Open Source Platform for Subjective Polling of
Urban Environments: OpenUrbanOpticon

Bernat Orell Vicens
Dr. Daniele Quercia & Dr. Daniel Villatoro

Enginyeria Informatica - Universitat de Barcelona

2012-2013

Al meu padri Bernat

Acknowledgements

Poder dur aquest projecte a bon port no ha estat tasca facil, per aixd he d’agrair primerament
'ajuda i la paciéncia que ha tingut el meu tutor Daniel Villatoro perqué estic segur que no és
tasca facil. Per altra banda, vull agrair al treball fet pel meu altre tutor Daniele Quercia, per haver
proposat un projecte interessant i per el caire cientific que li ha donat al projecte.

També vull agrair I'anim amb que hem saluden cada vegada que hem truquen des de Mallorca
els meus padrins Miquel i Margalida i al meu padri Bernat, que ens ha deixat recentment, i que
estic segur de que estaria orgullés dels seus néts. Al meu pare, per el seu seny, que sempre

m’ha donat bons consells i tot un referent i a la meva mare, per que sempre m’ha animat a

continuar i a torbar solucions a tots els problemes que han anat sortint. També agrair al suport

de la meva germana, que com jo acaba una etapa de la seva vida on junts hem compartit bons i

no tant bons moments durant tot aquest temps.

Finalment vull agrair als meus amics Alberto, José Lluis i David que han ajudat a fer aquests
cursos d’Enginyeria Informatica més agradables i entretinguts.

Acknowledgements
1. Intro
2. State of Art
2.1. Crowdsourcing
2.1.1. Introduction
2.1.2. The projects
2.1.2.1. Kickstarter
2.1.2.1.1. The goal
2.1.2.1.2. User experience
2.1.2.1.3. Criticism
2.1.2.1.3. Technologies
2.1.2.2. Amazon Mechanical Turk
2.1.2.2.1. The goal
2.1.2.2.2. User experience
2.1.2.2.3. Criticism
2.1.2.2.4. Technology
2.1.2.3. 99Designs
2.1.2.3.1. The goal
2.1.2.3.2. User experience
2.1.2.3.3. Criticism
2.1.2.3.4. Technologies
2.2. Smartcities
2.2.1. Introduction
2.2.2. The projects
2.2.2.1. HoyRespiro
2.2.2.1.1. The goal
2.2.2.1.2. User experience
2.2.2.1.3. Criticism
2.2.2.1.4. Technologies
2.2.2.2. SuperHub
2.2.2.2.1. The goal
2.2.2.2.2. User experience
2.2.2.2.3. Criticism
2.2.2.2.4. Technologies
2.3. Crowdsourcing/Smartcities
2.3.1. Introduction
2.3.2. The studies
2.3.3. The projects
2.3.3.1. UrbanGems
2.3.3.1.1. The goal
2.3.3.1.2. User experience
2.3.3.1.3. Criticism

https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.bw0msqid2yae
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.dx6fgdumazyw
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.wfs6kd1jd549
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.cmc0h2wy1zsn
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.mw2e06r8i7ac
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.pjgrssohdvtq
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.j7xipben8yfd
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.432vh98zwvmi
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.qeh6skkya0vn
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.9aikaj2ufu69
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.do1u7r9vpg7m
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.fpmtw35mlxu8
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.ruiqetq678zb
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.rjcz6et86emh
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.ale2hkn1byvh
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.mzqvgfaa2qce
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.870txjd6rwlz
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.ynsmf01rtw7e
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.3lweu2awfbix
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.b8orkfwq95c9
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.2qi8jdtvjlbo
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.xqwt4s7i79t5
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.m2urzrrxorcw
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.x4qfl53aar48
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.sprcj08tyv0r
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.1k39ihd52ue0
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.c1lihw4u5stv
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.gfgpkcio266d
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.ftgqz1o99g1w
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.9x77mvep2nfa
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.gn5jmpdfb856
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.pzxnsvbbxja1
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.1yr86cb1hdhv
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.u7f0175fx8qs
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.8prbr6ev0jui
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.fgy7xrywt55o
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.212hpw44ish6
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.thnu72hf87tl
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.6zaubo5eskc7
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.w1hrmcjvspxa
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.3xclqreronji
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.mcrazjfx8son

2.3.3.1.4. Technologies

2.3.3.2. UrbanOpticon
2.3.3.2.1. The goal
2.3.3.2.2. User experience
2.3.3.2.3. Criticism
2.3.3.2.4. The problems
2.3.3.2.5. Technologies

2.3.3.3. Place Pulse
2.3.3.3.1. The goal
2.3.3.3.2. User experience
2.3.3.3.3. Criticism
2.3.3.3.4. Technologies

2.3.3.4. Ushahidi
2.3.3.4.1. The goal
2.3.3.4.2. User experience
2.3.3.4.3. Criticism
2.3.3.4.4. Technologies

2.4. Technology table
3. Technologies
3.1. Web server language

3.1.1. JavaEE

3.1.2. PHP
3.1.2.1. Symfony

3.1.3. Python
3.1.3.1 Django

3.1.4. Ruby
3.1.4.1. Ruby on Rails
3.2. Databases
3.2.1. SQL based
3.2.2. MongoDB
3.3. Webpages
3.3.1. Bootstrap
3.3.2. Skeleton
3.3.3. 99Lime HTML KickStar
3.3.4 jQuery
3.3.5 CoffeeScript
3.3.6. LESS
3.3.7. HAML
4. Problem description
5. Use cases
5.1. Experiment creators
5.1.1. Create a city experiment with a shapefile (.shp)
5.1.2. Create and manage cities and neighborhoods divisions manually

https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.gybcybn5rf2m
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.rm0iuj9x08w6
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.j9hd3xc4a96d
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.7batdb5fn6kc
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.i15vnwhxkqg6
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.sbdkcrth7b2u
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.hqhvlywln2g5
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.45pfo1kvkq1u
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.nq75j3xnjbnm
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.5f91x5z05h8t
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.vounfo6llvp5
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.rw8hpoxo6c4k
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.2vfpnzi8naia
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.9m1kdtptu3j5
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.amw6wzgex0z2
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.p0jqnqalm9rc
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.789nz5jnsj9
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.1x6caf42r8hq
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.covqg5afhuol
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.eiaeechz4pj4
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.4cfpow6srnb7
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.byrg3my31dtv
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.bl587aobtst7
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.ppz1pkx09v8g
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.knw1oj9f9sc7
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.8xz7ju7wjl6t
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.r6unj9yhk6ie
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.sllirgvz90p7
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.oep3oqfdn1u6
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.ou50gmptno2x
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.cfkeq65lqs
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.bqjkva2s2wca
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.5waazcp29pcx
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.ovibvq5w9c7b
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.9m1jmal5uc99
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.9sohttwklgyr
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.yg3azo5ljm7a
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.dldtvsncjddo
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.j56gou2aum0
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.yohenx5xemq6
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.rq4avz43np3t
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.cfwb1tvbtwve
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.82iytagifzye

5.1.3. Make easy-to-guess points and random points for an existing experiment
5.1.3.1. Points of Interest
5.1.4. Create and manage Places
5.1.5. World experiment points
5.2. Final user
5.2.1. Point the correct zone
5.2.2. Score
5.2.3. Contribution indicator
6. System Structure
6.1. The language: Python
6.2. The web framework: Django
6.3. The geographical framework: GeoDjango
6.4. Asynchronous communication: Dajax
6.5. Creation of dynamical select list: Javascript
6.6. Display geographical objects: OpenlLayers
6.7. Get relevant places: Google Maps APl v3
6.8. Get images from a coordinates: Street View Image API
6.9. Events, manage elements...: jQuery
6.10. Stylize the front-end: Bootstrap
6.11. Geographical database: PostGIS
7. Technological Challenges
7.1. Django asynchronous communication
7.2. Projections
7.3. Save and compare images of Google Street View
7.4. Import Shapefile
7.5. World Points
8. Economic valuation
8.1. Technologic resources
8.2. Human resources
8.3. Total cost
9. Development Methodology
10. Future work
10.1. Short-term work
10.1.1. Improve the city study creation
10.1.2. Make the world points dynamically random
10.1.3. Filter the ‘no image’ in the easy-to-guess points
10.2. Long-term work
10.2.1. Phone and tablet app
10.2.2. Monetization
11. Conclusions
12. References
13. Annexes
13.1. Code Review

https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.451sbvtz5zz5
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.25yo3198m9xy
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.4eohsocl8keq
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.iw8cu5oxaa6r
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.mp40m77cq07b
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.o1s3szqbphfd
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.e2pbnfn6ukxo
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.xf95nfymecdu
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.z1r8rybaq7ip
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.lfcc37xqd7zq
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.6o16x062olr2
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.b40codqjy4oq
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.a99poybr9i5f
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.1fzf8omwpcxo
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.yrm8j4y9ci89
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.cu3xzcp3n2m9
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.sht14egecagq
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.gtn0xku6cjcm
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.2rkauo83zq12
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.tjknax276dnw
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.qf5lpgt1c5s4
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.affqydr74npb
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.bq3zba8iyuh6
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.bx09jo97kgo8
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.r683di3otgpx
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.lmcuhcdtx4as
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.vjm95qjdjz2a
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.bb5vicfryvjw
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.sao8d0pbif63
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.74vvqzh8stwg
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.59zv6b75b14r
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.wx2sa7p37mg0
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.kycpaoj9puvu
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.w6oks0uyjp2q
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.cd0tb3g4zsiw
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.ukhs3g985u0k
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.quh4cvlkhsd3
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.p7p6r4kn52sd
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.ycpthhy089oh
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.g6mu4zy4vtwo
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.36dxnhji2c1m
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.9e291kim4vi0
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.1o6odzpzs30g

13.1.1. Python files
13.1.1.1. models.py
13.1.1.1.1. City
13.1.1.1.2. Area
13.1.1.1.3. Place
13.1.1.2. admin.py
13.1.1.3 views.py
13.1.1.4 ajax.py
13.1.2. Templates
13.1.2.1. index.html
13.1.2.2. base_site.html
13.1.2.3. createCity.html
13.1.2.4. importShapefileNewCity.html
13.1.2.5. generateetg.html
13.1.2.6. generateRandom.html
13.1.2.7. generatePoints.html
13.1.2.8. importShapefile.html
13.1.2.9. worldPoints.html
13.1.3. adminUtils.js
13.1.3.1. createMap
13.1.3.2. initEtg
13.1.3.3. createMapRandomPoints
13.1.3.4. callbackGoogle
13.1.3.5 saveETG
13.1.3.6. callbackRandomPoints
13.2. Administrator manual
13.2.1. Setting up the database
13.2.2. Login and index
13.2.3. Create city
13.2.4. Import shapefile
13.2.5. Generate Points
13.2.6. World Points
13.2.7. Manage model

https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.u9eeaw6wz2m7
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.3a40p9l7wjw1
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.7sb1dca190yl
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.moebp9aaka3
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.xeikqh1la6cm
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.iqkopmm0bx37
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.xhekg5selx6c
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.dxdcesbikxe8
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.99c7xdhvn0jh
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.e7xkaiwvmujv
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.y3t0rk8qc3bo
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.evrrrqi89my2
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.2cdmg2w1jgl8
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.ieoxfybxtc2h
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.mdno4dlihpqs
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.nkvdxacnhbff
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.4e2gl5yyk9a6
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.lv3ws8o0x4qt
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.op9kto8hpa3f
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.6h32dvx2920j
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.or2rzoilq49p
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.p3datnfm27xj
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.2ctdswkp6qj1
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.lu0gxydek4l5
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.oxkymg9htpwh
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.edaucsiechtg
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.hnca3p17s3la
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.kt9unek13hr4
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.6vtm2dvnoj1f
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.n4tb4ztedgwn
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.9bc56gdd723l
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.xhz4h2gq9fkk
https://docs.google.com/document/d/sTCI-J0KRpLxXcxsrjvMg5Q/headless/print#heading=h.orw605k78wdi

1. Intro

One of the problems that the world has to face in the next years is the fact that more and more

people are moving to cities. To accommodate these people in the actual cities will be a

challenge and the governors have to work on it. There are a lot of different ways to investigate
how people is interacting with the city to make it better but one of them is the recognizability map
that everyone have on their mind of the city. This will be very important in the future, how much
they know their city and what things can relate with the places. For example, it could be
interesting for an administrator of a city to know which areas need to increase their visibility or for
a manager that wants to know which are the well-known streets or places of a city to spread his

business.

The web page Urban Opticon runs a game which permits to know through a crowdsourced

gamification web application, the well-known points of London. Images of Google Street View are
shown and users have to point the closest borough or tube station. But this solution has been

tailored for the city of London, with all their specific characteristics such as the boroughs or tube

stations. Because of these constraints, and despite the interest of the result obtained using this

platform, the developed code is not transportable to any city.

Therefore, we decide to extend this previous basic project into a new project named Open Urban
Opticon that allows to deploy a server with any city of the world easily for everyone. Our main
goals are to make a friendly interface easy to manage that allows to make new studies without
writing a single line of code.

Our specific objectives for this project are:
e Develop a web application to help in the task of the subjective polling of the urban
environments.
Learn to use a web framework like Django.
Interact with external APIs such as Google Street View, Google Places and OpenLayers.
Provide a friendly administration website for those experiment setters to configure their
experiment with a few steps.

The sections that will be found in this document are:

- State of art, where the most interesting crowdsourcing and smartcity projects will be explained
and the technologies that they use.

- Problem description, here it is described which are the problems that have to for our general
approach to the Urban Opticon.

- Use cases, the interaction with the users.

- System structure, here it is explained the different technologies that have been used and why
they engage with our project.

- Technological challenges, this section contains the most challenging problems and their
solutions.

- Future work, in this section is an approach to how the Open Urban Opticon could evolve in the
future.

- Conclusions, in this section we present the main conclusions and lessons learnt from the
project.

2. State of Art

This sections is divided in three different subsections depending on the types of projects that are
explained which are related with Open Urban Opticon. The first are the crowdsourcing projects.
The crowdsourcing projects can be only understood with the participation of the people. The
projects are based in the data that people give when they involve. In the second section the
smartcities projects can be found. Smartcities projects have a clear objective that it is make
habitability of the urban environments better in different ways like energy saving, public transport,
etc. In the last section we have the crowdsourcing/smartcities projects, this projects use the
data that users give and this data is used to improve the urban environment.

