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Abstract

We derive analytical expressions for the excitation energy of the isoscalar giant

monopole and quadrupole resonances in finite nuclei, by using the scaling method and

the extended Thomas–Fermi approach to relativistic mean field theory. We study the

ability of several non-linear σ − ω parameter sets of common use in reproducing the

experimental data. For monopole oscillations the calculations agree better with exper-

iment when the nuclear matter incompressibility of the relativistic interaction lies in

the range 220–260 MeV. The breathing-mode energies of the scaling method compare

satisfactorily with those obtained in relativistic RPA and time-dependent mean field

calculations. For quadrupole oscillations all the analyzed non-linear parameter sets

reproduce the empirical trends reasonably well.
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1 Introduction

The relativistic mean field (RMF) approach to Quantum Hadrodynamics [1] has become

a very useful tool for describing ground-state properties of nuclei along the periodic table.

The simplest model, the linear σ − ω model of Walecka [2], describes the nuclear force

in terms of the exchange of σ and ω mesons. It is known that the value of the nuclear

matter incompressibility is unreasonably high in this linear model (K∞ ∼ 550 MeV), which

is a serious drawback for a precise description of some properties of finite nuclei and of

collective excitations such as the breathing mode (isoscalar giant monopole resonance). The

problem can be cured by introducing cubic and quartic self-interactions of the σ meson [3],

which in particular have the effect of lowering the incompressibility, and the model can be

refined by adding an isovector ρ meson. Current non-linear parameter sets, such as the NL3

parametrization [4], give ground-state binding energies and densities in very good agreement

with the experimental data, not only for magic nuclei but also for deformed nuclei as well

as for nuclei far from the stability line.

The RMF model has also been applied to describe dynamical collective motions in nuclei.

The basic theory of vibrational states in nuclei, the random-phase approximation (RPA)

[5,6], has been generalized to the relativistic domain (RRPA) [7,8,9] and it has been used in

calculations of isoscalar giant resonances, to obtain response functions and mean energies

for several magic nuclei. Small-amplitude collective motions such as the isovector dipole

oscillation and the isoscalar and isovector quadrupole oscillations [10], as well as the isoscalar

and isovector monopole oscillations [11], have been studied in the time-dependent RMF

approach. Another approach is based on constrained RMF calculations. It has been applied

to obtain breathing-mode energies and incompressibilities in the linear [12,13] and non-linear

[14,15] σ − ω models. The generator coordinate method, with generating functions that

are solutions of constrained RMF calculations, has been employed to compute excitation

energies and transition densities of giant monopole states [11,14]. Other calculations of

breathing-mode energies in the relativistic framework, see Refs. [15,16,17], have relied on

the scaling model in combination with the leptodermous expansion of the finite nucleus

incompressibility derived by Blaizot [18].
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In the non-relativistic framework it is well established that the RPA is the small ampli-

tude limit of the time-dependent Hartree–Fock approach [6,19]. In the relativistic case the

RPA configuration space must include negative energy states from the Dirac sea in order

to reproduce the results of time-dependent RMF or constrained RMF calculations [9,20].

Paraphrasing the statement, the RRPA corresponds to the small amplitude limit of the

time-dependent RMF theory in the no-sea approximation when the RRPA includes both

positive energy particle-hole pairs, and pairs formed from the empty Dirac sea states and

the occupied Fermi sea states.

Semiclassical methods in nuclear physics, like the Thomas–Fermi theory, have proven to

be very helpful for dealing with nuclear properties of global character that vary smoothly

with the particle number A (e.g., binding energies, densities and their moments) [6,21,22,23].

The success of these methods stems from the fact that the shell corrections (quantal effects)

are small as compared to the smooth part given by the semiclassical calculation. Semiclas-

sical techniques like nuclear fluid dynamics [24] and the extended Thomas–Fermi method

[25,26,27] have been applied to study giant resonances in non-relativistic models. In the

relativistic context, the nuclear fluid dynamics approach has been utilized, e.g., in Refs.

[28,29,30]. The authors of Refs. [31,32] resorted to a local Lorentz boost and the scaling

method to study isoscalar giant monopole and quadrupole states in the linear σ −ω model.

The investigations were carried out for nuclear matter (where a Thomas–Fermi approxi-

mation is exact) [31] and for symmetric, uncharged finite nuclei [32] whose densities were

solved in the relativistic Thomas–Fermi (RTF) approximation.

The relativistic extended Thomas–Fermi (RETF) method [33,34,35] is a refinement of

the RTF method, which incorporates gradient corrections of order h̄2 to the pure RTF ap-

proximation. It was derived only a few years ago and it has since been applied in calculations

of ground-state binding energies and radii of finite nuclei [34,36,37] and in investigations of

nuclear surface properties [34,37,38,39]. In the present work we shall use the RTF and

RETF approaches to calculate the excitation energies of the isoscalar giant monopole and

quadrupole resonances in spherical nuclei. This will be done by means of the scaling method,

within the framework of the non-linear σ − ω model and the RMF theory. We shall also
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perform constrained calculations for the monopole state.

Recently, the basic theory derived in the RTF approach has been applied to discuss the

virial theorem and to study the breathing-mode energy within the RMF theory [40]. In

the present contribution we analyze our self-consistent method in depth. To our knowledge,

for realistic non-linear parameter sets of the RMF theory, these are the first calculations

of isoscalar giant resonances in finite nuclei carried out with the scaling method which are

fully self-consistent (i.e., we do not make use of a leptodermous expansion as in previous

scaling approaches [15,16,17]). Owing to the meson-exchange nature of the relativistic model

one has to deal with finite range forces, which renders the scaling method more involved

than, e.g., for non-relativistic zero-range Skyrme forces. Moreover, in contrast to the non-

relativistic situation, there exist two different densities, namely the baryon and the scalar

density, in accordance with the fact that one has two types of fields, the vector and the

scalar field.

The article is organized as follows. After the introductory remarks, we collect the basic

expressions of the energy density and the variational equations of the RTF and RETF models

in Section 2. The third and fourth sections are devoted to the derivation of the equations

and the discussion of the numerical applications for the giant monopole and quadrupole

resonances, respectively. The conclusions are laid in the last section. Some technicalities

and a derivation of the virial theorem for the relativistic model are given in the appendices.
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2 Energy density and variational equations

The mean field Hartree energy density of a finite nucleus in the non-linear σ − ω model

reads [1,2,3]

H =
∑

i

ϕ†
i

[

−iα · ∇ + βm∗ + gvV +
1

2
gρRτ3 +

1

2
eA(1 + τ3)

]

ϕi + Hf . (2.1)

The relativistic effective mass (or Dirac mass) is defined by m∗ = m − gsφ, τ3 is the third

component of the isospin operator, and the subindex i runs over the occupied states ϕi of

the positive energy spectrum. Hf stands for the free contribution of the meson fields φ, V

and R associated with the σ, ω and ρ mesons, respectively, and of the Coulomb field A:

Hf =
1

2

[

(∇φ)2 + m2
sφ

2
]

+
1

3
bφ3 +

1

4
cφ4 − 1

2

[

(∇V )2 + m2
vV

2
]

− 1

2

[

(∇R)2 + m2
ρR

2
]

− 1

2
(∇A)2 . (2.2)

It is understood that the densities and fields are local quantities that depend on position,

even if we do not make it explicit in most of our expressions. Units are h̄ = c = 1.

The semiclassical representation of the energy density (2.1) has a similar structure,

except that the nucleon variables are the neutron and proton densities (ρn and ρp) instead

of the wave functions. In the RETF approach it reads [34,36,37,38,39]

H = E + gvV ρ + gρRρ3 + eAρp + Hf , (2.3)

where ρ = ρp + ρn is the baryon density, ρ3 = 1
2
(ρp − ρn) is the isovector density, and the

nucleon energy density E is written as E = E0 + E2 with

E0 =
∑

q

1

8π2

[

kFqǫ
3
Fq + k3

FqǫFq − m∗4 ln
kFq + ǫFq

m∗

]

(2.4)

and

E2 =
∑

q

[

B1q(kFq, m
∗)(∇ρq)

2 + B2q(kFq, m
∗) (∇ρq · ∇m∗) + B3q(kFq, m

∗)(∇m∗)2
]

. (2.5)

For each kind of nucleon (q = n, p), the local Fermi momentum kFq and ǫFq are defined by

kFq = (3π2ρq)
1/3, ǫFq =

√

k2
Fq + m∗2. (2.6)
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The coefficients Biq are the following functions of kFq and m∗ [34,39]:

B1q =
π2

24k3
Fqǫ

2
Fq

(

ǫFq + 2kFq ln
kFq + ǫFq

m∗

)

,

B2q =
m∗

6kFqǫ2
Fq

ln
kFq + ǫFq

m∗
,

B3q =
k2

Fq

24π2ǫ2
Fq

[

ǫFq

kFq
−
(

2 +
ǫ2
Fq

k2
Fq

)

ln
kFq + ǫFq

m∗

]

. (2.7)

The RTF approximation is obtained by neglecting E2 in Eq. (2.3). The gradients contained

in E2 arise from the RETF corrections of order h̄2 to the functional E0. Naturally, these

corrections are more important in the nuclear surface region where the densities and the

fields change more rapidly.

