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Introduction 

1. Colorectal cancer 

According to World Health Organization (WHO), colorectal cancer was the third most commonly 

diagnosed cancer in men (663,000 cases, 10 % of the total) and the second in women (571,000 cases, 9.4 

% of the total) worldwide in 2008.  

The highest incidence rate is found in Australia and New Zealand, Europe, and North America, whereas 

the lowest rates are found in Africa and South-Central Asia. About 608,000 deaths from colorectal cancer 

are estimated worldwide, accounting for 8 % of all cancer deaths, making it the fourth most common 

cause of death from cancer (1). 

Fig. 1. Cancer incidence and mortality in men and women worldwide according to Globocan 2008 project (1). 
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Colorectal cancer incidence rates are rapidly increasing in several areas historically at low risk, including 

Spain, and a number of countries within Eastern Asia and Eastern Europe; such unfavourable trends are 

thought to reflect a combination of factors including changes in dietary patterns (red meat and alcohol 

consumption, low dietary fibre), obesity, and an increased prevalence of smoking among others (2). 

Mortality rates are decreasing in Western developed countries due to improved treatments and early 

detection. Colorectal cancer survival is highly dependent upon stage of disease at diagnosis, and typically 

ranges from a 90% 5-year survival rate for cancers detected at a localized stage, to 70% for regional, and 

to 10% for people diagnosed for distant metastatic cancer. In general, the earlier the stage at diagnosis, 

the higher the probability of survival (3). As a consequence, mortality rates are increasing in developing 

countries with aged population and increasing westernized lifestyle, but limited in economic resources 

and health infrastructures, to improve the treatment/diagnosis (4). 

1.1. Colon cancer staging 

Staging of colorectal cancer refers to how far a cancer has spread on a scale from 0 to IV, with 0 meaning 

a cancer that has not invade the colon wall and IV describing cancer that has spread beyond the original 

site to other far parts of the body (frequently to lungs and liver). Two staging systems are used in the 

clinics to define the extent of invasion of colorectal cancer: Dukes' classification and TNM staging (Table 

1). The TNM system was developed by the American Joint Committee on Cancer (AJCC); it is the most 

widely used and considered the most precise and descriptive. T stands for tumour invasion through bowel 

wall layers, from mucosa to outer serosa; N stands for lymph node involvement and M for metastases.  

Table 1. TNM and Dukes’ classification system for colorectal cancer staging. (Tis: carcinoma in situ). 

TNM classification Dukes' classification 

Stages T N M Stages 

Stage 0 Tis N0 M0 

Stage I 
T1 N0 M0 A 

T2 N0 M0 B1 

Stage II 
T3 N0 M0 B2 

T4 N0 M0 B2 

Stage III 
T1,T2 N1 or N2 M0 C1 

T3,T4 N1 or N2 M0 C2 

Stage IV Any T Any N M1 D 
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Fig. 2. The growth from polyp to metastatic tumour. In stage 0, abnormal cells are found in the mucosa of the colon 
wall. These abnormal cells may become cancer and spread. Stage 0 is also called carcinoma in situ. In stage I, cancer 
has formed in the mucosa of the colon wall and has spread to the submucosa. Cancer may have spread to the muscle 
layer of the colon wall. Stage II tumours have spread through the muscle layer of the colon wall to the serosa. In stage 
III, cancer has spread through the mucosa to the submucosa and to nearby lymph nodes. In stage IV the cancer has 
spread through the blood and lymph nodes to other parts of the body, such as the lung, liver, abdominal wall, or 
ovary. Image from Terese Winslow, US Govt. 

1.2. Colorectal cancer treatment  

Treatment for patients with cancers of the colon and rectum varies by tumour location and stage at 

diagnosis. Surgery to remove the cancer and nearby lymph nodes is the most common treatment for early 

stage (stage I and II) colon (94%) and rectal (74%) cancer (5). 

Chemotherapy alone, or in combination with radiation therapy, is often given to patients with late-stage 

disease (50%-70%) before or after surgery. In Europe, the first line of treatment is mainly based in 

FOLFOX (5-FU, leucovorin and oxaliplatin) or FOLFIRI (5-FU, leucovorin and irinotecan) backbones 

(6).  

The administration of capecitabine is recommended as adjuvant chemotherapy in stage III patients. For 

these patients, capecitabine provides equivalent outcome to intravenous 5-FU and leucovorin, with 

significantly less side effects (7). 

Monoclonal antibodies-based therapies have been recently included in clinics in combination with 

chemotherapy. The European Society of Medical Oncology recommends the use of anti-VEGF antibodies 

(Bevacizumab) and anti-EGFR antibodies (cetuximab and panitumumab) in combination with cytotoxic 

treatments in selected patients with metastatic disease, as these regimens have been associated with 

improved outcomes compared with chemotherapy alone (8). 
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1.3. Colon tumorigenesis 

Early in the nineties, Bert Vogelstein and Eric R. Fearon postulated a model for colon cancer progression, 

based on the adenoma-carcinoma sequence (9). Upon this model, colon cancer progression could be 

explained as a sequence of genetic changes or mutations on particular genes or crucial pathway’s 

alterations. Albeit the model has been revised and modified in the latter years (Fig. 3), assuming that the 

scenario is much more complex, its basis is still accepted (10). Colorectal tumours are characterized by 

their high genomic instability; such an environment is presumed to favour the appearance of those 

mutations/molecular alterations responsible for cancer progression. In the last decades, different 

molecular pathways have been postulated to underlie this phenomenon: chromosomal instability (CIN), 

microsatellite instability (MSI) and the CpG island methylator phenotype (CIMP). It is important to note 

that these three phenotypes are not mutually exclusive and may coexist in the same tumour to some 

extend. 

Fig. 3. Adenoma-carcinoma sequence reviewed. Vogelstein’s model has become more complex the last decades. 
Instead of a linear, single progression model, sporadic colorectal cancer seems to arise from (at least) three distinct 
parallel modes. The top and bottom pathways are the most homogeneous, with clear distinctions in precursor lesions 
(tubular vs. serrated adenomas), genetics (APC and p53 vs. BRAF mutations, MSI vs. CIN) and epigenetics (CIMP 
negative vs. positive). The middle pathway is more heterogeneous than depicted and not fully understood yet. It may 
arise mostly from villous adenomas, but perhaps also from serrated adenomas. It has a different form of CIMP, 
predominant KRAS but occasional BRAF mutations and usually lacks CIN. MSI tumours lacking CIMP phenotype 
arise from either villous or tubular adenomas by MMR system deficiency. This type of tumour follows a particular 
progression pathway and rarely derives to metastases. Figure adapted from (11), (10),(12) and (13). EMT, 
epithelium-mesenchymal transition. 
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CIN is the more frequent cause for genomic instability in colorectal tumours, being present in most 

sporadic CRC cases (nearly 85%), and also in familiar adenomatous polyposis (FAP) cases with germ-

line APC mutations. It is defined by the presence of numerous chromosomal aberrations, including gain 

and losses of chromosomes, translocations and aneuploidy. Allelic losses are also frequent (LOH, loss of 

heterozygosity) predominantly in chromosomal arms 5q, 8p, 17p and 18q. These tumours are thought to 

arise from truncating mutations in the APC gene, which results in benign tubular adenomas. The 

malignant lesions carry additional mutations most frequently in the tumour suppressor gene TP53, 

oncogenes like KRAS, kinase PIK3CA, E3 ubiquitin ligase complex member FBXW7, TGF-β signal 

transducer SMAD4, and transcription factor TCF7L2 (14). This subtype of tumours is the one that fits the 

best with Vogelstein’s model for CRC progression. 

Microsatellite instability is present in 15% of CRC cases and in the Lynch syndrome, as an hereditary 

non-polyposic form of CRC. It is characterized by mostly stable karyotypes, even though they show 

widespread insertion/deletion mutations in short, repeated nucleotide sequences (microsatellites) in 

tumour DNA as opposed to normal DNA. In these tumours, the DNA mismatch repair system (MMR) is 

impaired, so fails to correct matching failures occurring during normal DNA replication. The MSI 

phenotype is strongly associated with mutations in specific oncogenes and tumour suppressor genes, 

especially BRAF (V600E), TGFB receptor II and IGF receptor II, the pro-apoptotic factor BAX, the 

mismatch repair genes MSH3 and MSH6 and the histone modifier HD2 (12,15). 

The methylator phenotype, also known as CIMP (CpG island methylator phenotype), is present in around 

35% of CRC tumours. It was first described in 1999 (16) and is characterized by aberrantly increased 

gene silencing due to hypermethylation of CpG islands. In these tumours the activating mutation in BRAF 

is considered as the initiating event, which inhibits apoptosis in the normal colonic epithelium and results 

in sessile-serrated polyps. As these lesions are highly prone to CpG island methylation in promoter 

regions for multiple genes, MLH1 gene promoter is frequently silenced, conferring additionally the MSI 

phenotype because MLH1 is a mismatch repair gene (13,17). These tumours have also been considered by 

some as “epigenomic instable”(10). Gene silencing by promoter CpG hypermethylation is presumed to 

occur randomly. Target genes like cell-cycle regulator p16 (CDKN2A), the glycoprotein THBS1, growth 

factor IGF2 and transcriptional regulators NEUROG1 and RUNX3, are found silenced very frequently in 

this subtype of tumours (16,18). APC tumour suppressor gene is also found silenced in CRC by promoter 

hypermethylation, but rarely (19). 

It is important to note that despite the origin of the malignant lesion or the molecular origin of the 

inherent genomic instability, the alteration in APC or other members of the Wnt pathway (i.e., β-catenin) 

is found in 93% of CRC cases (14). As detailed below, Wnt pathway is the major regulator of the 

intestinal homeostasis. 
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2. Intestinal epithelium homeostasis 

The mammalian intestine, which consists of the small intestine (duodenum, jejunum and ileum) and the 

large intestine or colon (ascending, transverse and descending colon, sigmoid flexure and rectum), is lined 

by a monolayer of epithelial cells (or mucosa). The absorptive epithelium of the small intestine is ordered 

into flask-shaped submucosal invaginations known as crypts of Lieberkühn, and finger-like luminal 

protrusions termed villi. Spatially, the villi surround the entrance of each crypt. In the colon, the crypts 

are larger than in the small intestine, and there is a flat surface epithelium facing the lumen instead of villi 

(20). The crypt is mainly a proliferative compartment, whereas the villus represents the differentiated 

compartment. These two morphologically distinct compartments ensure different functions in the 

intestinal epithelium. 

Almost all epithelial cells in the intestinal lining are replaced on a weekly basis (21), which puts great 

demands on the cellular organization of this tissue; homeostasis of the intestinal epithelium is maintained 

by an intestinal stem cell (ISC) compartment that resides at the bottom of the crypts, safely tucked away 

from the shear stresses and potentially toxic agents that pass through the intestinal tract. These ISCs are at 

the top of a cellular hierarchy and are crucial for the renewal of the differentiated progeny within the 

intestinal layer.  

ISCs cycle infrequently and produce rapidly proliferating daughter cells, referred to as Transit 

Amplifying (TA) cells, which fill the crypts with committed precursor cells gradually differentiating into 

the two main epithelial lineages upon reaching the crypt–villus junction (22). First, the absorptive lineage 

that entails all enterocytes, and second, the secretory lineage which is composed of Goblet cells (secreting 

protective mucins), and enteroendocrine cells [they represent less than 1% of all epithelial cells and 

secrete hormones like serotonin or secretin (23)]. Additionally, only in the small intestine reside the 

Paneth cells, epithelial cells that secrete antimicrobial agents such as cryptidins, defensins and lysozyme 

(24), and can be found immediately below the stem cell compartment  

The differentiation process is then completed by a bidirectional migration: Paneth cells migrate to the 

bottom of the crypt where they reside for about 20 days, while the three other differentiated cell types 

migrate upward in coherent bands from the upper third of the crypt to the apex of the villus. At the villus 

tip, this continuous influx of new cells is compensated by cell loss: the differentiated epithelial cells are 

removed by apoptosis and lost into the gut lumen (25). 

ISCs were first defined by label-retention techniques as those cells at position +4 in the crypt (considering 

position +1 the Paneth cells located at the bottom of the crypt) (26). However, the identification of the 

intestinal stem cell marker Lgr5, revealed that also the crypt base columnar cells (CBCCs) located in 

between the Paneth cells behave also as intestinal stem cells (27) and give rise to all the cell types in the 

intestinal mucosa. In the colon, Lgr5+ cells are found in the bottom of colonic crypts, where Paneth cells 

are absent; thus colon ISC compartment is defined as the bottom of the crypt (28). 
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Fig. 4. Distribution of cellular subtypes in intestinal mucosa. A, The bottom of the intestinal crypts constitute the 
stem cells compartment, where reside the crypt base columnar cells (CBCC) and the +4 cells. Small intestine paneth 
cells are also found in this compartment. The proliferative progenitor cells, located in the transient amplifying 
compartment, have limited self-renewal capacity. When cells reach to the crypt-villus axis in the small intestine or to 
the upper third of the colonic crypt, they commit to different cell linages. B, Cell lineage scheme depicts the stem 
cell, the transit-amplifying cells, and the two differentiated branches. The right branch constitutes the enterocyte 
lineage; the left branch is the secretory lineage. Figure adapted from (29) and (30). 

As explained bellow, Wnt/β-catenin signalling pathway is the dominant force in controlling cell fate 

along the crypt–villus axis, and by extension, the major regulator of intestinal epithelium homeostasis.  

2.1. Wnt/ββ-catenin signalling pathway 

Wnt proteins constitute a highly conserved family of secreted glycoproteins that regulate cell fate 

decisions during development of vertebrates and invertebrates. The Wnt signalling network regulates 

diverse processes during development such as cell fate determination, structural remodelling, cell polarity 

and morphology, cell adhesion, and growth. Moreover, they are responsible for stem cell number 

regulation and differentiation in adult tissues [reviewed in (31)].

The central player in Wnt signalling pathway is β–catenin, and its stabilization and nuclear accumulation 

is a hallmark of activated canonical Wnt signalling (Fig. 5). In the absence of Wnt ligand, β-catenin is 

sequestered in a multiprotein degradation complex containing the scaffold protein AXIN, the tumour 

suppressor genes Adenomatous Polyposis Coli (APC) and WTX, as well as the kinases casein kinase I 

(CKI) and glycogen synthase kinase 3β (GSK3β). Upon sequential phosphorylation at a set of conserved 

amino-terminal Serine and Threonine residues, β-catenin is ubiquitinated by the β-TrCP containing E3 

ubiquitin ligase and subsequently degraded by the proteasome machinery (32).  

When secreted Wnt ligands bind to an heterodimeric receptor in the target cell surface (formed by the 

frizzled (Fz) seven-span transmembrane receptors and LPR5/6, members of the single-span 

transmembrane LDL receptor family), Axin is recruited to the plasma membrane by its binding to the 
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cytoplasmic tail of LRP6 (33). This results in the inhibition of β–catenin ubiquitination, saturation of the 

multiprotein degradation complex by the phosphorilated form of β-catenin and accumulation of the newly 

synthesized form in the cytoplasm (34). 

 

Fig. 5. Wnt signalling in the cytoplasm. In the absence of Wnt, the destruction complex resides in the cytoplasm, 
where it binds, phosphorylates, and ubiquitinates β-catenin by β-TrCP. The proteasome recycles the complex by 
degrading β-catenin. Wnt induces the association of the intact complex with phosphorylated LRP. After binding to 
LRP, the destruction complex still captures and phosphorylates β-catenin, but ubiquitination by β-TrCP is blocked. 
Newly synthesized β-catenin accumulates. Figure taken from (35). 

β-catenin then enters the nucleus, where it engages DNA-bound TCF/LEF transcription factors (36,37), 

which interact with Groucho transcriptional repressors (38,39); in the intestine, the predominant TCF 

factor is TCF-4 (40); TCF-4 is bound to DNA canonical binding site (T/A)(T/A)CAAAG or the 

evolutionary conserved elements A(C/G)(T/A)TCAAAG (41). The association with β-catenin transiently 

converts TCF into a transcriptional activator, replacing Groucho from TCF and recruiting transcriptional 

coactivators and histone modifiers such as Brg1, CBP, Cdc47, Bcl9, and Pygopus to drive target gene 

expression (Fig. 6) [reviewed in (42)]. 
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Fig. 6. Wnt signalling in the nucleus. In the absence of Wnt signals, TCF occupies and represses its target genes, 
helped by transcriptional corepressors such as Groucho. Upon Wnt signalling, β-catenin replaces Groucho from TCF 
and recruits transcriptional coactivators and histone modifiers such as Brg1, CBP, Cdc47, Bcl9, and Pygopus to drive 
target gene expression. Figure taken from (35). 

The β-catenin/TCF complexes activate transcription of many different target genes; indeed, an increasing 

number of Wnt target genes are discovered lately thanks to new high-throughput techniques and 

bioinformatics tools (summarized at Wnt homepage: http://www.stanford.edu/~rnusse/pathways/ 

targets.html.) Products of Wnt target genes unfold a large variety of biochemical functions including cell 

cycle regulation, cell adhesion, hormone signalling and transcription regulation (Table 2). The plurality 

and diversity of the biochemical functions reflect the variety of different biological effects of the Wnt 

pathway, including activation of cell cycle progression and proliferation (C-MYC, CYCLIN-D1, C-JUN), 

inhibition of apoptosis (SURVIVIN), regulation of embryonic development (SOX-2, SOX-9), cell 

differentiation (EPHB/EPHRIN-B), cell growth, and cell migration (MMP-7, MMP-26), [reviewed in 

(43)].  
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Table 2. List of selected target genes (from Wnt homepage) with corresponding biochemical functions and regulation 
trend, adapted from (43). (Trend: purple= up-regulated; green= down-regulated). 

Cell cycle kinase regulators cyclin D1  

  p21  

Cell adhesion proteins Claudin-1, connexin-30, connexin-43, L1CAM, Nr-CAM 

  E-cadherin, periostin 

Receptors CD44, Dfz3, EGF, Fz7, receptor, Met, Ret, retinoic acid 

receptor gamma, Stra6 

  Arrow/LRP, Dfz2, Fz 

Factor synthases COX2, NOS2 

Hormones, growth factors Gastrin, BMP4, CCN1/Cyr61, Dickkopf-1, Dll1, Eda, 

endothelin-1, EphB/ephrin-B, FGF18, FGF20, FGF4, 

FGF9, follistatin, IGF-I, IGF-II, IL-6, IL-8, jagged 1, 

nanog, proglucagon, proliferin-2, proliferin-3, s-FRP, 

Stra6, TNF family 4-1BB ligand, VEGF, wingful/notum, 

wingless, WISP-1, WISP-2, Xnr3 

  BMP4, osteocalcin, RANK, wingless 

Transcription regulators c-Myc, brachyury, Cdx1, Cdx4, c-jun, dharma/bozozok, 

engrailed-2, FoxN1, fra-1, Id2, Irx3, ITF-2, LEF-1, 

mBTEB2, MITF/nacre, movo, myogenic bHLH, 

neurogenin 1, Pitx2, PTTG, Runx2, SALL4, Sox2, SOX9, 

TCF-1, twin, Twist, Ubx 

  Hath1, nanog, Ubx, Six3, SOX9 

Proteases, protease inhibitors, CD44, MMP-7, MMP-26, stromelysin-1, survivin, uPAR 

protease receptors 

Matrix proteins Fibronectin, keratin, versican 

GTPase, GTPase regulator Tiam, Wrch-1 

Others Axin-2, MDR1, nemo, siamois, β-TRcP, twin 
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2.2. Wnt signalling in CRC 

Several findings have positioned Wnt/β-catenin pathway as a key player in colon cancer onset and 

development. First, it was discovered that germline mutations in the APC gene cause a hereditary cancer 

syndrome termed familiar adenomatous polyposis (FAP) (44,45). FAP patients carry heterozygous APC 

mutations. The second allele is frequently lost in individual cells, which grow into colon adenomas, 

polyps, in early adulthood. Additional mutations in genes like KRAS, TP53, and SMAD4 induce some of 

these polyps to progress toward malignancy. 

Moreover, Wnt signalling appears aberrantly activated in 93 % of sporadic colon cancer cases (14), being 

the inactivating mutation of APC or the activating mutation of CNNTB1 gene (β-catenin) present in a 80 

% of cases. 

On the other hand, recent findings postulate Wnt pathway as the central regulator of intestinal stem cells 

proliferation and maintenance (46–50). Indeed, proliferative cells at the bottom of the small intestine (51) 

and the colon crypts (52) accumulate nuclear β-catenin and mutation of TCF-4 leads to the depletion of 

intestinal proliferative compartments in fetal mice (53).  

Interestingly, TCF-4/β-catenin target genes in CRC cells are also expressed in normal proliferating cells 

of the crypt, while repressed genes are expressed in normal villus-associated differentiated cells (Fig. 7). 

Thus, an activated Wnt cascade drives a very similar genetic program in CRC cells as in crypt stem 

cells/progenitors (52). 

Taken together, it clearly appears that any mutational event stabilizing nuclear β-catenin in the intestinal 

epithelium, which leads to constitutively activated canonical Wnt signalling, represents the initiating 

event of intestinal tumorigenesis, conferring the cells a crypt stem cell/progenitor phenotype highly 

proliferative that give rise to aberrant crypt foci lesions (ACF) and later on, adenomas. 
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Fig. 7. Schematic representation of a colon crypt and proposed model for polyp formation. At the bottom third of the 
crypt, the progenitor proliferating cells accumulate nuclear β-catenin. Consequently, they express β-catenin/TCF 
target genes. Mesenchymal cells surrounding the bottom of the crypt (depicted in red) secret Wnt ligands. As the cells 
reach the midcrypt region, β-catenin/TCF activity is downregulated and this results in cell cycle arrest and 
differentiation. Cells undergoing mutation in APC or β-catenin become independent of the physiological signals 
controlling β-catenin/TCF activity. As a consequence, they continue to behave as crypt progenitor cells in the surface 
epithelium, giving rise to ACFs. Figure taken from (52). 
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3. The family of SMC proteins: Global organizers 

of the Genome.  

Structural Maintenance of Chromosomes (SMC) proteins are highly conserved proteins crucial for 

chromosome structure and dynamics, gene regulation and DNA damage repair. Members of this family 

can be found along the entire phylogenetic tree, from bacteria and archaea to human (54). 

SMC proteins share similar domain structures: they consist of N-terminal and C-terminal domains that 

fold back onto each other to create an ATPase ‘head’ connected to a central ‘hinge’ via extended coiled-

coils (Fig. 8). The hinge domain mediates the heterodimerization of eukaryotic SMC proteins, allowing 

the two ATPase heads from two SMC proteins to transiently interact with each other to bind and 

hydrolyze ATP. As revealed by electron microscopy, the SMC heterodimers can adopt different 

conformations, including V-shaped dimers and ring-like structures, possibly depending on the nucleotide-

binding states of their ATPase heads (55–57). 