2.1. Crowdsourcing

2.1.1. Introduction

Crowdsourcing is a process that involves outsourcing tasks to a group of indeterminate people.
This process can occur offline but it is more frequent on Internet environments and it makes
crowdsourcing much easier. Internet helps in many ways like raising funds to support a cause or
organization.

Crowdsourcing can be divided by types depending on the tasks:
- Crowdvoting: it consists in judge certain things that users have uploaded or product owners

have published in order to know the crowd opinion. For example: The Hype Machine,
Soundcloud, Pinterest, Tumbilr, etc.

- Crowdsourcing creative work: it involves different users to design a certain product. For
example: 99designs, GeniusRocket, etc.

- Crowdfunding: it exposes a project that need financial help to look for investors, and depending
on the investment, the company will give a
reward. For example: Kickstarter, Verkami, etc.

- “Wisdom of the crowd”: it is another type of crowdsourcing that collects large amounts of
information and aggregates them to gain a complete and accurate picture of a topic, based on
the idea that a group of people is on average more intelligent than an individual. For example:
Wikipedia, Yahoo! Answers, etc.

- Microwork: it consists in pay a very low amount of money for do a little task. The tasks can be
done for everyone but only the best will be rewarded. For example: Amazon Mechanical Turk,

10

http://www.google.com/url?q=http%3A%2F%2Fhypem.com%2F&sa=D&sntz=1&usg=AFQjCNEyqQP7kLpXo_KVzwVhync22na-SQ
https://www.google.com/url?q=https%3A%2F%2Fsoundcloud.com%2F&sa=D&sntz=1&usg=AFQjCNHImFQKAGJatp55zqSvtnfMV0VKcQ
http://www.google.com/url?q=http%3A%2F%2Fpinterest.com%2F&sa=D&sntz=1&usg=AFQjCNEB2awP9U_xg0g8d40JbtVR-bgV1g
https://www.google.com/url?q=https%3A%2F%2Fwww.tumblr.com%2F&sa=D&sntz=1&usg=AFQjCNFIX72QlKhnCWbBkz7l0Q5OVEjSsw
http://www.google.com/url?q=http%3A%2F%2F99designs.com&sa=D&sntz=1&usg=AFQjCNGJ8HPDCYe-YBNAJtehlMcuHzgdGQ
http://www.google.com/url?q=http%3A%2F%2Fwww.geniusrocket.com%2F&sa=D&sntz=1&usg=AFQjCNFT2L45qKOOrTQWgiDmCTIQGzlJaw
http://www.google.com/url?q=http%3A%2F%2Fkickstarter.com&sa=D&sntz=1&usg=AFQjCNFX9AftcmWehoX6abPvg6XFz5bs-Q
http://www.google.com/url?q=http%3A%2F%2Fwww.verkami.com%2F&sa=D&sntz=1&usg=AFQjCNHgFCADzrFFItQTzKoRFhWUo7y2sw
http://www.google.com/url?q=http%3A%2F%2Fwww.wikipedia.org%2F&sa=D&sntz=1&usg=AFQjCNHwBZTStXFWw226luNAcwv3FppyXQ
http://www.google.com/url?q=http%3A%2F%2Fanswers.yahoo.com%2F&sa=D&sntz=1&usg=AFQjCNFYwpmhnLkhOd2VnY1EebBc4UlI8A
https://www.google.com/url?q=https%3A%2F%2Fwww.mturk.com%2F&sa=D&sntz=1&usg=AFQjCNH54e3CuL9tz-3aEsMtadb5eKMJZg

k68.cn, etc.

- Inducement prize contests: it consists in an open fast contest that needs some kind of
crowdsourcing in order to win a big prize. For example: DARPA, Netflix or Google experiments,
etc.

- Implicit crowdsourcing: Implicit crowdsourcing is less obvious because users do not
necessarily know they are contributing. Implicit crowdsourcing involves users doing another task
entirely where a third party gains information for another topic based on the users’ actions. For
example: reCaptcha, Commutio, etc.

2.1.2. The projects

Analyzing this projects helps to have an approximation of how crowdsourcing projects works and
which are the bases. This knowledge will help us to improve our project.

2.1.2.1. Kickstarter

Kickstarter is a crowdfunding project that allow creators to find investors that want to make a
investment for a reward.

2.1.2.1.1. The goal
The goal of Kickstarter it is to help creators with a good projects and a need of investment to find
people who wants to help them with a payback. That helps to open the whole world to the big

ideas that maybe without a global research of investors could not reach the amount of money
necessary to take off.

2.1.2.1.2. User experience

Kickstarter have two main ways, the investor and the project creator. As an investor the user can
navigate the website looking for cool projects or just go through to a project that he has heard.

Ouya is a well known project and a good example. Ouya is a new video game console built on
android.

11

http://www.google.com/url?q=http%3A%2F%2Fwww.k68.cn%2F&sa=D&sntz=1&usg=AFQjCNHRI8q9VUgK1eq-zvV3U6t8sUMXJw
http://recaptcha.net/
http://www.google.com/url?q=http%3A%2F%2Fcommutio.bdigital.org%2F&sa=D&sntz=1&usg=AFQjCNGOXKdlqSuI6_4ul0KfwL6BNQBh8g

OUYA: A New Kind of Video Game Console

by OUYA

Home Updates [ffJ Backers Comments 9 Los Angeles, CA 4 Video Games

63,416

backers

$8,596,474

pledged of $950,000 goal

0

seconds to go

Project by
OUYA

OUWYA Los Angeles, CA

.

(Figure 1. Kickstarter screenshot)

A project have a goal price where they are pledged to release their product and give the rewards
to their investors. In this case the goal price is 950,000$% and these are the rewards depending
on the investment.

There are a description of the project and some videos. The user can pay the pledge that he
wants and the money will be paid only when they reach 100% of the goal price.

On the other hand the users have the creator way. Firstly the user has to register in Kickstarter
and they give some guidelines like the types of project allowed, the rewards, etc.

Then the user can make his project site following the instructions.

12

KICK H Bernat Orell Vicens

@ Guidelines Basics Rewards Story About you Account eview > Preview

Want to get a head start? Amazon Payments verification can take up to 7 days, so to get the ball rolling.

Meet your new project.

Project image

(Figure 2. Kickstarter screenshot 2)
Finally the user releases his page and he can start looking for contributors.

2.1.2.1.3. Criticism

The most common Kickstarter criticism is that if the creator know that his project will have
support before start maybe he does not accomplish all the objectives and he does not release a
well polished project. That does not affect our project because it does not have a final state, the
more answers it have, the better will be the results.

As many as 75 percent of Kickstarter projects do not deliver on time, according to a recent
University of Pennsylvania study, and some never deliver at all. In our project the users do not
have anything to deliver, first they will make their polls and they wait for the results.

2.1.2.1.3. Technologies
In general terms Kickstarter uses a web interface and everything is gathered in a central server.

As the web page builiwith and a job offer, Kickstarter uses Ruby on Rails. RoR is a very
complete framework for Ruby that have everything that a web-developer needs, management of
databases, create templates, gather information, etc. The disadvantage of RoR is Ruby, it have
less documentation and community than PHP and is less intuitive than other languages like
Python.

They use jQuery too, that it is a fast, small, and feature-rich JavaScript library. It makes things
like HTML document traversal and manipulation, event handling, animation, and Ajax much
simpler with an easy-to-use API that works across a multitude of browsers.

13

http://www.google.com/url?q=http%3A%2F%2Fbuiltwith.com%2Fkickstarter.com&sa=D&sntz=1&usg=AFQjCNFKP91zlwe99PCHBdaaJKo6ajWiPw
http://www.google.com/url?q=http%3A%2F%2Fwww.kickstarter.com%2Fjobs%2Fruby-engineer&sa=D&sntz=1&usg=AFQjCNHJUb8SGbtwd6FBiRJJx9cO64ZlTg

For the payments they use Amazon Flexible Payment Service that allows the users to pay with
their Amazon account.

2.1.2.2. Amazon Mechanical Turk

Amazon Mechanical Turk is a marketplace for work that requires human intelligence and it is the
reference platform to distribute retributed tasks in order to obtain crowdsourced results. The
Mechanical Turk service gives businesses access to a diverse, on-demand, scalable workforce
and gives Workers a selection of thousands of tasks to complete whenever it is convenient.

2.1.2.2.1. The goal

Amazon Mechanical Turk is based on the idea that there are still many things that human beings
can do much more effectively than computers, such as identifying objects in a photo or video,
performing data de-duplication, transcribing audio recordings, or researching data details.
Traditionally, tasks like this have been accomplished by hiring a large temporary workforce
(which is time consuming, expensive, and difficult to scale) or have gone undone. This tasks are
named HIT (Human Intelligence Task).

The goal of Amazon Mechanical Turk is help people who want to work and earn a reward and
work requesters that are disposed to pay something for get their work done.

2.1.2.2.2. User experience

If the user want to make a HIT and earn some money he can search something where he is
qualified.

14

amazonm?Chanical turk (.) 185,922 HITs

Your Account | HITs | Qualifications ~ _ oo -

All HITs | HITs Available To You | HITs Assigned To You
HITs (=] photo 0.00 | [}
HITs containing "photo’

1-10 of 38 Results

Sort by: |HITs Available (most first) [+ @ Show all details | Hide all details

rclassiﬁ! the Distance of Subject(s) and Time of a Photo
Requester: 33cube, Inc. HIT Expiration Date: Feb 7, 2013 (1 day 10 hours) Reward:

Time Allotted: 60 seconds HITs Availa

Categorize combination of Image(s) and Text (Batch 1)

Requester: |ang labs HIT Expiration Date: Feb 7, 2013 (23 hours 55 minutes) Reward:
Time Allotted: 3 minutes HITs Availa
Tag 5 Images
Requester: Tagasauris HIT Expiration Date: Mar 7, 2013 (4 weeks 1 day) Reward:
Time Allotted: 60 minutes HITs Availa

(Figure 3. Amazon Mechanical Turk screenshot)

He can click on a HIT and see the description.

rCIassiﬂ the Distance of Subject{s) and Time of a Photo
Requester: 33cube, Inc. HIT Expiration Date: Feb 7, 2013 (1 day 10 hours)

Time Allotted: 60 seconds
Description: Answer 2 easy questions to classify the distance of subject(s) and whether the photo was taken at nighttime.

Keywords: photo, categorization

Qualifications Required:

Total approved HITs is greater than 100

Categorization Masters has been granted
HIT approval rate (%:) is not less than 85
Location is US

(Figure 4. Amazon Mechanical Turk screenshot 2)
The user can see a preview mode and accept the HIT.

As a HIT requester the user can go to requester website and make his own HIT with a creator.
amazonmechanicalturk = REQUESTER

Home Create Manage Developer Help

(Figure 5. Amazon Mechanical Turk screenshot 3)
15

2.1.2.2.3. Criticism

The main criticism is that in our project we do not want to pay for do a task. Developers should
find a way to reward the users with something more useful than a few cents, like information or
making them to have a good time.

Because HITs are typically simple, repetitive tasks and users are paid often only a few cents to
complete them, and that can be considered some kind of human exploit. In our project, the users
will play until they get tired, they do not need to be playing a certain time.

Because workers are paid as contractors rather than employees, requesters do not have to file
forms for, nor pay payroll taxes, and they avoid laws regarding minimum wage, overtime, and
workers compensation. Workers, though, must report their income as self-employment income.
In addition, some requesters have taken advantage of workers by having them do the tasks, then
rejecting their submissions in order to avoid paying.

2.1.2.2.4. Technology

AMT has SDK for Java, .NET, Perl and php and Ruby libraries. It can be used with a command
line interface provided by Amazon that only uses a text file named .input, a .XML and a
.properties.

There are another Ul that makes the process easier to do for non-programmers users but it is
less personalizable. The process is more complex than that we need for our project but they are
very related. It have a few tabs that helps the user how to create a project. That will be mostly
what our project have to do for poll creators.

2.1.2.3. 99Designs

99Designs is website where business and individuals make contests in order to find a good
design made by designers who want to participate.

2.1.2.3.1. The goal

The goal of 99Designs is connect the design requesters and the designers. The business make
a contest where they put a description of what they need and the designers can submit a design.
The manager will pick a design a pay a prize for his work. Therefore, it is easy to see the
crowdsourcing characteristics like open spectrum of users (from art designers to web

16

developers) and the contest with prizes.

2.1.2.3.2. User experience

There are two ways to interact with the website. On the one hand there is the hoster of a “design
contest”.

Firstly the user has to choose what he wants to be designed. he can choose a website.

Step 1. What do you want designed?

Logo Clothing & Merchandise
LOQO design A loge for a company, website or brand. T-Shirt design to be printed onto a T-shirt
Logo & business card Clothing or apparel Jackets, hats, hoodies, shoes, etc.

Merchandise Mugs, pens, phone skins, bags, etc.

Website & App Other clothing or merchandise

Website E-commerce, blog, landing page, ete.

Art & lllustration

Mobile app iPhone, Android, etc.

Social media paae Farehnnk VauTihe Twiter ate lcon or button
(Figure 6. 99Designs screenshot)

Then the user has to put a description of what he wants, the name, some sketches, etc.

The user selects the prize that wants to pay and finally launch the contest. If no one of the
submit designs like the user will have his money back.

On the other hand the website has the designer way where the user can submit his designs.
Firstly the user has the open contest and the user can filter for the keywords that want. He can

see the reward and a little description it is displayed.

The user can enter in a contest. He will find a more accurate description and if are not hidden,
the other projects submitted. The user can submit his own design too.

17

Phuket.Net Real Estate needs a new website design $'i,899

By Webmaster24714 Ad Watch contest Share on ’ Twitter n Facebook
1 2 E=BFAR{ell] s iRguneRy 4. SELECT WINNER

@ Entries (72) 2L Designers (10 i Design brief A% Watchers (£8)

Organization name
Phuket.Net Real Estate Payment methods
This contest has been pre-paid

with 99 s. The winner will be

Description of the organization and its target audience paid directl 9designs for the

Phuket Net Real Estate is a mid-sized but fast growing Phuket-based real estate agency. We only list full prize amount, excluding any
properties in the Phuket region. Our main marketing tool is our website third party transfer fees

(Figure 7. 99Designs screenshot 2)

2.1.2.3.3. Criticism

Some good designers will work for nothing if their project is rejected and this is very frustrating
especially for large design works like a website. This kind of business are putting into jeopardy
the business model of classical design studies because in web sites like 99designs the prizes
are more competitive and it works like a contract, the design requesters do not know if the
designer that is behind a design is exploited or he have a good work environment. Another
criticism is the fixed prizes, every design have a different work behind and can be more or less
expensive.