The semiclassical ground-state densities and meson fields are obtained by solving the

Euler–Lagrange equations δH/δρq = µq (with µq being the chemical potential) coupled to

the field equations

(∆ − m2
s)φ = −gsρs + bφ2 + cφ3, (2.8)

(∆ − m2
v)V = −gvρ, (2.9)

(∆ − m2
ρ)R = −gρρ3, (2.10)

∆A = −eρp. (2.11)

The semiclassical scalar density in (2.8) is given by

ρs =
δE0

δm∗
+

δE2

δm∗
= ρs0 + ρs2

=
∑

q

m∗

2π2

[

kFqǫFq − m∗2 ln
kFq + ǫFq

m∗

]

−
∑

q

[

B2q∆ρq + 2B3q∆m∗ +

(

∂B2q

∂ρq
− ∂B1q

∂m∗

)

(∇ρq)
2

+ 2
∂B3q

∂ρq
(∇ρq · ∇m∗) +

∂B3q

∂m∗
(∇m∗)2

]

. (2.12)
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Parenthetically, we would like to mention that the densities ρ, ρs and E above are the

semiclassical counterparts of the quantal densities ρ =
∑

i ϕ
†
iϕi, ρs =

∑

i ϕ
†
iβϕi and E =

∑

i ϕ
†
i [−iα · ∇ + βm∗]ϕi.

Since the energy density H is to be integrated over the space to compute the total

energy, the field equations (2.8)–(2.11) can be used to rewrite Hf , e.g., by transforming

[(∇V )2 +m2
vV

2] into V (−∆+m2
v)V = gvV ρ (valid, of course, under an integral sign). This

way, on defining an effective scalar density by

gsρ
eff
s = gsρs − bφ2 − cφ3, (2.13)

H can be recast as

H = E +
1

2
gsφρeff

s +
1

3
bφ3 +

1

4
cφ4 +

1

2
gvV ρ +

1

2
gρRρ3 +

1

2
eAρp. (2.14)

This form of H will be more convenient for facilitating the calculations to be presented

below.
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3 Giant monopole resonance

As far as the giant resonances are dynamical processes one must first describe the nucleus

from a moving frame [31,32]. This is a rather technical matter for our present purposes and

it is left for Appendix A, where we derive the expression of the energy of a nucleus within

the relativistic model in a frame moving with velocity −v. After performing the scaling

of the energy in this frame, one obtains general expressions for the two main ingredients

required for the calculation of the excitation energy of the giant resonance, namely, the

restoring force and the mass or inertia parameter (Eqs. (A.12) and (A.13), respectively).

The present section proceeds as follows. We begin by introducing our scaling approach

for the monopole vibration. Next we obtain analytical expressions for the restoring force and

the mass parameter of the monopole state. The calculational details of the derivatives of the

meson fields with respect to the collective coordinate of the monopole vibration are reserved

for Appendix B, where we also discuss the virial theorem (stationarity of the scaled energy)

for the relativistic model. Next in the section we give a brief summary of the constrained

approach to the breathing mode, for comparison with the scaling approach. The section

closes with the discussion of the results of our numerical calculations.

3.1 Scaling

Denoting by λ the collective coordinate associated with the monopole vibration, a normal-

ized scaled version of the baryon density is

ρλ(r) = λ3ρ(λr). (3.1)

Accordingly, the local Fermi momentum changes as

kFqλ(r) = [3π2ρqλ(r)]1/3 = λkFq(λr). (3.2)

The meson fields φ, V and R and the Coulomb field A are also modified by the scaling due

to the self-consistent equations (2.8)–(2.11), which will relate the scaled fields to the scaled

densities. Unfortunately, the meson fields do not scale according to simple laws like (3.1)

and (3.2) because of the finite range of the meson interactions. This is most apparent for
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the scalar field φ, since the scalar density in the source term of Eq. (2.8) transforms not only

due to the scaling of kFq but also of φ itself (or m∗), see Eq. (2.12) for ρs. For reasons that

will become clear immediately, we shall write the scaled effective mass m∗
λ(r) = m−gsφλ(r)

in the form

m∗
λ(r) ≡ λm̃∗(λr). (3.3)

Note that the quantity m̃∗ carries an implicit dependence on λ apart from the parametric

dependence on λr.

On account of Eqs. (3.2) and (3.3) the scaled semiclassical energy density Eλ = E0λ +E2λ

and scalar density ρsλ = ρs0λ + ρs2λ read

Eλ(r) = λ4E0[kFq(λr), m̃∗(λr)] + λ4E2[kFq(λr), m̃∗(λr)] ≡ λ4Ẽ(λr), (3.4)

ρsλ(r) = λ3ρs0[kFq(λr), m̃∗(λr)] + λ3ρs2[kFq(λr), m̃∗(λr)] ≡ λ3ρ̃s(λr). (3.5)

The tilded quantities Ẽ and ρ̃s are given by Eqs. (2.4), (2.5) and (2.12) after replacing m∗

by m̃∗. Note the usefulness of (3.3) to be able to write (3.4) and (3.5) in this compact form.

For the scaled total energy density Hλ we obtain

Hλ = λ3

[

λẼ +
1

2
gsφλρ̃

eff
s +

1

3

b

λ3
φ3

λ +
1

4

c

λ3
φ4

λ +
1

2
gvVλρ +

1

2
gρRλρ3 +

1

2
eAλρp

]

, (3.6)

with the definition

gsρ̃
eff
s = gsρ̃s −

b

λ3
φ2

λ −
c

λ3
φ3

λ. (3.7)

Observe that the same expression is valid regardless of performing the calculations in the

RETF model or in the RTF model, as the corrections of order h̄2 (E2 and ρs2) scale in the

same manner as the the Thomas–Fermi terms (E0 and ρs0).

3.2 Restoring force

The restoring force CM of the monopole vibration is given by the second derivative of the

scaled energy with respect to the collective coordinate λ, calculated at λ = 1 (Appendix A).

The first derivative of the scaled energy is

∂

∂λ

∫

d(λr)
Hλ(r)

λ3
=

∫

d(λr)

[

Ẽ − m̃∗ρ̃s −
1

2
gsρ̃

eff
s

∂φλ

∂λ
+

1

2
gsφλ

∂ρ̃eff
s

∂λ
− b

λ4
φ3

λ

9



− 3

4

c

λ4
φ4

λ +
1

2
gvρ

∂Vλ

∂λ
+

1

2
gρρ3

∂Rλ

∂λ
+

1

2
eρp

∂Aλ

∂λ

]

. (3.8)

Here we have used ∂Ẽ/∂λ = ρ̃s ∂m̃∗/∂λ (as ρ̃s = δẼ/δm̃∗) and

∂m∗
λ

∂λ
= m̃∗ + λ

∂m̃∗

∂λ
= −gs

∂φλ

∂λ
, (3.9)

from the definition (3.3) of m̃∗. Differentiating again with respect to λ and then setting

λ = 1 we have

CM =

[

∂2

∂λ2

∫

d(λr)
Hλ(r)

λ3

]

λ=1

=

∫

dr

[

−m̃∗∂ρ̃s

∂λ
− 1

2
gsρ̃

eff
s

∂2φλ

∂λ2
+

1

2
gsφλ

∂2ρ̃eff
s

∂λ2
+ 4

b

λ5
φ3

λ + 3
c

λ5
φ4

λ

− 3

λ4
(bφ2

λ + cφ3
λ)

∂φλ

∂λ
+

1

2
gvρ

∂2Vλ

∂λ2
+

1

2
gρρ3

∂2Rλ

∂λ2
+

1

2
eρp

∂2Aλ

∂λ2

]

λ=1

. (3.10)

The calculation of the derivatives of the scaled meson fields with respect to λ is illustrated

in Appendix B. There we also work out Eq. (3.8) at λ = 1, which leads to the virial theorem

(stationarity condition of the energy) for the relativistic mean field model. Following the

technique outlined in Appendix B we find

∂2Vλ(r)

∂λ2

∣

∣

∣

∣

∣

λ=1

=
∫

dr′ρ(r′)

[

2s
dVω(s)

ds
+ s2d2Vω(s)

ds2

]

, (3.11)

with

Vω(s) =
gv

4π

e−mvs

s
, s = |r − r′|. (3.12)

An equivalent expression holds for the field Rλ. As is well known, the second derivative

of the scaled Coulomb field Aλ vanishes [19] (you only have to evaluate (3.11) for a zero

meson mass). For the scalar field one gets a lengthier expression owing to the extra implicit

dependence of ρ̃eff
s on λ:

∂2φλ(r)

∂λ2

∣

∣

∣

∣

∣

λ=1

=
∫

dr′ρeff
s (r′)

[

2s
dVσ(s)

ds
+ s2d2Vσ(s)

ds2

]

−
∫

dr′

[

2s
dVσ(s)

ds

∂ρ̃eff
s (λr′)

∂λ
− Vσ(s)

∂2ρ̃eff
s (λr′)

∂λ2

]

λ=1

. (3.13)
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Inserting these results into Eq. (3.10) for CM we end up with

