
PHYSICAL REVIEW C 79, 054311 (2009)

Incompressibility of neutron-rich matter
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The saturation properties of neutron-rich matter are investigated in a relativistic mean-field formalism using two
accurately calibrated models: NL3 and FSUGold. The saturation properties—density, binding energy per nucleon,
and incompressibility coefficient—are calculated as a function of the neutron-proton asymmetry α ≡ (N − Z)/A
to all orders in α. Good agreement (at the 10% level or better) is found between these numerical calculations and
analytic expansions that are given in terms of a handful of bulk parameters determined at saturation density. Using
insights developed from the analytic approach and a general expression for the incompressibility coefficient of
infinite neutron-rich matter, i.e., K0(α) = K0 + Kτα

2 + · · ·, we construct a hybrid model with values for K0 and
Kτ as suggested by recent experimental findings. Whereas the hybrid model provides a better description of the
measured distribution of isoscalar monopole strength in the Sn isotopes relative to both NL3 and FSUGold, it
significantly underestimates the distribution of strength in 208Pb. Thus, we conclude that the incompressibility
coefficient of neutron-rich matter remains an important open problem.
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I. INTRODUCTION

The incompressibility of neutron-rich matter remains at the
forefront of both experimental and theoretical investigations
because of its fundamental role in constraining the equation
of state (EOS) of cold dense matter. The incompressibility
coefficient characterizes the small-density fluctuations of
infinite nuclear matter around its equilibrium point, thereby
providing the first glimpse into the “stiffness” of the equation
of state.

It is widely accepted that the giant monopole resonance
(GMR)—the quintessential compressional mode—provides
the cleanest, most direct route to the nuclear incompressibility.
In a procedure first proposed by Blaizot and collaborators [1,2],
finite nuclei GMR energies and the nuclear-matter incompress-
ibility should both be computed within the same theoretical
framework. This procedure avoids altogether the reliance
on macroscopic (“liquid-drop-like”) approaches that have
proven unreliable for the extraction of the incompressibility
coefficient of infinite nuclear matter from finite nuclei GMR
energies [3,4]. In most theoretical approaches, an accurately
calibrated model is obtained by fitting the model parameters
to a set of selected ground-state properties of finite nuclei. In
some recent instances, excited states—computed as the consis-
tent linear response of the mean-field ground state—have also
been incorporated into the fit [5]. If such accurately calibrated
models are able to reproduce the experimental distribution of
monopole strength (or at least some of its moments), then
the value of the incompressibility coefficient predicted by the
model is regarded as reliable. Following this procedure, it
has been established that the incompressibility coefficient of
symmetric nuclear matter falls within the following relatively
narrow range: K0 = 240 ± 10 MeV [6,7].
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Because of the collective nature of the GMR, a strong
coherent peak develops only in the case of relatively heavy
nuclei. Indeed, the monopole strength in “light” nuclei, such
as 40Ca, is strongly fragmented. As (stable) heavy nuclei are
characterized by a significant neutron excess, experimental
studies of the GMR probe the incompressibility of neutron-rich
matter rather than that of symmetric matter. As such, GMR
energies on a variety of nuclei having different neutron-proton
asymmetries [α ≡ (N − Z)/A], such as 90Zr, 116Sn, 144Sm,
and 208Pb, provide simultaneous constraints on the incom-
pressibility of symmetric nuclear matter (K0) as well as on its
leading α correction, a quantity that will be denoted by Kτ .
That is, the incompressibility of infinite neutron-rich matter
may be parametrized to leading order in the neutron-proton
asymmetry as K0(α) = K0 + Kτα

2. It is therefore natural to
assume that previous lessons learned in the case of K0 will
remain relevant for Kτ . First and foremost, Kτ should not
be inferred from an extrapolation to the A → ∞ limit from
laboratory experiments on finite nuclei. Rather, one should
continue to follow the procedure advocated by Blaizot and
demand that the values of both K0 and Kτ be those predicted
by a consistent theoretical model that successfully reproduces
the experimental GMR energies of a variety of nuclei. We note
that in the present contribution, both K0 and Kτ refer to bulk
properties of the infinite system.

It is therefore the aim of the present manuscript to (a)
use accurately calibrated relativistic mean-field models to
extract the saturation properties of infinite neutron-rich matter,
(b) compute GMR energies for a variety of nuclei using
the consistent isoscalar-monopole response of the mean-field
ground state, and (c) confront these theoretical results against
experimental GMR energies—especially the new data on tin
[6,7]. As a byproduct of this procedure, analytic approaches to
the saturation properties of infinite neutron-rich matter based
on a few bulk parameters calculated at saturation density will
be validated against exact numerical results.
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The manuscript has been organized as follows. In Sec. II
a brief review of the relativistic mean-field formalism will be
provided. Particular emphasis will be placed on developing a
thorough description of the properties of infinite neutron-rich
matter and on the various bulk parameters that define its behav-
ior around nuclear-matter saturation density. In Sec. III results
will be presented for the evolution of the saturation point with
neutron-proton asymmetry using both exact (numerical) and
approximate (analytic) approaches. We finish this section by
revisiting the topic of why tin is so soft [6–10]. Our summary
and conclusions will follow in Sec. IV.

II. FORMALISM

The starting point for the calculation of various ground-state
properties is an interacting Lagrangian density of the following
form:

� int = ψ̄
[
gsφ −

(
gvVµ + gρ

2
τ · bµ + e

2
(1 + τ3)Aµ

)
γ µ

]
ψ

− κ

3!
(gsφ)3 − λ

4!
(gsφ)4 + ζ

4!

