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Abstract 

In the present work we focus on two indices that quantify directionality and skew-

symmetrical patterns in social interactions as measures of social reciprocity: the 

Directional consistency (DC) and Skew symmetry indices. Although both indices 

enable researchers to describe social groups, most studies require statistical inferential 

tests. The main aims of the present study are: firstly, to propose an overall statistical 

technique for testing null hypotheses regarding social reciprocity in behavioral studies, 

using the DC and Skew symmetry statistics (Φ) at group level; and secondly, to 

compare both statistics in order to allow researchers to choose the optimal measure 

depending on the conditions. In order to allow researchers to make statistical decisions, 

statistical significance for both statistics has been estimated by means of a Monte Carlo 

simulation. Furthermore, this study will enable researchers to choose the optimal 

observational conditions for carrying out their research, as the power of the statistical 

tests has been estimated. 

 

Keywords 

Social reciprocity, Directional consistency index, Skew symmetry index, Social 

interactions. 
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Statistical analysis of social interactions should consider some particularities that 

social researchers have increasingly taken into account in their studies. Specifically, 

most researchers are interested in estimating actor, partner and relationship effects and 

even in describing groups as a whole. These characteristics often make some classical 

statistical tests unsuitable for analyzing social interaction data. For analyzing social 

phenomena, therefore, dominance and social reciprocity statistical tests have been put to 

use, along with well-known statistical tests (Appleby, 1983; Hemelrijk, 1990a, 1990b; 

Kenny & La Voie, 1984; Landau, 1951; Rapoport, 1949; de Vries, 1995; Warner, 

Kenny, & Stoto, 1979). 

A correlational approach has been proposed for testing reciprocity and interchange at 

group level (Hemelrijk, 1990a, 1990b). In this approach, statistical significance is 

obtained by means of a kind of permutation test. This procedure quantifies social 

reciprocity as a whole, as the association coefficient is an overall measure of global 

reciprocity or interchange in the social group. According to Hemelrijk (1990b), there are 

three types of reciprocity: relative, absolute and qualitative. The present study is 

concerned with absolute reciprocity. A group presents absolute reciprocity when there is 

exact matching between agents’ amount (or duration) of behavior. Relative reciprocity 

requires data to be ranked within each individual, while qualitative reciprocity implies 

that the comparison is done on a binary scale. Hemelrijk also described two models that 

can be applied in ethological studies of reciprocity: the actor-reactor and the actor-

receiver models. According to the first model, individuals give more often to those who 

more frequently give them something in return compared to what these individuals give 

to others. The actor-receiver model involves the comparison between what each 

individual gives and receives in return. We here focus on absolute reciprocity, as we are 

interested in testing the symmetry of a sociomatrix, defined as the number of behaviors 
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given and received among individuals. Moreover, we use an actor-receiver model 

because we only assume that actors in dyads compare what is given and received from 

their partners, without taking into account what is given and received from the others. 

The actor-reactor model requires more complex cognitive abilities (i.e., each individual 

must be able to trace the acts of the other individuals) and does not allow constructing a 

complete reciprocation sociomatrix for odd group sizes and, as a consequence, it is not 

possible to test for social reciprocity (Hemelrijk, 1990b). For these reasons the present 

research is concerned with the more parsimonious and unrestricted actor-receiver 

model. 

The Social Relations Model (SRM; Kenny & La Voie, 1984) is useful to analyze data 

from round robin designs since it uses dyadic relations for the study of social 

phenomena. Although the SRM has been commonly used in interpersonal perception 

studies (Kenny, 1994), it can be also applied to analyze interaction behaviors in groups. 

Additionally to the mean level, the SRM decomposes each dyadic observation of 

sociomatrices into the actor effect, partner effect, and relationship effect. The SRM uses 

a random-effects two-way analysis of variance, which allows estimating the actor 

variance, partner variance and relationship variance, to take statistical decisions. This 

model also enables social researchers to assess different kinds of social relations: dyadic 

and generalized reciprocity. While dyadic reciprocity refers to interdependence in 

dyads, generalized reciprocity measures dependencies at the individual level. The SRM 

quantifies dyadic and generalized reciprocity in groups by means of the product-

moment correlation coefficient, therefore, this procedure is also founded on a 

correlational approach to measure social reciprocity. It should be noted that the SRM 

does not enable social researchers to measure social reciprocity at the global level and 

does not take into account the absolute dyadic differences to quantify social reciprocity. 
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The Directional consistency index (DC; van Hooff & Wensing, 1987) has widely been 

used by biologists in order to quantify the directionality of behavior in social 

interactions (Côté, 2000; Koenig, Larney, Lu, & Borries, 2004; Pelletier & Festa-

Bianchet, 2006; Stevens, Vervaecke, de Vries, & van Elsacker, 2005; Vervaecke, de 

