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Abstract  23 

Temporal variability was studied in the common sea urchin Paracentrotus lividus through the 24 

analyses of the genetic composition of three yearly cohorts sampled over two consecutive 25 

springs in a locality in North-Western Mediterranean. Individuals were aged using growth 26 

ring patterns observed in tests and samples were genotyped for five microsatellite loci. No 27 

reduction of genetic diversity was observed relative to a sample of the adult population from 28 

the same location or within cohorts across years. Significant differentiation was found in one 29 

intra-cohort comparison and a few inter-cohort comparisons with contingency table analysis, 30 

although FST and AMOVA results indicated that the differentiation is rather shallow, as most 31 

variability is found within samples and within individuals. This mild differentiation translated 32 

into estimates of effective population size of ca. 100 individuals. Given our restricted 33 

sampling area and the known small-scale heterogeneity in recruitment in this species, our 34 

results suggest that at stretches of a few km of shoreline, large numbers of progenitors are 35 

likely to contribute to the larval pool at each reproduction event. Inter-cohort variation in our 36 

samples is seven times smaller than spatial variation between adults of four localities in 37 

Western Mediterranean. Our results indicate that, notwithstanding the stochastic events that 38 

take place during the long planktonic phase and during the settlement and recruitment 39 

processes, reproductive success in this species is high enough to produce cohorts genetically 40 

diverse and with little differentiation between them. Further research is needed before the link 41 

between genetic structure and underlying physical and biological processes can be well 42 

established. 43 
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Introduction 44 

The study of both spatial and temporal variation of population structure is essential to fully 45 

understand factors that affect genetic variability and demographic processes within species. 46 

Spatial patterns have been extensively studied in the last years (reviewed in Avise 2000; 47 

Palumbi 2004; Cowen et al. 2006). For these studies, populations are often sampled without 48 

any regard for their cohort structure, thus mixing individuals of different ages collected at a 49 

given time. Comparatively, the temporal component of genetic variability has received 50 

considerably less attention. Most genetic studies show the net result, averaged over time, of 51 

dispersal patterns. Therefore, they yield little information concerning temporal structure of 52 

larval dispersal (Bossart & Prowell 1998), its impact on marine populations being still poorly 53 

understood (e.g., Caley et al. 1996).  54 

 55 

The hypothesis of “sweepstake reproductive success” suggests that chance determines how 56 

many and which adults actually contribute to the demographic continuity of marine species at 57 

each reproductive event (Hedgecock 1994a). High fecundity and juvenile mortality create 58 

potential for large variance in reproductive success. This random variation may generate, 59 

among other consequences, chaotic patchiness in the genetic composition of each new 60 

generation arriving at a population, leading to genetic heterogeneity among local populations 61 

on a small spatial scale (Hedgecock 1994b; Edmands et al. 1996). These temporal changes in 62 

allele frequencies can be used to infer the genetically effective population size (Ne) of natural 63 

and managed populations (Pollack 1983; Waples 1989; Jorde & Ryman 1995). Large 64 

stochastic variability in reproductive success may be explained by the small effective size 65 

frequently detected in marine organisms relative to census sizes, which are sometimes several 66 

orders of magnitude larger than Ne (Avise et al. 1988; Hedgecock 1994a; Avise 2000; Turner 67 

et al. 2002; Hedgecock et al. 2007). If this is true, then recruits should have a reduced genetic 68 

diversity relative to the adult population. Besides, if only a subset of adults from a population 69 

contribute to reproduction at each spawning event, this may result in changes in allelic 70 

frequencies from one generation to the next, resulting in high differentiation among cohorts 71 

(even exceeding spatial differentiation among populations at broad geographic scales; Watts 72 

et al. 1990; Hedgecock et al. 1992; Hedgecock 1994b; Edmands et al. 1996). Some studies on 73 

marine invertebrates confirm these predictions (e.g., Li & Hedgecock 1998; Moberg & 74 

Burton 2000; Planes & Lenfant 2002; Pujolar et al. 2006; Hedgecock et al. 2007; Lee & 75 
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Boulding 2007). On the contrary, other studies do not detect evidence of sweepstake 76 

reproduction when comparing adult and recruit genetic make-up in invertebrates and fish 77 

(Flowers et al. 2002; Bernal-Ramírez et al. 2003; Poulsen et al. 2006). 78 

 79 

Sea urchins’ larvae can disperse over scales of hundreds of km and therefore it is reasonable 80 

to think that their larval pool is well mixed over large spatial scales. However, echinoids 81 

feature high interannual variation in settlement and recruitment for reasons not fully 82 

understood (Ebert 1983; Pearse & Hines 1987; Schroeter et al. 1992; López et al. 1998; Sala 83 

et al. 1998; Hereu et al. 2004; Tomas et al. 2004), which may indicate heterogeneity in the 84 

larval pool at small scales. Indeed, many factors can determine the actual pool of larvae 85 

arriving at a given location, which will determine the genetic composition of adult 86 

populations. Hydrological features, phytoplankton availability, predator abundances or water 87 

temperature are among the multiple factors that can determine survival of larval batches. 88 