(
g2

vVµV µ
)2

+
v

(
g2

ρ bµ · bµ
)(

g2
vVµV µ

)
. (1)

The Lagrangian density includes an isodoublet nucleon field
(ψ) interacting via the exchange of two isoscalar mesons,
a scalar (φ) and a vector (V µ), one isovector meson (bµ),
and the photon (Aµ) [11,12]. In addition to meson-nucleon
interactions, the Lagrangian density is supplemented by
nonlinear meson interactions with coupling constants denoted
by κ, λ, ζ , and 
v, which are responsible for a softening of the
nuclear-matter equation of state, both for symmetric-nuclear
and pure-neutron matter. Whereas κ and λ are instrumental
in the softening of the equation of state of symmetric nuclear
matter near saturation density, ζ softens the equation of state
but at higher densities. Finally, the mixed vector coupling 
v

[13] has been introduced to soften the density dependence of
the symmetry energy—a quantity that is predicted to be stiff in
most relativistic mean-field models. This effective Lagrangian
has been used to compute a variety of ground-state observables
at the mean-field level and will be used here to study the
incompressibility of neutron-rich matter. Further details on
the calibration and implementation of the relativistic mean-
field models may be found in Refs. [11–14] and references
therein.

Asymmetric nuclear matter is an idealized system consist-
ing of an infinite number of neutrons and protons interacting
exclusively through the nuclear force. At zero temperature and
in the thermodynamic limit (where both the baryon number
A = N + Z and the volume of the system V tend to infinity),
the binding energy per nucleon depends solely on two intensive
variables: the baryon density ρ ≡ A/V and the neutron-proton
asymmetry α ≡ (N − Z)/A (the latter may be expressed
as α = (ρn − ρp)/ρ in terms of the nucleon densities). By
studying such an idealized system, one hopes to elucidate how
the volume and symmetry terms of the semiempirical mass
formula [15] evolve with density.

It has become customary to write the energy per particle of
infinite nuclear matter as

E/A(ρ, α) − M ≡ E(ρ, α) = ESNM(ρ)

+α2S2(ρ) + α4S4(ρ) + · · · , (2)

where we have indicated that E/A is measured relative to
the nucleon rest mass M . As the neutron-proton asymmetry
is constrained to the interval 0 � α � 1, the total energy per
particle E(ρ, α) is often expanded in a power series in α2. Note
that odd powers of α do not contribute to the expansion owing
to the symmetry of the strong force between like-nucleon pairs.
The leading term in this expansion, i.e., ESNM(ρ) ≡ E(ρ, α =
0), represents the contribution from symmetric (N = Z =
A/2) matter. The leading O(α2) correction to the symmetric
limit, i.e., S2(ρ) ≡ S(ρ), is known as the symmetry energy.
The contribution α2S(ρ) thus measures the energy involved in
converting part of the protons in symmetric nuclear matter
to excess neutrons, at total baryon density ρ. The above
power-series expansion is particularly useful as the symmetry
energy dominates the corrections to the symmetric limit for all
values of α. Indeed, to an excellent approximation, the energy
per particle of pure neutron matter (α ≡ 1) may be written as

EPNM(ρ) ≡ E(ρ, α = 1) ≈ ESNM(ρ) + S(ρ). (3)

The main feature that we aim to understand in the present
manuscript is the evolution with neutron-proton asymmetry
of the bulk properties of infinite nuclear matter—such as
the saturation density, the binding energy at saturation, and
the incompressibility coefficient. Particularly important is
to characterize the sensitivity of the results to the density
dependence of the symmetry energy. To do so and to establish
a baseline, we start by describing the behavior of symmetric
nuclear matter near saturation density.

A. Symmetric nuclear matter

One of the hallmarks of nuclear dynamics is the saturation
of symmetric (α ≡ 0) infinite nuclear matter. The saturation
point is characterized by an equilibrium density of about
ρ0 � 0.15 fm−3 and an energy per particle of ε0 � −16 MeV.
Given that the pressure P = ρ2∂ESNM/∂ρ of symmetric
nuclear matter vanishes at saturation, then the small density
fluctuations around the saturation point are fully characterized
by the incompressibility coefficient K0. Yet for reasons that
will become clear later, the behavior of symmetric nuclear
matter is expanded in a Taylor series up to third order in the
small density fluctuations. That is,

ESNM(ρ) = ε0 + 1
2K0x

2 + 1
6Q0x

3 + · · · , (4)

where x is a conveniently defined dimensionless parameter that
characterizes the deviations of the density from its saturation
value, i.e.,

x ≡ (ρ − ρ0)

3ρ0
. (5)

The various bulk coefficients that characterize the behavior
of the symmetric system near saturation density are given as
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follows:

ε0 = ESNM(x = 0) = ESNM(ρ = ρ0), (6a)

K0 = E ′′
SNM(x = 0) = 9ρ2

0

(
∂2ESNM

∂ρ2

)
ρ=ρ0

, (6b)

Q0 = E ′′′
SNM(x = 0) = 27ρ3

0

(
∂3ESNM

∂ρ3

)
ρ=ρ0

. (6c)

B. Symmetry energy

In the so-called parabolic approximation, the deviations
from the symmetric (α ≡ 0) limit are controlled by the
O(α2)-symmetry energy [see Eq. (2)]. As has been done for
the symmetric case, the behavior of the symmetry energy
around nuclear-matter saturation density may be conveniently
characterized in terms of a few bulk parameters, namely,

S(ρ) = J + Lx + 1
2Ksymx2 + 1

6Qsymx3 + · · · , (7)

where J,L,Ksym, and Qsym are the values of the symmetry
energy, slope, curvature, and third derivative at saturation den-
sity. However, unlike symmetric nuclear matter, the “symmetry
pressure” L does not vanish. Indeed, the symmetry pressure—a
quantity that strongly influences the neutron-skin thickness of
heavy nuclei—is (within the parabolic approximation) directly
proportional to the pressure of pure neutron matter. That is,

P0 = 1
3ρ0L. (8)

A one-parameter fit to the low-density behavior of the
symmetry energy that is frequently used in the heavy-ion
community is of the following form [16–22]:

S(ρ) = S0

(
ρ

ρ0

)γ

= J (1 + 3x)γ , (9)

where in arriving at the last term we have made use of
Eqs. (5) and (7). To the extent that the above parametrization
is accurate, the following relations should be satisfied:

