampling distribution for the estimator. 

Since the exact sampling distribution of the estimator has not been derived we proposed 

using the Monte Carlo method to estimate statistical significance. Briefly, the method 

consists of randomly sampling sociomatrices from a population whose parameters are in 

accordance with the null hypothesis and where the number of individuals is equal to that 

of the original sample. All test statistic values of simulated samples are arranged in 

ascending order and the original value is located in this distribution. In other words, the 

algorithm computes the number of simulated test statistic values that are at least as large 

as the test statistic for the original sociomatrix. This estimate of statistical significance 

enables social researchers to make statistical decisions regarding the null hypothesis. 

We suggest specifying a large number of simulated sociomatrices in the algorithm in 

order to improve statistical significance estimates. Note that the reliability of these 

statistical significance estimates increases with the number of simulated sociomatrices. 

From an applied point of view, we can envision several applications of the social 

reciprocity statistic for a variety of topics in social psychology and social ethology, for 

instance, interpersonal perception (Kenny, 1994), social conflict and reconciliation in 

gregarious species (Cooper, Bernstein, & Hemelrijk, 2005), and agonistic dominance 

(Vervaecke, de Vries, & van Elsacker, 1999). 

To sum up, the present research describes a new procedure to measure and make 

statistical decisions regarding social reciprocity at global, dyadic, and individual levels. 
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While other indices and statistics are based on association coefficients or do not enable 

social researchers to obtain dyadic and individual effects, the proposed statistical 

method allows them not only to quantify the lack of social reciprocity as a function 

between what is given to others and what is received in return but also to estimate 

dyadic and individual effects. Additionally, a Monte Carlo method is proposed to obtain 

approximate statistical significance. We highlight that the estimator’s values can also be 

obtained for sociomatrices with incomplete data. 
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Appendix A 

 

The expected value for  is equal to ˆ
rΦ
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If xij follows a binomial distribution, 2
ijE x⎡ ⎤⎣ ⎦ , which is the second moment about 

zero, can be written as follows (Johnson, Kotz, & Kemp, 1992), 
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If  there are dyads for which cij equals 0, mathematical expectancy can be obtained 

as follows: 

 

( )2

1 1 1 1
0

0
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2 2
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ij
i j i i j ij
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Appendix B 

 

The variance of the estimator for a specific null hypothesis equals 

 

( )
( )( )( )

( )( )

( )( )

( )( )

2

2 2 2

1 1
2 2

2

2

2 2 2

1 1
2

2

ˆ4 / 1 2 2
ˆ ˆ

1 2

ˆ4 / 1 2
ˆ

1 2

n n

ij ij r
i j

r r

n n

ij ij r
i j

r

E x c m E n n m m m

E
n n m

E x c mE n n m m

E
n n m

σ
= =

= =

⎛ ⎞⎡ ⎤⎛ ⎞⎜ ⎟⎡ ⎤⎢ ⎥ − Φ − − + +⎜ ⎟ ⎣ ⎦⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠ ⎡ ⎤Φ = − Φ⎣ ⎦− −

⎛ ⎞⎡ ⎤⎛ ⎞⎜ ⎟⎡ ⎤⎢ ⎥ − Φ − − −⎜ ⎟ ⎣ ⎦⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠ ⎡ ⎤= − ⎣ ⎦− −

∑∑

∑∑
Φ

4

/
≠

 

Note that 

 

( )

( )

2

2 2 2 2 2 2 2

1 1 1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

/ /

/ /

2 / , /

n n n n n n

ij ij ij ij ij ij
i j i j i j

j i j i j i

n n n n

ij ij ij ij
i j i j

j i j i

ij ij ji ij

E x c E x c Var x c

E x c Var x c

Cov x c x c

= = = = = =
≠ ≠

= = = =
≠ ≠

⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥= +⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎣ ⎦

⎡ ⎤
⎢ ⎥= + +⎢ ⎥
⎢ ⎥⎣ ⎦

∑∑ ∑∑ ∑∑

∑∑ ∑∑

1 1

n n

i j i= = +
∑ ∑

 