CM =
∫

dr

{[

−m̃∗∂ρ̃s

∂λ
+ gs

∂ρ̃eff
s

∂λ

∫

dr′ρeff
s (r′)s

dVσ

ds
− 3(bφ2 + cφ3)

∂φλ

∂λ

]

λ=1

− 1

2
gsρ

eff
s

∫

dr′ρeff
s (r′)

[

2s
dVσ

ds
+ s2d2Vσ

ds2

]

+ 4bφ3 + 3cφ4

+
1

2
gvρ

∫

dr′ρ(r′)

[

2s
dVω

ds
+ s2 d2Vω

ds2

]

+
1

2
gρρ3

∫

dr′ρ3(r
′)

[

2s
dVρ

ds
+ s2d2Vρ

ds2

]}

, (3.14)

After some algebra it is possible to recast the restoring force of the monopole state as

CM =
∫

dr

[

−m
∂ρ̃s

∂λ
+ 3

(

m2
sφ

2 +
1

3
bφ3 − m2

vV
2 − m2

ρR
2

)

− (2m2
sφ + bφ2)

∂φλ

∂λ
+ 2m2

vV
∂Vλ

∂λ
+ 2m2

ρR
∂Rλ

∂λ

]

λ=1

. (3.15)

Note that as in the case of Hλ the same expression holds in both the RTF and RETF

models. In each model one just has to compute CM with the ground-state densities and fields

obtained from the solution of the corresponding variational equations (which are modified

by the inclusion of the corrections E2 and ρs2). The derivatives with respect to λ entering

Eq. (3.15) can be calculated as indicated in Appendix B, Eqs. (B.4)–(B.7). We have found

CM to take positive values for all of the (linear and non-linear) parameter sets we have used

in the RTF and RETF calculations. A large part of the final value of CM (usually far more

than a half) is due to the contribution of the term −m∂ρ̃s/∂λ|λ=1.

Evaluation of the integrand of Eq. (3.15) in the limit of symmetric infinite nuclear matter

gives the result

K∞ρ∞ = 9
g2
v

m2
v

ρ2
∞ + 3

k2
F,∞

ǫF,∞
ρ∞ + 3

m∗
∞

ǫF,∞
ρ∞

∂m̃∗
∞

∂λ

∣

∣

∣

∣

∣

λ=1

. (3.16)

From the field equation for the scaled scalar field in nuclear matter we have

∂m̃∗
∞

∂λ

∣

∣

∣

∣

∣

λ=1

= −3g2
s

m∗
∞

ǫF,∞
ρ∞

[

m2
s + 3g2

s

(

ρs,∞

m∗
∞

− ρ∞

ǫF,∞

)

+ 2bφ2
∞ + 3cφ3

∞

]−1

, (3.17)

and, as expected, K∞ in (3.16) is seen to coincide with the expression of the bulk nuclear

incompressibility in the relativistic model [37,38].
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3.3 Mass parameter

As explained in Appendix A the mass parameter of the giant resonance is obtained from

the second derivative of the scaled energy in a moving frame with respect to the collective

velocity λ̇ = dλ/dt, see Eq. (A.13). The relation between the collective velocity λ̇ and the

velocity v of the moving frame is provided by the continuity equation (A.15) for the scaled

system. This equation suggests a radial velocity field of the form v = −λ̇u(r)r/r up to first

order in λ̇ for the monopole mode [12,13,15]. In terms of the displacement field u(r) the

mass parameter (A.13) is written as

B =
∫

dru2(r)H, (3.18)

while the continuity equation (A.15) becomes

dρλ(r)

dλ
−∇ ·

[

ρλ(r)u(r)
r

r

]

= 0. (3.19)

At λ = 1 Eq. (3.19) determines the displacement field as

u(r) =
1

ρ(r)r2

∫ r

0
dr′r′2ρT(r′), (3.20)

where

ρT(r) =
dρλ(r)

dλ

∣

∣

∣

∣

∣

λ=1

(3.21)

is the so-called transition density.

For the monopole mode ρλ(r) = λ3ρ(λr) and, thus, the transition density is given by

ρT(r) = 3ρ(r) + r
dρ(r)

dr
, (3.22)

which is known as the Tassie transition density. Partial integration of Eq. (3.20) with

(3.22) leads to the well-known result u(r) = r for the displacement field under the scaling

transformation. The mass parameter of the monopole oscillation thus becomes [31,32]

BM =
∫

drr2H. (3.23)

Finally one calculates the excitation energy of the monopole state in the scaling model as

Ēs
M =

√

CM

BM

. (3.24)
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Let us mention in passing that in the non-relativistic approach the mass parameter is

derived as Bnr
M =

∫

drr2mρ, with m being the nucleon mass. Actually, provided that BM

is replaced by Bnr
M in (3.24), the scaling energy of the monopole vibration can be formally

expressed as in the non-relativistic sum-rule approach. That is, Ēs
M =

√

m3/m1, where the

moment m1 is the energy weighted sum rule

m1 =
2

m
A〈r2〉 =

2

m2
Bnr

M , (3.25)

and m3 is the plus three energy moment related to the second derivative of the scaled energy

[19].

3.4 Constrained calculation

The giant monopole resonance can also be studied by performing a constrained calculation.

In the semiclassical context one has to minimize the constrained functional

∫

dr[H− ηr2ρ] = E(η) − η
∫

drr2ρ (3.26)

with respect to arbitrary variations of the proton and neutron densities and of the meson

fields. The densities, fields and energy obtained from the solution of the variational equations

associated to (3.26), now depend on the value of the parameter η. The nuclear r.m.s. radius

is calculated as

Rη =
[

1

A

∫

drr2ρ
]1/2

, (3.27)

where A is the mass number of the nucleus.

The constrained energy E(η) has a minimum at η = 0 which corresponds to the ground-

state r.m.s. radius R0. Following Refs. [12,13,14,15] one expands E(η) in a harmonic ap-

proximation about R0 to obtain the constrained incompressibility of the finite nucleus as

Kc
A =

1

A
R2

0

∂2E(η)

∂R2
η

∣

∣

∣

∣

∣

η=0

. (3.28)

In the constrained model the displacement field is also given by Eq. (3.20); now with a

transition density ρT(r) = dρ(r, η)/ds|η=0, where s = Rη/R0 − 1 denotes the collective
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variable of the constrained monopole oscillation [12,13,15]. The frequency of the constrained

isoscalar monopole vibration is computed as

Ēc
M =

√

AKc
A

Bc
M

. (3.29)

Again, we may notice that if in this equation the inertia parameter is replaced by its non-

relativistic limit Bnr
M , the energy of the constrained monopole vibration can be nominally

written in terms of sum rules. In the present case one hase Ēc
M =

√

m1/m−1, with m−1

being the inverse energy-weighted sum rule

m−1 = −1

2
A

∂R2
η

∂η

∣

∣

∣

∣

∣

η=0

=
1

2

∂2E(η)

∂η2

∣

∣

∣

∣

∣

η=0

. (3.30)

3.5 Numerical results

Our RTF and RETF results for the excitation energy of the isoscalar giant monopole res-

onance (GMR) obtained in the scaling approach are displayed in Table 1, together with

the empirical estimate Ex ∼ 80/A1/3 MeV [41]. We have considered the nuclei 40Ca, 90Zr,

116Sn, 144Sm and 208Pb for which recent experimental data on the GMR are available [42],

in addition to 16O and 48Ca. We have employed the non-linear parameter sets NL1 (incom-

pressibility K∞ = 211 MeV, effective mass in nuclear matter m∗
∞/m = 0.57) [43], NL3 [4]

(K∞ = 272 MeV, m∗
∞/m = 0.60), NL-SH [44] (K∞ = 355 MeV, m∗

∞/m = 0.60) and NL2

[45] (K∞ = 399 MeV, m∗
∞/m = 0.67). The predictive power of these parametrizations is

well known and some examples can be found, e.g., in Ref. [46] and references quoted therein.

The relatively new parameter set NL3 is considered to be the most successful relativistic

effective interaction so far. It is to be noted that the RMF parameter sets are determined

by least-squares fits to ground-state properties like radii, binding energies and spin-orbit

splittings of a few spherical nuclei. Then, there is no further adjustment to be made in the

parameters of the interaction.

From Table 1 we see that the smaller the mass number, the larger is the monopole

excitation energy. The energy of the GMR increases with increasing K∞ in the various

parameter sets. For example, in the RETF calculation the excitation energy for 208Pb is

12.7 MeV with NL1, while it is 18.4 MeV with NL2. At first glance the dependence on K∞
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is roughly linear for each nucleus. We realize that, overall, the importance of the gradient

corrections of order h̄2 included in the RETF approach is small for the GMR energy: the

RETF energies differ by less than 10% from the RTF energies. The largest deviations

between the RETF and RTF results are found for the lighter systems, where the surface

terms are comparatively more important. If we analyze the relative difference between the

RETF and RTF energies it is seen to decrease with increasing mass number in all sets, with

the sole exception of 16O with NL3. For example, the difference goes from −7% in 16O to

−1.6% in 208Pb with NL1. We observe that the sign of the correction to the energy of the

monopole state due to the h̄2 terms depends on the value of K∞. In the case of NL1 the

change of RETF with respect to RTF is negative. For NL3 and NL-SH the change becomes

more and more positive with K∞ (the effective mass m∗
∞/m of these two sets being almost

the same). When we look at NL2 the change is again positive, but smaller in relative value

than for NL-SH owing to the larger effective mass of NL2, which tends to counterbalance

the effect of K∞.

