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Abstract

By using the scaling method we derive the virial theorem for the relativistic mean field

model of nuclei treated in the Thomas–Fermi approach. The Thomas–Fermi solutions

statisfy the stability condition against scaling. We apply the formalism to study the

excitation energy of the breathing mode in finite nuclei with several relativistic parameter

sets of common use.
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The relativistic mean field (RMF) treatment of Quantum Hadrodynamics [1, 2] has proven

to be very useful for describing different properties of nuclei along the periodic table. The

simplest model, the linear σ−ω model of Walecka [3], explains the nuclear force in terms of the

exchange of σ and ω mesons. It is known that the value of the nuclear matter incompressibility

is unreasonably high in this linear model (Knm ∼ 550 MeV). The problem can be cured by

introducing cubic and quartic self-interactions of the σ meson [4], and the model can be refined

by adding an isovector ρ meson. Current non-linear parameter sets, such as the NL3 set [5],

give ground-state energies and densities in excellent agreement with the experimental data,

not only for magic nuclei but also for deformed nuclei and for nuclei far from the stability line.

The scaling method has been often employed to derive the virial theorem in the non-

relativistic framework [6], e.g., for nuclear effective interactions such as the Skyrme force [7].

It has also been applied in calculations of nuclear collective excitations like the breathing mode

(isoscalar giant monopole resonance) [7]. Relativistic generalizations of the virial theorem

obtained by use of the scaling method exist for particles in external potentials [8, 9]. In the

RMF model of nuclei the mean field potentials are generated self-consistently. Owing to the

meson-exchange nature of the relativistic model one has to deal with finite range forces, which

renders the scaling more involved than for zero-range Skyrme forces. Moreover, in contrast to

the non-relativistic situation, there exist two different densities, namely the baryon and the

scalar density, in accordance with the fact that one has two types of fields, the vector and the

scalar field.

In this letter we shall make use of the principle of scale invariance to obtain the virial

theorem for the RMF theory by working in the Thomas–Fermi approximation. We shall

include non-linear self-couplings of the scalar field and shall deal with spherical finite nuclei.

The second derivative of the scaled energy with respect to the scaling parameter, the so-called

restoring force, turns out to be positive (stability condition) in the Thomas–Fermi calculations.

Thus we are able to apply the method to compute the excitation energy of the isoscalar giant

monopole resonance in finite nuclei with realistic parameter sets of the relativistic model.
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The meson field equations of the non-linear σ − ω model are [1, 4]

(∆ − m2
s)φ = −gsρs + bφ2 + cφ3 (1)

(∆ − m2
v)V = −gvρ (2)

(∆ − m2
ρ)R = −gρρ3 (3)

∆A = −eρp. (4)

Here ρ = ρp + ρn is the baryon density, ρ3 = 1
2
(ρp − ρn) is the isovector density, and ρs is

the scalar density. The meson fields φ, V and R are associated with the σ, ω and ρ mesons,

respectively, and A is the Coulomb field. It is understood that the densities and fields are local

quantities that depend on position, even if we do not make it explicit. Units are h̄ = c = 1.

Taking into account the above field equations, the relativistic energy density of a finite

nucleus in Thomas–Fermi approximation can be written as [1, 4]

H = E +
1

2
gsφρeff

s +
1

3
bφ3 +

1

4
cφ4 +

1

2
gvV ρ +

1

2
gρRρ3 +

1

2
eAρp, (5)

in terms of the nucleon energy density

E =
∑

q

1

8π2

[

kFqǫ
3
Fq + k3

FqǫFq − m∗4 ln
kFq + ǫFq

m∗

]

(6)

and of gsρ
eff
s = gsρs − bφ2 − cφ3, where

ρs =
∂E

∂m∗

=
∑

q

m∗

2π2

[

kFqǫFq − m∗2 ln
kFq + ǫFq

m∗

]

(7)

is the scalar density and m∗ = m − gsφ is the nucleon effective mass. For each kind of

nucleon (q = n, p) the local Fermi momentum kFq is defined by kFq = (3π2ρq)
1/3, while

ǫFq =
√

k2
Fq + m∗2.

