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The liquid-liquid critical point scenario of water hypothesizes the existence of two metastable liq-
uid phases—low-density liquid (LDL) and high-density liquid (HDL)—deep within the supercooled
region. The hypothesis originates from computer simulations of the ST2 water model, but the stabil-
ity of the LDL phase with respect to the crystal is still being debated. We simulate supercooled
ST2 water at constant pressure, constant temperature, and constant number of molecules N for
N ≤ 729 and times up to 1 μs. We observe clear differences between the two liquids, both structural
and dynamical. Using several methods, including finite-size scaling, we confirm the presence of a
liquid-liquid phase transition ending in a critical point. We find that the LDL is stable with respect
to the crystal in 98% of our runs (we perform 372 runs for LDL or LDL-like states), and in 100%
of our runs for the two largest system sizes (N = 512 and 729, for which we perform 136 runs for
LDL or LDL-like states). In all these runs, tiny crystallites grow and then melt within 1 μs. Only for
N ≤ 343 we observe six events (over 236 runs for LDL or LDL-like states) of spontaneous crystal-
lization after crystallites reach an estimated critical size of about 70 ± 10 molecules. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4808355]

I. INTRODUCTION

For many centuries, water and its anomalies have been
of much interest to scientists. A particular rise of interest
occurred in the late 1970s after experiments done by An-
gell and Speedy1–4 seemed to imply some kind of critical
phenomenon in supercooled liquid water at very low tem-
peratures. Even though liquid water experiments are limited
by spontaneous crystallization below the homogeneous nu-
cleation temperature (TH ≈ 233 K at 1 bar), it is possible
to further explore the phase diagram by quenching water to
far lower temperatures.5–7 The result of these experiments is
an amorphous solid, i.e., a glassy ice, corresponding to an
out-of-equilibrium state that is very stable with respect to
the equilibrium crystalline ice phase. The type of amorphous
solid depends on the applied pressure: at low pressure, below
≈0.2 GPa, the low density amorphous ice (LDA) is formed,
while at higher pressure the high density amorphous ice
(HDA) is observed.8 It has been shown by Mishima et al.9–12

that these two amorphous ices are separated by a reversible
abrupt change in density that resembles in all its respects an
equilibrium first order phase transition.

Raising the temperature of either LDA or HDA does not
turn the sample into a liquid, but leads once again to sponta-
neous crystallization (around TX ≈ 150 K). In fact, between
TH and TX, often called the “no man’s land” of bulk wa-
ter, crystallization occurs at a time scale that is too short for
current experimental methods, although a new technique is

possibly succeeding in the task of measuring the metastable
liquid phase.13 Computer simulations of water, however, in-
volve time scales small enough to witness spontaneous crys-
tallization and are therefore able to explore liquid water in
the “no man’s land.” In 1992, Poole et al.14 performed a se-
ries of molecular dynamics simulations using the ST2 water
model,15 using the reaction field method for the long-range
interactions (ST2-RF), and discovered a liquid-liquid phase
transition (LLPT) ending in a critical point, separating a low
density liquid (LDL) and a high density liquid (HDL). These
two liquids can be considered to be the liquid counterparts of
the LDA and HDA, respectively.

The hypothesis of the critical point also allows one to
understand X-ray spectroscopy results,16–19 explains the in-
creasing correlation length in bulk water upon cooling as
found experimentally,20 the hysteresis effects,21 and the dy-
namic behavior of protein hydration water.22–24 It would be
consistent with a range of thermodynamical and dynamical
anomalies25–33 and experiments.34–37

Many more computer simulations investigating the
phenomenology of the liquid-liquid critical point (LLCP)
have been performed since then.38–55 Detailed studies using
ST2-RF have been made by Poole et al.56 using molecular
dynamics, while Liu et al.57, 58 simulated ST2 with Ewald
summation (ST2-Ew) for the electrostatic long-range po-
tential using Monte Carlo. Also in other water models the
LLPT and its LLCP are believed to be found, for example, by
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Yamada et al.59 in the TIP5P model, by Paschek et al.60 in
the TIP4P-Ew model, and in TIP4P/2005 by Abascal and
Vega.61, 62

Recently, Limmer and Chandler63 used Monte Carlo um-
brella sampling to investigate the ST2-Ew model, but claimed
to have found only one liquid metastable phase (HDL) rather
than two. They therefore concluded that LDL does not exist
because it is unstable with respect to either the crystal or the
HDL phase. The emphasis in their work is about the differ-
ence between a metastable phase, i.e., separated from the sta-
ble phase by a finite free-energy barrier, and an unstable state,
where the free-energy barrier is absent and the state does not
belong to a different phase.

Shortly after, Poole et al.64 and Kesselring et al.65 pre-
sented results using standard molecular dynamics for ST2-
RF showing the occurrence of the LLCP with both HDL and
LDL phases metastable with respect to the crystal, but with
the LDL not unstable with respect to either the crystal or
the HDL. This result was confirmed, using the same method
as Limmer and Chandler,63 by Sciortino et al.66 and Poole
et al.67 in ST2-RF water and by Liu et al.68 in ST2-Ew water.

The aim of this paper is to investigate the possible ex-
istence of a liquid-liquid critical point in simulated water in
the thermodynamic limit using finite-size scaling techniques,
and confirm that LDL is a bona fide metastable liquid. We use
the ST2-RF model because it has been well-studied in the su-
percooled region, making it easier to compare and verify our
data. In the supercooled phase, it has a relatively large self-
diffusion compared to other water models, therefore, suffers
less from the slowing down of the dynamics at extremely low
temperatures. We explore a large region of the phase diagram
of supercooled liquid ST2-RF water (Fig. 1) using molecu-
lar dynamics simulations with four different system sizes by
keeping constant the number N of molecules, the pressure P,
and the temperature T (NPT ensemble).

Within the explored region we find both LDL and HDL,
separated at high pressures by a LLPT, ending in a LLCP es-
timated at PC ≈ 208 MPa and TC ≈ 246 K. This phase transi-
tion is particularly clear in Fig. 2 where one can see from the
density how the system continuously flips between the two
states. However, due to finite-size effects this phase flipping
also occurs below the critical point along the Widom line (the
locus of correlation length maxima).69, 70 For this reason, it is
necessary to apply finite-size scaling methods to establish the
exact location of the critical point.

