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A B S T R A C T
In this paper we design and develop several filtering strategies for the analysis of data
generated by a resonant bar gravitational wave (GW) antenna, with the goal of assessing the
presence (or absence) therein of long-duration monochromatic GW signals, as well as the
eventual amplitude and frequency of the signals, within the sensitivity band of the detector.
Such signals are most likely generated in the fast rotation of slightly asymmetric spinning
stars. We develop practical procedures, together with a study of their statistical properties,
which will provide us with useful information on the performance of each technique. The
selection of candidate events will then be established according to threshold-crossing
probabilities, based on the Neyman–Pearson criterion. In particular, it will be shown that
our approach, based on phase estimation, presents a better signal-to-noise ratio than does pure
spectral analysis, the most common approach.

Key words: gravitation – instrumentation: detectors – methods: data analysis – methods:
statistical.

1 I N T RO D U C T I O N

It is generally believed that the most intense gravitational waves (GWs) arriving at the Earth from remote sources in the Universe correspond to
very short duration (,1 ms) bursts, generated in the explosion of a supernova (Thorne 1987), or in gamma-ray bursters (Roland, Frossati &
Teyssier 1994). Since their very first origins, cylindrical bar GWantennas have been applied to the detection of this sort of event (Weber 1969),
and the more modern cryogenic bars have also been used for this purpose, with considerably enhanced sensitivities (Astone et al. 1991; Astone
et al. 1993; Hamilton et al. 1994): the long decay times of the oscillations of the bar make it well suited for the measurement of impulsive, short
duration signals (Gibbons & Hawking 1971; Astone, Bonifazi & Pallottino 1990).

It so happens, however, that some cylindrical GW antennas have been in continuous operation for many consecutive months, even years.
This is the case, for example, with the Explorer detector, owned and operated by the Ricerche Onde Gravitazionali (ROG) group in Rome
(Italy) and installed within the CERN premises in Geneva, Switzerland (Astone et al. 1993). Long-term operation naturally provides the
appropriate background for a search of monochromatic signals in the detector data, as the requisite long integration times become available.

Monochromatic signals are most probably generated by the rotation of asymmetric stars, such as a pulsar or a neutron star. The intensity of
the GWs depends strongly on the amount of asymmetry of the source, and this is in turn dependent on its equation of state (Bonazzola &
Gourgoulhon 1996). Reasonably optimistic upper bounds on typical star parameters give an extremely weak signal estimation of h , 10¹27

(Thorne 1987), which must be seen against a noisy background. Clearly, long integration times are required to reveal this kind of signal.
A systematic search for such a signal must face a practical difficulty which derives from the fact that the signal is received in the antenna

Doppler-shifted as a result of the daily and yearly motions of the Earth – in addition to possible internal motions within the source if it is, e.g., in
a binary system. Fourier analysis of long stretches of data results in high-frequency resolution (Kay 1990), thence in signal spread across
several spectrum bins if it is Doppler shifted. This can naturally cause a significant reduction in the post-filter signal-to-noise ratio. The
problem is easily overcome if the source position in the sky is known (or assumed) ahead of time by means of suitable corrections based on
ephemeris calculations. Analyses of this type exist in the literature: traces of a pulsar in the centre of the supernova SN1987A were sought in
four days of data generated by the 30-m Garching interferometer in 1989 March (Niebauer et al. 1993), and Frasca & La Posta studied almost
four years of data generated by the room-temperature bar detector GEOGRAV in search of periodic signals from the Galactic Centre and the
Large Magellanic Cloud (Frasca & La Posta 1991). More recently, Mauceli (Mauceli 1997) has looked for monochromatic GW signals coming
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from the region of Tuc 47 and from the Galactic Centre in three months of data generated by the cryogenic detector ALLEGRO at Louisiana
State University.

A different strategy must of course be used for an all-sky search. The philosophy of the procedure put forward by Frasca & La Posta
(Frasca & La Posta 1991) consists of the construction of a large bank of spectra, taken over shorter stretches of data such that the frequency
resolution in each individual spectrum be sufficiently low that daily Doppler-shifted signals fit in a single spectral bin. Suitable comparison and
averaging are thereafter applied to the spectra in order to draw conclusions about the intensity and/or bounds on signals. Astone et al. (Astone
et al. 1997a; Astone 1998) have looked at one year (1991) of data taken by the above-mentioned Explorer detector in order to perform an
all-sky search for monochromatic sources of GWs. Their method is based upon local maxima identification in a bank of spectra, followed by
close up analyses of frequency peaks, looking for evidence of Doppler-shift patterns across the duration of the entire data set.

In this paper we design and develop algorithms for the analysis of data generated by a resonant bar detector of GWs, in search of
monochromatic signals within the sensitive frequency band of the system. We are also interested in an all-sky search, but adopt a different point
of view. Rather than scanning a bank of spectra, we propose to use a matched filter technique to estimate both frequency and phase of candidate
signals. We then set a threshold, using the Neyman–Pearson criterion, to select those events which have a given probability of crossing it as a
consequence of pure random noise fluctuations. We have tested our methods in simulations with real Explorer detector data from 1991, and
have seen that they perform very satisfactorily. We plan to apply our methods to the massive processing of long stretches of data from the same
antenna in a future paper, in order to provide complementary analyses to the procedures and methods already reported in Astone et al. (1997b)
and Astone (1998).

The article is structured as follows. In Section 2 we present a few technical generalities and set the basic conventions of notation. Section 3
is devoted to a detailed study of a situation in which the signal has a frequency exactly equal to one of those in the discrete Fourier spectrum of
the data (Lobo & Montero 1997); this corresponds to an idealized situation the consideration of which is methodologically useful, as it allows
us to determine the phase of the signal, and to investigate the statistical properties of the filter output; it also characterizes the main guidelines
for the more realistic study in subsequent sections. In Section 4 the method is illustrated with a signal artificially added to real detector data,
which includes the estimation of the noise spectral density in the presence of such a signal. In Section 5 we address the real case, in which the
signal frequency no longer exactly matches any of the discrete samples, so that it leaks across neighbouring spectrum bins (Lobo & Montero
1998), and also assess the statistical properties of the filter output (Montero 1998). Finally, in Section 6 we apply the method again to real data
with an external control signal added, and show that it works satisfactorily. The paper closes with a summary of conclusions and future
prospects.

2 L I N E A R DATA F I LT E R I N G

We begin with a review of some fundamental concepts of linear data processing, fixing also the basic notation which we will be using
throughout this article.