The virial theorem relates the kinetic and potential energy components of the energy in

certain circumstances. This theorem results from homogeneity properties of the kinetic and

potential energy components of H with respect to a scaling transformation that preserves the

normalization. One such normalized scaled version of the baryon density is

ρλ(r) = λ3ρ(λr), (8)
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where λ is an arbitrary scaling parameter. Accordingly, the local Fermi momentum changes

as

kFqλ(r) = [3π2ρqλ(r)]1/3 = λkFq(λr). (9)

The meson fields and the Coulomb field are also modified by the scaling due to the self-

consistent equations (1)–(4), which will relate the scaled fields to the scaled densities. Un-

fortunately, the meson fields do not scale according to simple power laws of λ because of the

finite-range character of the meson interactions. This is most apparent for the scalar field φ,

since the scalar density in the source term of Eq. (1) transforms not only due to the scaling

of kFq but also of φ itself (or m∗), see Eq. (7) for ρs. For reasons that will become clear

immediately, we shall write the scaled effective mass m∗

λ(r) = m − gsφλ(r) in the form

m∗

λ(r) ≡ λm̃∗(λr). (10)

The quantity m̃∗ carries an implicit dependence on λ apart from the parametric dependence

on λr.

On account of Eqs. (9) and (10) the scaled form of E reads Eλ(r) = λ4E [kFq(λr), m̃∗(λr)] ≡

λ4Ẽ(λr), while the scaled scalar density reads ρsλ(r) = λ3ρs[kFq(λr), m̃∗(λr)] ≡ λ3ρ̃s(λr). The

tilded quantities Ẽ and ρ̃s are given by Eqs. (6) and (7) after replacing m∗ by m̃∗. Note the

usefulness of (10) to be able to put the transformed densities Eλ and ρsλ into the above compact

form. This way, for the scaled total energy density Hλ we obtain

Hλ = λ3

[

λẼ +
1

2
gsφλρ̃

eff
s +

1

3

b

λ3
φ3

λ +
1

4

c

λ3
φ4

λ +
1

2
gvVλρ +

1

2
gρRλρ3 +

1

2
eAλρp

]

, (11)

with the definition gsρ̃
eff
s = gsρ̃s − bφ2

λ/λ
3 − cφ3

λ/λ
3.

The scaled energy is stationary for λ = 1 (which leads to the virial theorem):

0 =

[

∂

∂λ

∫ d(λr)

λ3
Hλ(r)

]

λ=1

=
∫

dr

[

Ẽ − m̃∗ρ̃s −
b

λ4
φ3

λ −
3

4

c

λ4
φ4

λ −
1

2
gsρ̃

eff
s

∂φλ

∂λ
+

1

2
gsφλ

∂ρ̃eff
s

∂λ

+
1

2
gvρ

∂Vλ

∂λ
+

1

2
gρρ3

∂Rλ

∂λ
+

1

2
eρp

∂Aλ

∂λ

]

λ=1

. (12)
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Here we have used ∂Ẽ/∂λ = ρ̃s ∂m̃∗/∂λ (as ρ̃s = ∂Ẽ/∂m̃∗) and, from the definition of m̃∗,

∂m∗

λ

∂λ
= m̃∗ + λ

∂m̃∗

∂λ
= −gs

∂φλ

∂λ
. (13)

Let us exemplify the calculation of the derivatives of the scaled fields with respect to λ

with the omega field Vλ. It fulfils the scaled Klein–Gordon equation (∆u − m2
v/λ

2)Vλ(u) =

−λgvρ(u), where we have used Eq. (8) for ρλ and have switched to the coordinate u = λr.

