Festuca paniculata and the grim reaper: carbon and nitrogen storage explain dominance in subalpine grasslands

BAPTIST Florence¹,⁵, SECHER-FROMELL Hanna¹, VIARD-CRETAT Flore¹,
ARANJUELO Iker³, CLEMENT Jean-Christophe¹, CREME Alexandra¹,³, DESCLOS Marie⁴,
LAINE Philippe⁴, NOGUES Salvador³, LAVOREL Sandra¹,²

¹ Laboratoire d'Ecologie Alpine, UMR 5553 CNRS-UJF, Université de Grenoble, BP 53, F-
38041 Grenoble Cedex 09, France.
² Station Alpine J. Fourier, UMS 2925 CNRS-UJF, Université de Grenoble F-38041 Grenoble
Cedex 09, France.
³ Departament de Biologia Vegetal, Facultat de Biologia, Av. Diagonal, 645 E-08028
Barcelona, Spain
⁴ U.M.R. INRA-UCBN 90 EVA, Ecophysiologie Végétale, Agronomie et nutritions N, C, S
Université de Caen Basse-Normandie, Institut de Biologie Fondamentale et Appliquée,
Esplanade de la Paix, BP 5186, 14032 Caen Cedex, France
⁵ Current address: BIOTOPE, 22, Bd Maréchal Foch, BP58, 34140 Mèze, France

Corresponding author: fbaptist@biotope.fr
Tel: +33(0)4 67 18 46 25 - Fax: +33(0)4 67 18 46 29

Running headline: carbon and nitrogen storage in *F. Paniculata* under mowing
Abstract (234 words)

Background and Aims: Cessation of traditional management threatens semi-natural grassland diversity through the colonisation or the increase of competitive species adapted to low nutrient poor conditions. Regular mowing, for example is one of the practices that controls their abundance. This study evaluated the ecophysiological mechanisms limiting short and long-term recovery after mowing for *F. paniculata*, a competitive species which takes over subalpine grasslands from the Central French Alps following cessation of mowing.

Methods: We quantified the temporal variations in carbon (C) and nitrogen (N) content, starch, fructan and total soluble sugar content in leaves, stem bases and roots of *F. paniculata* during one growth cycle in mown and unmown fields and related them to the dynamics of soil mineral N concentration and soil moisture.

Key Results: In the short-term, compensatory growth of *F. paniculata* after mowing was N-limited because of N dilution by C increments in the plant organ and due to low soil mineral N and soil moisture. By limiting C storage capacity at the end of the growing season, mowing reduced C allocation to vegetative reproduction during winter and, therefore, limited dramatically the horizontal growth of *F. paniculata* tussocks in the long-term.

Conclusions: We conclude that mowing reduces the growth of *F. paniculata* tussocks through both C and N limitations in semi-natural subalpine grasslands. Such results will support the understanding of how plant responses to defoliation regulate competitive interactions within plant communities.

Key words: subalpine grassland, mowing, abandonment, diversity, storage
Introduction

Over the last half-century, land use change in Europe has heavily transformed landscape structure and affected biodiversity. Semi-natural grasslands are closely associated with valued cultural landscapes and high species diversity. These grasslands are now being threatened by rapid changes in agricultural practices: agriculture intensification in some areas and land abandonment in others. This leads to a marked loss in biodiversity and ecological value. Under agricultural abandonment, the reduction of species richness as well as functional diversity can be linked to the promotion of few competitors adapted to nutrient poor soil. These competitors typically include large tussocks such as Brachypodium pinnatum, Deschampsia cespitosa (Matejkova et al., 2003), Nardus stricta (Doriz and Vanoort 1991), Molinia caerulea (Hájková et al., 2009) or Festuca paniculata (Quiblier and Senn 2004; Quétier et al., 2007).

Regular mowing of semi-natural grasslands can limit the abundance of competitive species and maintain high species diversity (Matthias et al., 2001, Rudmann-Maurer et al., 2008). Mowing removes a higher proportion of the aboveground biomass of large and tall plants than of small and short plants. This promotes the maintenance of the smaller plants and species richness of the community (Klimeš and Klimešová, 2001). However, this theory, although appealing by its simplicity, does not consider the complexity of whole plant C and N economy. Generally, high stature species have specific organs for C and N storage which allow rapid recovery after cutting. Their response to mowing depends on the proportion of aboveground biomass removed but also on their sensitivity to defoliation, the effectiveness of compensatory growth and the ability to remobilize storage (Chapin et al., 1990). The balance between these processes in the dynamics of acquisition, storage and remobilization of C and
N remains unknown. As a consequence, the short-term mechanisms by which mowing decreases the dominance of these high stature species is still undetermined.