In the general case, let uðnÞ (n ¼ 0; . . . ;N ¹ 1) be the discrete set of samples which constitute our experimental data. A linear filter
consists of a discrete set of numbers gðn; miÞ depending on several parameters, mi, which acts on the experimental data as

yðmiÞ ¼
XN¹1

n¼0

gðn; miÞuðnÞ; ð1Þ

producing what we shall call the filter output. It is usually assumed that uðnÞ is the sum of two different contributions: on the one hand is the
signal, xðnÞ, the presence of which we want to assess, represented by a deterministic function, and on the other hand the noise rðnÞ, a stochastic
process,

uðnÞ ¼ xðnÞ þ rðnÞ: ð2Þ

For any choice of parameters, it is appropiate to ask for the filter response both to the signal, yx, and to the noise, yr, the latter also being a
stochastic process. The ratio of the mean square values of these quantities is called in the literature the output signal-to-noise ratio (SN),

r ;
y2

x

< y2
r >

; ð3Þ

and it is a measurement of the performance of the filter gðn; miÞ. The theory of the matched filter (Helstrom 1968; Papoulis 1984) precisely
determines, up to a global constant, the functional form which this must have, for given signal and noise, in order to maximize r.

In our case we shall assume that the noise rðnÞ can be adequately modelled by a zero-mean Gaussian and stationary stochastic process,
whereas the signal xðnÞ will be the response of the cryogenic resonant detector Explorer to a pure monochromatic GW (Pallottino & Pizzella
1984; Montero 1997),

xðnÞ ¼ A0 cosð2pf0nT þ J0Þ: ð4Þ

Here, A0 is the product of the amplitude by a conversion factor which defines the detector sensitivity at the frequency of the gravitational
radiation, fg. This differs from f0 by a constant shift (Frasca et al. 1992),

fini ¼ fg ¹ f0 ¼ 900:026 778 1 Hz; ð5Þ

introduced by the data acquisition system of the antenna, with the purpose of sampling the full bandwidth of the antenna (27.5088 Hz). The
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matched filter for such a signal is then functionally equal to the latter (Helstrom 1968),

gðnÞ ¼ B cosð2pf0nT þ J0Þ; ð6Þ

where B is an arbitrary constant.

3 N O N - L E A K I N G S I G N A L S E M B E D D E D I N K N OW N S P E C T RU M N O I S E

3.1 The signal

As noted in the Introduction, we want to develop in this article a general method, the operation of which does not depend on the existence of
prior information about the source. So, in principle, the value of the frequency f0 of the signal we can detect must be within the interval

0 # f0 <

1
2T

; ð7Þ

where 1=T is our Nyquist frequency. Obviously no search strategy can afford the endless analysis of all the frequencies in that window, so we
shall be forced to select a finite set of frequencies to scan. Nevertheless, the very functional form of the filter shows us that we shall perform
discrete Fourier transforms (DFTs) in its implementation, and this defines the set of frequencies which will be searched in actual practice,

fT ¼
k
N
; k [ f0; . . . ;N ¹ 1g: ð8Þ

Moreover, for practical reasons, all the DFTs will be numerically computed using the fast Fourier transform (FFT) algorithm, a very optimized
procedure which computes all spectral components at once, the only restriction being that the number of samples must be an exact power of 2.

In this section, we shall assume that the signal is well matched by the spectral template. By this we mean that the frequency of the signal is
in fact one of those in equation (8), so that the entire signal is in one single bin of the FFT, with no leakage to the neighbouring ones. More
precisely, we shall be assuming that

f0T ¼
k0

N
; ð9Þ

where k0 is one of 1; . . . ;N=2 ¹ 1, though we do not know which. We shall disregard the study of any k0 bigger than N=2 because it would be
redundant, since they represent nothing but negative frequencies. The value k0 ¼ 0 is also disregarded since, among other considerations, it
represents, not a wave, but a constant signal.

Summing up, the target of the present analysis will be to assess the presence of a signal

xðnÞ ¼ A0 cosð2pk0n=N þ J0Þ ð10Þ

in the experimental data series uðnÞ, using a matched filter

gðn; k;JÞ ¼ B cosð2pkn=N þ JÞ; ð11Þ

depending on the two unknown paramenters, k and J, which we shall eventually estimate. Besides the advantageous property of the absence of
frequency leakage in the filter output of such signals, equation (10) shows that xðnÞ is a periodic function over the entire processed period,
because xðNÞ is equal to xð0Þ. In fact, this relationship holds for any sample,

xðn þ NÞ ¼ xðnÞ; ð12Þ

and it will be a crucial aspect of the developments which we shall introduce below.

3.2 The filter performace and the role of B
Let us compute the two quantities y2

x and < y2
r >, in order to evaluate the actual goodness of the filter. y2

x is different from zero only if a signal is
really present and the value of the parameter k matches k0, i.e. the filtered signal does not leak across different frequency bins,

y2
xðk;JÞ ¼

A0BN
2

� �2

cos2ðJ ¹ J0Þ dkk0
: ð13Þ

For < y2
r ðk;JÞ > we have the more complex formula,

< y2
r ðk;JÞ > ¼

B2N
2

XN¹1

n¼¹ðN¹1Þ

RðnÞ 1 ¹
jnj

N

� �
cosð2pkn=NÞ ¹ B2 cosð2pk=N ¹ 2JÞ

sinð2pk=NÞ

XN¹1

n¼0

RðnÞ sinð2pkn=NÞ; ð14Þ

where we have introduced the autocorrelation function of the noise,

RðnÞ ; hrðn 0 þ nÞrðn 0Þi: ð15Þ

If we assume1 that RðnÞ , 0 for n , N, it is clear that the second term shall become negligible in front of the first, and hence

< y2
r ðk;JÞ > <B2 NSðk; NÞ

2T
; ð16Þ
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with

Sðk; NÞ ; T
XN¹1

n¼¹ðN¹1Þ

RðnÞ 1 ¹
jnj

N

� �
cosð2pkn=NÞ: ð17Þ

It can easily be shown that the quantity we have just defined is the mean value of a periodogramme,

Sðk; NÞ ¼
T
N

XN¹1

n¼0

rðnÞe¹i2pkn=N

�����
�����
2* +

; ð18Þ

a well-known way for estimating the power spectral density of the noise at that particular frequency, based on the Wiener–Khinchine theorem
(Kay 1990).