 

Fig. 8. Structure of a SMC heterodimer. A, Each SMC protein folds back on itself through antiparallel coiled-coil arm 
interactions. This forms an SMC dimerization hinge domain from the central part at one end, and an ATPase head 
domain from association of the terminal globular parts at the other. B, SMC proteins heterodimerize to form the core 
of the complex. Walker A and B domains (in N terminus) and the C motif (in C terminus) are responsible for ATP 
molecules binding. C, Electron micrographs of the Bacillus subtilis SMC (BsSMC) homodimers show a wide variety 
of conformations. Bar, 50 nm. D, Examples of rotary-shadowed images of condensin I (left) and cohesin (right) 
purified from human tissue culture cells. Condensin usually adopt a “lollipop” structure whereas cohesin forms a 
ring-like structure. A sharp kink in one of the coiled-coil arms of SMC3 is indicated by the arrow. Bar, 50 nm. Figure 
adapted from (57) and (58). 
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Each SMC heterodimer associates with non-SMC subunits to form functional SMC complexes (Fig. 9): 

the cohesin complex, the condensin complex, and the SMC5-6 complex (59); despite different roles were 

assigned to each complex when they were first described, recent evidences demonstrate that the three 

complexes are involved in DNA repair mechanisms, gene regulation in interphase, spatial organization of 

interphase chromatin and chromosome segregation and dynamics (60–62). It is not surprising that SMC 

complexes are increasingly pointed as “global organizers of the genome” (63). 

Cohesin complex is formed by the SMC1-SMC3 heterodimer and non-SMC proteins named Rad21 and 

SA1/2 in vertebrates (64). The main function of cohesin complex is to generate sister chromatid cohesion, 

which holds sister chromatids together from S phase until mitosis, when cohesion is removed to allow 

chromosome segregation (65).  

SMC5-SMC6 complex is formed by the SMC5-SMC6 heterodimer and several non-SMC elements (Nse), 

including Nse1-6. It is involved in DNA recombination and DNA repair mechanisms (60). 

Condensin complex is formed by the SMC2-SMC4 heterodimer and three non-SMC regulatory subunits. 

In vertebrates, there are two types of condensin complexes: condensin I and condensin II (66). They share 

two core subunits, SMC2 and SMC4, but differ in the other three non-SMC subunits. Condensin I 

contains two HEAT subunits (CAP-D2 and CAP-G) and the kleisin CAP-H, while condensin II contains 

HEAT subunits CAP-D3 and CAP-G2 and the kleisin CAP-H2. The main function of Condensin complex 

is to regulate chromosome organization and condensation during mitosis and meiosis in eukaryotic cells. 

They are responsible for folding chromatin fibre into highly compact chromosomes to ensure their 

faithful segregation and they are necessary also for resolution of sister chromatids during anaphase 

[reviewed in (56,63)].  

Fig. 9. Arquitecture of the SMC complexes. Two paralogous condensin complexes (condensin I and condensin II) 
have been identified in many metazoans. Both condensins contain an heterodimer of SMC2 and SMC4 but associate 
with a distinct set of non-SMC subunits. The cohesin complex consists of an heterodimer of SMC1 and SMC3, the 
Rad21 kleisin protein, and stromalin (SA 1/2). SMC5 and SMC6 core subunits and Non-SMCs Elements NSE1-4 
form SMC5/6 complex in humans. Well-characterized yeast SMC5/6 complex is represented. Figure adapted from 
(61) and (67). 
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3.1. The condensin complex 

To ensure the faithful inheritance of genetic information to daughters cells in mitosis, disorganized 

interphase chromatin must be packaged into discrete units named chromosomes. This highly organized 

packaging provides mitotic chromosomes with mechanical strength and reduces their length so that they 

can be transported effectively to opposite poles of the dividing cell by the mitotic spindles. 

As mentioned above, condensin complex is the major actor in chromosome condensation, and 

additionally maintains their condensed state until the end of mitosis. 

In vertebrates, the two types of condensin complexes (I and II) exhibit distinct spatial staining patterns on 

chromosome axes, as well as differing temporal localisation patterns throughout the cell cycle. Condensin 

I is sequestered in the cytoplasm during interphase and gains access to chromosomes only after the 

nuclear envelope breaks down in prometaphase. In contrast, condensin II localizes to the nucleus from 

interphase through prophase and participates in an early stage of chromosome condensation within the 

prophase nucleus (Fig. 10, A). After nuclear envelope breakdown (NEBD), condensins I and II 

collaborate to support proper assembly of chromosomes in which sister chromatids are well resolved by 

metaphase and to promote faithful segregation in anaphase, but they localize differentially on the 

chromosomes, in an alternate pattern (66, 68, 69). Indeed, depletion of condensin I- or condensin II-

specific subunits produces a highly characteristic chromosome morphology (i.e., swollen or curly 

chromosomes, respectively). Recent studies support the fact that the two complexes play distinct roles in 

mitotic chromosome structure; it has been proposed that condensin I mediates more-frequent short-range 

lateral interactions among chromatin loops, whereas condensin II mediates axial stacking of the laterally 

assembled configurations (70) (Fig. 10, B). 

The protein levels of condensin complex subunits remain almost constant throughout the cell cycle in 

mammalian cells (71). Several authors have shown how phosphorylation of the different subunits, mainly 

the non-SMC subunits, regulates condensin localization and function in mitosis and interphase (71–73). 

The exact mechanism by which condensin complex is able to compact DNA fibres is still under debate. 

Nevertheless, it has been well characterised the condensin ability to introduce positive superhelical 

tension into dsDNA in vitro, using naked circular DNA as template (74,75). This positive supercoiling 

activity demands the five-subunit holocomplex and ATP hydrolysis by the SMC subunits. It has been 

proposed that the positive supercoiling activity could promote ordered folding of chromatin fibres to 

initiate the formation of chiral (positively supercoiled) loops in eukaryotes’ chromosomes.  

A three-step model for post-translational regulation of condensin function has been recently proposed 

(76). First, during interphase condensin complex is inhibited by casein kinase II (CKII) phosphorylation 

in order to prevent premature condensation before mitosis onset. This is followed by a stage of condensin 

activation during early prophase, which requires the phosphorylation by the cyclin-dependent kinase 

CDK1, together with dephosphorylation of CKII sites by an unknown phosphatase. When CDK1 levels 

drop in the metaphase-to-anaphase transition, Polo/Cdc5 then phosphorylates condensin complex; it is 

thought that this regulation by Polo/Cdc5 allows condensin to maintain its activity from anaphase until 

the end of mitosis (Fig. 11). 
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Different regulators other than CDK1 and Polo/Cdc5 are also implicated in mitotic condensin loading into 

DNA, but they were not included in this model: Aurora B kinase for condensin I (72,77) and Protein 

Phosphatase 2A (PP2A) for condensin II (78) loading. Additionally, Retinoblastoma protein (RB) has 

been implicated in interphase loading of condensin II complexes to DNA (79) . 

It is important to note that transcriptional regulators of condensin complex were unknown before our data 

was published in Journal of Biological Chemistry (80), (see appendix for details). 

 

Fig. 10. Different contributions of condensin I and II in chromosome structure. A, In vertebrate cells, condensin II is 
predominantly nuclear, whereas condensin I is sequestered in the cytoplasm during interphase. Condensin I gains 
access to the chromosomes only after the nuclear envelope breaks down (NEBD) in prometaphase, and the two 
complexes alternate along the chromatid axis by metaphase. B, Model for contrasting roles of both complexes: in 
wild-type mitotic chromosomes, condensin I stabilises and nucleates short-range loops, promoting compaction of 
chromosome rosettes. Condensin II provides the long-range linkage and alignment between the rosettes, thus 
facilitating chromosome longitudinal compaction. Chromosomes deficient of condensin I (Δ condensin I) are unable 
to link and nucleate short-range loops, resulting in a fatter and disorganized chromosome scaffold. Chromosomes 
deficient of condensin II (Δ condensin II) are unable to provide regular structural linkage between rosettes. Discrete 
rosettes are unable to form, resulting in a thinner chromosome lacking structural integrity. C, Differential 
distributions of the “chromosome scaffold” along the metaphase chromosome. Figure adapted from (70,81,82). 
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Fig. 11. The ultrasensitive/kinase switch model for chromosome condensation. Cell cycle-dependent regulation of 
condensin by CKII (top part), CDK1-cyclin A/B (second part) and Polo/Cdc5 (third part). These graphs represent the 
levels of phosphorylation of condensin subunits by various kinases during interphase and mitosis. The fourth part 
depicts the morphology of chromosomes in relation with the levels of modification of condensin by cell cycle 
kinases. The fifth part is a graphical representation of the phosphorylation state of condensin subunits throughout the 
cell cycle. The last part is a schematic representation of the inhibition, activation and maintenance stages of 
chromosome condensation according to the ultrasensitive/kinase switch model. The intensity of the color in the 
inhibition and activation arrows represents decrease and increase, respectively, in the intensity of the stimulus 
provided by CKII and CDK1. Figure taken from (76). 
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4. The Molecular Motor KIF4A in chromosome 

condensation 

The molecular motor protein KIF4A was identified by Misteli’s group as a novel interactor of condensin 

complexes I and II in 2004 (83). Indeed, KIF4A belongs to the so-called “chromosome scaffold”, that is 

biochemically defined as the insoluble protein fraction of a mitotic chromosome after the extraction of 

histones and DNA digestion (84). The most abundant scaffold proteins were first identified as the 

condensin core subunit SMC2, topoisomerase IIα (TOPO IIα) (85,86) and KIF4 (83,87). These proteins 

were also shown to be the major components of in vitro assembled mitotic chromosomes. 

Misteli’s study describes how KIF4A contributes to proper chromosome condensation, stability and 

segregation in mitosis. KIF4A-depleted cells delocalize condensin subunits from the chromosome axis, 

chromosomes appeared shorter and hipercondensed. Moreover, KIF4A-depleted cells showed mitotic 

spindle defects, anaphase bridges and aneuploidy (83). The authors postulated that KIF4A might function 

as a molecular linker and/or spacer between chromosome condensation machinery and DNA to contribute 

to higher order organization of metaphase chromosomes. A study raised in 2012, confirmed Misteli’s 

group results and also described how KIF4A is needed for correct condensin distribution along 

chromosomes and how it cooperates with condensin on the lateral compaction of chromosomes; KIF4A 

works in opposition to topoisomerase IIα action, which shortens chromosomes arms (88). As condensin 

II, KIF4A loading on mitotic chromosomes is regulated by PP2A (78). 

 

Fig. 12. Interplay between KIF4A, condensin and Topo IIα in shaping mitotic chromosomes. Condensin binds to 
chromatin, forming loops that it then compacts by supercoiling (1 and 2). KIF4 also independently binds to DNA, 
possibly forming higher-order loops and promoting their supercoiling by interactions with condensin (3 and 4). Thus, 
condensin and KIF4 independently and additively contribute to lateral chromatid compaction. Lastly, Topo II� 
decatenates the loops in a step required for axial shortening. Figure taken from (88). 
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KIF4A belongs to the Kinesin (KIF) superfamily. Kinesins are a conserved class of microtubule-

dependent molecular motor proteins that have adenosine triphosphatase (ATPase) activity and motion 

characteristics. KIFs transport cargos along the microtubules transforming ATPase hydrolysis energy into 

mechanical force. They support several cellular functions, such as mitosis, meiosis, and the transport of 

macromolecules and vesicles (89).  

KIF4A has the typical kinesin structure: an N-terminal motor domain, a stalk domain containing predicted 

coiled-coil regions and a C-terminal tail domain (90). The motor domain, containing the ATPase activity 

and the microtubule binding capacity, is highly conserved along kinesin family members whereas tail 

domain is divergent and confers cargo-specificity. The stalk domain serves for dimerization, as KIF4A 

functions as homodimers, and also contains a nuclear localization signal (87) for nuclear transport (Fig. 

13, A). 

KIF4A was first described as a chromokinesin, as it binds to chromosomes during mitosis. As other 

kinesin proteins, it is involved in several mitotic processes: spindle assembly, proper chromosomes 

alignment in metaphase and pulling forces generation to separate sister chromatids to opposite spindle 

poles. Nevertheless, the main function of KIF4A takes place in cytokinesis, when accumulates in the 

midzone to form the cytokinetic cleavage furrow (Fig. 13, C). Unlike other spindle kinesins, KIF4A is 

localized into the nucleus during interphase and participates actively in chromosome condensation, as 

explained before.  

 

Fig. 13. KIF4A structure and cell cycle distribution. A, Schematic representation of KIF4A protein. NLS: Nuclear 
localization signal. B, KIF4A forms homodimers by the stalk domain to be functionally active. Red dot represents an 
ATP molecule. (Illustration by David S. Goodsell of The Scripps Research Institute). C, Cell cycle distribution. 
During interphase the protein is prominently nuclear but from prophase to telophase KIF4A is present on 
chromosome arms. In addition, the protein accumulates in the mid-zone (arrow) and forms the cytokinetic ring until 
cytokinesis. The inset shows an amplified image of the midbody that appears as two rings. Bar, 5 μm. Figure adapted 
from (83). 
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The nuclear localization of KIF4A during interphase has been recently related to other cellular processes 

distinct from mitosis, like DNA damage repair, neuronal survival and gene expression regulation: 

a) KIF4A interacts with BRCA2 and it is involved in homologous recombination repair of DNA 

double-strand breaks, modulating the Rad51/BRCA2 pathway (91).  

b) In murine juvenile neurons, KIF4A binds to and inhibits PARP-1, which regulates cell survival. 

In this tissue, those cells where PARP-1 is inactive are prone to apoptosis. The membrane 

polarization activates PARP-1 and dissociates it from KIF4A. Active PARP-1 triggers cell 

survival in active neurons, thus regulating brain homeostasis (92). 

c) KIF4A has additionally been implicated in gene expression regulation, acting as a modulator of 

chromatin structure and accessibility. KIF4A interacts the DNA methyl-transferase DNMT3B, 

the chromatin remodellers SIN3A and hSNF2H and the histone deacetylase HDAC1 (93). 

KIF4A is also bound to the apolipoprotein D promoter under growth conditions (94), possibly 

regulating Apo-D gene expression.  
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5. Might Chromosome Condensation proteins be 

involved in Cancer? 

5.1. Condensin complex in cancer 

No experimental evidences had related condensin complex to cancer development or progression until our 

group described how colon cancer cells require the expression of the core member of condensin complex, 

SMC2, to progress. When injected into a xenograft tumour model, SMC2-depleted cells generated 

significantly smaller tumours compared to the control cell population (Fig. 14). We found that siRNA 

mediated depletion of SMC2 in colon cancer cell lines impaired cell proliferation (Fig. 15), as SMC2 

depleted cells entered into apoptosis, G2/M stop and aneuploidy. These all features presumably indicated 

mitotic catastrophe (80), (see appendix section for details). 

 

Fig. 14. siRNA mediated knockdown of SMC2 impairs tumour growth in xenograft mice models. A, SMC2 
knockdown was assessed by western blot. C, Representative resected tumours from the same animal at day 40 post-
injection. D, Tumour growth curves. Figure adapted from (80). 
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Fig. 15. SMC2 knockdown effect on cell cycle profile. A, SMC2 knockdown analysis by western blot after 
transfection of an siRNA targeted to SMC2 at the indicated time points in DLD1 cells (sc=siRNA scrambled, used as 
control). B, Analysis of cell cycle distribution of DLD1, HT29 and HCT116 cell lines 48, 72 or 96 hours post-siRNA 
SMC2 transfection. C, Cell population distribution 96 hours post-siRNA transfection in DLD1, HT29 or HCT116 cell 
lines. D, Stable knockdown of SMC2 in HT29 cells. E, The stable knockdown of SMC2 impairs cell viability. 
Morphological changes in SMC2-downregulated cells could be appreciated after one week in culture; enlarged-
multinucleated, non-viable cells resulted from stable knockdown of SMC2. Figure taken from (80). 
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Furthermore, previous data from our group revealed that SMC2 and SMC4 seemed to be under Wnt 

signalling regulation (Fig. 16). Both proteins were down-regulated in cellular models for Wnt pathway 

inhibition, and TCF-4 transcription factor is bound to SMC2 promoter (Fig. 17). It was uncertain, 

however, the exact regulation of SMC2 promoter under Wnt stimulation.  

 

 

Fig. 16. SMC2 and SMC4 as putative target genes for Wnt signalling. SMC2 and SMC4 proteins are downregulated 
in cellular models for Wnt signalling inhibition. Tet-on system Ls174T dnTCF4 (A, B) and Ls174T-pTER-β-catenin 
(C, D) cell lines were cultured in absence or presence of 5 μg/μl doxycycline (Dox) during the indicated times 
followed by western blot analysis of whole-cell lysates with antibodies against SMC2, C-MYC, as positive control of 
Wnt signalling blockade, TCF-4 or β-catenin as Tet-On system functionality controls, and ACTIN, as loading 
control. Figure taken from (80). 

 

 

 

Fig. 17. TCF-4 transcription factor is bound to SMC2 promoter in colon cancer cells. ChIP experiments on DLD-1 
cells demonstrated that TCF-4 is bound to SMC2 promoter region. IgG antibody was used as negative control in the 
immunoprecitation. C-MYC promoter sequence containing TBE1 and region 1B of APC promoter were used as PCR 
positive and negative controls, respectively. Figure taken from (80). 
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5.2. KIF4A in cancer 

Recent publications have linked kinesin KIF4A to cancer. Narayan et al. (95) reported that the expression 

of KIF4A mRNA in cervical cancer was much higher than in normal tissues. Taniwaki et al. (96) 

demonstrated that KIF4A gene was activated in non-small cell lung cancer (NSCLC) cells and the 

treatment of NSCLC cells with specific siRNA to knockdown KIF4A expression resulted in the 

suppression of cancer cell growth. Moreover, patients with NSCLC who had KIF4A-positive tumours had 

a shorter cancer-free survival than patients who had KIF4A-negative tumours. In addition, the same 

authors classified KIF4A as one of the typical cancer testis antigens. The selective inhibition of KIF4A 

activity by molecular-targeted agents was proposed as promising therapeutic strategy that was expected to 

have powerful biologic antitumor activity with minimal adverse events. However, some conflicting 

results have been reported also. For instance, Mazumdar et al. (97) performed in vivo and in vitro 

experiments to demonstrate that loss of KIF4A leads to multiple mitotic defects, including chromosome 

misalignments, spindle defects, and aberrant cytokinesis, which may cause tumorigenesis. Furthermore, 

Gao and collaborators (98) showed in 2011 that KIF4A is downregulated in gastric cancer and its 

overexpression inhibits proliferation of human gastric carcinoma cells both in vitro and in vivo. 

Due to this controversial data, further studies are required to gain a better understanding of the role of 

KIF4A in cancer development and progression. 
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Thesis Purpose 

Condensin complex and kinesin KIF4A cooperate in chromosome condensation during mitosis, but this 

interaction is not restricted to mitosis. Nuclear localization of both KIF4A and at least one type of 

condensin complex during interphase gives information about additional cooperative roles of these 

proteins out from mitosis. A recent paper points out a role of KIF4 in determining higher order chromatin 

structure during interphase by dynamic interaction with condensin. Moreover, the authors postulate that 

this interaction is also responsible for chromatin accessibility regulation, as condensin and KIF4A are 

found in larger complexes containing PARP-1, ATP-dependent chromatin remodelling factors, histone 

modifiers (HDAC1), DNMT3B and S phase replication machinery members (99). 

On the other hand, chromosomal instability is the main hallmark in colorectal tumours harbouring APC 

mutations or Wnt signalling deregulation [reviewed in (100)]. Many studies propose APC interaction with 

microtubules and its mitotic localization to centromeres, kinetochores and mitotic spindle to be under CIN 

phenotypes present in intestinal polyps and APC-depleted ES cells (101–103). However, many colorectal 

tumours with MMR-deficiency have APC gene mutations, but remain diploid and do not manifest CIN 

(104). Thus, other mechanisms probably underlie this kind of genomic instability. 

Condensin dysfunction has also been related to genomic instability. Depletion of condensin in higher 

eukaryotes cells leads to delayed anaphase with prominent centromere defects and uncoordinated 

chromosome movement. This results in chromosomal bridges arising from missegregated centromeres 

[reviewed in (105)]. The authors postulate condensin missfunction as potential generator of wide genome 

instability signatures seen in many cancers (105,106). Indeed, mutations in condensins have been found in 

5% (8 of 159) of cancer genomes sequences in COSMIC database (106). It remains to be elucidated, 

however, whether they are passengers or true drivers of genome instability. Also, chromokinesins, like 

KIF4A, are crucial components of the mitotic machinery and are required for accurate genome 

segregation, and by extension, genomic stability. Not surprisingly, loss of KIF4A function leads to 

deleterious genome defects, particularly an increased number of anaphase bridges, micronuclei and 

aneuploidy (83).  

Another chromosome passenger, SMC3 -member of cohesin complex- has been recently involved in 

colon tumorigenesis (107). Additionally cohesin missfunction leads to chromosomal instability seen in 

this kind of tumours (108). Furthermore, SMC3 is a direct transcriptional target of Wnt/β-catenin 

pathway (109). 

The crucial role of condensin complex and KIF4A in chromosome organization and euploidy 

maintenance, their cooperative function during interphase and mitotic functions, their putative regulation 

by the Wnt signalling pathway, that could underlie CIN phenotypes seen in CRC tumours, make these 

proteins good candidates to study their role in colorectal cancer progression and exactly decipher their 

Wnt-dependent regulation. 
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Aims of the study 

1. Assessment of expression levels of condensin complex and kinesin KIF4A in colon cancer 

samples. 

2. Study of transcriptional regulation of condensin complex and kinesin KIF4A. 

3. Determine the role of KIF4A in colorectal tumorigenesis. 
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Material and Methods 

1. Materials 

1.1. Colorectal tissue samples 

Tumour and normal counterpart samples for Q-PCR, Western blot and IHC analysis were provided by the 

Surgery and Pathology Departments of the Vall d’Hebron Universitary Hospital (Barcelona, Spain) and 

Trias i Pujol Hospital (Badalona, Spain). Patients gave written consent before their inclusion in the 

analysis and the Hospital Ethics Committee approved the study.  

Tissue microarrays (TMA) were constructed as described previously (110). A total of 92 colorectal cancer 

patients with metastatic disease receiving Irinotecan-based chemotherapy at Vall d'hebrón University 

Hospital (Barcelona, Spain) were included in the TMA. Response to the chemotherapeutic treatment was 

evaluated by computed tomography using response evaluation criteria in solid tumours (RECIST) criteria 

(111). The median follow-up time of the patients in this study was 4.6 years. The study was carried out 

according to Human Investigations and Ethical Committee–approved research protocols. 

1.2. Human cancer cell lines and cell culture 

HeLa, HEK293T and colorectal cancer cell lines were purchased from the American Type Culture 

Collection (ATCC). Ls174T/dnTCF4, Ls174T/pTER-β-catenin and Ls174T-W4 cells were kindly 

provided by Prof H. Clevers (Hubrecht Institute, The Netherlands). HEK293FT variant used for lentiviral 

particles production was purchased from Invitrogen. 

Cell lines were cultured in DMEM or RPMI-1640 (Ls174T variants) medium supplemented with 10% 

FBS, 100 units/ml of penicillin and 100 μg/ml of streptomycin at 37 ºC under 5 % CO2. In order to induce 

dnTCF4, siRNA-β-catenin or STRAD/LKB1 expression, Ls174T cells were treated with 5 μg/ml 

doxycycline.  

Cell cycle synchronization of HeLa cells was based on the thymidine double-blocking method: 800.000 

cells were plated in 60 mm Petri dishes, and thymidine was added to a final concentration of 2 mM after 

cell adherence (about 6-8 h). The cells were cultured for 19 h. After removal of the thymidine and 

incubation for 8 h in fresh DMEM solution, thymidine was again added to a final concentration of 2 mM 

for an additional 16 h. After second removal of thymidine, synchronized cells were cultured in fresh 

DMEM and collected at different times for analysis.  