In our project will have two users, one who publish the study and the participants. For the
publishers will be free to make a study and users will play the game and they will have a good
time.

2.1.2.3.4. Technologies

The main server in 99designs runs with PHP. PHP is a scripting language designed for web
development to produce dynamic web servers. It is free and there are a lot of documentation and
forum with user support. PHP is loosely typed, which makes basic scripts much faster to
develop with less attention to design. On the other hand it has some disadvantages like that is
slow compared with other compiled languages like C and There are many ways to do one thing,
and many cases where a function has ambiguous handling due to legacy support for PHP
development history. PHP is a good option for our project because all of these features but it has
good competitors as Ruby or Python.

For the storage they use a MySql database. Structured Query Language is a specific
programming language designed for managing data in relational database management
systems. SQL have a lot of documentation and it is widespread over the world of
web-developing. The crashes can be well managed with these kinds of databases. The

18

problems of SQL Databases come with the poor compatibility between them. Our project can
have a SQL database too because is easy to manage with the frameworks.

With the transient data they use Memcached, mongoDB and Redis. Memcached is used to

manage the RAM memory and helps to reduce the database query activities. MongoDB is an
open source document-oriented database system that it is used for logs of errors and statistics.

Redis is an open-source, networked, in-memory, key-value data store with optional durability. It
captures per-user information about which features are enabled at any given time. Our project
can use a mongoDB for logs but the project will not use it for main data because the database
will not be very large and the data will not need a lot of updates.

2.2. Smartcities

2.2.1. Introduction

Smart city is a paradigm of the city that look to increase the competitiveness of cities with social
and intellectual solutions above the hard infrastructures. Smart cities have some main points
that try to improve: economy, citizen participation, mobility, environment, people, living and
governance.

Smart cities are a world in expansion. By looking at the statistics more and more people are
going to live in urban areas. By 2030, that urban footprint will expand by another 590,000 square
miles to accommodate the more than 1.47 billion additional people expected to be living in the
world’s cities, according to the study, conducted by researchers from four U.S universities —
Yale, Arizona State, Texas A&M, and Stanford'. City managers need some planification in order
to absorb this big impact in wealth creation, construction, transports and buildings.

Data analysis, sensor technologies, and urban experiments will provide new insights into
creating a data-driven approach to urban design and planning. To build the cities that the world
needs, it is needed a scientific understanding of cities that considers our built environments and
the people who inhabit them.

2.2.2. The projects

Our project is closely related with smartcities, for this reason we will analyze some of the most
interesting projects that can be useful for our research. Most of the smartcity projects are related
with construction and transport but almost all of them use Internet platform and computer

' A Meta-Analysis of Global Urban Land Expansion, Karen C. Seto mail, Michail Fragkias, Burak Glineralp,
Michael K. Reilly

19

science to generate their results.

2.2.2.1. HoyRespiro

HoyRespiro is a Basque project that use environmental control networks existing along the city
to display the less contaminated zone in the city for people who have lung diseases.

2.2.2.1.1. The goal

There are many people with special sensitivity to environmental allergens that need to know the
real-time levels of pollen and predictions in order to take proper medication or avoid certain
areas. Also, people with asthma need to know the air quality in their area of residence or work.

These levels are different depending the place the user is located. This service would solve this
problem by providing accurate information about levels in the city.

2.2.2.1.2. User experience

The website displays a map where the user can see the weather forecast, the air quality, the
pollen levels and the weather information.

The user can click on a information flag and go to their measurements.

[6 Prevision meleorolégica)[:x:: Calidad del aireJL@ Niveles de polel

“gstao o

Mas a5 4 Altizaga
Onci Yoy
i Opciones
i Alizaga Arrigga
| g roeta Sondika
Y ~ | Informacion del aire de la estacion Zorroza Pargue a
\ ’ . ;‘:.L--.-.:l.n;) -
E :desel Elaire en Zorroza Pargue
' Lma‘laql Botanika;
|% " o Cnﬂeﬂoﬁ'

(Figure 8. Hoy respiro screenshot)

More information will be displayed in a pop-up. This pop-up have some measurements and a
map that displays the how much contaminated is a zone in Euskadi.

2.2.2.1.3. Criticism

20

There are a lot of static pages like the pollen levels, a better interactivity is need. Map could have
zones displayed in clouds with the levels of contamination, that could help users to understand

quickly the map. That is very related with our project because we will have some kind of

bounding box to separate the boroughs.

More accurate historical of the measurements could be very useful for the users if they want to
know if a zone is contaminate for a momentary problem. The implementation of some kind of
alerts for being displayed in mobile phones or in a pop-up will be useful for emergencies. In our
project is not necessary to make alerts because it does not have any emergency information to
be displayed.

2.2.2.1.4. Technologies

HoyRespiro uses Symfony. Symfony is one of the best frameworks for PHP and | will analyze its
peculiarities. It is designed to use the pattern Model-View-Controller. MVC is a software
architecture pattern that separates the representation of information from the user’s interaction
with it. Separates the business logic, the server logic and the front-end web. Contains numerous
tools and classes aimed at shortening the development time of a complex web application. In
addition, it automates common tasks, allowing the developer to involve himself to the specifics of
each application. As a database they use MySql. This is a good solution for our project as well as
Ruby or Python.

2.2.2.2. SuperHub

The SUPERHUB project (SUstainable and PERsuasive Human Users moBility in future cities)
provides a user-centric, integrated approach to multi-modal smart metropolitan mobility
systems. It will design and test an open platform able to combine in real time all mobility offers
from the relevant stakeholders together with a set of enabling mobility services able to address
users mobility needs, to redesign transport route options and to foster behavioural changes.

As front-end technologies they use CSS, a style sheet language used for describing the

presentation semantics (the look and formatting) of a document written in a markup language
and jQuery. They use Google Maps API too.

2.2.2.2.1. The goal
SUPERHUB promotes the creation of a new urban mobility services ecosystem, where all

actors are represented and the take-up of virtuous behaviours is facilitated by the development of
an open platform able to:

21

gather real-time data from all possible mobility sources

® provide matchmaking and negotiation capabilities between providers and consumers of
mobility offers for better routing decisions

® enable the development of mobility services able to fulfil users’ needs and stimulate
behavioural changes.

SUPERHUB foresee the creation of an open platform able to combine in real time all mobility
offers together with a set of enabling mobility services able to address users mobility needs, to
redesign transport route options and to foster behavioural changes.

2.2.2.2.2. User experience

SUPERHUB is a mobile app that helps users to design the best way to travel in a city, for
example, if it is a sunny day and there are a traffic jam on the way to work the app will suggest
the user avoid some streets or go walking. This is made dynamically (with GPS coordinates)
and the route can be remade when the user is following the instructions.

‘—
*~ Plan a Journey Current Location

’ﬁ‘ Take me Home 4 Fawourite
[]
=

_ Postcode/Addrass

! M i Fawvourite
active journe
¥ " o Postcode/Address

Home

E=msl .

3
-

(Figure 9. SuperHub screenshot)

The user can see the past trips, if he has completed his ecogoals (like low CO2 contamination

22

produced). If he completes his ecogoals he can receive point which can be used to buy rewards
like metro cards or bike tours.

The users can report and share incidents that have happened in the city and the other users will
be able to see them.

2.2.2.2.3. Criticism

Not all the companies give their information for free, even if they are public. For example, public
bike renting in Barcelona (Bicing) do not give too much information to application developers. In
our project we do not need information of any institution.

The report of incidents can not be accurate because it is possible that some users make a
mistake doing a report or they are just lying. In OUO users can lie too but is a risk that we have
to assume and we can try to minimize it making the game funny and interesting.

The mobile applications with a high use of GPS tends to waste a lot of battery running the GPS
signal. With the actual mobile technology users can only use these kind of apps one hour a day
or less. This is not a problem for OUO because is not oriented to mobile phones and it does not
need GPS.

2.2.2.2.4. Technologies

SUPERHUB is a mobile app that works with a server that gather data from the users and other
information fonts like public transport services or weather indicators as well as pollution and
other contamination sensors. Some of this servers with information about the cities are provided
by the city council. In our case we only need communication between users and the server.

2.3. Crowdsourcing/Smartcities

2.3.1. Introduction

Every single city in the world can be reflected in a geographic map but there is also another map
that can be even more interesting, the map of the subjective factors constructed by their
citizens.

When you move to a new city the first days you can only remember some streets that you are

close or on the way to your work but in a few months you know your entire neighborhood or even
more. That is your mental map of the city, and you may have feelings related to these streets,
places or facilities.

23

Feelings related to the city are created with scenes that you have seen and how did you feel
when you was there. For example, if you were sad and you went to a park you will remember the
park with bad feelings but someone who spend a good time there will remember this park like a
happy place.

It is impossible to store a subjective map of whole city but combining all these maps it is
possible to make something similar to the reality. To know how to get these psychological maps
and the projects related with it will explain the best ways to find it.

2.3.2. The studies

The first study about the psychological maps was “The Image of the City” in 1960? and it shown
that people remember the city of Boston better than others and there were a lot of coincidences
on the places that was better known. This study thrown that people thinks in term of points,
these points are arranged in some hierarchy and that creates bounded areas, paths and barriers
that connect or block these points.

In 1972 a study was published with the objective of discovering the psychological map of the
citizens of New York City>. Using the information from the previous studies they came to a
conclusion: a highly imagible city does not mean that every point is equally identifiable. Rather,
there are clearly identifiable focal points throughout the city which are interconnected and thus
form a coherent picture. This helps us to know how if an individual is placed at random at a point
of a city, how likely is he to know where he is. The scene has to be differentiable, he must match
the unique input against some memory of it and he cannot necessarily place it in relation to other
parts of the city.

In the their study they divided the map of NYC in the 5 neighborhoods, made a grid with
1000-meter line of longitude and 1000-meter line of latitude. They took 200 subjects differentiated
by their place of residence. The scientists displayed images of NYC and they have to answer
which neighborhood and street was.

The study shows that Manhattan was the most recognizable of the five boroughs. The
recognition of the streets shows exactly the same. Thus it is correct to say that NYC in not
merely culturally but also imagistically rooted in Manhattan and the other boroughs are often
confused with Queens, which is the most homogenized neighborhood.

The major findings of the study were: an area can only be recognized if people are exposed to it
and that happens when it attracts persons from all over the city and the overall architectural or
social distinctiveness of the area.

2 The Image of the City, Kevin Lynch, MIT Press, 1960
3 Milgram S., Greenwald, J., Kessler, S., McKenna, W., & Waters, J. 1972. A phsychological map of New
York City. American Scientist, 60, 194-200

24

2.3.3. The projects

The crowdsourcing/smartcities projects that can help us to understand the state of art and what
have been done: UrbanGems, UrbanOpticon, PlacePulse and Ushahidi. These are four projects
that share more similarities with Open Urban Opticon.

2.3.3.1. UrbanGems

UrbanGems is a website project that uses crowdsourcing to know what people feels about the
neighborhoods in London. They are related with the kind of feelings that users undergo, for
example, calm, beauty or happiness.

2.3.3.1.1. The goal

This project pretends to know what people think about different streets of London. That is
interesting because researchers can relate the beauty, the calm or the happiness with other
index of a city statistics like habitability or criminality.

2.3.3.1.2. User experience

The website displays two images from Google Street View and the user have to vote which one
looks beautiful, happy or quiet and he has to say the percentage of the people that could think the
same.

UrbanGems Beautiful Gems Happy Gems

UrbanGems: Crowdsourcing Quiet, Beauty and Happiness

crangeauesion ~ Which place do you find more beautiful?

Picture Info Picture Info

(Figure 10. UrbanGems screenshot)

25

First of all, the user can sign in and sign up or play like an anonymous player (at the end of the
questions will ask to sign up). To be a registered player will give recommendations that suit the
user.

UrbanGems: Crowdsourcing Quiet, Beauty and Happiness

Change Question Which place do you find more beautiful?

Beauty
Happiness

Peace and Quist

o [

(Figure 11. UrbanGems screenshot 2)

The main page shows two images that can be related with feelings. The images change when
the user change the question and the questionnaire it is reset.

wdsourcing Quiet, Beauty and Happiness

Progress: 1/10

What percentage of people would agree with you?

; [~ +*
(Figure 12. UrbanGems screenshot 3)

The user can click over on the image that he thinks it is more beautiful or press “Can’t tell’. If the
user click on an image a percentage bar will be displayed and he has to put the scroll on the
percentage of people that he thinks that are agree with him.

26

Score
Your score is calculated based on

Congratulations! You scored points. how well you can predict others'

answers, the better your
O Twaat it! prediction the higher your score.

How high a score can you get?
05hare on Facebook

Can you tell us a little bit about yourself? All data is optional and will be used for research statistics only.

Email bernatorellvicens@mail.com

Twitter

Gender

City

Country of Origin
Ethnicity

Occupation

Cancel

(Figure 13. UrbanGems screenshot 3)
Once the user has completed the test, composed of 10 comparisons he will have a score based

on the similarity with the results of all the other people. He can give more information about
himself that will be used for research statistics.

27

UrbanGems Beautiful Gems Happy Gems Quiet Gems bernatorellvicens@mail.com sign out

Battkrged
Bark

"\y
e Google
CAMBRIDGE] s ©

Beautiful Gems

Moreover, UrbanGems have other uses than the game, the user can be recommended with
beautiful, quiet or happy gems (places) and if he is logged he has a personalized
recommendations depending on the results of his previous games.

2.3.3.1.3. Criticism

There are some characteristics on the photo that can influence the opinion of the user like the
quality of the photo, the weather (rainy or sunny), what was happening when the photo was taken
(traffic jam or a quiet Sunday) or every single detail that can make the user thinks that an image
is better than other without being completely objective for the characteristics beyond the photo.
That is very related with our project because a bad photo can confuse the user and maybe he
fails a photo of a place that he knows.

The results trends to homogenize the lifestyle and the cities, everyone loves parks in the spring
and hate a highway with a lot of cars. That is very related with our project to but it is usefull for us
because is the goal of our research.

2.3.3.1.4. Technologies

The main language of the UrbanGems server is Ruby and it uses Ruby on Rails that is a
web-application framework that includes everything needed to create database-backed web
applications according to the Model-View-Control pattern. Our project can use Ruby too.