Vries, & van Elsacker, 1999; Vogel, 2005). The DC is obtained by dividing the number 

of the total interactions in the most frequent direction (H) minus the number of 

interactions in the less frequent direction (L) by the total of interactions performed by 

all individuals in the group. It should be noted that this is the same as the sum of 

absolute dyadic differences divided by the total number of interactions:  

 

1 1

1 1

( )
; ; 0

( )

n n

ij ji n n
i j i

ij
i j

j i

x x
H L

DC N x DC
H L N

  

 





   


 
 1  

 

where xij is the number of interactions that individual i addresses to individual j, xji is the 

number of interactions that individual i receives from individual j, N is the total number 

of interactions in the group, and n is the number of individuals.  The index ranges from 

0 to 1. When the DC index takes a value close to 0, social reciprocity is near its 

maximum. On the other hand, when the index is close to 1 most dyadic interactions are 

unidirectional and social reciprocity is near its minimum value. 

Another quantification of social reciprocity has recently been proposed (Solanas, 

Salafranca, Riba, Sierra, & Leiva, 2006). This method is based on partitioning a 

sociomatrix (X) into its symmetrical and skew-symmetrical parts (Constantine & 

Gower, 1978): 
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where  X’ denotes the transpose of the sociomatrix X, the elements in matrix S are the 

average of the amount of behavior addressed and received by each individual, and the 

elements in matrix K represent the average of differences between the number of 

behaviors emitted and received by each individual in the group. This method enables 

researchers to describe groups at individual, dyadic and group level, assuming that 

global phenomena depend on dyadic interactions. It takes into account the absolute 

differences among agents’ dyadic behaviors in order to compute a measure of 

reciprocity. The method also allows researchers to quantify generalized and dyadic 

reciprocity by means of discrepancy measures. Furthermore, a proximity matrix can be 

obtained and multidimensional scaling can be applied to determine underlying 

dimensions in groups and to represent individuals in a Euclidean space. 

Solanas et al. (2006) proposed quantifying overall reciprocity in groups by means of 

the Skew symmetry index or, if preferred, the symmetry index. The Skew symmetry 

index is computed as follows: 
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where X and K respectively denote any sociomatrix and its corresponding skew-

symmetrical matrix. The symmetry index, denoted by Ψ, is equal to 1 − Φ. Note that the 

larger the skew symmetry is in groups, the closer the Skew symmetry value is to 0.5. 
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Now, we can write the DC index in the following re-expression: 
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Looking at the mathematical expressions of the DC and Skew symmetry indices, it 

should be noted that these indices will be monotonically correlated. 

Note that the DC and Skew symmetry indices have some advantages over other 

techniques that have been proposed for analyzing groups. Most importantly, these 

methods enable social reciprocity to be analyzed without any loss of information. That 

is, the DC and Skew symmetry statistics take into account the difference between the 

behavior each individual addresses to another and what he/she receives in return. In 

other words, there is no lost information, as occurs when the linear index of hierarchy is 

computed (Rapoport, 1949; Landau, 1951). Moreover, the DC and Skew symmetry 

statistics can be useful in studies in which researchers are interested in analyzing 

absolute differences in behavior instead of calculating any association coefficient for 

measuring social reciprocity, as occurs when other procedures are used (Hemelrijk, 

1990a, 1990b; Kenny, 1994). 

Researchers can study patterns of reciprocity in groups using the DC or Skew 

symmetry statistics as we have showed above. After describing the group by means of 

these statistical indices, researchers may be interested in making statistical decisions 

regarding the null hypothesis. In this case, the null hypothesis often corresponds to 

complete reciprocation among individuals. For this reason, we propose an overall 

statistical technique for testing symmetry in any group, although the procedure can be 
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used to test other null hypotheses. Thus, researchers will be able to take decisions about 

whether the group under analysis presents a statistically significant unidirectional or 

skew-symmetrical pattern. 

In the present paper we pursue several aims. Firstly, we present statistical tests for 

testing null hypotheses regarding reciprocity in social interactions. Thus, social 

researchers will be able to associate statistical significance to the DC and Skew 

symmetry values obtained in their studies. Secondly, we are interested in comparing 

two statistics by means of a simulation study. We estimate several sampling 

distributions for the DC and Skew symmetry statistics, and a power analysis is carried 

out to allow social researchers to make an optimal choice of statistic depending on the 

observational conditions. The statistical tests and the simulation study are carried out by 

using a Monte Carlo method. 

 

A procedure for testing social reciprocity 

We propose a Monte Carlo sampling procedure to test statistical hypotheses 

concerning social reciprocity since this method has been recommended for use in 

studies when the exact distributions are unknown (Noreen, 1989; Peres-Neto & Olden, 

2001). Given that the sampling distributions of the DC and Skew symmetry statistics 

are currently unknown, a Monte Carlo test can be used to approximately estimate them. 

