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Abstract
The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied

to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme inter-

actions and from relativistic mean field theory. VWK consists of the Thomas-Fermi part plus a

pure, perturbative ~
2 correction. In external potentials, VWK passes through the average of the

quantal values of the accumulated level density and total energy as a function of the Fermi energy.

However, there is a problem of overbinding when the energy per particle is displayed as a function

of the particle number. The situation is analyzed comparing spherical and deformed harmonic

oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding

energies are very close to those obtained from extended Thomas-Fermi functionals of ~
4 order,

pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not

cure the overbinding problem, i.e., the semiclassical energies show more binding than they should.

This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field

approach. However, even in the latter case the shell correction energy for e.g. 208Pb turns out to

be only ∼ −6 MeV what is about a factor two or three off the generally accepted value. As an ad

hoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable

throughout the periodic table. The general importance of the present studies for other finite Fermi

systems, self-bound or in external potentials, is pointed out.
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I. INTRODUCTION

One of the most important problems of finite fermion systems such as nuclei, atoms,
helium- and metallic-clusters, quantum dots, etc., is the determination of the ground-state
binding energy and the corresponding particle density distributions. In the nuclear case, to
overcome the problems encountered when starting from realistic bare nucleon-nucleon forces,
approximate and phenomenological schemes have widely been employed. This is the case of
the very successful density dependent Hartree-Fock method with Skyrme [1] or Gogny [2]
forces in the non-relativistic framework and of the relativistic mean field theory (non-linear
σ − ω model) [3] in the relativistic formulation.

To investigate how properties of global character vary with the number of nucleons A,
which is the subject of the present work, semiclassical or statistical techniques are very
useful. The best known example is the nuclear mass formula, based on the liquid drop or
droplet model [4]. The success of the mass formula in describing binding energies lies in the
fact that the quantal effects, i.e. shell corrections, are small as compared with the part of
the energy which smoothly varies with A. The perturbative treatment of the shell correction
energy in finite Fermi systems was elaborated by Strutinsky in the case of nuclei [5]. It was
proposed to divide the total quantal ground state energy in two parts:

E = Ẽ + δE. (1)

The by far largest part, Ẽ, varies smoothly with the number of fermions and is to be asso-
ciated with the liquid drop energy. It can be calculated from e.g. the Hartree-Fock (HF)
approach using the Strutinsky smoothing method [5], which is a well defined mathematical
procedure to erase the quantal oscillations in a finite Fermi system. However, this method
may in general be more difficult to handle than the solution of the full quantal problem
if realistic potentials are used. Thus, the search of alternative methods is an interesting
and still partly open problem, as we will see. Semiclassical methods of the Thomas-Fermi
(TF) type, which evaluate the smooth part of the energy, have widely been used in atomic,
nuclear and metallic clusters physics. These TF methods, like the liquid droplet or Struti-
nsky calculations, smooth the quantal shell effects and estimate the average part of the HF
energy [6, 7].

The semiclassical methods of the TF type are usually based on the Wigner-Kirkwood
(WK) expansion of the density matrix [8]. In this approach, the single-particle density ρ
and the kinetic energy density τ are expressed by means of functionals of the one-body
single-particle mean field potential V . The ~

2 or ~
4 corrections to the lowest-order TF

term contain gradients of V of second or fourth order that arise from the non-conmutativity
between the momentum p̂ and position R̂ operators. The ~ corrections to the pure TF
particle or kinetic energy densities are known to diverge at the classical turning point. They
are to be considered rather as distributions than as functions [9, 10], in the sense that only
integrated quantities have a real physical meaning. It has been shown that, in the case
of a harmonic oscillator potential well, the WK theory including up to ~

4 corrections is
equivalent to the Strutinsky average [6].

An important property of the WK expansion of the energy in powers of ~ concerns
its variational content. For a set of non-interacting fermions submitted to an external
potential, as for instance harmonic oscillator or Woods-Saxon wells, the variational solution
for the particle density which minimizes the semiclassical WK energy at each order of the
~ expansion, is just the WK expansion of the particle density ρ at the same order in ~
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[11, 12]. The method for solving this variational problem [11, 12], which sorts out properly
the different powers of ~ at each step of the minimization, was called variational Wigner-
Kirkwood (VWK) theory. This VWK method has been applied to describe half infinite
nuclear matter in the self consistent case using Skyrme forces [12] and the relativistic mean
field approximation [13]. The formal VWK approach, up to ~

4 order, was developed in [12].
Another related approach widely used for dealing with the semiclassical approximation

of the self consistent HF problem, is based on the so-called density functional theory (DFT).
The theoretical justification of DFT is formally provided by the Hohenberg and Kohn the-
orem [14]. In the nuclear context it states that the energy of a set of interacting nucleons is
a unique functional of the local density alone, that is

E =

∫

d~rε
[

ρ(~r)
]

. (2)

which reaches its minimal value when calculated with the exact ground-state density. The
ground-state density ρ(~r) is determined by a variational approach of Eq.(2) with the con-
straint of a fixed number of particles:

δ

δρ

∫

d~r{ε
[

ρ(~r)
]

− µρ(~r)} = 0. (3)

In spite of the appeal of Eqs. (2) and (3), in general the exact energy functional is
unknown and approximate techniques have to be worked out. The most popular and suc-
cessful semiclassical approach based on DFT and developed together with the use of the
Skyrme forces is the extended Thomas-Fermi (ETF) method. There the WK ~ expansion
of the density is inverted to recast the kinetic energy density as a functional τ [ρ] of the
local density and its derivatives [15, 16]. If the potential part of the energy density is also
a known functional of ρ(~r), as it happens for the Skyrme forces, the approximate energy
density functional can be minimized to obtain an Euler-Lagrange equation like in Eq.(3).
The solution of this equation will provide the ground-state particle density and energy. The
quantum shell oscillations are absent in the ETF model, which yields average densities and
energies with good accuracy [16, 17, 18, 19, 20, 21, 22].

Using the VWK method, we have studied in Refs.[11, 12] the surface energy of a half
infinite Fermi gas embedded in an external Woods-Saxon potential well. When ~

2 corrections
are taken into account, the VWK surface energy reproduces the quantal values within 1%
and the agreement is almost perfect when ~

4 corrections are considered. This result indicates
that quantal Friedel oscillations have a negligible influence on the nuclear surface energy. We
also have solved this problem using ETF (that in the case of the external potential reduces
to the use of the ETF kinetic energy density). However, in this case we find discrepancies
between ETF and quantal surface energies of 10% and 7% considering ~

2 and ~
4 corrections,

respectively. This is an indication that ETF results are less well converged than the VWK
ones. As it also will be discussed later on, this is mainly due to the fact that VWK properly
sorts out the different orders in ~ which is not the case in ETF.

In Ref.[12] we have analyzed the surface energy in self consistent problems using the TF,
VWK, and ETF (up to ~

2 order) semiclassical approaches in comparison with the quantal
(HF) results. In this study we considered several Skyrme forces that cover a wide range of
effective mass values and incompressibility moduli in bulk matter at saturation. In general
the VWK2 surface energies are closer to the quantal values than the TF ones. (We call
VWK2 the VWK theory developed up to order ~

2, similarly VWK4 for the theory up to
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order ~
4, and analogously for the ETF theory.) The ETF2 surface energies are systematically

smaller than the corresponding quantal values, and their absolute error is always larger than
in the VWK2 case. An analysis of VWK and ETF calculations of half infinite nuclear matter
in relativistic mean field theory yields the same kind of conclusions and the quality of the
VWK2 results is seen to be systematically better than in ETF2 [13]. However, if one
compares the situation in the case of self consistent mean fields with respect to the case
of the external Woods-Saxon potential well, the agreement between the semiclassical and
quantal calculations of the surface energy worsens in the self consistent case, pointing to the
fact that in the self consistent problems the semiclassical ~-expansions are more involved
than in the case of an external potential. This aspect will be treated with more detail along
this paper.

Summarizing, from the previous discussion it is clear that the VWK and ETF methods
exhibit small but significant differences [11, 12, 13]. The reason lies in the fact, as already
mentioned, that ETF does not properly sort out the different powers in ~ and that it partially
sums terms to all orders in ~. On the other hand, our previous findings in the study of the
surface energy in the self consistent case [11, 12, 13] indicate that the splitting of the quantal
binding energies into their smooth and fluctuating parts is not so well under control (both
in ETF and in VWK) as in the case of an external potential.

The main purpose of this paper is to develop and apply the VWK theory to finite nuclei
in the self consistent case using both non-relativistic Skyrme forces and relativistic mean
field (RMF) interactions [3]. In the next section we present the basics of the VWK method
in the non-relativistic case with an alternative derivation to the one used in Refs. [11, 12]
to explicitly show the differences between the VWK and ETF methods. In section III
we first discuss within WK the external potential case to set the stage for the study of
finite nuclei with self consistent mean fields later. We show that for strongly triaxially
deformed mean field potentials with absence of any degeneracies, the semiclassical energies
are extremely close to the quantal ones. Approaching sphericity in a homothetic way the
shell structure becomes more and more apparent. Spherical open shell nuclei are slightly less
bound quantally than semiclassically. This gives rise for the binding energy per particle as
a function of particle number to the typical quantal arch structure between magic numbers
whereas the semiclassical curve is, of course, monotonous. Section IV is devoted to the
self consistent problem in finite nuclei. First, in section IV.A, we will show that using
Skyrme forces, the VWK2 and ETF4 approaches practically give the same energy along
the periodic table and that this fact is independent of the Skyrme interaction chosen. This
a priori satisfying feature reveals, however, that the semiclassical approaches VWK2 and
ETF4 overbind in excess, since even for the doubly magic nucleus 40Ca the Hartree-Fock
results gives less binding than the semiclassical ones. This is shown and discussed in section
IV.B, where also an ad hoc remedy to this problem is proposed. Several technical aspects
are discussed in Appendices 1 and 2.