Putting together expressions (13) and (16) we finally get for the SN,

r ¼
A2

0NT
2Sðk; NÞ

cos2ðJ ¹ J0Þ dkk0
; r0 cos2ðJ ¹ J0Þ dkk0

; ð19Þ

with

r0 ;
A2

0NT
2Sðk; NÞ

; ð20Þ

the maximum value for r we may achieve with the present filter.
The SN is obviously independent of the constant B, so we can freely set it as we like in order to provide y with some advantageous

property. Our particular choice is

BðkÞ ;
�����������������

2T
NSðk; NÞ

r
; ð21Þ

the factor that makes < y2
r ðk;JÞ > equal to one. The statistical properties of the noise and the linearity of the filter guarantee that y is still

Gaussian. Then its probability distribution will be completely settled once we know its mean < y >, and its variance, j2
y , which, in our case

coincides with < y2
r >,

j2
y; < y2

> ¹ < y >

2¼< y2
r >¼ 1: ð22Þ

So, on the one hand, we have forced jy to take the same value regardless of the particular scanned frequency, and on the other hand, the
mean of yðk;JÞ,

< yðk;JÞ >¼
�����
r0

p
cosðJ ¹ J0Þ dkk0

; ð23Þ

shall be zero when either no signal is present in the data or, if there is a signal,2 for any value of k other than k0. In this way, we have designed a
bank of filters, the outputs of which corresponding to pure noise are statistically equivalent, and consequently can be directly compared.

3.3 Data splitting and averages

So far, we have implicitly assumed that N represents the total amount of stored information we have access to or, in other words, that we can
analyse the whole data series in a single filter pass. This is, in many senses, a rather optimistic assumption. First of all, since we want to process
several months of experimental data, it should not be surprising that the available (or even existing) computing facilities could not afford such a
calculation. Moreover, the output of any experimental device, like Explorer, will not be uniform in quality along all the data acquisition time,
and the stationarity of the noise is not preserved over too-long periods of time. It could be worse to mix bad data (those, for instance, with a high
level of noise) with good data in a single analysis, than simply to veto the stretch that we find unacceptable. However, the gaps that we may
introduce in rejecting samples of the experimental set are not the unique discontinuities that we shall find in the time series, because in such a
long-term operation of a detector it is not unlikely that the system will suffer sporadic stops. Also, the properties of the physical signal could be
not so stable as to be satisfactorily fit by our models for extended periods of time.

We shall thus consider that each series of length N is just one among a set of, say, M consecutive3 blocks (Astone et al. 1997a,b). The
reasons for the choice of the particular values of N and M do not necessarily have to coincide, in general. In particular, it is possible that there
exist several of those sequences of N × M data, eventually disconnected, which must be then processed separately.

So, we shall attach a new label a to each quantity in order to be able to specify which of the M blocks of N data we refer to:

yaðk;JÞ ¼

�����������������
2T

NSðk; NÞ

r XN¹1

n¼0

uaðnÞ cosð2pkn=N þ JÞ ða ¼ 0; . . . ;M ¹ 1Þ; ð24Þ
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a is actually a shorthand which simplifies the notation,

uaðnÞ ; uðn þ aNÞ: ð25Þ

It is obvious, however, that computing yaðk;JÞ for each a will not change the individual values of r, as shown by equation (19). Our final
goal should then be to combine them in a suitable way which allows us to make the final SN as high as possible. The definition (25) is, in this
sense, very revealing, because when combined with (10) and (12) it shows the most important feature of a non-leaking monochromatic wave:
the signal xa in fact does not depend on a,

xaðnÞ ¼ A0 cosð2pk0n=N þ J0Þ ¼ xðnÞ: ð26Þ

We consequently see that, if the signal is present, each of these blocks contains an identical replica of the same stretch of sinusoid. This
motivates us to define a new random variable zðk;JÞ,

zðk;JÞ ;
1
M

XM¹1

a¼0

yaðk;JÞ; ð27Þ

the mean value of which does not differ from that in equation (23), but the variance of which is reduced as a consequence of this averaging
operation. Before we explicitly calculate this quantity and the value of the new associated SN, we are going to focus on the problem of choosing
the right value of the phase parameter of the filter, J.

The conceptually simplest method is to compute zðk;JÞ for many different values of that parameter, then select the best J̄, i.e. that which
gives a larger output after the filtering procedure.

Nevertheless, we do not need to go into such a computationally long process, for the optimum value J̄ can be analytically determined as
follows. According to its definition, we may write down zðk;JÞ as

zðk;JÞ ¼
1
M

�����������������
2T

NSðk; NÞ

r XM¹1

a¼0

½RfũaðkÞg cos J þ IfũaðkÞg sin Jÿ; ð28Þ

where

ũaðkÞ ;
XN¹1

n¼0

uaðnÞ e¹2pikn=N ð29Þ

is the DFT of uaðnÞ. We define the J̄, imposing a local-maximum condition on zðk;JÞ of

∂zðk;JÞ

∂J

����
J¼J̄

¼ 0: ð30Þ

We thus find4

tanðJ̄Þ ¼

XM¹1

a¼0

IfũaðkÞg

XM¹1

a¼0

RfũaðkÞg

: ð31Þ

Here it is useful to introduce the two random variables, RðkÞ and IðkÞ,

RðkÞ ;
1
M

�����������������
2T

NSðk; NÞ

r XM¹1

a¼0

RfũaðkÞg; ð32Þ

IðkÞ ;
1
M

�����������������
2T

NSðk; NÞ

r XM¹1

a¼0

IfũaðkÞg; ð33Þ

because they can easily be combined to yield zðk; J̄Þ,

z̄ðkÞ ; zðk; J̄Þ ¼
���������������������������������
½RðkÞÿ2 þ ½IðkÞÿ2

p
; ð34Þ

where we have defined z̄ðkÞ as the best output of the filter at a given frequency, extending the notation used with J.
The statistical properties of the actual filter output z̄ðkÞ will differ strongly from those of zðk;JÞ, since the new random variable is the fruit

of a non-linear filtering process. For instance, its mean is no longer equal to zero, even if there is no signal in the experimental data, as we shall
see. This is the reason why we did not undertake a very detailed study of zðk;JÞ in the first place.

3.4 Probability distribution of z̄ðkÞ

We shall build the probability density pðz̄Þ starting from pðRÞ and pðIÞ. Those two auxiliary random variables are Gaussian by construction, and
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are statistically independent, as they are the real and imaginary parts of the Fourier transform of a stationary stochastic process. Then we only
have to know the respective means and variances in order to complete the information that will fully settle their probability densities. The mean
values of R and I can be readily found from their definitions and equation (23):

< Rðk0Þ > ¼
�����
r0

p
cos J0; ð35Þ

< Iðk0Þ > ¼
�����
r0

p
sin J0; ð36Þ

while for the variances it can be found that both quantities are approximately equal, and

j2
R < j2

I <
1
M

; ð37Þ

because the correlation time is much shorter than the duration of the individual series, which is in essence equivalent to stating that, in spite of
their consecutiveness, they are mutually uncorrelated.