It is usually recognized that microscopic calculations of the isoscalar GMR energy in

nuclei provide a reliable source of information on the nuclear matter incompressibility K∞

[47,48]. The value of K∞ is an important ingredient not only for the description of finite

nuclei but also for the study of heavy ion collisions, supernovae and neutron stars. In prac-

tice one has several effective interactions which differ mostly by their prediction for K∞, but

otherwise reproduce satisfactorily the experimental data on ground-state properties. Com-

parison of the calculated GMR energies with experiment restricts the range of acceptable

values for the nuclear matter incompressibility of the effective nuclear force. From Table 1

we see that the empirical law Ex ∼ 80/A1/3 MeV roughly lies in between the predictions

of the NL1 and NL3 parameter sets, as expected from the reasonable value of K∞ in these

interactions. On the contrary, the NL-SH and NL2 parametrizations have too high a value

of K∞ and clearly overestimate the empirical curve and the experimental data for all the

considered nuclei. In Figure 1 we have drawn further RETF results for the excitation energy

of the monopole mode in comparison with the experimental data listed in Ref. [49], as a

function of the number of particles of the nucleus. (The RTF calculation displays basically
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the same trend as the RETF results.) Again, it is clear that the NL-SH and NL2 sets are

unable to describe the experimental values. The experimental points are roughly enclosed

within the predictions of the NL1 and NL3 sets. For medium mass nuclei NL1 is closer to

experiment than NL3, while for heavier nuclei the experimental energies tend to approach

the results obtained with NL3.

A further inspection of Table 1 shows that no RMF parameter set seems capable of

reproducing the mass-number dependence of the experimental data over the whole analyzed

region, particularly in the lighter nuclei. One should note, however, that the scaling cal-

culation provides a prediction for the mean value or centroid of the excitation energy of

the resonance. To establish a relation between the incompressibility K∞ and the experi-

mentally measured energies of the monopole mode the most favourable situation is met in

heavy nuclei, where the strength of the GMR is less fragmented than in medium and light

nuclei [42,49]. If we take into account the excitation energies of 116Sn, 144Sm and 208Pb,

according to Table 1 the nuclear matter incompressibility K∞ of the relativistic interaction

should lie in the range 220–260 MeV. If we only consider 144Sm and 208Pb, as in Ref. [20],

then K∞ would be restricted to the range 230–260 MeV. For comparison, the authors of

Refs. [11,20] conclude that the value of K∞ should be close to 250–270 MeV from their

time-dependent RMF and relativistic RPA calculations. The analysis of the relativistic

RPA peak energies reported in Ref. [9] for 208Pb suggests instead a range 235–250 MeV for

K∞. On the other hand, non-relativistic Hartree–Fock plus RPA analyses using Skyrme

and Gogny interactions determine K∞ to be 215 ± 15 MeV [47,48], thus lower than in the

RMF model.

The restoring force CM of the GMR defines the incompressibility Ks
A of the finite nucleus

in the scaling model through CM = AKs
A. In the limit of an arbitrarily large nucleus

Ks
A should approach the nuclear matter value K∞, see Eq. (3.16). This suggests a linear

dependence of the incompressibility of finite nuclei on the bulk incompressibility K∞ of

the effective interaction. In Figure 2 we display the value of Ks
A for the nuclei 16O, 40Ca,

116Sn and 208Pb obtained from our RETF calculation, as a function of K∞. Apart from the

parameter sets discussed in Table 1, we have employed the sets NL-Z, LZ, L1, L2, L3 and

16



HS compiled in Table 3 of Ref. [50], the sets NLB, NLC and NLD from Ref. [51], NL-RA1

from Ref. [52] and L0 from Ref. [43]. The bulk incompressibility of these sets spans a wide

range of values, from ∼ 175 to 625 MeV. The sets L0, LZ, L1, L2, L3 and HS correspond

to the linear model without scalar self-interactions.

The results of Figure 2 show a remarkable linear behaviour of Ks
A with the compression

modulus K∞. This is more true for the heavier systems on the one hand, and for the non-

linear parameter sets on the other hand. The linear sets show a considerable dispersion,

but one should take into account that only L0 and LZ were optimally adjusted to nuclear

ground-state properties and that, furthermore, L1, L2 and L3 do not include the ρ field.

The incompressibilities of 208Pb and 116Sn are nearly the same. To see a perceptible change

one has to go to 40Ca. In Figure 3 we have drawn the excitation energy Ēs
M of the monopole

state versus the K∞ incompressibility. As expected from the pattern displayed by Ks
A, the

monopole excitation energy increases smoothly with the bulk compression modulus, roughly

as a linear function of the square root of K∞ (in agreement, e.g., with Refs. [9,47]). Both

the effective mass at saturation m∗
∞ and the mass of the scalar meson ms play a major role

in the determination of the nuclear structure properties in the RMF theory. The effective

mass has a direct influence on the spin–orbit force and the single-particle levels, while the

scalar mass is related with the range of the attractive part of the effective nuclear force and

thus strongly affects the nuclear surface. One may wonder whether these two quantities

have some effect on the energy of the breathing mode. Figure 4 shows that this is not the

case, as no evident correlation seems to exist between Ēs
M and the value of m∗

∞ or ms.

From the data represented in Figure 2 we obtain the relations

Ks
A = 0.66K∞ − 12 MeV for 208Pb,

Ks
A = 0.65K∞ − 9 MeV for 116Sn,

Ks
A = 0.57K∞ − 7 MeV for 40Ca,

Ks
A = 0.45K∞ − 8 MeV for 16O. (3.31)

The expressions for oxygen and calcium are not as meaningful as for the heavier nuclei,

and we give them mostly for the purpose of illustration. Though there is a dependence on

the mass number, the slope of the linear fits (3.31) is visibly smaller than unity. Moreover,
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we have obtained a non-vanishing constant term. This is consistent with the leptodermous

expansion of the incompressibility of a finite nucleus, inspired from the liquid drop for-

mula, in which one separates the volume, surface, symmetry, Coulomb and higher-order

contributions by writing

Ks
A = K∞ + Ks

surf/A
1/3 + Ksym(N − Z)2/A2 + KCoulZ

2/A4/3 + · · · . (3.32)

The total incompressibility Ks
A receives a sizeable contribution from the surface term and

smaller contributions from the symmetry and Coulomb terms [18,53]. The sign of these

terms is negative and they considerably decrease the value of Ks
A in real nuclei with respect

to the K∞ limit [17,18,53,54]. A key point is the fact that the surface incompressibility Ks
surf

in the scaling model varies almost as a linear function of K∞, which guarantees that the

surface effects do not destroy the regular behaviour of Ks
A with K∞. For instance, our RETF

calculations of the Ks
surf coefficient for several relativistic parameter sets [55], by using the

scaling method in semi-infinite nuclear matter, confirm that Ks
surf in the relativistic model

indeed behaves roughly linearly with the bulk compression modulus, as happens with non-

relativistic Skyrme forces. In fact we have found [55] that the rule of thumb Ks
surf ∼ −K∞

known from the non-relativistic approach [54], also applies to non-linear RMF parameter

sets having not too large values of the compression modulus. In the case of the linear σ−ω

sets, which have a high K∞ value, one instead finds Ks
surf ∼ −1.5K∞.

It is interesting to compare (3.31) with the equations Ks
A = 0.62K∞ +23 MeV for 208Pb

and Ks
A = 0.49K∞ + 35 MeV for 40Ca obtained in Ref. [56] from an analysis of the scaling

incompressibility performed with the Skyrme forces SkM*, SGI and SIII. In the relativistic

model the independent term of the linear fits is negative and seems to be more constant

with mass number, but the coefficient in front of K∞ is similar in both the relativistic and

non-relativistic model. The authors of Ref. [56] signaled that the slope obtained for 208Pb

with the Skyrme forces approaches the hydrodynamical value π2/15 = 0.658, though they

stressed that this might be just accidental. It is at least curious to come across with the

same value in the relativistic model.

In assuming a nuclear matter approach Nishizaki et al. [31] estimated the monopole
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excitation energy of a finite nucleus in the relativistic model as

Ēs
M =

√

K∞

µ∞〈r2〉 , (3.33)

where µ∞ is the chemical potential of nuclear matter (including the nucleon rest mass),

〈r2〉 = 3
5
R2 and R = 1.2A1/3 fm. They evaluated (3.33) for the linear model of Walecka

using µ∞ = 923 MeV and K∞ = 525 MeV and found Ēs
M = 160/A1/3 MeV. This result has

the correct dependence on the mass number but it is twice as large as the empirical value

∼ 80/A1/3 MeV. Calculating (3.33) for the non-linear parametrizations NL1, NL3, NL-SH

and NL2 one finds Ēs
M = 102, 115, 132, and 140/A1/3 MeV, respectively. Compared to the

empirical law these values are too large by a factor ∼ 1.5–1.8, depending on the compression

modulus of the force. If we furthermore compare with the results of the calculations for

finite nuclei listed in Table 1, we realize that the finite size effects reduce the prediction

obtained from nuclear matter by a factor ranging from 1.6 in 16O to 1.3 in 208Pb, almost

independently of the parameter set.