For six state points and for small system size N ≤ 343
we observe, in only one over the (on average) seven simula-
tions we performed for each state point, irreversible crystal
growth, indicated as full red circles in Fig. 1. Each of these
crystallization events occurred within the LDL (or LDL-like)
region. Analysis of these crystals revealed them to have a di-
amond cubic crystal structure. As we will discuss later, be-
cause these events disappear for larger systems, we ascribe
these crystallization to finite-size effects.

We start in Sec. II with a description of the model and
the procedures that we use. In Sec. III, we discuss the use
of the intermediate scattering function to analyze the struc-
ture of the liquid, and in Sec. IV its use in defining the cor-
relation time. The analysis of the liquid structure is continued
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FIG. 1. Overview of the state points at which simulations have been per-
formed. Colors away from the simulated points (full black circles) are a lin-
ear interpolation of ρ for the sake of presentation. At high temperatures, we
observe a high-density liquid state (HDL, shaded in orange), while at lower
temperatures we find a low-density liquid (LDL, in blue). These are separated
by a region where the system is continuously flipping between the two states,
as seen in Fig. 2. This transition region (in green) is identified as the liquid-
liquid phase transition (LLPT) line at high pressures, and the Widom line at
low pressures. These lines join at the liquid-liquid critical point (LLCP) es-
timated at PC = 208 ± 3 MPa and TC = 246 ± 1 K (see Sec. VII). At low
temperatures, the LDL (or LDL-like) region is bound by the glass transition
temperature Tg, below which we can no longer fully equilibrate the system
within 100 ns, and consider the liquid to have become a glass (see Sec. IV).
For small sizes (N ≤ 343), we observe spontaneous crystallization within 1
ns-long simulations at six state points (indicated by the red circles), all of
them within the LDL (or LDL-like) region. We never observe crystallization
for sizes N = 512 and 729 for simulations of comparable duration. Because
the probability of crystallization should increase with N, these results suggest
that our crystallization events are a finite-size effect that becomes negligible
for large sizes. Crystallization events are discussed in Sec VI. (Inset) Average
ρ(T) for pressures P = 240 MPa (left-most), 215, 210, 205, 200, 195, and 190
(right-most). Here, the average is taken over all N; excluding N ≤ 343 shows
a much sharper transition at 240 MPa.

in Sec. V where we define and compare a selection of struc-
tural parameters. The parameter d3 is found to be particularly
well-suited to distinguish between the liquid and the crystal
state, and this fact is subsequently used in Sec. VI where we
discuss the growth and melting of crystals within the LDL
liquid. In Sec. VII, by defining the appropriate order param-
eter, we show that the LLCP in ST2-RF belongs to the same
universality class as the 3D Ising model. We accurately de-
termine where the LLCP is located in the phase diagram in
the thermodynamic limit by applying finite-size scaling on the
Challa-Landau-Binder parameter. We discuss our results and
present our conclusions in Sec. VIII.

II. SIMULATION DETAILS

In the ST2 model,15 each water molecule is represented
by a rigid tetrahedral structure of five particles. The central
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FIG. 2. Phase flipping near the phase transition line (P = 215 MPa, with
N = 343 molecules). At high T, the system is in the HDL phase (with
a density ρ � 1.03 g/cm3), while at low T the system is in the LDL
phase (density ρ � 0.88 g/cm3). However, near the phase transition line (at
T � 244.5 K for this pressure) the system is flipping between the two phases.

particle carries no charge and represents the oxygen atom of
water. It interacts with all other oxygen atoms via a Lennard-
Jones (LJ) potential, ULJ(rij) ≡ 4ε[(σ /rij)12 − (σ /rij)6] with
ε ≡ 0.31694 kJ/mol and σ ≡ 3.10 Å. Two of the outer par-
ticles represent the hydrogen atoms. Each of them carries a
charge of +0.2357 e, and is located a distance 1 Å away from
the central oxygen atom. The two remaining particles carry a
negative charge of −0.2357 e, are positioned 0.8 Å from the
oxygen, and represent the lone pairs of a water molecule.

The electrostatic potential in ST2 is treated in a spe-
cial way. To prevent charges a and b from overlapping, the
Coulomb potential is reduced to zero at small distances

Uel(rab) ≡ S(rij )
1

4πε0

qaqb

rab

, (1)

where S(rij) is a function that smoothly changes from one to
zero as the distance between the molecules decreases,

S(rij ) ≡

⎧⎪⎨
⎪⎩

0 (rij ≤ RL)
(rij −RL)2(3RU −RL−2rij )

(RU −RL)3 (RL ≤ rij ≤ RU )
1 (rij ≥ RU )

(2)

with RL ≡ 2.0160 Å, RU ≡ 3.1287 Å, and where rij is the dis-
tance between the oxygen atoms of the interacting molecules.
In the original model, a simple cutoff was used for the electro-
static interactions. In this paper, however, we apply the reac-
tion field method71 which changes the ST2 Coulomb potential
to

Uel(rab) ≡ S(rij )T (rij )
qaqb

4πε0

(
1

rab

+ r2
ab

2R3
c

)
, (3)

where T(rij) is another smoothing function

T (rij ) ≡

⎧⎪⎨
⎪⎩

1 (rij ≤ RT )

1 − (rij −RT )2(3Rc−RT −2rij )
(Rc−RT )3 (RT ≤ rij ≤ Rc)

0 (rij ≥ Rc)
. (4)
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FIG. 3. To validate our code, we compare our simulation results with those
from Poole et al.56 at density ρ = 0.83 g/cm3 and for N = 216 molecules. We
performed simulations in the NV T ensemble applying pressure corrections
and find the same results as Ref. 56 within the error bars. At this density,
the pressure correction due to the LJ cutoff (proportional to ρ2) is equal to
−12.66 MPa. The variation of P with T along this isochore shows the occur-
rence of both a density maximum at 305 K and a density minimum near
265 K, as at these state points (∂ρ/∂T )P = −ρKT (∂P/∂T )V = 0 with
KT > 0 the isothermal compressibility.

We use a reaction field cutoff Rc ≡ 7.8 Å together with
RT ≡ 0.95Rc. These parameters define our ST2-RF water
model and are the same that were used in previous ST2-RF
simulations.