We highlight that this statistical method enables social researchers to obtain statistical 

significance for any sociomatrix, independently of the number of individuals and the 

amount of behavior for each dyad. It will be only needed to specify the parameter values 

to be tested, the number of individuals in the group and the amount of behaviors for 

each dyad. 
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We denote the number of times that the behavior of interest is registered between 

individuals i and j by Nij. Xij represents the number of times the individual i addresses 

behavior to j. We assume that the probability of the event “i addresses behavior to j” 

(pij) is a constant value for every trial during the observation period. Note that this 

assumption is needed if repeated interactions among individuals is gathered and 

aggregated in a unique sociomatrix (Adams, 2005; Boyd & Silk, 1983; Tufto, Solberg, 

& Ringsby, 1998), as it is made in round robin designs. In addition, we also assume that 

the outcomes of successive encounters are independent during the observation period 

(Appleby, 1983; Boyd & Silk, 1983). This assumption, for example, is also made in the 

SRM (Warner et al., 1979) since interaction behaviors between the individuals of each 

pair are counted or aggregated, which means that this dependency cannot be estimated 

from data at hand. Furthermore, the SRM does not include a term in which dependency 

between successive interactions is taken into account and, unfortunately, no general 

strategy is known for controlling these kinds of order effects (Kenny, Kashy, & Cook, 

2006, pp. 217). As a consequence of this second assumption, the number of times that i 

addresses behavior to j, Xij, is binomially distributed with parameters Nij and pij. This 

probabilistic approach has previously been used to model social interactions (Tufto et 

al., 1998). Note that if pij = pji for all dyads, all relationships are reciprocal. Thus, E(Xij) 

= E(Xji) and the DC and Skew symmetry statistics computed in samples are expected to 

be close to 0. Otherwise, the value of the DC statistic will be near 1 and the Skew 

symmetry statistic will be close to 0.5, as a function of the lack of reciprocity among the 

dyads. Finally, we also assume that there are no dependency effects between dyads, an 

assumption also made in the SRM (Kenny et al., 2006, pp. 216; Warner et al., 1979). 

We propose to use Monte Carlo sampling to generate a specified number of simulated 

sociomatrices. The pij parameter values should be established according to the particular 
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null hypothesis to be tested. Additionally, the exact Nij value for each dyad needs to be 

specified and the number of individuals in the group, n, has to be established. Given the 

values for pij, Nij and n, sampling distributions for the DC and Skew symmetry statistics 

can be estimated by Monte Carlo sampling. Therefore, the values of the two statistics 

obtained from the original sociomatrix can be located at their corresponding sampling 

distributions and thus obtaining statistical significance. 

An asymptotical test could have been proposed to test the complete reciprocation 

hypothesis, the above mentioned assumptions being also required. According to the 

reproductive or additive property of the χ2 distribution, the following statistic is χ2 

distributed with n(n−1)/2 degrees of freedom: 
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The main problem of using this statistical test is that the statistic does not follow a χ2 

distribution if pij values clearly differ from 0.5 and the number of observations is not 

large enough. A more general solution is to take into account the additive property of 

the binomial distribution. This property states that if X1, X2, …, Xq are binomially 

distributed with parameters n1, n2, …, nq and p, the random variable Y = X1 + X2 + …+  

Xq follows a binomial distribution with parameters n1 + n2 + … +nq and p. The main 

drawback of the latest procedure is that the parameter p has to be equal for all dyads. 

The procedure described in this paper is intended to allow social researchers to test any 

null hypothesis, as, for instance, p12 = 0.7, p13 = 0.5 and p23 = 0.6. 
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With respect to the application of other computer-intensive methods, bootstrapping 

would allow estimating sampling distributions (Noreen, 1989; Manly, 1991). The main 

problem would be how to carry out the resampling procedure. It seems to be clear that 

the elements of a sociomatrix should not be randomly selected to draw bootstrap 

samples since dyads are the unit of analysis and the number of behaviors for each dyad 

in each resampling sociomatrix needs to be equal to those values of the original 

sociomatrix. The statistical problem would appear again if dyads were randomly chosen 

for drawing resampling sociomatrices. Note that it is not proper to estimate sampling 

distributions if there is not a concordance between the amount of behavior in the 

original and resampling sociomatrices. 

For the above mentioned reasons we propose to use Monte Carlo sampling for testing 

social reciprocity hypotheses. We used the SAS/IML procedure to develop an SAS 

program in order to compute both statistics and obtain statistical significance. This 

program was also developed in R code. A Monte Carlo test is used to estimate sampling 

distributions, then to estimate Type I error rates. The programs analyze sociomatrices 

and provide measures of social reciprocity at group level. Moreover, social researchers 

can choose the number of simulations of the Monte Carlo sampling to test several null 

hypotheses. These codes can be useful for social psychologists and ethologists as they 

include indices that allow them to measure social processes and make statistical 

decisions about dyadic interactions in groups. We highlight that researchers can specify 

any group size and any number of interactions within dyads. 