In a recent work Piekarewicz [9] has given a thorough presentation of the relativistic RPA

formalism and has computed the isoscalar monopole mode for several closed-shell nuclei. In

the numerical calculations he has used the non-linear sets NLC and NLB and the linear

set L2′, which have the nuclear matter incompressibilities K∞ = 224, 421 and 547 MeV,

respectively. We present in Table 2 our values obtained from the scaling method versus the

RRPA peak energies of the isoscalar mode taken from Ref. [9], for the systems 40Ca, 90Zr

and 208Pb. A fairly good agreement is found between our semiclassical calculations and

the more fundamental RRPA approach. The differences are well below 5% in 208Pb and,

excluding the RETF result for 40Ca with L2′, below 10% in 40Ca and 90Zr. As discussed in

Ref. [9], it becomes difficult to even identify a genuine resonance in the RRPA distribution

of the isoscalar monopole strength for medium-size nuclei such as 40Ca with the parameter

sets NLB and L2′ which have large compression moduli.

The GMR has also been studied by means of constrained calculations in the RMF model

and, based upon them, with the more ellaborate generator coordinate method (GCM). The

constrained calculations in our semiclassical approach (see Section 3.4) are carried out in a

similar way to that of Refs. [12,13,14,15] within the quantal Hartree approach. We report in
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Table 3 the excitation energies of 16O, 40Ca, 90Zr and 208Pb calculated with the constrained

RETF method (for the NL1, NL2, NL3 and NL-SH sets), besides the constrained RMF

(CRMF) Hartree results of Ref. [14] and the GCM results of Ref. [11]. In non-relativistic

RPA calculations it is common to utilize the moments mk of the strength function to analyze

the monopole resonance [19]. The lowest moments correspond to simple sum rules and in

the limit of small amplitude oscillations the ratios
√

m3/m1 and
√

m1/m−1 can be identified,

respectively, with the scaling and constrained monopole excitation energies [18,47,57].

We see that the excitation energies of the monopole state are smaller in the constrained

model (Table 3) than in the scaling model (Table 1). This is in agreement with the non-

relativistic RPA inequality
√

m1/m−1 ≤
√

m3/m1 [19]. When the comparison is possible,

the energies obtained with the GCM are systematically smaller than in the CRMF Hartree

model, which in turn are smaller than in the constrained RETF approach. The constrained

RETF values agree very well with the GCM and CRMF values for NL1, but the agreement

worsens for light nuclei with the other parameter sets. In the case of 208Pb, for which the

semiclassical technique should work better, the constrained RETF calculation overestimates

the GCM value by around 1 MeV, the same magnitude by which the CRMF and GCM results

differ (for NL1 and NL-SH).

Vretenar et al. [11] have studied the GMR with the time-dependent RMF approach. (We

recall that very recently it has been demonstrated that the relativistic RPA, with inclusion

of Dirac sea states, is equivalent to the small amplitude limit of the time-dependent RMF

theory in the no-sea approximation [20].) In the calculations of Ref. [11] the main peak

appearing in the monopole strength distribution of 208Pb has energies 12.4 (NL1), 14.1

(NL3), 16.1 (NL-SH) and 17.8 MeV (NL2), while in the case of 90Zr the energies are 15.7

(NL1) and ∼ 18 MeV (NL3). For 208Pb our scaling results (cf. Table 1) show a good

agreement in all the parameter sets. In fact, if we focus on the RETF values, we see that

the scaling energies are an upper bound of the time-dependent RMF energies, while the

constrained energies of Table 3 represent a lower bound (apart from the case of NL-SH by a

little deviation). For 90Zr, however, both the scaling and constrained semiclassical excitation

energies are larger than those of Ref. [11]. It should be pointed out that the Fourier spectrum
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of 90Zr in the time-dependent RMF calculation is considerably fragmented (specially for the

sets with higher K∞) and then the determination of the centroid energy remains more

uncertain [11].
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4 Giant quadrupole resonance

In the quadrupole vibration the particle density scales as [19]

ρλ(r) = ρ(x/λ, y/λ, λ2z). (4.1)

While the volume element is conserved in both coordinate and momentum space, the mo-

mentum distribution, which remained spherically symmetric in the monopole oscillation,

becomes highly deformed in the quadrupole case [6,58]:

pλ = (λpx, λpy, pz/λ
2). (4.2)

One has to note that the spherically averaged form of the distribution function R(r, p)

cannot be employed in the quadrupole scaling calculations due to the deformation of the

Fermi sphere [58]. This means, in particular, that the spherically symmetric expressions

(2.4), (2.5) and (2.12) of the semiclassical energy density and scalar density are no longer

valid for use in the quadrupole scaling. That is, first, one should replace p by pλ in the

semiclassical expansion of the relativistic distribution function R(r, p) [34] and then obtain

its moments (energy and densities) as a function of the collective coordinate λ. This ex-

traordinarily complicates the expressions if the distribution function with terms up to order

h̄2 is to be used. Since the final magnitude of the contribution of the h̄2-order corrections in

the semiclassical calculation of the excitation energy of giant resonances is not very signifi-

cant, we will work at the Thomas–Fermi level in the present study of the giant quadrupole

resonance.

In the Thomas–Fermi approach the relativistic distribution function is proportional to a

step function (Appendix A and Ref. [34]), which vanishes for single-particle energies above

the Fermi level. The Thomas–Fermi energy density of the non-linear σ − ω model after

scaling then reads

Hλ =
2

(2π)3

∑

q

∫

dp
√

p2
λ + m∗

λ
2 Θ

(

µqλ −
√

p2
λ + m∗

λ
2 − uqλ

)

+
1

2
gsφλρ

eff
sλ +

1

3
bφ3

λ +
1

4
cφ4

λ +
1

2
gvVλρλ +

1

2
gρRλρ3λ +

1

2
eAλρpλ, (4.3)
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where Θ denotes the step function, µqλ is the chemical potential of the scaled system for

each kind of nucleon and the single-particle potential uqλ is given by

uqλ = gvVλ +
1

2
gρRλτ3 +

1

2
eAλ(1 + τ3). (4.4)

The scaled effective scalar density ρeff
sλ has been defined through

gsρ
eff
sλ = gsρsλ − bφ2

λ − cφ3
λ

=
2

(2π)3

∑

q

∫

dp
gsm

∗
λ

√

p2
λ + m∗

λ
2

Θ
(

µqλ −
√

p2
λ + m∗

λ
2 − uqλ

)

− bφ2
λ − cφ3

λ. (4.5)

The position and momentum variables in these expressions scale according to the rules (4.1)

and (4.2) in the quadrupole case.

To obtain the restoring force CQ of the quadrupole oscillation we have to compute the

second derivative of the scaled energy with respect to the collective coordinate λ. The first

derivative reads

∂

∂λ

∫

drHλ(r) =

∫

dr





2

(2π)3

∑

q

∫

dp
pλ

√

p2
λ + m∗

λ
2

∂pλ

∂λ
Θ
(

µqλ −
√

p2
λ + m∗

λ
2 − uqλ

)

− gsρ
eff
sλ

∂φλ

∂λ





+
∂

∂λ

∫

dr

[

1

2
gsφλρ

eff
sλ +

1

2
gvVλρλ +

1

2
gρRλρ3λ +

1

2
eAλρpλ

]

. (4.6)

It can be checked that this equation identically vanishes at λ = 1, as in the non-relativistic

case [19]. Before deriving again (4.6) it is helpful to take into account that, for instance,
∫

drρλ(r)Vλ(r) =
∫

drρ
(

x

λ
,
y

λ
, λ2z

)
∫

dr′ρ
(

x′

λ
,
y′

λ
, λ2z′

)

gv

4π

e−mv |r−r′|

|r − r′| =

∫

drρ(r)
∫

dr′ρ(r′)Vω(sλ), (4.7)

where

Vω(sλ) =
gv

4π

e−mvsλ

sλ

, sλ = (λx − λx′, λy − λy′, z/λ2 − z′/λ2). (4.8)

With this, after some algebra, the restoring force of the quadrupole mode can be put in the

form

CQ =

[

∂2

∂λ2

∫

drHλ(r)

]

λ=1

=
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∫

dr

{

2

(2π)3

∑

q

∫

dp

[

p2
x + p2

y + 10p2
z

(p2 + m∗2)1/2
− (p2

x + p2
y − 2p2

z)
2

(p2 + m∗2)3/2

]

Θ(p − pFq)

+ gs

∂ρeff
sλ

∂λ

∣

∣

∣

∣

∣

λ=1

∫

dr′ρeff
s (r′)

1

s

dVσ

ds
s2
− − 1

2
gsρ

eff
s

∫

dr′ρeff
s (r′)

[

1

s

d

ds

(

1

s

dVσ

ds

)

s4
− +

3

s

dVσ

ds
s2
+

]

+
1

2
gvρ

∫

dr′ρ(r′)

[

1

s

d

ds

(

1

s

dVω

ds

)

s4
− +

3

s

dVω

ds
s2
+

]

+
1

2
gρρ3

∫

dr′ρ3(r
′)

[

1

s

d

ds

(

1

s

dVρ

ds

)

s4
− +

3

s

dVρ

ds
s2
+

]

+
1

2
eρp

∫

dr′ρp(r
′)

3e

4π

(

s4
−

s5
− s2

+

s3

)}

,

(4.9)

where we have set s2
∓ = s2

x + s2
y ∓ 2s2

z.