For the LJ interaction, we use a simple cutoff at the same
distance of 7.8 Å. We do not adjust the pressure to correct
for the effects of the LJ cutoff,72, 73 since these adjustments
come from mean field calculations which become increas-
ingly unreliable as one approaches a critical point. In order to
facilitate comparing results with and without this correction,
we denote that for LDL (ρ ≈ 0.90 g/cm3) the correction is
P ≈ −15 MPa, and for HDL (ρ ≈ 1.05 g/cm3) the correction
is P ≈ −20 MPa.

We use the SHAKE algorithm74 to keep the relative po-
sition of each particle within a ST2 molecule fixed. The tem-
perature and pressure are held constant using a Nosé-Hoover
thermostat73, 75, 76 together with a Berendsen barostat.77 In all
simulations, periodic boundary conditions are applied.

Our code is validated by simulating the same state points
as those published by Poole et al., see Fig. 1(b) in Ref. 56,
where pressure corrections for the LJ cutoff were applied in
the NV T (constant N, T, and volume V ) ensemble. Averag-
ing at each state point over 10 simulations with different ini-
tial conditions allows us to estimate the error bars. In Fig. 3,
we compare our results for N = 216 molecules and density
0.83 g/cm3, and find that our data, after pressure correction,
match that of Ref. 56 well.

For each of the simulations done in the NPT ensemble,
we use the following protocol. We first create a box of N
molecules at n different initial densities (with n up to 21) rang-
ing from 0.85 to 1.05 g/cm3. We then perform a 1 ns NV T

simulation at T = 300 K. In this way, we obtain n indepen-
dent configurations all at T = 300 K in the prefixed range of
densities. Next, we use these independent configurations as
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starting points for NPT simulations at T = 265 K and differ-
ent pressures ranging from 190 to 240 MPa, and continue the
simulation for an additional 1 ns. This results in n indepen-
dent configurations at T = 265 K and the given pressure. For
all pressures considered here, this will lead the system into
the HDL phase. Finally, the system is quenched to the desired
temperature at the given pressure, followed by 100–200 ns of
equilibration time. In Sec. IV, it will be shown that this pro-
vides enough time for the system to reach equilibrium for the
state points above the line marked with the label Tg in Fig. 1.

III. INTERMEDIATE SCATTERING FUNCTION

The intermediate scattering function S(k, t) plays an es-
sential role in the analysis of liquid structure, since it is fre-
quently measured in experiments as well as easily calculated
from simulation data. It describes the time evolution of the
spatial correlation at the wave vector k, and can be used to dis-
tinguish between phases of different structure, such as LDL
and HDL or crystal. It is defined as

S(k, t) ≡ 1

N

〈
N∑

�,m

eik·[r�(t ′)−rm(t ′+t)]
〉

t ′

,

where 〈...〉t ′ denotes averaging over simulation time t′, and
r�(t ′) the position of particle � at time t′. For simplicity, we
only apply the intermediate scattering function to the oxygen
atoms, which we denote as SOO(k, t).

Since the system has periodic boundary conditions, the
components of k have discrete values 2πn/L, where L is the
length of the simulation box and n = 1, 2, 3, . . . . We define
SOO(k, t) ≡ 〈SOO(k, t)〉n where the average is taken over all
vectors k with magnitude k belonging to the nth spherical bin
π (n − 1

2 )/L ≤ k < π (n + 1
2 )/L for n = 2, 3, . . . , 300. Sim-

ilarly, we define the structure factor SOO(k) ≡ 〈SOO(k, t)〉t as
the time-averaged intermediate scattering function, with (un-
less indicated otherwise) the average taken over the whole du-
ration of the run.

We study SOO(k) above and below our estimate for the
LLCP pressure. At P = 210 MPa >PC (Figs. 4(a) and 4(b)),
we observe a discontinuous change in the first two peaks of
SOO(k) as T changes between 245 and 246 K, and a continu-
ous change above and below these temperatures. This is the
expected behavior for a first order phase transition occurring
at 245 K � T � 246 K and P = 210 MPa between two phases
with different structure, consistent with our results in Fig. 1.
The fact that for both phases SOO(k) ∼ O(1) for all k shows
that both phases are fluid. Indeed, for a crystal-like configura-
tion, with a long-range order, there would be at least one wave
vector such that SOO(k) ∼ O(N).78 Furthermore, the fact that
at lower T the first peak increases and the other peaks only
have minor changes indicates that the lower-T liquid has a
smaller density than the higher-T liquid. Therefore, this result
show a first-order phase transition between the LDL at lower-
T and HDL at higher-T. This transition occurs at the same
temperature at which we observe the phase flipping in density
(Fig. 2) and corresponds to the yellow/green region at P > PC

in Fig. 1.
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FIG. 4. The structure factor SOO(k) for a range of temperatures at (a)
210 MPa and (c) 200 MPa for N = 729. (a) For P > PC, the structure has
a large change between T = 245 and 246 K, corresponding to the LDL-HDL
first-order phase transition. (b) The value of SOO for k corresponding to the
first maximum, the first minimum, and the second maximum as a function of
T for P = 210 MPa as in panel (a). (c) For P < PC, the structure changes in a
way that is smoother than the case in panel (a), with the more evident change
occurring between T = 249 and 250 K, corresponding to the crossing of the
Widom line, as marked by the value of SOO at first maxima and minima in
panel (d).

The fact that the peaks of SOO(k) are sharper in LDL
than HDL is an indication that the LDL phase is more struc-
tured. We can also observe that the major structural changes
in SOO(k) between LDL and HDL are for k � 1.8 and 2.8 Å−1,
corresponding to r = 4π /k � 7 and 4.5 Å, respectively, i.e., the
third and the second neighbor water molecules. This change
in the structure is consistent with a marked shift inwards of
the second shell of water with increased density, and almost
no change in the first shell (at k � 4.6 Å−1 and r � 2.75 Å),
as seen in structural experimental data for supercooled heavy
water interpreted with reverse Monte Carlo method.79 These
changes are visible also in the OO radial distribution function
gOO(r).

For P < PC (Figs. 4(c) and 4(d)) by increasing T, we ob-
serve that the first peak of SOO(k) merges with the second,
transforming continuously into a shoulder (the same qualita-
tive behavior can be observed for gOO(r)). These quantities
also show us that the lower-T structure is LDL-like, while
the higher-T structure is HDL-like. However, the absence of
any discontinuous change in the structure implies the absence
of a first-order phase transition in the structure of the liquid.
This is consistent with the occurrence of a LLCP at the end of
the first-order phase transition somewhere between 200 and
210 MPa, at a temperature between 245 and 250 K. In Sec.
VII, we shall apply a different method to locate the LLCP
with more precision.