On differenciating this equation with respect to λ we have

(

∆u −
m2

v

λ2

)

∂Vλ

∂λ
= −gvρ −

2m2
v

λ3
Vλ. (14)

If one now sets λ = 1 the solution of this equation provides ∂Vλ/∂λ|λ=1. Nevertheless, for our

purposes it is more useful to multiply both sides of (14) by Vλ, integrate over the space and

then use Green’s identity on the left hand side. This way it is straightforward to get

1

2

∫

du gvρ
∂Vλ

∂λ
=
∫

du

[

1

2λ
gvρVλ +

1

λ4
m2

vV
2
λ

]

, (15)

which at λ = 1 is just one of the contributions we need in Eq. (12). Analogous results

are found for the rho and Coulomb fields (with a zero mass for the latter). In the case of

the scalar field additional terms appear due to the fact that the scalar density itself is a

function of the scalar field. Following the same steps as above, from the scaled field equation

(∆u − m2
s/λ

2)φλ(u) = −λgsρ̃
eff
s (u) one easily arrives at

(

∆u −
m2

s

λ2

)

∂φλ

∂λ
= −gsρ̃

eff
s − λgs

∂ρ̃eff
s

∂λ
−

2m2
s

λ3
φλ, (16)

whence
∫

du

[

−
1

2
gsρ̃

eff
s

∂φλ

∂λ
+

1

2
gsφλ

∂ρ̃eff
s

∂λ

]

=
∫

du

[

−
1

2λ
gsρ̃

eff
s φλ −

1

λ4
m2

sφ
2
λ

]

. (17)

From substitution of Eqs. (15) and (17) (and of the corresponding results for the rho and

Coulomb fields) into Eq. (12) the virial theorem for the non-linear σ − ω model becomes

0 =
∫

dr

[

E − m∗ρs −
1

2
gsφρs − m2

sφ
2 −

1

2
bφ3 −

1

4
cφ4 +

1

2
gvV ρ + m2

vV
2

+
1

2
gρRρ3 + m2

ρR
2 +

1

2
eAρp

]

. (18)
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Actually, introducing the kinetic energy density τ we have E − m∗ρs = τ + mρ − mρs, which

makes more obvious the kinetic energy component in the virial theorem. Using Eq. (18) to

eliminate E from the expression of the relativistic energy density H, the RMF energy of a

nucleus takes the remarkably simple form

∫

dr[H− mρ] =
∫

dr

[

m(ρs − ρ) + m2
sφ

2 − m2
vV

2 − m2
ρR

2 +
1

3
bφ3

]

, (19)

where we have subtracted the nucleon rest mass contribution. This expression shows very

clearly the relativistic mechanism for nuclear binding. It stems from the cancellation between

the scalar and vector potentials and from the difference between the scalar and the baryon

density (i.e., from the small components of the wave functions). Equations (18) and (19) are

satisfied not only by the Thomas–Fermi solutions, but also by the ground-state densities and

meson fields obtained from a quantal Hartree calculation. Of course, the energy stationarity

condition against dilation of the RMF problem must be fulfilled by any approximation scheme

utilized to solve it.

As a further application of the method we shall use it in calculations of the isoscalar giant

monopole resonance (ISGMR). It is customary to write the excitation energy of the ISGMR

as

EM =

√

CM

BM

, (20)

where CM and BM are called, respectively, the restoring force (or incompressibility of the finite

nucleus) and the mass parameter of the monopole vibration. To study EM in the RMF the

authors of Refs. [10, 11] resorted to a local Lorentz boost and the scaling method. Following

these works one has

CM =
1

A

[

∂2

∂λ2

∫

drHλ(r)

]

λ=1

, (21)

where the scaling parameter λ now plays the role of the collective coordinate of the monopole

vibration, and

BM =
1

A

∫

drr2H(r), (22)
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with A being the mass number of the nucleus. The investigations of Refs. [10, 11] were

restricted to the linear σ − ω model, either for nuclear matter [10] or for symmetric and

uncharged finite nuclei (with the densities solved in Thomas–Fermi approximation) [11]. It is

well known that the surface properties of nuclei cannot be described within the linear model,

and hence nor can the overall properties of nuclei.