L =
(

∂S
∂x

)
x=0

= 3Jγ, (10a)

Ksym =
(

∂2S
∂x2

)
x=0

= 9Jγ (γ − 1), (10b)

P0 = ρ0Jγ. (10c)

With due caution, mainly because the connection of heavy-ion
experiments to the EOS is not at all trivial and often involves
model-dependent extrapolations of the measured data, signif-
icant constraints on the value of the coefficient γ have been
extracted in the last few years from different experimental
observables. For instance, in intermediate-energy heavy-ion
collisions, the analysis of isoscaling data [20,21] provides a γ

value around 0.69. Transport model simulations of data related
to isospin diffusion favor the milder constraint γ ∼ 0.69–1.05
[19,22]. Some nuclear collective modes provide another tool
for probing the behavior of S(ρ) at subsaturation densities.
The values P0 = 2.3 ± 0.8 MeV/fm3 and J = 32 ± 1.8 MeV
extracted in Ref. [23] from pygmy dipole resonances suggest
a value of γ ∼ 0.5 ± 0.15, whereas the constraint 23.3 <

S(ρ = 0.1 fm−3) < 24.9 MeV obtained in Ref. [24] from

the properties of the giant dipole resonance in 208Pb hints
at a value of γ ∼ 0.5–0.65. These findings from experimental
isospin-sensitive signals imply a rather soft nuclear symmetry
energy at subsaturation densities. An analysis [25] of a set
of neutron skins of nuclei measured across the mass table by
antiprotonic techniques yields a similar conclusion. Finally,
recent studies of the low-density behavior of pure neutron
matter using universal properties of dilute Fermi gases seem
to support the same findings [26,27].

C. Neutron-rich matter

Insofar as neutron-rich matter saturates, the energy per
particle may continue to be written as in Eq. (4). Thus,
the aim of this section is to characterize the evolution of
the saturation point—in particular, the saturation density,
the binding energy per nucleon, and the incompressibility
coefficient—as a function of the neutron-proton asymmetry
α = (N − Z)/A. To do so, it will prove instructive to proceed
along two alternative paths: one purely analytical and the
other purely numerical. In the analytic case, the saturation
properties of neutron-rich matter will be derived from a
handful of bulk parameters that characterize the behavior
of both symmetric nuclear matter and the symmetry energy
around saturation density, as was done in Eqs. (4) and (7).
This purely analytic procedure, already well known in the
literature, will be contrasted against a numerical procedure
that is free of any assumptions or approximations beyond that
of the mean-field approximation. We will verify that these
two alternative approaches agree at the few percent level,
thereby lending support to the analytic approach in elucidating
the evolution of the incompressibility coefficient with neutron
excess.

According to Eqs. (4) and (7), the energy per particle of
asymmetric nuclear matter with a neutron-proton asymmetry
α may be written in the form

E(ρ, α) ≈ (ε0 + Jα2) + Lα2x + 1
2 (K0 + α2Ksym)x2

+ 1
6 (Q0 + α2Qsym)x3. (11)

Clearly, the presence of the linear term shifts the saturation
point from x0 ≡ 0 to x̄0, where the latter is defined as the
physical solution to the following equation:(

∂E
∂x

)
= α2L + (K0 + α2Ksym)x

+ 1

2
(Q0 + α2Qsym)x2 = 0. (12)

Although the roots of this equation may be found by solving a
simple quadratic equation, the O(α2) solution may be solved
by inspection. One obtains

x̄0 = − L

K0
α2 + O(α4) or

(13)

ρ0/ρ0 = 1 + 3x̄0 = 1 − 3
L

K0
α2 + O(α4).

The values for the energy per particle and the incompressibility
coefficient may now be found by expanding Eq. (11) around
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TABLE I. Model parameters used in the calculations. The parameter κ and the meson masses ms, mv , and mρ are all given in
MeV. The value of the nucleon mass is taken as M = 939 MeV.

Model ms mv mρ g2
s g2

v g2
ρ κ λ ζ 
v

FSU 491.500 782.500 763.000 112.1996 204.5469 138.4701 1.4203 +0.02376 0.06 0.03
NL3 508.194 782.501 763.000 104.3871 165.5854 79.6000 3.8599 −0.01591 0.00 0.00
Hybrid 508.194 782.501 763.000 106.2575 165.5848 79.6483 4.5472 −0.01952 0.00 0.00

this new (α �= 0) value of the saturation density:

E(ρ, α) = E(x̄0, α) + 1
2 (x − x̄0)2E ′′(x̄0, α) + · · · . (14)

Alternatively, by introducing the dimensionless parameter

x̄ ≡ (ρ − ρ̄0)

3ρ̄0
(15)

to characterize the deviations of the density from the new
saturation point, the expansion of E(ρ, α) given in Eq. (14)
may be cast in a form analogous to Eq. (4) for ESNM(ρ). That
is,

E(ρ, α) = E(x̄0, α) + 1
2 [(1 + 3x̄0)2E ′′(x̄0, α)]x̄2 + · · ·

≡ ε0(α) + 1
2K0(α)x̄2 + · · · , (16)

where the energy per particle and the incompressibility
coefficient at the new saturation density are given by

ε0(α) ≡ E(x̄0, α) = ε0 + Jα2 + O(α4), (17a)

K0(α) ≡ (1 + 3x̄0)2E ′′(x̄0, α)

= K0 +
(

Ksym − 6L − Q0

K0
L

)
α2 + O(α4). (17b)

The analytic results correct to second order in α are
summarized in the following set of equations, where
the quantities ρτ , ετ , and Kτ represent the deviations of
the saturation density, energy per particle, and incompressibil-
ity coefficient of infinite matter away from the symmetric N =
Z limit:

ρ0(α) = ρ0 + ρτα
2 + O(α4) = ρ0 − 3ρ0

L

K0
α2 + O(α4),

(18a)

ε0(α) = ε0 + ετα
2 + O(α4) = ε0 + Jα2 + O(α4), (18b)

K0(α) = K0 + Kτα
2 + O(α4)

= K0 +
(

Ksym − 6L − Q0

K0
L

)
α2 + O(α4). (18c)

In view of the profuse choices of terminology existing in the
literature, our notation and conventions are discussed further
in the Appendix.