The hypotheses we have made lead us to the following expressions for the probability density of R and I:

pðRÞ ¼

������
M
2p

r
exp ¹

M
2

ðR ¹
�����
r0

p
cos J0Þ

2
� �

and ð38Þ

pðIÞ ¼

������
M
2p

r
exp ¹

M
2

ðI ¹
�����
r0

p
sin J0Þ

2
� �

: ð39Þ

Hence pðz̄Þ is given, after an integral is evaluated, by

pðz̄Þ ¼ Mz̄ exp ¹
M
2

ðz̄2 þ r0Þ

� �
I0ðMz̄

�����
r0

p
Þ; ð40Þ

where we have used one of the integral representations of the modified Bessel function of order zero (Olver 1970), I0ðyÞ,

I0ðyÞ ;
1

2p

�2p

0
e¹y cos xdx: ð41Þ

In the absence of signal, i.e., when r0 ¼ 0, equation (40) reduces to

pðz̄Þ ¼ Mz̄e¹Mz2
=2
; ð42Þ

an expression which explicitly displays the statistical equivalence of all the frequencies which contain no signal, the property we want to
achieve when we set the value of the constant B. Moreover, in this case, z̄ is Rayleigh distributed or, in other words, z̄2 follows a x2 distribution
with two degrees of freedom (Papoulis 1990).

3.5 Mean and variance of pðz̄Þ – a new SN

We are now interested in the mean and variance of z̄. These correspond to the first two moments of the probability distribution pðz̄Þ. It appears
that a closed analytic expression can be found for the moments of any order, so we consider it here for completeness.

The m-th moment is defined by

< z̄m
> ;

�∞

0
Mz̄mþ1 exp ¹

M
2

ðz̄2 þ r0Þ

� �
I0ðMz̄

�����
r0

p
Þ dz; ð43Þ

a calculation that becomes straightforward if one uses the relationship (Gradshteyn & Ryzhik 1980)

Lyð¹zÞ ¼
1

Gðy þ 1Þ

�∞

0
xye¹ðxþzÞI0ð2

����
xz

p
Þdx; ð44Þ

where LyðzÞ is the Laguerre function of order y, assuming the normalization condition

Lyð0Þ ¼ 1; ð45Þ

and GðyÞ is Euler’s gamma function. The expectation value of the m-th power of z̄ is then

< z̄m
>¼

2
M

� �m=2

G
m
2

þ 1
� �

Lm=2 ¹
M
2

r0

� �
: ð46Þ

The most relevant moments for our purpose are, as has been said, the first and the second. The mean,

< z̄ >¼

�������
p

2M

r
L1=2 ¹

M
2

r0

� �
; ð47Þ

as we announced, will be different from zero even when r0 vanishes, as a result of the property (45) of Laguerre functions,

< z̄ > jr0¼0 ¼

�������
p

2M

r
: ð48Þ
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Nevertheless, the asymptotic behaviour of the Laguerre function,

Lyð¹xÞ →xq1 1
Gðy þ 1Þ

xy ð49Þ

also shows that < z̄ >, when a signal is present, approaches the maximum mean value which according to (23) the random variables yaðk;JÞ can
possibly reach,

< z̄ > <
�����
r0

p
: ð50Þ

It is worth noting that equation (49) ensures that the last expression holds not only when r0 q 1 but when r̄ q 1, where we have
introduced

r̄ ¼
M
2

r0; ð51Þ

a quantity that plays the role of the new SN. The same conclusion can be obtained after the study of the explicit expressions for z̄2
x

z̄2
x ¼ r0 ð52Þ

and < z̄2
r >,

< z̄2
r >¼

2
M

: ð53Þ

It is relevant to point out that, in this case, SN linearly increases with the total number of filtered samples, N × M:

r̄ ¼
A2

0NMT
4Sðk; NÞ

; ð54Þ

whereas the more classical procedure of averaging the square of the moduli of the DFTs leads to

r̄0 ¼

�����
M

p
2

r0 ¼
A2

0N
�����
M

p
T

4Sðk; NÞ
; ð55Þ

which means that with our strategy for signals the frequency of which is one of the FFT samples, we enhance the value of r̄ by a factor
�����
M

p
.

4 N O N - L E A K I N G S I G N A L S E M B E D D E D I N U N K N OW N S P E C T RU M N O I S E

4.1 Replacing Sðk; NÞ

It is almost redundant to say that the operative method we have just developed requires knowledge of the power spectral density of the noise.
The aim of this section is the effective substitution of Sðk; NÞ in the definition of the constant B by a suitable estimate of this quantity obtained
from the same data series.

Let us begin with a rearrangement of expression (18),

Sðk; NÞ ¼
T
N

h½ðRfũaðkÞg ¹ Rfx̃ðkÞgÞ2 þ ðIfũaðkÞg ¹ Ifx̃ðkÞgÞ2ÿi: ð56Þ

There is one procedure in this formula that is certainly beyond our control: we cannot perform the statistical average. Our particular
choice will be the substitution of that operation by a sum over the the entire rank of values of a, because Sðk; NÞ, in spite of the formal aspect of
(56), is independent of the block label. The same applies upon replacement of x̃ðkÞ (obviously also an unknown quantity), since
x̃ðkÞ ¼< ũðkÞa >,

x̃ðkÞ → 1
M

XM¹1

a¼0

ũaðkÞ: ð57Þ

Summing up, the random variable we shall use in order to estimate Sðk; NÞ is Sðk; NÞ,

Sðk; NÞ ;
T
N

1
M ¹ 1

XM¹1

a¼0

RfũaðkÞg ¹
1
M

XM¹1

a0¼0

Rfũa0 ðkÞg

 !2

þ IfũaðkÞg ¹
1
M

XM¹1

a0¼0

Ifũa0 ðkÞg

 !2" #
ð58Þ

where we have divided by M¹1 and not by M because this way we get an unbiased estimator, i.e.,

< Sðk; NÞ >¼ Sðk; NÞ: ð59Þ

Now we can replace the unknown spectral density by Sðk; NÞ in any preceding expression, thus obtaining a new filter output ZðkÞ which,
unlike z̄ðkÞ, we are able to compute directly from the raw experimental data uaðnÞ. With a procedure analogous to the one already explained, we
obtain pðZÞ and all its related quantities, including the corresponding SN. Instead of starting from scratch, we shall calculate the probability
density of Z in two steps, using previous results.