Differentiation studies were performed as follows: Caco-2 BBe and HCT8 cells were grown to 

confluence in DMEM medium to induce dome formation, being the medium changed every day. Butyrate 

induced-differentiation was performed in SW620 and Ls174T plating one million of cells on 6-well plates 

and treating them with 1 mM or 5 mM of Sodium Butyrate [Na (C3H7COO)] for 24 h. 
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1.3. Antibodies 

Table 3. Primary antibodies used in the study 

Primary 

Antibody 

Source Reference code Host Application (dilution) 

KIF4A Protein Atlas HPA035517 Rabbit WB (1:2000) 

IHC (1:300) 

IF (1:200) 

SMC2 Abcam ab10412 Rabbit WB (1:2000) 

IHC (1:200) 

SMC4 Abcam ab17958 Rabbit WB (1:2000) 

NCAPH Protein Atlas HPA003008 Rabbit IHC (1:50) 

Ki67 Santa Cruz 

Biotechnology 

ab833 Rabbit IHC (1:50) 

PCNA Chemicon 

International 

MAB424R Mouse WB (1:1000) 

β-catenin BD-Transduction 

Laboratories 

610154 Mouse WB (1: 2000) 

β-catenin Santa Cruz 

Biotechnology 

sc-7963 Mouse IHC (1:100) 

TCF-4 Usptate-Millipore 05-511 Mouse WB (1:500) 

PARP Cell signaling 9542 Rabbit WB (1:2000) 

Cleaved PARP Cell signaling 9541 Rabbit WB (1:2000) 

C-MYC Hybridome Clon 9E10 Mouse WB (1:10) 

GAPDH Santa Cruz 

Biotechnology 

sc-32233 Mouse WB (1:2000) 

ACTIN Sigma A5060 Rabbit WB (1:5000) 
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1.4. Primers 

Table 4. Primers used in the study. Restriction enzymes sites are highlighted in purple; TBEs mutagenesis is 
underlined. 

Primer Name Application Sequence 5´-3’ 

SMC2p-KpnI- FW SMC2 promoter cloning GGGGTACCGACGTGGAAACTTCAG 

SMC2p-BglII-RV 
SMC2 promoter cloning GAAGATCTCATTTTCGATACTGTCTTGG

G 

ΔΔ1-KpnI-SMC2p 
SMC2 promoter deletion GGGGTACCCTTTGAGGAGAGAAAAGTA

AG 

ΔΔ2-KpnI-SMC2p SMC2 promoter deletion GGGGTACCAGGAGCTTTTGGGGTGCGTC 

ΔΔ3-BglII-SMC2p SMC2 promoter deletion GAAGATCTACGCACCCCAAAAGCTCCT 

SMC2prom-TCF4BOX1mut 

(FW) 

SMC2 promoter 

mutagenesis 

TCCACTTCCTAACTGTCGCGCTGAGGAG

AGAAAAGTAAGC 

SMC2prom-TCF4BOX1mut 

(RV) 

SMC2 promoter 

mutagenesis 

GCTTACTTTTCTCTCCTCAGCGCGACAGT

TAGGAAGTGGA 

SMC2prom-TCF4BOX2mut 

(FW) 

SMC2 promoter 

mutagenesis 

TGGAGGTGGGGTCCTCTACTCGCGCCGA

AATTC 

SMC2prom-TCF4BOX2mut 

(RV) 

SMC2 promoter 

mutagenesis 

GAATTTCGGCGCGAGTAGAGGACCCCA

CCTCCA 

SMC2prom-TCF4BOX3mut 

(FW) 

SMC2 promoter 

mutagenesis 

GTCCTTTGCTCGCGCCGAAATTCATTGG

AATAAATAGTTCC 

SMC2prom-TCF4BOX3mut 

(RV) 

SMC2 promoter 

mutagenesis 

GGAACTATTTATTCCAATGAATTTCGGC

GCGAGCAAAGGAC 

SMC2prom-TCF4BOX4mut 

(FW) 

SMC2 promoter 

mutagenesis 

TGGTGAAGTTCGCTGCGTAGCGGCCCCG

GC 

SMC2prom-TCF4BOX4mut 

(RV) 

SMC2 promoter 

mutagenesis 

GCCGGGGCCGCTACGCAGCGAACTTCAC

CA 

SMC2prom-TCF4BOX5mut 

(FW) 

SMC2 promoter 

mutagenesis 

TTCTGTTCCCTGCCTATGTGACCCGGAG

G 

SMC2prom-TCF4BOX5mut 

(RV) 

SMC2 promoter 

mutagenesis 

CCTCCGGGTCACATAGGCAGGGAACAG

AA 

KIF4Ap_KpnI_FW KIF4A promoter cloning CGGGGTACCGCTAGCTGGTTCGGG 

KIF4Ap_KpnI_RV KIF4A promoter cloning CGGGGTACCCTCGAGGATCCTATC 

KIF4A_001_FW KIF4A cDNA cloning CACCATGAAGGAAGAGGTGAAGGG 

KIF4A_001_RV KIF4A cDNA cloning ACTCCAACTTCAGTGGGC 
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Primer Name Application Sequence 5´-3’ 

KIF4A_Seq_1 
KIF4A cDNA 

sequencing 

GCGCCACTCATAAAAGGTGT 

KIF4A_Seq_2 KIF4A cDNA 

sequencing 

TATGAACTCCCAGTCGTCCC 

KIF4A_Seq_3 KIF4A cDNA 

sequencing 

GCAAGAAAAATCAAGAACAAACCTA 

KIF4A_Seq_4 KIF4A cDNA 

sequencing 

TGCAGCAATTGATTACCCAG 

KIF4A_Seq_5 KIF4A cDNA 

sequencing 

AGCTGGAGGGTCAAATTGCT 

KIF4A_Seq_6 KIF4A cDNA 

sequencing 

GTGGAATGGAAGGCACTGCAGC 

KIF4A_Seq_7 KIF4A cDNA 

sequencing 

ATTTGATTGGAGAGCTGGTC 

KIF4A_Seq_8 KIF4A cDNA 

sequencing 

GCAGACAGAAACATCTTCCTAAG 

Snail-RT-FW Q-PCR CACTATGCCGCGCTCTTTC 

Snail-RT-RV Q-PCR GCTGGAAGGTAAACTCTGGATTAGA 

Slug-RT-FW Q-PCR GGACACATTAGAACTCACACGGG 

Slug-RT-RV Q-PCR GCAGTGAGGGCAAGAAAAAGG 

GAPDH-RT-FW Q-PCR ACCCACTCCTCCACCTTTGAC 

GAPDH-RT-RV Q-PCR CATACCAGGAAATGAGCTTGACAA 

 

Table 5. TaqMan Gene Expression Assays used in the study 

Taqman Probe (Applied Biosystems) Code 

KIF4A HS01020169_m1 

SMC2 Hs00374522_m1 

NCAPH Hs00379340_m1 

NCAPG Hs00254617_m1 

NCAPG2 Hs00214861_m1 

18S 4333760F 
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2. Methods 

2.1. RNA extraction and Quantitative PCR (Q-PCR) 

Total RNA was extracted with Trizol® (Invitrogen), and further treated with DNase I Amplification 

Grade (Invitrogen) and retrotranscribed using High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems). Real time PCR reactions were performed in triplicate on an ABI PRISM 7500 Real-Time 

System (Applied Biosystems), using TaqMan Gene Expression Assays listed in Table 5. 

according to the manufacture’s protocol. Data were normalized to 18S rRNA expression. For SNAIL 

(SNAI1) and SLUG (SNAI2) quantification, SyBrGreen method was used, using GAPDH amplification as 

endogenous control. The relative mRNA levels were calculated using the comparative Ct method (2e-

ΔΔCt) as described previously (112).  

2.2. Protein extraction and Western blotting (WB) 

Cell pellets and tissue homogenates were lysed in RIPA buffer (50 mM Tris-HCl at pH 8.0, 150 mM 

NaCl, 1 mM DTT, 1 mM sodium orthovanadate, 0.5 % deoxycholate, 1 % Triton X-100, 0.1 % SDS) 

containing protease inhibitors (2 μg/ml Aprotinin, 1 μg/ml Pepstatin, 1 μg/ml Leupeptin, 1 mM PMSF, 1 

mM EDTA and 1 mM EGTA). Proteins in the crude lysates were quantified using the BCA Protein Assay 

(Pierce Biotechnology) and 50 μg of whole-cell lysates were separated by SDS-PAGE and transferred 

onto nitrocellulose membranes. Blots were probed using primary antibodies listed in Table 3 3. Proteins 

were detected using corresponding HRP-conjugated secondary antibodies, anti-mouse (P0447, Dako) or 

anti-rabbit (P0217, Dako). The intensity of the bands on the blots was quantified using the GeneTools 

Program (SynGene). 

2.3. Alkaline phosphatase assay 

Cell pellets were lysed in cold Mannitol buffer (50 mM D-Mannitol, 2 mM Tris, 0.1 % Triton X-100, pH 

7.4) supplemented with protease inhibitors (0.3 mM pepstatin, 1 μg/ml aprotinin and 100 μM sodium 

orthovanadate). For enzimatic activity assesment 50μg of protein were mixed with 200 μl of p-

Nitrophenyl Phosphate Liquid Substrate System (Sigma N7653) and incubated at 37ºC for 1 h. 

Absorbance was measured at 405 nm. Each lysate was run in triplicate. 

2.4. Immunohistochemistry (IHC) 

Paraffin-embebed tissue samples were incubated at 55ºC overnight prior to xilene mediated de-waxing 

and serial diluted ethanol hydration. Epitope retrieval was heat induced in citrate buffer pH 6.0. 

Immunohistochemistry was performed using the Novolink polymer detection system (Novocastra 

laboratories). Samples were additionally counterstained with hematoxilin.  
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2.5. Cell cycle analysis by FACS (Fluorescence-activated cell 

sorting) 

One million of cells were fixed in 70% ethanol prior to RNAse treatment (0.1 mg/ml) and Propidium 

Iodide (PI) staining (40 μg/ml) for 30 min at 37ºC. Distribution of cell cycle phases with different DNA 

contents upon PI intensity was determined using a flow cytometer FACScalibur (Becton-Dickinson). 

Analysis of cell cycle distribution and the percentage of cells in the G1, S, and G2/M phases of the cell 

cycle were determined using the FCS Express cell cycle platform and ModifLT software. Apoptosis 

percentage was calculated measuring the haplo-diploid population using ModifLT software as well. 

2.6. Immunofluorescence (IF) 

Cells were grown on gelatin-coated coverslips before 4 % PFA fixation for 10 min. Then, cells were 

permeabilized with 0.05 % Triton X-100 and blocked for antibody unspecific binding with 0.2 % BSA at 

room temperature for 30 min. An additional step of blocking was performed by 10 % FBS incubation for 

30 min. Then, the coverslips were incubated with anti-KIF4A antibody for 1 h at room temperature. 

Primary antibody was detected with Alexa Fluor 594–labeled secondary antibodies (Molecular Probes). 

To assess Ls174T-W4 polarization scores, F-actin was detected using rhodamine–phalloidin 

(Cytoskeleton). Polarized cells were defined by the characteristic accumulation of actin in one pole of the 

cell as previously described (113). 

DNA was visualized using DAPI (4’,6-diamidino-2-phenylindole, Sigma) at a concentration of 1 μg/ml. 

Images were taken with a DP70 camera coupled to a Olympus BX61 fluorescence microscope. 

2.7. Promoters cloning and Luciferase reporter assays 

SMC2 promoter was obtained from DLD-1 cell line by nested PCR amplification of genomic DNA 

followed by cloning into pGL3-Basic Firefly luciferase reporter vector (Promega) using the primers listed 

in Table 4. Deletion mutants of SMC2 promoter were obtained by PCR amplification and subcloned into 

pGL3-Basic vector. Substitution mutants affecting the TCF4-binding sites on SMC2 promoter regions 

were generated with mutagenic oligonucleotides in Table 4, using QuickChange II XL Site-Directed 

Mutagenesis Kit (Stratagene). 

2000 bp upstream transcription start site of human KIF4A gene was synthesized by GenScript 

Corporation and subcloned into pGL3-Basic vector as well using the primers listed in Table 4. Cloned 

promoter sequences were verified by sequencing. 

Promoter’s activity was evaluated by Luciferase reporter assay as follows: 50,000 cells were seeded into 

96-well microtiter plates. The day after, cells were transfected using Lipofectamine 2000 (Invitrogen), 

according to manufacturer’s instructions. After 24 h, cells were lysed and Luciferase activity was 

measured with Dual-Luciferase Reporter Assay (Promega) in a FB12 luminometer (Berthold Detection 

System), using Renilla (pRL-TK) as an internal control.  
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In order to evaluate response to TCF-4 or β-catenin, co-transfection with expression vectors VP16-TCF4 

or pBCAT was performed. These vectors were kindly provided by Prof. Antonio García de Herreros 

(IMIM-Hospital del Mar, Barcelona, Spain). VP16-TCF4 vector was constructed by inserting the VP-16 

activating domain with a Kozak sequence just upstream of the initiation codon of TCF-4 cloned into 

pcDNA3. As a result, a constitutively active TCF-4 protein is produced. pBCAT vector consists of the β-

catenin cDNA cloned into pcDNA3. 

To assess KIF4A promoter activity after lithium chloride-mediated Wnt pathway stimulation, 50 mM 

LiCL was added to cell culture six hours after transfection. Luciferase activity was measured 24h later. 

Luciferase reporter protocol in Tet-On system cells Ls174T-dnTCF4 and Ls174T/pTER-β-catenin was 

slightly modified. Cells were doxycycline (5 μg/ml) treated 72 h prior to transfection in order to induce 

dnTCF4 protein or siRNA targeting β-catenin, respectively. Doxycycline was removed for transfection 

but restored six hours later. Luciferase activity was measured 24 h post-transfection. 

pTOP-Flash and pFOP-Flash were used as positive and negative luciferase reporter controls, respectively. 

pTOP-Flash contains 3 TCF-4 responding elements upstream the luciferase reporter gene. pFOP-Flash 

contains 3 mutated binding sites for TCF-4 upstream the reporter gene. These vectors were kindly 

provided by Prof. Hans Clevers (Hubrecht Institute, The Netherlands).  

2.8. Stable KIF4A down-regulation 

Short hairpin targeting KIF4A mRNA was purchased from Sigma (Track number TRCN0000074163, 

clon ID: NM_012310.2-4179s1c1; Sequence: CCGGCCTCAGGAATGAGGTTGTGATCTCGAGA 

TCACAACCTCATTCCTGAGGTTTTTG) cloned into PLKO.1-puro vector, which allows for transient 

transfection or stable selection via puromycin resistance. In addition, the plasmid may be used to generate 

lentiviral transduction particles in packaging cell lines. The last strategy was chosen following 

manufacturer instructions. Briefly, packaging cell line HEK293FT was lipotransfected (Lipofectamine 

2000, Invitrogen) with pLKO.1-shKIF4A and proper packaging vectors (pVSV-G and pCMV-dR8.91). 

48 h later, culture supernatant containing lentiviral particles was recovered and filtered to proceed to CRC 

cell lines transduction in presence of Polybrene (6 μg/ml). After 5 days of puromycin selection (DLD1: 2 

μg/ml, HCT116: 0.5 μg/ml, SW620: 1.5 μg/ml, Ls174T-W4: 3 μg/ml), polyclonal cell populations were 

evaluated for KIF4A knockdown. Simultaneously, lentiviral particles containing non-targeting shRNA 

(pLKO.1-shNT) were used to obtain control cell lines.  

2.9. KIF4A cloning and overexpression 

KIF4A cDNA was obtained from HEK293T cell line by retrotranscription form total RNA extracts using 

Transcriptor First Strand cDNA Synthesis Kit (Roche ®). Specific primers were used to amplify KIF4A 

cDNA and clone it into a pcDNA3.1/V5-His TOPO vector (Invitrogen ®) including a Kozak sequence 

(Table 4). 
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After checking KIF4A cDNA sequence by sequencing, HEK293T cells were transiently transfected using 

Lipofectamine (Invitrogen ®), following manufacturer instructions. pcDNA3.1/V5-His TOPO/LacZ was 

used as control vector. 

2.10. Doubling time calculation-SRB method 

The doubling time is the period of time required for a cell population to double. Cell line’s doubling times 

were calculated using SRB (sulforhodamine B) method as described previously (114). SRB stains protein 

content and the absorbance measurement at 590 nm can be used for cell density calculation. 

2,000 cells were seeded on 96 well microtiter plates. One plate was TCA (10 %) fixed every 24 h for 6 

days. Once all plates were fixed, they were SRB stained and washed in 1 % acetic acid. SRB precipitates 

were dissolved in 10 mM Tris pH10 and absorbance was measured at 590 nm.  

Absorbance measurements were plotted versus time and non-linear regression was applied to calculate 

doubling time value for each cell line.  

2.11. Anchorage-independent Growth Assay 

One of the hallmarks of cell transformation is the capacity of cells to grow on a semi-solid substrate or the 

anchorage-independent growth. The assay was done in 6-well plates with a base layer containing 0.6 % 

agar in complete DMEM or RPMI (Ls174T variants). This layer was overlaid with a second layer of 1.5 

ml of 0.3 % agar containing a suspension of 30,000 cells. The plates were incubated at 37°C for 10–14 

days and tumour colonies were overnight stained with 1 mg/ml nitroblue tetrazolium chloride 

monohydrate (Sigma). Plates were scanned and colonies were automatically scored using Clono-Counter 

software (115).  

2.12. Matrigel Invasion assay 

The Matrigel invasion Assay provides an in vitro system to study cell invasion because it allows the 

assessment of the metastatic potential of tumour cells. The ability of cells to invade through Matrigel-

coated filters was determined using 24-well Boyden chamber (Beckton Dickinson; 8 μm pore size) 

covered by 1 mg/ml Matrigel. CRC cells were seeded at different densities (HCT116: 100 cells/μl, 

SW620: 100 cells/μl, Ls174T-W4: 500 cells/μl) in 100 μl DMEM containing 1 % FBS in the upper 

compartment of transwell. pcDNA-TOPO-KIF4A transfected HEK293T cells were seeded 24h post-

transfection at 50 cells/μl. The lower compartment was filled with DMEM 10 % FBS, acting as attractant. 

After incubation for 48 h at 37°C in 5 % CO2, the cells that not penetrated the filter were wiped out with 

a cotton swab, whereas the cells that had migrated to the lower surface of the filter were methanol fixed 

and Giemsa stained. Filters were mounted on microscope slides to enable cell counting under a contrast 

phase microscope (10X). Four fields covering filter’s central area were counted on each case.  
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2.13. MTT assay 

The MTT assay is a colorimetric assay that measures cellular metabolic activity via NAD(P)H-dependent 

cellular oxidoreductase enzymes and reflects the number of viable cells. It was used to measure 

cytotoxicity or cytostatic activity of camptothecin-derived drugs. 

Cells were seeded in 96-well plates at a density of 3000 cells/well and treated with increasing amounts of 

CPT or CPT-11 in six replicates. 1 % SDS was used as mortality control. After 72 h, 3-(4, 5)-

dimethylthiahiazo(-z-y1)-3,5-diphenyl-tetrazoliumromide (MTT) at 5 mg/ml was added into each well 

and incubated for 4 h at 37ºC. After adding 180 μl dimethyl sulfoxide (DMSO) to each well, the 

absorbance was measured at 590 nm. Survival percentages were calculated upon 0% (1 % SDS) and 

100% (no drug) survival controls. Non-linear regression adjustment was used to compare the different 

curves obtained and to calculate IC50 values. 

2.14. Statistical analyses 

All statistical analyses were performed using GraphPad Prism software 5.0; statistical test applied in each 

experiment is depicted in figure legends. Statistical significance was set up to p<0.05. Multivariate Cox 

regression analyses were run in SPSS software package. Unless stated differently, results are expressed in 

terms of mean +/- standard deviation. 
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Results 

1. Condensin complex and KIF4A are up-regulated 

in human CRC 

Condensin complex and kinesin KIF4A cooperate in chromosome condensation and dinamycs during 

mitosis. KIF4A has been previously related to cancer progression, but data is conflicting, as explained 

before. Our focus is colorectal cancer, so we decided to study condensin complex and KIF4A expression 

in colorectal tumours. 

Expression levels of condensin complex subunits were initially evaluated on 15 Normal-Tumour paired 

samples from patients that had undergone surgery for colon carcinoma in Vall d’Hebrón hospital. Q-PCR 

measurements showed that different members of condensin complex were clearly up-regulated in the 

tumour counterparts comparing to the matched normal tissues (Fig. 18): core member SMC2 was up-

regulated in 12 out of 15 cases (80 %), HEAT subunits NCAPG and NCAPG2 were up-regulated in 12 

(80 %), whereas kleisin subunit NCAPH was up-regulated in 8 (53 %) cases. 

Kinesin KIF4A expression levels were also evaluated in 24 patient samples (Fig. 19), in which KIF4A 

was significantly over-expressed in 15 tumoral counterparts (62.5 %). Raw data from Q-PCR studies are 

depicted in Table 6. 

These observations were further confirmed on an independent study from Denmark and Finland (Fig. 20). 

This study consisted in the transcriptome evaluation by expression microarrays (Human Genome U133A 

GeneChip array, Affymetrix) of 122 non-matched CRC samples (17 normal, 105 tumours) previously 

described (116). Clinico-pathological features are summarized in Table 7. Briefly, the readings from the 

quantitative scanning were analysed by the Affymetrix Software MAS 5.0 and normalized using the 

quantile normalization procedure implemented in robust multiarray analysis (RMA). The RMA scores of 

the whole condensin complex and KIF4A were extracted from the total array data for our study. 

Arrays scores showed that the expression of these genes was significantly higher in the tumour than in the 

normal tissues studied. Moreover, significant positive correlations were found between the expression 

levels of condensin subunits and also between those and KIF4A. Spearman correlation coefficients are 

depicted in Table 8. These results pointed towards a significant associated expression of this group of 

genes. 
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Table 6. Raw data in Q-PCR studies. Average fold change in the tumoral counterparts for each gene is shown, being 
the normal counterpart normalized to 1 for each case. Significant overexpression is highlighted in purple (p<0.05, 

Student’s t test). N/A, not available. 