28

As a relational database they use sqlite. As front-end technologies they use javascript and html.
OUO will use javascript and html too because are the most used and can be interpreted by all
the browsers.

2.3.3.2. UrbanOpticon

The main objective of the UrbanOpticon is known if the user can recognize what parts of London
with a displayed image of Google Street View.

2.3.3.2.1. The goal

The goal of UrbanOpticon, apart of having a good time playing a game about London, is to obtain
information about the remarkable places in London and to draw the map of Londoners' mental
images of the city.

The mental maps of the citizens are related with public facilities or urban interventions that
makes react the viewer, for example, colorful streets or horrible buildings. This map is interesting
by itself and it will be useful for a lot of studies as those that are trying to discover what public
facilities improve the image of the boroughs.

2.3.3.2.2. User experience
In the UrbanOpticon website the users have only one picture and the user has to answer with the

closest tube station or borough or in case the user does not know the place he just has to click
“‘Don’t know”.

29

[Wagrada 10 W Tweet +1 | 10 E B UNIVERSITY OF
agrada wee 2 ¥ CAMBRIDGE U F m G

Where is this?

Choose Your Answer's Precision: Tube Station Borough Dont know

i-minute Game with a Purpose

This game tests the extent to which you are able
to recognise parts of London. The more stations
or boroughs you guess correctly, the more points.
You can also share your score on Facebook or
Twitter. By playing it, you will contribute to your
city! More below.

(Figure 15. UrbanOpticon screenshot)

Depending on the proximity the user will score points, he do not need to know the right point. If
he clicks “Don’t know” he will score 15 points and the next image will be shown.

78 points - It was in Piceadilly Circus: not quite right, but close.

Choose Your Answer's Precision: Tube Station Borough Don'tt
o~ N
(Figure 16. UrbanOpticon screenshot 2)

The image of Google Street View is a static image where the user can not move but the user
can move the camera 360°.

When the user has finished the test, he will be asked for some personal information for research
statistics.

30

Score

Congratulations! You scored 301 points
M Tweetit ﬂ Share on Facebook

Can you tell us a little bit about yourself? All data is optional and will be

used for research statistics only.

Username
Twitter
E-mail
Gender Undisclosed E‘ Age
Postcode

Ethnic Group

Occupation

(Figure 17. UrbanOpticon screenshot)

2.3.3.2.3. Criticism

The game does not have enough reward for the users, it need a way to compete against other
players. For example a ranking in the website with the player who scored more points or the total
games that he has played. This can be implemented in our project, depending on what way of
gamification we want to follow.

The dynamic result map of the most recognizable places of London could be interesting. The
user would feel grateful if he sees the result of his interaction with the website. That will be
implemented in our project.

Another criticism as an interested user is the poor interactivity when the user have to mark a
tube station or a borough. If users could click on the station in the tube map or a neighborhood
would increase the interactivity with the user and therefore provide a better user experience. It is
planned to have this feature in our project.

31

2.3.3.2.4. The problems

The documentation of the project shows the problems that they had. Firstly, users were very

frustrated when they played because even if they had been living in the city for a lot of years they
could not recognize enough places because of the random image selection. To solve this

problem the developers put some pictures easy to recognize although the evaluations obtained
for such pictures were discarded in order to ensure the validity of the results.

Secondly, the beta version did not show any feedback about the correct answer so the user who
was playing to learn more about London was very disappointed. The final version of the game
shows the correct answer.

The website did not have anything about the purpose of the game and some testers wanted to
know. To solve this they put a little description of the project in the website.

The testers did not know exactly what tube station was but they know the borough. To solve this
the developers add the possibility of answer with a borough or region but with less score than if
the tester knows the tube station.

2.3.3.2.5. Technologies

In UrbanOpticom the main language of the server PHP without any framework. PHP is a
scripting language designed for web development to produce dynamic web servers. It is free and
there are a lot of documentation and forum with user support. PHP is loosely typed, which

makes basic scripts much faster to develop with less attention to design. On the other hand it

has some disadvantages like that is slow compared with other compiled languages like C and

There are many ways to do one thing, and many cases where a function has ambiguous

handling due to legacy support for PHP development history. As database they use MySql. PHP
with Symfony is one of the options that OUO can use to make the server.

In front-end utilities they use Bootstrap a software designed to help web developers. It includes
HTML, CSS and Javascript. It has list of components that can be used easily like progress bars,
buttons, labels, etc. and it has a few example layout. It can be used in a lot of web browsers,
even in mobile web browsers. Our project will use Bootstrap because make the process of

develop a front end website easier.

They use LESS too. It extends CSS with dynamic behavior such as variables, mixins, operations

and functions. With LESS the user do not need to write all of these painful lines of CSS code.
We can use LESS in our project as well.

2.3.3.3. Place Pulse

32

Place Pulse is another project that helps us to discover the hidden knowledge of the people
about their perceptions and display it on data sets.

2.3.3.3.1. The goal

The goal of Place Pulse is do an open source platform that allows developers make an easy
website with a question with the pattern “Which place looks (safer, happier... or any other
comparison that users can imagine)” and two images. After that, users can answer this question
with the poll link.

2.3.3.3.2. User experience

The user experience in Place Pulse is very similar to the other two projects, the main differences
are highlighted following.

First of all, to provide credentials the users can use Facebook or Persona accounts. If he enters
without a link of a poll he will be asked for a random questionnaire (in our case “Which place
looks more lively?”) and only two images from Google Street View will be displayed.

P LAC E P U LS E About Results Data FAQ Contact My Studies Sign out

Which place looks more lively?

(Figure 18. Place Pulse screenshot)

It is not a game so the user can click images until he get tired. It have a lack of Gamification
incentives.

Another important thing in the website is the access to results, that show the Q-scores of the
perception of safety, uniqueness and social-class of four cities.

33

Results of the survey

| Rankings of Q-scores for the perception of safety, uniqueness & social-
class, across four different cities - Boston, New York, Linz & Salzburg,
are listed below:

ID Qs safer E'::;;r Qs Unique El::;f: uppgfdm u::p’::;zss latitude Longitude City Heading Pitch LT::;:"
1867 431 053 239 023 431 047 48271 14300 Linz NULL NULL Image
447 742 051 8.58 0.68 65 061 423800 710665 Boston 340 8 Image
8026 496 058 379 08 5.44 061 408250 -73.9249 Neg:f“ 7 5 Image
4027 694 041 6.66 074 587 061 407875 -73.9528 Ne‘c"i:york 335 10 Image

(Figure 19. Place Pulse screenshot 2)

The most interesting feature of the website is the possibility of create a study. Firstly, the user
has to name the study and ask a question.

Create a Study

To get started, please share some basic information with us.

A STUDY Study Information

tions Study Name Barcelona lively study Please use at least one word.

z Votes Question to Ask Users Which place looks | lively ? Please use at most three words.
Opentothe public? © Yes @ Mo

If "No" is selected, you will have to provide your own study participants by sending them a
link

(Figure 20. Place Pulse screenshot 3)

Then, the user has to define an area with Google Maps.

34

Select Image Search Area by clicking three places on the map to create a polygon.

3 m* Informar de un error de Maps

(Figure 21. Place Pulse screenshot 4)

Users can generate locations randomly, evenly or random with a grid and the density.

Place Name Barcelona Please use at least one word.,

Generate Locations Random within a grid E

When selecting locations within your polygon, this is the method we will use.

Location Resolution 260 meters E

This will help us determine the density of locations within your polygon.

(Figure 22. Place Pulse screenshot 5)

The random images are displayed and the user can remove some of them if he wants.

35

Create a Study

Verify that all images are acceptable for inclusion in your study. To edit or remove an image, just click on it.

STEPS TO CREATING A STUDY
& Study Information

X Define Places

? Populate Locations

Bl Curate Images

¥ Start Collecting Votes

(Figure 23. Place Pulse screenshot 6)

Finally he can confirm everything and publish the study.

Which place looks lively?

g 1 P
o]nlt\-]t

B2013 Gor — B2013 Google

ne: Barcelona lively study Votes Contributed

ernatorel@hotmail.com n

(Figure 24. Place Pulse screenshot 6)

2.3.3.3.3. Criticism

Place Pulse has a big issue, the lack of gamification. The website project do not have any kind of

36

reward to the user and that makes participating in very boring. The users feels like they are
playing only for statics. It could improved doing the same that UrbanOpticon does, give a score
depending on the similarity results with the other participants or make a ranking with the most
happier, salfer... place in the city. Our project will have some gamification method that makes it
funnier.

One thing that might be improved is a way to put points by a vector of coordinates and the
direction of the camera. That improve will add the possibility of make user own points with other
software that maybe can do a better selection of point with some other purpose like compare
only the sights of the city or the streets that face the sea. We can do the same with the points of
the map. Possibly this will be made for our project.

2.3.3.3.4. Technologies

They use a framework named Flask written in Python. Flask is called a microframework
because it keeps the core simple but extensible. There is no database abstraction layer, form
validation, or any other components where third-party libraries already exist to provide common
functionality. However, Flask supports extensions, which can add such functionality into an
application as if it was implemented in Flask itself. There are extensions for object-relational
mappers, form validation, upload handling, various open authentication technologies, and more.
Flask can not be used in our project because it has a short development time and Flask does
not have all the features that it needs, like easy DB management.

PlacePulse uses a mongoDB and stores cities, places, studies and votes. Their old database
was MySQL. To manage the maps and locations uses Javascript with Google Maps API and
Google Street View to get the images. For front-end website tools they have used Bootstrap,
Font Awesome (iconic font), jQuery and LESS. Some of these features will be used in our
project.

2.3.3.4. Ushahidi

Ushahidi platform is built as a tool to easily crowdsource information using multiple channels,
including SMS, email, Twitter and the web in emergency situations.

2.3.3.4.1. The goal

The goals of Ushahidi is be easy to use, accessible to anyone and deployable worldwide.
Ushahidi is an open source platform, can be deployed by everyone and suit what the user
community needs. It was used in emergency situations as post elections violence in kenya,
swine flu, etc.

37

2.3.3.4.2. User experience

The users that have problems in an emergency can send messages looking for help. The
messages can be submitted with a mobile phone or a personal computer.

The developers can download the the web server in github and modify it, only little knowledge of
PHP and MySq| are need.

For example, a website that use of Ushahidi for the tracking of swine flu.

Swine Flu

Tracking the H1N1 virus

;018 Reports Submit an Incident Get Alerts How to Help

MEDIA FILTER + ([[EReGiEd NEWS FICTURES

12.42301, 57.05048
B A Categories
s .
d Il susPeCT

@ o Il SUSPECTED DEATH

DEO A 4+ CATEGORY FILTER

® : i WS B CONFIRMED

@ etz CONFIRMED DEATH

o R | ~ : B CITIZEN REPORTS (UNVERIFIED)

<
“ T 3 NEGATIVE

+ OTHER USHAHIDI INSTANCES

Il ushanidi Beta 0.8

(Figure 25. Ushahidi screenshot)

The user can put some filters in the map and see the chronology of the events. He can visualize
dynamic statistics.

1. by sending a message to 170625416497
=rom | Jan 2009 |Z| 7o | Sep 2009 |Z| b PLAY 2. Byfilling a form at the website

Jan Apr Jul Dec
2009 2009 o009 2009 M N
2003 Submit an Incident

(Figure 26. Ushahidi screenshot 2)

User can submit a new report in the website or send a SMS. He can see the reports of the other
users and get alerts on his mobile phone or email.

38

Reports (Showing 1 of 20 pages of 383 reports)

MEDIA REPORT TITLE DATE LOCATION VERIFIED?
Suspected death in France 2009-08-03 brest, france NO

First death of a person suffering from swine flu, although it's likely that another
condition is the cause.

115 confirmed in Serbia 2009-07-27 serbia NO
115 swine flu confirmed in July in Serbia. O deaths

Confirmed Swine Flu in South Africa 2009-07-14 Johannesburg YES
75 Confirmed cases of swine flu in South Africa

Eirst 'healthy' swine flu death 2009-07-10 Basildon NO
A patientin Essex has become the first person in the UK without underlying

(Figure 27. Ushahidi screenshot 3)

Get Alerts
Step 1: Select your city or location: Step 2: Send alerts to my:
Alert me ifareportis filed in, or around [F] Mobile phone:

- enter mobile number with country code
Select a city [ZI

Or, place a spot on the map below, and we will alert you when a report
is submitted within 20 kilometers [0l Email Address:

enter email address
D@gﬂéﬁsﬂﬁeﬂdagunderCC~EIY~SA nier email acdr

(Figure 28. Ushahidi screenshot 4)

2.3.3.4.3. Criticism
Everyone can submit informa and some of them can lie with bad intentions like manipulate the

public opinion. The user may have to contrast information with other sources. Our project does
not need moderators because users do not give a public opinion.

2.3.3.4.4. Technologies
Ushahidi uses different languages in different modules like PHP for website, JAVA for android
and other libraries and objective-C for the IPhone app. OUO can not use java and objective-C

mostly because they do not have the libraries that it needs.

Ushahidi provides an API to the admins and users with some pre made stuff that allows them to
go faster. As database they use MySq|.

39

2.4. Technology table

The table with the technologies that the projects we have analyzed are using is found below:

Server Framework Database Web
language
Kickstarter Ruby Ruby on Rails HTML
jQuery
CSS
Amazon Java
Mechanical Turk NET
Perl,
php
Ruby
99designs PHP MySql HTML
Memcached jQuery
MongoDB Redis| CSS
HoyRespiro PHP Symfony MySql
SUPERHUB Java
UrbanGems Ruby SQLite HTML
jQuery
CSS
UrbanOpticom PHP Symfony MySql Bootstrap LESS
Place Pulse Python Flask MySQL Font Awesome
MongoDB jQuery
LESS
Ushahidi PHP MySql

In conclusion, almost all the project uses some scripting language. They use some kind of
framework with they project because it helps a lot when it comes to programming. The
databases are not very different one from another, specially SQL databases. jQuery as well as
CSS enhancement libraries are frequently used too for all this projects.

40

3. Technologies

In this section it is described the most interesting technologies and tools available and which can
be more useful. The different technologies that we find are almost mandatory for our project
because a web application needs a web server in a certain language, a database where the
objects are saved and other technologies related with the client view through a browser.