Since these factors vary in space and time, remarkable genetic variation between different 89 

groups of age has been observed in several studies concerning sea urchins. Edmands et al. 90 

(1996) found evidence for significant differentiation among subpopulations of recruits and 91 

between adults and recruits of Strongylocentrotus purpuratus from the same location based on 92 

allozymes, but Flowers et al. (2002) did not find a temporal structure in the same species 93 

using mitochondrial DNA. Similarly, Moberg & Burton (2000) acknowledged extensive 94 

between-year variation in the genetic structure of populations of S. franciscanus, suggesting 95 

that larval pool is not well homogenized during the long planktonic larval phase. Other 96 

studies have suggested that selection upon larvae may cause differentiation in Echinometra 97 

mathaei and that forces causing genetic differentiation can act locally and occur in a single 98 

generation (Watts et al. 1990). A fine scale spatial patchiness in recruitment within localities 99 

has been detected in Paracentrotus lividus (Hereu et al. 2004; Tomas et al. 2004), reinforcing 100 

the idea of a non-homogeneous pool of larvae in the water column. 101 

 102 

Temporal genetic processes can be examined by sequential long-term sampling through time 103 

or by evaluating genetic data with respect to the age structure of the population sampled at a 104 

single point in time. The aim of the present study was to obtain the first insights of temporal 105 

genetic variation of the common sea urchin Paracentrotus lividus (Lamarck, 1816) in Tossa 106 

de Mar (North-Western Mediterranean; Fig. 1). P. lividus is a keystone species in benthic 107 
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sublittoral communities of the Mediterranean, as its browsing activity is one of the main 108 

factors regulating algal abundance (Palacín et al. 1998; Boudouresque & Verlaque 2001). In 109 

addition, this commercially important species is heavily harvested for its roe in some areas, 110 

which can lead to overfishing and population depletion along its distribution range (e.g., 111 

Guidetti et al. 2004). P. lividus is a long-lived free-spawning species with a long planktonic 112 

larval phase. Population dynamics of this species in the study area has been previously 113 

analyzed by Lozano et al. (1995), Turon et al. (1995) and López et al. (1998). Despite the 114 

initial controversy on the subject, it now seems well established that a main spawning event 115 

occurs in spring and smaller recruitment events take place in autumn (López et al. 1998; 116 

Tomas et al. 2004). Taking this into account, we used microsatellite markers developed for 117 

this species (Calderón et al. 2009) to analyse temporal genetic variability of cohorts of 118 

individuals arrived at this locality in three consecutive springs (2004, 2005 and 2006) sampled 119 

over two years (2006 and 2007).  120 

 121 

Material and methods 122 

Sampling and age estimation 123 

In June 2006 and June 2007, samples of P. lividus were collected by SCUBA at the same 124 

location in Tossa de Mar (41º 43.26’N, 2º 56.41’E; Fig. 1). The particular site sampled was 125 

very restricted spatially, comprising an area of ca. 10*20 m of a bottom dominated by 126 

boulders at 15 m of depth. At this spot, small-sized sea urchins were abundant under the 127 

boulders. A total of 374 sea urchins of between 10 and 40 mm in diameter were sampled and 128 

kept in 96% ethanol at –20ºC until processed. Maximum diameter of adults was measured to 129 

the nearest 0.1 mm in the laboratory with callipers and gonads were extracted and preserved 130 

in absolute ethanol. When specimens were too small to have gonads, whole Aristotle’s 131 

lanterns were preserved. Tests were carefully cleaned to remove spines and dried at 90ºC for 132 

at least 72 h. 133 

 134 

Individuals were aged using growth ring counts in interambulacral series of plates (Jensen 135 

1969; Allain 1978; Azzolina 1988; Gage 1991) as described in Turon et al. (1995). In short, 136 

dried tests were immersed in xylene, which penetrates the calcite mesh (stereom) that 137 

constitutes the sea urchin test. Denser stereom corresponds to periods of active growth and 138 

appears as opaque rings, while looser stereom corresponds to periods of slow growth, visible 139 
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as more translucent bands once embedded in xylene. The alternance of opaque and translucent 140 

bands is interpreted as yearly growth rings (see below). The pattern of these rings was 141 

determined under the binocular preferentially using the older plates, from the coronal (i.e., 142 

corresponding to the maximum diameter) to the peristomial ones. A whole oral-aboral series 143 

of plates was also examined to discern true bands from smaller, supernumerary bands that 144 

may occur in some individuals due, for instance, to periods of stress. These supernumerary 145 

bands fade away when they approach the nucleus of the plates as younger plates are observed. 146 

The pattern of translucent/opaque bands was then transformed into age of individuals.  147 

 148 

Turon et al. (1995) provided evidence of the annual formation of growth bands in 149 