Several null hypotheses can be tested by means of the proposed Monte Carlo 

procedure. For instance, social researchers could be interested in testing the null 

hypothesis of complete reciprocation among individuals. This null hypothesis can be 

expressed as follows: 
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Note that the null hypothesis of complete reciprocation states that probabilities of 

occurrence of behavior are the same for all individuals, for instance, an equal proportion 

of wins during play interactions (Bauer & Smuts, 2007). However, other null 

hypotheses can be tested, as it has been mentioned above. 

The simulation steps in Monte Carlo sampling are as follows: a) Group size is defined 

according to the size of the original matrix; b) a random number a is generated from a 

binomial distribution with parameters Nij and pij; c) the random number is assigned to 

the element on the upper triangular matrix (xij) and the value on the lower triangular 

matrix is obtained by the formula xji = Nij – xij; d) if the element belongs to the principal 

diagonal, a 0 value is assigned; e) steps b) to c) are repeated for each element in the 

matrix; f) once the simulated sociomatrix has been generated, the programs compute 

both the DC and Skew symmetry statistics associated to this simulated sociomatrix; g) 

steps b) to f) are repeated according to the number of iterations that had been previously 

specified. Statistical significance is computed as (NOS + 1)/(rep + 1), where rep equals 

the number of the generated sociomatrices and NOS is the number of significant cases. 

The number of significant cases for both statistics is obtained as the number of 

simulated statistics that is greater than or equal to the original statistic. This is a valid 

statistical test as it ensures that the original statistic is among the set of simulated 

statistics, thus, statistical significance can never be smaller than 1/rep (Noreen, 1989; 

Onghena & May, 1995). Finally the programs provide some summary statistics related 

to the simulated sociomatrices, such as mean, standard deviation and several percentiles. 
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The following sociomatrix shows grooming interactions in a group of six captive 

spider monkeys (Ateles belzebuth hybridus): 
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Table 1 shows a brief description of the group. Data contained in the sociomatrix were 

collected from January to April of 2006 at Barcelona Zoo as a part of a wider study. In 

short, behavior frequencies were collected and, in order to obtain a quantification of 

social reciprocity, individuals were considered as actors and receivers. 

 

INSERT TABLE 1 ABOUT HERE 

 

When analyzing the matrix X, we obtained the following original indices: DC ≈ .5146 

and Φ ≈ .2768. Using a Monte Carlo test with 99999 simulated matrices we found that 

both statistics were statistically significant (p = .00001). Thus, a significant 

unidirectional and skew-symmetrical pattern in grooming interactions exists in the 

studied group. That is, there is a clear lack of complete reciprocation in that group. 

Table 2 shows several results of the simulation. 

 

INSERT TABLE 2 ABOUT HERE 
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Simulation study  

The amount of behavior per dyad was established as constant for each dyad in the 

simulation (i.e., N = Nij = Nji). This constraint allowed us to control an important factor 

in the simulation and, therefore, to study the effect of increasing the number of 

individuals in group on Type II error rates for the DC and Skew symmetry statistics. 

Note that the quantity of possible sociomatrices is infinite and we were unable to study 

all possibilities. Additionally, we were also interested in making a comparison between 

the two statistics in order to know which is less biased under the null hypothesis of 

complete reciprocation, which states that dyadic relations are reciprocal among all 

individuals (pij = 0.5). We focused on studying the null hypothesis of complete 

reciprocation since it seems the most significant test for social researchers, though, as 

we have mentioned above, the proposed statistical procedure enables them to test other 

null hypotheses. 

 

Method 

In total, we studied 300 experimental conditions as a result of varying three factors: 

group size (n), amount of behavior for each dyad (N) and the probability associated with 

the event “individual i addresses behavior to individual j” (pij). Specifically, twelve 

values were established for group size (n = 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 and 30), five 

values for the total amount of behavior in each dyad (N = 5, 10, 20, 30 and 60) and five 

values for reciprocity levels (pij = 0.5, 0.6, 0.7, 0.8 and 0.9). 

This intensive computer simulation experiment allowed us to estimate sampling 

distributions for the DC and Skew symmetry statistics. We established the following 

statistical significance levels for studying empirical Type II error rates: 0.05 and 0.01. 