To compute CM it is easiest to replace the relations (15) and (17) into the expression

of ∂[
∫

drHλ(r)]/∂λ and derive again with respect to λ. After some algebra we obtain the

restoring force as

CM =
1

A

∫

dr

[

−m
∂ρ̃s

∂λ
+ 3

(

m2
sφ

2 +
1

3
bφ3 − m2

vV
2 − m2

ρR
2

)

− (2m2
sφ + bφ2)

∂φλ

∂λ
+ 2m2

vV
∂Vλ

∂λ
+ 2m2

ρR
∂Rλ

∂λ

]

λ=1

, (23)

where

∂ρ̃s

∂λ

∣

∣

∣

∣

∣

λ=1

=
∂ρ̃s

∂m̃∗

∂m̃∗

∂λ

∣

∣

∣

∣

∣

λ=1

= −
∂ρs

∂m∗

[

m∗ + gs

∂φλ

∂λ

]

λ=1

. (24)

The derivatives of the scaled meson fields with respect to λ are computed by solving Eqs. (14)

and (16) at λ = 1. We have found CM to be positive for all of the (linear and non-linear)

parameter sets we have tested in the Thomas–Fermi calculations. A large part of the final

value of CM (usually far more than a half) is due to the contribution of the term ∂ρ̃s/∂λ|λ=1.

In Table 1 we display the calculated Thomas–Fermi excitation energies of the ISGMR,

together with the empirical estimate EM ∼ 80/A1/3 MeV [12], for 40Ca, 90Zr, 116Sn, 144Sm

and 208Pb. Recent experimental data on the centroid energy of the ISGMR are available for

these nuclei [13]. We have employed the non-linear parameter sets NL-Z2 (Knm = 172 MeV)

[14], NL1 (Knm = 212 MeV) [15], NL3 (Knm = 272 MeV) [5], NL-SH (Knm = 355 MeV)

[16] and NL2 (Knm = 399 MeV) [17]. These parameter sets have been determined by least-

squares fits to ground-state properties of a few spherical nuclei and are of common use in

RMF calculations. From the table one can see that the smaller the mass number, the larger is

the monopole energy. The energy of the ISGMR increases with increasing Knm in the various
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parameter sets. For example, the monopole energy in 208Pb is 12.3 MeV for NL-Z2 while it is

18.1 MeV for NL2. The dependence on Knm is roughly linear for each nucleus.

In assuming nuclear matter within a certain volume the authors of Ref. [10] estimated the

monopole excitation energy of a finite nucleus as

EM =

√

Knm

〈r2〉(ǫFnm + gvVnm)
, (25)

with 〈r2〉 = 3
5
R2 and R = 1.2A1/3 fm. They evaluated (25) for the linear model of Walecka

and found EM = 160/A1/3 MeV, which has the correct dependence on the mass number but

is twice as large as the empirical value. From Eq. (25) one finds EM = 92, 102, 115, 132

and 140/A1/3 MeV for the non-linear sets NL-Z2, NL1, NL3, NL-SH and NL2, respectively.

Comparing with Table 1, the finite size effects reduce the prediction obtained from nuclear

matter by a factor ranging from ∼ 1.4 in 40Ca to ∼ 1.3 in 208Pb, rather independently of the

parameter set.

The ISGMR has been studied in the time-dependent RMF (TDRMF) theory by Vretenar

et al. [18]. We include in Table 1 their results for the energy of the main peaks that appear in

the monopole strength distributions of 90Zr and 208Pb. Our scaling results compare very well

in the case of 208Pb for all parameter sets, but give somewhat larger excitation energies for

90Zr. It should be mentioned that the Fourier spectrum of 90Zr in the TDRMF calculation is

considerably fragmented (specially for the sets with higher Knm) and then the determination

of the centroid energy is more uncertain [18]. Very recently, it has been demonstrated that the

relativistic random phase approximation (RRPA) is equivalent to the small amplitude limit

of the TDRMF theory in the no-sea approximation, when pairs formed from the empty Dirac

sea states and the occupied Fermi sea states are included in the RRPA [19].