Paracentrotus lividus in this area. To further validate the method, more than 115 individuals 150 

were tagged with tetracycline in November 2005 and collected in January 2007 from the same 151 

location in Tossa de Mar. Tetracycline is an antibiotic that chelates with CaCO3 and is thus 152 

incorporated into the tests. This tagging technique has proved to be an effective method to 153 

follow growth in sea urchins (Gage 1992a, b; Lamare & Mladenov 2000). After 14 months, 154 

all individuals were collected at the particular spot where the tagging was conducted and 34% 155 

of the marked individuals were recovered. Tests were cleaned and kept at –20ºC until 156 

observed under UV light. The position of the band of tetracycline (indicating the moment of 157 

tagging) was marked on the test with a scalpel. Growth during that period corresponds to the 158 

marginal deposition of calcite between the tetracycline mark and the distal end of the plates. 159 

Growth bands observed in that area were then examined under the binocular to confirm the 160 

annual formation of rings in P. lividus.  161 

 162 

We use the term cohort to define the group of individuals that are assumed to have arrived at 163 

Tossa de Mar within a single recruitment event. Individuals belonging to cohorts arrived in 164 

spring 2004, 2005 and 2006 were used in this study, and these data were compared to an adult 165 

population (N=27, larger than 40 mm in diameter) collected at the same location in 2005. 166 

Since samples were collected over two consecutive years (2006 and 2007), data on variation 167 

among and within cohorts are available. It should be noted that recruits arrived on the same 168 

year of collection were not included in this study. Therefore, for the cohort recruited in 2004, 169 

we have samples collected in 2006 (when they were 2 years old) and 2007 (3 years old). For 170 

the cohort recruited in 2005, samples were collected at one (2006) and two (2007) years of 171 
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age. Finally, for the cohort recruited in spring 2006 we have data of the one-year-old juveniles 172 

(collected in 2007). These data can be pooled in different ways for analysis: as age-classes 173 

(one, two and three-year-old individuals), as cohorts (2004, 2005 and 2006), and as cohorts-174 

by-year, referring to individuals of each cohort collected at both sampling years (cohorts-by-175 

year will be designated with the cohort year first and the collection year second: Spring04-06, 176 

Spring04-07, Spring05-06, Spring05-07 and Spring06-07). Additionally and in order to 177 

compare temporal with spatial variation, we collected 44 individuals from three localities of 178 

the Western Mediterranean: Cabrera Island (Balearic Archipelago), Cabo de Gata and Tarifa, 179 

located between 320 and over 1000 km away from Tossa de Mar (Fig. 1).  180 

 181 

DNA extraction and genotyping 182 

DNA was extracted from gonads (or Aristotle´s lantern of small individuals) using 183 

REALPURE extraction kit (Durviz, Spain). Microsatellites are highly variable markers that 184 

have proven to be suitable for analyses of biogeographic processes operating over relatively 185 

localized spatial and short temporal scales (Estoup & Angers 1998). Thus, five polymorphic 186 

microsatellites were genotyped in this study: Pl-B, Pl-C, Pl-T, Pl-Hist and Pl-28F (Calderón et al. 187 

2009). PCRs were performed in a final volume of 25 µL containing 3 mM MgCl2, 0.12 µM of 188 

each primer and 1 U of Taq polymerase (Promega). The forward primer for each locus was 189 

labelled with fluorescent dyes (6-Fam and Hex from Sigma-Genosys or Ned from Applied 190 

Biosystems; Table 1). Alleles were sized on an ABI3700 automated sequencer relative to the 191 

internal standard ROX 70-500 (Ecogen) using Peak Scanner software (Applied Biosystems).  192 

 193 

Genetic and statistic analyses 194 

Standard population genetic parameters were used to describe genetic variability within and 195 

among cohorts. The genetic diversity of each cohort-by-year was calculated as number of 196 

alleles and allelic richness per locus and combined over loci using the software FSTAT 2.9.3 197 

(Goudet 2001). This software was also used to calculate linkage disequilibrium among loci. 198 

GENETIX version 4.05.2 (Belkhir et al. 2004) was used to estimate observed and expected 199 

heterozygosities, as well as to calculate FIS coefficients and test their significance (using 200 

10000 permutations). We used Micro-checker v2.2.3 (Van Oosterhout et al. 2004) to further 201 

analyze potential causes of the deficit of heterozygotes observed. The genetic differentiation 202 

among cohorts-by-year was analyzed by contingency table analysis using traditional chi-203 
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square tests with summation over loci with the program CHIFISH (Ryman 2006). There has 204 

been considerable debate about the performance of methods for testing differentiation among 205 

populations, either using permutation tests or contingency table analyses (chi-square, G test or 206 

Fisher’s exact test) and, in the latter case, about methods to combine the results for different 207 

loci (Raymond & Rousset 1995; Ryman & Jorde 2001). Simulation studies showed that the 208 

traditional chi-square method provides the best results in terms of type I errors and power 209 

(Ryman & Jorde 2001; Ryman 2006). The program GenAlex (Peakall & Smouse 2006) was 210 

used to calculate FST statistics (based on variance of allele frequencies, following Weir & 211 

Cockerham 1984) and analyses of molecular variance (AMOVA, Excoffier et al. 1992). The 212 

significance of AMOVA was calculated with 10000 permutations of the original data. 213 