Nutrients (N and phosphorous) rather than carbon may also limit dramatically short-term regrowth, especially if the availability of soil nutrients is low. Indeed, since species dominating unmown fields often have conservative nutrient economies (Berendse and Elberse, 1990), their ability to capture new nutrients might be lower than that of typical species of mown grasslands. This is accentuated in cold or dry soils where peaks of N mineralization are very transient (see for example Schmidt et al., 2007). This asynchrony between supply and demand in these ecosystems may limit plant regrowth after mowing. However, while the remobilization of stored carbohydrates has been largely explored under field conditions (e.g. Asaeda et al., 2006; Kleijn et al., 2005), most studies investigating N-mobilisation have been conducted with isolated plants grown in controlled condition (e.g. Kavanova and Gloser, 2005; Louahlia et al., 1999; Schnyder and de Visser, 1999 but see Kleijn et al., 2005; Louahlia et al., 2000) rather than in field conditions. This limits our understanding of the importance of soil N availability during plant regrowth (Thornton et al., 2000).

In the long term, mowing can influence the dominance of large grasses in the community through the gradual exhaustion of carbohydrate stocks or by reducing C allocation to vegetative reproduction (Wijesinghe and Whigham, 1997). This point is particularly important as clonal species tend to invade communities through growth of large tussocks with inter-connected tillers. However, the mechanisms involved in such longer-term, interannual responses have not been integrated with those documented at the seasonal level for regrowth.
In subalpine semi-natural grasslands of the Central French Alps, *Festuca paniculata* strongly dominates unmown grasslands (Jouglet and Dorée, 1991) in contrast to mown fields. Early spring growth and large carbohydrate storage in stem bases might provide this species with a competitive advantage over other species in the community, along with the release of allelochemicals (polyphenols), which inhibit the growth of the neighbor species (Viard-Cretat et al., 2009). Beside, the large amount of litter produced by this species generally reduces summer soil moisture regimes (Gross et al., 2008) while its low quality restricts soil nitrogen mineralization and thus depletes soils of mineral nutrients (Robson et al., 2007; 2010). Hence, *F. paniculata* expansion causes a rapid change in both plant community composition and ecosystem processes. Regular mowing reduces significantly its abundance, which in turn promotes higher species and functional diversity (Quétier et al., 2007). However, the underlying mechanisms by which mowing alters the growth of *F. paniculata* remain unknown.

In this study, we aimed at evaluating the short and long-term consequences of partial defoliation by mowing on *F. paniculata* at the tiller and at the individual tussock levels, and the underlying mechanisms limiting its recovery. In order to separate seasonal changes from changes caused by defoliation, we examined C and N dynamics in *F. paniculata* throughout its seasonal cycle in mown and unmown fields. We hypothesized that mowing affects in the short-term the regrowth of *F. paniculata* because of limited N content at the time of mowing, and in the long-term limits early spring growth and vegetative reproduction (i.e. low production of new tillers) through reduced C allocation. Temporal variations in C and N content, starch and total soluble sugar content in leaves, stem bases and roots of *F. paniculata* were studied during one growth cycle and were further related to temporal variations in soil mineral N concentrations and soil moisture. Fructans were also quantified because it has been
shown that this taxon is generally characterized by high fructan content in its tissues (Chatterton et al., 1990).
Material and methods

Study site and experimental design

The study site is located on the south facing slope of the upper valley of the Romanche River in the central French Alps (45.04°N 6.34°E, 2000 meters above sea level), near the Col du Lautaret (2057 m.a.s.l.). The substrate is homogeneous calc-shale. Mean annual rainfall reaches 956 mm and the mean air monthly temperatures range from -4.6°C in January to 11.8°C in July (at Col du Lautaret, 2057 m.a.s.l.).

We studied three mown and three unmown semi-natural fields within a uniform grassland area in order to analyse whole plant C and N dynamics of the dominant species, *Festuca paniculata* (L.) Schinz and Thellung (Poaceae). *F. paniculata* is a large perennial tussock reaching up to 30-40 cm vegetative height and diameters of up to 14 cm when unmown. Its vegetative growth starts at snow melt, followed by flowering around mid June, while senescence of aboveground parts takes place in October, before snow falls. Its large tussocks are characterized by interconnected basal vegetative shoots (i.e. tillers).