Thus, we investigated the power of the statistical test under the null hypothesis of 
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complete reciprocation.  In order to estimate statistical power (1–β), we obtained the DC 

and Φ cut-off points for specific α, n, N and pij = 0.5. We compared these cut-off points 

with the values of the two statistics obtained in sociomatrices randomly drawn from 

populations in which pij = 0.6, 0.7, 0.8 and 0.9, keeping the values of α, n and N 

constant. Statistical power was estimated as the proportion of values as large as or larger 

than the DC and Φ cut-off points under the null hypothesis and for specific α. That is to 

say, Type II error rates (β) were estimated as the proportion of simulated values lower 

than the cut-off points. Once we had estimated statistical power for the DC and Skew 

symmetry statistical tests, we were able to compare the two statistical tests in order to 

choose the most optimal one. In addition, some of the simulated data were used to 

compare the two statistics regarding their bias. 

A FORTRAN 90 program was developed to carry out the simulations, using the 

Salford FTN90 v2.19.1 compiler for Windows. The NAG Release 3 libraries for 

Windows was used to generate sociomatrices under different conditions, specifically the 

nag_rand_discrete and nag_rand_contin modules. The simulation steps were as 

follows: a) n, N and pij were specified; b) the nag_rand_discrete module was used to 

generate a random number vector and each variable followed a binomial distribution 

with parameters N and pij; c) the third step assigned each value of the random number 

vector to one location in the sociomatrix. The value was assigned to xij if the random 

number generated by the nag_rand_uniform module was greater than 0.5 or xji if it was 

less than or equal to 0.5; d) the steps from b) to c) were iterated 100,000 times; e) the 

DC and Skew symmetry statistics were calculated for each sociomatrix and their 

empirical distributions were estimated; f) the steps from a) to e) were iterated for each 

experimental condition. 
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Results 

Regarding sampling distributions under the null hypothesis, Table 3 shows the 

averages for the DC and Skew symmetry statistics and their variances for all 

experimental conditions. The mean value of both statistics depends on the number of 

individuals, while their variances decrease as a function of the amount of behavior in 

dyads and group sizes. Table 3 also shows the estimated Mean Square Error (MSE). 

Given that both indices are biased and their variances are not equal, the MSE criterion is 

needed to make comparisons to choose the most appropriate estimator. The formulas to 

compute the MSE are as follows: 
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In order to make suitable comparisons, the variance of the Skew symmetry statistic 

was multiplied by 4 and its mathematical expectancy was multiplied by 2. It should be 

noted that the DC ranges between 0 and 1 and that the Skew symmetry takes values 

between 0 and 0.5. Thus, to make comparisons possible these statistics should be 

expressed on the same scale. We have turned the Skew symmetry statistics into a 0-1 

scale. That permits a correct comparison between the DC and (a transformation of) the 

Skew symmetry statistics regarding their estimation properties. It means that this 

comparison refers to the transformed Skew symmetry statistic, that is, 2Φ. 

 We provide MSE values for the DC and the transformed Skew symmetry statistics in 

all experimental conditions (Figure 1). MSE values decrease as a function of the group 

size for both statistics. For instance, experimental conditions 1, 6, 11 and 16—where 

there are 5 behaviors per dyad and n = 3, 4, 5 and 6—show a slow fall in MSE values in 
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these conditions. It should be noted that MSE values decrease more quickly as the 

number of behaviors per dyad increases. For example, in experimental conditions 1 

through 5—where n = 3 and N = 5, 10, 20, 30 and 60—MSE values fall sharply. MSE 

values for the transformed Skew symmetry statistic are lower than those for the DC 

statistic in all experimental conditions, suggesting that the former should be used as a 

better estimate of social reciprocity. In addition, as noted above, both statistics must be 

monotonically correlated. In the 60 experimental conditions studied under the null 

hypothesis, we found Spearman’s Coefficients to be greater than 0.9 (Table 3) and all 

were statistically significant (p < 0.0001). 

 

INSERT TABLE 3 AND FIGURE 1 ABOUT HERE 

 

Regarding the results of the statistical power analyses for different values of n, N and 

α, we found that both statistical tests are powerful enough, as they show acceptable 

empirical Type II error rates. We show some results corresponding to α = 0.05 and α = 

0.01, as both values of α represent the best balance between Type I and II error rates 

(Figures 2 and 3) for pij = 0.7 and those values of n and N that we included in the 

simulation study. In fact, the power of the statistical tests for the aforementioned values 

of α is almost equal to 0.8 for n = 6, N = 10 and pij = 0.7. Statistical power increases if 

larger values of n and N are considered. Obviously, statistical power is also better if the 

effect sizes under analysis are more evident. In general, similar results of statistical 

power are obtained for the DC and Skew symmetry statistics. 

 

INSERT FIGURES 2 AND 3 ABOUT HERE 
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Discussion 

In the present study we have focused on two overall indices, the DC index for 

quantifying directionality (van Hooff & Wensing, 1987) and the recently proposed 

Skew symmetry index for describing asymmetrical social systems (Solanas et al., 2006). 