Patient ID SMC2 NCAPG NCAPG2 NCAPH KIF4A 

17 2,82 5,26 6,17 1,96 4,09 

26 6,29 N/A N/A N/A N/A 

31 N/A 10,98 11,27 5,26 7,86 

35 2,72 8,92 11,00 4,71 7,86 

36 3,38 3,14 3,02 2,03 N/A 

60 N/A 3,17 6,13 3,81 1,97 

66 10,67 8,94 12,33 6,00 7,92 

67 N/A N/A N/A N/A 27,76 

79 39,92 N/A N/A N/A N/A 

85 N/A 45,10 26,66 19,45 30,79 

86 N/A 36,33 12,50 4,45 11,09 

91 1,09 0,79 1,22 0,21 0,83 

94 6,48 N/A N/A N/A N/A 

95 3,04 N/A N/A N/A 4,66 

149 N/A N/A N/A N/A 3,16 

162 7,15 3,50 5,41 1,94 7,71 

213 0,64 1,18 0,59 0,69 0,75 

227 2,17 3,10 5,21 1,26 3,66 

233 2,72 3,74 2,41 2,02 4,51 

234 N/A N/A N/A N/A 4,90 

236 2,55 1,38 1,59 3,17 1,85 

237 N/A N/A N/A N/A 0,80 

241 N/A N/A N/A N/A 1,12 

252 N/A N/A N/A N/A 0,43 

253 N/A N/A N/A N/A 12,14 

255 2,36 3,29 4,09 0,20 0,60 

270 N/A N/A N/A N/A 1,76 

279 N/A N/A N/A N/A 1,08 
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Fig. 18. Condensin complex is up-regulated in CRC. Core subunit SMC2 (A) and three non-SMC subunits NCAPG 
(B), NCAPG2 (C) and NCAPH (D) were evaluated on 15 paired CRC samples by QPCR. Fold increase relative to the 
normal counterpart is represented (FC, Fold change) (*, p<0.05). Total mean values of 15 pairs were compared using 
a Student’s t test (right panels) Boxplots represent minimum and maximum values (***, p<0.001).  
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Fig. 19. Kinesin KIF4A is up-regulated in CRC. KIF4A expression was studied in 24 paired CRC samples by Q-
PCR. Fold increase relative to the normal counterpart is represented (FC, Fold change). Total mean values of 24 pairs 
were compared using a Student’s t test (right panels). Boxplots represent minimum and maximum values. (***, p-
value<0.001). 

Table 7. Clinical features of 105 CRC patients dataset from Denmark and Finland. 

Age (Average, Min-Max) 59.32 (32-87) 

Stage I 2 2% 

(n , %) II 36 34% 

III 65 62% 

N/A 2 2% 

Grade (n, %) Good 6 6% 

Moderate 78 74% 

Poor 20 19% 

N/A 1 1% 

Location (n, %) Right 29 28% 

Left 31 30% 

N/A 45 43% 

MSS status Sporadic MSI 20 19% 

(n, %) Hereditary MSI 17 16% 

MSS 61 58% 

N/A 7 7% 
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Table 8. Spearman correlation coefficients between expression levels of KIF4A and condensin complex members in 
the danish/finish study. Statistically significant coefficients (p<0.05) are highlighted in bold 

SMC4 NCAPD2 NCAPD3 NCAPG NCAPG2 NCAPH KIF4A 

SMC2 0.43 0.40 0.29 0.47 0.40 0.13 0.53 

SMC4 0.51 0.62 0.62 0.43 0.42 0.52 

NCAPD2 0.55 0.50 0.45 0.47 0.71 

NCAPD3 0.60 0.68 0.46 0.63 

NCAPG 0.67 0.56 0.71 

NCAPG2 0.45 0.67 

NCAPH 0.53 

 

Microarray expression data was interrogated using Student’s t test to explore any association with the 

different clinico-pathological characteristics in this set of patients. No significant association was found 

between condensin complex or KIF4A expression levels and any clinical feature (Table 9).  

Multivariate Cox regression analyses were run to explore the influence of expression levels of the 

different condensin complex members and KIF4A on patient overall survival or disease free survival. As 

expected, location (p= 0.03), age (p= 0.02) and stage (p= 0.015) were significantly associated with patient 

overall survival, whereas only age was significantly associated to disease free survival (p= 0.022). 

Regarding condensin complex and KIF4A, no independent significant association was found between 

patient overall- or disease free-survival and the expression levels of these genes. 

Table 9. p-values from Student’s t test analyses of Condensin complex/KIF4A association to patient’s clinical 
features. Age threshold was set based on average age (59.32 years). 

Gene 
Stage 

(II vs. III) 

Grade 

(Well and 

Moderate vs. Poor 

differentiated) 

Age 

(Threshold 59 

years) 

Location 

(Right vs. 

Left) 

MSI status 

SMC2 0.436 0.830 0.282 0.261 0.801 

SMC4 0.595 0.590 0.201 0.615 0.616 

NCAPD2 0.633 0.817 0.365 0.179 0.130 

NCAPD3 0.497 0.132 0.637 0.285 0.519 

NCAPG 0.464 0.800 0.831 0.849 0.177 

NCAPG2 0.724 0.681 0.498 0.231 0.994 

NCAPH 0.390 0.872 0.701 0.926 0.443 

KIF4A 0.583 0.057 0.758 0.355 0.507 
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Fig. 20. Condensin complex and KIF4A expression in the Finish/Danish microarray. Expression data of 
condensin complex and KIF4A was extracted from an independent expression microarray-based study. Relative 
expression levels (array scores) are represented for 17 normal and 105 tumour samples. Average scores are 
represented for those genes that had more than one probe in the array. Student’s t test was used to compare normal 
versus tumour expression scores (*, p <0.05; ***, p<0.001). 
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In order to validate gene expression data at protein level, SMC2, NCAPH and KIF4A proteins were 

measured by IHC on formalin-fixed, paraffin embedded CRC tissues (Fig. 21). Tumour cells showed 

strong SMC2 staining both in the nuclei and cytoplasm compartments (Fig. 21 B, C). NCAPH was 

concentrated also in tumoral cells, but mainly at cytoplasm level (Fig. 21 E, F). KIF4A was also over-

expressed in the tumoral counterparts but its expression was limited to nuclei compartment (Fig. 21 H, I). 

SMC2, NCAPH and KIF4A levels could be also evaluated in normal intestinal mucosa, and we found that 

these three proteins were also up-regulated in the lower part of the colon crypts (Fig. 21 A, D, G), where 

Wnt signalling is active and cells actively proliferate in order to maintain the normal epithelial 

homeostasis (117). 

This particular staining at the bottom of normal crypts together with a progressive decreased expression 

towards the top of the crypt, which is similar to the expression profile described in target genes of the 

Wnt signalling pathway, suggested that condensin complex and KIF4A could be under Wnt signalling 

regulation. Hence, we explored Wnt signalling influence on condensin complex and kinesin KIF4A 

expression. 

 

Fig. 21. IHC on normal and tumoral tissue from CRC biopsies. Normal (A, D, G) and tumoral tissues (B-C, E-F, 
H-I) were subjected to IHC staining for SMC2 (A-C), NCAPH (D-F) or KIF4A (G-I). Images from normal samples 
were taken under bright field microscope at 10X. For tumour tissues two different magnifications, 10X and 20X, are 
shown. SMC2 is concentrated on nuclei in the bottom part of the crypts (A), and both in normal and cytoplasmic 
compartment in tumour cells (B-C). NCAPH is mainly cytoplasmic both in normal (D) and tumour specimens (E-F). 
KIF4a is predominantly nuclear in the lower part of the normal crypts (G) and tumour cells (H-I). 

 �
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2. Wnt regulation of Condensin complex 

2.1. Expression of SMC2 and SMC4 proteins correlates with β-

catenin. 

Condensin complex regulation along the cell cycle has already been described (71),(118). However, little 

is known about the particular effectors that regulate the expression of this protein complex at 

transcriptional level. 

Spatial distribution of condensin complex along the intestinal crypts resembled the expression pattern of 

genes under Wnt signalling regulation. To test if SMC2/SMC4 expression was in concordance to Wnt 

signalling activity, their protein levels were measured by western blot, along with the central regulator of 

the Wnt pathway, β-catenin, on 14 pairs of normal-tumour samples (Fig. 22 A) and 14 different colon 

cancer cell lines (Fig. 22, B). As expected, western blots showed that SMC2 and SMC4 were up-

regulated in the tumoral counterparts (in 69% and 48.1% of cases, respectively). Furthermore, a strong 

positive correlation was found between SMC2/SMC4 and β-catenin levels, both in tissue samples and in 

colon cancer cell lines (Fig. 22, C).  

2.2. Overexpressed SMC2 and SMC4 proteins co-localize with 

nuclear ββ-catenin staining 

Although β-catenin levels could serve as Wnt signalling activity indicator, its transcriptional activity 

depends on its nuclear accumulation as Wnt target genes expression depends on nuclear β-catenin 

transcriptional activity. So, the main hallmark of Wnt activation is the cytoplasmic and nuclear 

accumulation of β-catenin. To test if condensin complex could be under β-catenin regulation, we 

investigated SMC2 and NCAPH protein expression in tumours exhibiting different β-catenin 

localizations. After blinded IHCs evaluation of 43 tumour samples arrayed on a TMA (Fig. 23), we found 

a significant association between nuclear β-catenin localization and high expression of SMC2 and 

NCAPH, whereas membrane localized β-catenin was found in conjunction with low levels of SMC2 and 

NCAPH (p= 0.0464 and p= 0.0014, respectively; Fisher exact test). 

 

Summing up, condensin core members SMC2/SMC4 expression significantly correlated with β-catenin 

expression in primary colon tissues and colon cancer cells lines; moreover, the nuclear accumulation of β-

catenin correlated to SMC2 and NCAPH overexpression, indicating that this complex could be under 

direct regulation of the Wnt pathway; hence, we next explored these genes promoters in order to identify 

functional TCF-4 responding elements. 
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Fig. 22. Correlated expression of SMC2, SMC4 and β-catenin proteins. SMC2, SMC4 and β–catenin levels were 
evaluated by WB in samples from CRC patients (n=27, a representative subset is shown, N= Normal, T= Tumour) 
(A) and colorectal cancer cell lines (n=14) (B). Actin was used as loading control. C, SMC2, SMC4 and β–catenin 
protein levels on WB were determined by gel band quantification and normalized to the corresponding actin levels. 
Values were used to perform correlation studies following Spearman test. 

 

Fig. 23. Increased levels of condensin subunits correlate with β-catenin subcellular location. 
Immunohistochemistry using antibodies against β-catenin (A, D), SMC2 (B, F) and NCAPH (C, G) are shown. Cell-
junctional localization of β-catenin in human CRC tumour samples was associated with low levels of SMC2 and 
NCAPH proteins (A-C). However, nuclear β-catenin localization was associated with high levels of SMC2 and 
NCAPH (D-G). H, I, Quantification of the correlation between SMC2 (p = 0.0464) and NCAPH (p = 0.0014) protein 
expression and β-catenin localization, as observed in (B-G). Data analysed using Fisher Exact Test. Images taken 
under a bright field microscope at 20X. 
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2.3. IIn si l ico  analysis of SMC2 and SMC4 promoters. 

As explained before, previous studies of our laboratory demonstrated that SMC2 and SMC4 levels were 

down-regulated in cellular models for Wnt pathway inhibition. Moreover, ChIP studies demonstrated that 

the transcription factor TCF-4 binds to SMC2 promoter. In order to determine whether SMC2/4 could be 

direct targets of the β-catenin/TCF-4 transcription factor complex, transcription start site (TSS) upstream 

sequences of the human SMC2 and SMC4 genes were obtained from Ensembl database (119). Three 

different software packages were used for in silico prediction of the SMC2 promoter: Gene2Promoter 

recognized a very highly promoter-like region between the -308bp and +420bp region (considering 0bp 

the transcription start site); Promoter 2.0 predicted a promoter region starting in the -476bp position; 

lastly, PromoterScan located two putative regulatory regions, from the -597bp to -348bp position, and 

from -313bp to -64bp, respectively. For subsequent studies, we compiled a SMC2 promoter based on the 

different predictions, which was determined to be from position -597bp to the translation start site (+1059 

bp) (Fig. 24, A). In this region, two putative TATA boxes were identified at positions -591bp and -12bp 

and three recognition sites for the Sp1 transcription factor were situated at -561bp, -301bp and +219bp 

positions. The predicted SMC2 promoter was subjected to a screen in silico for putative TCF binding 

elements (TBE). rVista 2.0 (NCBI DCODE, http://rvista.dcode.org/), TESS (Transcription Element 

Search System, http://www.cbil.upenn.edu/cgi-bin/tess/tess) and Matinspector software (Genomatix, 

http://www.genomatix.de) were used and predicted four different elements: TBE1 (-389bp), TBE3 (-

20bp), TBE4 (+57bp) and TBE6 (+724bp). Additionally, MatInspector located two further TBEs: TBE2 

(-37bp) and TBE5 (+98bp). Interspecies conservation analysis showed that the TBEs located closer to 

transcription start site, TBE2 and TBE3, were highly conserved in orthologous SMC2 promoters of 

mouse, rat, macaque and chimpanzee (Fig. 24, B). 

Promoter 2.0 software predicted that the region from the -1500bp position to the transcription start site 

(0bp) of SMC4 was highly likely to be a promoter region, in which one TATA box (-837bp) and three 

Sp1 sites (-1066bp, -21bp and -5bp) could be identified. Two putative TBE were predicted in this region 

(-1270bp and -1294bp), but none of them were phylogenetically conserved in mammals (data not shown), 

so we continued our study by focusing on Wnt pathway regulation of SMC2 expression. 
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Fig. 24. SMC2 promoter structure. A, Schematic representation of predicted SMC2 human promoter. Sequence and 
position of putative TCF-4 responding elements are indicated. Arrow indicates the transcription start site. B, 
Sequence alignment of SMC2 promoter orthologous from human (H_sapiens), chimpanzee (P_troglodites), macaque 
(M_mulatta), rat (R_novergicus) and mouse (M_musculus). Conserved TBE sites are highlighted in orange. 

2.4. SMC2 promoter activity assessment 

The full-length promoter of SMC2 (from -597 bp- to +1509 bp) was cloned into a pGL3 Firefly luciferase 

reporter vector (pSMC2), and its activity was assayed in cells following transient transfection alone, or in 

combination with β–catenin expression vector (pBCAT) or alternatively, a constitutively active form of 

TCF-4 (VP16-TCF4).  

First, pSMC2 activity was assessed in human embryonic kidney cells (HEK293T), where Wnt signalling 

is not aberrantly activated by mutation. As shown in Fig. 25, increasing concentrations of β-catenin or 

VP16-TCF4 resulted in a significant increase in pSMC2 activity in a dose-dependent manner. Vectors 

pTOP-flash and pFOP-flash were run in parallel as positive and negative controls, respectively. 

Next, pSMC2 activity was evaluated in two colon carcinoma cell lines, DLD1 and HCT116, carrying 

respectively an activating mutation in β-catenin or an inactivating mutation in APC (120), (Fig. 25, B-C). 

Again, TOP-flash vector was run in parallel as positive control of Wnt pathway stimulation. 

In both cell lines, SMC2 promoter showed a significant transactivation increase after the co-transfection 

with the β-catenin expression vector or the constitutively active form of TCF-4; this supports the 

hypothesis that the activated Wnt pathway can drive transcription from the SMC2 promoter via the β-

catenin/TCF4 transcription complex, additionally in a colorectal cancer cell context. 
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Fig. 25. Functional study of SMC2 promoter activity. HEK293T (A), HCT116 (B) and DLD1 (C) cell lines were 
transfected with SMC2 promoter-luciferase reporter construct together with control Renilla luciferase reporter pRL-
TK for normalization (RLU: relative luciferase units). pSMC2 was tested alone or in combination with increasing or 
fixed amounts of expression plasmids for β-catenin, VP16-TCF4 or the empty vector pcDNA3 (pcDNA), were 
indicated. Reporter vectors pTOP-flash (TOP) and pFOP-flash (FOP) were used as positive and negative control, 
respectively (*, p<0.05; **, p<0.01; ***, p<0.001). 

 �
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2.5. Identification of active regulatory TCF4 responding 

element in pSMC2 

In order to define the minimal transcriptional regulatory region in the SMC2 promoter, we generated a 

series of terminal deletions of the full-length sequence based on the position of the predicted TCF 

response elements (Fig. 26, A). DLD1 and HCT116 cells were transfected with the three different 

deletion mutants, and luciferase activity was measured. Deletion of the first 100 base pairs in the SMC2 

promoter resulted in decreased luciferase activity, and the promoter activity was almost lost when the 

deletion removed all of the putative TBEs (except TBE6). It was also confirmed that the 0.5 Kb (Δ3 

sequence), that contains TBEs 1, 2, 3, 4 and 5, maintained the maximal activity in both cell lines. 

Fragment Δ3 showed a luciferase activity similar to the full-length sequence. Thus, we defined Δ3 as the 

minimal regulatory region and used it for further mutational studies (Fig. 26, B-C). 

As mentioned before, interspecies conservation analysis showed that 2 out of the six TBEs predicted, 

TBE2 and TBE3, were highly conserved in orthologous SMC2 promoters (Fig. 24, A), and both were 

present in the minimal regulatory region, Δ3. Additionally, we had previously detected the promoter 

region where TCF-4 is bound to SMC2 promoter (Fig. 17), which coincides within that minimal region 

Δ3.  

To investigate whether those conserved TBEs were functionally relevant, we performed site-directed 

mutagenesis in order to disrupt TCF-4 binding ability (Fig. 27, A). We detected a significant decrease in 

luciferase activity when TBE3, located at -20bp, was mutated. However, mutations in all other TBEs did 

not affect luciferase activity driven by the SMC2 promoter (Fig. 27, B-C).  

To confirm TBE3 susceptibility to Wnt signalling transactivation, we measured luciferase activity after 

co-transfection of β-catenin or VP16-TCF4 expression plasmids and different mutational combinations in 

Δ3 fragment. The enhancement of luciferase activity in response to Wnt/β-catenin stimulation, observed 

in Δ3, was lost when TBE3 was disrupted (Fig. 27, D-E). As expected, mutations in TBE 1, 2, 4 and 5 did 

not affect promoter response to β-catenin or VP16-TCF4 stimulation. Thus, we identified the TCF 

response element located at -20bp (TBE3) as responsible for β-catenin/TCF4 transactivation of the SMC2 

promoter.  
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Fig. 26. Determination of the minimal regulatory region of SMC2 promoter. A, Relative position and sequences 
of the putative TBEs predicted in silico in the SMC2 promoter and deletion mutants for luciferase reporters 
performed. B, C, Determination of fragment 3 as the minimal regulatory region of SMC2 promoter. Luciferase 
activity of each deletion mutant was normalized to Renilla luciferase internal control (RLU: relative luciferase units) 
in DLD1 (B) or HCT116 (C) cell lines; a representative result is shown out of at least 3 independent experiments. *, 
p<0.05; **, p<0.01; t Student test, (promoter activity versus full length SMC2 promoter (SMC2 FL). 
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Fig. 27. Elucidation of the TBE responsible for β-catenin/TCF4 transactivation in the human SMC2 promoter. 
A, Schematic representation of SMC2 promoter mutant variants. DLD1 (B) or HCT116 (C) cell lines were 
transfected with the constructs shown in A. Luciferase activity was normalized to Renilla activity (RLU: relative 
luciferase units); a representative result is shown out of at least 3 independent experiments. DLD1 (D) or HCT116 (E) 
cell lines were co-transfected with Δ3 fragment mutational combinations and expression vectors for β-catenin, VP16-
TCF4 (constitutively active form of TCF4) or the empty vector pcDNA3 (pcDNA); a representative result is shown 
out of at least 3 independent experiments. (*, p<0.05; **, p<0.01,***, p<0.001). 
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Discussion 

1. Expression of the chromosome condensation 

machinery in CRC 

Condensin complex members -SMC2, SMC4, NCAPG, NACPG2, NCAPD2, NCAPD3, NCAPH- and 

kinesin KIF4A are significantly up-regulated at mRNA level in colorectal cancer in a high percentage of 

cases. Two independent sets of patient samples have been evaluated, showing the same results (Figs. 18, 

19 & 20) Moreover, we find a significant positive correlation in the expression levels of these genes, 

possibly as a consequence of their coordinated function in mitosis and chromosome dynamics. In 

addition, we demonstrate that the over-expression of these genes in colon tumours is also present at 

protein level, at least for SMC2, SMC4, NCAPH and KIF4A (Fig. 21 & 22). 

To date, the condensin complex has not been linked to tumorigenesis. There is only one study that 

identifies point mutations in SMC2 and SMC4 in two cell lines derived from phytorax-associated 

lymphoma (133). The authors describe how these mutations conduct to reduced expression levels of both 

SMC2 and SMC4, causing aberrant chromosomal morphology and inaccurate chromosome segregation in 

mitosis. The authors postulate that this phenotype could contribute to the chromosomal instability present 

in this type of tumours. Certainly, several in vitro studies had previously described how impaired function 

of condensin results in chromosomal abnormalities and genomic instability (134,135). Condensin 

depletion in metazoan’s cells results in stretched centromeres and massive merotelic attachments (105). 

Unlike yeast condensin mutants, metazoans’ spindle checkpoint does not correct the miss-attachments 

and cells enter in a delayed anaphase. As a consequence, anaphase bridges and lagging chromosomes are 

frequently observed after condensin depletion, which later give rise to chromosome breaks and non-

disjuntion, ultimately resulting in aneuploidy (80,106,136). 

It is feasible to hypothesize that condensin loss of function could be under the genomic instability 

observed in colon tumours. However, contrary to condensin depletion, we have observed an up-regulation 

of these genes in colorectal cancer. Despite various mutations have been found in condensin complex 

members in various cancer genomes (106), it has not been clarified if these mutations confer actually a 

loss or a gain of function, except those found in phytorax-associated lymphoma mentioned above. 

In order to assess the expression levels of condensin and KIF4A not only in CRC, but also in other 

tumour types, we consulted the Oncomine database (137). Oncomine is a cancer microarray database and 

web-based data-mining platform. Oncomine allows researchers to explore gene expression across the 

increasing number of publications based on cancer expression microarray studies. It integrates data from 

genome-wide expression microarrays, including those from the Cancer Genome Atlas (TCGA) project 

(website: www.oncomine.org). 
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Oncomine data confirmed that the over-expression of the condensin complex is more common that its 

under-expression, not only in CRC but also in other types of cancer.  

Table 13. Oncomine results. Number of studies where the specified gene was found over-expressed (in red) or under-
expressed (in blue) comparing tumour versus normal tissues. Selected thresholds: Fold change = 2, p-value < 1e-4. 

Cancer Type SMC2 SMC4 NCAPG NCAPG2 NCAPD2 NCAPD3 NCAPH NCAPH2 KIF4A 

Bladder  2 2 4 1 1 2 2 2 

Brain & CNS 2 8 5 3 1 1 1 1 1 1 5 1 

Breast 1 1 7 1 4 1 1 1 1 1 1 6 1 6 1 

Cervix 3 4 4 3 1 1 3 1 4 

Colorectal 4 9 6 10 5 7 10 7 

Esophaegal 1 2 1 1 1 1 2 

Gastric 1 2 1 1 1 1 2 1 2 

Head and Neck 2 5 4 1 1 1 

Kidney 4 1 2 

Leukaemia 2 2 3 2 2 1 3 1 3 2 

Liver 3 3 1 1 1 6 

Lung 2 5 4 6 3 1 7 3 

Lymphoma 3 2 2 3 3 3 2 

Melanoma 1 1 1 

Myeloma 1 1 

Ovarian 3 1 1 2 1 1 

Pancreatic 1 1 1 

Prostate 1 1 1 

Sarcoma 9 9 9 8 4 2 9 

Other 2 2 4 3 2 1 3 1 2 1 2 4 1 5 

 

Further, supporting the oncogenic role of other SMC proteins, overexpression of SMC3 has been reported 

in 70% of colon cancer specimens (107). The study describes how SMC3 is aberrantly up-regulated in 

colon cancer cell lines and in intestinal tumours derived from APCmin mice. Moreover, SMC3 

overexpression induces oncogenic transformation in murine fibroblasts, even though the exact mechanism 

by which SMC3 up-regulation leads to cell transformation is still unknown.  