II. THE VARIATIONAL WIGNER-KIRKWOOD THEORY

The VWK theory has formally been introduced in Refs. [11, 12, 13]. Here we present,
for a non-relativistic Skyrme force, a shortcut derivation in order to show explicitly the
similarities and differences with the ETF method. For the sake of simplicity we consider
symmetric and uncharged nuclei for the moment and, in this section, a Skyrme force with
an effective mass equal the physical one. In this case the total energy of a nucleus in the
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ETF approach up to order ~
2 (ETF2) is written as [16, 17]:

E =

∫

d~r{ ~
2

2m

[3

5

(3π2

2

)2/3
ρ5/3 +

1

36

(∇ρ)2

ρ
+

1

3
∆ρ

]

+ a0ρ
2 + a3ρ

2+α + a12 (∇ρ)2}, (4)

where a0 = 3t0/8, a12 = (9t1 − 5t2 − 4t2x2)/64, a3 = t3/16, and α are the parameters that
characterize the Skyrme interaction. The terms inside square brackets correspond to the
ETF kinetic energy density τETF up to ~

2 order. The ρ5/3 term is the well-known pure TF
contribution, which is of order ~

0 in the expansion of the kinetic energy density in ~ powers.
The two remaining terms are of ~

2 order, and the first one is the so-called Weizsäcker term.
Clearly, τETF is a functional of the local density where the gradient terms are of second
order in ~.

Starting from Eq.(4) the Euler-Lagrange equation for the local density constrained to
give A nucleons reads:

~
2

2m

[(

3π2

2

)2/3

ρ2/3 +
1

36

(∇ρ)2

ρ2
− 1

18

∆ρ

ρ

]

+ 2a0ρ + (2 + α)a3ρ
1+α − 2a12 ∆ρ = µ, (5)

where the chemical potential µ is the Lagrange multiplier that ensures the right normal-
ization of the local density ρ. In the ETF method the variational equation (5) is solved
numerically, for instance using the imaginary-time step method [17]. However, the ETF ap-
proximation has some consistency problems with respect to the correct sorting out of powers
in ~ [12]. The reason is that the solution of Eq. (5) contains ~ at all orders due to the fact
that the Weizsäcker term in Eq.(4) is of order ~

2. Actually Eq.(5) has a similar structure as
a Schrödinger equation for ρ and thus the density contains ~ as an essential singularity [11].

In order to properly sort out the different powers in ~ (to second order in the present
example) one should split the local density and chemical potential entering in Eq.(5) into
their ~

0 and ~
2 parts:

ρ = ρ0 + ~
2ρ2 (6)

and
µ = µ0 + ~

2µ2. (7)

Using (6) and (7), the Euler-Lagrange equation (5) can be sorted into ~
0 and ~

2 terms. One
key point in the VWK theory is that the minimization is performed for each order in the
expansion parameter ~

2 separately since, in principle, ~ can be considered as an arbitrary
parameter (see Refs. [11, 12, 13] for a more detailed discussion of this point). Thus from
the Euler-Lagrange equation (5) one obtains

~
2

2m

(3π2

2

)2/3
ρ

2/3

0 + 2a0ρ0 + (2 + α)a3ρ
1+α
0 − 2a12 ∆ρ0 − µ0 = 0 (8)

at TF (~0) order, and

~
2

2m

[2

3

(3π2

2

)2/3
ρ
−1/3

0 ρ2 +
1

36

(∇ρ0)
2

ρ2
0

− 1

18

∆ρ0

ρ0

]

+ 2a0ρ2 + (2 + α)(1 + α)a3ρ
α
0 ρ2 − 2a12 ∆ρ2 − µ2 = 0 (9)

for the linearized second order correction. Another important point in the VWK theory is
that the TF local density ρ0, i.e. the variational solution of Eq.(8), fulfills the normalization
condition:

∫

d~rρ0 = A (10)
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and due to the fact that
∫

d~r
(

ρ0 + ~
2ρ2

)

= A, (11)

we immediately see that the integral over the second-order density vanishes. This condition
can be assured in adjusting µ2.

Now, splitting the total energy E into its ~
0 and ~

2 contributions and using Eqs. (8),
(10) and (11), one finds that in the VWK approach the energy of a finite nucleus including
corrections of order ~

2 can be written as:

E =

∫

d~r{ ~
2

2m

[3

5

(3π2

2

)2/3
ρ

5/3

0 +
1

36

(∇ρ0)
2

ρ0

+
1

3
∆ρ0

]

+ a0ρ
2
0 + a3ρ

2+α
0 + a12 (∇ρ0)

2}. (12)

Thus we arrive at the important result that the total energy up to order ~
2 is computed using

only the lowest-order solution (TF) of the Euler-Lagrange equation. In practice this amounts
to take the expression of the total energy as formally given by ETF2 but to compute it with
the TF density solution. Consequently, the VWK procedure is consistent with the spirit
of perturbation theory, since to calculate the energy at order ~

2 only requires knowledge of
the solution of ρ to the previous (~0) order [11, 12, 13]. The integral in Eq. (12) is defined
between r = 0 and the classical turning point rt where the TF density ρ0 vanishes. The
analysis of Eq. (12) near rt shows that ρ0 behaves as (rt − r)2 and, as a consequence, the
integrand of (12) is always finite in the whole domain of definition.

Of course the procedure can be continued to obtain the fourth order correction, see
Ref.[12] where this has been worked out in a slightly different way. The fourth order is,
however, much more complicated, and necessitates for instance the knowledge of ρ2 which
may not easily be accessible [12]. We remark that ρ2 is not needed in VWK2 for the
calculation of the energy. This is a consequence of the fact that the total energy is just
the quantity that is minimized and then the use of the Euler-Lagrange equations allows to
eliminate ρ2 in the expansion of the energy. However, the evaluation of other quantities that
are not minimized, e.g. kinetic energies or root mean square radii, etc., needs the explicit
knowledge of ρ2 when computed to ~

2 order.
It should be pointed out that in the general realistic case with effective mass different from

the bare nucleon mass, inclusion of the spin-orbit potential, etc., the VWK2 method follows
the same principle as in our schematic example. In practice one can take the corresponding
ETF2 expression for the ground-state energy and replace ρ(~r) by its TF solution ρ0(~r) which
is the self consistent solution of the lowest-order variational TF equation. We refer the reader
to Eqs. (A1)-(A5) of Ref. [23] for the detailed ETF2 expression of the energy in the case of
realistic Skyrme forces.

The same VWK theory can be applied to finite range effective forces such as the Gogny
interaction [2] although this case will not be treated explicitly in this paper. For this type
of forces the semiclassical single-particle potential is not only position but also momentum
dependent because of the finite range [12]. Then, in addition to the kinetic and spin-orbit ~

2

corrections to the energy, there is another ~
2 contribution coming from the exchange term.

Due to the k-dependence of the single-particle potential, the effective mass also becomes
momentum dependent, which introduces extra terms in the ~

2 energy not present in the case
of local forces as the Skyrme ones. The reader can find in Ref. [24] a detailed discussion
of the ETF approach in the case of a general finite-range effective force. In particular,
the kinetic and exchange energy densities in this case are given by Eqs.(39) and (40) of
that reference. On the other hand, we also will consider in this paper the VWK approach
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applied to the relativistic mean field theory for the description of nuclei. The relativistic
model automatically contains the finite range, spin-orbit and density dependence of the
nucleon-nucleon interaction. The basic relativistic VWK theory up to ~

2 order has been
worked out in Ref. [13] and applied to the analysis of half infinite nuclear matter. In the
case of finite nuclei the basic equations to be used for the VWK2 calculations are Eqs.(A7)-
(A11) of Ref. [23] together with Eqs.(5.8)-(5.12) of Ref. [20] computed with the solution of
the relativistic TF equations.

III. THE EXTERNAL POTENTIAL CASE

In order to get a deeper insight into the behavior of the semiclassical energies as compared
with the quantal ones before the study of finite nuclei with the use of self consistent mean
field potentials, we first analyze the simpler problem of a set of non-interacting fermions
submitted to an external potential well. In this case the VWK solution up to ~

2 order is
just the WK expansion of the local density [11, 12] as pointed out in the Introduction. We
will consider the model problems of harmonic oscillator and Woods-Saxon potentials. The
discussion of the harmonic oscillator, apart of being of interest by itself as it is one of the
most important model potentials in quantum mechanics, is relevant in different areas of
physics beyond the context of atomic nuclei, such as confined electron systems or trapped
ultracold fermion gases. A separate study for the harmonic oscillator potential including
deformation degrees of freedom and the problem of a cavity with sharp boundaries, where
the WK expansion cannot be applied, will be presented in a forthcoming publication [25].