These two indices are measures of social reciprocity at group level. However, most 

researchers require a procedure for not only describing social systems as a whole but 

also for allowing researchers to make statistical decisions.  

We propose a statistical method founded on Monte Carlo sampling to test null 

hypotheses. Although most social researchers will be interested in testing the null 

hypothesis that assumes complete reciprocation, the proposed procedure also enables 

them to test other null hypotheses (for instance, p12 = 0.7, p13 = 0.8 and p23 = 0.5). 

Hence, one advantage of this procedure is its flexibility and adaptability regarding the 

different number of null hypotheses that can be tested and with respect to the observed 

number of behaviors in empirical studies. Regarding the latter point, it is improbable 

that the same number of encounters occurs for all dyads in a group in natural settings 

(de Vries, 1998). Given that most social research is carried out in natural settings, a 

statistical method for testing social reciprocity in a wider set of conditions is needed. 

Specifically, the amount of behavior per dyad should not be restricted to an equal 

amount for each dyad. The proposed statistical procedure does not involve any 

constraint regarding the number of behaviors per dyad. 

The proposed procedure requires three assumptions to be met to make statistical 

decisions and it is its main drawback. In fact, these assumptions have been commonly 

supposed when developing indices and statistical test for respectively quantifying and 

making decisions regarding social relations (Appleby, 1983; Boyd & Silk, 1983; 

Landau, 1951; Hemelrijk, 1990a; Kenny et al., 2006; Rapoport, 1951; de Vries, 1995; 
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Warner et al., 1979). Specifically, we have assumed that pij values are constant for every 

trial during the observation period, outcomes of successive interactions are independent 

and dyad behaviors are not influenced by extradyadic effects. The first assumption 

suggests that social researchers should apply the proposed procedure if data were 

gathered for periods of time as short as possible. The validity of this assumption could 

become unrealistic if sociomatrix data were obtained for long periods of time, although 

it has been often assumed in social interaction analysis (Adams, 2005; Boyd & Silk, 

1983; Tufto et al., 1998). The second and third assumptions cannot be suitably assumed 

in most social research, but it is not possible to estimate dependency effects if available 

data correspond to aggregated sociomatrices. Many social studies analyze aggregated 

data since a large number of observation periods is needed to gather a significant 

amount of behavior for all dyads. As long as data are aggregated in a unique 

sociomatrix, dependency between successive interactions and pair of dyads cannot be 

estimated. Unfortunately, both assumptions may not be often met in many social 

studies. Regarding the assumption of independence between successive interactions, the 

inexistence of a general strategy for controlling this sort of order effects in round robin 

designs has been pointed out in a recent work (Kenny et al., 2006, pp. 217). In relation 

to the assumption of independence between pairs of dyads, it has also been stated that 

this assumption is needed in the SRM (Warner et al., 1979). These three constraints 

mean that the proposed procedure should be used in those natural or experimental 

settings in which the three assumptions could be supposed to approximately represent 

empirical phenomena. In any case, future research should be carried out to develop 

techniques for dealing with dependency between successive interactions results and 

between pair of dyads. 
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Regarding the comparison between the DC and Skew symmetry statistics, the results 

of the simulations show that the statistical tests are powerful enough for the studied 

conditions. For instance, the power of the tests is approximately 0.8 for n = 6, N = 10 

and pij = 0.7. This means that both tests are sensitive to moderate discrepancies from 

overall reciprocity, as pij = 0.7 represents groups that are relatively close to 

reciprocation or, if preferred, close to an egalitarian social interaction pattern. 

Furthermore, it should be noted that six individuals and ten trials per dyad are not 

extremely large conditions in social studies. A transformation of the Skew symmetry 

statistical test shows better results than the DC test if MSE is considered. Thus, it seems 

that this transformation of the Skew symmetry statistic is the best choice in order to 

obtain more accurate estimates of social reciprocity if complete reciprocation is 

assumed. Even more, the Skew symmetry statistic allows researchers to obtain 

quantifications of individual and dyadic effects that could be of interest for social 

researchers in order to study social reciprocity at its different levels (see Solanas et al., 

2006). 

In our simulation study we have studied the DC and the Skew statistics for a set of 

particular conditions. Regarding the amount of behavior per dyad, we established a 

constant number of encounters due to the fact that the amount of possible sociomatrices 

is infinite. Thus, establishing an equal number of Nij for each dyad in sociomatrices 

allowed us to study Type II error rates in a systematic manner and to know how this 

kind of statistical error decreases as the number of individuals in a group increases for 

the DC and Skew symmetry statistics. 