 

where 
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Now, the variance for 2
ijx  has to be calculated. Thus, 
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since the fourth moment about zero for a binomially distributed variable is equal to 

(Johnson, Kotz, & Kemp, 1992)  
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After some algebraic operations, we obtain 
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π π

π π π π π π π π π

−

= − + − + − + + − =

 

 

It can also be shown that 

 

( ) ( ) ( )
( )

2 2 3 4 2 2 3

3 2 3 4

7 12 6 4 18 24 10

4 12 12 4

ji ij ij ij ij ij ij ij ij ij ij

ij ij ij ij ij ji

Var x c c

c q

π π π π π π π π

π π π π

= − + − + − + − +

− + − =

4 +
 

 

Thus, 

 

( ) ( )
( )

2 3 4 2 2 3 4

3 2 3 4

2 7 12 6 4 24 40 20

4 12 16 8

ij ji ij ij ij ij ij ij ij ij ij ij

ij ij ij ij ij

q q c c

c

π π π π π π π π

π π π π

+ = − + − + − + − +

− + −

+
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and we can write 

 

( )2

4 4
1 1 1 1

n n n n
ij ij ji

i j i j iij ij
j i

Var x q q
c c= = = = +

≠

+
=∑∑ ∑∑  

 

Now we will solve the covariances, 

 

( ) ( )

( )( )

2 2
2 2 2 2

4
1 1 1 1

2 2 2 2

4
1 1

2 2 2 2

4
1 1

,
/ , /

n n n n
ij ji

ij ij ji ij
i j i i j i ij

n n ij ij ji ji

i j i ij

n n
ij ji ij ji

i j i ij

Cov x x
Cov x c x c

c

E x E x x E x

c

E x x E x E x
c

= = + = = +

= = +

= = +

=

⎡ ⎤⎡ ⎤ ⎡− − ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦ ⎣ ⎦=

∑ ∑ ∑∑

∑∑

∑∑

 

 

Given that: 

 

( )22 2 2 2 2 3 42ij ji ij ij ij ij ij ij ij ijE x x E x c x c E x c E x E x⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡= − = − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎢ ⎥⎣ ⎦
⎤⎦

2

 

 

( )22 2 2 2 2 2 22ij ji ij ij ij ij ij ij ij ij ijE x E x E x E c x c E x c E x E x E x⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= − = − +⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 

 

Then, 
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( )
( ) (
( )

2 2 4 3 2 2 2

2 3 4 2 2 3 4

3 2 3 4

, 2 2

7 12 6 2 12 20 10

4 8 4

ij ji ij ij ij ij ij ij ij

ij ij ij ij ij ij ij ij ij ij

ij ij ij ij ij ji

Cov x x E x c E x c E x E x E x

c c

c s s

π π π π π π π π

π π π

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= − + −⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

)= − + − + − + − +

− + − = =

+  

 

since the third moment about zero for a binomially distributed variable equals (Johnson, 

Kotz, & Kemp, 1992) 

 

( ) ( )( )3 23 1 1 2ij ij ij ij ij ij ij ij ij ijE x c c c c c c 3π π π⎡ ⎤ = + − + − −⎣ ⎦  

 

It can be shown that 

 

( ) ( )
( )

2 3 4 2 2 3 4

3 2 3 4

2 4 7 12 6 8 6 10 5

4 5 8 4

ij ji ij ij ij ij ij ij ij ij ij ij ij

ij ij ij ij ij

q q s c c

c

π π π π π π π π

π π π π

+ + = − + − + − + − + +

− + −
 

 

Now we can write, 

( )( )

( )( )

2 2

2 2
4 4

1 1 1 1 1 1

2

4
1 1

ˆ 1 2 2
/ 2

2

ˆ 1 2 2 2
2

n n n n n nr ij ji ij
ij ij

i j i j i i j iij ij
j i

n nr ij ji ij

i j i ij

E n n m m q q s
E x c

c c

E n n m m q q s
c

= = = = + = = +
≠

= = +

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤Φ − − + +⎢ ⎥ ⎣ ⎦⎜ ⎟ ⎜ ⎟= +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦

⎛ ⎞⎡ ⎤Φ − − + + +⎣ ⎦⎜ ⎟= +
⎜ ⎟
⎝ ⎠

∑∑ ∑∑ ∑∑

∑∑

+

 

And finally, 
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( )
( )( )( )
( )( )
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( )( )

2

2
2

2
4

1 1 2
2

2

2

2
4

1 1

ˆ 1 2 2
ˆ
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ˆ
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2 ˆ4 1 2

r

r

n n
ij ji ij
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i j i ij

r

r

n n
ij ji ij

r
i j i ij
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q q s
mE n n m m
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E

n n m

mE n n m m

n n m

q q s
mE n n m m

c

n n

σ

= = +

= = +

⎡ ⎤Φ − − +⎣ ⎦Φ = +
− −

⎛ ⎞+ +
⎡ ⎤− Φ − − −⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠ ⎡ ⎤− Φ⎣ ⎦− −

⎡ ⎤Φ − − +⎣ ⎦= +
− −

⎛ ⎞+ +
⎡ ⎤− Φ − − −⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠
−

∑ ∑

∑∑

( )( )

( )( )

2

4
1 1

2

1 2

2
4

1 2

n n
ij ji ij

i j i ij

m

q q s
c

n n m
= = +

−

+ +

=
− −

∑ ∑
 

 

Again, when there are dyads for which cij = 0, the variance can be obtained as 

follows: 

 

( )
( )

4
1 1

02
2

2
4

ˆ
2 2

ij

n n
ij ji ij

i j i ij
c

r

q q s
c

z m
σ

= = +
≠

+ +

Φ =
−

∑ ∑
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Tables 

 

Table 1. îaφ  and ˆ
pjφ  denote individuals’ social asymmetry contribution as actors and partners, 

respectively, while îjφ  corresponds to their contribution associated with each partner. 

 Individual    

îjφ  1 2 3 4 5 6 îaφ  

1 0 .004298NS −.014586NS .023900** −.020888* .032006NS .024730NS

2 −.004037NS 0 −.032211** .034698** .030577* .013927** .042954*

3 .018753NS .076526** 0 .023771** .057603** .061398** .238051**

4 −.017487** −.022455** −.017412** 0 −.014866** .002642NS −.069578**

5 .030972* −.020714* −.029369** .019221** 0 .005154NS .005264NS

6 −.021337NS −.011504** −.030046** −.002541NS −.004798NS 0 −.070226**

ˆ
pjφ  .006864NS .026151NS −.123624** .099049** .047628* .115127** .1712 

 

NS = non significant; * = p value < .05; ** = p value < .01. P values were estimated by means of a Monte Carlo procedure with 

99,999 simulated matrices under the null hypothesis of complete reciprocation. 
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Table 2.  denotes the contribution to overall asymmetry for the dyad i-j. ˆ
ijΦ

 Individual   

ˆ
ijΦ  1 2 3 4 5 6 

1 0 .00026NS .004167NS .006413** .010084* .010669NS

2 .00026 0 .044315** .012243** .009864NS .002423**

3 .004167 .044315 0 .006359** .028234** .031352**

4 .006413 .012243 .006359 0 .004355** .000101NS

5 .010084 .009864 .028234 .004355 0 .000356NS

6 .010669 .002423 .031352 .000101 .000356 0 

 

NS = non significant; * p value < .05; ** p value < .01. P values were estimated by means of a Monte Carlo procedure with 99,999 

simulated matrices under the null hypothesis of complete reciprocation. P-value results are only shown above the main diagonal 

since matrix is symmetrical. 
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Figure Captions 

 

Figure 1. The graph shows the values of index rΦ  for different parameter values in which πij = 

π for all i < j. 
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Figure 1. 
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