Mowing was abandoned in the early 1970’s in part of the area due to accessibility to machinery (i.e, unmown fields, Quétier et al., 2007). In contrast, mown fields have remained continuously mown annually for at least six centuries. Mowing occurs late in the season, from early August to early September depending on altitude, due to farmers’ constraints to harvest lower areas earlier (i.e, mown fields). Constraining climatic conditions related to altitude and the continental climate allow only one annual harvest due to limited regrowth potential. In the recent decades, these fields have been mown in early August, a practice also consistent with Natura 2000 European network recommendations for the area. In this experiment, mowing was applied to the three mown fields on the 1 Aug. 2008 using a line trimmer and cutting vegetation to about 5 cm height, similar to what is achieved by farmers. Each field was fenced during the growing season to exclude sheep and other possible wild grazers. Details on the
corresponding plant communities and soil properties in mown and unmown fields are given in Robson et al. (2007; 2010) and Quétier et al. (2007).

Community composition and F. paniculata abundance

Surveys of botanical composition of these fields have been conducted regularly since 2003 at peak vegetation, which occurs around mid July, i.e. before mowing, using the point quadrat method (Quétier et al., 2007). In mown fields the most abundant species are Meum athamanticum (Apiaceae) and Festuca nigrescens (Poaceae). Festuca paniculata is by far the most dominant species in unmown fields, followed by two other Poaceae, Festuca nigrescens and Festuca laevigata.

In order to evaluate plant growth strategy, we quantified the density of F. paniculata tussocks and its total plant cover visually on the 16 Jul. 2009 in fifteen squares of 50×50 cm within each of the three mown and unmown fields.

Sampling and sample processing for studying whole plant dynamics of C and N

Sampling started on the 1 May 2008 and finished on the 14 Apr. 2009. Sampling was repeated every 4 weeks, except at the beginning and at the end of the growing season, during which it was repeated every 2 weeks as these are periods when most rapid changes in storage were expected. At each sampling date, three tussocks within the same diameter class were randomly selected in each of the mown and unmown fields. The tussocks were carefully dug out and around 15 to 20 tillers were harvested with their roots. However, it was impossible to sample the whole root system of each tiller. As a consequence, root biomass associated to each tiller was not measured. In addition, we sampled separately the soil under each tussock to estimate soil mineral N concentrations and soil moisture. The samples were rapidly transported to the Alpine Station of Joseph Fourier located at the Lautaret pass (5 minutes...
away from field sites). An aliquote of soil samples (100g) were immediately frozen at -20°C while another part was used to calculate soil moisture. Tillers were washed with tap water and separated into two groups. The first group was devoted to biometric measurements. Each tiller was dried at 60°C during 48 h and dry-weight (dw) of stem bases and leaves were measured. The second group was devoted to stored compounds analysis. Just after washing, these tillers were frozen at -20°C and then lyophilized (Heto Drywinner, Heto-Holten, Alleröd, Denmark). Before chemical analysis, the lyophilized tillers were separated in three compartments, leaves, stem bases and roots, weighed, pooled by tussock and finally ground to a fine powder using a ball mill (MM301, Retsch GmbH, Germany) for further analysis. Tillers consisted of a top segment of green lamina (hereafter referred to leaves) and a bottom one of cream-coloured sheath (hereafter referred to stem bases). Separation between leaves and stem bases were achieved based on organ function, namely storage vs. photosynthetic function. We thus obtained material for measuring aboveground plant growth, plant C and N dynamics, and soil material for measuring soil mineral N concentrations and soil moisture.

Plant chemical analysis

The dynamics of N was analysed by estimating plant total nitrogen content. It was determined using a CHN Elemental Analyser (EA1108, Series 1, Carbo Erba Instrumentazione, Milan, Italy). Dynamics of C was analyzed by measuring contents of starch, Total Soluble Sugars (TSS), fructans and total C. Total C in leaves, stem bases and roots were analyzed by using a CHN analyser (EA1108, Series 1, Carbo Erba Instrumentazione, Milan, Italy). We extracted starch and TSS by the procedure described by Tcherkez et al. (2003). Briefly, 50-mg of plant ground powder was suspended with 1-ml of distilled water in an Eppendorf tube (Eppendorf Scientific, Hamburg, Germany). The solution was mixed and centrifuged at 12,000-g for 5-min at 5°C. After centrifugation, the supernatant
was used for total soluble sugar quantification, whereas the pellet was stored at -80°C for the starch analyses by HCl solubilization. Total soluble sugars, as sucrose equivalents, were further determined colorimetrically by the anthrone reagent method according to the method proposed by Yemm and Willis (1954). Briefly, the pellet obtained by centrifugation was suspended in 2-ml KOH (1M) and homogenized during 10-min. Then 2-ml of HCL (1M) and 0.5-ml of iodine reactive were added. After 15-min in dark, absorbance was measured at 565-nm (Jarvis and Walker, 1993). Starch and total soluble sugar concentration were hence measured for each tussock sampled within each site replicates.