After performing the angular average in the integral over p and in the integrals over r

and r′, we finally get

CQ =
2

5

∫

dr

{

2

π2

[

k5
Fn

ǫFn

+
k5

Fp

ǫFp

]

− gsρ
eff
s

∫

dr′ρeff
s (r′)

[

4s
dVσ

ds
+ s2d2Vσ

ds2

]

+ gvρ
∫

dr′ρ(r′)

[

4s
dVω

ds
+ s2 d2Vω

ds2

]

+ gρρ3

∫

dr′ρ3(r
′)

[

4s
dVρ

ds
+ s2d2Vρ

ds2

]

− 2eAρp

}

. (4.10)

As far as the nuclear part is concerned this result coincides with the one derived in Ref. [31]

for nuclear matter using a local Lorentz boost and the scaling method. The contributions

from the meson fields agree with the result obtained from the potential part of an effective

density-independent nuclear force in the non-relativistic model [57] (and the contribution

from the Coulomb field agrees with that given in Ref. [19]).

As in the monopole oscillation to calculate the mass parameter one needs the continuity

equation in a moving frame, Eq. (A.15). For the quadrupole vibration we have ρλ(r) =

ρ(x/λ, y/λ, λ2z) and the continuity equation (A.15) is fulfilled by v = −λ̇(−x,−y, 2z) =

−λ̇∇[
√

4π/5r2Y20(Ω)] at λ = 1 [31], which provides the connection between the velocity

of the moving frame and the collective coordinate. Proceeding similarly to the monopole

case, i.e., inserting this velocity field into Eq. (A.13) and taking the second derivative with
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respect to λ̇, the mass parameter of the quadrupole mode is found to be

BQ = 2
∫

drr2H, (4.11)

assuming the nucleus to be spherical. The excitation energy of the quadrupole state then is

Ēs
Q =

√

CQ

BQ

. (4.12)

The transition density in the quadrupole case is given by

ρT(r) =
dρλ(r)

dλ

∣

∣

∣

∣

∣

λ=1

= ∇ρλ(r)|λ=1 · ∇[
√

4π/5r2Y20(Ω)] =

√

16π

5
r
dρ(r)

dr
Y20(Ω), (4.13)

where again we have assumed the density to be spherically symmetric at λ = 1.

4.1 Numerical results

As we have indicated, our calculations for the quadrupole mode are restricted to the RTF

approximation. We collect in Table 4 the calculated excitation energy of the quadrupole

oscillation for 16O, 40Ca, 48Ca, 90Zr and 208Pb, along with the empirical law Ex ∼ 65/A1/3

MeV and some experimental data taken from Ref. [41]. The theoretical results shown in

this table correspond to the non-linear sets NL1, NL3, NL-SH and NL2, and to the set LZ

(K∞ = 586 MeV, m∗
∞/m = 0.53) which we take as a representative of the linear sets.

One can see that the four non-linear σ − ω parametrizations reproduce the empirical

trend and that, contrary to the situation found in the monopole case, they give rather

similar results for each nucleus. This is due to the fact that the energy of the quadrupole

vibration is basically independent of the bulk compression modulus of the effective force.

Nevertheless, the comparison with experiment favours the NL3 set and, especially, the NL1

set (i.e., those sets with a lower incompressibility). In fact, if the incompressiblity of the

force is very large (set LZ) the theoretical predictions clearly overestimate the experimental

values. The relativistic results of the non-linear sets compare well with those obtained

in non-relativistic Hartree–Fock and extended Thomas–Fermi calculations using Skyrme

forces [26]. Calculations of the isoscalar giant quadrupole resonance are rather scarce in the

relativistic domain. Time-dependent RMF calculations of this mode have been carried out
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in Ref. [10] using the NL-SH parameter set. Our relativistic Thomas–Fermi calculation is in

good agreement with the excitation energies of 23.6, 17.7 and 17.7 MeV for 16O, 40Ca and

48Ca, respectively, reported in that work.

The energy of the quadrupole excitation has also been evaluated by Nishizaki et al. [31]

from a nuclear matter approach as

Ēs
Q =

√

√

√

√

6k2
F,∞

5ǫF,∞µ∞〈r2〉 , (4.14)

where 〈r2〉 has been defined in Eq. (3.33). In this approximation the restoring force of the

quadrupole vibration corresponds to the nuclear matter limit of Eq. (4.10), where all the

terms with derivatives of the meson fields vanish and only the first term survives. Note that

the incompressibility K∞ of the interaction does not enter Eq. (4.14). According to this

equation one obtains Ēs
Q = 85, 84, 81, 80, and 76/A1/3 MeV for the LZ, NL1, NL3, NL-SH

and NL2 sets, respectively. We thus see that in nuclear matter Ēs
Q decreases as the value

of the effective mass at saturation of the force (m∗
∞) increases. However, in the full RTF

calculation for finite nuclei (Table 4) the regular pattern of Ēs
Q with m∗

∞ observed in nuclear

matter is destroyed by the finite size effects. In the case of finite systems one not only has

the additional contribution from the meson fields into Eq. (4.10), but also the nuclear part

is modified by the shape of the nuclear surface, this one depending in turn on the mass of

the sigma meson ms. Such effects mask the simple relation of Ēs
Q with m∗

∞ shown by the

naive nuclear matter approximation.
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5 Summary and conclusions

We have studied the isoscalar giant monopole and quadrupole resonances of finite nuclei

by means of the scaling method and the Thomas–Fermi and extended Thomas–Fermi ap-

proaches to relativistic mean field theory. Self-consistent numerical calculations for realistic

non-linear σ − ω parameter sets have been discussed. Previous relativistic investigations

with the scaling method either relied on a leptodermous expansion of the finite nucleus

incompressibility [15,16,17], or were limited to the linear σ − ω model for symmetric and

uncharged nuclei at the Thomas–Fermi level [31,32].

In the present approach one starts by scaling the spatial and momentum coordinates

of the semiclassical distribution function in a moving frame. By taking the derivatives of

the scaled energy in the moving frame with respect to the collective coordinate and the

collective velocity, one obtains the expressions from which the restoring force and the mass

parameter of the resonance can be computed. The underlying reason for the success of the

method is that in the semiclassical approach the energy functional is written explicitly in

terms of the local Fermi momentum and of the local effective mass, which allows one to

easily perform the scaling. Due to the finite range of the relativistic interaction no compact

formulas can be obtained as in the case of non-relativistic Skyrme forces. Nevertheless, the

scaling excitation energies of the monopole and quadrupole resonances only depend on the

ground-state densities and fields, which means that they can be computed as a by-product

of a semiclassical self-consistent calculation of the ground state.

We have found that the total contribution to the excitation energy of the GMR coming

from the gradient corrections of order h̄2, which are included in the RETF approach, does

not modify the Thomas–Fermi result very much. The strength and sign of these corrections

of order h̄2 is strongly correlated with the nuclear matter incompressibility and the effective

mass at saturation of the relativistic interaction.

We have investigated the relation between the incompressibility Ks
A of finite nuclei in

the scaling model and the compression modulus of nuclear matter K∞, employing a vari-

ety of relativistic parameter sets. The dependence is roughly linear, as in non-relativistic

analyses. Even a nucleus such as 208Pb is not large enough to obtain a relation of propor-
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tionality between Ks
A and K∞. The excitation energy of the monopole oscillation increases

smoothly with K1/2
∞ , in correspondence with the behaviour of Ks

A. No regular pattern of the

monopole excitation energy with the mass of the scalar meson or with the effective mass of

the interaction has been observed.

The experimental excitation energies of the monopole oscillation in medium and heavy

nuclei lie in between the results obtained with the NL1 and NL3 parameter sets. An analysis

of the calculated breathing-mode energies for 116Sn, 144Sm and 208Pb, for which precise

experimental data exist, predicts that the nuclear matter incompressibility should be around

220–260 MeV (230–260 MeV if only 144Sm and 208Pb are taken into account). A similar

analysis carried out in Refs. [11,20] using time-dependent RMF and relativistic RPA results

predicts a value slightly higher: 250–270 MeV. From the relativistic RPA peak energies

given in Ref. [9] for 208Pb we extract a range of 235–250 MeV. Thus, all these relativistic

calculations point to a value of roughly 250±20 MeV for K∞, which is higher than the non-

relativistic estimate of 215 ± 15 MeV from Skyrme and Gogny forces [47,48]. Relativistic

parameter sets with large values of K∞ (such as NL-SH or NL2), which may otherwise

perform well in describing the data for nuclear masses and radii, should be discarded on the

basis of the experimental information on breathing-mode energies.