One important quantity is the number of states (accumulated level density) up to an
energy ε, which is defined as [9]

N(ε) =

∫ ε

0

g(ε′)dε′. (13)

The level density g(ε) is given by

g(ε) = Tr[δ(ε − Ĥ)] =
∂

∂ε
L−1

β→ε

[

2

(2π~)3

∫ ∫

Cβ(~r, ~p)

β
d~rd~p

]

=
2

(2π~)3

∫ ∫

∂fε(~r, ~p)

∂ε
d~rd~p (14)

where L−1

β→ε is the inverse Laplace transform and the factor 2 takes into account spin degener-

acy. We use the notation Cβ(~r, ~p) for the Wigner transform of the single-particle propagator

Ĉβ = exp (−βĤ), and fε(~r, ~p) is the corresponding Wigner function whose semiclassical
expansion up to order ~

2 reads [9]

fε(~r, ~p) = Θ(ε − Hw) − ~
2

8m
∆V δ′(ε − Hw)

+
~

2

24m

[

(∇V )2 +
1

m
(~p · ∇)2V

]

δ′′(ε − Hw), (15)

where Hw is the classical mean field Hamiltonian (Wigner transform of Ĥ).

7



Inserting Eq.(14) into (13) one obtains the accumulated level density from the Wigner
function as

N(ε) =
2

(2π~)3

∫ ∫

fε(~r, ~p)d~rd~p. (16)

In the same way the energy of a set of fermions in a potential well filled up to the Fermi
energy ε can be expressed as

E(ε) =

∫ ε

0

ε′g(ε′)dε′ =
2

(2π~)3

∫ ∫

fε(~r, ~p)Hwd~rd~p. (17)

To simplify the calculation of N(ε) and E(ε), it is helpful to realize that Hw is the
natural variable for fε(~r, ~p). In particular, the classical spherical harmonic oscillator (HO)
Hamiltonian Hw = p2/2m + mω2r2/2 = P 2 + Q2 can be seen as the square of a radial

component
√

P 2 + Q2 in polar coordinates, with a polar angle θ = arctan(P/Q). In a
similar way, for a more general potential with spherical symmetry, radial and polar angle
coordinates can be defined in phase space by

√

H̃w =
√

Hw − V (0), (18)

where V (0) is the bottom of the potential, and

p2

2m
= H̃w sin2 θ, V (~r) − V (0) = H̃w cos2 θ. (19)

This allows switching from the variables (r, p) to the new ones (Hw, θ) in the integrals over
phase space. An advantage of this procedure is that one automatically circumvents the di-
vergency problems usually encountered at the classical turning point when the ~

2 corrections
are taken into account. We will use this method to obtain the results for the accumulated
level density and energy as a function of ε for an external Woods-Saxon potential that we
will discuss later in this Section.

In the case of an external potential of HO type the integration of Eqs.(16) and (17) can
be done analytically. The semiclassical expressions of the accumulated level density and
energy read

NWK(ε) =
1

3

(

ε

~ω

)3

− 1

4

ε

~ω
(20)

and

EWK(ε) =

[

1

4

(

ε

~ω

)4

− 1

8

(

ε

~ω

)2

− 17

960

]

~ω, (21)

respectively, where the contribution −17~ω/960 in the last equation comes from the ~
4

correction. Notice that in a HO potential there is no ~
4 correction in NWK [6].

For the HO potential the quantal level density can also be obtained analytically [22, 26]
and reads:

g(ε) =
1

~ω

[(

ε

~ω

)2

− 1

4

](

1 + 2
∞

∑

M=1

(−1)M cos

(

2πM
ε

~ω

))

, (22)

which is seen to split into a part that smoothly varies with ε and a fluctuating part. The
smooth part is equal to the semiclassical WK expansion of the level density up to ~

2 (as
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already mentioned, the contributions of higher order in ~ vanish for the HO potential). The
fluctuating part corresponds to the shell correction and contains all the quantal effects not
included in the WK expansion. The quantal expressions for the accumulated level density
and energy can easily be calculated starting from Eq.(22):

N(ε) = NWK(ε) + 2

∞
∑

M=1

(−1)M

[

1

4π2M2

ε

~ω
cos

(

2πM
ε

~ω

)

+

(

1

2πM

(

ε

~ω

)2

− 1

4π3M3
− 1

8πM

)

sin

(

2πM
ε

~ω

)]

(23)

and

E(ε) = EWK(ε) + 2

∞
∑

M=1

(−1)M

[(

3

4π2M2

(

ε

~ω

)2

− 3

8π4M4
− 1

16π2M2

)

cos

(

2πM
ε

~ω

)

+

(

1

2πM

(

ε

~ω

)3

− 3

4π3M3

ε

~ω
− 1

8πM

ε

~ω

)

sin

(

2πM
ε

~ω

)]

~ω. (24)

Therefore, in this simple model the separation of the total energy in a smooth (liquid drop
like) part Ẽ and a shell correction part δE, like in Eq.(1), is obtained analytically.

The upper panel of Fig.1 displays the accumulated level density N(ε) for a set of fermions
in a fixed spherical HO potential calculated semiclassically and quantally, as a function of
the Fermi energy ε divided by ~ω. The quantal result exhibits discontinuities at each major
shell (N = 2, 8, 20, 40, 70, and 112 in the figure) and is represented by a staircase function
formed by horizontal and vertical lines which fluctuate around the smooth value of N(ε).
The latter is provided by the WK value given by Eq.(20) and is represented by the solid
curve of the upper panel of Fig.1. In the same panel we display the oscillatory part of
N(ε) (dashed curve), i.e., the quantal minus the semiclassical values, which contains the
fluctuations due to the shell effects. One sees that the quantal part of the accumulated level
density oscillates around zero.

The lower panel of Fig.1 displays the quantal and semiclassical WK values of the total
energy E(ε)/~ω for the spherical HO potential by the staircase and solid curves, respectively.
In the same lower panel, the shell energy, i.e. the difference between the quantal and
semiclassical values, is represented by the dashed line. Again it can be seen that the shell
energy fluctuates around zero and that the semiclasical WK estimate of E(ε)/~ω averages
the quantal values. As it has been pointed out in the Introduction, the WK approach to
E(ε) including ~

4 corrections coincides with the Strutinsky average in the HO potential [6].
We have performed the same kind of analysis for the more realistic potential well of

Woods-Saxon (WS) type used in Ref. [27]: V (r) = V0/[1 + exp ( r−R
a

)] with the values

V0 = −44 MeV, a = 0.67 fm and R = 1.27A1/3 fm. We have computed quantally and
semiclassically (with pure TF and with WK up to ~

2 order) the accumulated level density
and energy of neutrons (spin degeneracy is assumed) in the above WS potential with a size
corresponding to a nucleus of A = 208 nucleons. The calculated N(ε) and E(ε) are displayed
as a function of the Fermi energy ε in the upper and lower panels of Fig.2, respectively.
Again the staircase and solid curves correspond to the quantal and WK results, respectively,
whereas the dashed lines are now the pure TF values. As in the case of the HO potential, the
WK estimate of the smooth parts of N(ε) and E(ε) passes well through the corresponding
staircase functions and averages the quantal accumulated level density and energy.
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For the WS potential the equivalence between the semiclassical WK expansion and the
Strutinsky average cannot be established analytically. It has been checked numerically that
both methods, with high accuracy, give the same value for the energy, at least in the case
where the chemical potential is sufficiently negative [9, 12, 17, 27]. However, the situation
may be different when the Fermi energy is close to zero. In this case, the semiclassical WK
and Strutinsky level densities start to deviate from one another when ε approaches zero.
The WK level density, which includes ~

2 corrections shows a ε−1/2 divergency at ε = 0 for
a finite potential as the WS one, whereas the Strutinsky averaged level density only has a
strongly pronounced, but finite, maximum [28]. In Refs. [29, 30] it was concluded that the
divergency of the WK level density for ε → 0 is unphysical and preference should be given to
the Strutinsky smoothed level density. However, we would like to recall that WK quantities
have to be understood in the sense of distributions [9, 10]. Therefore, a diverging WK level
density should not be taken literally and only used under integrals. For example, in the
upper and lower panels of Fig.2 one sees that the accumulated semiclassical level density
N(ε) and the total energy E(ε) are well behaved and accurately average the corresponding
quantal values even for ε → 0. The TF accumulated level density and energy show similar
tendencies to those exhibited by the WK results. However, the TF average of the quantal
values is less good than the one obtained at the WK level. This fact demonstrates the
importance of the ~-corrections in the Wigner function (15) to obtain the correct average of
the quantal results.

Usually the various quantities like energy, kinetic energy, etc. for a system containing a
fixed number of particles N are not displayed as a function of the chemical potential µ [given
by N = N(µ)], but rather as functions of the particle number. For example, having the
energy E(µ) and the accumulated level density N(µ) as functions of the chemical potential
µ we can consider the inversion µ = µ(N) and then obtain the energy as a function of the
particle number N , i.e E = E(N). The N dependence can be studied for a fixed external
potential. More realistically the potential well will change with the number of particles, as
e.g. the HO potential with ~ω ≃ 41A−1/3 MeV or the WS potential of Ref. [22]. Below we
will consider both cases: the most simple case of a fixed potential well and the case where
the potential changes with the particle number.

If the potential well has degenerate levels, the inversion µ = µ(N) is not unambiguous
in the quantal case, because the chemical potential is the same for various values of the
particle number N . This is for example the case for the spherical HO. To get around this
problem one can consider the spherical HO as the limit of a triaxially deformed HO in the
limit of zero deformation. In the triaxial case each level has only spin-isospin degeneracy.
However, for the purpose of our reasoning we here can disregard spin and isospin. Then in
the infinitesimal triaxially deformed HO all levels can be occupied by only “one nucleon”. In
the case of sphericity a major shell with HO principal quantum number n has a degeneracy
D(n) and the functions N(µ) and E(µ) are sharp staircase functions, whereas for very small
triaxial deformation the vertical jumps become slightly tilted and resolved in D(n) minuscule
staircases. In that case one then always has a definite number of particles for definite values
of µ and perfectly can find µ = µ(N) unambigously. Therefore also E(N) is well defined.
In the limit of zero deformation this leads to the uniform filling prescription of a degenerate
shell at sphericity.