3.1. Web server language

3.1.1. JavaEE

JavaEE is a programming platform for Java based on web server applications language that has
several advantages: firstly and the most important, has a strong and wide community that have
defended it for over 10 years. Secondly, it has a lot of documentation, examples and tutorials.

The big disadvantage of JavaEE is the poor scalability of the java applications and the
developers of the other projects used libraries that are done for scripting languages.

3.1.2. PHP

PHP is a scripting language designed for web development to produce dynamic web servers.
PHP on the web development widespread because its early release and there is a lot of
documentation. The disadvantages of using PHP are: the learning curve is steep at the
beginning and not very modular.

3.1.2.1. Symfony

Symfony is one of the best frameworks for PHP. It is designed to use the Model-View-Controller
pattern. MVC is a software architecture pattern that separates the representation of information
from the user’s interaction with it. It separates the business logic, the server logic and the
front-end web. It contains numerous tools and classes aimed at shortening the development
time of a complex web application. In addition, it automates common tasks, allowing the
developer to involve himself to the specifics of each application.

3.1.3. Python

Python is a general purpose programming language, which can be used to do anything. It is very
easy to learn because of their clean syntax. It had extensive libraries and good frameworks.

41

Python is well-known for its code productivity. Python have problems with the memory intensive
tasks.

3.1.3.1 Django
Django is a framework that use Python. It was designed to make common Web-development
tasks fast and easy. Users can use Django without a database because it comes with an

object-relational mapper in which users describe your database layout in Python code. It allows
you to create elegant URLs and other fancy stuff that helps the web-developer.

3.1.4. Ruby

Ruby is an object oriented programming language. In Ruby everything is an object. It is said that
Ruby follows the principle of least astonishment, meaning that the language does not confuse
the experienced users. Some critics say that Ruby it is alive because of his famous framework
and it is not useful by itself.

3.1.4.1. Ruby on Rails

RoR is a very complete framework that have everything that a web-developer needs,
management of databases, create templates, gather information, etc.

3.2. Databases

3.2.1. SQL based

Structured Query Language is a specific programming language designed for managing data in
relational database management systems.. SQL have a lot of documentation and it is
widespread over the world of web-developing. The problems of SQL Databases come with the
poor compatibility between the different interpretations of the language.

3.2.2. MongoDB

MongoDB is a document-oriented database, is the most popular NoSQL database management
system. Instead of storing data in tables as is done in a "classical" relational database, MongoDB
stores structured data as documents with dynamic schemas (BSON), making the integration of
data in certain types of applications easier and faster.

42

3.3. Webpages

3.3.1. Bootstrap

Bootstrap is designed to help web developers. It includes HTML, CSS and Javascript. It has list
of components that can be used easily like progress bars, buttons, labels, etc. and it has a few
example layout. Finally, it can be used in a lot of web browsers, even in mobile web browsers.

3.3.2. Skeleton

Skeleton is a small collection of CSS basic files that gives you some help in the website
development. It have different components that automate the tasks related with the front-end
design. It works in different devices, even mobile phones.

3.3.3. 99Lime HTML KickStar

It is another package that includes everything, Javascript, CSS and HTML. Covers the
necessities of a web designer who needs to create website layouts (slideshows, menus,
buttons, etc) and make it in an easy, fast and beautiful way.

3.3.4 jQuery

jQuery is a fast, small, and feature-rich JavaScript library. It makes things like HTML document
traversal and manipulation, event handling, animation, and Ajax much simpler with an
easy-to-use API that works across a multitude of browsers.

3.3.5 CoffeeScript

CoffeeScript is a little language that compiles into JavaScript. It had shortcuts that helps you to
write less code and go faster.

3.3.6. LESS

LESS extends CSS with dynamic behavior such as variables, mixins, operations and functions.
With LESS you do not need to write all of these painful lines of CSS code.

3.3.7. HAML

43

Haml (HTML abstraction markup language) is based on one primary principle, markup should be
beautiful. Haml accelerates and simplifies template creation down.

44

4. Problem description

Urban Opticon is a website that displays images of London and users have to answer what
borough or tube station is closer. The crowdsourced results from the users generate a map of
the most recognizable zones in London and can be useful for different studies.

Our goal is make an open source platform for the Urban Opticon that can be deployed by anyone
for any city chosen by the user. This platform will allow the user to make their own divisions of
the map of the city of study and choose the places that will be displayed to the final user
depending on their preference or even make random points. The experimental results will be
saved into the experimenter database and made accessible to everyone. Because of the
magnitude of the project, and its deployment in production, the project is split in two main parts:
(1) the back-end or administrator part, where the experiment is configured, and (2) the front-end
or the players interface, where users play the game. This project is divided in two parts, one the
administration part of the Open Urban Opticon that is described in this document and the other
part, the user interface part, which will be made by another student from Brazil named Joao
Paulo Pesce.

In our platform, besides of the option of create a study for a city, there is the possibility of create
an study for the whole world. This feature will be very similar to the city study and it will be even
easier to create.

The actors on this project are the following: (1) the experiment creators that deploy the website
for their experiment, (2) the final users will be the people that will be asked if they can recognize
the zone of an image, and (3) a last actor will be a passive actor that can check the results of the
study.

Our project will be easily deployable by a non expert user that need a custom Urban Opticon for
a certain city or for various cities. It will not require expert technology skills. All the customization
will be made inside the web with an administration interface but if the experiment creator wants a
high personalized website he will be able to change the code how he pleases. For the final user
will be a classic website and everyone can access the results after the experiment creator

approval.

45

5. Use cases

The overall functioning of the platform is explained for two actors: the administrators experiment
(or administrators) creators and the final user.

5.1. Experiment creators

The experiment creator needs to do the following steps to set up an experiment:
Provide a city division with a shapefile.

Create and manage city division manually.

Make easy-to-guess points and random points for an existing experiment.
Create and manage points.

World experiment points.

These steps are carefully explained below:

5.1.1. Create a city experiment with a shapefile (.shp)

The experiment creator goes to the import shapefile webpage. First he has to name the city (if
already exist will override the experiment). He uploads the zip with the .shp (and .shx, .prj, .dbf
files that a shapefile needs). Now, he has to select the column of the shapefile that he is
interested in because this names are not standardized and each shapefile can have different
number of columns with different names. When he selects “save” two maps will be displayed,
one with all the areas and another one with the whole city calculated with the convex hull of all
those areas, as a result we have a polygon with the union the areas which not allows blanks
inside .

Title: Provide a city division with a shapefile.

Description: A experiment creator can create an experiment with a shapefile.
Primary Actor: Experiment creator.

Preconditions: The user has deployed the server.

Main Success | 1. The user names the city.
Scenario: 2. The user uploads the zip file with the shapefile.
3. User selects the right column of the shapefile.

Extensions: 1a. If the city already exists it is overridden.
3a. The result is displayed.

46

Frequency
Use:

of

Few times a year.

5.1.2. Create and manage cities and neighborhoods divisions manually

Some of the cities in the world does not have shapefile and we need a way to create studies for

these cities. The areas and the cities can be created and managed in the similar way because

both are polygons displayed over a map. When the experiment creator select Areas or Cities in
the admin page a list of the objects in the database are displayed. The user can select an object
to modify or click “add” to add a new object. A map of OpenStreetMap will be displayed. The

experiment creator can make or manage zones. A zone consists in a bounding box. In the case

of cities he just have to point the name of the city. For an area he has to point city name that it
pertains. The experiment creator can delete the objects by selecting them and clicking delete in

the dropdown box of the top.

Title: Create and manage cities and neighborhoods divisions manually

Description: A experiment creator can set up the city boundaries and its neighborhood
manually.

Primary Actor: Experiment creator.

Preconditions:

The user has deployed the server.

Main Success

1. User clicks “Areas” or “Cities” in the admin menu.

Scenario: 2. User clicks an object that already exists or add a new object.
3. User can make bounding boxes and specify the properties.
4. User clicks save.
Extensions: 2a. If the object already exists the map will zoom in to the bounding box.
2b. If the object does not exist a world map will be displayed.
3a. For cities he will specify the name.
3b. For areas, the city that the area pertains.
Frequency of | Few times a year.
Use:

5.1.3. Make easy-to-guess points and random points for an existing experiment

47

The experiment creator will go to the Generate Points page and will select the city that he wants,
he can select if he wants to delete the previous points. The experiment creator can select some

of the 20 Points of Interest that he thinks that are interesting. We only display 20 because we
have limitation in an external APl. Now he has to select if the points have to be in the whole city
bounding box or for each area of the city and the number of points. In the next web page an
OpenStreetMap with the points will be displayed. He can remade the points and save them them.

Title:
Make easy-to-guess points and random points for an existing experiment
Description: A experiment creator can create random points and the points of interes
for the experiment.
Primary Actor: Experiment creator.
Preconditions: The user have deployed the server.

Main Success | 1. The user click on “Generate Points” in the admin page
Scenario: 2. The user select the city that he wants to add points

3. The user has to select the number of points and the type.
4. The users save points.

Extensions: 2a. Select if he wants to drop the previous areas.
3a. Points per area.
3b. Points per city.

Frequency of | Few times a year.
Use:

5.1.3.1. Points of Interest

To motivate the users, well-known points will be displayed. Preliminary experimental results in
the first version of Urban Opticon show that users get frustrated when they do not know any
point of their city, especially when they have been living there for a long time. Therefore, to
ensure right answers from the final user, some well-known reference points are introduced.
These points will not count for the statistics because they are too obvious. In order to specify the
reference points, the experiment creator can choose doing this manually or with our automatic
process. This process will scan the areas in a certain radius of the center with Google Places
API that gives the most relevant places given a point and a radius.

5.1.4. Create and manage Places

Users can add or change points clicking a new point in the OpenStreetMap, if the Google Street

48

View image is not found the image will not be saved. The Places can be related with a “City” or
an “Area”. They have a boolean that indicates if it is a Point Of Interest.

5.1.5. World experiment points

The experiment creator can make a study for the whole world. The characteristics of the world
points is that they are not related with a “City” or an “Area”. They can be created manually how
we specified before or they can be auto generated.

When the experiment creator clicks on “Generate points” in the admin page he will be able to
click on “World points”. There he has to specify the number of random world points. If he clicks
“save” the points are saved in our database and in the images folder. Below that, the Points Of
Interest for the world are displayed with an image for each one. The user can select the most
interesting for him and save them.

5.2. Final user

The final user can only play the game, and his potential interactions with the system are:
e Look at the image displayed and select the zone that he thinks it is (ten every time that he

plays).
After each image get the answer and the score.
Get his final score and publish his contribution in social networks.

These steps are listed below:

5.2.1. Point the correct zone

Every time that the user plays ten image will be displayed in turn. Users will point over Google
Maps where they think it is the correct point.

5.2.2. Score

The score will be 100 point minus the relative distance from the correcting point. The score will
be displayed in a pop up and if the user fails the name of the correct point will be displayed too.
The final score will be displayed at the end.

5.2.3. Contribution indicator
At the end of the game will display a progress bar with a % of answers that the study have

49

depending on the wish of the study creator. Final users will be able to put on their facebook their
contribution on the study, for example: “You helped to study the recognizability of the
neighbourhoods of Barcelona in a 0.3%”.

50

6. System Structure

In the next sections the different modules that we are used in our project. Moreover, the
implementation of technological solutions for each module is explained. Here we have a little
scheme with the technologies and below they are explained one by one.

-HTML
Javascript
-jQuery
-Bootstrap
-Google Maps API
-OpenlLayers
-Google Street View AP

Upload .zip

JSON Django Views

Dajax | {I1SON Django views Dajax
Request/f

mapquiz ' OuoAd
© -mport Shp Geodjango

: -Create points:

-Manage DB

-
| | w v .
MysoL: { E : { POStGIS | cave Gsvimages

(Figure 29. Technology scheme)

6.1. The language: Python

Python is general purpose programming language, which can be used to do anything. It

51

integrates well with our project because it needs different sorts of things like geographical
databases and web applications. The frameworks that python have are very useful for our
application and that why we choose python.

6.2. The web framework: Django

The previous work done for Urban Opticon was made on Python and with the Django framework
we can improve the project. It helps in creating and managing the database with its
object-relational mapper and the automatic admin interface. To create the database we only
have to define the objects in a file with a very simple syntax and run a synchronization
command, it is not need to use PostreSQL. Then, if we need to manage the database, the
reference of the register can be managed as an object (you can call methods, get and set
variables...). The administrator interface it is generated only pointing which objects of the model
you want to manage.

6.3. The geographical framework: GeoDjango

GeoDjango it is another framework that uses Django as a base. We build our server with

GeoDjango. It gives to Django a Geographycal Interface System (GIS) that have helped a lot
because as django do, it adds to the automatic admin interface geographical features like maps

and a geospatial database, for example, PostGIS.

The automatic interface allows the user to draw and modify polygons and points over a map.

A . 8 » e A ¢ e
del Vall l .J‘P NR_ ol 4 NR ‘-‘- :\‘ .""Q")»_

Montcada MACTRa

ViReixac) Loy
! >

: |

B MR NE [NR

] EMD
HE W alidoreix

f alet de;Llobregat
X ea.ae\iv 5% o8
A
A el Prat (NES

-/ [deiLiobregat o 2 3

by U : 1 & S Data CC-By-SA by OpenstreetMap
g R

Bali? Gavar o o VE\\ RN Scale =1:217K

" w4

o F ,i‘. —f i A
der we R C] | = o Pla & i 248561.30403, 5071908.57330

(Figure 30. GeoDjango polygon edition)

The GeoDjango GIS have some useful implemented methods that we use, like contains(point)

52

where you can check if a point is inside a polygon or convex_hull() that returns a convex hull of a
bunch of polygons.

Geodjango have an utility named LayerMapping that allows to upload shapefiles and save them
on the database.

6.4. Asynchronous communication: Dajax

Dajax is a ajax library for Django that permits to make calls to the server without having to reload
the whole page. That is useful because it permits an easy asynchronous communication

between the client and the server which is hard to do only with Django because it has to make a
request to the server and refresh the page even if you do not need it.

Basically the client makes a call in javascript and this call give to the client a callback that you
can process or not.

6.5. Creation of dynamical select list: Javascript

Javascript is a vastly used scripting language for the web and it have a lot of libraries which we
are using and allows to manage the HTML elements easily, for example, create dynamic lists of
select box.

6.6. Display geographical objects: OpenLayers

We are using OpenlLayers for the maps. OpenLayers is an open platform that make it easy to
display dynamical maps on a web. Geodjango uses OpenLayers too in the display of polygons
and points.