The concentration of fructans extracted from the plant was quantified. Briefly, 25-mg of freeze dried plant tissue ground to a fine powder were boiled in 1-mL of 80 % ethanol, and incubated for 15-min at 80°C. After ethanol extraction, the sample was centrifugated at 10,000-g for 10-min. The supernatant was preserved and 1-mL of water was added to the pellet. The tube contents were mixed and incubated 15-min at 60°C. After the first aqueous extraction, the sample was centrifugated at 10,000-g for 10-min. The supernatant was preserved and the aqueous extraction was repeated once with the pellet. The three supernatants were pooled, evaporated to dryness under vacuum and the residue was dissolved in 0.5-mL water. Aliquots of carbohydrate extract (100-µL) were passed through minicolumns (Mobicols from MoBITec, Göttingen, Germany) packed, from bottom to top, with 150-µL of Amberlite CG-400 II, formiate-form (Fluka, Buchs, Switzerland), 80-µL of polyvinylpolypyrrolidone (Sigma-Aldrich, St. Louis, USA), and 250-µL of Dowex 50W X8-400 H⁺-form (Sigma-Aldrich) to remove charged compounds. Fructans were quantified by high-performance liquid chromatography (HPLC) on a cation exchange column (Sugar-Pak 300 x 6.5-mm, Millipore Waters, Milford, MA, USA) eluted with 0.1-mM CaEDTA in water using mannitol as the control standard (Guerrand et al., 1996).
Soil chemical analysis

Soil moisture was determined gravimetrically by drying the soil at 105 °C during 48h. Soil mineral N was extracted from frozen samples, sieved at 2-mm, with KCl (2 M). The soil extracts were analysed for ammonium (NH$_4^+$) and nitrate/nitrite (NO$_3^-$/NO$_2^-$) concentrations using an FS-IV autoanalyser (OI-Analytical, College Station, TX).

Data analysis

Total C and N content of leaves and stem bases were obtained by multiplying the C and the N concentration by the dry weigh of the organs. Total C and N content could not be calculated for the roots. As root N concentration did not vary at the beginning of the growing season, the reliance (R) of early growth on current season soil-derived N was estimated as equaled to:

$$R(\%) = 100 \left(\frac{\Delta \text{Nmass}_{\text{leaf}} - \Delta \text{Nmass}_{\text{stem}}}{\Delta \text{Nmass}_{\text{leaf}}} \right)$$

With R in % and ΔNmass the variations in N content in both leaves and stem bases between early May and the end of June (mg). We assumed that root biomass during this period did not vary.

Plant characteristics and differences between total biomass, TSS, fructan and N content and concentrations in mown and unmown fields were analyzed using the non-parametric Wilcoxon Mann-Whitney tests. Statistical analysis was performed using the average data within each replicate site (for a total of three site replicates in mown and unmown fields respectively). All analyses were performed using the Jmp®8 software (Statistical Analysis System Institute, Inc., Cary, NC).
Results

Edapho-climatic conditions

Snow melt occurred at the beginning of April in both 2008 and 2009. Soil moisture displayed large variations throughout the growing season and experienced a particularly dry period from the beginning of July 2008 until the end of the growing season (Fig. 1a). Mown fields were significantly drier than unmown fields at the beginning of the growing season (18 May 2008 and 3 Jun. 2008) and at the end of the growing season on the 30 Sep. 2008 ($\chi^2(1) = 3.85, P=0.04$ in all cases). In both mown and unmown fields, soil NO$_3^-$ concentration were three- to four-fold higher at the beginning of the growing season ($\chi^2(1) = 3.85, P=0.04$ between 17 Jul. 2008 and 15 Apr. 2009, Fig. 1b) compared to the other periods of the year during which it remained stable (Fig. 1b). This pattern, although less marked for soil NH$_4^+$ concentration, was also significant ($\chi^2(1) = 3.85, P=0.04$ between 17 Jul. 2008 and 15 Apr. 2009, Fig. 1c).