Let us introduce the auxiliary random variable WðkÞ;

WðkÞ ;
Sðk; NÞ

Sðk; NÞ
; ð60Þ
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which allows us to define ZðkÞ in a simple way,

Z ;
z̄�����
W

p ; ð61Þ

thanks to the fact that all the terms containing Sðk; NÞ in both random variables mutually cancel out. SinceW and z̄ are statistically independent,
and pðz̄Þ was given in the last section, we have thus reduced the problem to obtaining pðWÞ and performing a final integration.

The probability density ofW can be found in most reference books on probability (Papoulis 1990), because it is the arithmetic mean of the
squares of 2M ¹ 2 zero-mean independent Gaussian variables with unit variances. So ð2M ¹ 2ÞW follows a x2 distribution with precisely
2M ¹ 2 degrees of freedom,

pðWÞ ¼
ðM ¹ 1ÞM¹1

GðM ¹ 1Þ
WM¹2e¹ðM¹1ÞW

: ð62Þ

4.2 The actual filter output Z and its distribution

The ratio in (61) which we have used for defining Z is a familiar one in elementary statistics, and is known to follow a Student’s t-distribution if
z̄ is a zero-mean Gaussian variable. Nevertheless, the expression for pðz̄Þ is far from a normal density function, as we have shown in (40), which
compels us to perform an explicit calculation, leading to the result

pðZÞ ¼
MZ

1 þ M
2M¹2Z

2
� �M exp ¹

Mr0

2 þ M
M¹1Z

2

 !
LM¹1 ¹

M2Z2r0

4M ¹ 4 þ 2MZ2

� �
; ð63Þ

where once again we have made use of the formula (44). When no signal is present in the data at one particular frequency, expression (63)
reduces to

pðZÞ ¼
MZ

1 þ M
2M¹2Z

2
� �M : ð64Þ

As a matter of fact, Z2 in this case follows a Fisher’s F-distribution with 2 and 2M ¹ 2 degrees of freedom, because it is the ratio of two x2

random variables with those degrees of freedom, respectively.
In order to compute the moments of the density function of Z, the simplest approach is not to use the final expression of pðZÞ but an

intermediate formula,

pðZÞ ¼ MZ
ðM ¹ 1ÞM¹1

GðM ¹ 1Þ
e¹ðM=2Þr0

�∞

0
WM¹1e¹W½M¹1þðM=2ÞZ2ÿI0ðMZ

����������
r0W

p
ÞdW; ð65Þ

that will avoid the problem of the integration of Laguerre functions with negative arguments. We thus find

< Zm
>¼ ðM ¹ 1Þm=2þ1 G M ¹ 1 ¹ m=2ð Þ

GðMÞ

� �
2
M

� �m=2

G
m
2

þ 1
� �

Lm=2 ¹
M
2

r0

� �
; ð66Þ

where we have chosen a layout that emphasizes the resemblance with the result corresponding to < z̄m
>. The term inside the square brackets

approaches unity when M q m, and we then recover the formula (46). It is especially interesting to note that, in particular, the newly defined
SN remains unchanged. Let us split the second-order moment of pðZÞ,

< Z2
>¼

M ¹ 1
M ¹ 2

2
M

1 þ
M
2

r0

� �
; ð67Þ

into two terms, namely < Z2
r > and < Z2

x >,

< Z2
> ¼ < Z2

r > þ < Z2
x > : ð68Þ

When no signal is present, r0 ¼ 0, the value of < Z2
> is merely a result of the response of the noise to the filtering procedure,

< Z2
r >¼

M ¹ 1
M ¹ 2

2
M

; ð69Þ

so we will accordingly assign to the signal the rest of the outcome,

< Z2
x > ¼

M ¹ 1
M ¹ 2

r0; ð70Þ

and therefore,

r̄ ¼
< Z2

x >

< Z2
r >

¼
M
2

r0: ð71Þ

4.3 A practical example

This section is devoted to showing the result of such a procedure when applied to a small stretch of data taken by the Explorer on 1991 August 3,
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and on successive days. The starting date was randomly selected, since the final focus of the present analysis is not on extracting conclusions
from the presence of GWs, but on the practical performance of the method itself. We have thus externally introduced a sinusoidal signal with
the required absence of frequency leakage in order to check the ability of the method for revealing it. The signal, corresponding to a GW with
an amplitude of h0 ¼ 10¹23, was placed at about 921:4 Hz, near the detector’s plus resonance (Astone et al. 1993). For this particular date, the
level of noise in the detector was such that the SN for this signal was r0 , 1=3 for a number of filtered samples of N ¼ 131072, a little less than
forty minutes. The signal was therefore completely buried in the noise. The specific value N ¼ 131072 may seem arbitrary in this context, but it
has a physical reason: it ensures that no Doppler shift can be observed in the individual blocks of N samples (Astone et al. 1997b). Once we set
N we can pin down the precise frequency bin which contains the control signal, k0 ¼ 50918.

Let us see what happens when we process six hours of data (M ¼ 9). Looking at Fig. 1(a), it is by all means impossible to decide whether
the signal is really present or not: the SN has only risen to a value near unity from the original 1/3 with few blocks processed. By increasing M,
i.e. processing longer stretches of data, the SN grows and the signal becomes progressively more distinct, as we see in Figs 1(b)–(d),
corresponding to half a day, one day and two days of filtered data, respectively. We must stress at this point that the theoretical prediction of
equation (51), that energy SN grows linearly with the number M of processed blocks, is very accurately observed in real practice, as we have
numerically verified with the plotted data. The improvement by a factor of

�����
M

p
relative to more standard procedures – see equation (55) – is

thus firmly established not only in theory, but also in actual practice.
With the output of the filtering process for the values of k other than k0, we can compute5 the distribution of Z, because when no signal is

present it does not depend on k. The case M ¼ 9 is again very interesting because it offers us the possibility of comparing the experimental
distribution with pðz̄Þ and pðZÞ, thus checking that Z really follows the second and not the first – see Fig. 2(a). For higher values of M, the two
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Figure 1. Output of the analysis procedure when the filtered data stretches extend over: (a) six hours, (b) twelve hours, (c) a day and (d) two days. Every time
series begins at the same instant of 1991 August 3. The arrows point to the signal in each of the last three cases. Even though they are progressively more
prominent, only in (d) is the signal the highest peak. In (c), for example, it is hidden between two taller noise fluctuations.

5 In fact, we do not need to remove k0 (or any other presumed signal) necessarily before we compute the output distribution, because at most it is only one point
in 216.



probability densities converge and become almost indistinguishable from one another (Fig. 2b). In both instances, however, the coincidence
between theoretical and experimental distribution is remarkable.