III. RESULTS

Having developed the necessary formalism in the preceding
sections, we devote this section to presenting the results of our
calculations. As we have done elsewhere [8], we generated our
results using two accurately calibrated models: NL3 [28,29]
and FSUGold [5]. In addition, we performed calculations with
a hybrid model to be introduced later. Effective meson masses
(i.e., interaction ranges) and coupling constants for the present
models are displayed in Table I as defined by the Lagrangian
density of Eq. (1).

With the above sets of parameters, one may compute
the nuclear-matter equation of state, namely, the energy
per particle as a function of density and neutron excess.
In particular, one can extract values for the various bulk
parameters defined in Eqs. (4) and (7) that characterize the
behavior of neutron-rich matter around saturation density;
these parameters are listed in Table II. Note that to make
contact with the parametrization given in Eq. (9), the value
of the exponent γ listed in Table II was extracted from
a fit to the symmetry energy in the low-density range of
ρ = (0.3 − 1.0)ρ0. The found results are in consonance with
the prediction γ = L/3J that follows from Eq. (9) (namely,
γ = 0.62 for FSUGold and γ = 1.06 in the case of NL3 and
the hybrid model). Whereas the FSUGold and NL3 models
agree on the energy and density at saturation—quantities that
are tightly constrained by existing ground-state observables—
significant discrepancies emerge in all remaining parameters.
The main difference between the two models may be succinctly
summarized by stating that whereas FSUGold predicts a soft
behavior for both symmetric nuclear matter (through K0) and
the symmetry energy (through L), NL3 predicts a stiff behavior
for both. Note that “stiff” and “soft” refer to whether the energy
increases rapidly or slowly, respectively, with density.

That symmetric nuclear matter and the symmetry energy
are either both soft (as in the FSUGold model) or both stiff
(as in the NL3 model) may lie at the core of the problem in
reproducing the experimentally measured GMR energies in the
Sn isotopes [6–8]. According to Eq. (18c), a large value of L (as
in NL3) generates a large softening of the incompressibility

TABLE II. Bulk parameters (as described in the text) characterizing the energy of symmetric nuclear
matter [Eq. (4)] and the symmetry energy [Eq. (7)] at saturation density. All quantities are in MeV, with the
exception of ρ0 given in fm−3 and the dimensionless parameter γ defined in Eq. (9).

Model ρ0 ε0 K0 Q0 J L Ksym γ

FSU 0.148 −16.30 230.0 −523.4 32.59 60.5 −51.3 0.64
NL3 0.148 −16.24 271.5 +204.2 37.29 118.2 +100.9 0.98
Hybrid 0.148 −16.24 230.0 −71.5 37.30 118.6 +110.9 0.98
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coefficient relative to its value in symmetric nuclear matter.
However, a large incompressibility coefficient in symmetric
nuclear matter K0 (as in NL3) hinders the softening generated
by Kτ . Conversely, FSUGold predicts a relatively small
value for K0. However, its soft symmetry energy generates
a small (absolute) value for Kτ that precludes the significant
reduction in the incompressibility coefficient required by the
experimental GMR energies. In an effort to circumvent this
problem—and this problem only—we have generated a hybrid
model having the same incompressibility coefficient as FSUG-
old while preserving the stiff symmetry energy of NL3 (see
Table II). As seen in Table I, this was accomplished through
a slight adjustment of the scalar self-coupling parameters κ

and λ. Note that it is not our intent to accurately calibrate
the hybrid model introduced here. Rather, the hybrid model—
although reasonably accurate—should merely be regarded as
a “test” model that illustrates how surprisingly soft are the
experimental GMR energies of the tin isotopes relative to
the theoretical predictions. Indeed, as we will display later
in Fig. 8, not even such an artificially tuned model can fully
account for the rapid softening of the GMR energies with
neutron excess. Let us mention that nowadays it is generally
acknowledged that experimental data on compressional-mode
giant resonances support a value of K0 ≈ 240 MeV [30] for
the incompressibility coefficient of symmetric nuclear matter.
Recently measured data on the breathing mode of Sn isotopes
seem to favor a constraint Kτ = −550 ± 100 MeV for the
asymmetry term in the nuclear incompressibility [6,7]. A
similar value of Kτ ∼ −500 MeV has been reported from
independent experimental evidence available from isospin
diffusion observables in nuclear reactions [19,22] and from
neutron skins of nuclei [25]. Tables II and III confirm that the
hybrid model is consistent with both of the indicated K0 and
Kτ values.

The evolution of the equation of state with neutron-proton
asymmetry α is displayed in Fig. 1 for the three models
considered in the text: FSUGold (solid blue lines), NL3
(dashed green lines), and hybrid (dot-dashed red lines). The
α = 0 curve corresponds to symmetric nuclear matter, whereas
the α = 1 curve corresponds to pure neutron matter. In
all models, nuclear matter ceases to saturate at a value of
the neutron-proton asymmetry slightly larger than α = 0.75.
Figure 2 provides an expanded version of the results for
symmetric nuclear matter (α = 0) and for pure neutron
matter (α = 1). To an excellent approximation—especially
at the subsaturation densities of relevance to this work—the

TABLE III. Leading O(α2) correction to the evolution of the sat-
uration density, energy per particle, and incompressibility coefficient
of asymmetric nuclear matter. Quantities outside the parentheses
were extracted from a quadratic fit to the numerical results in
the 0 � α2 � 0.1 range, whereas the quantities in parentheses were
computed from the analytic expressions given in Eqs. (18).