OpenLayers works with layer where you can add different things. For example we can add a
OpenStreetMap layer that displays a lot of information like boroughs, street names, places, etc.
In our application we use different layers to display the polygons of the cities and the points that
have been generated.

With OpenLayers you can configure the events related with the map, for example, the mouse
over the features of a layer or control the click on a zone as well as enable or disable the
movement.

6.7. Get relevant places: Google Maps API v3

53

We use this API because it is possible to make a request of the twenty most interesting places

given a point and a radius. The API ever returns twenty places, there is no possibility to point the
number that you want. The places object that it returns have the coordinates, the name, the
classification, etc.

6.8. Get images from a coordinates: Street View Image API

This API give us the nearest Street View Image given a certain point. It gives a static image that
we save in a folder. Sometimes, if there are not a close image it returns a ‘no image’ image, but
we have managed to not save it.

6.9. Events, manage elements...: jQuery

jQuery is a javascript library that simplifies javascript programming and allows to configure the
HTML page easily and make events. We use it for hide and show elements of the pages, read
values of inputs, etc.

6.10. Stylize the front-end: Bootstrap

Bootstrap is a front-end framework that helped us to personalize our application with nice
buttons, a background and other stuff. You only have to define a premade class of Bootstrap
your HTML tag (for example, class="btn”) and the framework do all the work.

6.11. Geographical database: PostGIS

The database that we are using is PostGIS, that is a PostgreSQL database with geographical
objects. This database allows to manage points in real geographical spaces like points or
polygons.

54

[City

name : CharField ' Place
polygon : PolygonFiel

name : CharField
1 point: PointField
url : CharField
photo : ImageField
city : Foreignkey
area : Foreignkey
isFakePoint : BooleanField

M

[Area |

M\ |name : CharField %

polygon : PolygonFiel
city : Foreignkey

(Figure 31. Entity-relationship diagram)

There are only three tables that we had to define in the database, the other tables that django
needs (users and other settings) are made automatically.

- City table only contains name of the city and polygon fields.

- Area table have the name, the polygon and the relation with the city. The city can not be null
because an area ever pertain to a city.

- Place table have the name and the point. Furthermore, the url which is the url of the Google
Street View API, the photo which is a custom field from Djnago that allows to upload images in a
certain folder, the city, the area and a boolean that points if it's a points is an easy-to-guess point
or not. If a Place do not have city it is considered a world point.

55

7. Technological Challenges

In this section we will talk about the problems that we found during the programming process
and the solutions that solves these problems. For example, the problems with the asynchronous
communication between the client and the server, the different projections for the geographical
objects, the images of the Google Street View Image API, the upload of the areas with a
shapefile or the problems that we had to solve to generate world points.

7.1. Django asynchronous communication

Django, for security reasons does not allow the asynchronous communication between the
client and the server. Instead of asynchronous communication Django offers POST functions
that allows to pass parameters with a HTML Form. That solution is good if you are thinking in
change the web page but not very much if you just want to call an easy method that does not
need to render the page one more time.

As solution we found is Dajaxice from http://www.dajaxproject.com/. Dajaxice is a project made
to help the developers of Django to have an easy communication between the server and the
client. It separates the server part and the client part.

The server part is just another application that you have to add to the project. Then, we have to
add the url of Dajaxice and finally we have to make our ajax.py file. In this file we have to name
the method and we can do whatever we want (change objects in the database, mathematical

computations, etc.). Then we have the option of respond something, usually some data in JSON

format. For example, a function that we made, generateRandomPoints calculate a given number
random points in a Polygon, check if there are Google Street View Image and the save them. As
response we have a JSON with all the points.

In the client-side everything is made with javascript. First we have to import the javascript
libraries that we need, however, this task can be done easily since we just have to use the
template language of Django. The complexity to call one of the methods that we have in the
ajax.py is reduced, as we just have to put Dajaxice.adminShapes.ourFunction(callback,
{'data':data});. Callback is a function that we have to create in order to receive the information
that the functions returns. The other parameter is the data that we send to the function. Following
the previous example, we call the function generateRandomPoints and it calls the javascript
function callbackRandomPoints that draw the points to the OpenLayers map.

56

http://www.google.com/url?q=http%3A%2F%2Fwww.dajaxproject.com%2F&sa=D&sntz=1&usg=AFQjCNFFTSXe8msyXf40DehsYd-CDKh9vw

ajax.py javascript

‘__,JEQ—N——/_" Dajaxice.call
- Callback function()

(Figure 32. Dajaxice functional scheme)

7.2. Projections

The map projections are the transformation between the sphere to a plain. In the case of the
earth, normally the projections are represented with longitudes and latitudes (coordinates) but
there are calculated in different way depending on standard used. The main differences amongst
standards are the different usage of scale coordinates, the type of the map (sphere, ellipsoid...)
the reference points, etc.

The main problem that | found for our application is that the PostGIS database uses one kind of
projection named EPSG:900913 that manages the earth as an sphere and the Google Maps and
the OpenLayers uses the EPSG:4326 that manages the earth as an ellipsoid.

To solve this we found that all the geometries that we are using in the OpenlLayers can be
transformed with a self method giving two projections. Since all the methods that Google Maps
are used simultaneously with OpenLayers we can use it too.

7.3. Save and compare images of Google Street View

The Google Street View Image API works providing some parameters to its URL and returning a
Google Street View static image. The parameters that we input are the size and the coordinates
and it gives back an image corresponding to the GPS coordinate provided that we want to save
in an image folder inside the project folder.

To save these images into the folder, we had to create a field in the Place object that was a
image. That allows the administrator to upload an image but we had to find an automatic way

57

(without downloading the image and then uploading to the server). To do this | found that it is
possible to upload an image with a Python library named urllib only with the url. Then we can
save this image in the image field.

Another big issue that we found was that the input coordinates provided to the GSVI APl is too far
away from a GSV spot it returns a ‘no image’ and we do not want points that can not be
displayed to the final user. For example the coordinates (10.45557,79.30531) in India do not have
GSV image.

Sorry, we have no imagery here.

Lo _[

(Figure 33. ‘no image’ response from Google Street View Image API)

To solve this we had to compare each image with the ‘no image’ and decide whether to save it
or not. But the problem came when it is not possible to compare an image that is not saved. To
solve this we had to save first the image, compare and then delete it if it is ‘no image’.

Another problem that we found was the asynchronous communication of the Dajaxice. We had
been using a method where we gave the point and it saved the image if it was not a ‘no image’.
We want this image displayed as a point in the map. When we wanted to read the responses we
found that the method returns a callback before execute the whole method, it just responded the
same very fast for each object without checking if there was image or not. We solved this
passing the zone and the number of points to the server, it makes the points and it respond only
with the points with GSV image.

To disable the possibility of saving and modifying the point of a Place without checking the ‘no

58

image’ we had to override the saving method, allowing it to check if there are image and if there
are not an error message is displayed and the Place not saved or deleted.

7.4. Import Shapefile

Geodjango give us the possibility of generate objects thought shapefiles. A shapefile is a de facto
standard of spatial data that is saved in multiple files. A shapefile can contain different kinds of
spatial forms such as points, lines and polygons in only one shapefile. Geodjango can upload
shapefiles with an utility named LayerMapping.

Shapefile multiple files:

.shp — shape format; the feature geometry itself

.shx — shape index format; a positional index of the feature geometry to allow seekin
forwards and backwards quickly

.dbf — attribute format; columnar attributes for each shape

.prj — projection format; the coordinate system and projection information

The first problem with LayerMapping is that it is the user needs the basic files (.shp, .shx, .dbf),
the user needs the .prj file. This file gives the projection in the geospatial space, without this, you
only have the polygon with some properties.

In our case, we are only interested in upload polygons geometry (not points) and we have to filter
the columns that we only have polygons. Another problem related with the shapefiles is that the
columns names do not follow any standard in their naming, therefore the user have to know what
it means the name of each column. For example, in the shapefile of Barcelona the name of
borough column is “NBarri” which is not very easy to translate for people who do not know the
language.

7.5. World Points

The first problem with the world points was an obvious consequence of getting random images
of Google Street View: the vast majority of Google Street Images of the world are from roads
roads are not very interesting in our study neither for the user experience. To fix this we have
made an static list of the most relevant cities in the world and we take the random points from
these cities given the center and a radius.

Since it is impossible to have the well-known points from the Google JS API because the radius

that we have to give is very big (the radius of the earth), we search the center point from the list
of relevant cities and we put the radius that covers the city. We have copied this points in a static

59

list and deleted those points that have the ‘no image’.

60

8. Economic valuation

8.1. Technologic resources

Our project is just the administration part of a whole server that will be Open Urban Opticon. In
fact, we do not need to deploy it to a dedicated server to run and configure it, just with the django
debug server. Then, the task of deploying the server and the cost of the deploying is not
evaluated here.

All the software that we have used is open source including the code repository. The restriction
that we have is the Google Maps Javascript v3 API that have 25000 request/day but we had
never reached the max since we have to call 25000 times the web-page of generate
easy-to-guess points, which is not realistic or 3000 times the web-page world points. The
Google Street View Image API have 25000 requests/day, implying that we have more or less a
70% of chances to find a the image given a point (that means 30% of ‘no image’), it is possible to
save 17500 points every day, large enough for the normal use of the application. In both API if
you want to add request, every 1000 cost 0,508%.

8.2. Human resources

My work and the work of Daniel Villatoro do not need to be considered so we do not have to
count it for the price. The estimated cost of a researcher as Daniele Quercia, my tutor out of the

university, is 75€ per hour, he had worked for 26 weeks, two hours a week. That makes 3900€ in

total.

26 weeks x 2 hours per week x 75 € per hour = 3900 €.

8.3. Total cost

The total cost of the project raises up to the budget of 3900 €

Cost(€)
Technological resources 0*
Human resources 3900
Total 3900

*With a normal usage of the application

61

9. Development Methodology

In the development of the Open Urban Opticon we have followed the Scrum methodology for
software developing, which it’s flexible, iterative and incremental. Each iteration have a marked
duration and it is known as Sprint. In our case, the sprint have a duration of a week. During the
weekly meetings we have put short-term objectives with due dates. We have been in contact
almost every day via email.

As Product Owners | have got my tutors Daniel and Daniele. They have had the role of Scrum
Managers too because they have been managing the project tasks.

(Figure 34. Gantt chart screenshot)

In this link you can find the Gantt chart

https://docs.google.com/spreadsheet/ccc?key=0A04cJMiUGpbKdFJNb3VpTEIRLUQ2R2U4V1Jh
Y3QwR1E&usp=sharing:

62

https://docs.google.com/spreadsheet/ccc?key=0Ao4cJMiUGpbKdFJNb3VpTElRLUQ2R2U4V1JhY3QwR1E&usp=sharing:
https://docs.google.com/spreadsheet/ccc?key=0Ao4cJMiUGpbKdFJNb3VpTElRLUQ2R2U4V1JhY3QwR1E&usp=sharing:

10. Future work

In this section the potential improvements will be described. This section is divided in short-term
work, which can be enhanced without making a lot of changes to the original project, and
long-term work, that involves an exhaustive study of the viability and another point of view of the
project.

10.1. Short-term work

10.1.1. Improve the city study creation

The first improvement that can be done it is to add a guided way to add a city in an orderly
manner. Now this is already done but users have to go to different pages without an order. With
orderly way | mean be able to draw a city, then draw the different areas and finally add the
easy-to-guess and the random points. In fact, you can already do this but you have to go to the
“‘Manage model” and first add a city, add each area one by one but then you can use the
“Generate Points” to do it. We could do this more user friendly.

To make this we should think in different things:
e |f we should allow users make their own areas.
e Divide areas automaticly with a grid.
e Let users draw areas outside the city polygon.

10.1.2. Make the world points dynamically random

Now, the world points are static. We have a list of the most relevant cities in the world in terms of
population, growing and well-known. Then we have another static list of the easy-to-guess points
of these cities, but some of them have high restrictions in Google Street View (specially chinese
cities) and we had to reduce the number of points. The random points are also taken from these
cities given the center and a radius. We had to make this static list because if we take random
points around the world mostly of them was roads that do not have too much interest in our
experiment.

To solve this we have different options, one could be to do a very large city list with the
coordinates, for example, all the cities in the world with more than 50.000 inhabitants. To find this
kind of list, we would need a web crawler and a web with accurate data. One of the website
where we could obtain this data is dbpedia where the data is in a computer-friendly format.

The only way to that | can think to make the automatic comprovation of if an image is a road is

63

look at every image and study the color histogram. The more grey an image have, the more
possibilities have to be a city. Another analysis could be, if the image have more grey in the
bottom and less in the top, it could be a road. There are a few problems, for example, if it is a
park (the image will have no grey but is an interesting point) or if it is a street with vegetation
(grey in the bottom and no grey in the top).

10.1.3. Filter the ‘no image’ in the easy-to-guess points

Now, in the easy-to-guess points ‘no images’ are displayed. That is because Google Street View
Image API do not check if there are images or not. | could find the way to give a good response
from the server (where the images are compared) and do not display it because the asynchrony
of the communication.

The most obvious way to correct this is catch all the points in a list and pass them to the server.
The server can check if there are or not image and respond with the list with only the list of
points that have image.

10.2. Long-term work

10.2.1. Phone and tablet app

| think that platform can be easily exported to be used in mobile phone or tablet since it does not
require too much user interface. We would not need any kind of graphic engine because with
Google Street View and Google Maps is enough. The server engine could be even easier than
now. With a RESTful API should be nice because we just need to pass the coordinates and not
too much information more. The app should be able to render everything since the code is
executed in the client side. A good option to code the client side could be jQuery Mobile because
it works in a lot of devices.

Another interesting feature that a portable device adds it is the possibility to get the position of the
user with the GPS and display places around him. That could give us very interesting data and
make complete different game.

10.2.2. Monetization

| have been thinking in the possibility of adding an economic profit to our project and | think that
the best way to make this project profitable in economical matters could be charge small amount
of money from business that interested in the visibility of their company. That could be very easy
to deploy and the user should not know that the data will have a commercial benefit and he will

64

continue enjoying the game, which is the basis of the implicit crowdsourcing.