With these preliminaries in mind, we show in the upper and lower panels of Fig.3 the
energy per particle as a function of the particle number for (i) a strongly deformed HO with
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frequencies
ωx = σ−1/3δ−1/2ω0, ωy = σ−1/3δ1/2ω0, ωz = σ2/3ω0, (25)

taking the values ωx = 0.460 ω0, ωy = 1.111 ω0, and ωz = 1.954 ω0, and (ii) a spherical
HO in the sense explained above. The HO depends as usual on particle number through
~ω0 = 41A−1/3 MeV and deformation is such that volume is conserved (ωxωyωz = ω3

0). In
the upper panel of Fig.3 we see that in the deformed potential [22] the quantal values (dots)
practically coincide with the WK values (solid line) and in any case WK perfectly averages
the quantal values. On the other hand, in the spherical case there is a surprise in the sense
that the WK-values do not pass, as a function of the particle number, through the average
of the quantal values: there are much more values above the WK-line than below and also
the deviations above the WK-line are stronger than below. This means that WK overbinds
with respect to the true average except at magicity.

In the light of the fact that for the separate curves E(ε) and N(ε) (see Fig.1) the semi-
classical values perfectly average the quantal ones also in the spherical case, the global
overbinding of WK as a function of the particle number may appear puzzling. The effect is,
however, known [31]. One can indeed show that an average over ε (or µ) of the fluctuating
part in (24) yields zero, whereas when expressed as a function of N the fluctuating part
shows a non-vanishing average, i.e. 〈 δE(µ) 〉µ = 0 but 〈 δE(N) 〉N 6= 0, where the brackets
〈 . . . 〉µ,N indicate averages over µ or N , respectively. This feature can also be understood
schematically from a different aspect in the following way. Suppose we consider a HO po-
tential of fixed size with very small triaxial deformation, i.e. we consider the uniform filling
prescription at sphericity. In a given shell the total quantal energy increases linearly with the
number of nucleons in the shell. On the other hand, on average the total energy, according
to Eqs. (20) and (21), increases at the TF level as Etot ∝ N4/3. This situation is detailed
in Table 1 for the n=4 shell of a spherical HO potential of fixed size, which contains the 1g,
2d and 3s levels. There we display the quantal and semiclassical (TF and WK including ~

2

corrections) chemical potentials and energies obtained in filling uniformly the shell assuming
spin degeneracy (the values are expressed in units of ~ω). The semiclassical chemical po-
tentials are obtained inverting Eq.(20) to find the corresponding value of µ which in turn is
used in (21) to calculate the semiclassical energies. The quantal chemical potential in each
spherical shell of the HO potential is given by µ/~ω = n+3/2. The number of particles and
energy in the n=4 shell are given by

N =

3
∑

n=0

D(n) + 2m = 40 + 2m (26)

and
E

~ω
=

3
∑

n=0

D(n)

(

n +
3

2

)

+ 2m

(

4 +
3

2

)

= 150 + 2m

(

4 +
3

2

)

, (27)

where D(n) = (n + 1)(n + 2) is the degeneracy of a shell including spin and m = 1, 2, 3, . . .
is the number of pairs (spin up and spin down) added to fill up the n=4 shell. From Table 1
we see that the TF energies always overbind the quantal values and the same is true for the
WK ones, except close to magicity where the n=4 shell is empty or completely full.

The shell correction, i.e. the difference between quantal and semiclassical energies, is
displayed in Fig.4 as a function of the number of particles in the shell. From this figure
it is clear that the TF approach is far from averaging the quantal values and that in the
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WK case the average is much improved. If the ~
4 corrections are added, in this case of

a fixed HO potential, the energy is shifted down by a constant amount of 17/960 (in ~ω
units) according to Eq.(21), but it cannot be distinguished from the ~

2-corrected result on
the scale of the figure. Therefore, the ~

4 corrections are very small as compared with the
~

2-ones demonstrating again the rapid convergence of the WK series. Thus, the situation
for a fixed HO potential is similar to that found in the more general case of a size dependent
HO potential as it can be seen comparing the lower panel of Fig.3 with Fig.4.

The lack of averaging in the energies found in the spherical potential is due to the large
degeneracy of the HO shells. If each shell is broken into D(n) small pieces, as in the case
of strong triaxiality, they are bound to stay close to the average which varies, as already
mentioned, as ∼ N4/3. In the case of sphericity this N4/3 behaviour is, as demonstrated
in Table 1, quantally replaced by straight line segments, each segment corresponding to a
major shell. Two segments join at a magic number with a characteristic overbinding which
is relatively small. In between two magic points the quantal straight line passes most of
the time above the concave semiclassical curve. This scenario can further be clarified by
the following investigation. The fact that for strong triaxiality quantal and semiclassical
calculations almost agree can be understood because in that case there do not exist degen-
eracies (besides some special cases where the axis ratios are formed by rational numbers
[26]). Therefore, the quantal level density is also practically smooth, and it almost coincides
with the semiclassical result.

In Fig.5 we show this, displaying the energy per particle as a function of triaxial defor-
mation for a HO well. To have a single deformation parameter d for the representation, in
this figure we have chosen the frequencies of the deformed HO according to

σ = 1 + d
√

3, δ = 1 + |d|
√

2 (28)

in Eq. (25). We see that for a mid-shell configuration (spin degeneracy) of N = 92 fermions,
the semiclassical and quantal values practically agree, up to very small fluctuations, down
to quite low deformations. The quantal energy suddenly raises when approaching sphericity.
For real nuclei this means that binding energy is lost at sphericity. The only slight exception
to this scenario is for deformation ∼ 0.6 where the frequency ratio is close to ωx : ωy : ωz ∼
1 : 2 : 3. We, therefore, see that in forcing open shell nuclei to be spherical one loses a lot of
binding energy. As a matter of fact, this loss of binding energy starts immediately off magic
numbers and increases towards mid shell fillings. This explains why the semiclassical curve
mostly overbinds as a function of the shell filling. In the general case with mass number
dependent potentials, these considerations are slightly more complicated but the reasoning
which leads to the underbinding of quantal results for energies per particle keeping open
shell nuclei spherical is essentially the same. This is one of the explanations of the fact that
the shell corrections as a function of the particle number, do not oscillate around zero but
show a finite average value. Above we already have mentioned that this can also be seen
from the fact that as function of the particle number the fluctuating part in Eq.(24) does
not average to zero [31]. Below we will find that the same situation prevails in the case
of self consistent mean fields. We also would like to mention that similar features as those
discussed above in connection with deformation and degeneracy of the single-particle levels
have been found by Pomorski [32] using the Strutinsky smearing method applied in energy
space and in particle number space.

The above considerations only apply to spherical nuclei. In reality the force which holds
semimagic nuclei, e.g. tin isotopes, spherical is the magicity of the protons which resists to
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deformation. For deformed nuclei the situation is different and needs separate investigation.
In the lower panel of Fig. 3 we show what happens when the shape of the potential is free and
the energy minimised for each particle number with respect to deformation. The absolute
minimum of the quantal calculation is obtained allowing triaxial deformation in Eq.(25).
Now the arches are strongly flattened and in between magic numbers the energies per particle
lie practically on the semiclassical curve. Magic nuclei appear as exceptional points and a
particle number average will be close to the semiclassical result. Notice again that we are
now comparing absolute minima both in the semiclassical case (where they occur exclusively
at sphericity) and in the quantal one (where they are deformed, besides around magicity).
From this point of view, the close agreement between quantal and semiclassical results is very
satisfying and it likely is a generic feature valid also for other types of mean field potentials.
For real nuclei, deformed as well as spherical situations can happen. If both proton and
neutron numbers correspond to open shell situations, nuclei are in their majority deformed,
whereas if either the proton or neutron number is magic, nuclei usually are spherical, as
it happens for instance for the chain of Sn isotopes. Because of the numerical complexity
of the deformed case, we only will concentrate on spherical nuclei in the remainder of the
paper. More detailed investigations of the deformed situation will be presented elsewhere
[25].

The fact that the semiclassical results are not going through the average of the quantal
results as a function of A is somewhat annoying from the practical point of view, since we
cannot judge whether the semiclassical results are converged to the right value or not. In
the case of external potentials the answer to this question is easy to find: we take a fixed
potential and look at the WK results as a function of the chemical potential µ. We know
that in this case the semiclassical results should pass through the average of the quantal
ones (see e.g. Fig.2).

IV. THE SELF CONSISTENT POTENTIAL CASE

A. Finite nuclei

For spherical nuclei described self consistently through an effective interaction, the sce-
nario for the energy per particle as a function of the mass number stays qualitatively the
same as for the external potential case. Again, the typical arch structure with the values
at magicity barely undershooting the semiclassical line (see lower panel of Fig.3) appears.
In the upper panel of Fig.6 we present self consistent calculations of the shell energy per
particle, which is defined as Eshell/A = (EHF −Esemicl)/A, as a function of the mass number,
for the TF, VWK2, and ETF4 semiclassical approaches using the T6 force [33]. This Skyrme
interaction has an effective nucleon mass m∗ equal to the bare one m. In the calculations
shown in Fig.6, the Coulomb repulsion among protons and the spin-orbit force have been
switched off and only hypothetical spherical symmetric nuclei with N = Z are considered.
Later we will study realistic nuclei, but for the moment we want to avoid that these more
subtle effects contaminate the comparison of the semiclassical results with the quantal ones.