Moreover, the explicit form of pðZÞ is very useful, not only in order to compare it with the experimental one, but also in order to fix a
threshold l0, which will help us in the task of deciding whether a given crossing has statistical significance not. We will calculate the error of
the first kind, or false-alarm probability, Q 0, as a function of l0,

Q0 ;
�∞

l0

pðZÞdZ ¼
1

1 þ M
2M¹2l0

2
h iM¹1 : ð72Þ

and then we shall set the upper bound depending on the number of false alarms (i.e. mistakes) we can afford, using the well-known Neyman–
Pearson criterion (Helstrom 1968):

l0 ¼

������������������������������������������������
2M ¹ 2

M
1

Q 1=ðM¹1Þ
0

¹ 1

 !vuut
: ð73Þ

Table 1 shows how l0 varies both with respect to the value of Q 0 and to the number of processed data blocks, M. The height of the signal,
in units of the plots in Fig. 1, is 0.473, 0.684 and 0.595 for M ¼ 18, 36 and 72, respectively. It is therefore above threshold if M ¼ 72 with false
alarm probability Q 0 ¼ 10¹5, and also if M ¼ 36 and M ¼ 72 with false alarm probability Q 0 ¼ 10¹3. Even so it cannot be clearly
distinguished from other random fluctuations, as we see in Fig. 1. This is because it is very weak, of course. We shall come back to a discussion
of the significance of these thresholds below.

5 L E A K I N G S I G N A L S E M B E D D E D I N K N OW N S P E C T RU M N O I S E

5.1 A leaking signal

We are going to start this section by considering the effects that the presence of a general frequency signal in the data may produce in the results
we have given in the preceding sections. In particular, we shall study the new statistical properties of the random variables yaðk;JÞ, that
determine the characteristics of R and I, and consequently of z̄.

So, in the following we shall relax the condition (9),

f0T ¼
k0 þ e0

N
; ð74Þ

by introducing the real parameter e0,

¹
1
2

# e0 <

1
2
; ð75Þ

738 J. A. Lobo and M. Montero

q 1998 RAS, MNRAS 301, 729–744

Figure 2. Comparison of the experimental output distribution of Z with pðz̄Þ and pðZÞ, both in absence of signal, when (a) M ¼ 9 and (b) M ¼ 72.

Table 1. Value of the threshold l0 corresponding to different choices of Q0 for
each of the considered block number M.

Q 0 M ¼ 9 M ¼ 18 M ¼ 36 M ¼ 72

10¹3 1.56 0.97 0.65 0.45
10¹5 2.39 1.35 0.87 0.59



the effective consequence of which is that xaðnÞ is no longer independent of a, which appears in the form of an accumulative phase shift
whenever e0 is different from zero, i.e.

xaðnÞ ¼ A0 cosð2p½k0 þ e0ÿn=N þ 2pae0 þ J0Þ: ð76Þ

While it is true that the frequency remainder also lowers the maximum filter output, as a result of the spectral leakage of the signal,

< yaðk0;JÞ >¼
�����
r0

p sinðpe0Þ

N sinðpe0=NÞ
cos pe0 1 ¹

1
N

� �
þ J0 ¹ J þ 2pae0

� �
; ð77Þ

it is nevertheless the block dependence that damages the filtering procedure, because it is responsible for the sinc-like behaviour of the mean
values of Rðk0Þ and Iðk0Þ, when considered as functions of M:

< Rðk0Þ > ¼
�����
r0

p sinðpe0MÞ

NM sinðpe0=NÞ
cos pe0 M ¹

1
N

� �
þ J0

� �
; ð78Þ

< Iðk0Þ > ¼
�����
r0

p sinðpe0MÞ

NM sinðpe0=NÞ
sin pe0 M ¹

1
N

� �
þ J0

� �
: ð79Þ

This fact means that the search strategy is not as robust as we would like, in the sense that for a given e0 other than zero, there always exists
a value M0 (,1=e0) for M, above which the SN decreases noticeably. The frequency band where the analysis method works efficiently thus
decreases with the number of averaged blocks, a very undesirable feature. We now investigate how this problem can be addressed.

5.2 Phase-varying filter

As already stated, since the origin of the problem is a carried-over phase, we shall solve it by introducing a new block-dependent filter with one
more parameter, e,

gaðn; k;J; eÞ ¼

�����������������
2T

NSðk; NÞ

r
cosð2pkn=N þ J þ 2paeÞ; ð80Þ

with the intention of compensating for the phase shift. Starting from this new gaðn; k;J; eÞ, we can calculate the value of each yaðk;J; eÞ,

yaðk;J; eÞ ¼

�����������������
2T

NSðk; NÞ

r
jũaðkÞj cos½FaðkÞ ¹ J ¹ 2paeÿ; ð81Þ

where the following notation has been used:

ũaðkÞ ¼ jũaðkÞjeiFaðkÞ
: ð82Þ

Through a definition formally identical to (27), we shall establish zðk;J; eÞ. Once again it is possible to obtain J̄ using a local-maximum
condition, like that in (30),

∂zðk;J; eÞ
∂J

����
J¼J̄

¼ 0; ⇒ tanðJ̄Þ ¼

XM¹1

a¼0

jũaðkÞj sin½FaðkÞ ¹ 2paeÿ

XM¹1

a¼0

jũaðkÞj cos½FaðkÞ ¹ 2paeÿ

: ð83Þ

The value of J̄ leads now to the following expression for zðk; J̄; eÞ,

zðk; J̄; eÞ ¼
1
M

�����������������
2T

NSðk; NÞ

r
ju<ðk; eÞj; ð84Þ

a relationship that involves a new quantity, u<ðk; eÞ, which formally is also a DFT,

u<ðk; eÞ ;
XM¹1

a¼0

ũaðkÞe¹2piae
: ð85Þ

The template for e, just as in the case of the frequency grid, will be dictated by the convenience of the use of the FFT algorithm in the
computation of u<ðk; eÞ. We shall therefore estimate e0 within the following discrete rank of values6 of e :

e ¼
q

M0
q [ f0; . . . ;M0 ¹ 1g; ð86Þ

where, in principle, M0, by the way an exact power of 2, must not necessarily coincide with M. M0 has to be greater than M if we do not want to
waste available information, but on the other hand, it seems that larger and larger values of M0 should produce an endless increment of precision
in the estimation of e0. Nevertheless, as we will show in the next section, M0 should be kept as low as possible.