The results computed with the scaling method represent an upper bound of the mean

excitation energy of the GMR, to the extent that they are related with the cubic weighted

sum rule. Instead, the breathing-mode energies obtained from constrained calculations

rather represent a lower bound, since they are related with the inverse energy-weighted sum

rule. Actually, with all the parameter sets and nuclei analyzed, we have found the calculated

monopole energies to be larger in the scaling approach than in the constrained approach.

Our calculations of the excitation energy of the quadrupole oscillation have been re-

stricted to the Thomas–Fermi approach, to simplify the problems related with the distor-

tion of the Fermi sphere. All the considered non-linear parameter sets reproduce fairly well

the empirical trend, rather independently of the value of the compression modulus of the

force. Although a nuclear matter estimate predicts a decrease of the quadrupole excitation

energy with an increase in the value of the effective mass at saturation, the finite size effects
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and additional contributions from the meson fields mask this trend in the self-consistent

calculations for actual nuclei.

In conclusion, we hope to have shown that the scaling method can be confidently used to-

gether with the relativistic Thomas–Fermi approach to estimate the excitation energy of the

isoscalar monopole and quadrupole resonances in a simple and reliable way. The results for

the breathing mode turn out to be in good agreement with the outcome of dynamical time-

dependent RMF and relativistic RPA calculations. We can thus conclude that, similarly

to the non-relativistic case, also in the relativistic framework the semiclassical excitation

energies obtained with the scaling method simulate the results of the RPA. The method

introduced in this work also allows one to self-consistently compute the surface incompress-

ibility coefficient for relativistic interactions [55]. The study of other multipolarities using

a generalized scaling simultaneously with the relativistic Thomas–Fermi approach may be

a worthwhile task to pursue.
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Appendix A

In this appendix we derive the Thomas–Fermi expression of the energy of a nucleus described

by the non-linear σ − ω model in a frame moving with velocity −v. As a final product

we obtain general equations for the restoring force and the mass parameter of the giant

resonance. For simplicity we shall consider an uncharged symmetric nucleus (the ρ meson

field and the electromagnetic field behave like the vector field), and shall not include the

corrections of order h̄2 to the Thomas–Fermi approximation.

The semiclassical expressions of densities and energies are most conveniently derived from

the so-called phase-space distribution function [6]. For a Hamiltonian α · p + βm∗ + gvV

the distribution function in Thomas–Fermi approximation reads [34]

R =
1

2
Θ(µ − ǫ − gvV )

[

I +
1

ǫ
{α · p + βm∗}

]

, (A.1)

where µ is the chemical potential, ǫ =
√

p2 + m∗2 and I is the 4×4 unit matrix. Due to the

step function in (A.1), p takes values from zero up to the Fermi momentum pF. The scalar

field (φ) and the time-like component of the vector field (V ) transform to a frame which

moves with velocity −v like φ′ = φ and V ′ = γV , with γ = 1/
√

1 − v2. The distribution

function in the moving frame then is given by

R′ =
1

2
Θ(µ′ − ǫ′ − γgvV )

[

I +
1

ǫ′
{α · (p′ − gvV

′) + βm∗}
]

, (A.2)

where µ′ is the chemical potential in the new frame, ǫ′ =
√

(p′ − gvV
′)2 + m∗2, and we have

defined

V ′ ≡ γ vV. (A.3)

It is easy to see that Θ(µ′ − ǫ′ − γgvV ) = Θ(µ − ǫ − gvV ) [ = Θ(pF − p)] by expressing ǫ′

and µ′ through their values in the rest frame:

ǫ′ = γ(ǫ + p · v), µ′ = γ(µ + p · v). (A.4)

The baryon density in the moving frame is obtained as

ρ′ = 2
∫

dp′

(2π)3
Tr[R′ ] = 4

∫

dp

(2π)3

γ

ǫ
(ǫ + p · v)Θ(pF − p) = γρ, (A.5)
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where we have taken into account that dp′/ǫ′ = dp/ǫ (Lorentz scalars) and the fact that the

trace of the distribution function R′ equals 2Θ(pF − p). Similarly, the transformed scalar

density is

ρ′
s = 2

∫

dp′

(2π)3
Tr[ βR′ ] = 4

∫

dp

(2π)3

m∗

ǫ
Θ(pF − p) = ρs. (A.6)

The energy density in the moving frame is given by

H′ = 2
∫

dp′

(2π)3
Tr[ H ′R′ ] +

1

2

[

(∇′φ)2 + m2
sφ

2
]

+
1

3
bφ3 +

1

4
cφ4

− 1

2

[

γ2(∇′V )2 + γ2m2
vV

2 − (∇′ × V ′)2 − m2
vV

′2
]

, (A.7)

where H ′ = α · (p′ − gvV
′) + βm∗ + γgvV .

If spherical symmetry of the meson fields is assumed Eq. (A.7) becomes

H′ = 4
∫

dp

(2π)3

γ2

ǫ
(ǫ + p · v)(ǫ + p · v + gvV )Θ(pF − p)

+
1

2

[

(∇φ)2 + m2
sφ

2 +
2

3
γ2v2(∇φ)2

]

+
1

3
bφ3 +

1

4
cφ4

− 1

2

[

(∇V )2 + m2
vV

2 +
2

3
γ2v2(∇V )2

]

. (A.8)

After integration over momentum, the relativistic energy density in the moving frame can

be written as

H′ = γ2

{

H + v2

[

ρǫF + gvρV +
1

3
(∇φ)2 − 1

3
(∇V )2 −H

]}

, (A.9)

where H is the energy density in the rest frame (Section 2). Equation (A.9) agrees with

the transformation law of the stress tensor as discussed in Ref. [59]. For a uniform system

(∇φ = ∇V = 0) it also coincides with the result obtained in Ref. [31] from a local Lorentz

boost.

Finally, the energy of the system in the moving frame is obtained by integrating (A.9)

over the space. Taking into account the Lorentz contraction of the volume element, this

yields

E(v) =
∫

dr

γ
H′ =

∫

drγ
{

(1 − v2)H + v2

[

ρǫF + gvρV +
1

3
(∇φ)2 − 1

3
(∇V )2

]}

. (A.10)
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Combining this result with the meson field equations and the virial theorem derived in

Appendix B, Eq. (B.10), the energy in the new frame reads

E(v) =
∫

drγ{(1 − v2)H + v2H} =
∫

drγH. (A.11)

The restoring force of the monopole and quadrupole oscillations is obtained by appro-

priately scaling the densities and mean fields in Eq. (A.11) and then computing the second

derivative at v = 0 and λ = 1:

C =

[

∂2

∂λ2

∫

dr

γ
H′

λ

]

v=0,λ=1

=

[

∂2

∂λ2

∫

drHλ

]

λ=1

, (A.12)

where H′
λ and Hλ denote the scaled energy densities in the moving and rest frames, re-

spectively. The mass or inertia parameter of the giant resonance is furnished by the second

derivative of the scaled energy in the moving frame with respect to λ̇ = dλ/dt:

B =

[

∂2

∂λ̇2

∫

dr

γ
H′

λ

]

λ̇=0,λ=1

=

[

∂2

∂λ̇2

∫

drγHλ

]

λ̇=0,λ=1

. (A.13)

To evaluate (A.13) it is necessary to relate the velocity v of the moving frame with the

collective velocity λ̇. This is achieved by scaling the continuity equation

∂

∂t

∫

dp′

γ(2π)3
Tr[R′ ] + ∇ ·

∫

dp′

γ(2π)3
Tr[ αR′ ] = 0, (A.14)

which after some algebra results into

∂ρλ

∂t
+ ∇ · (vρλ) = 0, (A.15)

in terms of the scaled baryon density ρλ. Once the scaling law of the baryon density with

the λ parameter is specified, Eq. (A.15) will provide the connection between the velocity v

and λ̇.
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Appendix B

The virial theorem results from homogeneity properties of the kinetic energy and potential

energy components of the energy with respect to a scaling transformation that preserves

the normalization [60]. For example, the scaling method has been employed to derive the

virial theorem for the Skyrme interaction [19], or for relativistic particles bound in vector

and scalar potentials [61]. Concerning the relativistic model discussed in the present work,

we have given the expression of the first derivative of the scaled energy with respect to the

scaling parameter λ in Eq. (3.8) of Section 3.2. It must vanish at λ = 1 (virial theorem):

0 =

[

∂

∂λ

∫

d(λr)
Hλ(r)

λ3

]

λ=1

. (B.1)

To evaluate the above equation knowledge of the derivatives of the scaled fields with

respect to λ is required. Starting with the omega field Vλ, it fulfils the Klein–Gordon

equation

(∆ − m2
v)Vλ(r) = −gvρλ(r), (B.2)

whose solution is

Vλ(r) =
gv

4π

∫

dr′ρλ(r
′)

e−mv |r−r′|

|r − r′| =
∫

d(λr′)ρ(λr′)Vω(s). (B.3)

We employ the notation Vω(s) = gv exp (−mvs)/4πs, with s = |r − r′|, as in the main text.