The same type of calculation is presented in the lower panel of Fig.6, now performed
using the very different Skyrme force SV [34] that has no density-dependent part (t3 = 0)
and for which the effective mass is m∗/m=0.38 in nuclear matter. In the case of the VWK2
calculation we encounter the same pattern as with the T6 force. However, the predictions of
the TF calculation are at variance with the case of the T6 interaction: for T6 they overbind,
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whereas for SV they underbind. This change in the behaviour of the TF solution is largely
due to the different values of the effective masses of the two forces, and we have documented
this fact already in earlier publications [12, 35]. Very satisfactorily, the deviation of the
VWK2 results from the HF ones only depends very little on the particular properties of the
effective interaction.

We have to remark the important feature that, as can be seen in Fig.6, the shell energies
per particle calculated with the VWK2 and ETF4 approaches are very close. We have tested
a whole series of Skyrme forces and did not find exceptions to this fact. As we will see below,
the inclusion of Coulomb and spin-orbit forces does not change this rule essentially. Thus,
with the VWK2 calculation one is able to obtain energies of an equivalent quality to the by
far more complicated ETF4 approach which requires sophisticated techniques for the self
consistent numerical solution of the variational equations.

Several additional comments should, however, still be made. Above we argued that ETF
is inconsistent in sorting out the powers in ~ and that consequently it converges less well
than VWK. We also gave arguments backed by explicit examples that VWK should converge
faster than ETF and that the ~

4-contribution to VWK should practically be negligible. This
was, however, for an external potential case. Perhaps the external potentials are particularly
difficult cases for ETF (for instance one has to solve a non-linear differential equation even in
the external potential case, whereas the WK expression can be used as is) and its convergence
properties are better in the completely self consistent case. Thus, it could be that both
the VWK2 (besides a small VWK4 correction as in the external potential case) and the
ETF4 results are converged to the same and definite semiclassical value for nuclear binding
energies. However, at this point this is a speculation. It may be that VWK2 and ETF4
coincide without both really having reached complete convergence to the actual semiclassical
average. For instance, it cannot be excluded that VWK4 could, in the self consistent case,
yield a contribution which is sensitively more important than in the external potential case.
This remark should be kept in mind when we discuss the results more closely below.

The uncertainty of the situation also comes from the fact that, as discussed above, we
do not have a precise criterion in the self consistent case what the semiclassical binding
energies as a function of the particle number should be, besides that they should coincide
with a Strutinsky self consistent calculation. The latter is, however, also slightly uncertain,
because the plateau condition is difficult to satisfy [22, 36] and up to date only a few
self consistent Strutinsky calculations with Skyrme forces exist in the literature [37, 38].
However, in any case the general agreement of VWK2 with ETF4 is quite remarkable and
adds more confidence to the semiclassical results, in spite of the fact that problems are not
all resolved as we will further discuss below.

In order to give additional backing to what is just outlined with more studies, we now
show on the upper panels of Figs.7 and 8 the energy and the shell correction per nucleon,
respectively, in a realistic case for nuclei along the valley of stability calculated with the
SkM∗ interaction including the Coulomb and spin-orbit forces. Most of the β-stable nuclei
displayed in Figs.7 and 8 were also used in Ref. [36], and they are spherical according to
the finite range droplet model (FRDM) [39]. We have also considered some other additional
nuclei which, according to the FRDM, are also β-stable [39] and spherical except for a few
of them [40]. Also in this realistic case we can observe the very close agreement between
the VWK2 and ETF4 methods. We also display the results of the ETF2 calculation and
notice that it is much less converged. The VWK2 approach to the relativistic mean field
theory has also been worked out [13] and we present the results for the same sample of nuclei
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along the valley of stability using the realistic, accurately calibrated parameter set NL3 [41]
on the lower panels of Figs.7 and 8. In the relativistic case the ETF4 corrections have not
been elaborated and we do not have the corresponding results available. We have found
the relativistic ETF2 results to be, as in the non-relativistic case, not so well converged as
VWK2 and we do not show them.

In Fig.8 we quite clearly see a deficiency of the semiclassical energies, already present in
the preceding figures: there is too much binding, even keeping in mind that the semiclassical
binding energies for spherical nuclei have a natural tendency to be stronger than the average
of the quantal values as discussed in section III. This drawback is particularly pronounced
in the case of Skyrme forces (we checked this with multiple Skyrme interactions). Also in
the relativistic case the semiclassical results give too much binding, in spite of the fact that
the doubly magic nuclei are (slightly) more bound quantally than semiclassically, what is
not the case for Skyrme forces, see Table 2. This situation clearly is unphysical. We will
comment further on this in the next subsection. Let us point out that in our prescription the
shell correction has been taken as Eshell = EHF −Esemicl, which in principle is different from
the often employed prescription where one takes Eshell =

∑

εi −
∑

εiñi as the difference of
the sum of the quantal single-particle energies and the Strutinsky averaged sum. However,
due to the Strutinsky energy theorem [9] the predictions of both procedures should agree if
the considered semiclassical approaches reproduce well the Strutinsky averaged value.

Concluding this subsection, we can say that the semiclassical limit of the energy per
particle of finite nuclei based on Skyrme or relativistic mean field theories has been estab-
lished on the VWK2 level. A quite intriguing coincidence between the VWK2 and ETF4
methods has been found. The significance of this fact is not entirely clear and will be dis-
cussed further in the next section. The ETF4 method exists since long whereas VWK2 is
new. Apart from the discussed conceptual differences in the rigorous power counting in the
~ expansion, the VWK2 method, see Eq.(12), has the advantage that the convergence is
faster and that the final formulas for the calculation E/A are very simple (only the solution
of the zeroth-order TF variational equation is needed!). The overbinding of TF and ETF
calculations of nuclei has been recognized in many studies since years ago (see e.g. Refs.
[16, 17, 18, 19, 20, 21, 22, 42, 43]), and it is also very much present in atomic physics calcu-
lations [44]. We have shown that the problem persists even in the more refined ETF4 and
VWK2 appoaches, and we will turn to it in more detail now.

B. The overbinding problem

In the last section we have seen that the scenario of the arch structure in the energy per
particle remains in the self consistent case qualitatively the same as in the external potential
case. However, we remarked a deficiency in the self consistent case which becomes apparent
when having a close look at the realistic cases presented in Figs.7 and 8. In Table 2 we present
the quantal and VWK2 energies for some magic nuclei calculated with the SkM∗ force and
with the NL3 parameter set of the relativistic theory. We see, that in particular Skyrme
forces overbind semiclassically, as it is also seen in the upper panels of Figs.7 and 8. The
fact that even doubly magic nuclei like 40Ca are more bound semiclassically than quantally
is clearly incorrect, even though we should be aware of the fact that we are dealing with
small differences of large numbers. In any case, taking self consistent Strutinsky calculations
as reference [37, 38], 40Ca and 208Pb are less bound, when averaged, than quantally. This
failure of the semiclassical approach is disappointing with respect to the external potential
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case where, as a function of energy (or chemical potential), we are used to the fact that the
VWK2 method gives extremely precise average quantities, like level densities, energies, etc.,
as has been demonstrated in the past with many examples [6, 9, 11, 12] (see also Figs.1 and
2 of this paper).

Let us try to find some reason for this deficiency and eventually a cure. What is different
between the external and self consistent potential cases? The only convincing difference
we can imagine is the fact that in the external potential case the density is a functional of
an external fixed potential V , i.e. ρ = ρ[V ] which is expanded in powers of ~, that is in
gradients of V . In the self consistent case the potential itself is a functional of the density
and therefore also the potential has then to be expanded in a power series of ~ (we did
not explicitly proceed in this way, but implicitly that is what it amounts to in the VWK
method). This double ~-expansion is very likely one of the reasons for the deterioration of
the results with respect to the external potential case. The WK expansion of the density
matrix is a local expansion in terms of distributions functions what probably does too much
harm to the self consistent potential. Some global features should be kept, even for the
average potential. For example, if we were given a self consistently averaged Strutinsky HF
potential, we would believe from our past experience that when it is taken as an external
potential in the evaluation of the semiclassical WK-HF energy this should give very precisely
the true Strutinsky averaged value of E/A. Of course, this would be an extremely laborious
detour. One can think of employing an approximate substitute of the Strutinsky potential.
A possibility is to take the self consistent potential evaluated in the ETF2 approach, instead.
Indeed, as we mentioned earlier, in the ETF2 approach the density contains powers in ~

which are partially resummed to all orders in the self consistent calculation [11]. Therefore,
the corresponding single-particle potential, which is a well behaved smooth average potential
(see Fig.12), also contains some global properties.