At P < PC, in the one-phase region, we expect to find
the Widom line emanating from the LLCP. The Widom line
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main plot (N = 343 at 200 MPa and 248 K).

is by definition the locus of maxima of the correlation length,
therefore, from general thermodynamic considerations70 near
the LLCP, it must be also the locus of maxima of the re-
sponse functions. In particular, it must be the locus where
the isobaric heat capacity CP ≡ T(∂S/∂T)P, where S is the en-
tropy of the system, has its maximum along a constant-P path.
This maximum occurs where the entropy variation with T is a
maximum, and is expected where the structural variation of
the liquid is a maximum, i.e., where the derivatives of the val-
ues of SOO(k) (Fig. 4(d)) and gOO(r) with T are at a maximum.
The interval of temperatures for each P where this occurs cor-
responds to the green region at P < PC in Fig. 1, indicated as
the Widom line.

It is actually possible to follow the structural changes
during the simulation. An example is given in Fig. 5 where
we focus on a 30 ns time period of a simulation at 200 MPa
and 248 K. We divide this time period into six 5 ns intervals
and for each interval we calculate the intermediate scattering
function, time-averaged over those 5 ns. We observe that the
liquid is LDL-like for the first and third interval, having low
density and LDL-like SOO(k) (first peak near 2 Å−1, separated
from the second). On the contrary, for the fifth and sixth inter-
vals the density is high and SOO(k) is HDL-like (the first peak
is merely a shoulder of the second peak), indicating that the
liquid is HDL-like. For the second and fourth intervals, the
liquid has an intermediate values of density and SOO(k), indi-
cating that it is a mix of LDL-like and HDL-like structures.

IV. CORRELATION TIME

Apart from its use in structure analysis, the intermediate
scattering function SOO(k, t) can also be used to define a cor-
relation time τ , i.e., the time it takes for a system to lose most
of its memory about its initial configuration.80, 81

In Fig. 6, we show how SOO(k, t) decays with time for a
fixed value of k. Its decay is characterized by two relaxation
times, the α-relaxation time τα and the β-relaxation time τβ .
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FIG. 6. Decay of SOO(k, t) with time, for P = 210 MPa, T = 250 K, and
N = 343. Symbols indicate FOO(ki, t) for three different values of k: the
first maximum of SOO(k) at k1 (red circles), the second maximum at k2 (blue
squares), and the third maximum k3 (green diamonds). Solid lines are fits
according to Eq. (5). The two components of Eq. (5) are explicitly shown for
FOO(k3, t): the green dashed line represents the β-relaxation and is given by
[1 − A(k)]exp [− (t/τβ )2], the green dotted line represents the α-relaxation
and satisfies A(k)exp [− (t/τα)b]. The solid green line going through FOO(k3,
t) is the sum of both.

On very short time scales, the molecules do not move around
much and each molecule is essentially stuck in a cage formed
by its neighbors. This is represented by the β-relaxation time
τβ which is on the order of picoseconds. On longer time
scales, the molecule can escape from its cage and diffuse away
from its initial position. The time τα is the relaxation time of
this structural process.

Mode-coupling theory of supercooled simple liquids
predicts that82

FOO(k, t) ≡ SOO(k, t)/SOO(k, 0)

= [1 − A(k)] e−(t/τβ )2 + A(k) e−(t/τα )b . (5)

The factor A(k) is the Debye-Waller factor arising from the
cage effect, which is independent of the temperature and fol-
lows A(k) = exp (− a2k2/3) with a the radius of the cage. We
are able to fit Eq. (5) remarkably well to all our data, as, for
example, in Fig. 6.

Data in Fig. 6 were collected every 10 fs for simulations
of 1 ns. This rate of sampling results in a large amounts of
data and is unfeasible for our runs up to 1000 ns. Therefore,
for the 1000 ns runs we collect data at 10 ps intervals. At this
rate of sampling, it is no longer possible to estimate τβ or the
cage size a, but it is still possible to determine τα accurately,
utilizing the fact that SOO(k, t) reaches a plateau near t ≈ τβ .
One can therefore define

COO(k, t) ≡ SOO(k, t)/SOO(k, τβ ), (6)

which is S(k, t) normalized by its value at the plateau. A good
estimate of τα is then the time for which COO(k, τα) = 1/e
≈ 0.37.

From the shorter 1 ns runs (which were mostly done in
the HDL regime), we find that the cage radius is a = 0.35
± 0.09 Å with a stretching exponent of b = 0.63 ± 0.09. Both
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FIG. 7. Arrhenius plot of the correlation time τ for different pressures. Errors
on our estimates are of the order of the discontinuities along the curves. At
high temperatures (the HDL regime), the correlation time is of the order of
10–100 ps, which jumps several orders up as we pass the phase transition line
and enter the LDL regime. To obtain this plot, we dismissed the simulations
that had a significant increase in τ because of crystal growth (see Sec. VI).

parameters a and b do not show a significant dependence on
the state point within the studied range of temperatures and
pressures.

As shown in Fig. 6, different k result in slightly differ-
ent values for τα . We use as the correlation time τ the largest
value of τα which is usually found at k = k1, the first maxi-
mum in 〈SOO(k)〉 (inset Fig. 6).

As is to be expected, the correlation time does not seem
to depend on the box size. It does however depend strongly
on the phase, which is evident from Fig. 7.

At high temperatures, the system is in the HDL phase,
and has a correlation time τ on the order of 10–100 ps. As
we decrease the temperature at fixed pressure, the value of τ

has a large increase when we cross the phase transition line
or the Widom line, depending on if P is above or below PC,
respectively. Apparently, the LDL states evolve nearly four
orders of magnitude slower than HDL states, with correlation
times in the nanosecond range.

If we lower the temperature further, the correlation time
slowly increases until the system becomes a glass rather than
a liquid, and we are no longer able to fully equilibrate the
system. As we can only run simulations up to 1000 ns, we
consider the state points with a correlation time above 100 ns
to be beyond our reach. We therefore designate the effective
glass transition temperature Tg as the temperature for which
τ > 100 ns (see Fig. 1).