65

11. Conclusions

The idea was to make a platform that could be used for every city in the world that displays
images from the Google Street View and the user have to guess where is that point. We had
different approaches of the project. First was a server per city but then we decided to do n
number of cities per server. Finally, we added the possibility of world points.

| have worked with a Master Student of Brazilian university named Joao Paulo Pesce. He made
the previous Urban Opticon that was made for London. In the middle of my project he decided
that he wants to join to our project making the final front-end gamers It allows me to focus on
finishing the administrator part ensuring a good result. | made the whole administrator part,
almost everything that you can find in the OUOadmin/ folder and everything that | described
before and all that is explained in the “Administrator manual’.

Jodo has made the final user interface part, where the user can see the Google Street View and
click in the Google Maps. He have made the part of saving the results too over my database.

In conclusion, our project will help in the challenge of discovering the imaginary map of the points
that are easy to recognize by the user. The population of the cities in the world are growing very
fast and our application can help people who have to manage this. Our administration, combined
with the interface will make a full server application capable to make a great user experience and
impressive results that will be used in other studies related with this subject and will be easy to
deploy to a non-expert user.

The administrator part cover the needs of an experiment creator that wants to do different
experiments of different cities (or the whole world) in different ways. We have made an easy to
understand interface that allows non expert computer user capable to create a study following
the instructions and, since it is a open source project, highly scalable and easy to customize.

For me, in the engineering perspective the project has been a great experience. | have learned
how to be able to manage a large project, structure the goals and study the different possibilities.
| have learned how to work with requirements from another person and how important they are. |
had to study which technologies are more important and how they can help the project. In this
aspect, | have learned how different APls, maps, web frameworks and Javascript works | now |
can make a imaginary structure in my mind that can be useful for any other web project.

In the investigation part, | have learnt how important the crowdsourcing and smartcity projects
are and how much they will be in the future. | have learnt how to inquire into a project and find its
pros and cons and gather information that can be useful.

In general, it has been a great project and | am sure that | will use mostly all the things that | have
learned very frequently.

66

12. References

- https://dl.dropbox.com/u/6314563/papers/milgram/psychologicalMapNY C.pdf

- http://urbangems.org/

- http://urbanopticon.org/

- http://pulse.media.mit.edu/

- https://dl.dropbox.com/u/6314563/papers/www13 map20.pdf

- http://en.wikipedia.org/wiki/Java Platform, Enterprise Edition

- http://www.udemy.com/blog/modern-language-wars/

- http://www.techrepublic.com/article/python-in-the-enterprise-pros-and-cons/1045768

- http://symfony.com/

- https://www.djangoproject.com/

- http://www.careerride.com/python-disadvantages.aspx

- http://en.wikipedia.org/wiki/Django (web framework)

- http://en.wikipedia.org/wiki/Ruby on_Rails

- http://rubyonrails.org/

- http://en.wikipedia.org/wiki/SQL

- http://twitter.qithub.com/bootstrap/index.html

- http://www.getskeleton.com/

- http://jquery.com/

- http://buhrmi.tumblr.com/p.../how-coffeescript-makes-jquery-more-fun-than-ever

- http://coffeescript.org/

67

https://www.google.com/url?q=https%3A%2F%2Fdl.dropbox.com%2Fu%2F6314563%2Fpapers%2Fmilgram%2FpsychologicalMapNYC.pdf&sa=D&sntz=1&usg=AFQjCNGbPWwiUegBCrNETNOl4_MAmznIEA
http://www.google.com/url?q=http%3A%2F%2Furbangems.org%2F&sa=D&sntz=1&usg=AFQjCNHV44U4V-FOUDyoT2YceKua6hSgbQ
http://www.google.com/url?q=http%3A%2F%2Furbanopticon.org%2F&sa=D&sntz=1&usg=AFQjCNEP25nXRgYVltTG1h8FMaMEGD--kg
http://www.google.com/url?q=http%3A%2F%2Fpulse.media.mit.edu%2F&sa=D&sntz=1&usg=AFQjCNGQR-lQPvv_YFmo8rEIyzu-wVmotQ
https://www.google.com/url?q=https%3A%2F%2Fdl.dropbox.com%2Fu%2F6314563%2Fpapers%2Fwww13_map20.pdf&sa=D&sntz=1&usg=AFQjCNFWedGIpFizcyzVHPNIO2C5u7PzuA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FJava_Platform%2C_Enterprise_Edition&sa=D&sntz=1&usg=AFQjCNFYGgz4Yr5TF1BMDkfXcdzfV6WKhw
http://www.google.com/url?q=http%3A%2F%2Fwww.udemy.com%2Fblog%2Fmodern-language-wars%2F&sa=D&sntz=1&usg=AFQjCNE92ZRHpea5QVpy1UWURTKf4jR3dA
http://www.google.com/url?q=http%3A%2F%2Fwww.techrepublic.com%2Farticle%2Fpython-in-the-enterprise-pros-and-cons%2F1045768&sa=D&sntz=1&usg=AFQjCNHbp0bX4uKG9n5RDD8GkkApAtb1TA
http://www.google.com/url?q=http%3A%2F%2Fsymfony.com%2F&sa=D&sntz=1&usg=AFQjCNE_qIyfPqUaOG3Xlrv7GsPbuyT_cQ
https://www.google.com/url?q=https%3A%2F%2Fwww.djangoproject.com%2F&sa=D&sntz=1&usg=AFQjCNHSU1ZCMW_LBb5E3mdq2QDIAj8M4g
http://www.google.com/url?q=http%3A%2F%2Fwww.careerride.com%2Fpython-disadvantages.aspx&sa=D&sntz=1&usg=AFQjCNFkz15AaLTAhTj7iJlXQnYrS3Tcjg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDjango_(web_framework)&sa=D&sntz=1&usg=AFQjCNFax104pq4kjC__B6DMfa5Tq8biZQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRuby_on_Rails&sa=D&sntz=1&usg=AFQjCNECW4Ac9tNZRlo0lQ1hTBnv1NpUDw
http://www.google.com/url?q=http%3A%2F%2Frubyonrails.org%2F&sa=D&sntz=1&usg=AFQjCNF7Cc02U9OAo_hiAxFGoYPao3MLyQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSQL&sa=D&sntz=1&usg=AFQjCNGF16SJzeKAm5K8b0YRFhY6nvvV0Q
http://www.google.com/url?q=http%3A%2F%2Ftwitter.github.com%2Fbootstrap%2Findex.html&sa=D&sntz=1&usg=AFQjCNG3DdWkhUPR7l-tuvmJPY9m1MuSfA
http://www.google.com/url?q=http%3A%2F%2Fwww.getskeleton.com%2F&sa=D&sntz=1&usg=AFQjCNFhKo8KXh2iDlgI1yzxzPFWdIHMfg
http://www.google.com/url?q=http%3A%2F%2Fjquery.com%2F&sa=D&sntz=1&usg=AFQjCNGtx3hYIQpONgUoQvrnRm8YULAPpA
http://www.google.com/url?q=http%3A%2F%2Fbuhrmi.tumblr.com%2Fpost%2F5371876452%2Fhow-coffeescript-makes-jquery-more-fun-than-ever&sa=D&sntz=1&usg=AFQjCNFmjbtfHjDVZ_BoD6jBz3bivd6edg
http://www.google.com/url?q=http%3A%2F%2Fcoffeescript.org%2F&sa=D&sntz=1&usg=AFQjCNGU9KcfCShy-4KKhW7cifaqIGYhTw

- http://lesscss.org/

- http://haml.info/

- https://github.com/djagdish/Place-Pulse

- http://www.alumnifutures.com/2012/07/crowdsourced.html

- http://en.wikipedia.org/wiki/Crowdsourcing

- http://mashable.com/2012/09/07/crowdsourced-developers/

- http://www.kickstarter.com/

- http://lwww.newrepublic.com/article/politics/magazine/110225/the-false-promise-kickstarter#

- https://www.mturk.com/

- https://requester.mturk.com/mturk/beginsignin

- https://en.wikipedia.org/wiki/Amazon Mechanical Turk

- http://www.superhub-project.eu/

- http://hoyrespiro.people-project.eu/

- http://www.ushahidi.com/

-http://e360.yale.edu/digest/growth of urban areas poses long-term threats study says/3095
/

-http://www.superhub-project.eu/index.php?option=com_jdownloads&Iltemid=20&view=finish&ci
d=16&catid=6&m=0

-http://www.kickstarter.com/blog/hiring-rails-developer

- https://github.com/jpesce/urbanopticon

- https://github.com/A-Barwell/urbangems

- https://github.com/ushahidi

-http://www.screamingatmyscreen.com/2012/2/business-decision-why-i-use-django-and-not-rub

68

http://www.google.com/url?q=http%3A%2F%2Flesscss.org%2F&sa=D&sntz=1&usg=AFQjCNHyaG6OGCQoyYDFU5HHrHPcAFq0Jg
http://www.google.com/url?q=http%3A%2F%2Fhaml.info%2F&sa=D&sntz=1&usg=AFQjCNEt6v2JNHXVCQlVqXAhym13ZDAjBg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fdjagdish%2FPlace-Pulse&sa=D&sntz=1&usg=AFQjCNEubZxsHV5d49MjxQau_xkTOiEy_A
http://www.google.com/url?q=http%3A%2F%2Fwww.alumnifutures.com%2F2012%2F07%2Fcrowdsourced.html&sa=D&sntz=1&usg=AFQjCNFusqblzb4jxyLoDOULeidiEnKgnw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCrowdsourcing&sa=D&sntz=1&usg=AFQjCNGa19WvJ61FQATbdMjwI6ZOQlcgDg
http://www.google.com/url?q=http%3A%2F%2Fmashable.com%2F2012%2F09%2F07%2Fcrowdsourced-developers%2F&sa=D&sntz=1&usg=AFQjCNEqNRNI5ZG3dpw0UU5lnB7MvgyuMg
http://www.google.com/url?q=http%3A%2F%2Fwww.kickstarter.com%2F&sa=D&sntz=1&usg=AFQjCNF_0tDmQKCA14SvGatHyANCwp2msQ
http://www.google.com/url?q=http%3A%2F%2Fwww.newrepublic.com%2Farticle%2Fpolitics%2Fmagazine%2F110225%2Fthe-false-promise-kickstarter%23&sa=D&sntz=1&usg=AFQjCNETx1i6AqgiBrg37zCWLcpCDn3qYA
https://www.google.com/url?q=https%3A%2F%2Fwww.mturk.com%2F&sa=D&sntz=1&usg=AFQjCNH54e3CuL9tz-3aEsMtadb5eKMJZg
https://www.google.com/url?q=https%3A%2F%2Frequester.mturk.com%2Fmturk%2Fbeginsignin&sa=D&sntz=1&usg=AFQjCNGljptJuXdgA7JmGY_t2lTvhkG6hg
https://www.google.com/url?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAmazon_Mechanical_Turk&sa=D&sntz=1&usg=AFQjCNHLRjuu-dDZavDVBoI-4k_XIp5Upg
http://www.google.com/url?q=http%3A%2F%2Fwww.superhub-project.eu%2F&sa=D&sntz=1&usg=AFQjCNFdL05efV1PPSuEoaq0bmahvT0pYw
http://www.google.com/url?q=http%3A%2F%2Fhoyrespiro.people-project.eu%2F&sa=D&sntz=1&usg=AFQjCNHXFDY9b5LOQvJmnOvEUBdhScz5yg
http://www.google.com/url?q=http%3A%2F%2Fwww.ushahidi.com%2F&sa=D&sntz=1&usg=AFQjCNE8w9YaOEk7tpr_S9Gs36q3HLYWtw
http://www.google.com/url?q=http%3A%2F%2Fe360.yale.edu%2Fdigest%2Fgrowth_of_urban_areas_poses_long-term_threats_study_says%2F3095%2F&sa=D&sntz=1&usg=AFQjCNGC8WPlIu9QeWqdUcHIMu_5LG6UUA
http://www.google.com/url?q=http%3A%2F%2Fe360.yale.edu%2Fdigest%2Fgrowth_of_urban_areas_poses_long-term_threats_study_says%2F3095%2F&sa=D&sntz=1&usg=AFQjCNGC8WPlIu9QeWqdUcHIMu_5LG6UUA
http://www.google.com/url?q=http%3A%2F%2Fwww.superhub-project.eu%2Findex.php%3Foption%3Dcom_jdownloads%26Itemid%3D20%26view%3Dfinish%26cid%3D16%26catid%3D6%26m%3D0&sa=D&sntz=1&usg=AFQjCNHzVokT_F6uGHyOGvmTlpoRZLzxKg
http://www.google.com/url?q=http%3A%2F%2Fwww.superhub-project.eu%2Findex.php%3Foption%3Dcom_jdownloads%26Itemid%3D20%26view%3Dfinish%26cid%3D16%26catid%3D6%26m%3D0&sa=D&sntz=1&usg=AFQjCNHzVokT_F6uGHyOGvmTlpoRZLzxKg
http://www.google.com/url?q=http%3A%2F%2Fwww.kickstarter.com%2Fblog%2Fhiring-rails-developer&sa=D&sntz=1&usg=AFQjCNFTuaHdL7CBmhE-zaq-_oY_kBvFuQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fjpesce%2Furbanopticon&sa=D&sntz=1&usg=AFQjCNGIbHfvkHElJfnRskd5PeZJZ3lfUg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FA-Barwell%2Furbangems&sa=D&sntz=1&usg=AFQjCNFe2RfPfYXkEjNH1D0NialWkMiOMw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fushahidi&sa=D&sntz=1&usg=AFQjCNENbn7thWmTeHgXusZAOtdT8s6iAA
http://www.google.com/url?q=http%3A%2F%2Fwww.screamingatmyscreen.com%2F2012%2F2%2Fbusiness-decision-why-i-use-django-and-not-ruby-on-rails%2F&sa=D&sntz=1&usg=AFQjCNHsddGL2c7Ht3uYoN247DpAoHYA1g

y-on-rails/

http://mundogeek.net/archivos/2007/08/20/ruby-on-rails-vs-django/

- http://www.dajaxproject.com/

- https://docs.djangoproject.com/en/dev/ref/contrib/qis/

- http://dbpedia.org/

69

http://www.google.com/url?q=http%3A%2F%2Fwww.screamingatmyscreen.com%2F2012%2F2%2Fbusiness-decision-why-i-use-django-and-not-ruby-on-rails%2F&sa=D&sntz=1&usg=AFQjCNHsddGL2c7Ht3uYoN247DpAoHYA1g
http://www.google.com/url?q=http%3A%2F%2Fmundogeek.net%2Farchivos%2F2007%2F08%2F20%2Fruby-on-rails-vs-django%2F&sa=D&sntz=1&usg=AFQjCNGzr2YwaNYVfGdneyZG8gLttMgScg
http://www.google.com/url?q=http%3A%2F%2Fwww.dajaxproject.com%2F&sa=D&sntz=1&usg=AFQjCNFFTSXe8msyXf40DehsYd-CDKh9vw
https://www.google.com/url?q=https%3A%2F%2Fdocs.djangoproject.com%2Fen%2Fdev%2Fref%2Fcontrib%2Fgis%2F&sa=D&sntz=1&usg=AFQjCNFE_ZhQBI2CdIx7teZCdQzuS8kQ9w
http://www.google.com/url?q=http%3A%2F%2Fdbpedia.org%2F&sa=D&sntz=1&usg=AFQjCNHa73NQC_lNKK8HSyBraEhbqeyvQw

13. Annexes

13.1. Code Review

Open UrbanOpticon Admin

Code Review

13.1.1. Python files

13.1.1.1. models.py

Here the entities used in the application are defined.