Equation (85), together with the span condition (86), bears a considerable formal resemblance with the so-called zoom transform (Yip
1976; Hung 1981; de Wild, Nieuwkerk & van Sinttruyen 1987), in which the twiddle factor is now identically equal to one. It must however be
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stressed that, in the present context, ours is an interpolation formula rather than a frequency resolution algorithm. Our formalism can thus be
naturally extended with the purpose of refining the spectral resolution, simply taking M0 = M, i.e., data sets of N × M0 points, where all possible
values of q must be considered, for a selected choice of frequency bins, k.

5.3 Statistical properties of z̄

The mechanism for finding q̄ is then very simple. We must compute all the zðk; J̄; q=M0Þ and select that q which gives the largest output, just
defining z̄ðkÞ ¼ zðk; J̄; q̄=M0Þ, i.e.,

z̄ðkÞ ¼ max
q[f0;...;M0¹1g

fzðk;J; q=M0Þg: ð87Þ

When no signal is present at some frequency, it can be proved that again,

pðzÞ ¼ Mze¹ðM=2Þz2

; ð88Þ

no matter what the choices are for k and q. So, in that case, the probability density of z̄ðkÞ, since it is the maximum of M0 equally distributed
random variables (Papoulis 1990), is given by

pðz̄Þ ¼ MM0z̄e¹ðM=2Þz̄2

1 ¹ e¹ðM=2Þz̄2
h iM0¹1

: ð89Þ

We have not been able to compute < z̄ > other than in the form of an alternating finite series, which is almost useless for obtaining generic
conclusions about it. Instead of the mean value of z̄ we shall compute its most probable value. The function pðz̄Þ reaches its maximum (when
M0 q

���
e

p
) for

z̄ <
���������������
2
M

ln M0

r
; ð90Þ

a quantity that decreases as M increases, and when M0 decreases. This shows the convenience of setting M0 as the first exact power of 2 greater
than M. With the second-order moment of the distribution we have in principle a similar problem, although in this case the alternating series
can be transformed into a non-alternating one,

< z̄2
>¼

2
M

XM0

l¼1

M0

l

� �
ð¹1Þlþ1

l
¼

2
M

XM0

l¼1

1
l
: ð91Þ

For large values of M0 we can approximate the result using the definition of Euler’s g constant,

< z̄2
> <

2
M

ln M0 þ g
ÿ �

: ð92Þ

Since the output of the procedure in the absence of noise is

z̄x ¼
�����
r0

p sinðpe0Þ

N sinðpe0=NÞ
; ð93Þ

the new SN shall be (if M0 q 1)

r̄ ¼ r0
sinðpe0Þ

N sinðpe0=NÞ

� �2 M

2 ln M0 þ g
ÿ � : ð94Þ

The standard procedure of averaging the square of the moduli of the DFTs gives, for a general leaking signal, the following SN:

r̄0 ¼ r0
sinðpe0Þ

N sinðpe0=NÞ

� �2
�����
M

p
2

; ð95Þ

which represents an improvement with the present method of

r̄

r̄0
¼

�����
M

p
ln M0 þ g

; ð96Þ

a ratio larger than one when (92) holds, which increases with the number of blocks.

6 L E A K I N G S I G N A L S E M B E D D E D I N U N K N OW N S P E C T RU M N O I S E

6.1 A spectral estimator

The task of replacing Sðk; MÞ in the filter definition is much more complex than in the non-leaking case. The natural starting point is the value of
u<ðk; q=M0Þ for q other than q̄, but this presents two main problems. First of all, the fact that we are only able to choose q̄ out of a discrete set
leaves open the unpleasant possibility that the value of the signal frequency lies just in the middle of a bin. This means that we shall ignore the
precise way in which the signal energy will be distributed among the different q’s, and thus the relative magnitude of u<ðk; q̄=M0Þ, when
compared with the rest of outputs. The scenario can be even worse, because we have no guarantees that q̄=M0 corresponds to the best approach
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to the actual e0: the noise can mislead us into an inaccurate value of the signal frequency, leaving thus the true u<ðk; e0Þ among the discarded
ones.

Instead of constructing an estimator for Sðk; MÞ in the hope that none of the previously stated possibilities really takes place, which could
lead us again to a filtering procedure too sensitive to the signal’s peculiar properties, we are going to choose a democratic estimate Sðk; NÞ:
perhaps it will not be as accurate as it might be, but it will not show appreciable differences in its performance depending on the actual
frequency of the GW.

We define Sðk; NÞ through an expression that closely resembles that in equation (58),

Sðk; NÞ ;
T

NM
1

M0 ¹ 2

X
qÞq̄

Rfu<ðk; q=M0Þg ¹
1

M0 ¹ 1

X
q0Þq̄

Rfu<ðk; q0
=M0Þg

 !2

þ Ifu<ðk; q=M0Þg ¹
1

M0 ¹ 1

X
q0Þq̄

Ifu<ðk; q0
=M0Þg

 !2" #
; ð97Þ

where the ũaðkÞ have been substituted by u<ðk; q=M0Þ, and the sums do not contain the term where the signal is supposed to be located, u<ðk; q̄=M0Þ.
Once more we replace Sðk; NÞ by Sðk; NÞ in the definition of z̄, in order to get a new random variable Zwhich we can compute using only

experimental data. This quantity inherits two characteristic traits from the way we estimate the spectral density of the noise.
On the one hand, if the signal is large enough, the filter output may have a saturation limit, which will depend upon the particular values of

some parameters, such as M or M0. This means that Z will not surpass a certain threshold, even if the amplitude of the signal increases
indefinitely. The reason for this behaviour can be found in the fact that when the signal is much more intense than the noise, what becomes
really difficult to assess is not the presence of the former but the properties of the latter. So in these cases Sðk; NÞ will overestimate Sðk; NÞ. It
must, however, be stressed that the whole effect results in a change in the value of r0, and thus does not actually set an upper bound in the SN r̄.
On the other hand, when no signal is present at a particular frequency, Sðk; NÞ will underestimate Sðk; NÞ, since we do not use q̄ when
computing it, and u<ðk; q̄=M0Þ has the biggest modulus among all the u<ðk; q=M0Þ.