V. STRUCTURAL PARAMETERS

Apart from the intermediate scattering function, there are
other ways to quantify the structure of a liquid. In this sec-
tion, we shall examine several structural parameters, and de-
termine which of those are the most effective in distinguishing
between LDL, HDL, and the crystal. Apart from considering
several global parameters, we shall mainly focus on local pa-
rameters which can be used to analyze the local environment

of a molecule. In addition, we study here not only the pa-
rameters based on the nearest neighbors, but also those based
on the next-nearest neighbors (the second coordination shell).
Finally, we determine the best local parameter to use for iden-
tifying tiny crystals in the liquid, an important result that will
be used in Sec. VI.

The structural parameters are designed to distinguish be-
tween different phases by analyzing the geometrical structure.
This is typically done by evaluating the spherical harmonics
Ym

� (ϕ, ϑ) for a particular set of neighboring atoms, with ϕ and
ϑ the polar angles between each pair of oxygen atoms in that
set. In this paper, we consider two different sets: we define the
first coordination shell n1(i) to be the four nearest neighbors
of molecule i, and define the second coordination shell n2(i) as
the fifth to 16th nearest neighbors (the 16th nearest neighbors
minus those in the first shell). For simplicity, we approximate
the center of mass of a water molecule with the center of its
oxygen atom.

Different values of � are sensitive to different symme-
tries. The spherical harmonics with � = 3, for example, are
sensitive to a diamond structure. Those with � = 6 are more
sensitive to the hexagonal closest packing (hcp) structure.
Since we expect the liquid and crystal structures to be hcp,
diamond, or a mix of these, we focus primarily on � = 3 and
� = 6.

A. Parameters q3 and q6

All parameters defined in this section are based on q
(s)
�,m(i)

which quantifies the local symmetry around molecule i. It is
defined as

q
(s)
�,m(i) ≡ 1

Ns

∑
j∈ns (i)

Ym
� (ϕij , ϑij ) − � ≤ m ≤ �, (7)

where � and m are integers, s = 1, 2 indicates the shell we
are considering, and with Ns the number of molecules within
that shell (i.e., N1 ≡ 4 for the first coordination shell, and
N2 ≡ 12 for the second). Ym

� is normalized according to∫ |Ym
� |2 sin(ϑ)dϕdϑ = 1. We can consider q

(s)
�,m(i) as a vec-

tor q(s)
� (i) in a (4� + 2)-dimensional Euclidean space having

components Re(q(s)
�,m(i)) and Im(q(s)

�,m(i)). This means that we
can define an inner product

q(s)
� (i) · q(s)

� (j ) ≡
�∑

m=−�

[
Re(q(s)

�,m(i)) Re(q(s)
�,m(j ))

+ Im(q(s)
�,m(i)) Im(q(s)

�,m(j ))
]

(8)

and a magnitude

q
(s)
� (i) ≡

√
q(s)

� (i) · q(s)
� (i). (9)

The local parameter q
(s)
� (i) is one way to distinguish be-

tween different structures, and can be used to label individual
molecules as LDL-like or HDL-like. We can convert it into a
global parameter by averaging over all molecules,

q
(s)
� ≡ 1

N

N∑
i=1

q
(s)
� (i), (10)
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FIG. 8. Fluctuations of the density and the global structural parameters as a
function of time. The parameters are shown for one run using 343 molecules
at 200 MPa and 248 K, the same as in Fig. 5. Parameters q

(1)
3 , q

(2)
6 , and ψ

(1)
3

(defined in the text) are as sensitive as ρ to the difference between LDL-like
and HDL-like structures, while the others are more noisy, being Q

(2)
3 and ψ

(2)
3

much less sensitive than all the others. Q
(s)
6 and ψ

(s)
6 , for both s = 1 and 2,

have similar behaviors that might be related to the temporary appearance of
crystal-like structures.

where N is the total number of molecules. In Fig. 8, we see
that all global q

(s)
� are sensitive to the difference between LDL

and HDL, especially q
(1)
3 and q

(2)
6 . We conclude that the struc-

tural difference is visible in both the first and second shell, and
that LDL and HDL differ mostly in the amount of diamond
structure of the first shell and the amount of hcp structure
in the second shell. This is confirmed by the histograms in
Fig. 9, in which the largest difference between LDL and HDL
is seen in q

(1)
3 and, next, in q

(2)
6 . The latter is the parameter that

better discriminate with respect to the crystal structure.

B. Global parameters Q3 and Q6

An alternative approach, as used by Steinhardt et al.,83

is to first average q
(s)
�,m(i) over all molecules, defining Q�,m

≡ ∑N
i=1 q

(s)
�,m(i), and then calculate the magnitude

Q
(s)
� ≡ 1

N

(
�∑

m=−�

Q�,mQ∗
�,m

)1/2

. (11)

Our calculations show that the parameters Q
(s)
3 and Q

(s)
6 , with

s = 1, 2, are not efficient in discriminating between LDL and
HDL (Fig. 8), although Q6 ≡ Q

(1)
6 has been proposed recently

as a good parameter to this goal63 and consequently has been
used by several authors.66–68 In particular, we observe that
there is not much correlation between the fluctuations of Q

(s)
�

and those of the density, except for Q
(1)
3 .
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FIG. 9. Histograms of q
(s)
� for � = 3, 6 and coordination shells s = 1, 2 at

215 MPa with N = 343 molecules. The solid red (dark) curves correspond
to HDL structures, and the solid blue (light) curves to LDL structures. The
dashed black curve corresponds to the crystal structure found in run C de-
scribed in Sec. VI. The parameter q

(1)
3 (a) discriminates better between HDL

and LDL structures, while the parameter q
(2)
6 (d) discriminates better between

liquid-like and crystal-like structures. Parameters in (b) and (c) are much less
sensitive to structural changes.

However, we confirm that Q
(1)
6 and Q

(2)
6 are excellent pa-

rameters to distinguish between the liquids (LDL and HDL)
and the crystal, with the value of Q

(s)
6 approximately 10 times

larger for the crystal than it is for the liquids (Fig. 10). This
large increase of Q

(s)
6 for crystal-like structures might be re-

lated to the few instances in Fig. 8 where an increase in Q
(s)
6

corresponds to a decrease of density (such as within inter-
val t = 230–237 ns), consistent with the observation that the
crystal-like structures have a density comparable to the LDL
structure and smaller than the HDL structure.

