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Abstract 

 

In this work we study aluminium laser-fired contacts for intrinsic amorphous 

silicon layers deposited by Hot-Wire CVD. This structure could be used as an 

alternative low temperature back contact for rear passivated heterojunction solar cells. 

An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium 

through the thin amorphous silicon layers. Under optimized laser firing parameters, very 

low specific contact resistances (c~10 m·cm
2
) have been obtained on 2.8 ∙cm p-

type c-Si wafers. This investigation focuses on maintaining the passivation quality of 

the interface without an excessive increase in the series resistance of the device. 
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1. Introduction 

 

The study of heterojunction silicon solar cells is an especially active research 

field since Sanyo reported outstanding conversion efficiencies over 20% with its so-

called HIT (Heterojunction with Intrinsic Thin layer) solar cell structure [1]. Sanyo has 

definitely succeeded applying the HIT concept to bifacial solar cells fabricated on n-

type crystalline silicon (c-Si) wafers, but very little is known about the fabrication 

process. The best doping type of the base is still controversial but most groups prefer 

working with p-type rather than n-type c-Si wafers. This choice allows the use of high 

quality n-doped amorphous silicon (a-Si:H) layers as heterojunction emitters. As it is 

well-known, p-doped a-Si:H layers are usually of poorer quality for any of the typical 

low temperature deposition techniques. Then, aluminium back-surface-field (Al-BSF) 

contacts are normally used for the rear side of p-type c-Si substrates. The high 

temperature step involved in the fabrication of the Al-BSF contact (700-800 ºC) is a 

severe drawback considering the present interest in either thinner or lower quality 

substrates [2]. In addition, the effective surface recombination velocity (Seff) that can be 

achieved with Al-BSF contacts can not be reduced much below 10
3
 cm/s [3].  

 

On the other hand, excellent Seff values below 100 cm/s have been reported for 

low temperature deposited dielectric films such as silicon nitride [4] or silicon carbide 

[5]. In particular, solar cells with intrinsic a-Si:H back surface passivation have reached 

efficiencies of 20.1% using the COSIMA structure (COntact formation to a-SI:H 

passivated wafers by Means of Annealing) [6]. In this case a fine shadow mask replaces 

the photolithographic step to evaporate aluminium stripe contacts separated 2 mm with 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TW0-4R9JTR7-5&_user=1517299&_coverDate=12%2F08%2F2007&_alid=740005814&_rdoc=3&_orig=search&_cdi=5548&_sort=d&_docanchor=&view=c&_ct=39&_acct=C000053450&_version=1&_urlVersion=0&_userid=1517299&_fmt=full&md5=4dfe6c87c27b7705d0fde990834b3931#bib1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TW0-4R9JTR7-5&_user=1517299&_coverDate=12%2F08%2F2007&_alid=740005814&_rdoc=3&_orig=search&_cdi=5548&_sort=d&_docanchor=&view=c&_ct=39&_acct=C000053450&_version=1&_urlVersion=0&_userid=1517299&_fmt=full&md5=4dfe6c87c27b7705d0fde990834b3931#bib5
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TW0-4R9JTR7-5&_user=1517299&_coverDate=12%2F08%2F2007&_alid=740005814&_rdoc=3&_orig=search&_cdi=5548&_sort=d&_docanchor=&view=c&_ct=39&_acct=C000053450&_version=1&_urlVersion=0&_userid=1517299&_fmt=full&md5=4dfe6c87c27b7705d0fde990834b3931#bbib4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TW0-4R9JTR7-5&_user=1517299&_coverDate=12%2F08%2F2007&_alid=740005814&_rdoc=3&_orig=search&_cdi=5548&_sort=d&_docanchor=&view=c&_ct=39&_acct=C000053450&_version=1&_urlVersion=0&_userid=1517299&_fmt=full&md5=4dfe6c87c27b7705d0fde990834b3931#bib6
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TW0-4R9JTR7-5&_user=1517299&_coverDate=12%2F08%2F2007&_alid=740005814&_rdoc=3&_orig=search&_cdi=5548&_sort=d&_docanchor=&view=c&_ct=39&_acct=C000053450&_version=1&_urlVersion=0&_userid=1517299&_fmt=full&md5=4dfe6c87c27b7705d0fde990834b3931#bib7
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fingers 100 m wide. Such requirements could difficult a direct transference of this 

technology to mass production over large area wafers. By contrast, the recently 

developed laser fired contact (LFC) technology has a great potential for industrial 

applications [7]. The standard photolithographic process for contact hole formation 

followed by aluminium evaporation and sintering is replaced by a local laser-firing of 

the aluminium layer through the dielectric passivating layer. The laser technology is 

already present in the PV industry for several purposes (scribing, isolation, structuring) 

and conventional lasers can be adapted for a high throughput in-line production.  