Model ρτ (fm−3) ετ (MeV) Kτ (MeV)

FSU −0.117 (−0.117) 32.60 (32.59) −275.45 (−276.77)
NL3 −0.188 (−0.194) 37.24 (37.29) −682.65 (−697.36)
Hybrid −0.215 (−0.229) 37.20 (37.30) −531.98 (−563.86)
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FIG. 1. (Color online) Density dependence of the energy per
particle in infinite nuclear matter at the shown neutron-proton
asymmetries according to the FSUGold (blue solid line), NL3 (green
dashed line), and hybrid (red dot-dashed line) models.

difference between the equation of state of pure neutron
matter and that of symmetric matter equals the symmetry
energy of Fig. 3. On the other hand, a truncated expansion
S(ρ) = J + Lx + 1

2Ksymx2 [cf. Eq. (7)] appears to provide a
fair enough representation of the actual value ofS(ρ) in a range
of densities roughly between half and twice the saturation
density of symmetric nuclear matter. Indeed, we find that the
discrepancies of this approximation compared with the exact
S(ρ) are less than 5% in a density range 0.45ρ0 <∼ ρ <∼ 2.7ρ0

for FSUGold and 0.33ρ0 <∼ ρ <∼ 2.15ρ0 for NL3 and the hybrid
model.

One observes that in all cases, the hybrid model seems to
follow closely the predictions of the NL3 model in Figs. 1–3.
For the symmetry energy, this has been done by construction.
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FIG. 2. (Color online) Density dependence of the energy per
particle in symmetric nuclear matter (SNM) and in pure neutron
matter (PNM) for the investigated models.
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FIG. 3. (Color online) Density dependence of the symmetry
energy coefficient for the investigated models.

For symmetric nuclear matter, however, the hybrid model
is indeed softer than NL3—and as soft as FSUGold—at
saturation density. That the hybrid model tracks NL3 at high
density is a reflection of the vector self-coupling parameter ζ

having been set to zero in both models. This confirms that the
value of the incompressibility coefficient of symmetric nuclear
matter at saturation density has practically no impact on the
equation of state of high-density matter and, by extension, on
most neutron-star properties [31].

From the evolution of the equation of state with α, we
conclude quite generally that as the neutron-proton asymmetry
increases, the saturation density is reduced, the binding energy
weakens, and the nuclear incompressibility softens. Based on
the structure of Eqs. (18), we regard these trends as model
independent. Indeed, that the saturation density is reduced
(i.e., ρτ < 0) is a simple reflection of (a) symmetric nuclear
matter has a stable equilibrium point (K0 > 0) and (b) the
pressure of pure neutron matter at saturation density is positive
(L > 0). Further, that the binding energy weakens (i.e., ετ > 0)
follows from the fact that pure neutron matter is not self-bound,
namely, J � |ε0|. Finally, that the nuclear incompressibility
softens requires Kτ < 0. This is the hardest condition to satisfy
as it depends on higher-order derivatives of the equation of
state, namely, on Q0 and Ksym [see Eq. (18c)]. However,
barring anomalously large values for these two quantities,
the condition Kτ < 0 hinges also on the pressure of pure
neutron matter at saturation density being positive. This is
due to the large coefficient multiplying L in Eq. (18c), which
provides the dominant contribution to Kτ as compared to Ksym

and Q0/K0. We conclude that whereas the signs of ρτ , ετ ,
and Kτ are fairly model independent, their model-dependent
magnitudes are determined by two fundamental parameters
of the equation of state: the incompressibility coefficient
of symmetric nuclear matter K0 > 0 and the symmetry
pressure L.

To examine the evolution of the saturation point with
neutron-proton asymmetry, we have tabulated in Table III
the values for ρτ , ετ , and Kτ . These quantities (which have
been enclosed in parentheses) were computed directly from the

analytic expressions given in Eqs. (18). The bulk parameters
that they depend on were previously extracted from a fit to
the equation of state of symmetric nuclear matter and to
the symmetry energy and are listed in Table II. As alluded
earlier, the fact that neither Q0 nor Ksym are anomalously
large in the present models results in an asymmetry term
in the nuclear incompressibility Kτ that is dominated by the
symmetry pressure L. In particular, note that the value of Kτ

in the hybrid model is consistent with the value extracted in
Refs. [6,7] from the measurement of the GMR energies in the
Sn isotopes.

But how accurate are the expressions given in Eqs. (18)?
To test the reliability of these analytic expressions, we have
carried out a purely numerical exercise that is exact within the
purview of the mean-field approximation. There is no reliance
on the parabolic approximation, as in Eq. (2), or on expansions
around the saturation density of symmetric matter, such as
in Eq. (11). Basically, the equation of state of asymmetric
nuclear matter is computed numerically for a range of values
of the neutron-proton asymmetry in the 0 � α2 � 0.1 range. For
each value of α, the new saturation point—namely the density,
energy per nucleon, and incompressibility coefficient at the
minimum—is computed. Once this procedure is completed,
one extracts the three desired coefficients (ρτ , ετ , and Kτ )
from a least-squares fit to the numerical data. Such a procedure
is illustrated in Figs. 4–6 for the saturation density, energy
per particle, and incompressibility coefficient, respectively.
In all cases, the inset includes a comparison between the
exact numerical results (displayed with lines) and the analytic
approximations (displayed with symbols). Moreover, ρτ , ετ ,
and Kτ have also been tabulated in Table III. The agreement
between the analytic and numerical results is fairly good
(at worst the discrepancies amount to ∼6%) suggesting that
arguments based on Eqs. (18), which imply an expansion in
both α and the density around the saturation point of N = Z

matter, are not only insightful but also quantitatively accurate.
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FIG. 4. (Color online) Evolution with increasing neutron-proton
asymmetry of the baryon density that corresponds to the exact
saturation point of asymmetric nuclear matter. The inset displays
by symbols the result of a least-squares fit in the 0 � α2 � 0.1 range
assuming a parabolic dependence.
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FIG. 5. (Color online) Same as Fig. 4, but for the energy per
particle.