We will apply this strategy to obtain another semiclassical estimate of the HF energy. To
this end we first run a self-consistent ETF2 calculation with the T6 force. Next, we take the
computed ETF2 mean field potential, including its spin-orbit and Coulomb contributions,
as if it were an external potential and with it we perform a WK2 calculation to obtain
the Skyrme energy, by using the WK expressions for particle and kinetic energy densities
including ~

2 corrections [9]. In this procedure, which clearly differs from the VWK method,
some divergences arise in the evaluation of some ~

2 contributions (see Appendix 1 for the
treatment of the divergence of the term (∇ρWK)2 in the Skyrme energy density). To cir-
cumvent this technical difficulty, a finite temperature WK calculation is performed [16, 48]
which is extrapolated to T = 0. The details of this method to estimate the semiclassical HF
energy are described in Appendix 2. The results obtained for the shell correction per particle
calculated for β-stable nuclei are shown in Fig.9 (curve labelled by “temperature extrapola-
tion”). We see that there is a substantial improvement over the VWK2 and ETF4 results.
The cure is not 100% though and there remains the fact that 40Ca is slightly more bound
semiclassically than quantally. However, globally, the average A-dependence of E/A is now
quite acceptable in particular towards the heavier nuclei. For example the shell correction
for 208Pb is now ∼ 20 MeV, well in line with the value reported from Strutinsky calculations
with the Gogny D1S and RMF NL3 effective nuclear interactions [36]. We agree that the
procedure is ad hoc; however, it helps to shed some light on the situation.

It is interesting to note that the WK-HF results in Fig.9 obtained with the ETF2 potential
can almost perfectly be reproduced within the VWK2 method with a fudge factor on the
VWK2 kinetic energy in the following way: in Eq.(12) we replace the factor 1/36 in front
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of the Weizsäcker term by 1.26/36 in order to increase the kinetic energy, i.e. to decrease
the binding. The same result can be obtained with ETF2 by replacing 1/36 by 1.8/36
(modifications of the value of the coefficient of the Weizsäcker term have been studied in the
literature since a long time ago, see e.g. Ref.[45]). We show these results for the T6 force
in the upper panel of Fig.10 and find that all these different prescriptions practically lead
to shell correction values on top of one another. The reason for this very close agreement,
found using different prescriptions to estimate the shell corrections, is at present unknown,
but it is a surprising and interesting feature.

Still we would like to deepen somewhat the discussion of the situation and of the pos-
sible reasons for the failure of VWK2 (and ETF4) to correctly reproduce the average. As
mentioned above, the implicit expansion of the average mean field in powers of ~ may be
the main direct reason. However, the very short range character of the nuclear force may
reinforce the problem at least in the non relativistic case. For Skyrme forces the zero range
character entails an unphysical shape of the self consistent TF potential. This can best be
studied in half infinite nuclear matter where the self consistent TF density can be obtained
in an analytic way by quadratures in the case of Skyrme forces [12, 46]. The TF density
ρ0(z) and the corresponding single-particle potential for a Skyrme force with m∗ = m

V (z) = 2a0ρ0(z) + (2 + α)a3ρ0(z)1+α − 2a12 ρ′′

0(z), (29)

are displayed in Fig.11. The TF density close to the turning point, chosen at z = 0, behaves
like limz→0 ρ0 ≈ z2 and the single-particle potential V (z) reaches the classical turning point
at z = 0 with zero slope. This feature is not very well seen in Fig.11 because it turns out
that the bending into the horizontal tangent only happens extremly close to the classical
turning point. On the other hand, such pathological behaviour is absent in the relativistic
mean field approach, since the forces are of finite range. In this case the TF potential has a
WS like shape and is continuous in whole space. This is shown in Fig.12 where we display
the TF neutron self consistent potential for 208Pb obtained with the NL3 parameter set.
We see that this potential has a very acceptable shape, not much different from the usual
phenomenological WS potentials with about a 2 fm wide fall off width. Also the derivative
of this potential is in no way anywhere more pronounced than the one corresponding to
phenomenological potentials (see Fig.12). From this fact we understand that, with respect
to the non-relativistic case of Skyrme forces, the semiclassical results are considerably better
in the relativistic case (see Table 2 and Figs.8 and 9). At least practically all doubly magic
nuclei are more bound quantally than semiclassically. However, for example for 208Pb the
shell energy turns out to be Eshell ≈ 6 MeV, a value which is about a factor 3 times too
small with regard to commonly accepted values [36, 37, 38]. Again this problem may be
attributed to this double expansion in gradients of the mean field potential and the potential
itself and, as already mentioned, it cannot be excluded that the ~-expansion converges in
the self consistent case more slowly than in the the external potential case. At any rate,
contrary to the situation with the Skyrme forces, in the relativistic case, as already stated,
the TF mean field potentials are perfectly smooth and well behaved and can, therefore, not
be incriminated. At the present moment it is unclear how to remedy this situation, other
than by prescriptions such as the ones presented above. However, even this must still be
refined in order to become entirely realistic.

A last comment may be in order at this point. We remark in Fig.10 that for 208Pb the
shell correction predicted by the ad-hoc methods is quite acceptable. However, there is a
continuous deterioration of the situation towards lighter nuclei. Such a deterioration can
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in fact also be seen in Fig.8 for the SkM∗ force and in Fig.9 for the T6 force, whereas in
the relativistic case (lower panel of Fig.8) the predictions for light nuclei are more robust.
For instance, both SkM* and T6 yield (wrongly) a positive shell correction energy of about
12 MeV for 40Ca in VWK2, while NL3 at least predicts a negative value of −2 MeV for
this nucleus (see Table 2). One possible explanation for this different behaviour could be
the different treatment of the spin-orbit potential in both cases. In the non-relativistic case
one should realize that the spin-orbit is not only expanded in powers of ~ but in addition
one assumes the smallness of the coupling constant and only the lowest order term is taken
into account. In reality the spin-orbit is a matrix problem as recognized by Frisk [47] and
then no expansion in the coupling constant is needed. To our knowledge, the validity in
the expansion of the coupling constant has never been checked. On the other hand in the
relativistic case such an expansion is absent, and the coupling of the spin-orbit is treated at
all the orders even in the semiclassical approach [20]. It is an open hypothesis whether this
difference can explain the different behaviour in the upper and lower panels of Fig.8. The
spin-orbit potential yields a surface contribution and this could point to the fact why in one
case things deteriorate towards lower mass nuclei whereas in the other not. More studies on
this issue are needed.

On the above grounds, it seemed interesting to us to also apply a fudge factor to the
kinetic energy in the relativistic case. With the very small coefficient 1.025 we obtain the
results shown in the lower panel of Fig.10. Now the shell energy of 40Ca is 5.6 MeV and the
one of 208Pb is 15 MeV. Both results are compatible with previously known values [36, 37, 38].
We therefore have now at hand, at least in the relativistic case, an ad hoc procedure which
yields reasonable shell energies throughout the periodic table. This very small correction
needed in the relativistic case may hint to the point that there the ~

4-corrections could cure
the overbinding problem with no need of a fudge factor. However, for 208Pb still ∼ 10 MeV
overbinding in the total energy occurs semiclassically whereas for an external potential the
~

4-corrections to the energy are typically ∼ 1 MeV only [9].
The conclusion of our study therefore is that the semiclassical method based on the

asymptotic expansion of the Wigner-Kirkwood type is in the self consistent case more fragile,
i.e. inaccurate, than in the external potential case. This failure in the case of finite nuclei
is in agreement with our earlier studies on the surface energies [11, 12, 13] which also turn
out to be much more accurate in the external potential case than in the self consistent one.
These findings are, however, sensitively more pronounced in the case of Skyrme forces than
in the case of relativistic mean field theory.
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V. CONCLUSIONS

In this paper we took up again the old problem of the Thomas-Fermi approach to nuclei
with incorporation of ~-corrections. As we have pointed out in earlier work [11], the well
established ETF scheme, lacking a correct sorting out of powers in ~, may show unnecessary
slow convergence properties. We therefore established a rigorous order by order ~ expan-
sion of the self consistent nuclear mean field problem which we named variational-Wigner
Kirkwood (VWK) theory. We here apply it for the first time to finite nuclei in realistic self
consistent mean fields at order ~

2 (VWK2), supposing that the ~
4-corrections be very small,

similarly to what is documented for the external potential case since several decades [9].
One essential finding of our investigation is that practically for all Skyrme forces VWK2

yields binding energies per particle very close to fourth order ETF functional theory (ETF4).
This result is good and bad at the same time. The good point is that the results from ETF4
can be reproduced with the much simpler VWK2 approach and that the agreement gives
further credit to the correctness of the semiclassical values. The bad side is that it is known
since long [16, 17, 18, 19, 20, 21, 22, 42, 43] that ETF even at order ~

4 produces E/A
values with too much binding yielding for instance for doubly magic nuclei (e.g. 40Ca or
208Pb) values which are lower in energy than the ones obtained from quantal Hartree-Fock
calculations. Evidently this overbinding problem is then also present in VWK2.

We advanced several arguments in regard to the overbinding problem such as the zero
range character of the Skyrme forces, leading to unphysical shapes of the self consistent
Thomas-Fermi mean field potential, and/or an insufficient treatment of the spin-orbit po-
tential. Those arguments are backed by the fact that in the relativistic RMF, with finite
range meson exchange potentials, the situation is considerably better. Indeed in that case
at least practically all of the doubly magic nuclei are more bound quantally than semiclas-
sically. This could stem from the fact that there the Thomas-Fermi mean field potential
is perfectly smooth resembling very much a realistic Woods-Saxon type of potential. Also
the spin-orbit is treated properly. However, the shell corrections, e.g. for 208Pb, are with
relativistic VWK2 (no ETF4 exists in that case) still roughly a factor of three too small.
This remaining failure could have as origin that in the self consistent case, contrary to the
external potential case, the mean field is itself a functional of the density and has to undergo
an ~-expansion (this remark is also true in the non-relativistic case). Evidently also missing
~

4-corrections can be invoked. One has to keep in mind, however, that for heavy nuclei
~

4-corrections are typically of order 1 MeV in the external potential case, whereas even in
RMF semiclassical energies are about 10 MeV overbound. Still, a slower convergence of the
~-expansion in the self consistent case is not to be excluded.