To compute the overall probability density ofZðkÞ is very difficult, both in a single step (even if no signal is present) or in two steps, like in
Section 4.1, since the auxiliary random variable WðkÞ defined as in (60) is no longer independent of z̄ðkÞ. We shall thus obtain it by a different
method. We introduce a tentative pðZÞ inspired by the limiting probability density pðz̄Þ, because when M is large enough both must coincide:

pðZÞ ¼ MM0wZe¹ðM=2ÞwZ2

1 ¹ e¹ðM=2ÞwZ2
h iM0¹1

: ð98Þ

The new parameter w, which condenses all the differences between pðz̄Þ and pðZÞ, measures in some suitable sense the bias of the spectral
estimator Sðk; NÞ, i.e.,

w ,
< Sðk; NÞ >

Sðk; NÞ
: ð99Þ

This point of view is somewhat vain since we are not in a position to compute < Sðk; NÞ > theoretically, as just stated. The value of w,
however, can be estimated from the filter output itself, using for instance the relationship (91), replacing z̄ by

����
w

p
Z, and the statistical mean by

an average over the filter output,

w ¼

N
XM0

l¼1

l¹1

M
XN=2¹1

k¼0

Z2ðkÞ

: ð100Þ

The procedure we shall use to compute (100) also reminds us that ZðkÞ can be obtained from the experimental time series, irrespective of
its probability density. We set the value of the w quantity a posteriori, once the filtering process has finished. In fact, the functional form of pðZÞ

has its very origin in the comparative study of the actual distribution ZðkÞ and the probability density of reference, pðz̄Þ, for different values for
the free parameters. We pursue these ideas in the next section.

6.2 A single filtering process

Let us begin analysing a stream of about one day of the Explorer data with the layout used in Section 4.3, i.e. N ¼ 131072 and M ¼ 36,
M0 ¼ 64. In fact, we will choose exactly the same time series, starting on 1991 August 3, in order to be able to compare the non-leaking and the
leaking methods. We get the results shown in Fig. 3(a), where we have also externally introduced a signal analogous to that of Section 4.3
above, but its amplitude is now slightly bigger, h0 ¼ 3 × 10¹23, i.e. the SN is about 1, because the new method is slightly less sensitive than the
non-leaking one, as we have shown. And, of course, the signal spreads across different frequency bins: k0 ¼ 50918 and e0 ¼ 0:1.

A plot of the distribution of ZðkÞ is displayed in Fig. 3(b), where it is contrasted with pðz̄Þ in (89), the theoretical probability density, and
with pðZÞ once w was computed following the prescription shown in (100), the corrected one. The agreement of the corrected probability
density with the experimental probability density is again remarkable.

It is convenient to point out that when the number of processed blocks increases, the value of w rapidly approaches one, thus becoming an
irrelevant parameter. As a matter of fact Fig. 4, in which we present the same procedure with the same data but extend the processed time to two
days, shows that pðz̄Þ is then a sufficiently accurate expression for the probability density of the actual filter output.
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In the present case we can also compute the error of the first kind in terms of the threshold l0:

Q0 ¼ 1 ¹ 1 ¹ e¹ðM=2Þwl2
0

h iM0

; ð101Þ

and to invert this relationship,

l0 ¼

��������������������������������������������������������
¹

2
Mw

ln 1 ¹ 1 ¹ Q 0

� �1=M0
� �r

: ð102Þ

By way of example, the threshold levels in units of the graphs in Figs 3 and 4 are 0.96 and 0.68, respectively, for a false alarm probability
Q0 ¼ 10¹5. In either case the signal is clearly above these thresholds, as it has respective heights of 1.12 and 0.83. From here we can rather
accurately determine e0, too: we find q̄ ¼ 6 when M0 ¼ 64 (i.e., e0;estimated ¼ 0:094), and q̄ ¼ 13 when M0 ¼ 128 (i.e., e0;estimated ¼ 0:101) for a
real value of e0 ¼ 0:1.

7 O U T L O O K

The long-term operation of cryogenic GW detectors opens the possibility of looking for long-duration GW signals in the data generated by
them, since signal-to-noise ratios are enhanced by the availability of long integration times. Monochromatic, as well as stochastic, signals
belong in this category, though the latter require data from two or more independent antennas. In this paper we have addressed the problem of
the design of suitable algorithms to allow us to single out possible monochromatic signals, coming from any direction in the sky, in the
background of the noisy data produced by a cylindrical bar.
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Figure 3. Here we find (a) the output of the filtering procedure, ZðkÞ, for N ¼ 131072, M ¼ 36 and M0 ¼ 64, what represents about one day of data, and (b) its
experimental distribution compared with the theoretically expected, pðz̄Þ, and corrected one, pðZÞ.

Figure 4. Here we find (a) the output of the filtering procedure, ZðkÞ, for N ¼ 131072, M ¼ 72 and M0 ¼ 128, what represents about two days of data, and (b) its
experimental distribution compared with pðz̄Þ and pðZÞ: in this case it is hard to distinguish from one another.



This is not such a simple problem, for a variety of reasons: computers are not arbitrarily powerful, detector duty cycles are not 100 per
cent, data quality is not homogeneous, Doppler shifts distort monochromaticity, etc. Although some of the characteristics of the data are
peculiar to the detector system, there are a number of procedures which should be quite generally usable. This paper is concerned with the
problem of setting up filtering algorithms which enable the selection of candidate signals on the basis of the threshold-crossing criteria of the
filtered data. To this end we have considered banks of filters which have a sinusoidal form but which enable signal phase estimation. We have
determined the probability density functions at filter output and thence consistently established the probability of crossing a given level. We
have also designed suitable estimators of the noise spectral density, which take into consideration the possibility that the signal might be in one
or more of the FFT frequency bins for the complete duration of the analysed data.

These procedures have been checked by means of simulations on top of real data generated by the Explorer detector of the Rome group in
1991, and they work quite well: the theoretical predictions on the improvement in SN, as longer stretches of data are processed, remarkably
coincide with the improvements observed in the real data analysis. They thus appear promising, and we would expect them to be useful in
analysing other resonant detector data, whether the detectors are cylinders or the projected large spherical antennas, or the large-scale
interferometers currently under construction, with suitable adaptive modifications.

As we have seen with the simulations in this paper, the Explorer detector comfortably sees amplitudes of 10¹23, and therefore one can
expect it to be sensitive to signals a few times 10¹24 – see also Astone et al. (1997a). These are still rather high values for the expected
amplitudes of signals of astrophysical origin, so that threshold-crossing criteria must be established with this in mind: if we set a very low false
alarm tolerance, then the chances of missing the real event will grow, whereas if we set the tolerance rather low, the real signal will be treated as
random noise.

Real signals, however, have characteristic Doppler patterns, the correct assessment of which should provide a more sound selection of
candidate signals. In a forthcoming article we plan to apply the methodology here developed to a systematic analysis of the above-mentioned
Explorer detector data over a long period of time, and to extend it to also include Doppler-shift effects in the data. The algorithms of Section 5
will be a powerful tool in this respect, if implemented under the perspective of the zoom transform (Yip 1976), for enhancing the frequency
resolution within the spectral neighbourhood of pre-selected candidate lines.
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