The goodness of the parabolic approximation for the binding
energy of asymmetric matter seems to be confirmed also in
other frameworks such as microscopic many-body calculations
[32,33] or model analyses of the symmetry energy coefficient
in nucleus-nucleus collisions [34].

We finish this section by revisiting a topic recently
addressed in the literature: Why is tin so soft? [6–10]. Namely,
GMR energies of even-A isotopes of tin from A = 112 to A =
124 measured in a recent experiment [6,7] are significantly
lower than the values predicted with accurately calibrated,
otherwise successful, mean-field models. Note that the same
models satisfactorily predict the GMR excitation energy of
90Zr and 208Pb. Therefore we pose the following question:
Can the hybrid model succeed where the other two (FSUGold
and NL3) have failed? Recall that the hybrid model was built
with the explicit purpose of having a “low” incompressibility
coefficient of K0 ≈ 230 MeV and a “large” (and negative)
asymmetric term of Kτ = −532 MeV (see Table III), unlike
FSUGold where both K0 and |Kτ | are low, and unlike NL3
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FIG. 6. (Color online) Same as Fig. 4, but for the incompressibil-
ity coefficient.
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FIG. 7. (Color online) Comparison between the distribution of
isoscalar monopole strength in all neutron-even 112Sn-124Sn isotopes
extracted from experiment [6,7] (black solid squares) and the
theoretical predictions of the FSUGold (blue solid line), NL3 (green
dashed line), and hybrid (red dot-dashed line) models.

where both K0 and |Kτ | are high. Thus, as in Ref. [8], the
distribution of isoscalar monopole strength for the even-A
tin isotopes—from 112Sn up to 124Sn—was computed in a
relativistic random-phase approximation (RPA). Details of the
method may be found in Ref. [35].

Figures 7–9 are reminiscent of those published in Ref. [8],
but in the present case results are also included for the hybrid
model. It is clear from Fig. 7 that the experimental distribution
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FIG. 8. (Color online) Comparison between the GMR centroid
energies (m1/m0) in all neutron-even 112Sn-124Sn isotopes extracted
from experiment [6,7] (black solid squares) and the theoretical
predictions of the FSUGold (blue up-triangles), NL3 (green down-
triangles), and hybrid (red dot-dashed line) models. Also shown
(filled gold circles) are experimental results from the TAMU group
[30,36,37] for the cases of 112Sn, 116Sn, and 124Sn.
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FIG. 9. (Color online) Distribution of isoscalar monopole
strength for 90Zr, 116Sn, 144Sm, and 208Pb as predicted for the FSUGold
(thick lines) and hybrid (thin lines) models. Experimental centroid
energies for these nuclei were reported in Ref. [30] and have been
tabulated along with the theoretical predictions in Table IV.

of strength in the tin isotopes is best reproduced by the hybrid
model. Note that RPA distributions of strength fail to account
for the full—escape-plus-spreading—width of the resonance.
Whereas the RPA calculation accounts properly for the escape
width (i.e., the coupling to the continuum is treated exactly),
it fails to account for its spreading component, as this one
is related to configurations significantly more complex than
those included in the RPA approach.

On the other hand, the RPA approach is sophisticated
enough to reproduce the experimental centroid energy of the
resonance. As it was done experimentally, the centroid energy
was computed from the ratio of the m1 to the m0 moment. That
is,

EGMR = m1

m0
=

∫ ω2

ω1
ωSL(q, ω)dω∫ ω2

ω1
SL(q, ω) dω

, (19)

where SL(q, ω) is the distribution of strength. The integration
limits have been fixed at ω1 = 10 MeV and ω2 = 20 MeV,
respectively, and the integrals have been evaluated at the small
momentum transfer of q ∼ 0.23 fm−1 (or q ∼ 45 MeV) [8].
The theoretical predictions for EGMR in the tin isotopes are
displayed in Fig. 8 in comparison with the experimental data
from the Research Center for Nuclear Physics (RCNP), Osaka
University [6,7], and Texas A&M University (TAMU) [30,36,
37].

Although the FSUGold and hybrid models share the same
value of the incompressibility coefficient in symmetric nuclear
matter, the hybrid model provides a softer distribution of
strength because of its largest (negative) asymmetric term Kτ

(see Table III). Ultimately, this result hinges on the fact that
the hybrid model has, as NL3, a significantly stiffer symmetry
energy. All in all, the agreement between the hybrid model
and experiment is adequate, although the model—indeed all
models—could benefit from a steeper slope in the change
of the centroid energy EGMR with mass number A. To test
the robustness of our results, we have used an improved
version of the hybrid model that was obtained through a
slight adjustment of the scalar mass ms (508.194 → 494 MeV)
and the corresponding coupling constant g2

s (106.2575 →
100.4048, which yields the same g2

s /m2
s value and ensures that

all of the properties of the EOS of infinite nuclear matter remain
unaltered). This mild adjustment yields better ground-state
masses for a few selected nuclei (40Ca, 90Zr, and 208Pb), albeit
at the expense of slightly worse charge radii. Yet the GMR
energies for the Sn isotopes get softened by at most 1.5%.
This confirms one of the main results of this work, namely,
that even a model with a soft K0 (such as FSUGold) and a
stiff Kτ (such as NL3) is unable to fully account for the rapid
softening of the experimental GMR energies in the tin isotopes.