SMC3 forms the core of the cohesin complex with SMC1; this complex is essential for sister chromatid 

cohesion after DNA replication until anaphase. The loss of function of cohesin leads to chromosome 

miss-segregation and aneuploidy (138,139), similarly as condensin depletion does. 

It is believed that cohesin down-regulation contributes to cancer by leading to chromosome instability. 

For cancers with loss of cohesin function, this idea seems plausible (108). However, overexpression of 

cohesin in cancer appears to be more significant for prognosis than its loss (140–142). Increased levels of 

cohesin subunits correlate with poor prognosis and resistance to drug, hormone, and radiation therapies 
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(143). Multiple lines of evidence show that cohesin function does not limit to chromatid cohesion; it has 

been recently involved in DNA damage repair (60,144), hormone-dependent gene expression (145,146) 

and tissue-specific gene regulation (147). It is hypothesized that interphase functions of cohesin are under 

its implication in tumorigenesis. 

Clearly, SMC complexes are essential for genome integrity maintenance, and their miss-function can lead 

to cell transformation. siRNA-mediated depletion of SMC2 impairs the viability of CRC cells, as huge 

chromosomal aberrations lead cells to G2/M abrogation and apoptosis (Fig. 15), (77); but this effect does 

not inform us about a putative role of SMC2 in cell transformation.  

No experimental data is available to explain the role of condensin overexpression in tumorigenesis. 

Aberrant high amount of condensin complexes could lead to premature condensation, centromeres 

dysfunction or sister chromatid resolution defects, ultimately leading to CIN. Additionally, as cohesin 

complex, altered interphase functions recently assigned to condensin complexes could be also implicated 

in cancer development, like DNA damage repair (60), rDNA stability (148), gene repression (149–151) or 

chromatin 3D-structure organization (61,99). 

The case of KIF4A is a different one, as there is more evidence about its implication in tumorigenesis. 

Nevertheless, its exact role in tumour progression is still under debate. On the one hand, KIF4A depletion 

leads murine stem cells to tumorogenic transformation in vitro (97) and its overexpression in gastric 

cancer cells impairs cell proliferation (98), postulating KIF4A as a tumour suppressor. On the other hand, 

studies on patient samples show that KIF4A is overexpressed in non-small cell lung cancer (96) and 

cervix cancer (95). Also, if we consider the genome-wide expression studies included in the Oncomine 

database (Table 13), it is clear that KIF4A up-regulation is a common feature in cancer. 

Similarly, our data demonstrates that KIF4A is overexpressed in colon cancer. The putative role of 

KIF4A on colon tumorigenesis will be discussed below. 
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2. Wnt regulation of the chromosome 

condensation machinery 

Wnt signalling is the major regulator of intestinal homeostasis. Wnt ligands promote cell proliferation in 

the base of the colonic crypt. As long as cells move upwards to the intestinal lumen, Wnt signalling 

activity decreases and cells enter into differentiation. The gradient of Wnt ligands along the crypts 

explains the differential spatial expression of Wnt target genes, highly expressed in the bottom of the 

crypt and in the transient amplifying cells compartment. 

The hallmark for Wnt activation is the cytoplasmic and nuclear accumulation of β–catenin. When a Wnt 

ligand binds to the heterodimeric membrane receptor LRP5/6-Frizzled, the β–catenin degradation 

complex function is disrupted, β–catenin protein accumulates in the cytoplasm and traslocates to the 

nucleus to trigger proliferative transcriptional programs.  

We observe that SMC2, NCAPH and KIF4A protein are highly expressed in those crypt compartments, 

with their expression decreasing towards the intestinal lumen (Fig. 21). SMC2, SMC4 and KIF4A protein 

expression correlate significantly with β–catenin protein levels in normal and tumoral tissue samples and 

also in CRC cell lines (Fig. 22 & 31); moreover, we find a strong association between SMC2, NCAPH 

and KIF4A protein levels and nuclear distribution of β–catenin in human colon tumours (Fig. 23 & 31).  

These results prompt us to investigate if Wnt signalling might regulate the expression of the condensin 

complex and kinesin KIF4A.  

2.1. SMC2 is a novel transcriptional target of canonical Wnt 

signalling 

In vitro studies performed previously in our group demonstrated that SMC2 and SMC4 protein expression 

were down-regulated upon Wnt signalling blockade. Both dnTCF4 induction and siRNA-mediated 

depletion of β-catenin reduced significantly SMC2 and SMC4 protein levels (Fig. 16). 

We further focused in SMC2 promoter activity, as SMC2 promoter sequence contain putative TCF-4 

responding elements that are evolutionary conserved. Luciferase reporter assays demonstrated that β-

catenin and TCF-4 drive SMC2 promoter activity, and the blockade of TCF-4 binding to SMC2 promoter 

disrupts its transcriptional activity. We had previously observed that TCF-4 factor is bound to SMC2 

promoter in vivo. In this study we have additionally been able to identify the TCF-4 binding element 

responsible for SMC2 promoter response to Wnt signalling activation (Fig. 27). 

Parallel experiments in which SMC2 expression is depleted in DLD1 cells show that there is a 

corresponding reduction in the levels of SMC4 and the non-SMC regulatory subunit NCAPH (80). 

However, even though the expression of other condensin subunits appears to be very tightly linked to the 

expression of SMC2 (Table 8), no conserved TBE sites were located within SMC4 promoter. 
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Therefore, additional studies should be performed to investigate the transcriptional regulation of the 

whole condensin complex and its putative crosstalk with the canonical Wnt pathway. 

In summary, this study has identified SMC2, one of the core members of condensin complex, as a novel, 

bone fide target of β–catenin/TCF4 transcription, which could explain its frequent overexpression in 

colonic tumours. 

It is known that Wnt signalling promotes cell proliferation because stimulates cell division. G1 

progression is triggered by active transcription of cell cycle effectors like cyclin D and C-MYC, and 

inhibition of cell cycle repressors, like p21 and p27. Thus, it is logical that canonical Wnt target genes 

oscillate during the cell cycle, peaking at G1/S boundary (C-MYC) or G2/M (LGR-5, AXIN2) to prepare 

cells for division. Contrary to expected, Takemoto et al. observed that in HeLa cells, condensin protein 

levels remain stable throughout the cell cycle (71). However, a recent study on enterocitic differentiation 

showed that all condensin members’ expression decrease when Caco-2 cells differentiate (152). In 

agreement to this, parallel studies in our group demonstrated that condensin complex expression 

decreases under replicative senescence (Kandhaya–Pillai, R. Doctoral thesis, 2011). These data, together 

with spatial distribution of condensin along the intestinal crypt argues in favour a cell-cycle dependent 

regulation of the condensin complex.  

Similarly, another SMC protein from the cohesin complex, SMC3, has also been identified as a β–

catenin/TCF-4 target gene (109). Despite their differential roles in chromosome conformation and 

dynamics, both condensin and cohesin complexes are essential to ensure faithfully segregation of DNA 

into the two daughter cells. Under this scenario, Wnt-dependent transcription of members from both 

complexes might ensure adequate levels of chromosome scaffold proteins to drive appropriate cell 

division. 

2.2. KIF4A expression is ββ–catenin regulated, independently 

from TCF-4  

Data presented in this study demonstrates that KIF4A expression is tightly related to cell proliferation. 

First, KIF4A is highly expressed in the transit-amplifying compartment of colonic crypts, correlative to 

the proliferative marker Ki67. Moreover, KIF4A expression significantly correlates to PCNA in colon 

cancer cell lines (Fig. 29). Not surprisingly, KIF4A is highly expressed in proliferative tissues, like 

hematopoietic tissues, fetal liver, spleen, thymus and bone marrow, whereas lower levels are found in 

heart, testis, kidney, colon and lung (90). Furthermore, KIF4A expression is reduced under replicative 

senescence (153). 

Secondly, in vitro models for enterocytic differentiation reveal that KIF4A expression is lost when cell 

cycle stops and cells differentiate, either when induced by cell-to-cell contact or in response to butyrate 

treatment (Fig. 30)  

Accordingly, KIF4A is cell cycle regulated. KIF4A protein increases in S-phase and remains stable until 

early G2/M; but latter in this phase, protein levels back to the interphase ones. It is important to note that 
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a significant amount of KIF4A persists in interphase, localized in the nucleus. KIF4A gene transcription 

follows an alternate dynamic, as it peaks at G2/M phase (Fig. 28). This would be a consequence of the 

complex post-translational regulation of KIF4A protein. KIF4A is phosphorylated specifically in mitosis, 

probably to regulate its function (154,155). In late mitosis, KIF4A could be actively degraded by the 

proteasome after accomplishing its function in cytokinesis. Hence, the peak of transcription observed in 

G2/M might ensure KIF4A G1 levels present in the nucleus in interphase.  

KIF4A association to β-catenin expression and nuclear localization in tumours (Fig. 31) encouraged us to 

explore the putative Wnt-dependent regulation of KIF4A.  

Not surprisingly, KIF4A protein decreases upon Wnt activity blockade in Ls174T-derived cell lines (Fig. 

32), as these cells enter in cell cycle arrest under these conditions. Remarkably, KIF4A protein inhibition 

is more prominent under β-catenin depletion than under TCF-4 blockade. We then explored if this effect 

was directly or indirectly mediated by TCF-4 exploring the promoter sequence of KIF4A. 

We found only one evolutionary conserved TBE in KIF4A promoter sequence at -906bp position, 

considering 0bp the transcription start site (Fig. 33). Reporter assays demonstrated that KIF4A responds 

to β-catenin and LiCl stimulation, whereas TCF-4 co-transfection does not alter KIF4A promoter activity. 

Moreover, TCF-4 blockade does not supress KIF4A promoter transactivation as β-catenin inhibition does 

(Fig. 34). Therefore, we conclude that KIF4A transcription is regulated by β-catenin but independently 

from TCF-4 transcription factor; hence, KIF4A protein inhibition observed in Ls174T/dnTCF4 cells 

might be an indirect consequence of the cell cycle arrest. 

Despite most known β-catenin target genes require TCF/LEF factors for their activation, recent findings 

show that β-catenin is able to induce gene transcription independently of TCF-4. This is the case for 

p16INK4A, WISP-1, LEF-1 and PML genes, although the particular transcription factors that mediates their 

β–catenin dependent transcription is not clear yet (156–159).  

There is growing evidence that the relationship between β-catenin and TCF is not monogamous and 

several nuclear receptors and transcriptional factors apart from TCF/LEF family interact with β-catenin to 

transactivate gene expression; for instance: retinoic acid receptor RARα (160), the vitamin D receptor 

VDR (161), the androgen receptor (162), the liver receptor homologue LRH1 (163), the hypoxia induced 

factor HIF1α (164) or the transcription factor FOXO (165). Interestingly, some of these interactions are 

really significant for colon cancer progression, as the case of FOXO3, which in cooperation with β–

catenin, triggers a potent metastatic transcriptional program (166).  

We checked if any of these factors could bind to KIF4A promoter by additional in silico analyses of the 

KIF4A promoter but no evolutionary-conserved binding sites were identified within KIF4A promoter for 

any of them. 

Therefore, despite β–catenin regulates KIF4A promoter activity, it is still unclear if this action is 

mediated by direct binding of β–catenin to KIF4A promoter or which alternative transcription factors 

might act as mediators of KIF4A transcription. Further investigation is needed to unveil this question. 
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In summary, KIF4A overexpression in colon tumours might be a consequence of the aberrantly activated 

Wnt signalling pathway, present in the majority of CRC cases. Under normal conditions, Wnt signalling 

could be actively promoting KIF4A expression to ensure an efficient chromosome condensation and 

faithful cytokinesis.  

Given that SMC2, member of the condensin complex, is also under direct regulation of β–catenin/TCF-4, 

reinforces the mitogenic role of the canonical Wnt signalling in the intestinal homeostasis and colon 

tumours. 

3. KIF4A role in intestinal tumorigenesis 

Data presented in this study clearly show that KIF4A overexpression is a common feature in CRC, but we 

wanted to know if KIF4A could be an active driver or a passenger in the colorectal tumorigenic process. 

KIF4A depletion impairs cell proliferation in three different CRC cell lines. DLD-1 cells are not affected, 

even though KIF4A levels are efficiently decreased after shRNA lentiviral transduction (Fig. 35, A). This 

could be due to particular cellular compensatory mechanisms, only present in this cell line. However, the 

other three cell lines tested show the same phenotype after KIF4A inhibition: slower cell cycle -with less 

cells in S-phase and higher proportion of cells in G1- that results in a higher cell population doubling time 

for shKIF4A cells (Figs. 37 & 39). Anchorage-independent growth and invasive capacity are also affected 

after KIF4A depletion, probably as a consequence of the lower cell proliferation rate in absence of KIF4A 

(Fig. 40 & 41). 

Our results are in concordance with other studies where KIF4A is depleted. KIF4A depletion in mice ES 

cells results in a S-phase reduction, probably due to a delay in S-phase entry (99). The authors postulate 

that KIF4A is necessary for recruitment of replication machinery factors to DNA, as KIF4A binds to 

histone chaperone Asf-1 and NURD chromatin-remodelling complexes during replication. In lung cancer 

cell lines, RNAi depletion of KIF4A results in a dramatic loss of cell viability (96). HCT116 KO-KIF4A 

cells also proliferate slower, with lacked organized spindle midzone but displaying only a mild increase in 

bi-nucleated cells (167). We do not observe an increase in the >4n population, namely aneuploid cells, 

despite RNAi-mediated KIF4A depletion in HeLa cells results in multinucleated cells, due to cytokinesis 

failure (168). We tried to measure the multinucleation rates in CRC lines by IF, but we were not able to 

detect any significant increase in multinucleated cells after KIF4A down-regulation (data not shown). 

Preliminary experiments of transient KIF4A overexpression in non-tumoral cells show that ectopic 

expression of KIF4A enhances their invasive capacity. This cannot be explained by an increased 

proliferation rate, as cell cycle is not affected after KIF4A overexpression (Fig. 38). Moreover, cells 

overexpressing KIF4A might activate the epithelium-mesenchymal transition program, as SNAIL and 

SLUG transcriptional repressors are significantly induced (Fig. 42).  

These transcriptional repressors act at the core of several signalling pathways proposed to 

mediate epithelial to mesenchymal transition or EMT, which is implicated in tumour metastasis. EMT 
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involves an alteration from an organized, epithelial cell structure to a mesenchymal, invasive and 

migratory phenotype.  

Different stimuli have been implicated on EMT induction: inflammation (via TGF-β and NFκB), hypoxia 

(via HIF1 and Notch), oncogene or tumour suppressors mutations (p53, Ras, ErbB2) and growth factors 

signalling activation (FGF, EGF, IGF, HGF, PDGF) [reviewed in (169)]. The vast majority of those 

signalling pathways that trigger EMT converge at the induction of the E-cadherin repressors, in particular, 

the Snail genes (SNAI1/SNAIL and SNAI2/SLUG) mentioned above (170). Loss of E-cadherin at the 

adherent junctions marks the onset of a series of dramatic changes that include: loss of cell-cell adhesion 

structures (including adherent junctions and desmosomes), polarity modulation and rearrangement of the 

cytoskeleton. Cells become isolated, motile, and resistant to apoptosis (171). The acquired mesenchymal 

phenotype confers tumour cells the ability to invade, migrate and generate distant metastasis. 

How exactly ectopic expression of KIF4A induces Snail family expression is completely uncertain. These 

results, still preliminary, should be confirmed on CRC cell lines, by stable overexpression of KIF4A.  

KIF4A is not associated to tumour staging (Table 9 & 10), but we and others have observed that its 

expression is elevated in invasive CRC cell lines [Fig. 29 and (172)]. It would be certainly interesting to 

decipher the exact role of KIF4A on EMT and invasion.  

Since KIF4A is linked to proliferative phenotypes and its expression is reduced upon cell differentiation, 

we also explored the effect of KIF4A depletion on enterocytic differentiation. Surprisingly, KIF4A 

depletion impairs Butyrate-mediated differentiation and LKB1-induced polarization (Fig. 43). Actually, 

KIF4A protein levels increase at the first phases of cell differentiation (Fig. 30). These data argue in 

favour of an active role of KIF4A during differentiation. 

Sodium Butyrate (NaB) is a short-chain fatty acid produced in the colonic lumen by fermentation of 

dietary fibre. It was also discovered as a potent histone deacetylase (HDAC) inhibitor (173), and, despite 

the exact mechanism by which modulates gene expression is complex and remains elusive, it is accepted 

that NaB triggers global gene transcriptional programs that lead to enterocytic differentiation (174). In the 

absence of KIF4A, colon cells are less prone to differentiate in response to NaB; KIF4A interacts with 

gene expression related proteins like HDAC1, SIN3A, hSNF2H and DNMT3B (93), so it is possible that 

KIF4A could be actively participating in the gene transcriptional program induced by NaB that lead to 

enterocytic differentiation. 

Ls174T-W4 cells polarize in response to STRAD/LKB1 expression induction. LKB1 is a serine/threonine 

kinase that is normally sequestered in the nucleus. When the pseudokinase STRAD is over-expressed, it 

traslocates LKB1 to the cytoplasm and activates its kinase activity (175). Once in the cytoplasm, LKB1 

triggers the cell-polarity pathway, which consists in actine cytoskeleton rearrangement, brush border 

constitution and membrane localization of apical and baso-lateral protein markers (113,176). The role of 

KIF4A in this process is uncertain. Another kinesin family member, KIF3 has been related to rat neuronal 

polarity, as it interacts with PAR family proteins (the orthologue of LKB1 is par-4) (177). However, KIF3 

carries out its function in the cytoplasm and KIF4A is mainly nuclear, so a similar function would not be 

achieved by KIF4A. It is important to note that KIF4A function is not restricted to mitosis; during 



Discussion 

 
107 

interphase, KIF4A participates in chromatin structure maintenance, DNA replication (99), DNA damage 

repair (91) and gene regulation (93,94). Anyhow, the exact role of KIF4A in the differentiation process is 

still enigmatic. 

Because KIF4A is also implicated in DNA damage repair, we also investigated the effect of KIF4A on 

the cellular response to DNA damage. Wu and collaborators described how KIF4A localizes to DNA 

damage sites upon laser micro-irradiation and participates in the homologous recombination repair, 

presumably modulating the BRCA2/Rad51 pathway (91).  

Camptothecin (CPT) derivatives are highly selective topoisomerase I (TOP1) inhibitors. Topoisomerase I 

is an enzyme that alleviates the superhelical tensions of DNA by producing transient single-strand breaks. 

As soon as the DNA is relaxed, TOP1 re-ligates the single-stranded DNA ends, reverses its covalent 

binding and dissociates from the DNA. CPT analogues selectively bind to TOP1 and fix the enzyme on 

DNA during the enzymatic cleavage intermediate step, which leads to the formation of reversible TOP1 

cleavable complexes. The cytoxicity of these drugs resides in the formation of DNA double strand breaks 

(DBS) when replication and/or transcription machineries collide with these complexes (178). 

Expression of DBS repair proteins in cancer cells, both participating in homologous recombination (HR) 

and non-homologous end-joining (NHEJ) seems to be crucial for resistance to CPTs, since deficiency of 

those proteins leads to CPT sensitivity (179). 

KIF4A depletion in HCT116 and DLD1 cells confers more resistance to TOP1 inhibitors (Fig. 44). If we 

consider KIF4A as a modulator of HR mediated DNA repair, we would expect the contrary effect from 

KIF4A depletion. This led us to speculate that KIF4A may have a more complex role in the cellular 

response to TOP1 inhibitors.  

As mentioned above, KIF4A inhibition decreases the number of cells in S-phase. This might explain why 

HCT116 KIF4A-depleted cells are more resistant to CPT/CPT-11, as these drugs perform their toxicity 

during replication. But the same cannot be applied for DLD1 cells, whose cell cycle is not affected after 

KIF4A depletion. 

Apoptotic levels in DLD1 cells after CPT-11 treatment (Fig. 45) are reduced in those cells KIF4A-

depleted, and the corresponding PARP-1 cleavage is partially inhibited. We measured PARP-1 cleavage 

just as a marker of apoptosis, but Midorikawa and collaborators had already demonstrated that KIF4A 

binds to and inhibits PARP-1 activity, and neurons lacking KIF4A are resistant to physiological apoptosis 

(92). PARP-1 activity is essential to promote juvenile neurons survival after membrane depolarization; 

this mechanism ensures that active neurons survive along brain development. In a steady state, KIF4A 

binds to PARP-1 and suppresses PARP-1 activity. Cells are then prone to apoptotic death; but membrane 

depolarization disrupts this binding and PARP-1 promotes cell survival. Thus, KIF4A is favouring 

apoptosis in this cellular context. 

Our scenario is different, as CPT/CPT-11 induce DNA damage. Under CPT exposition, PARP-1 is 

involved in the resolution of TOP-1-DNA-CPT complexes, avoiding the production of DNA double 

strand breaks (180) and, by extension, reducing the cytotoxic effects of these drugs. Indeed, PARP 

inhibition enhance CPT/CPT-11 cytotoxicity (181). 
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As mentioned above, KIF4A binds to and inhibits PARP-1. The absence of KIF4A could be favouring 

PARP-1 repairing activity, preventing DSB formation and conferring more drug resistance to shKIF4A 

cells. Alternatively, KIF4A could be actively involved in the apoptotic program. Anyhow, further 

experiments are needed to unveil if KIF4A could directly modulate PARP-1 activity under CPT/CPT-11 

exposure. 

CPT derivatives, like Irinotecan (CPT-11), have been FDA approved for metastatic CRC treatment about 

15 years ago. These agents have increased significantly the percentage of patients with an objective 

response and better overall survival (182,183) compared with patients treated with 5-fluorouracil alone. 

Unfortunately, only 20% to 30% of patients show an objective response (110), and there is still a lack of 

knowledge of markers capable of predicting response to CPTs-based treatment. Since KIF4A seemed to 

be involved in cellular response to CPTs, we examined the value of KIF4A expression as a predictive 

marker for CPT-11 response in advanced CRC patients. We found no association between KIF4A 

expression levels in tumours and patient overall survival or time to progression after CPT-11-based 

therapy administration (Fig. 47); hence, we should discard KIF4A as a molecular marker to predict 

patient response to Irinotecan (CPT-11). 

Contrary to CPT-11 prediction outcome, high expression of KIF4A predicts poor overall survival in 

advanced CRC patients (Fig. 46). Data obtained in this study also suggests an active role of KIF4A in the 

metastatic process, as it is found more expressed in metastatic cell lines (Fig. 29) an its ectopic expression 

favours cell invasion in vitro (Fig. 42). 

Others had previously linked KIF4A expression to poor overall survival in non-small cells lung cancer 

patients (96). The exact mechanism underlying this effect of KIF4A expression in advanced tumours 

opens an exciting line of investigation and possibly new treatment strategies for these patients. 
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Conclusions 

1. The condensin complex and the molecular motor KIF4A are significantly up-regulated in CRC. 

2. SMC2 is a novel transcriptional target of Wnt/β-catenin. 

3. TCF-4 binding element TBE3 in SMC2 promoter is responsible for Wnt/β-catenin 

transcriptional activity. 

4. KIF4A expression is cell cycle regulated and tightly linked to proliferative phenotypes. 

5. KIF4A is under Wnt/β-catenin regulation, independently from the transcriptional factor TCF-4. 

6. KIF4A depletion impairs cell proliferation, cell anchorage-independent growth and cell invasion 

of colon cancer cell lines. 