Since ~
4-terms enormously complicate the theory and the numerical treatment, we re-

frained from studying this here, and to gain further insight we rather investigated whether
the situation can be improved by ad hoc prescriptions. We report on several possibilities,
where a fudge factor of 1.025 on the kinetic energy in the relativistic case gives the most
satisfying results. Indeed, we show in the lower panel of Fig.10 the corresponding shell
energies for spherical nuclei as a function of mass number which we believe are quite real-
istic throughout. Probably, if in the non-relativistic case finite range forces were used, the
situation also would improve there and an approach like in Ref.[7] including ~

2-corrections
could be undertaken. However, even the Thomas-Fermi solution with the Gogny force shows
pathologies, since it still contains zero range pieces. We also should mention that for sim-
plicity our studies were done almost exclusively for spherical nuclei.

19



A result on the side, obtained in the external potential case, was that for spherical nu-
clei the semiclassical binding energies per particle as a function of particle number do not

pass through the average of the quantal results. Rather the semiclassical curve (see Fig.3)
shows more binding than the average. This fact, though not unknown [31], has not been
mentioned much in the past. This natural tendency of the semiclassical results to give in
the spherical case (for the deformed one, see Fig.3 and remarks towards the end of Section
III) more binding than the average should, however, not be confused with the overbinding
problem encountered in the self consistent semiclassical approach as discussed above and
in section IV.B. This is an additional and erroneous binding contribution contained in the
present semiclassical expressions which brings in the self consistent case semiclassical bind-
ing energies below the ones of doubly magic nuclei, in contradiction with results from self
consistent Strutinsky calculations where this is not the case and which should be the gauge
for semiclassical results.

Our studies may have relevance not only for nuclear systems but also for atomic physics
calculations and for all other inhomogeneous and/or self-bound Fermi systems like 3He drops,
trapped cold atoms, metallic clusters, quantum dots, etc., where the application of statistical
Thomas-Fermi methods is particularly helpful and valuable.
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VII. APPENDIX 1

As is well known the WK ~-expansion of the particle density involves divergent terms at
the classical turning point of the kind ∝ (µ− V )−n/2 where n is an odd integer and positive

number, V (~r) the external mean field potential, and µ the chemical potential. It is well
documented in the literature [9, 10] how to deal with this divergent part and to extract the
non divergent contribution of the corresponding integral. Actually, we gave in Section 3 a
recipe for solving this problem in the case of an external potential. Another way consists in
writing

(µ − V )−n/2 ∝
(

∂

∂µ

)n′

(µ − V )−1/2, (30)

where n′ = (n− 1)/2 and (µ−V )−1/2 is an integrable divergency, and the differentation can
then be done after the integration has been performed.

A case which is not so well studied is the one of ∝ (µ − V )−2n′

, i.e. terms with integer
powers of µ − V in the denominator. Such terms arise for instance when some powers of
the density have to be integrated. We will show here how to extract the finite part of such
integrals. In particular in the Skyrme energy computed at the WK-~2 level we have to find
the integral of the following expression (see Eq.(41) of Appendix 2):

(∇ρWK)2 = I0 + I2 (31)

with

I0 = C2

[

9

4
(µ − V )

(

∇V )2 +
3~

2

16m
∇

(

∆V
)

∇V

]

(32)

the non-diverging part and

I2 = C2
3~

2

64m

[∇V ∇
(

∇V
)2

+ 2∆V
(

∇V
)2

µ − V
+

3

2

(

∇V
)2

(µ − V )2

]

(33)

the diverging one (C is a constant). Without loss of generality we can assume here the
spherically symmetric case and then we can write for the integral of (33) i = i1 + i2 with

i1 = B1

∫ rc

0

drr2 G1(r)

µ − V
(34)

i2 = B2

∫ rc

0

drr2 G2(r)

(µ − V )2
(35)

where B1, B2 and G1, G2 are well defined constants and functions, respectively.
A judicious and frequently used strategy to isolate the finite contribution is to integrate

by parts and disregard the diverging integrated piece. We have

∂

∂r

1

µ − V
=

V ′

(µ − V )2
; V ′ =

∂V

∂r
. (36)

Then we can write for the integral of I2:

i1 + i2 =

∫ rc

0

dr
B1G̃1 − B2G̃

′

2

µ − V
= i, (37)
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where G̃1 = r2G1 and G̃2 = r2G2/V
′. We perform one further partial integration and write,

with x = r/rc,
∂

∂x
ln(1 − V/µ) = − 1

µ − V

∂V

∂x
.

Again neglecting the integrated part one obtains

i = rc

∫

1

0

dx
∂F

∂x
ln(1 − V/µ), (38)

where

F (x) =
[

B1G̃1 − B2G̃
′

2

] 1

∂V/∂x
. (39)

For example, for a Woods-Saxon potential the integral in Eq.(38) can directly be performed
numerically. In the case of a harmonic oscillator potential V = ar2 the integral can be
performed analytically:

i = γ
[

ln 2 − 4

3

]

, (40)

with

γ =
3

16

~
2

m
A2a2r3

c .

The above result is the value which is obtained looking up integral tables. We now want
to check the value of i with a second independent method. This can be done writing the
integral i at finite temperature (see Appendix 2), where it is not divergent, and evaluating
it as a function of T . At the end an extrapolation to T = 0 is performed. This method is
also well documented in the literature [16] and will be briefly discussed in Appendix 2 for
the sake of completeness. However, the extrapolation process needs some care and usually
the final number will only be precise to a couple of percent. Fig.13 displays, as a function of
temperature, the value of

∫

(∇ρ)2d~r obtained with a HO potential (upper panel) for A = 40
and a WS potential (lower panel) for A = 90. As it is discussed in Appendix 2, the linear
behaviour of this integral with T 2 breaks down about T = 1 MeV (as shown by the curves
that bend upwards in Fig.13), and the extrapolation to T = 0 MeV (dashed lines of Fig.13)
is needed. We find that the extrapolated values are 1.789 fm−5 and 2.494 fm−5 for the HO
and WS potentials respectively. The values calculated with (38) give 1.867 fm−5 (HO) and
2.383 fm−5 (WS), which correspond to relative differences of 4.2% and 7.4%, respectively.
Such errors are to be expected in the extrapolation procedure.

VIII. APPENDIX 2

In this Appendix we present the details of the method which has been used to obtain
the results displayed by the semiclassical “temperature extrapolation” curve in Fig. 9 of
Sect. IV.B. It is based on a calculation of the WK-HF energy including ~

2 corrections
that is built on top of a previously computed smooth mean field potential. The smooth
potential, including the spin-orbit ( ~W ) and Coulomb (VCoul) contributions, is generated
in a self consistent ETF2 calculation with the Skyrme T6 interaction. It is then used as
input for the WK calculation, where it is treated as an external potential. To circumvent the
divergence problems (see Appendix 1) in some ~

2 terms of the WK-HF energy functional, we
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compute the energy at finite temperature and take its limit (numerically) when T → 0. This
has been shown in the past [48] to be a very efficient procedure to overcome the divergences.

The expression of the WK energy in the case of a Skyrme force with m∗ = m, including
Coulomb and spin-orbit contributions, reads

EWK =

∫

d~r

{

~
2

2mn

[

3

5

(3π2

2

)2/3
ρ

5/3

WK,n +
1

36

(∇ρWK,n)2

ρWK,n

+
1

3
∆ρWK,n

]

+
~

2
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3

5
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5/3
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1

36
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2
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1

3
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1

2
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2
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1

2

)(

ρ2
WK,n + ρ2
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)

]

+
1

12
t3ρ

α
WK
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x3

2

)

ρ2
WK −

(

x3 +
1

2

)(

ρ2
WK,n + ρ2

WK,p

)

]

+
1

16

[

3t1
(

1 +
x1

2

)

− t2
(

1 +
x2

2

)

]

(

∇ρWK

)2

− 1

16

[

3t1
(

x1 +
1

2

)

− t2
(

x2 +
1

2

)

][

(

∇ρWK,n

)2
+

(

∇ρWK,p

)2

]

+
1

2
W0

[

~JWK · ∇ρWK + ~JWK,n · ∇ρWK,n + ~JWK,p · ∇ρWK,p

]

+ HCoul

}

. (41)

In this equation ρWK,q (q = n, p) is the WK neutron or proton density including ~
2 corrections

[9], and ρWK = ρWK,n + ρWK,p. The neutron or proton semiclassical spin-current density up
to ~

2 order is given by [15, 16]

~JWK,q = −2mq

~2
ρ0

WK,q
~Wq, (42)

where ρ0
WK,q is the TF (~0 part) of the WK neutron or proton densities, ~Wq is the (external

ETF2) spin-orbit potential, and ~JWK = ~JWK,n + ~JWK,p. The semiclassical Coulomb energy
density appearing in Eq.(41) is computed as

HCoul =
1

2
e2ρWK,pVCoul −

3

4

(

3

π

)1/3

e2ρ
4/3

WK,p , (43)

where VCoul is the Coulomb potential provided by the self consistent ETF2 calculation.
At a finite temperature the relevant thermodynamical potential which has to be mini-

mized is the free energy F , instead of the energy E. The free energy, the energy, and the
entropy S are related through

F = E − TS. (44)