To sum up, this paper presents a statistical procedure to test null hypotheses 

concerning the global social reciprocity for a set of individuals in a group. Therefore, 

our work enables social researchers to make statistical decisions about directionality and 
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skew symmetry in groups. The results of the simulation study enable researchers to 

make decisions about the optimal observational conditions for the null hypothesis that 

assumes complete reciprocation since empirical Type II error rates for both statistical 

tests have been estimated. Finally, we highlight that this statistical method can be 

applied in natural settings in which the number of behaviors is not the same for every 

dyad. 
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Tables 

 

Table 1  

Spider monkey descriptions 

Individual Description 

1 Adult Female 

2 Adult Female 

3 Adult Female 

4 Juvenile Female 

5 Adult Male 

6 Infant Male 
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Table 2 

Some results of the Monte Carlo test for grooming interaction data in a captive 

group of spider monkeys under null hypothesis pij = 0.5. Both statistics were 

significant (DC = 0.5146, p = 0.00001; Φ = 0.2768, p = 0.00001). MSE values 

correspond to a 0-1 scale. 

 
 DC Φ 

Original statistical 

value 
0.5146 0.2768 

p value 0.00001 0.00001 

N simulations 99999 99999 

Mean 0.1811215 0.0359286 

Variance 0.0015176 0.0002522 

MSE 0.0343226 0.0061722 

Maximum 0.3807531 0.1525672 

Minimum 0.0627615 0.0035971 

25th Pctl 0.1548117 0.0243492 

50th Pctl 0.1799163 0.0332322 

75th Pctl 0.2050209 0.0442544 
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Table 3 

Results of the simulation study for the DC and Skew symmetry statistics under the 

null hypothesis. Table shows mathematical expectancy (E), variance (Var) and 

Mean Square Error (MSE) for both statistics. Spearman’s correlation coefficients 

between the DC and Φ statistics (rs) are shown in the last column for all 

experimental conditions. E(Φ) and Var(Φ) are expressed on a 0-1 scale to make 

possible comparisons with the DC statistic. 

 

CONDITION 

(ID) 
E[DC] Var(DC) E(Φ) Var(Φ) MSE(DC) MSE(Φ) rs 

n=3 N=5 (1) .3748520 .0196687 .3106900 .0349655 .1601827 .1314938 .9918 

n=3 N=10 (2) .2457940 .0130647 .1730924 .0140623 .0734794 .0440232 .9591         

n=3 N=20 (3) .1759780 .0063293 .0923980 .0047250 .0372976 .0132624 .9620 

n=3 N=30 (4) .1445860 .0041571 .0633764 .0023482 .0250623 .0063647 .9642 

n=3 N=60 (5) .1025900 .0020494 .0324714 .0006583 .0125741 .0017127 .9663 

n=4 N=5 (6) .3752280 .0099300 .3217440 .0190348 .1507261 .1225540 .9774 

n=4 N=10 (7) .2462090 .0065527 .1774866 .0075791 .0671716 .0390806 .9338 

n=4 N=20 (8) .1766000 .0031571 .0942662 .0024928 .0343447 .0113789 .9413 

n=4 N=30 (9) .1445420 .0020760 .0639600 .0012172 .0229684 .0053081 .9448 

n=4 N=60 (10) .1026970 .0010205 .0326652 .0003323 .0115672 .0013993 .9480 

n=5 N=5 (11) .3749710 .0059509 .3261200 .0118074 .1465541 .1181616 .9734 

n=5 N=10 (12) .2463440 .0039535 .1794642 .0047033 .0646388 .0369107 .9259 

n=5 N=20 (13) .1759440 .0019066 .0942292 .0015253 .0328629 .0104044 .9341 

n=5 N=30 (14) .1443890 .0012466 .0641064 .0007373 .0220948 .0048469 .9367 

n=5 N=60 (15) .1025510 .0006163 .0326800 .0002025 .0111330 .0012705 .9396 

n=6 N=5 (16) .3748650 .0039666 .3283700 .0080101 .1444904 .1158370 .9723 

n=6 N=10 (17) .2459210 .0026177 .1797976 .0031574 .0630949 .0354846 .9220 

n=6 N=20 (18) .1762970 .0012583 .0946694 .0010165 .0323389 .0099788 .9298 

n=6 N=30 (19) .1442700 .0008293 .0641312 .0004937 .0216431 .0046065 .9324 
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n=6 N=60 (20) .1026150 .0004118 .0327508 .0001361 .0109417 .0012088 .9363 