7. KIF4A depletion impairs cell differentiation in vitro. 

8. KIF4A ectopic expression promotes cell invasion in vitro. 

9. KIF4A expression is associated to poor overall survival in advanced CRC patients. 

10. KIF4A modulates the cellular response to Topoisomerase I inhibitors, but it is not a useful 

molecular marker for patient response prediction to Irinotecan-based treatments.  
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Summary in Spanish

Antecedentes 

Los tumores colorectales se caracterizan por su alta inestabilidad genómica, principalmente de dos tipos: 

la inestabilidad de microsatélites y la inestabilidad cromosómica. Los microsatélites son elementos 

presentes en el ADN caracterizados por la repetición en tándem de secuencias cortas de nucleótidos. El 

defecto en los mecanismos de reparación de errores por deslizamiento (mismatch repair o MMR) da lugar 

a la aparición de multitud de alteraciones en estas secuencias repetidas. Esto ocurre aproximadamente en 

un 15 % de tumores. En el 85 % restante, tiene lugar la inestabilidad cromosómica, que se caracteriza por 

la pérdida o ganancia de grandes elementos cromosómicos, resultando en importantes aneuploidias de las 

células tumorales. Estos tumores se caracterizan, a su vez, por presentar alteraciones de la vía de 

señalización Wnt, fundamental en el mantenimiento de la homeóstasis intestinal.  

El epitelio intestinal humano se renueva completamente aproximadamente cada semana. Esta alta 

demanda requiere la eficiente actividad de las células madre intestinales, que residen en el fondo de las 

criptas colónicas. Esta zona de la cripta se halla bajo la influencia de los ligandos Wnt, que estimulan la 

proliferación de las células madre intestinales. A medida que se asciende hacia el lumen intestinal, los 

ligandos Wnt disminuyen en concentración y las células entran en diferenciación para dar lugar a los 

distintos tipos celulares del epitelio intestinal: células absortivas o enterocitos, células de Paneth, células 

globet (secretoras de mucus) y células enteroendocrinas, repoblando así la mucosa intestinal. 

Cuando un ligando Wnt se une a los receptores de membrana heterodiméricos (formados por una proteína 

LPR5/6 y un receptor de la familia Frizzled) en la célula diana se produce la inhibición del complejo de 

degradación de β-catenina (formado por APC, GSK3-β, CKIα y Axin), ésta se acumula en el citoplasma 

y se trasloca al núcleo, donde se une a factores de transcripción TCF/LEF y activa la transcripción de 

genes relacionados con la proliferación celular, como C-MYC o ciclina-D. 

La activación aberrante de esta vía de señalización, comúnmente por mutación en las proteínas APC o β-

catenina, da lugar a células hiperproliferativas, resultando en la generación de focos de criptas aberrantes 

y posteriomente adenomas. La mutación adicional en otros genes, como por ejemplo, KRAS, p53 o TFG-

β, da como resultado la progresión de adenoma a carcinoma in situ, carcinoma invasivo y metástasis, 

sucesivamente. 

Datos previos de nuestro laboratorio indicaban que el complejo condensina podría estar bajo la influencia 

de la vía Wnt. El complejo condensina es esencial para el buen reparto de la información genética en las 

dos células hijas en la división celular, ya que es el principal encargado de dar estructura y estabilidad a 

los cromosomas. Este complejo está formado por dos proteínas que forman el núcleo y pertenecen a la 

familia SMC, SMC2 y SMC4, y junto a ellas, se encuentran proteínas reguladoras no-SMC (NAPG, 

NACPD2 y NCAPH, en el complejo condensina tipo I; y NCAPG2, NCAPD3 y NCAPH2, en el tipo II). 
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La alteración en la función de este complejo da lugar a graves aberraciones cromosómicas y aneuploidas, 

similares a las observadas en los tumores colorrectales. 

Junto con el complejo condensina, la kinesina KIF4A es también esencial para el mantenimiento 

estructural de la cromatina en interfase, así como la condensación de los cromosomas y la citokinesis 

durante la división celular.  

La desregulación de estas proteínas podría estar bajo la inestabilidad cromosómica observada en aquellos 

tumores en los que la vía Wnt se encuentra desregulada, es decir, en el aproximadamente en el 85% de los 

tumores colorrectales. 

Objetivos 

-Estudiar los niveles de expresión en el cáncer colorrectal de las proteínas implicadas en el mantenimiento 

cromosómico, tanto el complejo condensina como la kinesina KIF4A.  

-Estudiar la posible regulación transcripcional de estos complejos dependiente de la vía de señalización 

Wnt. 

-Estudiar el papel que podría estar ejerciendo la kinesina KIF4A en el proceso tumorogénico intestinal. 

Resultados 

El complejo condensina y la kinesina KIF4A están sobreexpresados en el cáncer colorectal 

En una primera aproximación, la expresión distintas subunidades del complejo condensina y la kinesina 

KIF4A fue evaluada en muestras de pacientes con cáncer colorectal mediante PCR a tiempo real en 

parejas de muestras normal-tumor. Se observó que tanto el complejo condensina como KIF4A se 

encuentran significativamente sobreexpresados en las muestras tumorales un alto número de casos. Esta 

sobreexpresión se confirmó además en un estudio paralelo consistente en la medición global del 

transcriptoma en 122 pacientes de Finlandia y Dinamarca. Asímismo, se comprobó que estos genes 

también están activados en muestras tumorales a nivel proteico, al menos en el caso de SMC2, SMC4, 

NCAPH y KIF4A. 

Se encontró una fuerte correlación positiva entre los niveles de expresión de todos los genes estudiados. 

Sin embargo, no se encontró asociación con ninguna característica clínico-patológica de los pacientes 

evaluados. 

Regulación transcripcional del complejo condensina: Influencia de la vía de señalización Wnt. 

En las tinciones inmunohistoquímicas de SMC2, KIF4A y NCAPH, se observó un patrón de tinción en 

las criptas intestinales característico de los genes diana de la vía Wnt; es decir, genes que están altamente 

expresados en la base de las criptas colónicas, y que muestran una disminución en gradiente a medida que 

nos aproximamos al lumen intestinal. 
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Debido a este patrón de tinción, se investigó si el complejo condensina y KIF4A podrían estar bajo la 

influencia de la vía Wnt, responsable del mantenimiento de la homeóstasis intestinal y frecuentemente 

hiperactivada en los tumores colorrectales. 

En primer lugar, se observó que la expresión proteica de SMC2 y SMC4 , componentes del núcleo del 

complejo condensina y β-catenina, regulador central de la vía Wnt, correlacionan positivamente, tanto en 

muestras procedentes de pacientes como en líneas celulares. Además, la expresión en tumores de SMC2 y 

NCAPH está fuertemente asociada a la localización nuclear de β-catenina.  

Datos previos del laboratorio mostraban que la expresión de SMC2 y SMC4 disminuye en modelos 

celulares de inhibición de la vía Wnt; estos modelos consisten en células colorectales en las que la adición 

de doxyciclina induce la expresión de un siRNA dirigido contra β-catenina o bien la inducción de una 

variante dominante-negativa del factor de transcripción TCF-4. Adicionalmente, habíamos observado 

mediante inmunoprecipitación de cromatina (ChIP) que TCF-4 se une a la secuencia promotora de SMC2 

in vivo. 

Para elucidar si la vía Wnt podría activar la transcripción génica de SMC2/SMC4 de forma directa, se 

llevaron a cabo estudios in silico para localizar posibles sitios de unión a TCF-4 (TBE) en el promotor de 

SMC2 y SMC4. En el promotor de SMC2 se encontraron 6 posibles sitios de unión, dos de los cuáles se 

encuentran muy próximos al inicio de transcripción del gen y están altamente conservados 

evolutivamente. En el promotor de SMC4 no se encontraron TBEs evolutivamente conservadas, por ello 

se centró el estudio en SMC2. 

Estudios reporteros con luciferasa nos permitieron establecer que tanto β–catenina como TCF-4 son 

capaces de transactivar el promotor de SMC2. Mediante delecciones seriadas del promotor pudimos 

establecer que la secuencia mínima que mantiene la actividad promotora contiene 5 de los 6 TBEs 

identificados previamente. Mediante mutagénesis dirigida en esa secuencia mínima promotora fuimos 

capaces de identificar exactamente el TBE responsable de la actividad basal del promotor de SMC2 y de 

la transactivación dependiente de β-catenina y TCF-4. Este TBE se encuentra a -20 pb del inicio de 

transcripción, y uno de los evolutivamente mejor conservados en el promotor de SMC2. 

Regulación transcripcional de KIF4A: papel de la vía Wnt. 

Diversos datos apuntan que la expresión de KIF4A está íntimamente relacionada con la proliferación 

celular. Tanto a nivel de ARNm como proteína, su expresión varía según la fase del ciclo celular: su 

máximo de expresión tiene lugar al principio de la fase S y presenta un pico de transcripción en la fase 

G2/M. Mediante técnicas inmunohistoquímicas pudimos comprobar que se encuentra altamente 

expresado en el compartimento proliferativo de las criptas intestinales, correlacionando su expresión con 

el marcador proliferativo Ki67. En líneas celulares colorrectales, su expresión correlaciona positivamente 

con el marcador proliferativo PCNA. Asimismo, KIF4A disminuye drásticamente en los procesos de 

diferenciación enterocítica, tanto en aquellos inducidos por butirato de sodio como en aquellos inducidos 

por confluencia en las líneas Caco 2-Bbe y HCT8. 
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La expresión de KIF4A en tumores correlaciona además con los niveles de expresión de β–catenina. 

Asimismo, los mayores niveles de KIF4A se encuentran en aquellos tumores que presentan localización 

nuclear de β–catenina. En modelos celulares de inhibición de a vía Wnt, KIF4A disminuye tras la 

expresión de la forma dominante negativa de TCF-4, si bien la inhibición es más significativa cuando se 

bloquea mediante siRNA la expresión de β–catenina.  

Para elucidar si la regulación de KIF4A dependiente de Wnt es directa o indirecta, se aisló el promotor de 

KIF4A, que contenía tan sólo una TBE evolutivamente conservada. Ensayos reporteros de luciferasa 

demostraron que la actividad del promotor de KIF4A aumenta cuando la vía Wnt es estimulada mediante 

cloruro de litio o mediante la expresión ectópica de β-catenina. Sin embargo, la sobreexpresión de TCF-4 

no afecta a la actividad del promotor. Incluso cuando se inhibe la vía Wnt, el promotor de KIF4A se ve 

afectado tras la depleción de β-catenina, pero no ante el bloqueo de la acción de TCF-4. Estos resultados 

nos llevaron a concluir que KIF4A está regulado por β-catenina a nivel transcripcional, pero 

independientemente del factor TCF-4. 

Papel de KIF4A en la tumorogénesis colorrectal 

Se generaron líneas celulares colorrectales isogénicas en las que la expresión de KIF4A está inhibida. 

Pudimos comprobar que en ausencia de KIF4A el ciclo celular se ve afectado (más proporción de células 

en interfase y menos en fase S), las células proliferan menos, tienen menor capacidad de crecimiento en 

sustrato semi-sólido y menor capacidad invasiva. Por el contrario, la expresión ectópica de KIF4A en 

células HEK293T no altera el ciclo celular, pero aumenta la capacidad invasiva de las células, 

probablemente induciendo cambios del tipo “transición epitelio-mesénquima”, ya que la expresión de los 

represores transcripcionales de la familia Snail se ve aumentada. 

Por otro lado, hay datos que apuntan a que KIF4A podría estar directamente implicado en los procesos de 

diferenciación, ya que las células donde se ha inhibido la expresión de KIF4A muestran menores niveles 

de diferenciación, ya sea inducida por butirato de sodio o por la expresión forzada de los factores 

inductores de polarización STRAD/LKB1. 

Se estudió además cómo influían los niveles de KIF4A en la respuesta a inhibidores de topoisomerasa I 

(CPT y CPT-11), ya que KIF4A participa en la respuesta a daño a ADN. Estos agentes son regularmente 

utilizados en el tratamiento del cáncer colorrectal y su mecanismo de acción se basa en la inducción de 

roturas de doble cadena en el ADN. 

Comprobamos que las células en las que la expresión de KIF4A está inhibida son más resistentes a CPT y 

CPT-11. En el caso de la línea DLD-1, se comprobó además que esta mayor resistencia puede deberse a 

que las células entran menos en apoptosis, de acuerdo con los menores niveles de células haplo-diploides 

observados y una menor expresión del marcador apoptótico cleaved-PARP-1 tras el tratamiento con el 

análogo de CPT utilizado en clínica, Irinotecan.  

KIF4A como marcador de pronóstico en pacientes de cáncer colorrectal 

Dado que los resultados obtenidos in vitro indicaban que KIF4A podría ejercer un papel en el proceso 

tumorogénico, especialmente en la invasión celular y la respuesta a inhibidores de topoisomerasa I, se 
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evaluó si KIF4A podría ser un nuevo marcador molecular de pronóstico en cáncer colorrectal. Para ello, 

se midió la expresión de KIF4A mediante tinción inmunohistoquímica en un array de tejidos de 91 

tumores de pacientes con enfermedad avanzada. En 82 de los pacientes se conocía además su evolución 

clínica tras la administración de quimioterapia basada en Irinotecan (CPT-11). 

Se descubrió que aquellos pacientes con altos niveles de KIF4A tienen peor pronóstico, en términos de 

supervivencia total desde el momento del diagnóstico, particularmente en los diagnosticados en estadío 

IV. Este resultado, ligado a la mayor expresión de KIF4A en líneas celulares metastásicas y a la inducción 

de los factores Snail tras su expresión ectópica en células HEK293T, nos llevan a hipotetizar que KIF4A 

puede estar ejerciendo un papel activo en los procesos metastásicos. 

Sin embargo, no observamos asociación alguna entre la expresión de KIF4A y la respuesta a Irinotecan, 

ni en términos de supervivencia total ni en el tiempo de progresión del tumor desde el inicio del 

tratamiento con Irinotecan. 

Discusión 

La vía de señalización Wnt es vital para el mantenimiento de la homeostasis intestinal, promoviendo la 

división de las células madre intestinales, residentes en el fondo de las criptas de Lieberkühn, para 

sostener la continua regeneración del epitelio intestinal. 

Hemos demostrado que el complejo condensina y KIF4A se hallan bajo la influencia de esta vía de 

señalización, bien directamente mediando la transcripción génica de SMC2 por el tándem β–catenin/TCF-

4, o bien indirectamente como en el caso de KIF4A y presumiblemente el resto de las subunidades del 

complejo condensina, ya que la expresión de todos los miembros del complejo está íntimamente 

relacionada. Por tanto, la activación aberrante de la vía Wnt podría contribuir activamente a la 

sobreexpresión de estas proteínas presente en los tumores colorrectales. 

El claro papel mitogénico de esta vía de señalización explica su influencia sobre proteínas que participan 

activamente en la división celular. Sin embargo, queda por resolver si estas proteínas son “pasajeros” del 

proceso tumoral o contribuyentes activos de la transformación celular. La inhibición de estos genes 

conlleva la pérdida de viabilidad celular, hecho que nosotros hemos observado y también otros autores. 

En el caso particular de KIF4A, su inhibición provoca un enlentecimiento de la progresión del ciclo 

celular, que se traduce en tasas de proliferación más lentas. Además, la depleción de KIF4A provoca una 

menor eficiencia de crecimiento celular en sustratos semi-sólidos y menos capacidad invasiva. No 

sabemos con certeza qué efecto puede tener la sobreexpresión del complejo condensina en la progresión 

tumoral; sin embargo, en el caso de KIF4A, su sobreexpresión podría estar favoreciendo la invasión 

celular y, por tanto, la aparición de metástasis distantes, a juzgar por los estudios preliminares de 

expresión ectópica de KIF4A in vitro. Apoyando esta hipótesis, hemos observado que aquellos pacientes 

en estadío IV con altos niveles de KIF4A muestran menor tasa de supervivencia.  

Hemos observado también que KIF4A podría estar implicada activamente en mecanismos de 

diferenciación celular; su expresión disminuye durante el proceso de diferenciación pero su presencia 

parece ser importante para el proceso, al menos en su inicio.  
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Con respecto a la modulación de la respuesta a daño a ADN, la depleción de KIF4A confiere mayor 

resistencia celular a los tratamientos con inhibidores de TOP1. La depleción de proteínas implicadas en la 

reparación de ADN mediante recombinación homóloga, como es el caso de KIF4A, suelen conferir 

mayor sensibilidad a este tipo de drogas; sin embargo nosotros observamos lo contario. Probablemente la 

función de KIF4A en este proceso es más compleja de lo esperado inicialmente, y los datos indican que 

también podría estar implicada en la señalización a apoptosis, ya que en ausencia de KIF4A los niveles de 

apoptosis son menores tras el tratamiento con Irinotecan.  

En resumen, la sobre-activación del complejo condensina y KIF4A en el tumor podría provocar una 

división celular aberrante, en forma de inestabilidad genómica y generación de aneuploidias. Sin 

embargo, no se descartan otras funciones interfásicas como responsables de su contribución en la 

tumorogénesis. Entre estas funciones se encuentran: el mantenimiento de la estructura tridimensional de 

la cromatina en interfase, la regulación de la expresión génica, la diferenciación celular y la participación 

en la reparación de daño en el ADN.  

Este estudio abre nuevas e interesantes líneas de investigación, incluyendo posibles alternativas 

terapéuticas, basadas en la inhibición de estos complejos indispensables en la división celular. 

Conclusiones 

1. Tanto el complejo condensina como la kinesina KIF4A se encuentran sobreexpresadas en el 

cáncer colorrectal. 

2. SMC2, componente del núcleo del complejo condensina, es una diana transcripcional directa de 

la vía de señalización Wnt/β-catenina. 

3.  El elemento de unión a TCF-4, TBE3, del promotor de SMC2 es la única entidad responsable de 

la regulación dependiente de Wnt//β-catenina. 

4. KIF4A está regulada a nivel transcripcional por β-catenina, regulador central de la vía Wnt, 

aunque independientemente del factor de transcripción TCF-4. 

5. La inhibición de la expresión de KIF4A in vitro afecta la tasa proliferativa celular, su capacidad 

invasiva y su potencial de diferenciación. 

6. La expresión ectópica de KIF4A promueve la capacidad celular invasiva.  

7. KIF4A modula la respuesta celular a los inhibidores de Topoisomerasa I, que inducen daño al 

ADN. 

8. KIF4A podría ser empleado como marcador molecular de mal pronóstico en estadíos avanzados 

de cáncer colorrectal. Sin embargo, sus niveles de expresión en el tumor no se asocian con la 

respuesta a Irinotecan. 
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Abstract: 

 Human SMC2 is part of the condensin complex, which is responsible for tightly packaging 

replicated genomic DNA prior to segregation into daughter cells. Engagement of the WNT signalling 

pathway is known to have a mitogenic effect on cells, but relatively little is known about WNT 

interaction with mitotic structural organizer proteins. In this work, we described the novel transcriptional 

regulation of SMC2 protein by direct binding of the β–catenin/TCF4 transcription factor to the SMC2 

promoter. Furthermore, we identified the precise region in the SMC2 promoter that is required for β-

catenin-mediated promoter activation. Finally, we explored the functional significance of down-

regulating SMC2 protein in vivo. Treatment of WNT-activated intestinal tumor cells with SMC2 siRNA 

significantly reduced cell proliferation in nude mice, compared with untreated controls (p=0.02). 

Therefore, we propose that WNT signalling can directly activate SMC2 transcription as a key player in 

the mitotic cell division machinery. Furthermore, SMC2 represents a new target for oncological 

therapeutic intervention. 
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Summary in Spanish: 

 SMC2 forma parte del complejo condensina, encargado del empaquetamiento del ADN replicado 

en forma de cromosomas, facilitando el reparto de la información genética en las dos células hijas durante 

la división celular. La activación aberrante de la vía WNT tiene un claro papel mitogénico en las células 

tumorales; sin embargo, no se conoce con claridad el papel de esta vía en la regulación de los 

organizadores estructurales mitóticos, como es el caso del complejo condensina. En este estudio, 

describimos como el miembro SMC2 del complejo condensina está regulado directamente a nivel 

transcripcional por el complejo β–catenina/TCF-4. Además, se identifica el elemento responsable de esta 

regulación en el promotor de SMC2. Asimismo, se investiga el significado funcional de la inhibición de 

SMC2 en células tumorales in vivo. En células tumorales donde la vía WNT está hiperactivada, la 

inhibición de SMC2 reduce de forma significativa su proliferación en ratones inmunodeprimidos en 

comparación con los correspondientes controles (p= 0.02). En resumen, se propone que la vía WNT 

regula directamente la transcripción de SMC2 como componente de la maquinaria mitótica y que la 

inhibición de éste podría utilizarse en un futuro como estrategia terapéutica en el cáncer colorrectal. 
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Human SMC2 Protein, a Core Subunit of Human Condensin
Complex, Is a Novel Transcriptional Target of the WNT
Signaling Pathway and a New Therapeutic Target*□S
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Background: Condensin SMC proteins are frequently overexpressed in WNT-activated hyperplastic cells.

Results: The SMC2 promoter is a novel target on the �-catenin�TCF4 transcription complex.

Conclusion: �-Catenin�TCF4 may drive production of condensin in hyperplastic cells. SMC2 is required to ensure cellular

mitosis and fast proliferation.

Significance:Down-regulation of SMC2 expression can repress cell proliferation inWNT-activated cells and represents a new

therapeutic target in cancer treatment.

Human SMC2 is part of the condensin complex, which is

responsible for tightly packaging replicated genomicDNAprior

to segregation into daughter cells. Engagement of theWNT sig-

naling pathway is known to have a mitogenic effect on cells, but

relatively little is known about WNT interaction with mitotic

structural organizer proteins. In this work, we described the

novel transcriptional regulationof SMC2proteinbydirect bind-

ing of the�-catenin�TCF4 transcription factor to the SMC2 pro-
moter. Furthermore, we identified the precise region in the

SMC2 promoter that is required for �-catenin-mediated pro-

moter activation. Finally, we explored the functional signifi-

cance of down-regulating SMC2 protein in vivo. Treatment of

WNT-activated intestinal tumor cells with SMC2 siRNA signif-

icantly reduced cell proliferation in nude mice, compared with

untreated controls (p � 0.02). Therefore, we propose thatWNT

signaling can directly activate SMC2 transcription as a key

player in the mitotic cell division machinery. Furthermore,

SMC2 represents a new target for oncological therapeutic

intervention.

SMC (structural maintenance of chromosomes) proteins are

a family of DNA-binding ATPases that are essential for main-

tenance of chromosomal integrity during cell division (1).

Eukaryotes express at least six SMC proteins (SMC1–6), which

form three heterodimers (SMC1/3, SMC2/4, and SMC5/6 (2)).

SMC5/6 is part of a complex involved inDNArepair and check-

point responses. The SMC1/3 heterodimer associates with two

regulatory non-SMC proteins, SCC1 and SCC3, and collec-

tively, this complex is known as cohesin. Cohesin holds sister

chromatids together until they are physically segregated during

anaphase (3). The SMC2/4 heterodimer associates with three

non-SMC proteins to form a five-member complex known as

condensin. Lower eukaryotes have a single condensin complex,

butmetazoans have two. In humans, both condensin I and con-

densin II contain the core SMC2/4 subunits, but have different

regulatory non-SMC subunits. As the name suggests, conden-

sin has DNA supercoiling activity, which is essential for pack-

aging of chromatin prior to cell division. Condensin has also

been shown to be necessary for resolution of sister chromatids

during anaphase (4, 5). Condensin supercoiling activity is spa-

tially and temporally regulated by mitotic kinases (6–10),

which ensure DNA condensation only occurs at appropriate

stages of the cell cycle.