 214 

Estimates of effective population sizes 215 

We used two different methods for estimating effective population sizes (Ne) from allele 216 

frequency changes among cohorts. The first method was analytical: the so-called temporal 217 

method (Nei & Tajima 1981; Pollack 1983; Waples 1989), as modified by Jorde & Ryman 218 

(1995, 1996) for overlapping generations. The implicit assumption is that shifts in allele 219 

frequencies between consecutive cohorts are due to random genetic drift (plus sampling 220 

error). We further assumed that removal of some individuals for analyses had no effect on the 221 

allelic frequencies of the following cohorts and that the number of newborns in each 222 

generation is large (Jorde & Ryman 1996). 223 

 224 

To measure changes in allele frequencies we used the unbiased estimator Fs proposed by 225 

Jorde & Ryman (2007). The formula of the estimator (our sampling scheme corresponds to 226 

Plan II; Waples 1989; Jorde & Ryman 2007) is: 227 

 228 
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Where a is the number of alleles at a given locus; xi is the observed frequency of the ith allele 231 

in the sample of individuals of the first cohort; yi is the corresponding frequency in the sample 232 

drawn from the second cohort, and zi is the mean of xi and yi. 233 
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 234 

The estimator Fs was corrected for the expected effect of sampling as in Jorde & Ryman 235 

(2007): 236 

 237 
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Where ñ is the harmonic mean of the sample sizes taken from the two cohorts (nx and ny). The 239 

Fs’ values were obtained for each locus and averaged using TempoFs (Jorde & Ryman 2007), 240 

which also calculates 95% confidence intervals by jackknifing over loci. 241 

 242 

In the case of overlapping generations, the amount of temporal change in allele frequencies 243 

depends not only on Ne but also on demographic characteristics of the population. These are 244 

incorporated in the estimation of Ne through a correction factor (C) and an estimate of the 245 

generation interval (G; as defined in Jorde & Ryman 1995, 1996). For the computation of 246 

these correction factors, we need to estimate age-class specific survival rates (li) and birth 247 

rates (bi). We used previous biological information on Paracentrotus lividus (Lozano et al. 248 

1995; Turon et al. 1995) to calculate C and G. The details of these estimations are presented 249 

in Supporting material 1. 250 

 251 

Finally, the effective population size Ne was calculated from the formula (Jorde & Ryman 252 

1995, 1996): 253 

´2 sFG

C
Ne =  254 

 255 

Where ´sF  is the average of Fs’ values across loci. We pooled the data by cohort (Palm et al. 256 

2003) to obtain a more robust estimate and we compared pairs of consecutive cohorts: 2004 257 

with 2005, and 2005 with 2006. 258 

 259 

The second method used was based on a simulation approach. The rationale behind it is that 260 

in species with long-lived larvae it is hard to define a “parental” population, as larvae may 261 

come from a wide geographic range. In our case, there seems to be enough gene flow among 262 

populations of the Iberian Mediterranean shores as to prevent significant genetic divergence 263 
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between them (Duran et al. 2004). We can therefore think of a “source” meta-population, 264 

much bigger than the population under study. Our best approach to the allele frequencies of 265 

this meta-population can be obtained by pooling all adult samples from the four localities 266 

studied in the area (Fig. 1). 267 

 268 

We simulated the genetic differentiation expectable from cohorts deriving from an increasing 269 

number of progenitors drawn from this source meta-population. For this purpose, we 270 

simulated a sample of N reproductive individuals from the meta-population using the pooled 271 

allele frequencies of the adults, and drew a sample of their offspring of size equal to the first 272 

cohort sample being compared (nx). We then repeated the sampling of reproductive 273 

individuals and of their offspring, this time with size equal to the second cohort sample (ny), 274 

and computed the uncorrected Fs value between cohorts. Repeating this process a large 275 

number of times (1000 replicates) we obtained the expected value of Fs between samples of 276 

size (nx) and (ny) from consecutive cohorts deriving from a source meta-population if the 277 

number of progenitors (i.e., effective population size) was N. The process can be repeated for 278 

increasing values of N to generate a distribution of expected Fs values and to determine the 279 

number of progenitors that corresponds to the observed value of Fs. 280 

 281 

The assumptions of this procedure are: a) that our pooled allele frequencies are representative 282 

of the allele structure of the source meta-population, b) that this allelic structure will not 283 

change appreciably, at least at the scale of a few generations, c) that in the two generations 284 

compared the number of progenitors was the same and d) that the contribution of these 285 

progenitors to the recruited individuals was the same. Although these assumptions make our 286 

model somewhat simplistic, it provides an estimate of Ne that can be compared to that 287 

obtained with the analytical method above. The simulation routines were written in Turbo 288 