Nevertheless soil NH$_4^+$ decreased more gradually throughout the season than soil NO$_3^-$ concentration. Soil NH$_4^+$ per g of soil dw was more available than soil NO$_3^-$ (ca. 40 to 50 fold) at each date within mown and unmown fields respectively ($\chi^2(1) = 3.85, P=0.04$). However, mown or unmown fields did not differ significantly in soil NO$_3^-$ and NH$_4^+$ respectively (Fig. 1b and c, no significant at each sampling date).

F. paniculata abundance and tussock size

F. paniculata cover (per unit area) reached 14.4 (2.5) % in unmown compared to only 4.0 (0.7) % in mown fields ($\chi^2(1) = 3.85, P=0.04$). However, tussock density (number of tussocks per square meter) did not differ significantly between mown and unmown fields ($\chi^2(1) = 0.42, P=0.41$), with 12.4 (0.2) tussocks per m2 and 12.5 (2.3) tussocks per m2 in unmown and mown fields respectively.
In unmown fields, tillers grew rapidly from May to June 2008 (relative growth rate equaled to 0.69 mg g\(^{-1}\) d\(^{-1}\), Fig. 2a) and more slowly from mid-June to September 2008 (0.16 mg g\(^{-1}\) d\(^{-1}\), Fig. 2a). Biomass was mainly allocated to the leaves (60% of the total aboveground biomass in June – insert in Fig. 2a). However, from July, most of the biomass accumulated in the stem bases (more than 60% in September) (Fig. 2a). Stem bases lose biomass after September and during the winter until spring 2009 (i.e. decrease by a factor of 4.8).

C and N accumulate during plant growth

Total Soluble Sugars (TSS) content in leaves and stem bases showed similar temporal fluctuations to total biomass, with a sigmoid increase during the growing season followed by a marked decline during winter (Fig. 3a). The concentrations of TSS remained stable throughout the season in leaves (14.9% in average on a dry weigh basis) as did the concentrations of TSS in roots (9.4% dw in average) (Fig. 3a, insert). By contrast, concentrations of TSS in stem bases increased mostly at the beginning of the growing season and declined progressively from October and during the dormant period in autumn and winter. Hence, high amounts of carbon accumulated in the stem bases during the season (43.6% dw on average) and decreased during autumn and winter.

Fructan concentrations showed similar temporal patterns as TSS contents and concentrations in leaves, stem bases and roots (Fig. 3b). Mean fructan concentrations in leaves and roots remained stable throughout the year at 5.9% and 4.2% dw respectively (Fig. 3b, insert). Concentrations in stem bases equaled in average 33.5% dw (Fig. 3b, insert). Surprisingly, fructan concentration in stem bases dropped considerably from the beginning of September, i.e. earlier than TSS (Fig. 3b, insert). No starch was detected in any organ (data not shown).
Total N content in leaves and stem bases showed different dynamics (Fig. 3c). In leaves, N content increased sharply and rapidly at the beginning of the growing season, followed by a reduction from the end of July. During spring, N accumulated into leaves but was diluted because leaves also grew. Hence, leaves N concentrations decreased throughout the season (Fig. 3c, insert). In stem bases, N content showed first a decrease until July followed by an increase. Concentration of N in stem bases declined considerably (eight-fold) from the beginning of the growing season while total stem base biomass only increased by a factor 2.5. This indicates N reallocation from the stem bases to the leaves. In parallel, leaf N concentration decreased by 2.6 during the same period whereas leaf total biomass rose by 7.5. This demonstrates that leaf growth rate probably exceeded N supply by the stem bases and roots. Hence, during the first part of growing season, N was provided by the stem bases to the leaves and completed by soil N that was allocated mostly to the leaves (more than 80% of N content were located in the leaves at peak standing biomass). At the same time, root N concentration remained stable throughout the year. From the mid-season, soil N accumulated in the stem bases so that their N concentration increased gradually (Fig. 3c, insert). During winter, stem base N concentration increased strongly from 1.00 % to 1.80 % on a dry weight basis. These results indicate, first, N remobilization from leaves to stem bases at the end of the growing season and, secondly, the effect of decreasing total biomass of stem bases in winter.