First it detects the path where the application is because it might be deployed on different
operating systems or directories.

13.1.1.1.1. City
A City has a name and polygon, the plural had to be redefined because the default was

displaying “Citys”.

13.1.1.1.2. Area
An Area represents a region of a particular city, it has a link with the city it belongs to, a name
and a polygon.

13.1.1.1.3. Place

A Place represents a point to be guessed by the user. It has a geographical point (with Latitude,
Longitude), the URL to its photo in Google Street View (GSV), a link to the same photo (but
stored locally in /image), links to the city and area it belongs to and a boolean that tells if it is an
easy-to-guess (fake) location or not.

The cache method locally saves the image contained in the URL field. First it saves the image,
then it compares it (using the is_equal method) with a previously downloaded GSV 'no image'
file. If is_noimage returns TRUE, the saved image is deleted along with the object (using the
deletePhoto method).

70

A Place will have a link to both a city and an area if it has been generated using the "X Points per
Area" or only to a city of the "X Points per City" option was used. A Place without area and city is
a "world point". There are two extra methods, one to reset the city of the Place checking in the

cities that we have and the other one the same but for areas.

The ShapefileZip is an auxiliary class that allows the administrator to upload a zip archive with
all the files necessary for the import (.shp, .prj, .shx and .dbf). It overrides the save method to
have more utilities on it. First, it deletes all the shapefilesZip objects in the database if they
already exist. It saves the zip in the /shapes folder and extracts it, then saves the name of the
path and finally deletes the zip only leaving only the files.

13.1.1.2. admin.py

This file initializes and customizes the administration pages.

The filters (list_display) contains the attributes of the models that can be displayed and ordered
in the admin page.

save_model overrides the saving method. Now, before saving the new place, it tries to delete the
place if it already exists (in case you are changing the position of a place), then checks if there is
an image of this place in Google Street View (obj.cache()) and if there isn't, doesn't save it and
display an error message.

13.1.1.3 views.py

This is the logic of the application. It communicates with the models, perform various actions
and prepares the data for the templates.

@staff_member_required only allows logged in administrators to use the view.

The view generateetg is a view that generates the easy-to-guess (fake) points of a city. First it
deletes all the places that already exist for the city. It passes the city name and the polygons to
the generateetg.html template. (From createCity it receives only the city name and from
generatePoints it receives a list)

The view generateRandom passes to the generateRandom.html template either all the areas of

a city (If the selected type was area) or the whole city polygon so it can generate random points
inside them.

71

The view importShapefileNewCity is a view that, depending on how it's called (via GET or
POST), does different things. If the method is a GET (means the user hasn't sent the shape file
yet) it returns to the template a form for the zip file and a the city. If it's a POST (user has just
sent the shape file) it saves the zip file and returns the columns of the shapefile and the
administrator will be able to select the most interesting for him.

The view importShapefile does exactly the same as the previous view, but returns a different
HTML. It is used if the city is already in the database. It adds the new areas to the ones already in
the database and recalculates the city polygon.

13.1.1.4 ajax.py

This file contains the methods that are called dynamically via ajax. The server processes the
request in real time and returns the desired information without having to reload the whole page.
(For more info see dajaxproject.com)

The method saveShapefile defines the polygons of a city and its areas given: (1) the column that
contains the polygons inside the shape file, (2) the path of the shape file and (3) name of the city.
First, if there is already a city with that name, it deletes it along with its areas. Then it saves the
new areas, put all the polygons in a list and make a convex hull out this list for the new city.
Finally, it saves the new city and links all the new areas to it. It returns the areas and the city's
polygons because when it returns, the template displays two maps: one with the areas and the
other with the city polygon.

The saveExistingShapefile does the same as the previous method but considers the previous
areas that the city has and just add the new ones without deleting them. It recalculates the
polygon of the city with all the areas.

The generatelmage method generates a new Place given the coordinates, it is used for the
easy-to-guess points. If it doesn't have an image in GSV it isn't saved (cache() method). If itis a
world point it is saved without a city, otherwise it uses the city passed as a parameter (data[2]).

The generateRandomPoints method generates random points given the number of points, the
city and if the administrator wants to make points for the whole city or per area. It returns a string
with the points that have been created to put them into a map.

72

http://www.google.com/url?q=http%3A%2F%2Fwww.dajaxproject.com%2F&sa=D&sntz=1&usg=AFQjCNFFTSXe8msyXf40DehsYd-CDKh9vw

The get_random_point is a helper for the above method that generates a random point inside a
given box.

13.1.2. Templates

13.1.2.1. index.html
Overrides the index of the Django administration to add new buttons and hide the database
manager. It uses Bootstrap.

13.1.2.2. base site.html
It overriddes the base_site to change the name that it's on top, now it displays “Open Urban
Opticon” instead of Django Administration.

13.1.2.3. createCity.html
It is the template where the administrator gives the name to a new study and select the way that
he wants to create the city (now it has only shapefile).

13.1.2.4. importShapefileNewCity.html
In this template the user will select the zip file with the shapefiles and a column from the list of
columns inside the shapefile. Two maps (areas and whole city) with the results will be displayed.

13.1.2.5. generateetg.html

This template displays a list with the well-known places name and images in the city that the
administrator have selected. He can check the points that he wants to save and the images will
be saved in the /images folder. After that, the user tells if he wants to generate points per area or
per city and the number of points.

13.1.2.6. generateRandom.html
A map with the points that have been generated is displayed. The user have to wait for them to
finish. If he wants he can change the number of points and regenerate them.

13.1.2.7. generatePoints.html

This template allows the user to change the points of a city. He can choose if he wants to delete
the previous points or just add. The user has to select the city and then follow the steps like
generateetg.html and generateRandom.html.

73

http://www.google.com/url?q=http%3A%2F%2Ftwitter.github.io%2Fbootstrap%2F&sa=D&sntz=1&usg=AFQjCNFToaT-IX2dujh0m0u0OctgOhv9Tg

13.1.2.8. importShapefile.html
In this template the user can select a city and add areas with a shapefile like in the
importShapefileNewCity.html.

13.1.2.9. worldPoints.html
Read from JSON different cities in the world and display their easy-to-guess points that the
admin can select. It allows to generate random points inside this cities.

13.1.3. adminUtils.js

13.1.3.1. createMap

It displays a new map without controls. It has an OpenStreetMap layer that gives more
information than a standard map. The vector layer is the vector that has all the polygons that are
added as features but they have to be transformed to another projection. The zoom is set at the
whole vector layer extension. An event is called whenever the mouse is over a feature in the
vector layer.

13.1.3.2. initEtg

Create a map as it's done in the previous method but with the center point (same as the
previous map) and a radius (given by the distance between the center point and the top) make a
request to the Google Places of Google Maps API to check the twenty most relevant places. The
map is not displayed.

13.1.3.3. createMapRandomPoints
It follows the same way as createMap but it adds a new layer for the points that will be displayed
after they have been created.

13.1.3.4. callbackGoogle
It is the function that the Google request calls, it fills a checkbox with the results that have been
responded.

13.1.3.5 saveETG
This function saves the points that have been selected by the user in the checkbox that we made
in callbackGoogle.

74

13.1.3.6. callbackRandomPoints
Reads the points that ajax responds and add them into the points layer of the map.

75

13.2. Administrator manual

Open UrbanOpticon Admin

Administrator manual

13.2.1. Setting up the database

The database that we are using is PostGIS, that is a PostgreSQL database with geographical
objects.

To set up the database first you need to install the Geospatial libraries that you can find here
https://docs.djangoproject.com/en/dev/ref/contrib/gis/install/geolibs/. Please, follow the
instructions depending on your OS.

Then you have to install the PostGIS database in your computer building it with these steps
https://docs.djangoproject.com/en/dev/ref/contrib/qgis/install/postgis/#building-from-source.

Once you have all of these, you can create the database running this commands:

createdb 0UO

psql 0OUO

> CREATE EXTENSION postgis;

> CREATE EXTENSION postgis_topology;

Your database has been created.
Now you have to synchronize the database. That will create all the tables that the application
needs. In /urbanopticon/OUOadmin execute the command python manage.py syncdb . You will

have to create a new administrator user with new credentials.

Now your database is ready to use.

13.2.2. Login and index
Now you can log in with the credentials you set before.

76

https://www.google.com/url?q=https%3A%2F%2Fdocs.djangoproject.com%2Fen%2Fdev%2Fref%2Fcontrib%2Fgis%2Finstall%2Fgeolibs%2F&sa=D&sntz=1&usg=AFQjCNHfFeaXuuPrL1uZFxXJEcDLgsT-uA
https://www.google.com/url?q=https%3A%2F%2Fdocs.djangoproject.com%2Fen%2Fdev%2Fref%2Fcontrib%2Fgis%2Finstall%2Fpostgis%2F%23building-from-source&sa=D&sntz=1&usg=AFQjCNFnFzkIl31YNLLE9R5Gy5TVBJ09lQ

Open Urban Opticon

Usermname: bernat

Password: |esees|

Log in

(Figure 35. OpenUrbanOpticon login screenshot)

The administrator index will be displayed.

QH’] Urban qmn Welcome, b. Change password / Log out

Site administration

Create City
Import shapefile
Generate Points

World points

Manage model

(Figure 36. Site administration screenshot)

At the top-right corner you can change your password and log out.

7

13.2.3. Create city

Now you can go to “Create city” to create a new city experiment.
City name:

Import shapefile

Draw polygon and areas

Draw polygon and areas with grid

(Figure 37. Create city screenshot)

Here you have to name the city. If the city already exists you will be warned and if you want to
override it you can continue. Then we click “Import shapefile”, the other options are disabled

now.
#| | ¢|[=b|| SDesktop|

Barcelol ...

Choose File | No file chosen Q search . coses3 318 byke
@ Recently Used [=] untitled 1.0dt 14.3kB
Upload @b L] work 284 byte
& Desktop shapes.zip 115.2 kg
L File System & cities.js 66.7 kB
i Documents | | database.txt 105 byke
[Music || coses2 7.5kB
[m] Pictures |_] coses 321 byke
i@ Videos || Untitled Document 62 bytes
@ Downloads | | step.tkxt 1.8kB
| | loadshapefile.txt 226 byte
. steam.desktop 2.2k
<& Link to Aptanastudio3 62.8 kB
p

(Figure 38. Upload shapefile screenshot)
78

Now you have to select a zip with all the types of file that the import needs (.shp, .prj, .shx, .dbf)
and click Upload.

Barcelona

MNBarri v

Save

(Figure 39. Choose column and save shapefile screenshot)

A list with the columns of the shapefile will be displayed. You will have to select that fits on your
study (in this case “Nbarri” means borough in Catalan).

Barcelona

) ‘)

Generate easy-to-guess points

(Figure 40. Gantt chart screenshot)

In the next web page you will be able to see two maps, one with the areas and one for the whole
city, you can mouse over the zones and their name will be displayed.

In the next step you can choose the easy-to-guess points for the experiment. This points will

79

encourage the user to keep playing because he will recognize the points and he will not be
frustrated. These points will not count for the experiment results. You can choose between 0 and

Google Google

'} Casa Batllo ¥ Parc Gliell

©2013 Google

Once you click the “Save easy-to-guess points” the next page will display an input and two radio
buttons.

Barcelona

Select the number of experimental points at the level of:
« City

Area

Generate random points

(Figure 42. Number and type of random points screenshot)

80

If you select “Area” you will generate x points per area. If you select “City”, x points for the whole
city. In our case we generated 10 points for the whole city and that's the result.

Number of points for City: ‘ 10 l Save random points

Warning! wait until you see the points on the map X

(Figure 43. Random point display screenshot)

You can regenerate the points changing the number and clicking “Save random points”.

Finally you just have to wait for the points and click “Finish”.

81

13.2.4. Import shapefile

You can go to “Import shapefile” to import new areas for a city. First you will have to select the
city that you want to modify, select the zip file and finally select the column. Remember that the
areas will be added to the previous areas, no one will be deleted. The city polygon will be remade
in order to contain all the areas.

13.2.5. Generate Points

If you want to generate new points for a city you can do it easily here. You will select the city and
you can create easy-to-guess points and random points just like we done in “Create city”. You
can select drop to delete the previous points. If you don’t select it you will be able to create more
points every time you click on “Save random points” in the last screen.

13.2.6. World Points

World points

Number of random points:

Generate Points

U\m;alu

L] Parc de Belleville

(Figure 44. World points screenshot)

In this option you can make random and easy-to-guess points for the world. The random points
are from the 20 most relevant cities in the world. The images that are displayed are

82

easy-to-guess points of these cities. You can save the number of random points that you want
and save them. You can check the easy-to-guess points and save them too.

13.2.7. Manage model
If we want, we can manage the database manually.

Generate Points

World points

Manage model

=
|

Areas dAdd ¢ Change
Cities dAdd ¢’ Change
Places g Add ¢ Change

Groups dAdd ¢ Change
Users dAdd ¢ Change

|

Answers dAdd ¢ Change

Sites deAdd ¢ Change

(Figure 45. Manage model screenshot)

We can add, modify and delete areas, cities or places. In the areas and cities we can modify the
polygons and rename the objects.

83

Change city

Name: Barcelona

Poly:

~ASTot aeHE s o s

BN T

Delete all Features

Delete Save and add another | Save and editing | m

(Figure 46. Manage polygon screenshot)

In the places we can create and modify the points, but if there are not image in Google Street
View will not be saved.

84