Pascal. 289 

 290 

Results 291 

Age assignments 292 

Growth rings were successfully counted for every individual. Our tagging experiment 293 

confirmed the annual formation of growth bands, as suggested by Turon et al. (1995) and as 294 

corroborated by results from adults labelled with tetracycline (all tagged individuals presented 295 
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one translucent and one opaque band between the mark corresponding to the incorporation of 296 

tetracycline and the margin of the plates). 297 

 298 

Based on this annual formation of growth rings, we classified all the sampled individuals in 299 

different age-classes and we selected the subset of those individuals estimated to have 300 

recruited at Tossa de Mar in spring 2004, spring 2005 and spring 2006 (a total of 121 301 

individuals). Grouping these samples in age-classes, we have a representation of sea urchins 302 

estimated to be one year old: the cohort recruited in 2005 sampled in 2006 (N=15) and the 303 

cohort recruited in 2006 sampled in 2007 (N=22); two years old: the cohort recruited in 2004 304 

sampled in 2006 (N=31) and the cohort recruited in 2005 sampled in 2007 (N=29); and three 305 

years old: the cohort recruited in 2004 sampled in 2007 (N=24). Figure 2 shows the size-306 

frequency distribution of these three age-groups. It is apparent how size may vary 307 

considerably among individuals of the same age-class. In particular, the size interval becomes 308 

wider as the individuals become older. We therefore confirm that band pattern is a better 309 

method for estimating age than size.  310 

 311 

Genetic characteristics 312 

The main genetic characteristics of the different cohorts-by-year studied, as well as those of 313 

the adult population at the same locality, are listed in Table 1. LD was not detected between 314 

any of the loci analyzed, as previously observed by Calderón et al. (2009). 315 

 316 

A deficit of heterozygotes was detected for the 5 loci, with significant inbreeding coefficients 317 

for all loci and cohorts-by-year (Table 1), with the exception of locus C in two and locus T in 318 

three cohorts-by-year. When considering all cohorts-by-year together, all loci showed 319 

significant inbreeding coefficients. According to Micro-checker, null alleles may be present at 320 

all loci, as suggested by the general excess of homozygotes for most allele size classes. 321 

However, the lack of failed amplifications (homozygote individuals for null alleles) and the 322 

coincident result with other nuclear markers (Calderón et al. 2008) leave place for alternative 323 

explanations (see Discussion). Most alleles found in the adult population were recovered in 324 

the juveniles analyzed, with the exception of 1 (out of 19) for locus B, 1 (out of 29) for locus 325 

C, four (out of 45) for locus Hist and four (out of 32) for locus 28F (See Supporting material 326 

2). 327 
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 328 

There was no observable reduction in genetic diversity (in terms of allelic richness or 329 

expected heterozygosity) between successive years of a single cohort (compare in Table 1 the 330 

cohort recruited in 2004 sampled in 2006 and 2007, and the 2005 cohort sampled in 2006 and 331 

2007) nor relative to the adult population from Tossa de Mar. Pooling data in age-groups to 332 

increase our power, no pattern of decline was evident either (Fig. 3). 333 

 334 

Population differentiation analysis considering the cohorts separated by year was performed 335 

using Chi-square tests on allele frequency tables (Table 2). Some of the tests were significant 336 

(after Bonferroni correction). Of these, one value corresponded to intra-cohort comparison 337 

(cohort of 2004 sampled at two consecutive years) and the remaining corresponded to inter-338 

cohort comparisons. FST values between cohorts-by-year were generally low, both for intra- 339 

and inter-cohort comparisons (ranging from -0.002 to 0.008; Table 2). Additionally, FST 340 

values among cohorts only showed significant differences between the cohort of 2004 341 

(samples collected in 2006 and 2007 pooled together) and the cohort of 2006 (FST=0.006; 342 

P<0.05).  343 

 344 

When comparing each cohort-by-year with the adult population collected in Tossa de Mar, 345 

significant differences (after Bonferroni correction) in allele frequency (contingency table 346 

analysis) were found with the cohort of 2004 sampled in 2007, and with the cohort of 2005 347 

sampled in 2007. In all cases, FST values were low, ranging between -0.006 and 0.005. 348 

Nevertheless, these differences disappeared when each cohort (2004 and 2005, respectively, 349 

data from the two years pooled together) was compared to the adult population. 350 

 351 

Concerning differentiation between 4 localities of the Western Mediterranean (including the 352 

adult population of Tossa de Mar), pairwise FST values were 0.027±0.007 (mean±SE), while 353 

the average values obtained in our dataset (Table 2) were 0.004±0.001. Thus, spatial variation 354 

was almost seven-fold the observed temporal variation (among and within cohorts), and the 355 

difference was significant (t-test, P=0.001). 356 

 357 

An AMOVA analysis on the cohort-by-year data showed that most variation was found 358 

within individuals and among individuals within cohorts-by-year (ca. 70% and 30%, 359 
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respectively), with only a minor component (0.42%) associated with differences between 360 

cohorts-by-year, which was nevertheless significant (P=0.012). This small variance 361 

component, however, was not due to differences among the three cohorts: when we 362 

introduced another hierarchical level grouping the samples by cohort (2004, 2005 and 2006), 363 

this grouping level explained only 0.083% of the total variance.  364 

 365 

Effective population sizes 366 

Table 4 summarizes the observed values of corrected (Fs’) and uncorrected (Fs) allele 367 

differentiation between cohorts and the results of the two approaches used to estimate Ne. The 368 

temporal method provided an estimate of 132 individuals for the comparison between cohorts 369 

of 2004 and 2005, and 81 individuals when comparing the cohorts of 2005 and 2006. The 370 

simulation method provided estimates of Fs that rapidly flattened out as the number of 371 

reproductive individuals (N) increased (Fig. 4). The asymptote of the curves corresponds to 372 

the allele differentiation expectable from the sampling effect alone. The number of 373 

progenitors (and hence the effective population size) for which Fs value was the same as the 374 

observed value was found by interpolation and corresponded to 117 individuals (comparison 375 