Therefore, where does theory stand with respect to ex-
periment? Unquestionably, a hybrid model having a soft
incompressibility coefficient but a stiff symmetry energy
leads to a significant improvement when compared with the
experiment on the tin isotopes [6,7]. Unfortunately, the hybrid
model does not fare as well against other observables (see
Table IV). First, the hybrid model predicts a GMR centroid
energy in 208Pb of EGMR = 13.27 MeV (or 13.16 MeV if
we use the hybrid model with ms = 494 MeV), significantly
lower than the experimental value of 14.17 ± 0.28 MeV [30];
in contrast, the FSUGold model gives a value of EGMR =
14.04 MeV [5] that is consistent with experiment. Note that
similar trends have recently been reported by Avdeenkov
and collaborators [10]. To appreciate the significant softening
of the hybrid model relative to FSUGold, the distribution
of isoscalar monopole strength for 90Zr, 116Sn, 144Sm, and
208Pb is displayed in Fig. 9. Second, as we have argued
earlier, a large negative asymmetry term Kτ requires a large
positive value of the asymmetry pressure L. However, models
with a stiff symmetry energy appear to be in conflict with
model-independent predictions for the equation of state of pure
neutron matter at low densities [26,27,38,39]. Finally, note
that a stiff symmetry energy at densities below saturation also

TABLE IV. GMR centroid energies (EGMR ≡ m1/m0 in MeV) obtained from the
distribution of monopole strength integrated over the ω1–ω2 range for those nuclei studied
in Ref. [30]; α represents their respective neutron-proton asymmetry.

Nucleus α ω1–ω2 Experiment FSU NL3 Hybrid

90Zr 0.111 10–26 17.89 ± 0.20 17.98 18.62 17.47
116Sn 0.138 10–23 16.07 ± 0.12 16.58 17.10 16.02
144Sm 0.139 10–22 15.39 ± 0.28 15.64 16.14 15.07
208Pb 0.212 8–21 14.17 ± 0.28 14.04 14.32 13.27
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seems to be disfavored by heavy-ion data [19–22], although in
this case the model dependence may be more significant, and
the results are not always without some controversy [40,41].

IV. CONCLUSIONS

The saturation properties of neutron-rich matter were stud-
ied as functions of the neutron-proton asymmetry within the
framework of relativistic mean-field models. We observed that
infinite nuclear matter continues to saturate up to values of the
neutron-proton asymmetry of the order of α ≡ (N − Z)/A <∼
0.75. Moreover, it was found quite generally that as infinite
nuclear matter departs from the symmetric (N = Z) limit, the
saturation density lowers, the binding energy weakens, and the
nuclear incompressibility softens.

The manuscript was organized around three main themes:
(1) the use of accurately calibrated relativistic mean-field
models to extract the saturation properties of neutron-rich
matter directly from numerical computations and the compar-
ison of these numerical results against approximate analytic
approaches, (2) the use of the same models to compute the
distribution of isoscalar-monopole strength in various nuclei,
and (3) the comparison of these theoretical predictions against
the experimentally measured GMR energies.

To make contact between the equation of state of bulk
neutron-rich matter and GMR energies on finite nuclei,
the incompressibility of infinite neutron-rich matter was
parametrized in terms of two bulk parameters, namely, K0 and
Kτ , with the former being the incompressibility coefficient
of symmetric matter and the latter parametrizing the (small)
deviations from the symmetric limit [see Eq. (18c)]. Note
that never in the manuscript did we rely on semiempirical
(liquid-drop-like) formulas to extract properties of infinite
matter from extrapolating finite-nuclei results to the A → ∞
limit. In this manner, we followed the time-honored tradition
initiated by Blaizot and collaborators [1,2] of demanding that
the values of both K0 and Kτ be those extracted from a
consistent theoretical model that successfully reproduces the
experimental GMR energies of a variety of nuclei.

As part of the first theme, the evolution with neutron-
proton asymmetry of the saturation density, binding energy
per nucleon, and incompressibility coefficient were extracted
from a fit to the numerically generated equation of state.
Once these properties were extracted, their dependence on
the neutron-proton asymmetry α was captured through a
simple parametrization in powers of α2 with no reliance on
the parabolic approximation of Eq. (2) nor on an expansion
involving bulk-model parameters, as in Eq. (11). Having com-
pleted this numerical procedure, we explored the possibility of
reproducing the exact numerical results from analytic expan-
sions based on a few bulk parameters of the equation of state
determined at normal nuclear-matter saturation density [see
Eqs. (18)]. For all three bulk properties—the saturation density,
the binding energy per nucleon, and the incompressibility
coefficient—the analytic values were in close agreement with
those computed numerically. This seems to be a robust result,
as it holds for all three (FSUGold, NL3, and hybrid) models;
see Table III. Thus, we concluded that the analytic expres-

sions are not only insightful but also quantitatively accurate.
Particularly interesting is the case of the incompressibility
coefficient Kτ that is given as the sum of three potentially
“large and canceling” contributions. However, we found that
one of these three terms—the slope of the symmetry energy
L—dominates Kτ [see Eq. (18c)], thereby making sensitive
cancellations unlikely. This result revealed an interesting
correlation between Kτ and L that may be further explored by
the upcoming parity radius experiment (PREx) at the Thomas
Jefferson National Accelerator Facility. PREx promises to
measure the neutron radius of 208Pb accurately and model
independently via parity-violating electron scattering [42,43].
PREx will provide a unique experimental constraint on the
density dependence of the symmetry energy due its strong
correlation to the neutron radius (or neutron skin thickness) of
heavy nuclei [44].

To test the predictions of these three models, contact had to
be made with available experimental data on finite nuclei.
Thus, the distribution of isoscalar monopole strength was
computed for a variety of nuclei in a consistent RPA approach
[35]. In particular, the main motivation behind introducing
the hybrid model was the inability of both FSUGold and
NL3 to reproduce the recently measured GMR energies along
the isotopic chain in tin [6,7]. By adopting a relatively small
value for the incompressibility coefficient in symmetric matter
(K0 = 230 MeV) together with a fairly large negative value
for its leading deviation from the symmetric limit (Kτ ≈
−530 MeV), we constructed a hybrid model with a signif-
icantly softer incompressibility coefficient for neutron-rich
matter. Such a softening indeed produced a significant im-
provement vis-à-vis the experimental data on the Sn isotopes;
see Fig. 8. Whereas FSUGold and NL3 overestimate the cen-
troid energy in 124Sn by about 0.7 and 1.0 MeV, respectively,
the hybrid model falls within 0.1 MeV of the experimental
data. Indeed, the predictions of the hybrid model fall within
0.1 MeV of the experimental data for the full isotopic chain if
one takes into account the uncertainties in the data. However,
although the improvement in the case of the Sn isotopes is
significant and unquestionable, an important problem remains:
the hybrid model underestimates the GMR centroid energy in
208Pb—the heaviest doubly magic nucleus—by almost 1 MeV.
This suggests that the rapid softening with neutron excess
predicted by the hybrid model may be unrealistic.