In the WK approach E is given by Eq.(41) and the particle and kinetic energy densities at
finite temperature, for (external ETF2) nuclear Vq and spin-orbit Wq potentials, for each
kind of particle, read as [16, 48]

ρT
WK,q =

1

2π2

(

2mT

~2

)3/2{

J1/2(ηq) +
~

2

48m

[

∆Vq

T 2
J−3/2(ηq) +

3

4

(∇Vq)
2

T 3
J−5/2(ηq)

]

+
mW 2

q

2~2T
J−1/2(ηq)

}

(45)
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and

τT
WK,q =

1

2π2

(

2mT

~2

)5/2{

J3/2(ηq) −
~

2

48m

[

5
∆Vq

T 3
J−1/2(ηq) +

9

4

(∇Vq)
2

T 3
J−3/2(ηq)

]

+
5mW 2

q

2~2T
J1/2(ηq)

}

, (46)

where Jν(ηq) are the so-called Fermi integrals

Jν(ηq) =

∫

∞

0

dx
xν

1 + exp(x − ηq)
(47)

and ηq = (µq − Vq)/T is the fugacity parameter. In particular, the free energy F for a free
Fermi gas moving in single-particle and spin-orbit potentials is given by

Ffree,q = µqAq −
1

2π2

(

2mT

~2

)3/2 ∫
{

d~r
2

3
TJ3/2(ηq)

− ~
2

24m

[

∆Vq

T
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1

4

(∇Vq)
2

T 2
J−3/2(ηq)

]

+
mW 2

q

~2
J1/2(ηq)

}

, (48)

where µq and Aq are the chemical potential and the particle number of each kind of nucleon.
The final expression of the total free energy contains in addition to (48) the interacting
potential part of the Skyrme-WK energy (41). The contributions of the powers of the
particle density and its gradients in Eq. (41) are expanded in a Taylor series starting from
the expression (45) and only the linear terms in ~

2 are retained.
The ETF2 potentials used in Eqs.(45), (46) and (48) are obtained at zero temperature,

i.e., it is assumed that they are temperature independent. It should be pointed out that,
even in a fixed external potential, the system starts to evaporate nucleons as soon as the
finite temperature appears [48] and one should resort to e.g. a subtraction procedure [49] to
keep the integrated magnitudes finite and independent of the size of the box in which they
are calculated. However, as far as we are interested in the T → 0 limit of the free energy,
we can safely neglect the effects from evaporated nucleons because they are negligible below
T ≃ 2 MeV [37]. In such conditions one can consider the low-temperature expansion [50] of
the free energy and parametrize it below T = 2 MeV as F (T ) = E(T = 0) − a(T = 0) T 2.
However, it is to be noted that the integrals of some terms of the interacting WK free energy,
namely the ones coming from (∇Vq)

2 and from the exchange Coulomb potential, which show
a logarithmic divergence at zero temperature, start to depart from the linear behaviour with
T 2 below T = 1 MeV and bend upwards of the linear curve, similarly to what happens in
Fig.13 where the particular term

∫

(∇ρ)2d~r is plotted as a function of T 2. Thus, we have
estimated the WK energy by extrapolating the linear region in T 2 between T = 2 and T = 1
MeV. As an example, we display in Fig.14 the results of this procedure for the nuclei 40Ca
and 90Zr calculated with the Skyrme T6 force for which we find E ≃ −329.3 and −766.8
MeV, respectively.
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TABLE I: Chemical potential µ calculated quantally and semiclassically with the TF and WK

approaches [by inversion of Eq.(20)] as a function of the accumulated number of fermions occupying

the n = 4 shell in a spherical HO potential. Within this shell the quantal energy is computed

adding a quantum 11~ω/2 per fermion to the background energy obtained filling the previous HO

shells. The semiclassical energies are obtained from Eq.(21). Both µ and E are in ~ω units. Spin

degeneracy of each level is assumed.

N µ(QM) µ(TF) µ(WK) E(QM) E(TF) E(WK)

42 5.5 5.013 5.063 161. 157.919 161.092

44 5.5 5.092 5.141 172. 168.024 171.296

46 5.5 5.168 5.216 183. 178.284 181.653

48 5.5 5.241 5.289 194. 188.693 192.159

50 5.5 5.313 5.360 205. 199.248 202.809

52 5.5 5.383 5.430 216. 209.945 213.599

54 5.5 5.451 5.497 227. 220.780 224.526

56 5.5 5.518 5.563 238. 231.750 235.587

58 5.5 5.583 5.628 249. 242.851 246.778

60 5.5 5.646 5.690 260. 254.080 258.096

62 5.5 5.708 5.752 271. 265.434 269.539

64 5.5 5.769 5.812 282. 276.912 281.103

66 5.5 5.828 5.871 293. 288.510 292.787

68 5.5 5.887 5.929 304. 300.225 304.588

70 5.5 5.943 5.986 315. 312.056 316.504

TABLE II: Total energies per nucleon of some magic nuclei obtained with the SkM∗ and T6

Skyrme interactions and with the NL3 relativistic mean field parameter set in several approaches.

The Coulomb and spin-orbit forces are included in the calculations. The column VWK-T refers to

the empirical “temperature extrapolation” method described in Appendix 2.

SkM∗ SkM∗ T6 T6 T6 NL3 NL3

A HF VWK HF VWK VWK-T H VWK

16 −7.081 −7.309 −7.026 −7.348 −6.934 −7.282 −6.965

40 −8.126 −8.447 −8.141 −8.428 −8.243 −8.315 −8.265

48 −8.387 −8.565 −8.332 −8.596 −8.336 −8.461 −8.463

90 −8.502 −8.659 −8.514 −8.719 −8.527 −8.603 −8.641

208 −7.779 −7.777 −7.786 −7.828 −7.701 −7.845 −7.817
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FIG. 1: (Color online) Accumulated level density (upper panel) and total energy (lower panel)

with degeneracy 2 for a fixed spherical harmonic oscillator potential as a function of the Fermi

energy ε. Staircase, solid, and dashed lines correspond to the quantal, semiclassical (WK with ~
4

corrections), and shell correction (quantal minus semiclassical) values, respectively.
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FIG. 2: (Color online) Accumulated level density (upper panel) and total energy (lower panel)

with degeneracy 2 for a fixed spherical Woods-Saxon potential as a function of the Fermi energy

ε. Staircase lines correspond to the quantal values, while solid and dashed lines correspond to the

semiclassical WK with ~
2 corrections and TF results, respectively.
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FIG. 3: (Color online) Upper panel: quantal (dots) and WK (solid line) energy per particle in

a strongly triaxially deformed size-dependent harmonic oscillator potential as a function of the

number of particles. Lower panel: the same as in the upper panel but for a spherical size-dependent

harmonic oscillator potential (notice that the semiclassical WK curves are different in the deformed

and spherical cases). The squares depict the quantal energies per particle in the case that the

deformation of the harmonic oscillator potential is optimized leading to maximal binding. Notice

the close agreement with the semiclassical curve obtained for the spherical harmonic oscillator.
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FIG. 4: (Color online) WK2 (solid line) and TF (dashed line) shell energies, per particle, defined

as the difference between the quantal and semiclassical energies (in ~ω units) filling the n = 4 shell

of a fixed spherical harmonic oscillator potential as a function of the number of the particles in the

shell. The ~
4-corrections are indistinguishable from the solid VWK2-line.
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a set of 92 fermions submitted to a triaxilly deformed HO potential as a function of the deformation

d [Eqs.(25) and (28)]. Spin degeneracy is included.
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FIG. 6: (Color online) Upper panel: Shell correction Eshell = EHF − Esemicl in the TF, ETF4, and

VWK2 approaches for symmetric uncharged nuclei without spin-orbit force as a function of the

mass number A calculated with the Skyrme force T6 [33]. Lower panel: the same for the Skyrme

force SV [34].

31



0 50 100 150 200
A

-9

-8

-7

E
 /

A
  (

M
eV

)

Hartree-Fock
ETF4
VWK2
ETF2

Skyrme:   SkM*

0 50 100 150 200
A

-9

-8

-7

E
 /

A
  (

M
eV

)

Hartree
VWK2

RMF:   NL3

FIG. 7: (Color online) Energy per nucleon of β-stable spherical nuclei along the periodic table

calculated with the non-relativistic Skyrme force SkM∗ (upper panel) and with relativistic mean

field with parameter set NL3 (lower panel).
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FIG. 8: (Color online) Shell correction at VWK2 level of β-stable spherical nuclei as a function of

the mass number A calculated with the Skyrme force SkM∗ (upper panel) and using relativistic

mean field with parameter set NL3 (lower panel).
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FIG. 9: (Color online) Shell energies per nucleon along the β-stability line computed with the

Skyrme force T6 in several approaches, including the empirical temperature extrapolation method

described in Appendix 2.
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FIG. 10: (Color online) Upper panel: shell energies per nucleon along the β-stability line for

spherical nuclei computed with the Skyrme force T6 using the VWK2 approach and the different

empirical methods described in the text. Lower panel: same for the RMF parameter set NL3. In

this case the doubly magic, non β-stable nuclei 100Sn and 132Sn have been added for more complete

information.
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FIG. 12: (Color online) Neutron single-particle potential and its derivative for the nucleus 208Pb

obtained with the T6 Skyrme interaction in ETF2 and with the relativistic NL3 parameter set in

TF approximation.
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FIG. 14: (Color online) Extrapolation to T = 0 of the Skyrme energy (E) and free energy (F )
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