n=7 N=5 (21) .3752930 .0028397 .3302880 .0057794 .1436845 .1148696 .9715 

n=7 N=10 (22) .2459880 .0018796 .1804346 .0022956 .0623896 .0348522 .9209 

n=7 N=20 (23) .1762020 .0008982 .0948466 .0007320 .0319453 .0097278 .9276 

n=7 N=30 (24) .1444720 .0005925 .0643910 .0003561 .0214646 .0045023 .9307 

n=7 N=60 (25) .1024890 .0002930 .0326816 .0000973 .0107970 .0011654 .9329 

n=8 N=5 (26) .3750660 .0021339 .3307940 .0043764 .1428084 .1138011 .9713 

n=8 N=10 (27) .2460130 .0014099 .1807674 .0017323 .0619323 .0344091 .9194 

n=8 N=20 (28) .1761650 .0006772 .0948898 .0005513 .0317114 .0095553 .9261 

n=8 N=30 (29) .1444560 .0004427 .0643634 .0002651 .0213103 .0044077 .9282 

n=8 N=60 (30) .1025390 .0002185 .0327360 .0000727 .0107328 .0011444 .9320 

n=9 N=5 (31) .3750940 .0016347 .3314420 .0033696 .1423302 .1132234 .9712 

n=9 N=10 (32) .2459750 .0010913 .1809092 .0013463 .0615950 .0340745 .9193 

n=9 N=20 (33) .1761670 .0005294 .0949976 .0004330 .0315642 .0094576 .9254 

n=9 N=30 (34) .1445480 .0003427 .0644402 .0002060 .0212368 .0043586 .9268 

n=9 N=60 (35) .1024900 .0001702 .0327038 .0000565 .0106744 .0011260 .9311 

n=10 N=5 (36) .3750270 .0013200 .3317480 .0027207 .1419652 .1127775 .9711 

n=10 N=10 (37) .2461400 .0008728 .1813210 .0010785 .0614577 .0339558 .9178 

n=10 N=20 (38) .1762770 .0004214 .0951084 .0003465 .0314949 .0093921 .9252 

n=10 N=30 (39) .1444230 .0002769 .0643976 .0001667 .0211349 .0043137 .9274 

n=10 N=60 (40) .1025660 .0001377 .0327614 .0000455 .0106575 .0011188 .9310 

n=15 N=5 (41) .3749280 .0005633 .3325260 .0011660 .1411343 .1117396 .9708 

n=15 N=10 (42) .2459770 .0003730 .1814628 .0004626 .0608777 .0333913 .9173 

n=15 N=20 (43) .1762080 .0001808 .0951576 .0001485 .0312300 .0092034 .9230 

n=15 N=30 (44) .1444130 .0001193 .0644478 .0000721 .0209745 .0042256 .9259 

n=15 N=60 (45) .1025910 .0000587 .0327906 .0000195 .0105836 .0010947 .9275 

n=20 N=5 (46) .3750080 .0003121 .3329520 .0006484 .1409431 .1115055 .9710 

n=20 N=10 (47) .2460500 .0002088 .1816338 .0002595 .0607494 .0332504 .9176 

n=20 N=20 (48) .1762190 .0000991 .0951984 .0000816 .0311523 .0091444 .9230 

n=20 N=30 (49) .1445230 .0000657 .0645374 .0000397 .0209526 .0042047 .9260 
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n=20 N=60 (50) .1025960 .0000322 .0327908 .0000107 .0105581 .0010859 .9279 

n=25 N=5 (51) .3750010 .0001992 .3330900 .0004131 .1408249 .1113621 .9710 

n=25 N=10 (52) .2461450 .0001315 .1817696 .0001633 .0607188 .0332035 .9164 

n=25 N=20 (53) .1762110 .0000629 .0952168 .0000519 .0311132 .0091182 .9219 

n=25 N=30 (54) .1444570 .0000415 .0644936 .0000251 .0209093 .0041845 .9253 

n=25 N=60 (55) .1025650 .0000206 .0327766 .0000069 .0105402 .0010812 .9292 

n=30 N=5 (56) .3749860 .0001363 .3331720 .0002830 .1407508 .1112866 .9706 

n=30 N=10 (57) .2461420 .0000904 .1817822 .0001123 .0606763 .0331571 .9161 

n=30 N=20 (58) .1761840 .0000439 .0951948 .0000362 .0310847 .0090982 .9226 

n=30 N=30 (59) .1445120 .0000289 .0645456 .0000175 .0209126 .0041836 .9254 

n=30 N=30 (60) .1025720 .0000141 .0327800 .0000047 .0105351 .0010792 .9267 
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List of figure captions 

Figure 1. Mean Square Error (MSE) of the DC and the Skew symmetry statistics 

for the 60 conditions (ID) under the null hypothesis. 

 

Figure 2. Statistical power for the DC statistic for several values of n, Nij and pij = 

0.7. Section a) shows results for α = 0.01 and b) for α = 0.05. 

 

Figure 3. Statistical power for the Skew symmetry statistic for several values of n, 

Nij and pij = 0.7. Section a) shows results for α = 0.01 and b) for α = 0.05. 
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Figure 1 
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Figure 2 
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