Seasonal dynamics of growth, carbon and nitrogen storage under mowing

In mown fields, the temporal dynamics of leaf and stem base biomass was similar to that observed in unmown fields (Fig. 2b). Tillers grew rapidly from May to June 2008 (relative growth rate equalled to 1.53 mg g⁻¹ d⁻¹, Fig. 2b) and more slowly from mid-June to September 2008 (0.07 mg g⁻¹ d⁻¹, Fig. 2b). Nevertheless, F. paniculata accumulated significantly less
biomass in the leaves in mown compared to unmown fields (1.7-fold lower at peak standing biomass on the 17/07/08; $\chi^2_{(1)} = 3.85$, $P=0.04$). The decrease during winter was less pronounced and plants started the new season with approximately the same biomass in mown and unmown fields ($\chi^2_{(1)} = 0.43$, $P=0.51$ and $\chi^2_{(1)} = 0.04$, $P=0.83$ for leaves and stem bases respectively on the 14/04/09). In general, mown plants accumulated less biomass during the season.

Was the dynamics of C and N modified by mowing?

TSS and fructan content in stem bases differed marginally significantly at $P<0.10$ between mown and unmown fields just after mowing (for example $\chi^2_{(1)} = 3.0$, $P=0.08$ and $\chi^2_{(1)} = 3.85$, $P=0.04$ in leaves and stem bases respectively on the 14 Aug. 2009, Fig. 3a, d and b, e). Thus, less TSS and fructan content accumulated in leaves and stem bases under mowing. This is consistent with the lower biomass of these organs compared to unmown conditions. In contrast, TSS and fructan concentrations were similar in leaves and stem bases compared to unmown fields ($\chi^2_{(1)} = 1.24$, $P=0.25$ and $\chi^2_{(1)} = 0.42$, $P=0.51$ in leaves and stem bases respectively on the 14 Aug. 2009, Fig. 3a, d and b, e, inserts). In roots, TSS and fructan concentrations were higher in unmown vs. mown fields ($\chi^2_{(1)} = 3.85$, $P=0.04$, Fig. 3a, d and b, e, inserts).

During winter, TSS consumption from stem bases was slower compared to unmown fields, in absolute and in relative terms as stem bases lost 30% of TSS content compared to 50% in unmown fields. Hence, mowing resulted in a shortage in TSS at the end of the season, which put a strain on reserve accumulation in stem bases for winter consumption.

N concentrations were the same in mown and unmown fields for all organs at the beginning of the growing season. N increased while soil N was available (see Fig. 1b, c), but this was followed by only little accumulation of N in the stem bases from July 2008, contrary to the
unmown fields (Fig. 3c, f). At peak growing season, total accumulated N content was lower in mown than in unmown fields ($\chi^2_{(1)} = 3.85, \ P=0.04$ in leaves and stem bases on the 17 Jul. 2008, Fig. 3c, f). After mowing, stem base N storage decreased. As stem base biomass was also highly affected by mowing, stem bases were then more concentrated in N. This pattern was also particularly marked in leaves: after mowing, leaf N concentration was two-fold greater as compared to unmown fields ($\chi^2_{(1)} = 3.97, \ P=0.04$, Fig. 3c, f, inserts). During winter, stem base N content remained constant (Fig. 3f). As biomass decreased, N concentration in stem bases slightly increased (1.4-fold) whereas root N concentration remained constant throughout the year (Fig. 3f).
Discussion

F. paniculata growth and C/N storage dynamics during the growing season

F. paniculata has characteristic cycles of phenological development, storage and depletion of carbohydrates and growth response to its environment. This species showed the classical V-shaped C reserves cycle, with winter and spring C depletion followed by a period of replenishment completed by mi-July (Menke and Trlica, 1981). Although starch is considered as the major storage compound for cereals and grasses (grains filled by starch) it is completely absent in F. paniculata tissues. In contrast, leaves, stem bases and roots had very high total soluble sugar concentrations including large amounts of fructan (Fig. 3b, e). The advantage of fructan as a storage carbohydrate is commonly thought to reside in the utilization of the vacuole as a storage compartment, which would allow plants to exploit constraining environments (Pollock and Cairns, 1991). In these environments, periods of positive carbon balance are short and net mobilization of reserves is therefore required to sustain growth (Pollock and Cairns, 1991). Hence, by maintaining supplies of fructose and sucrose, species obviate the need for transport of carbohydrate over distance as in starch storing species (Bloom et al., 1985; Hendry, 1987). Furthermore, fructan content and its metabolism have been shown to be closely related to freezing tolerance (see Valluru and Van den Ende, 2008 for a review). The presence of C stocks under fructan form in the stem bases and leaf vacuoles might offset possible damages effects associated to frost events (Bloom et al., 1985) in addition to providing readily accessible compounds to plant metabolism.