To confirm that LDL remains a liquid in the thermody-
namic limit, we look at how Q6 changes with the system size.
For liquids, Q6 scales like N−1/2 while for crystals the value
Q6 remains finite as N → ∞. We find that the probability
distribution functions of Q6N1/2 for N = 216, 343, 512, and
729 overlap, which means that Q6N1/2 is independent of the
system size, therefore, Q6 ∼ N−1/2 (Fig. 11). We conclude
that the metastable LDL is not transforming into the stable
crystal in the thermodynamic limit. This implies that the LDL
and the crystal phase are separated by a free-energy barrier
that is higher than kBT at the temperatures we consider here,
and that the system equilibrates to the stable (crystal) phase
only on a time scale that is infinite with respect to our simu-
lation time (1000 ns), as occur in experiments for metastable
phases. Therefore, the LDL is a bona fide metastable state.
Our conclusion is consistent with recent calculations by other
authors.66–68
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FIG. 10. Histograms of Q
(s)
� for � = 3, 6 and coordination shells s = 1, 2

at 215 MPa with N = 343 molecules. The symbols are as in Fig. 9. The
parameter Q

(s)
6 , for the first shell in (b) and the second in (d), shows a clear

difference between the liquid-like structures and the crystal-like structure, but
not between the two liquids. Note that scales on x-axis in panels (a) and (c)
are one order of magnitude smaller than those in panels (b) and (d). As a
consequence, Q

(s)
3 , for the first shell in (a) and the second in (c), is much less

sensitive to structural changes than Q
(s)
6 .

C. Bond parameters d3 and ψ3

We define the bond order parameter d
(s)
� similar to that

defined by Ghiringhelli et al. in Ref. 84, where the quantity
d

(1)
3 (i, j ) characterizes the bond between molecules i and j,

and is designed to distinguish between a fluid and a diamond
structure. The local parameter d

(s)
� (i, j ) is defined as the co-
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FIG. 11. Finite size scaling of parameter Q6 in the LDL phase (210 MPa,
243 K). The probability distribution function of Q6N1/2 is independent of the
system size N, which means LDL scales like a liquid in the thermodynamic
limit: Q6 ∼ N−1/2.
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FIG. 12. Histograms of d
(s)
� for � = 3, 6 and coordination shells s = 1, 2 at

215 MPa with N = 343 molecules. The symbols are as in Fig. 9. Apart from
d

(1)
3 in (a), these parameters do not distinguish well between the two different

liquid-like structures, but d
(1)
3 and d

(s)
6 for the first shell (b) and the second (d)

are suitable to distinguish between the crystal and the liquids. The parameter
d

(2)
3 in (c) is remarkably the same for the three structures.

sine of the angle between the vectors q(s)
� (i) and q(s)

� (j )

d
(s)
� (i, j ) ≡ q(s)

� (i) · q(s)
� (j )∣∣q(s)

� (i)
∣∣∣∣q(s)

� (j )
∣∣ (12)

with the inner product and magnitude as defined in Eqs. (8)
and (10).

A crystal with a perfect diamond structure has
d

(1)
3 (i, j ) = −1 for all bonds. For a graphite crystal, only

the bonds within the same layer (three out of four) have
d

(1)
3 (i, j ) = −1, while the bonds connecting atoms in differ-

ent layers (one out of four) have d
(1)
3 (i, j ) = −1/9.

We find that the parameters d
(s)
� for � = 3, 6 and s = 1, 2

do not distinguish well between the two different liquid-like
structures, but that d

(1)
3 and d

(s)
6 for both s = 1 and 2 are suit-

able to discriminate between the crystal-like structure and the
liquids (Fig. 12). In particular, for the crystal, most molecules
have d

(1)
3 < −0.87, and we therefore consider a molecule to

be part of a crystal if at least three out of its four bonds with its
nearest neighbors have d

(1)
3 < −0.87. This is the same cutoff

used by Ghiringhelli et al. in Ref. 84.
The global parameter associated with d

(s)
� (i, j ) is defined

as

ψ
(s)
� ≡ 1

N

N∑
i=1

ψ
(s)
� (i), (13)

Downloaded 26 Jun 2013 to 161.116.80.240. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



244506-9 Kesselring et al. J. Chem. Phys. 138, 244506 (2013)

-1 -0.5 0 0.5
Parameter  ψ

3
(1)

0

2

4

6

8 LDL (235-243 K)
crystal (242 K)
HDL (246-250 K)

-0.5 0 0.5 1
Parameter  ψ

6
(1)

0

2

4

-0.5 0 0.5
Parameter  ψ

3
(2)

0

2

4

-0.5 0 0.5 1
Parameter  ψ

6
(2)

0

2

4
(c) (d)

(b)(a)

FIG. 13. (a)–(d) Histograms of ψ
(s)
� for � = 3, 6 and coordination shells

s = 1, 2 at 215 MPa with N = 343 molecules. The symbols are as in Fig. 9.
Each ψ

(s)
� (i) has similar features as the corresponding d

(s)
� (i, j ) in Fig. 12.

where

ψ
(s)
� (i) ≡ 1

4

4∑
j=1

d
(s)
� (i, j ) (14)

is the average of d
(s)
� (i, j ) over the first four nearest neighbors

of the molecule i. We observe that each ψ
(s)
� (i) has the same

features of the corresponding d
(s)
� (i, j ), with ψ

(1)
3 (i) discrimi-

nating well between the crystal-like and the liquids-like struc-
tures (Fig. 13). We observe that ψ

(1)
3 discriminates well be-

tween LDL-like and HDL-like structures (Fig. 8), while ψ
(s)
6

for s = 1 and 2 might be able to emphasize the temporary
appearance of crystal-like structures, as noted for Q

(s)
6 .

In Fig. 14, we see that there is no significant differ-
ence between the low-T curves at P = 240 MPa, 215 MPa
(Fig. 13(a)), and 195 MPa, and no significant difference be-
tween the high-T curves. We therefore conclude that at the
Widom line the low density liquid (at low T) is LDL-like, and
similarly that the high density liquid (at high T) is HDL-like.

From the figure, we can also see that the difference
between the LDL- and HDL-structure decreases when we de-
crease P, indicating that far from the LLPT the distinction be-
tween LDL-like and HDL-like disappears as is to be expected
in the one-phase region.