Microscopic calculations of ISGMR energies in nuclei are a valuable source of information

on the nuclear compression modulus Knm [20, 21], which is an important ingredient not only

for finite nuclei but also for heavy ion collisions, supernovae and neutron stars. A further

inspection of Table 1 shows that the empirical law EM ∼ 80/A1/3 MeV lies between the
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predictions of the NL1 and NL3 sets, as expected from the reasonable value of Knm in these

interactions. On the contrary, Knm is too high in NL-SH and NL2 and we see that these

sets overestimate the empirical curve and the experimental data for all nuclei of Table 1.

No RMF parameter set seems capable of reproducing the mass-number dependence of the

experimental data over the whole analyzed region, particularly in the lighter nuclei. One

should note, however, that our calculation provides a prediction for the mean value or centroid

of the excitation energy of the resonance. To establish a link between Knm and the measured

energies the most favourable situation is then met in heavy nuclei, where the experimental

strength is less fragmented than in medium and light nuclei [13]. If we only take into account

the data of 144Sm and 208Pb, our results of Table 1 suggest that Knm of a RMF interaction

should belong to the range 225–255 MeV. (If we disregard the set NL-Z2, as in Refs. [18, 19],

the range is 230–260 MeV.) From their TDRMF and RRPA calculations the authors of Refs.

[18, 19] conclude that the value of Knm should be close to 250–270 MeV. Non-relativistic

Hartree–Fock plus RPA analyses using Skyrme and Gogny interactions determine Knm to be

215 ± 15 MeV [20, 21], thus lower than in the RMF model.

We have derived the virial theorem for the relativistic nuclear mean field model on the

basis of the scaling method and the Thomas–Fermi approximation. In this approach we

have calculated for realistic parameter sets of the RMF theory the breathing-mode energy

of finite nuclei fully self-consistently (i.e., we did not use a leptodermous expansion of the

finite nucleus incompressibility as in some previous studies with the scaling method [22]). The

present calculations extend earlier work performed with the linear σ − ω model [10, 11].

The excitation energies of the monopole oscillation turn out to be in good agreement

with the outcome of dynamical time-dependent RMF calculations. It has been shown very

recently that the relativisitc RPA, with the inclusion of Dirac sea states, amounts to the limit

of small amplitude oscillations of the TDRMF theory [19]. From the present Thomas–Fermi

analysis one can thus conclude that, similarly to the non-relativistic case, also in the relativistic

framework the excitation energies obtained with the scaling method simulate the results of
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the random phase approximation.
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Table 1: Excitation energy of the monopole state (in MeV) obtained in the scaling approach

by using various relativistic parameter sets (in order of increasing value of the compression

modulus Knm). The energies of the main peaks found in the time-dependent RMF calculations

of Ref. [18] are also shown for 90Zr and 208Pb. The experimental centroid energies are from

Ref. [13].

NL-Z2 NL1 NL3 NL-SH NL2 80A−1/3 Exp.

40Ca 20.5 21.2 23.5 26.6 29.5 23.4 19.2 ± 0.4

90Zr 16.4 17.2 19.2 21.9 24.0 17.9 17.9 ± 0.2

[18] 15.7 ∼ 18

116Sn 15.1 15.9 17.7 20.3 22.3 16.4 16.1 ± 0.1

144Sm 14.1 14.9 16.6 19.0 20.8 15.3 15.4 ± 0.3

208Pb 12.3 12.9 14.5 16.6 18.1 13.5 14.2 ± 0.3

[18] 12.4 14.1 16.1 17.8
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