 

Over the last few years, our group has obtained good results in heterojunction 

solar cells fabricated using the Hot-Wire CVD technique [8]. In particular, optimized 

heterojunction emitters with structure (n)a-Si:H/(i)a-Si:H/(p)c-Si showed implicit Voc 

values close to 690 mV measured by the Quasi-Steady-State Photoconductance (QSS-

PC) technique. However, the actual Voc is limited to lower values (630 mV) in the final 

devices due to the Al-BSF contact used at the rear side. In a recent work, the Al-BSF 

contact was replaced by low temperature deposited BSF contacts based on p-doped a-

Si:H films with only partial success in complete devices [9]. Therefore, in this work we 

explore back surface passivation with intrinsic a-Si:H layers and the fabrication of laser 

fired aluminium contacts. 

 

2. Experimental 

 

The heteroestructures presented in this work were obtained on p-type (2.8 ·cm) 

CZ silicon wafers with (100) crystalline orientation and thickness of 350 m. Before 

deposition, silicon wafers were cleaned in a H2SO4:H2O2 (2:1) solution. Then, dipped in 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TW0-4R9JTR7-5&_user=1517299&_coverDate=12%2F08%2F2007&_alid=740005814&_rdoc=3&_orig=search&_cdi=5548&_sort=d&_docanchor=&view=c&_ct=39&_acct=C000053450&_version=1&_urlVersion=0&_userid=1517299&_fmt=full&md5=4dfe6c87c27b7705d0fde990834b3931#bib9
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TW0-4R9JTR7-5&_user=1517299&_coverDate=12%2F08%2F2007&_alid=740005814&_rdoc=3&_orig=search&_cdi=5548&_sort=d&_docanchor=&view=c&_ct=39&_acct=C000053450&_version=1&_urlVersion=0&_userid=1517299&_fmt=full&md5=4dfe6c87c27b7705d0fde990834b3931#bib11
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5% HF until they become hydrophobic and immediately introduced into the load lock 

chamber of a HWCVD set-up. The wire configuration consisted of two parallel 

tantalum wires 0.5 mm in diameter separated 3 cm, with the gas inlet centred 1 cm 

below the wires. The substrate was placed 4 cm above the plane of the wires. Additional 

details on the deposition system can be found elsewhere [10]. Table 1 summarizes the 

deposition conditions for both doping-type a-Si:H layers, the intrinsic layers used as a 

buffer in heterojunction emitters (I-buffer) and, finally, the intrinsic layers used for back 

surface passivation (I-back).  

 

Type Ts H2  SiH4 Doping Pressure 

a-Si:H (ºC) (sccm) (sccm) (sccm) (mbar) 

I-buffer 100 - 2 - 3.5×10
-3

 

N 200 28 2 0.04 8×10
-2

 

P 100 4 2 0.04 2×10
-2

 

I-back 200 - 4 - 1×10
-2

 

 

Table 1: Deposition conditions to grow the silicon films used in this work. The wire temperature was 

1600ºC for intrinsic and n-doped a-Si:H films, but 1750 ºC for p-doped films. The doping precursors were 

phosphine and diborane for n- and p-type films, respectively. 

 

Three main heterostructures have been considered in this work. First, the 

heterojunction emitter consisting in the stack of a thin (5 nm) intrinsic layer (I-buffer) 

followed by an n-doped layer 20 nm thick. Second, the low temperature deposited BSF 

contact was a p-doped layer of 50 nm deposited directly on the c-Si wafer. Last, back 

surface passivation with an intrinsic a-Si:H layer (I-back) of thickness 200 nm. The 

passivating properties of the different structures were measured by the contactless 
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Quasi-Steady-State Photoconductance (QSS-PC) measurement. In this technique, the 

effective lifetime eff value is obtained as a function of the excess minority carrier 

density (Δn). In addition, the QSS-PC data implicitly contain information about the 

maximum open-circuit voltage that could be obtained from the solar cell precursor [11]. 

For instance, considering a solar cell fabricated on a p-type wafer with acceptor density 

NA, the implicit-Voc would be given by: 
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In order to fabricate laser fired contacts, an aluminium layer 2 m thick was 

evaporated on the intrinsic a-Si:H passivating layer (I-back). The laser system is a Q-

switched Nd:YAG laser (Starmark SMP 100 II Rophin Baasel) emitting at 1064 nm in 

TEM00. The power of the laser beam can be adjusted by varying the intensity of the 

continuous lamp that pumps the Nd:YAG crystal. The laser is operated in pulsed mode 

and we can also change the pulse repetition rate and the number of shots per spot. The 

laser beam is positioned by galvanometric mirrors and a focusing lens (focal length 254 

mm) that allow to process samples up to 6 inches. In the electrical characterization of 

the point contacts we have considered that the total resistance (RT) has two main 

contributions: the spreading resistance of the c-Si wafer (RSR) and the resistance of the 

laser-fired contact (RLFC) [12]: 
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where  is the resistivity and W the thickness of the wafer, while d is the diameter and 

c the specific contact resistance of the laser-fired contact. A c value in the range of 10 

mcm
2
 indicates a good quality laser-fired contact. Finally, in order to evaluate the 

passivation quality after the LFC process, we have chemically etched the aluminium 

layer to measure again the final eff value. 