Mutations in condensin subunits are likely to drive chromo-

somal destabilization and are found in some cancer genomes

(11, 12). Furthermore, activated WNT signaling in colorectal

tumors are considered to cause chromosomal instability. Upon

investigation of normal human intestine and colorectal tumor

samples, we noted that high SMC2protein expression appeared

to coincide with nuclear�-catenin localization in dividing cells.
Therefore, we decided to investigate whether WNT signaling

and �-catenin might transcriptionally regulate condensin.
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Secreted WNT ligands are essential morphogens that con-

trol patterning and cell division during embryogenesis (13).

WNT signals are principally transduced by two classes of cell

surface receptors; Frizzled (Fz) proteins and low density lipo-

protein receptor-related proteins 5 and 6 (LRP5/6). In canoni-

cal, �-catenin-dependent signaling, phosphorylation of LRP6

leads to release of cyctoplasmic �-catenin from the prodegra-

datory Axin complex (which includes glycogen synthase 3 and

adenomatous polyposis coli (APC)3 protein). Free �-catenin
translocates to the nucleus, where it acts as a transcriptional

coactivator of target genes in combination with TCF/LEF tran-

scription factors (14, 15).

WNT signaling is well known to promote cell cycle progres-

sion by up-regulating proliferation-stimulating target genes e.g.

cyclin D and c-myc. However, it has become apparent that the

cell cycle and WNT signaling are intrinsically linked (16). In a

seminal study, WNT-�-catenin signaling (and �-catenin pro-

tein levels) were noted to oscillate during the cell cycle, peaking

at theG2/M transition (17). Since that initial observation,many

of the components of the WNT pathway have been shown to

play an integral role during cell division. In addition to their

function as activators of WNT target gene transcription, APC

protein and�-catenin are important constituents of the centro-

some complex (18–20). �-Catenin is also essential for centro-

somal separation at the onset of spindle formation (21). More-

over, glycogen synthase 3 binds to and regulates microtubules,

thereby contributing to mitotic spindle alignment (22).

For WNT-stimulated cells to undergo mitotic division, the

genome must be faithfully replicated and packaged up prior to

cytokinesis. By definition, this is a complex andhighly regulated

process, and failure to control each stage can lead to aneup-

loidy, chromosomal instability, and/or cell death. Chromo-

somal architecture during cell division is maintained in part by

SMC proteins, and in this study, we provide evidence that

canonical WNT signaling is directly driving SMC2 expression

and that depleting tumor cells of SMC2 effectively drives a

tumor xenograft model into mitotic catastrophe. Therefore,

modulating cellular levels of condensin subunits may provide a

novel chemotherapeutic tool for controlling the rate of cell divi-

sion and/or critically destabilizing chromosomal organization.

EXPERIMENTAL PROCEDURES

Human Cancer Cell Lines and Cell Culture—Colorectal can-

cer (CRC) cell lines were purchased from the American Type

Culture Collection (ATCC). Ls174T/dnTCF4 and Ls174T/

pTER-�-catenin cells were kindly provided by Prof H. Clevers

(Hubrecht Institute, Utrecht, TheNetherlands). Cell lines were

cultured in DMEM or RPMI 1640 (Ls174T variants) medium

supplemented with 10% fetal bovine serum, 100 units/ml of

penicillin, and 100 �g/ml of streptomycin at 37 °C under 5%

CO2. To induce dnTCF4 or siRNA-BCAT, Ls174T cells were

treated with 5 �g/ml doxycycline. Doubling time calculations

were performed as described by Bex et al. (23).

Colorectal Tissue Samples—Tumor and counterpart normal

sampleswere provided and analyzed by the Surgery and Pathol-

ogy Departments of the Vall d’Hebron Universitary Hospital

(Barcelona, Spain) respectively. Patients gave written consent

before their inclusion in the analysis, and the study was

approved by the Hospital Ethics Committee.

DNA Reagents—pTOPFLASH and pFOPFLASH plasmids

were generously provided by Prof H. Clevers (24). VP16-TFC4

and pBCAT expression vectors were kindly supplied by Anto-

nio García de Herreros (IMIM-Hospital del Mar, Barcelona,

Spain). SMC2 promoter regions were amplified by PCR using

the pairs of primers listed in supplemental Table 1. The prod-

ucts were directionally cloned in pGL3-basic vector (Promega)

using KpnI and BglII restriction sites. Substitution mutants

affecting the TCF4-binding sites on SMC2 promoter regions

were generated with mutagenic oligonucleotides in supple-

mental Table 1 usingQuikChange II XL site-directedmutagen-

esis kit (Stratagene). All constructs were confirmed by DNA

sequencing under Big DyeTM cycling conditions on an Applied

Biosystems 3730xl DNA Analyzer (Macrogen, Inc.).

RNA Extraction and Real-time PCR—Total RNA was

extracted with Trizol� (Invitrogen) and further treated with

DNase I amplification grade (Invitrogen) and retrotranscribed

using a High Capacity cDNA reverse transcription kit (Applied

Biosystems). Real time PCR reactions were performed in trip-

licate on an ABI PRISM 7500 real-time system (Applied Bio-

systems), using TaqMan gene expression assays (Applied

Biosystems, catalog no. Hs00374522_m1, Hs00197593_m1,

Hs00254617_m1, Hs00214861_m1, and Hs00379340_m1)

according to the manufacturer’s instructions. Data were nor-

malized to 18 S rRNA (catalog no. 4333761F) expression but

also confirmed with other endogenous controls: peptidylprolyl

isomerase A (cyclophilin A) (catalog no. 4333763T) or �-actin
(catalog no. 4333762T). The relative mRNA levels were calcu-

lated using the comparativeCtmethod (2���Ct) as described by

Arango et al. (25).

Protein Extraction and Western Blotting (WB)—Cell pellets

and tissue homogenates were lysed in radioimmune precipita-

tion assay buffer (50 mM Tris-HCl at pH 8.0, 150 mM NaCl, 1

mM DTT, 1 mM sodium orthovanadate, 0.5% deoxycholate, 1%

Triton X-100, 0.1% SDS) containing complete protease inhibi-

tor mixture (Roche Diagnostics). Proteins in the crude lysates

were quantified using the BCA protein assay (Pierce Biotech-

nology), and 50�g of whole-cell lysates were separated by SDS-
PAGE and transferred onto nitrocellulose filters. Blots were

probed using antibodies against SMC2 (ab10412, Abcam; and

07-710, Upstate-Millipore, dilution factor of 1:1000), SMC4

(ab17958, Abcam, dilution factor of 1:1000), TCF4

(05-511, Upstate-Millipore, dilution factor, 1:500), NCAPH

(HPA003008, SigmaAldrich, dilution factor, 1:2000),�-catenin
(610154, BD Transduction Laboratories, dilution factor,

1:1000) or c-Myc (monoclonal 9E10, sc-40, SantaCruzBiotech-

nology, 1:100). Proteins were detected using corresponding

HRP-conjugated secondary antibodies, anti-mouse (P0447,

Dako), or anti-rabbit (P0217, Dako). Actin was used as loading

control (CP01, Calbiochem, 1:5000). The intensity of the bands

on the blots was quantified using the GeneTools Program

(SynGene).

3 The abbreviations used are: APC, adenomatous polyposis coli; dnTCF4,
dominant-negative transcription factor 4; CRC, colorectal cancer; WB,
Western blot; TBE, TCF-binding element; NCAPH, non-SMC condensin I
complex, subunit H.

�-Catenin�TCF4 Transcription Complex Drives SMC2 Expression
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Immunohistochemistry—Paraffin-embedded tissues were

provided by the archive tumor bank of the Department of

Pathology of the Vall d’Hebron Universitary Hospital. Epitope

retrival was heat induced in citrate buffer, pH 6.0. Immunohis-

tochemistrieswere performed using EnVision�Dual Link Sys-

tem-HRP, DAB� (Dako) according to the manufacturer’s

instructions, using the SMC2 antibody (ab10412, Abcam,

1:200), NCAPH antibody (HPA003008, SigmaAldrich, dilution

factor, 1:50), and �-catenin (610154, BD Transduction Labora-

tories, dilution factor, 1:X). Samples were additionally counter-

stained with hematoxilin. Anti-SMC2 antibody (ab10412)

specificity was confirmed by immunocytochemistry of wt ver-

sus SMC2-depleted DLD-1 human colorectal cancer cells (sup-

plemental Fig. 1).

Chromatin Immunoprecipitation (ChIP)—Cells were grown

to 80% confluency in 15-cm dishes. Proteins and nucleic acids

were cross-linked with formaldehyde (1%) for 10 min at 4 °C.

Cross-linking was quenched by adding 125 mM glycine for 5

min. Following two washes with cold PBS containing protease

inhibitors, cells were collected and resuspended in SDS lysis

buffer (50 mM Tris-HCl, pH 8, 10 mM EDTA, 1% SDS). Lysates

were sonicated 12� for 10 s (60-s interval on ice between

pulses) at 8 Å on a Soniprep 150 (MSE, Ltd., Kent, U.K.). Chro-

matin samples were diluted with chromatin immunoprecipita-

tion buffer (20 mM Tris-HCl, pH 8, 2 mM EDTA, 150 mMNaCl,

1%Triton X-100) supplemented with protease inhibitors. Sam-

ples were precleared for 2 h at 4 °C with protein G-agarose/

salmon sperm DNA beads (Upstate-Millipore) and incubated

with 5 �g of the appropriate antibody overnight at 4 °C. Immu-

noprecipitationwas carried outwith proteinG-agarose/salmon

sperm DNA beads for 2 h at 4 °C. DNA�protein�antibody�bead
complexes were washed out with low salt buffer (150mMNaCl,

20 mM Tris-HCl, pH 8, 2 mM EDTA, 1% Triton X-100, 0.1%

SDS), high salt buffer (500 mM NaCl, 20 mM Tris-HCl, pH 8, 2

mM EDTA, 1% Triton X-100, 0.1% SDS), LiCl buffer (250 mM

LiCl, 10mMTris-HCl, pH 8, 1mMEDTA, 1% Igepal, 1% sodium

deoxycholate), and TE buffer (10 mM Tris-HCl pH 8, 1 mM

EDTA). Proteins were eluted with elution buffer (100 mM

NaHCO3, 1% SDS). Cross-linking was reversed incubating

samples with 200 mM NaCl overnight at 65 °C. Before DNA

purification (phenol-chloroform-isoamilic alcohol), proteins

were digested with 20 �g of proteinase K (Roche Diagnostics)

for 2 h at 45 °C. Immunoprecipitated DNA was used as tem-

plate in the PCR reactions. The primers are listed in supple-

mental Table 1.

Luciferase Reporter Assays—Cells were transiently co-trans-

fected with pGL3-basic-SMC2 promoter (1 �g/106 cells) alone
or in combination with VP16-TCF4 (3 �g/106 cells) or pBCAT
(3 �g/106 cells) using Lipofectamine 2000 (Invitrogen), accord-

ing to the manufacturer’s instructions. pRL-TK Renilla (0.2

�g/106 cells) was introduced in all samples to allow data nor-

malization. pTOPFLASH and pFOPFLASH were used as posi-

tive and negative luciferase reporter controls, respectively. 24 h

post-transfection, cells were lysed, and luciferase activity was

measured according to the Dual-Luciferase reporter assay

using a Clarity Luminescence Microplate Reader (BioTek

Instruments).

SMC2 Knockdown—Cells were transiently transfected with

20 �M siRNA using HiPerfect Transfection Reagent (Qiagen�)
according to the manufacturer’s instructions. SMC2 and

scrambled siRNA were purchased from Qiagen� (catalog no.

SI02654260 and 1027281, respectively). Cells used in the xeno-

graft assays were cultured for 48 h and subjected to a second

round of transfection. For stable knockdown, cells were trans-

duced with lentiviral particles containing five different shRNAs

targeting SMC2 (MISSION shRNA, Sigma-Aldrich, clone IDs

NM_006444.1-3720s1c1, -1295s1c1, -1961s1c1, -3173s1c1,

and -3300s1c1) prior to puromycin selection.

Assessment of Cell Cycle Profile—Cells transiently silenced

for 24, 48, 72, or 96 h were trypsinized, washed with cold PBS,

fixed with 70% ethanol, and stained with propidium iodide (40

�g/ml). DNA content was assessed using a FACSCalibur

instrument and CellQuest software (BD Biosciences).

Xenograft Study—Female athymic nude mice (Hsd:athymic

nude-Foxn1 nu/nu; Harlan Interfauna Iberica) were main-

tained in pathogen-free conditions and used at 5–6 weeks of

age. Animal care was handled in accordance with the Guide for

the Care and Use of Laboratory Animals of the Vall d’Hebron

Hospital Animal Experimentation Ethical Committee. 1.5 �
106 silenced DLD1 cells were injected subcutaneously in the

rear flanks of mice. Tumor growth was monitored three times

per week for 5 weeks by conventional caliper measurements

(tumor volume � D � d2/2, whereD is the major diameter and

d is the minor diameter).

Statistical Analysis—Unless stated differently, descriptive

data were expressed as mean � S.D. The GraphPad Prism sta-

tistical package was used to investigate group differences by

unpaired Student’s t test. p values are indicated for statistically

different means.

RESULTS

The Core Subunit of Human Condensin Complex, SMC2, Is

Overexpressed in CRC—SMC2 protein expression was evalu-

ated in clinical samples from 29 patients that had undergone

surgery for colon carcinoma. Protein detection by WB showed

that SMC2 was up-regulated in 20 of the 29 tumor samples

(69%) compared with the matched normal controls (subset

shown in Fig. 1A). SMC2 overexpression in CRC was further

confirmed by quantitative PCR of 16 clinical samples, showing

also a clear up-regulation of SMC2 in the tumor counterpart

samples in 11 cases (68.5%) (Fig. 1B). As SMC4 is the natural

partner in the core of the condensin complex, its levels were

also studied in 27 clinical samples and found to be overex-

pressed in 13 tumor counterparts (48.1%) (Fig. 1C). Further

analysis of non-SMC subunits in patient samples confirmed the

trend for increased expression of all condensin complex mem-

bers in tumor samples versus normal tissue (supplemental Fig.

2). A strong positive correlation between the protein levels of

SMC2 and SMC4 in clinical samples and also in CRC cell lines

was identified (Fig. 1E). Interestingly, levels of SMC2/SMC4

protein negatively correlatedwith population doubling times in

CRC cell lines (supplemental Fig. 3). Nevertheless, neither

SMC2 nor SMC4 overexpression could be correlated to any

clinicopathological variables (age, sex, tumor stage, or tumor

location; supplemental Table 2) in the clinical samples studied.
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Furthermore, additional immunohistochemistry studies were

performed in paraffin embedded sections of normal colon

mucosa and tumor tissue. SMC2 protein was up-regulated in

tumor cells (Fig. 1G), both in the cytoplasmic compartment and

nuclei. Normal tissue staining confirmed�-catenin, SMC2, and

NCAPH (a non-SMC subunit of the condensin complex) accu-

mulation in cells located in the lower part of the intestinal

crypts, where WNT signaling is active and cells proliferate

actively to maintain the normal epithelial homeostasis (supple-

mental Fig. 4A) (26). Our observation that SMC2 is naturally

expressed in cells where WNT pathway is engaged, prompted

us to examine whether there was a correlation between the

levels of SMC2/SMC4 and �-catenin in a panel of 14 CRC cell

lines, and also in a subset of 14 pairs (normal/tumor) of clinical

samples by WB (Fig. 1, C and D). It was confirmed that there

was a strong positive correlation between the protein levels of

�-catenin and SMC2 and SMC4 (Fig. 1F). Furthermore, immu-

nohistochemical analysis of tumor samples confirmed that

membrane-localized �-catenin corresponded to low levels of

SMC2 and NCAPH, predominantly localized in the cytoplasm,

whereas nuclear �-catenin staining was found in conjunction

with increased levels of SMC2 and NCAPH expression, pre-

dominantly in the nucleus (supplemental Fig. 4, B–I). Because

SMC2 was up-regulated in cells actively proliferating in

response to WNT signaling and correlated with �-catenin lev-

els in CRC cell lines and clinical samples, we were interested to

determine whether SMC2 expression could be directly regu-

lated by the WNT/�-catenin pathway.

SMC2 Is Down-regulated in Cellular Models for WNT Path-

way Inhibition—First, wewanted to determinewhether disrup-

tion of WNT/�-catenin signaling could affect SMC2/SMC4

transcription. For this purpose, we used two in vitro systems,

FIGURE 1. SMC2 is up-regulated in human CRC. A, WB analysis of SMC2 in human CRC. A representative subset of 29 cases studied is shown. Actin was used as
loadingcontrol.B, quantitative real-timePCR for SMC2 in 16pairs of colonadenocarcinoma tumors andmatchedadjacentnormal colonic tissues.Data are represent-
ative of three independent experiments. Themean values of SMC2 levels were compared using Student’s t test (upper boxplot). C andD, SMC2, SMC4, and�-catenin
levelswere evaluatedbyWB in both colorectal cancer cell lines (n� 14) and samples fromCRCpatients (n� 27, a representative subset is shown). Actinwas used as
loading control. E and F, SMC2, SMC4, and �-catenin protein levels onWBwere determined by gel band quantification and normalized to the corresponding actin
levels. Values were used to perform correlation studies following Spearman test. G, immunohistochemistry of SMC2 in paraffin-embedded tissue. A representative
specimen is shown.Magnified regions of the normal and tumormucosa are shown on the right.N, normal tissue; T: tumor tissue (adenocarcinoma).
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Ls174T/dnTCF4 and Ls174T/pTER-�-catenin cell lines, for

WNT pathway inhibition. Ls174T/dnTCF4 cells carry a doxy-

cycline-inducible expression plasmid encoding N-terminally

truncated version of TCF4, which acts as a dominant negative

formof TCF4 (dnTCF4). Even though dnTCF4 protein binds to

DNA it does not bind B-catenin acting as a potent inhibitor of

endogenous �-catenin�TCF4 complexes (26). Induction of

dnTCF4 after 96 h of doxycycline treatment resulted in a

decrease in SMC2 protein levels in a dnTCF4 protein dose-de-

pendentmanner (Fig. 2A). Longer inductionswere not tested as

these cells rapidly undergo G1 arrest (26, 27). To confirm inhi-

bition of �-catenin�TCF4 activity, the levels of c-Myc, a well

characterizedWNT target gene, were evaluated (28). The same

effect could be observed in the SMC4 protein levels under the

same conditions (Fig. 2B).

To substantiate the dnTCF4 result, we examined the levels of

SMC2/4 in Ls174T/pTER-�-catenin, a cellular model that

expresses a doxycycline-inducible form of the RNApolymerase

III H1 promoter to drive expression of an siRNA, directed to

�-catenin. Addition of doxycycline to the growth medium

induced rapid down-regulation of �-catenin messenger RNA

(27) and protein (Fig. 2C) in these cells. In this context, follow-

ing 96 h of doxycycline treatment, we observed a down-regula-

tion in SMC2 (Fig. 2C) and SMC4 protein levels (Fig. 2D) that

correlated to decreased �-catenin protein levels and implied a

strong association between SMC subunit expression and

�-catenin�TCF4 transcription factor.

SMC2 Promoter Responds to WNT Pathway Activation/

Inhibition—To determine whether SMC2/4 could be targets of

the �-catenin�TCF4 transcription factor complex, upstream

sequences of the human SMC2 and SMC4 genes were obtained

from the Ensembl database (30). Three different software pack-

ages were used for in silico prediction of the SMC2 promoter:

Gene2Promoter recognized a very highly promoter-like region

between the�308 bp and�420 bp region (considering 0 bp the

transcription start site); promoter 2.0 predicted a promoter

region starting in the �476 bp position; finally, promoterScan

located two putative regulatory regions, from the �597 bp to

FIGURE 2. SMC2 protein is down-regulated upon WNT signaling inhibition. Ls174T/dnTCF4 (A and B) and Ls174T/pTER-�-catenin (C andD) cell lines were
cultured in absence or presence of 5 �g/�l doxycycline (Dox) during the indicated time points. Cells were lysed and analyzed by WB using the indicated
antibodies. Representative data from three replicates/independent experiments are shown.

FIGURE 3. Functional study of SMC2 promoter activity. A, schematic
representation of human SMC2 promoter. Predicted TCF response ele-
ments are also indicated; arrows indicate target sequence for ChIP PCR
amplification. B, Ls174T/dnTCF4 (left) and Ls174T/pTER-�-catenin (right)
cell lines were transfected with SMC2 promoter-luciferase reporter con-
struct together with control Renilla luciferase reporter pRL-TK for normal-
ization (RLU, relative luciferase units). Where indicated, cells were doxy-
cline (Doxy)-treated to induce the TCF4 dominant-negative form (left) or a
siRNA targeting �-catenin (right). TOP-flash vector was used as positive
control for WNT signaling activity/repression. A representative result out
of at least three different experiments run in triplicates is shown. C, DLD-1
or HCT116 cell lines were co-transfected with SMC2 promoter luciferase
construct and pcDNA (empty vector), �-catenin, or VP16-TCF4 expression
vectors. D, PCR analyses of DNA pulled down by isotypic antibody (nega-
tive control) or anti-TCF-4 monoclonal antibody in ChIP assay. c-myc pro-
moter sequence containing TBE1 element and APC promoter region 1B
sequences were amplified as positive and negative controls, respectively.
Error bars indicate S.D. (Student’s t test; **, p � 0.01).
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�348 bp position, and from �313 bp to �64 bp, respectively.

For subsequent studies, we compiled an SMC2 promoter based

on the different predictions, which was determined to be from

position �597 bp to the translation start site (�1059 bp) (Fig.

3A). In this region, two TATA boxes were identified at posi-

tions �591 and �12 bp, and three recognition sites for the Sp1

transcriptional factor were situated at �561 bp, �301 bp, and

�219 bp positions. The predicted SMC2 promoter was sub-

jected to an in silico screen for TCF binding elements (TBE).

rVista (version 2.0, NCBI DCODE), TESS (Transcription Ele-

ment Search System), andMatinspector software (Genomatix),

which predicted four different elements: TBE1 (�389 bp),

TBE3 (�20 bp), TBE4 (�57 bp), and TBE6 (�724 bp). Addi-

tionally, Matinspector located two further TBEs: TBE2 (�37

bp) and TBE5 (�98 bp) (Fig. 3A).

Promoter software (version 2.0) predicted that the region

from the�1500 bp position to the transcription start site (0 bp)

of SMC4was highly likely to be a promoter region, inwhich one

TATA box (�837 bp) and three Sp1 sites (�1066 bp, �21 bp,

and �5 bp) could be identified. Two putative TBE were pre-

dicted in this region (�1270 bp and �1294 bp), but none of

these were phylogenetically conserved in mammals (data not

shown), so we continued our study by focusing onWNT path-

way regulation of SMC2 expression.