VI. GROWTH AND MELTING OF CRYSTAL NUCLEI

In a small percentage of our simulations, the system
was found to spontaneously crystallize. These are interest-
ing events because spontaneous crystallization of water in
molecular dynamics is extremely rare; only recently Mat-
sumoto et al.85 were the first to successfully simulate the
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FIG. 14. Probability distribution function of ψ
(1)
3 for both P = 195 MPa and

240 MPa, with N = 343 molecules (see Fig. 13(a) for P = 215 MPa). At the
Widom line (195 MPa), the structure of the low-density liquid is similar to
that of LDL at 240 MPa, and the structure of the high-density liquid near the
Widom line is practically the same as HDL. This demonstrates that the LDL-
like and HDL-like phases are indeed structurally similar to LDL and HDL.
Furthermore, the structural difference between the LDL-like and HDL-like
phases becomes smaller as we move away from the phase transition line to
lower and lower pressures.

freezing of water on a computer. Crystallization events in su-
percooled ST2 water are particularly important to study, as
it has been proposed that LDL is unstable with respect to
crystallization.63

Following the discussion in Sec. V, we define a crystal as
a cluster of molecules which has three out of four bonds with
d

(1)
3 < −0.87 and belong to the first coordination shell of each

other. In this section, we shall study the growth and melting
of these crystal nuclei, and estimate the critical nucleus size
needed to overcome the free energy barrier. The existence of
this barrier allows us to conclude that LDL is in fact a bona
fide metastable state with respect to the crystal.

In Fig. 15, we show the density evolution for 11 different
configurations, each with 343 molecules and at 205 MPa and
246 K. Each of these runs started at a different initial density
(between 0.85 and 0.95 g/cm3) and was subsequently equili-
brated to the final temperature and pressure using the proce-
dure described in Sec. II. Because this state point lies close to
the LLPT, we see phase flipping in all of them. However, the
two configurations C and F display a sudden jump to a stable
low density plateau. This is a hallmark of crystallization. We
confirm this by calculating the size of the largest crystal as a
function of time (Fig. 16). During most runs the largest crys-
tal continuously grows and shrinks, but never reaches a size
larger than 30 molecules. On the other hand, configurations C
and F show a jump in crystal size exactly matching the jump
in density. Run F ends up partially crystallized, while for C
we find that over 90% of the box is crystallized in a diamond
structure with a density of about 0.92 g/cm3 (Fig. 17).

The correlation time increases dramatically if crystals ap-
pear with a size comparable to the system size, as is evident
from Fig. 18. The correlation functions of C and F decay very
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FIG. 15. Density vs. time near the phase transition line at P = 205 MPa and
T = 246 K for several different configurations of N = 343 molecules. This
state point lies near the phase transition, and therefore phase flipping is seen
to occur. Runs C and F (partially) crystallize and, at that moment, cease to
phase flip and remain stable at a low density.

slowly, leading to correlation times of 200–400 ns, while the
other configurations have a correlation time of less than 4 ns.

For spontaneous crystallization to occur, a sufficiently
large crystal nucleus needs to form within the liquid. Accord-
ing to classical nucleation theory, this nucleus needs to reach
a minimum size to prevent it from melting. We observed in
many simulations that a small nucleus grows and melts, and
a few runs in which the nucleus grows further or remains sta-
ble. Therefore, we can make an estimate of the critical nucleus
size.

The two largest crystals that formed and subsequently
melted, both reached a size of about 50–60 molecules
(Figs. 19(a) and 19(b)). The smallest crystal that formed
and remained stable, had a size of about 50–80 molecules

FIG. 16. Evolution of crystal size with time for the same configurations as
in Fig. 15. The y-axis goes from 0 to 34, except for configurations C and F
which go up to 343. The system spontaneously crystallizes in both C and F,
while the largest crystals in the remaining configurations never reach a size
larger than 30 molecules.

FIG. 17. A snapshot (at t = 1000 ns) of the diamond cubic crystal produced
by run C of Figs. 15 and 16. Shown here are all N = 343 molecules, with
a small part still in the liquid state (bottom-left corner), and a crystal defect
in the center. Note that the defect only affects the position of the hydrogen
atoms, and not that of the oxygen.

(Fig. 19(c)). We therefore conclude that the critical nucleus
size is approximately 70 ± 10 molecules. A similar value of
� 85 molecules was found by Reinhardt and Doye86 for ice
nucleation in the monatomic water model.87

For a more accurate estimate, it is necessary to run longer
simulations, as the crystal nuclei can survive for hundreds of
nanoseconds (e.g., Fig. 19(d) in which a small crystal lasts for
700 ns).

VII. LOCATING THE CRITICAL POINT

In Sec. III, we used the intermediate scattering function
SOO(k) to estimate the position of the liquid-liquid critical
point, and found it to lie near 200–210 MPa and 244–247 K.
It is commonly believed that the LLCP falls in the same
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FIG. 18. The correlation time increases dramatically if crystals of a size
comparable to the system size appear (i.e., runs C and F of Figs. 15 and
16). The correlation time of two other runs (H and J) are slightly larger than
average because these runs spend more time in the LDL phase (see Fig. 15).
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FIG. 19. Growth and melting of crystal nuclei. (a) The largest nucleus that
melted reached a size of 62 molecules during a simulation of 512 molecules
at 210 MPa and 244 K. (b) The second-largest nucleus was 55 molecules
during a simulation of 343 molecules at 210 MPa and 243 K. (c) A few runs
lead to irreversible crystallization (N = 216 at 195 MPa and 245 K). (d) Some
crystal nuclei survive for hundreds of nanoseconds (N = 343 at 195 MPa and
246 K) before disappearing.

universality class as the three-dimensional Ising model.57 At
the critical point, the order parameter distribution function
(OPDF) of a system has the same bimodal shape as all other
systems that belong to the same universality class. Therefore,
one can locate the LLCP accurately by fitting our data to the
OPDF of the 3D Ising model, as was done in Ref. 65. Based
on our fit, we locate the LLCP to be at PC = 206 ± 3 MPa
and TC = 246 ± 1 K.