2004-2005) and 66 individuals (comparison 2005-2006). The jackknife estimation of 376 

confidence intervals on Fs’ and Fs provided by the program TempoFs allowed us to establish 377 

95% confidence intervals for the effective population sizes. These confidence intervals were 378 

wide for the 2004-2005 comparison, and much narrower for the 2005-2006 comparison. The 379 

estimates of the two methods were quite consistent, and both point towards a somewhat lower 380 

Ne in the comparison of the second pair of cohorts. Combining the four estimates we obtained 381 

a mean value for the effective population size of 99 individuals. 382 

 383 

Discussion 384 

Only in recent years the importance of temporal genetic structure in marine organisms has 385 

become widely acknowledged. Among other aspects, this structure has profound implications 386 

is species conservation (Turner et al. 2002; Palm et al. 2003). Unfortunately, temporal data 387 

are particularly scarce due to the difficulties in making reliable estimates of age, and our 388 

knowledge of temporal patterns of genetic structure lags much behind that of spatial patterns. 389 

This study provides the first insights on temporal genetic structure of populations of 390 

Paracentrotus lividus, an ecologically and commercially important species, showing a 391 

shallow variability between the cohorts analyzed.  392 
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 393 

As already detected for other species of sea urchin (Gage 1991 and references therein), our 394 

results confirm that the use of growth bands on skeletal plates is a reliable method for 395 

estimating growth and thus, for inferring age in P. lividus (Turon et al. 1995). Indeed, the 396 

band pattern observed in the interambulacral plates corresponds to processes of seasonal 397 

growth. However, the appearance of supplementary translucent rings likely due to events of 398 

stress rendered the reading difficult, especially in older specimens that may have undergone 399 

several such episodes of stress. The reading of whole series of plates from the oral to the 400 

aboral end allowed us to discern true growth bands from smaller, artefactual bands. 401 

 402 

Our data on microsatellite markers show a high genetic diversity within cohorts, as already 403 

detected with these same markers for adult populations of Tossa de Mar and Cabrera 404 

(Calderón et al. 2009) and for geographically distant populations, based on nuclear and 405 

mitochondrial markers (Duran et al. 2004; Calderón et al. 2008). Additionally, our results do 406 

not show a reduction in diversity of cohorts relative to adult populations (Table 1). 407 

Furthermore, levels of differentiation detected between cohorts were seven times lower than 408 

spatial differentiation found between localities located within 1000 km of shoreline. 409 

 410 

Besides the high variability associated to settlement both at temporal and spatial scales, 411 

recruitment and other post-settlement events may also play a very important role in shaping 412 

genetic composition of cohorts in this species (Hereu et al. 2004; Tomas et al. 2004). We 413 

found a significant differentiation within the same cohort sampled over two consecutive years 414 

(Spring04-06 and Spring04-07; Table 2), which could be taken as evidence of high mortality 415 

coupled with selection between the two sampling years. However, no reduction in genetic 416 

diversity was observed in the cohorts for which data were available for the two sampling 417 

years, and no differentiation was detected between samples from the cohort 2005 collected in 418 

2006 and 2007. Thus, given our small sample size, we favour the idea that stochastic 419 

sampling error may explain this significant outcome (Waples 1998). Annual mortality rate in 420 

Paracentrotus lividus is high over the first year and lower as individuals grow older (Turon et 421 

al. 1995; Verling et al. 1995; López et al. 1998). It could thus be expected to observe a 422 

reduction in genetic diversity during the first year of benthic life of a given cohort, as 423 

commonly detected for many marine invertebrates with dispersing larvae (Gosselin & Qian 424 
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1997; Hunt & Scheibling 1997). In our case, however, as individuals from our cohort of 2004 425 

were between 2 and 3 years old by the time we sampled them, mortality occurring during the 426 

critical early benthic phase did not affect our genetic parameters. 427 

 428 

As in previous studies on this species, we observe a deficit of heterozygotes in all our cohorts 429 

and all our loci relative to what would be expected for populations at HW equilibrium (Table 430 

1). The lack of homozygotes for null alleles in our sample and the coincident results with 431 

other nuclear markers (Calderón et al. 2008, 2009; authors’ unpublished research) suggest 432 

that null alleles are not the cause of this outcome. Deficits of homozygotes are usually 433 

explained by selection against heterozygotes, Wahlund effect, inbreeding or a combination of 434 

these. Although none of these possibilities can be completely ruled out, our results on the 435 

gamete recognition protein bindin suggest that positive selection acting upon this protein may 436 

be responsible for some degree of assortative mating in Paracentrotus lividus (Calderón et al. 437 

unpublished results) that can contribute to an excess of homozygotes in our samples. 438 