The full-length promoter of SMC2 was cloned into a pGL3

firefly luciferase reporter vector, and its activity was assayed in

Ls174T/dnTCF4 cells following transient transfection alone, or

in combination with �-catenin expression vector (pBCAT).

This promoter was active under normal conditions, even more

than the positive control TOPFLASH (run in parallel). After

doxycycline induction of the dnTCF4 form, luciferase activity

was significantly reduced. Moreover, the promoter was able to

respond to �-catenin transduction, but this capacity was lost

when the dnTCF4 formwas induced by doxycycline (Fig. 3B, left).

SMC2 promoter was also tested in Ls174T/pTER-�-catenin cells.
Doxycycline-induced down-regulation of �-catenin also dimin-

ished the luciferase activity of the full-length promoter of SMC2

(Fig. 3B, right).

To confirm that the SMC2 promoter was a target of activated

WNT signaling, we tested the luciferase activity of the pro-

moter in two colon carcinoma cell lines, DLD1 and HCT116,

carrying an activating mutation in �-catenin or a deactivating

mutation inAPC (31), respectively. Cellswere co-transfectedwith

pGL3-SMC2 promoter and expression vectors for �-catenin
(pBCAT) orVP16-TCF4 (a constitutively active formof TCF4). In

both cell lines, a significant gene transactivation increase could be

observed after the co-transfection (Fig. 3C), supporting the

hypothesis that the activated WNT pathway can drive transcrip-

tion from the SMC2 promoter via the �-catenin�TCF4 transcrip-
tion complex.

TCF4Transcription Factor Is Bound to the SMC2Promoter in

Vivo—We aimed to determine whether TCF4 interaction with

the SMC2 promoter was direct or indirect. Therefore, ChIP

experiments were used to test whether TCF4 could occupy

the SMC2 promoter. Chromatin from DLD1 cells was cross-

linked prior to anti-TCF4 antibody immunoprecipitation of

DNA�protein complexes. The SMC2 promoter sequence that

contains TBE 2, 3, 4, and 5 was present in the TCF4 eluate (Fig.

3D), confirming that this transcription factor can bind to the

SMC2 promoter in vivo. Primers for c-myc and APC promoter

amplification were used as positive and negative controls,

respectively (28).

The Region Located between �389 bp and �98 bp in SMC2

Promoter Is Defined as theMinimal Regulatory Fragment of the

SMC2 Gene—To define the minimal transcriptional regulatory

region in the SMC2 promoter, we cloned a series of terminal

deletions of the full-length sequence based on the position of

the predicted TCF response elements (Fig. 4A). DLD1 and

HCT116 cells were transfected with three different deletion

mutants, and luciferase activity was measured.

Deletion of the first 100 base pairs in the SMC2 promoter

resulted in decreased luciferase activity, and the promoter

activity was almost lost when the deletion removed all of the

putative TBEs (except TBE6). It was also confirmed that the 0.5

kb (�3 sequence), which contains TBEs 1, 2, 3, 4, and 5, main-

tained the maximal activity in both cell lines. Fragment �3
showed a luciferase activity similar to the full length sequence.

Thus, we defined�3 as theminimal regulatory region and used

it for further mutational studies (Fig. 4B).

The TCF Response Element Located at �20 bp (TBE3) Is

Susceptible to �-Catenin�TCF4 Transactivation—Interspecies

conservation analysis showed that two of the six TBEs pre-

dicted, TBE2 and TBE3, were highly conserved in ortholog

SMC2 promoters ofmouse, rat,macaque, and chimpanzee (Fig.

5A), and both were present in the minimal regulatory region,

�3. Interestingly, these two TBEs are the closest ones to the

transcription start site.

FIGURE 4. Determination of the minimal regulatory region of SMC2 pro-
moter. A, relative position and sequences of the putative TBEs predicted in
silico in the SMC2promoter and deletionmutants for luciferase (luc) reporters
performed. B, determination of fragment 3 as the minimal regulatory region
of the SMC2 promoter. Luciferase activity of each deletion mutant was nor-
malized to Renilla luciferase internal control (RLU, relative luciferase units) in
DLD1 (left) or HCT116 (right) cell lines; a representative result is shown of at
least three independent experiments. *, p� 0.05; **, p� 0.01; Student’s t test
(promoter activity versus full-length SMC2 promoter (SMC2 FL).
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To study the functionality of those conserved TBEs, we per-

formed site-directedmutagenesis to disruptTCF4binding abil-

ity (Fig. 5B). We detected a significant decrease in luciferase

activity when TBE3, located at �20 bp, was mutated. However,

mutations in all other TBEs did not affect luciferase activity

driven by the SMC2 promoter (Fig. 5C).

To confirm TBE3 susceptibility toWNT signaling transacti-

vation, we measured luciferase activity after co-transfection of

�-catenin or VP16-TCF4 expression plasmids and different

mutational combinations in �3 fragment. Enhancement of

luciferase activity in response to WNT/�-catenin stimulation

was lost when TBE3 was disrupted (Fig. 5D). As expected,

mutations inTBE 1, 2, 4, and 5 did not affect promoter response

to �-catenin or VP16-TCF4 stimulation. Thus, we identified

the TCF response element located at�20 bp (TBE3) as the sole

entity responsible for �-catenin�TCF4 transactivation of the

SMC2 promoter.

SMC2 Knockdown Results in Decreased Tumor Growth in

Vivo—Because we had established that the SMC2 promoter

could be driven byWNT signaling, and SMC2has a clear role in

mitosis, we hypothesized that perturbing SMC2 expression

may reduce WNT-induced cell proliferation. Therefore, we

investigated the effect of SMC2 down-regulation in WNT-ac-

tivated CRC cell lines. DLD1, HT29, and HCT116 cells were

transiently transfected with an siRNA targeting SMC2 for 48,

72, and 96 h. SMC2 knockdown efficiency was assessed byWB.

Furthermore, a decrease in SMC4 andNCAPH protein expres-

sion was also detected, implying a reduction in the condensin

complex as a whole (supplemental Fig. 5). Cell cycle profile was

studied by FACS determination of propidium iodide stained

DNA. A significant increase in haplo-diploid (apoptosis), 4n

(G2/M), and aneuploid (	4n) DNA content populations could

be observed along treatments, whereas the 2n DNA content

population (G1) decreased drastically (supplemental Fig. 6,

FIGURE 5. Elucidation of the TBE responsible for �-catenin�TCF4 transactivation in the SMC2 promoter. A, sequence alignment of SMC2 promoter in
different species;Hs,Homo sapiens; Pt, Pan troglodytes;Mmt,Macacamulatta;Rn,Rattus novergicus;Mms,Musmusculus. Conserved TBEs are highlighted ingray
background. B, schematic representation of SMC2 promoter mutant variants. C, DLD1 (left) or HCT116 (right) cell lines were transfected with constructs above.
Luciferase activity was normalized to Renilla activity (RLU, relative luciferase units); a representative result is shown out of at least three independent experi-
ments. D, DLD-1 (left) or HCT116 (right) cell lines were co-transfected with �3 fragment mutational combinations and expression vectors for �-catenin,
TCF4-VP16 (constitutively active form of TCF4), or the empty vector pcDNA3 (pcDNA); a representative result is shown out of at least three independent
experiments (*, p � 0.05; **, p � 0.01; ***, p � 0.001).
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A–C). For stable SMC2 knockdown, lentiviral particles con-

taining an shRNA targeted to SMC2 were used to transduce

HT29 cells. Five different sequences targeting different regions

of SMC2mRNAwere tested, but only three regionswere able to

down-regulate SMC2 efficiently. As expected, stable knock-

down of SMC2 impaired HT29 cell viability. Morphological

changes in SMC2-down-regulated cells could be appreciated

after 1 week in culture in terms of enlarged multinucleated and

non-viable cells, a phenotype clearly associated to shRNA-

SMC2 knockdown efficiency (supplemental Fig. 6, D and E).

These results implied that decreasing SMC2 protein levels

could attenuate cell division even in cells that are receiving

strong proproliferation signals, such as the WNT/�-catenin
pathway.

To test this concept in vivo, we investigated whether CRC

tumor cells require SMC2 expression to proliferate in a xeno-

grapft model of tumor progression. To prolong the knockdown

effect, two rounds of transfectionwere performed inDLD1 cells

before injection into athymic nude mice (Fig. 6A). To asses

SMC2 knockdown durability, SMC2 protein was evaluated by

WB of whole cell extracts 72, 96, and 120 h post-transfection,

confirming that SMC2 levels remained down-regulated for at

least 120 h under these experimental conditions (Fig. 6B).

siRNA-SMC2 or scrambled siRNA transfectedDLD1 cells were

injected into the flanks of 11 nude mice and tumor growth was

measured over 5 weeks. Transient knockdown of SMC2 was

enough to significantly reduce tumor size compared with con-

trols even at 12 days post-injection, and this difference became

more pronounced after 35 days, the point at which the animals

were sacrificed (Fig. 1,C andD). Although further investigation

is required, the significantly tumor growth-retarding effect of

SMC2 knockdown in vivo could make SMC2 an interesting

novel chemotherapeutic target.

DISCUSSION

It is becoming apparent that the WNT signaling pathway

appears to be intimately linked with the mitotic machinery. In

this study, we have demonstrated that the TCF4 transcription

factor can bind to and drive the SMC2 promoter in vitro and

that preventing �-catenin binding to TCF4 markedly reduces

SMC2 protein levels. Our in vivo study suggests that depletion

of SMC2 levels in human CRC cells expressing constitutively

active �-catenin significantly affected tumor growth in an

immunodeficient mouse model.

In this study, we observed SMC2 protein levels to correlate

directly with SMC4 protein levels in a panel of colorectal cell

lines and tumor lysates, in accordance with the heterodimeric

structure of the condensin SMC2/4 core. We were unable to

locate a conserved TCF4 transcription element within the

SMC4 promoter; however, expression of either condensin SMC

subunit appears to be very tightly linked to expression of its

partner. Indeed, preliminary experiments in which SMC2

expression is depleted in DLD1 cells using siRNA to SMC2

show that there is a corresponding reduction in the levels of

SMC4 and the non-SMC regulatory subunits (supplemental

Fig. 5).

Chromatin is generally thought to be transcriptionally silent

around theG2/M transition. Furthermore, Takemoto et al. (32)

demonstrated that in unstimulated cells, SMC protein levels

remained stable throughout the cell cycle. However, in WNT-

activated cells, the situationmay be different.WNT signaling is

enhanced by cyclin� and peaks aroundG2/M (16). Therefore, it

is important to consider whether WNT target genes, such as

SMC2, could be actively transcribed during this phase of the

cell cycle. A recent study using conditional gene knock-out

(KO) mice highlighted the link between cell cycle regulators

andWNT signaling, and goes some way to answering the ques-

tion. Deletion of all threemembers of the CDC25 protein phos-

phatase family led to a lethal reduction in enterocyte prolifera-

tion due to arrest at G2/M. Notably, in the same animals,WNT

target gene expression was up-regulated in putative epithelial

crypt progenitor cells, and there was a 50% increase in the total

number of crypt cells staining positive for nuclear �-catenin
(34). This result confirms the possibility that �-catenin�TCF4
could be actively driving transcription of SMC2 and other tar-

get genes duringG2/M in vivo. The physiological significance of

SMC2 transcription at this point in the cell cycle is unclear;

however, it could be a method of ensuring that sufficient levels

of DNA-condensing proteins are available at the juncture

where they are required most.

Our initial immunohistological observations of normal

human intestine confirmed that SMC2 protein expression was

FIGURE 6. siRNA knockdown of SMC2 impairs tumor growth in a xeno-
graft mouse model.A, schematic representationof theexperimental design.
DLD1 cells were transiently transfected with an siRNA targeting SMC2 or a
scrambled sequence. After 48 h, a second round of transfection was per-
formed. 24 h later, 1.5� 106 cells were injected subcutaneously in the dorsal
flanks of athymic nude mice. B, SMC2 knockdown was assessed by WB using
whole cell extracts from in vitro culture until 120 hpost-tranfection (sc, scram-
bled siRNA). C, representative resected tumors from the same animal at day
40post-injection. Scale bar, 1 cm.D, tumor growth curves. Tumor volumewas
measured every 2–3 days for 36 days. The graph is representative of two
independent experiments. Error bars represent S.E. (n� 11). Differenceswere
evaluated with paired Student’s t test (p � 0.0201); (*, p � 0.05, t test in each
time point).
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up-regulated in crypt cells staining positive for nuclear

�-catenin. As WNT signaling drives cell proliferation, it is not

particularly surprising that higher levels of condensins are

required by tissues with elevated cell turnover such as the gut.

However, it is exciting to note that SMC2 expression can be

directly driven by TCF4 transcription factor. It is possible that

WNT signaling can drive a positive feedback loop, whereby

rapidly dividing cells are induced to produce elevated levels of

proteins involved in the cell division machinery.

Previously,Ghiselli and co-workers (29) found that one of the

cohesin SMC subunits, SMC3, was up-regulated in human

colorectal adenocarcinomas and APCMin mouse adenomas.

The SMC3 promoter also contains two conserved transcrip-

tional binding sites for �-catenin�TCF4 in the human and

mouse promoters, which could be driven by elevated �-catenin
(29, 33). Our data confirms that the promoter of a condensin

subunit, SMC2, can also be a target of �-catenin�TCF4 activa-

tion, and our in vivo knock-down experiment suggests that

reducing SMC2 levels could be an effective way of retarding or

ablating tumor growth.

Our analysis of a bank of human CRC cell lines showed that

SMC2 and SMC4 proteins are highly expressed in many trans-

formed cells. Interestingly, there appeared to be a correlation

between the level of SMC protein expressed, and the rate of cell

division (i.e. cells with higher levels of SMC2 tended to be the

fastest growing; supplemental Fig. 3). Furthermore, SMC2 lev-

els are significantly reduced in non-dividing senescent cells

(data not shown), supporting the positive feedback hypothesis

suggested above. Moreover, our analysis of human colorectal

tissue samples implies that up-regulation of SMC2 and SMC4 is

a common occurrence in human intestinal cancer, corroborat-

ing the idea that up-regulation of condensin can be linked to

�-catenin-induced hyperplasia. Analysis of non-SMC conden-

sin subunits at themRNA and protein levels confirmed up-reg-

ulation of the condensin complex as a whole in tumor versus

normal tissue samples (supplemental Figs. 2 and 4). Our obser-

vation that SMC2 expression is up-regulated in cells with

nuclear�-catenin suggests that�-catenin�TCF4may drive pro-

duction of condensin, which might be required to allow rapid

cell division.

Interestingly, knockdown of the SMC2 subunit alone was

sufficient to cause a significant reduction in proliferation of an

APC mutant colorectal cell line in vivo (confirmed by FACS,

supplemental Fig. 6B). Upon further analysis, we found that two

additional CRC tumor cell lines treated with SMC2 siRNA

appeared to be undergoing aneuploid division and apoptosis,

most likely as result ofmitotic catastrophe (supplemental Fig. 6,

B and C). Therefore, given that reducing SMC2 expression

alone is enough to induce growth arrest and apoptosis of tumor

cells, the SMC2 condensin subunit could be an attractive novel

target for therapeutic intervention in cancer treatment. Of par-

ticular significance is the fact that SMC2 is highly expressed

alongside nuclear �-catenin in a few cells located at the base of

intestinal crypts, which are putative stem cells. This suggests

that high expression of SMC2 may be a characteristic of stem

cells in normal colon tissues.

In summary, this study has identified SMC2, one of the con-

densin ATPase subunits, as a novel, bone fide target of

�-catenin�TCF4 transcription. Furthermore, overexpression of

condensin appears to be a frequent feature of humanCRC. Our

data suggests that elevated levels of condensin may be required

to allow WNT-driven cell proliferation and that reducing

SMC2 expression can lead to tumor cell apoptosis. Therefore,

modulation of condensin SMC protein expression may offer

exciting novel therapeutic potential in the treatment of human

neoplasia.
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Supplementary Material 

 

  

Supplementary Tabl e  1 :Oligonucleotides used in the study. Restriction enzymes sites are indicated underlined; 
TBEs mutagenesis are highlighted in grey background. 

Use Primer ID  Sequence 

ChIP 

SMC2 prom- 
ChIP TCF4 

Sense GGCACCAGCACAGGAAATAAG 
Antisense GCTTGACGCACCCCAAAAG 

c-myc prom 
Sense TTTCACAAGGGTCTCTGCT 
Antisense TGCTCTCTGCCAGTCTGTA 

APC prom 
Sense GCCAGTAAGTGGTGCAACTG 
Antisense TGTGGGAGGTGGGAAGACTA 

SMC2 
promoter 
cloning and 
deletions 

Full length Sense (KpnI) GGGGTACCGACGTGGAAACTTCAG 
Antisense (BglII) GAAGATCTCATTTTCGATACTGTCTTGGG 

�1-KpnI-SMC2p Sense (KpnI) GGGGTACCCTTTGAGGAGAGAAAAGTAAG 
�2-KpnI-SMC2p Sense (KpnI) GGGGTACCAGGAGCTTTTGGGGTGCGTC 
�3-BglII-SMC2p Antisense (BglII) GAAGATCTACGCACCCCAAAAGCTCCT 

SMC2 
promoter 
site-directed 
mutagenesis 
 

SMC2prom-
TCF4BOX1mut 

Sense TCCACTTCCTAACTGTCGCGCTGAGGAGAGAAAAGT
AAGC�� 

Antisense 
GCTTACTTTTCTCTCCTCAGCGCGACAGTTAGGAAGT
GGA 

SMC2prom-
TCF4BOX2mut 

Sense TGGAGGTGGGGTCCTCTACTCGCGCCGAAATTC 
Antisense GAATTTCGGCGCGAGTAGAGGACCCCACCTCCA 

SMC2prom-
TCF4BOX3mut 

Sense 
GTCCTTTGCTCGCGCCGAAATTCATTGGAATAAATAG
TTCC 

Antisense 
GGAACTATTTATTCCAATGAATTTCGGCGCGAGCAA
AGGAC 

SMC2prom-
TCF4BOX4mut 

Sense TGGTGAAGTTCGCTGCGTAGCGGCCCCGGC 
Antisense GCCGGGGCCGCTACGCAGCGAACTTCACCA 

SMC2prom-
TCF4BOX5mut 

Sense TTCTGTTCCCTGCCTATGTGACCCGGAGG 
Antisense CCTCCGGGTCACATAGGCAGGGAACAGAA 

 

Supplementary Table 1: Clinical features of the patients used in this study. 

 

    Low 
SMC2 

High 
SMC2 Total p Low 

SMC4 
High 

SMC4 Total p 

Sex (nº) Female 4 10 14 1$ 
 

5 5 10 1S 

   Male 10 18 28 9 8 17 
Age (average) 59.4 67.35 65.26 0.17& 63.7 58.23 61.11 0.34& 
Location  Right 3 7 10 0.7$ 

 
4 3 7 0.67$ 

   Left+Rectum 7 20 27 8 10 18 
Stage I+II 5 9 14 0.45$ 

 
6 5 11 1$ 

   III+IV 5 18 23 7 8 15 
Grade Good 5 0 5 0.089+ 

 
 

1 3 4 0.11+ 
 
 

  Poor 16 9 25 10 7 17 
  Moderate 5 0 5 0 3 3 

$: Fisher exact test 

&: Mann-Whitney test 

+: Chi-square test for trend 
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SUPPLEMENTARY FIGURE LEGENDS 

SUPPLEMENTARY FIGURE 1. Confirmation of SMC2 antibody specificity: DLD-1 cells were 
treated with SMC2 siRNA or control scrambled siRNA (sc) and subject to immunocytochemistry 96h 
after transfection. Anti-SMC2 antibody staining (ab10412; 1:200 dilution) revealed nuclear SMC2 
staining in cells treated with control siRNA (A and C). However, cells that were depleted of SMC2 using 
SMC2 siRNA showed greatly reduced peroxidase staining, indicating that the anti-SMC2 primary 
antibody specifically recognized SMC2 (B and D). Images were taken under bright field microscope at 
100X. 

SUPPLEMENTARY FIGURE 2. Expression of non-SMC condensin complex subunits was generally 
higher in colorectal tumor samples in comparison to their normal counterparts. qPCR of NCAPG (A), 
NCAPG2 (B) and NCAPH (C) showed a trend (≥12/15 patient samples) for increased mRNA levels of all 
non-SMC condensin subunits in human tumor samples, mirroring the data for SMC2 and SMC4. Inter-
patient disparity in the fold change of each condensin subunit is likely to reflect technical differences in 
the affinity of each qPCR assay, and would best be addressed using multiple primer-probe sets for all the 
condensin subunits. 

SUPPLEMENTARY FIGURE 3. Negative correlation between SMC2/SMC4 protein levels and 
population doubling time in 14 colorectal cancer cell lines. SMC2/4 protein levels were analyzed by WB, 
quantified and normalized to actin levels by gel band quantification. p-values were calculated using the 
Spearman Correlation Test. 

SUPPLEMENTARY FIGURE 4.  Nuclear localization of �-catenin correlates with increased levels of 
condensin subunits and redistribution of their subcellular location. (A) Immunohistochemistry using 
antibodies against �-catenin, SMC2 and NCAPH confirmed that condensin subunit expression mirrored 
�-catenin expression in normal human crypts; ie a gradient of expression along the crypt axis, strongest at 
the base. (B-G) In human colorectal tumor samples, cell-junctional localization of �-catenin was 
associated with low levels of SMC2 and NCAPH proteins (B-D). However, nuclear �-catenin localization 
was associated with high levels of SMC2 and NCAPH (E-G). (H and I) Quantification of the correlation 
between SMC2 (p = 0.0464) and NCAPH (p = 0.0014) protein expression and �-catenin localization, as 
observed in (B-G). Data interrogated using the Fisher Exact Test. Images taken under a bright field 
microscope at 10X (A) and 100X (B-G). 

SUPPLEMENTARY FIGURE 5. Expression of condensin complex members appears to be coupled at 
the protein level. Transient SMC2 siRNA treatment of DLD-1 cells resulted in a matching decrease of 
SMC2, SMC4 and NCAPH protein levels from 48-72h post-transfection, compared to cells treated with 
control scrambled siRNA (sc). 

SUPPLEMENTARY FIGURE 6. SMC2 knockdown effect on cell cycle profile. (A) SMC2 knockdown 
analysis by WB after transfection of an siRNA targeted to SMC2 at the indicated time points in DLD1 
cells (sc=siRNA scrambled, used as siRNA control). Similar results were obtained in HT29 and HCT116 
cell lines. Actin served as loading control. (B) Analysis of cell cycle distribution of DLD1, HT29 and 
HCT116 cell lines 48, 72 or 96 h post-siRNA SMC2 transfection.  One representative experiment is 
shown out of three independent experiments. (C) Cell population distribution 96 hours post-siRNA 
transfection in DLD1, HT29 or HCT116 cell lines. (*,p<0.05; **,p<0.01). (D) Stable knockdown of 
SMC2 in HT29 cells. Lentiviral particles containing five different shRNA sequences targeting SMC2 
were used to transduce HT29 cells. shRNA non-targeted was lentivirally delivered as control (shNT). 
Protein expression was measured by WB using extracts of the polyclonal populations obtained after 
puromycin selection. Actin served as loading control. (E) Morphological changes in stably SMC2-
downregulated cells. Images were taken under a phase-contrast microscope at 20X. 
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Figure S1 

 

Figure S2 
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Figure S3 
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Figure S4 
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Figure S5 
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