Surprisingly, fructan content in stem bases increased strongly during the growing season but decreased from mid-August in contrast to total soluble sugars which still increased until the end of the growing season (see Fig. 3). These results suggest that lower temperature and/or reduced photoperiod at the end of the growing season induce a net depolymerization of
fructans with no net loss of carbohydrates as it has been already demonstrated in tubers of *H. tuberosus* (Pollock and Cairns, 1991).

The analyses of plant growth data revealed that since the beginning of May 2008, plant growth rates increased in both mown and unmown fields (Fig. 2). Leaf emergence and such high relative growth rate could be explained by larger photosynthetic activity and soil N uptake or/and the remobilization of stored C and N. Our results suggest that when relative growth rate is at its maximum, the reliance of mineral N soil increases rapidly. Indeed, under the simplifying assumption of constant root biomass, our calculations showed that, between early-May and the end of June, approximately 67% of the total leaf N content was met by soil N uptake. Hence, while the growth of *F. paniculata* may rely on N stores at the beginning of the growing season, it must rapidly switch to current season soil derived N, as does *Veratrum album*, another subalpine species (Kleijn *et al.*, 2005). Similarly, the parallel increases in stem base and total biomass suggests that during this period storage remobilization was not the main factor explaining the increase in dry biomass. Enhancement in photosynthetically-derived carbohydrates, like total soluble sugars (TSS) and total fructans (Fig. 3), likely indicates that dry biomass increase during May-July was caused by increased photosynthetic activity.

These results demonstrate that *F. paniculata*, as many others subalpine and alpine species, stores a very large quantity of N and carbohydrate that are not used for growth at the beginning of the growing season (Körner, 1999). Rather, in harsh and constraining environment such as subalpine grasslands, these stores may provide plants with (1) the support for vegetative regrowth (Menke and Trlica, 1981) (2) the ability to bridge temporal gaps between resource availability and resource demand (Chapin *et al.*, 1990), (3) the support to sexual or vegetative reproduction in the absence of photosynthesis (Wijesinghe and
Whigham, 1997) and (4) the ability to survive stresses such as defoliation, shading or frost (Kleijn et al., 2005).

Winter dynamics of C reserves and clonal growth

The decline in total biomass, total soluble sugars and fructan content in stem bases was particularly large during winter. Mild temperature under the snow and thus associated high respiration rates could be partly responsible for this reduction (Wyka, 1999). However *F. paniculata* plants located in mown fields did not experience such a decrease during winter demonstrating that the amount of carbohydrates present in storage organs of unmown *F. paniculata* at the onset of winter was in excess of that required for survival through dormancy. Thus, it is likely that a large proportion of C and N stocks might be allocated to the production of new tillers. These results are supported by the findings of Viard-Crétat (unpublished results, see appendix 1) which demonstrated the production of new tillers during winter as for other species from the same genus (*e.g.* *F. arundinacea* in late winter, Garwood, 1969; Lafarge and Loiseau, 2002). Hence, we hypothesize that the vegetative reproductive activity of *F. paniculata* may coincide with the accumulation of storage carbohydrates.

Effect of mowing on C and N storage in *F. paniculata* at individual tiller level

Diverse physiological responses in plant species have been identified in order to compensate tissue removal. They include the reallocation of stocks to remnant organs (Liu et al., 2007), higher photosynthetic C allocation to aboveground biomass (Briske et al., 1996; Zhao et al., 2008) or increase in net photosynthetic rate of remnant leaves (e.g. Parsons et al., 1983; Anten and Ackerly, 2001; Zhao et al., 2008). Nevertheless, in the case of *F. paniculata*, we rather observed an under-compensatory growth response especially at the end of the growing season (from mid-August to the end of September). By the 15th of August, total soluble sugars and fructan concentrations and masses decreased in *F. paniculata* stem bases (Fig. 3d, e).
Total N concentration in leaves, although increasing after mowing, was greatly reduced compared to early season values due to a dilution of N by C increments (Fig. 3f). Hence, low leaf N probably limited photosynthetic capacity and therefore re-growth. Moreover, as it has been demonstrated in other grasses, once leaves have been cut, mineral N uptake may be dramatically reduced and C supply to roots drastically limited (Kim et al., 1993). Hence, in this situation, the cutting of shoots might trigger a temporary interruption in plant growth (Boucaud and Bigot, 1989; Ta et al., 1990).