FIG. 20. 2D histogram (contour plot) of the density and the total energy for a
system at 247.5 K and 200 MPa (on the Widom line), obtained via histogram
reweighting, together with its projection in arbitrary units along the horizon-
tal axis (curve (a)), the vertical axis (curve (b)) and the diagonal black-line
(curve (c)). The histogram of the energy (curve (a)) seems to indicate that the
system is mostly in the LDL state, while the histogram of the density (curve
(b)) indicates the HDL state is more predominant. For liquids, the order pa-
rameter M ≡ ρ + sE is actually a linear combination of the density ρ and
the energy E (curve (c)), with s = 0.0362 (g/cm3)/(kJ/mol). By fitting the
OPDF (curve (c)) to the critical OPDF of the 3D Ising model, it is possible to
accurately locate the critical point.65

245 250 255
0.656

0.658

0.66

0.662

0.664

0.666

0.668

Π

245 250

N=729
N=512
N=343
N=216

240 245 250
T [K]

0.656

0.658

0.66

0.662

0.664

0.666

0.668

Π

235 240
T [K]

190 MPa

210 MPa

200 MPa

240 MPa

FIG. 21. The Challa-Landau-Binder parameter � as a function of temper-
ature and system size N, for four different pressures. For finite system, size
� shows a minimum at the LLPT and the Widom line, while � ≈ 2/3 (thin
dashed line) at temperatures where D(ρ) is given by a single Gaussian. The
finite-size scaling of the minimum of �, indicates that the critical point exists
in the thermodynamic limit (Fig. 22).

To establish that the LLPT does not vanish in the ther-
modynamic limit N → ∞, we consider the finite-size scaling
of the Challa-Landau-Binder parameter.88–93 Near the criti-
cal point the density distribution function D(ρ) has a bimodal
shape that can be approximated by the superposition of two
Gaussians. The Challa-Landau-Binder parameter � is a mea-
sure of the bimodality of D(ρ) and is defined as

� ≡ 1 − 〈ρ4〉
3〈ρ2〉2 . (15)

When there is only one phase, D(ρ) is unimodal and � = 2/3.
But in a two-phase region, with two phases that have different
densities, the shape of D(ρ) is bimodal (Fig. 20) and � < 2/3.
For a finite system, D(ρ) is always bimodal at both the Widom
line and the LLPT, but in the thermodynamic limit there exists
only one phase at the Widom line, while there remain two at
the phase transition line. Therefore, � → 2/3 at the Widom
line, while � < 2/3 at the LLPT even in the limit N → ∞.
Hence, the finite-size scaling of � allows us to distinguish
whether an isobar crosses the LLPT or the Widom line, and
is yet another method of estimating the location of the critical
point.

We study � versus temperature T and system size N for
different pressures, finding minima �min at a specific temper-
ature for each pressure (Fig. 21). The finite-size dependence
of �min(P) reveals if P < PC or P > PC (Fig. 22).

For P < PC, the minimum �min approaches 2/3 linearly
with 1/N, while for P ≤ PC it approaches the limit88

�min → 2

3
− 1

3

(
ρ2

H − ρ2
L

)2

(
ρ2

H + ρ2
L

)2 . (16)

This limiting value is also approached linearly with 1/N. Here,
ρH ≡ ρH(P) and ρL ≡ ρL(P) are the densities of the two
phases LDL and HDL.90 Above the critical pressure, the limit-
ing value of �min decreases as P increases, i.e., the two peaks
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FIG. 22. Minima of the Challa-Landau-Binder parameter � as a function
of system size N for different pressures. The minimum �min occurs at the
pressures and temperatures of the LLPT and the Widom line, and is always
less than 2/3 for a finite system because of the bimodality of the density
histogram. As N → ∞, the bimodality disappears in the one-phase region
but remains at the LLPT, and therefore �min → 2/3 at the Widom line while
�min < 2/3 on the LLPT, even in the thermodynamic limit. We conclude that
the critical point survives in the thermodynamic limit, and that it is located
between P = 200 and 210 MPa (in agreement with previous results of this
paper).

of the bimodal D(ρ) move further apart. This happens because
ρH − ρL increases at coexistence as (P − PC)β where β ≈ 0.3
is the critical exponent of the 3D Ising universality class.94, 95

From this analysis (Fig. 22), we conclude that our results
agree with theory and that the critical pressure PC ≈ 190–
210 MPa, in agreement with the estimate of Sec. III. Further-
more, as � remains less than 2/3 for P > PC even in the limit
N → ∞, we conclude that the LLPT does not vanish in the
thermodynamic limit.

VIII. CONCLUSIONS

We performed molecular dynamic simulations in the NPT
ensemble for ST2-RF water in the supercooled region of
the phase diagram for different system sizes with simulation
times of up to 1000 ns. Using several different techniques,
we confirmed the existence of two liquid phases, LDL and
HDL, separated by a liquid-liquid phase transition line. Near
the LLPT line, the system continuously flips between the two
phases. Because of finite-size effects this phenomenon also
occurs near the Widom line, but by fitting the order param-
eter distribution function to that of the 3D Ising model we
were able to accurately determine the location of the liquid-
liquid critical point (at TC = 246 ± 1 K, PC = 208 ± 3 MPa).
These results agree exactly with (TC = 246 K, PC ≈ 188 MPa)
as found by Poole et al.,56 with the discrepancy in pressure
attributed to the LJ pressure correction of � −20 MPa (see
Sec. II). Finite size scaling of the Challa-Landau-Binder pa-
rameter indicates that the critical point does not disappear in
the thermodynamic limit.

Both phases have been confirmed to be bona fide
metastable liquids that differ substantially in structural as well
as dynamical properties. It is found that the LDL phase is a

more “structured” liquid, and that it has a correlation time
of almost four orders of magnitude larger than that of HDL,
with LDL correlation time of the order of 100–1000 ns. We
show that Q6 structural parameter is not able to discriminate
between HDL and LDL, but can discriminate well between
liquids and crystal. Finite size scaling of the Q6 parameter
confirms that LDL scales as a liquid and not as a crystal.

The different structures of LDL and HDL are better dis-
criminated by structural parameters such as q

(1)
3 and q

(2)
6 .

These parameters show that LDL and HDL differ mostly in
the amount of diamond structure of the first shell and the
amount of hcp structure in the second shell.

For small box sizes (N = 343), there were a few simula-
tion runs that resulted in spontaneous crystallization, always
within the LDL region of the phase diagram. Further anal-
ysis revealed that during all simulations small crystals grow
and melt within the liquid, a clear indication that LDL is
metastable with respect to the crystal. From the few crystal-
lization events that occurred, we were able to conclude that
the critical nucleus size is approximately 70 ± 10 molecules.
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