 439 

For marine invertebrates with sedentary adults, the genetic composition of populations is 440 

mainly influenced by the genetic composition of recruits, and not of migrating adults (Watts 441 

et al. 1990). Temporal variability in recruitment of successive cohorts at a given locality is 442 

closely related to the effective population size, the smaller the Ne the larger the effect of 443 

genetic drift, leading to cohort differentiation. Our estimates of effective population sizes 444 

should be taken with caution, considering that only three cohorts have been analyzed and that 445 

sample sizes considered were relatively small. However, the two independent methods used 446 

provided similar estimates of effective sizes of about one hundred progenitors for the recruits 447 

arriving at our restricted sampling spot. Although this figure may seem small at first sight, it 448 

should be noted that the meaning of Ne in sedentary species is necessarily linked to the 449 

sampling area covered. There is a marked spatial and temporal variability in recruitment of P. 450 

lividus at fine scales (Hereu et al. 2004; Tomás et al. 2004) which, coupled with the short 451 

movement range of this species (and particularly of juveniles that hide in cryptic habitats to 452 

avoid predation: Sala & Zabala 1996; Palacín et al. 1997), likely results in a high 453 

demographic heterogeneity of the recruits over small spatial scales, as found for other 454 

invertebrates (e.g., Johnson and Black 1982, 1984). Although this patchiness remains to be 455 

confirmed by genetic studies, our finding that ca. 100 individuals are involved in the fathering 456 
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of recruits from a spot of just several tens of square meters suggests that large Ne figures will 457 

be found when considering bigger spatial scales such as coastal stretches several km across.  458 

 459 

Two main signatures are left by strong sweepstake events: reduction of genetic diversity 460 

within cohorts relative to adult populations (which are a mixture of several cohorts) and 461 

higher differentiation between different cohorts arrived at a given location relative to 462 

differentiation found among spatially distant populations. None of these features characterize 463 

the samples of Paracentrotus lividus analyzed, so we can infer a relatively high reproductive 464 

success of adults in this species, with no significant sweepstake effect that could reduce the 465 

genetic diversity of newly arrived cohorts or markedly alter allelic frequencies between them. 466 

 467 

Pre- and post-settlement mortality are certainly taking place in this broadcast spawner but our 468 

results imply that the larval pool that is able to successfully recruit and survive at this given 469 

location is sufficiently large to maintain high degrees of genetic diversity within populations. 470 

Further studies on small-scale genetic heterogeneity of recruits and studies using markers 471 

under selective pressures along a longer time frame may shed more light on the processes 472 

explaining temporal genetic structure in Paracentrotus lividus. 473 

 474 
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Figure legends 631 

 632 

Fig. 1. Sampling sites for Paracentrotus lividus. 633 

Fig. 2. Size-frequency histograms of individuals aged on the basis of growth rings. The asterisks mark the 634 

average size. 635 

Fig. 3. Patterns of expected heterozygosity (He, in white) and allelic richness (corrected per sample size, in 636 

black) in the three age-classes contained in our samples. Bars represent standard deviations (across loci). 637 

Fig. 4. Estimates of Fs corresponding to comparisons between cohorts of the same size of those studied obtained 638 

simulating an increasing number of progenitors (N). Solid lines indicate the N corresponding to the observed 639 

value of Fs between the cohort of 2004 and 2005, and dashed lines indicate N of the comparison between the 640 

cohort of 2005 and 2006. Error bars are standard deviations of 1000 replicates. Note log-log scale.641 
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Table 1. Genetic characteristics of cohorts-by-year and adult population from Tossa de Mar. 1 

Cohort Parameter 
Spring04-06 

(N= 31) 

Spring04-07 

(N= 24) 

 Spring05-06 

(N= 15) 

Spring05-07 

(N= 29) 

Spring06-07 

(N= 22) 

Adult 

population 

Tossa de Mar 

(N= 27) 

Pl-B 

(6’ FAM) 

Nb. of alleles 

Allelic richness 

Ho 

He 

FIS 

15 

12.558 

0.3548 

0.9191 

0.618*** 

13 

11.154 

0.4667 

0.8851 

0.481*** 

10 

10 

0.4583 

0.9007 

0.497*** 

16 

12.522 

0.5862 

0.9117 

0.361*** 

12 

11.135 

0.5455 

0.9080 

0.405*** 

15 

14.185 

0.2593 

0.9287 

0.719*** 

Pl-C 

(NED) 

Nb. of alleles 

Allelic richness 

Ho 

He 

FIS 

18 

13.326 

0.8065 

0.9239 

0.129* 

11 

13.419 

0.5427 

0.8041 

0.331** 

12 

12 

0.9333 

0.9034 

-0.034 

18 

13.546 

0.7586 

0.9274 

0.185*** 

16 

9.27 

0.8636 

0.8890 

0.029 

15 

13.973 

0.7037 

0.8987 

0.218*** 

Pl-T 

(HEX) 