Thus, where does theory stand with respect to experiment?
One possibility, given that FSUGold reproduces the centroid
energy in both 90Zr (with α = 0.11) and 208Pb (with α = 0.21),
is that its predictions for K0 and Kτ are reliable, but that
its failure to reproduce the GMR energies in tin is due to
missing physics unrelated to the incompressibility of neutron-
rich matter. We feel inclined to favor this possibility for two
main reasons. First, the missing physics may be to some extent
related to the open-shell structure of the tin isotopes, a property
that makes pairing correlations essential and endows Tin with
its superfluid character. Support in favor of this scenario has
been recently presented in Ref. [45], where a surface pairing
force was used to bring theory much closer to experiment, at
least from 112Sn to 120Sn. Second, the large and negative value
suggested from the experimental extraction of Kτ may be at
odds with theoretical constraints deduced from the behavior of
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dilute Fermi gases that seem to suggest a moderate value for
the pressure of pure neutron matter at saturation density [27].
(Note that the pressure of pure neutron matter, or equivalently
the slope of the symmetry energy L, largely determines the
behavior of Kτ .) This suggests that the value of Kτ = −550 ±
100 MeV inferred from experiment [6,7] may suffer from
the same ambiguities already encountered in earlier attempts
to extract the incompressibility coefficient of infinite matter
from finite-nuclei extrapolations. Yet the final resolution of
the question “why is tin so soft?” awaits further theoretical
insights.
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APPENDIX: NOMENCLATURE AND TERMINOLOGY

In this section, we address what we perceive as a confusing
state of affairs with regard to the nomenclature used to
characterize the symmetry energy. First, we note that no
uniform terminology exists even to denote the neutron-proton
asymmetry coefficient. Indeed, the symbols I [46], α [22,47,
48], β [32], and δ [9,19,49] are all used in the literature to
denote the neutron-proton asymmetry coefficient (N − Z)/A
of asymmetric nuclear matter. Second, and perhaps even more
confusing, is the myriad of different symbols used to refer to
the same bulk properties. For example, all of the following
expressions may be found in the literature [46,47]:

S(ρ) = J + Lx + 1

2
Ksymx2 + · · · (A1a)

= a4 + L

3

(
ρ − ρ0

ρ0

)
+ Ksym

18

(
ρ − ρ0

ρ0

)2

+ · · · (A1b)

= a4 + P0

ρ2
0

(ρ − ρ0) + �K0

18ρ2
0

(ρ − ρ0)2 + · · · , (A1c)

where x = (ρ − ρ0)/3ρ0. Moreover, another plausible expan-
sion of the symmetry energy may be around the equilibrium
Fermi momentum [49]. That is,

S(ρ) = J̃ + L̃y + 1
2 K̃symy2 + · · · , (A2)

where the deviation from the equilibrium Fermi momentum
has been parametrized in terms of the dimensionless parameter
y defined as

y ≡ kF − k0
F

k0
F

. (A3)

Recall that the Fermi momentum and the baryon density are
related by the following expression:

ρ = 2k3
F

3π2
. (A4)

One potential confusion between the two different expansions
of the symmetry energy (in terms of either x or y) is that in
the presence of a linear term (such as L) the coefficients are
in general not equal. Indeed, the various bulk coefficients are
related as follows:

J̃ = J, (A5a)

L̃ = L, (A5b)

K̃sym = Ksym + 2L. (A5c)

That is, at order y2 and higher, the expansion coefficients in
terms of the Fermi momentum y differ from the corresponding
ones used in an expansion in terms of the density x.

It is also common practice to express the finite nucleus
incompressibility coefficient (KA) by means of a liquid-drop-
like mass formula [2,6,9,48–51], which highlights the physical
meaning of the various contributions to KA. That is,

KA = Kvol + KsurfA
−1/3 + Kτ

(
N − Z

A

)2

+KCoul
Z2

A4/3
+ · · · . (A6)

In some works, the coefficient Kτ is denoted by Kasy [19,22,48]
or Kvs [50,51]. To add to the confusion in notation, in the
original contributions by Blaizot and collaborators [1,2,49]
the term Ksym was used instead of Kτ in Eq. (A6). It appears
that at present, Ksym has been “universally” adopted to refer
to the curvature of the symmetry energy at saturation density,
as in Eq. (7).

In summary, we adopt the following convention in the
present manuscript—and hopefully in all future works. The
energy per particle of asymmetric nuclear matter is denoted as

E(ρ, α) = ESNM(ρ) + S(ρ)α2 + O(α4)

= (
ε0 + 1

2K0x
2 + 1

6Q0x
3 + · · · )

+ (
J + Lx + 1

2Ksymx2

+ 1
6Qsymx3 + · · · )α2 + O(α4), (A7)

where the dimensionless parameters x and α characterize the
deviations from saturation density and from the symmetric
limit, respectively. That is,

x ≡ ρ − ρ0

3ρ0
, (A8)

α ≡ N − Z

A
. (A9)

Finally, the quantities ρτ , ετ , and Kτ , have been introduced
to denote, respectively, the evolution with the neutron-proton
asymmetry of the saturation density, the energy per particle,
and the incompressibility coefficient of infinite neutron-rich
matter. That is,

ρ0(α) = ρ0 + ρτα
2 + O(α4), (A10)

ε0(α) = ε0 + ετα
2 + O(α4), (A11)

K0(α) = K0 + Kτα
2 + O(α4). (A12)
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