 

3. Results & discussion 

  

  Figure 1 compares the QSS-PC data of the three different heteroestructures 

presented in this work. As it can be observed, the optimized n-type heterojunction 

emitter allowed an excellent eff value of 750 s at one-sun. Then, according to the 

QSS-PC measurement, the implicit-Voc of this structure is over 690 mV. Although a 

strong effort has been done to optimize low temperature BSF contacts based on p-doped 

a-Si:H layers, to date the best eff value was limited to 170 s. Consequently, the 

optimized low temperature BSF contact would reduce the implicit-Voc of the structure 

to 650 mV. Furthermore, we have experienced that carrier collection at the (p)a-Si:H 

BSF contact is not easy and “S-shaped” current-voltage characteristics could be 

observed in complete devices [9]. Rear surface passivation with an optimized intrinsic 

a-Si:H layer has reached a rather good eff value of 400 s with potential for a Voc of 

670 mV. As a comparison, a traditional Al-BSF contact would result in Voc values 

typically limited to 630 mV (Table 2). These results indicate that rear passivation with 

an optimized intrinsic a-Si:H layer can indeed be a good choice if we succeed 

developing good quality laser-fired contacts.  
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Figure 1: Effective lifetime (eff) as a function of the excess minority carrier density (n) for the three 

studied structures: n-type heterojunction emitter with intrinsic buffer layer, low temperature BSF contact 

based on p-doped a-Si:H layer, and intrinsic a-Si:H back passivating layer. The arrows point the eff 

values at one-sun irradiance. 

 

type 

Seff 

(cm·s
-1

) 

limited Voc 

(mV) 

Intrinsic a-Si:H 44 670 

(p)a-Si:H BSF 10
2
 650 

Al-BSF 10
3 

630 

 

Table 2: Effective surface recombination velocity (Seff=W/2eff) and implicit-Voc values of the different 

rear side structures for heterojunction solar cells.  

 

In a first step, we started the optimization of the laser-firing process in order to 

obtain a very low contact resistance. Since very slight differences were observed with 
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the repetition rate frequency (not shown), we finally fixed this parameter to 4 kHz in all 

the experiments. By contrast, clear differences were observed with the intensity of the 

lamp pumping the Nd:YAG crystal (figure 2). Actually, the lamp intensity is the main 

factor determining the power of the laser beam. The point contact diameters measured 

in the optical microscope images were used to calculate the specific contact resistance 

of the laser-fired contacts (figure 3). For lamp intensities higher than 20 A satisfactory 

c values (~10 mcm
2
) can be obtained with 500 shots/spot. A higher number of shots 

did not lead to a significant reduction in the contact resistance (not shown).  

 

 

 

 

 

 

 

 

Figure 2: Top optical microscope (x50) images of laser-fired contacts formed at different lamp intensities 

with a repetition rate of 4 kHz and 500 shots/spot. 

(18A) (19A) (20A) 

(22A) (24A) (25A) 
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Figure 3: Specific contact resistance c of the laser-fired contacts as a function of the lamp intensity. The 

repetition rate was 4 kHz and we used 500 shots/spot.  

 

In conclusion, a good compromise between low structural damage and good 

electrical contact could be obtained with a repetition rate of 4 kHz, a lamp intensity of 

22 A and 500 shots/spot. In order to study the influence of the laser-fired contacts in the 

passivation quality, two different point patterns (pitch distances of 0.7 mm and 1 mm) 

were fired on wafers passivated with intrinsic a-Si:H layers (I-back). The relative 

variation due to the LFC process measured by QSS-PC after the chemical etch of the 

aluminium layer is shown in figure 4. The eff value is reduced to 50% with the 0.7 mm 

pitch, but it remains over the 80% for 1 mm. In terms of open-circuit voltage, this 

means a reduction of only a few percent that is less than 20 mV for a typical Voc around 

650 mV. 
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Figure 4: Comparison between the passivation quality (eff, implicit-Voc) for two laser-fired contact 

patternings of different pitch. As expected, the passivation quality is more affected by the denser pattern.  

 

4. Conclusions 

 

In this work, we have shown that intrinsic a-Si:H layers deposited by HWCVD 

allow a good passivation quality on (2.8 cm) p-type c-Si wafers. Implicit-Voc values 

up to 670 mV overcome the typical values that can be achieved with traditional high 
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temperature Al-BSF contacts. We have also succeeded in obtaining very low specific 

contact resistances (~10 m∙cm
2
) with aluminium laser-fired contacts. In addition, the 

partial degradation in the passivation quality has little effect in the expected Voc of the 

device (<20 mV). In future works, we expect to fabricate complete heterojunction solar 

cells by HWCVD incorporating laser-fired contacts at the rear side. 
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