Nb. of alleles 

Allelic richness 

Ho 

He 

FIS 

19 

13.808 

0.9032 

0.9164 

0.015 

15 

13.42 

0.75 

0.9149 

0.183*** 

15 

15 

0.9333 

0.9310 

-0.003 

16 

11.748 

0.8966 

0.9338 

0.04 

13 

12.622 

0.6818 

0.9059 

0.252*** 

14 

13.524 

0.6296 

0.9280 

0.318*** 

Pl-Hist 

(HEX) 

Nb. of alleles 

Allelic richness 

Ho 

He 

FIS 

23 

16.308 

0.5806 

0.9476 

0.391*** 

19 

14.846 

0.6250 

0.9442 

0.343*** 

16 

16 

0.4000 

0.9562 

0.590*** 

21 

13.548 

0.5862 

0.9341 

0.377*** 

16 

15.761 

0.4545 

0.9049 

0.504*** 

25 

22.350 

0.5556 

0.9651 

0.464*** 

Pl-28F 

(NED) 

Nb. of alleles 

Allelic richness 

Ho 

He 

FIS 

22 

16.459 

0.4516 

0.9508 

0.529*** 

21 

15.492 

0.75 

0.9486 

0.213*** 

16 

16 

0.7333 

0.9609 

0.243*** 

19 

16.214 

0.6552 

0.9468 

0.312*** 

19 

16.599 

0.5455 

0.9471 

0.43*** 

22 

20.183 

0.5185 

0.9706 

0.421*** 

All 

Nb. of alleles 

Allelic richness 

Ho 

(±SD) 

He 

(±SD) 

FIS 

19.4 

14.4918 

0.6258 

(±0.231) 

0.9312 

(±0.0164) 

0.332*** 

15.8 

13.0812 

0.625 

(±0.1284) 

0.9025 

(±0.0585) 

0.312*** 

13.8 

13.8 

0.6933 

(±0.2521) 

0.9274 

(±0.0329) 

0.259*** 

18 

13.9182 

0.6966 

(±0.1322) 

0.9302 

(±0.0126) 

0.255*** 

15.2 

13.2382 

0.6182 

(±0.1594) 

0.911 

(±0.0216) 

0.327*** 

15 

14.185 (±4.12) 

0.5333 

(±0.1689) 

0.9103 

(±0.0265) 

0.719*** 

 2 

Table 1. Number of alleles and allelic richness for each locus and each cohort-by-year as calculated by FSTAT. 3 

Ho and He: observed and expected heterozygosity respectively; FIS: inbreeding coefficients (GENETIX). *: 4 

P<0.05; **: P<0.005; ***: P<0.001. 5 
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 Table 2. Population differentiation among cohorts-by-year. 6 

 
2χ (df) FST 

Spring04-06 vs Spring05-06 150.136 (107)* 0.003 

Spring04-06 vs Spring04-07 152.548 (108)* 0.008* 

Spring04-06 vs Spring05-07 134.797 (111) -0.002 

Spring04-06 vs Spring06-07 148.007 (108) 0.006 

Spring05-06 vs Spring04-07 138.301 (94)* 0.007 

Spring05-06 vs Spring05-07 120.915 (100) -0.002 

Spring05-06 vs Spring06-07 128.323 (92) 0.004 

Spring04-07 vs Spring05-07 134.908 (99) 0.008* 

Spring04-07 vs Spring06-07 148.946 (96)* 0.01* 

Spring05-07 vs Spring06-07 125.986 (102) 0.001 
 7 

Table 2. Measures of population differentiation among the five cohorts-by-year obtained from contingency table 8 

analysis. Degrees of freedom (df) are given in parentheses. FST values are also indicated. Asterisks denote 9 

significant values at P<0.005 after Bonferroni correction.  10 
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Table 3. AMOVA of cohorts-by-year. 11 

Source df MS % variance 

Among cohorts-by-year    4      3.485          0.422* 

Among individuals within cohorts-by-year 116     3.016         29.992** 

Within individuals 121     1.620         69.586** 

 12 

Table 3. AMOVA analysis of the cohort-by-year dataset (*: P<0.05; **: P<0.001). df: degrees of freedom; MS: 13 

Mean square. 14 
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Table 4. Estimates of Fs and F’s and corresponding Ne estimates. 15 

 2004 vs 2005 2005 vs 2006 

Temporal method   

Mean Fs'= 0.0097 0.0157 

Ne= 132 81 

95 % CI= 66-13800 44-410 

   

Simulation method   

Mean Fs= 0.0303 0.0501 

Ne= 117 66 

95 % CI= 53-n.a. 37-360 

   
 16 

Table 4. Average temporal allele frequency shifts between consecutive cohorts expressed as Fs’ and Fs (means 17 

over loci) and associated Ne estimates for the two methods used. When possible, 95% confidence intervals are 18 

provided (n.a.: not applicable, the lower bound for the mean Fs is below the asymptotic part of the curve). 19 

 20 
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