On defining u = λr and u′ = λr′ one obtains Vλ(r) =
∫

du′ρ(u′)Vω(|u − u′|/λ), whence

∂Vλ(r)

∂λ

∣

∣

∣

∣

∣

λ=1

= −
∫

dr′ρ(r′) s
dVω(s)

ds
, (B.4)

in agreement with the result given in Ref. [57]. Analogous results are found for the scaled

rho and Coulomb fields. The result for the scalar field is more complicated because an

additional term appears due to the fact that the density ρ̃eff
s itself is a function of λ:

∂φλ(r)

∂λ

∣

∣

∣

∣

∣

λ=1

= −
∫

dr′ρeff
s (r′)s

dVσ(s)

ds
+
∫

dr′Vσ(s)

[

∂ρ̃eff
s (λr′)

∂λ

]

λ=1

. (B.5)

Since gsρ̃
eff
s = gsρ̃s − bφ2

λ/λ
3 − cφ3

λ/λ
3, we have

gs

∂ρ̃eff
s

∂λ

∣

∣

∣

∣

∣

λ=1

= gs

∂ρ̃s

∂λ

∣

∣

∣

∣

∣

λ=1

+ 3(bφ2 + cφ3) − (2bφ + 3cφ2)
∂φλ

∂λ

∣

∣

∣

∣

∣

λ=1

, (B.6)
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with
∂ρ̃s

∂λ

∣

∣

∣

∣

∣

λ=1

=
δρ̃s

δm̃∗

∂m̃∗

∂λ

∣

∣

∣

∣

∣

λ=1

= − δρs

δm∗

[

m∗ + gs

∂φλ

∂λ

]

λ=1

, (B.7)

cf. Eq. (3.9) for ∂m̃∗/∂λ.

From substitution into Eq. (B.1) of the derivatives (B.4) and (B.5) and of the corre-

sponding results for the rho and Coulomb fields, on account of Eq. (3.8), one obtains

0 =
∫

dr

[

E − m∗ρs +
1

2
gsρ

eff
s

∫

dr′ρeff
s (r′)s

dVσ

ds
− bφ3 − 3

4
cφ4

− 1

2
gvρ

∫

dr′ρ(r′)s
dVω

ds
− 1

2
gρρ3

∫

dr′ρ3(r
′)s

dVρ

ds
+

1

2
eAρp

]

. (B.8)

Now, using for example the relation s dVω/ds = −Vω − mvsVω, it can be verified that

− 1

2

∫

drgvρ
∫

dr′ρ(r′)s
dVω

ds
=
∫

dr

[

1

2
gvρV + m2

vV
2

]

. (B.9)

After similar straightforward manipulations with the other fields, the virial theorem for the

non-linear σ − ω model finally becomes

0 =
∫

dr

[

E − m∗ρs −
1

2
gsφρs − m2

sφ
2 − 1

2
bφ3 − 1

4
cφ4

+
1

2
gvV ρ + m2

vV
2 +

1

2
gρRρ3 + m2

ρR
2 +

1

2
eAρp

]

. (B.10)

One may notice that the quantity E − m∗ρs corresponds to the semiclassical average of
∑

i ϕ
†
iα · ∇ϕi. Actually, in terms of the kinetic energy density τ (namely, the semiclassical

counterpart of
∑

i ϕ
†
i [α · ∇ + βm − m]ϕi) we can write E − m∗ρs = τ + mρ − mρs, which

makes more obvious the kinetic energy component in the virial theorem. In the limit of

symmetric infinite nuclear matter Eq. (B.10) goes over

E0,∞ − m∗
∞ρs,∞ − 3

2

g2
s

m2
s

ρeff
s,∞

2 − bφ3
∞ − 3

4
cφ4

∞ +
3

2

g2
v

m2
v

ρ2
∞ = 3P = 0, (B.11)

with P being the pressure, if equilibrium quantities are used.

Taking advantage of Eq. (B.10) to eliminate
∫

drE from the expression of
∫

drH, the

energy of a nucleus in the RMF model takes the remarkably simple form

∫

dr[H− mρ] =
∫

dr

[

m(ρs − ρ) + m2
sφ

2 +
1

3
bφ3 − m2

vV
2 − m2

ρR
2

]

, (B.12)

34



where we have subtracted the nucleon rest mass contribution. This expression displays

very clearly the relativistic mechanism for nuclear binding. It stems from the cancellation

between the scalar and vector potentials and from the difference between the scalar density

and the baryon density (i.e., from the small components of the wave functions). We have

verified that Eqs. (B.10) and (B.12) are satisfied not only by the Thomas–Fermi solutions,

but also by the ground-state densities and meson fields obtained from a quantal Hartree

calculation. Of course, the energy stationarity condition of the RMF model against dilation

must be fulfilled by any approximation scheme utilized to solve the problem.
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C54 (1996) 2525.

[31] S. Nishizaki, H. Kurasawa and T. Suzuki, Nucl. Phys. A462 (1987) 689.

[32] Chaoyuan Zhu and Xi-Jun Qiu, J. Phys. G17 (1991) L11.
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Figure captions

Figure 1. The breathing-mode energies from the RETF scaling calculations are compared

with the empirical law 80/A1/3 MeV and the experimental data reported in Ref. [49],

as a function of the size of the nucleus.

Figure 2. Scaling incompressibility of some finite nuclei as obtained in the RETF calcu-

lations versus the nuclear matter incompressibility for various relativistic parameter

sets. The value of K∞ of each set is listed in MeV. The straight lines are linear fits.

The fit for 208Pb is drawn by a solid line.

Figure 3. Monopole excitation energy from RETF scaling calculations versus the nuclear

matter incompressibility for various relativistic parameter sets. The value of K∞ of

each set is given in Figure 2. The dashed lines are linear fits to the square root of K∞.

Figure 4. Monopole excitation energy of 208Pb from RETF scaling calculations, as a func-

tion of the mass of the scalar meson and of the nuclear matter effective mass of the

relativistic interaction. The dashed lines show the sense of increasing K∞.
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Table 1: Excitation energy of the monopole state (in MeV) obtained in the scaling approach

by using various relativistic parameter sets (in order of increasing value of the compression

modulus K∞). The experimental centroid energies are from Ref. [42].

NL1 NL3 NL-SH NL2

RTF RETF RTF RETF RTF RETF RTF RETF 80A−1/3 Exp.

16O 25.1 23.3 27.5 27.8 30.7 33.1 34.4 35.6 31.7

40Ca 21.2 20.6 23.5 24.1 26.6 28.2 29.5 30.3 23.4 19.2 ± 0.4

48Ca 20.0 19.5 22.3 22.7 25.2 26.5 27.7 28.3 22.0

90Zr 17.2 16.9 19.2 19.5 21.9 22.8 24.0 24.5 17.9 17.9 ± 0.2

116Sn 15.9 15.6 17.7 18.0 20.3 21.0 22.3 22.6 16.4 16.1 ± 0.1

144Sm 14.9 14.6 16.6 16.8 19.0 19.6 20.8 21.1 15.3 15.4 ± 0.3

208Pb 12.9 12.7 14.5 14.6 16.6 17.0 18.1 18.4 13.5 14.2 ± 0.3

Table 2: Comparison of the giant monopole resonance energies (in MeV) obtained in the

scaling model with those obtained in the relativistic RPA [9].

NLC NLB L2′

RTF RETF RRPA RTF RETF RRPA RTF RETF RRPA

40Ca 22.5 22.4 21.0 27.7 29.4 27.9 29.1 33.0 27.3

90Zr 18.1 18.1 16.9 23.3 24.2 24.1 25.2 27.4 26.5

208Pb 13.6 13.5 13.1 18.0 18.5 18.1 19.9 21.0 20.1
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Table 3: Monopole excitation energy (in MeV) obtained by constrained calculations with

various parameter sets. The constrained RMF results are from Ref. [14] and the generator

coordinate method results are from Ref. [11].

NL1 NL3 NL-SH NL2

RETF CRMF GCM RETF GCM RETF CRMF GCM RETF GCM

16O 21.8 20.9 20.2 26.0 22.6 30.0 25.8 25.0 32.4 27.1

40Ca 19.8 19.2 16.6 23.2 19.6 26.9 23.9 22.0 29.0 24.4

90Zr 16.5 16.3 14.1 19.1 16.9 22.1 21.1 19.5 23.7 21.9

208Pb 12.1 12.2 11.0 14.0 13.0 16.2 16.1 15.0 17.4 16.6

Table 4: Excitation energy of the quadrupole vibration (in MeV) obtained in the scaling

approach. The experimental values are from Ref. [41].

NL1 NL3 NL-SH NL2 LZ 65A−1/3 Exp.

16O 21.6 22.9 24.0 24.7 25.8 25.8 22.0

40Ca 17.9 18.6 19.2 19.4 20.8 19.0 18.0

48Ca 16.9 17.5 18.1 18.1 19.5 17.9

90Zr 14.4 14.8 15.2 15.1 16.4 14.5 14.5

208Pb 10.9 11.2 11.5 11.3 12.4 11.0 10.5
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