Other mechanisms may contribute to reduce the compensatory ability of F. paniculata to defoliation damage. The period during which defoliation occurs and the available time for recovery can strongly impact the outcome of defoliation (Monson et al., 2006). Grasses withstand greater defoliation during early and rapid growth stages than they do later in the growing season, after most growing is complete (Briske et al., 1996). In the case of F. paniculata, mowing occurs after peak standing biomass and at a time when the photoperiod is markedly reduced. Beside, soil moisture and nitrogen soil availability were particularly low during this period (Fig. 1) and might also limit considerably the re-growth of F. paniculata.

Effect of mowing on long-term performance of F. paniculata tussocks

Clonal species can develop compensatory growth in response to cutting by maintaining the number of photosynthetic tillers or by the activation of additional meristems due to the release of apical dominance (McNaughton, 1983). Nevertheless, although F. paniculata tussock density remained similar in both mown and unmown fields, the total area of each F. paniculata tussock, and so the number of tillers per tussock, were strongly reduced in mown compared to unmown fields. This was probably due to a reduced winter production of new tillers although not statistically significant (Viard-Crétat, unpublished results, see appendix 1). Low stored carbohydrate reserves might be perceived as a signal of unfavorable
carbon status such that plants restrict reproductive effort (Wyka, 1999). Hence, this species may tend to invest more energy in the re-growth of the cut tillers than in the production of new tillers.

Though not explicitly examined in this study, it is likely that by limiting individual growth in the long-term, defoliation also restricts significantly root biomass and associated hyphal networks (Guitian and Bardgett, 2000; Esmaeili et al., 2009) therefore decreasing plant N uptake per unit of plant dry weight in mown fields (Robson et al., 2010). Such mechanisms might explain (1) why at the beginning of the growing season *F. paniculata* displays lower N concentration in both leaves and stem bases in mown fields and consequently (2) why its growth is reduced, especially from June to the end of the growing season. Nevertheless the significance of these mechanisms requires further exploration.

Conclusion

The monitoring of growth, carbon and nitrogen content in leaves, stem bases and roots of *F. paniculata* throughout a full annual cycle suggests that, consistent with our hypothesis, compensatory growth of *F. paniculata* following mowing was N-limited, firstly, because of N dilution by C increments in the plant organ and, secondly, due to low soil mineral N concentration and soil moisture. By limiting C storage at the end of the growing season, mowing also reduced C allocation to vegetative reproduction during winter and, therefore, had the potential to dramatically limit the horizontal growth of *F. paniculata* tussocks in the long-term.

These results also suggest that, consistent with agronomic trials, mowing or grazing earlier in the season (e.g. mid July) might be more efficient to control *F. paniculata* as total C allocated to leaves reached its highest level during this period. This would induce greater C loss and therefore a stronger reduction of horizontal growth than through current late mowing.
Acknowledgements

Logistical supports were provided by the Station Alpine Joseph Fourier, the alpine field station of the University Joseph Fourier. The project was financially supported by the « Centre National de la Recherche Française », the GDRE « France-Catalogne » and BIODIVERSA-VITAL.

Quiblier M, Senn O. 2004. Les différents queyrellins des Alpes du Sud et leur mode de gestion. CERPAM.

Figure legends

Figure 1 Soil moisture (a), nitrate concentration (NO$_3^-$) (b) and ammonium concentration (NH$_4^+$) (c) in soils sampled under *F. paniculata* individuals from May 2008 until Apr. 2009 in unmown (white) and mown fields (black). See text for statistical differences between mown and unmown fields. Mean (SE), n=3. NA: data is not available. Arrows indicate mowing date.

Figure 2 Stacked graphs of leaf (light grey) and stem base (dark grey) biomass (per tiller) of *F. paniculata* in unmown (a) and mown (b) fields from May 2008 until April 2009. Graphic inserts represent the proportion of total biomass allocated to leaves vs. stem bases throughout the growing season 2008. Mean (SE), n=3. Arrows indicate mowing date and dashed line the end of the growing season. See text for statistical details.

Figure 3 Stacked graphs of total soluble sugar content (a, d), fructan content (b, e) and total N content (c, f) in leaves and stem bases (per tiller) of *F. paniculata* in mown and unmown fields from May 2008 until Apr. 2009. Graphic inserts represent the concentration of fructan, TSS and N (on a dry weigh basis) in the leaves (circle), the stem bases (square) and the roots (triangle) from May 2008 until Apr. 2009. NA: data is not available. Mean (SE), n=3. Arrows indicate mowing date and dashed line the end of the growing season. See text for statistical details.

S1 Vegetative growth of *Festuca paniculata* during winter in mown and unmown meadows, measured in production of new ramets in small squares of 10 x 10 cm.