Thermal increment due to ErCr: YSGG and CO₂ laser irradiation of different implant surfaces. A pilot study

Laila Gómez-Santos ¹, José Arnabat-Domínguez ², Alejandro Sierra-Rebolledo ³, Cosme Gay-Escoda ⁴

¹ DDS. Resident of the Master in Oral Surgery and Implantology. Barcelona University Dental School
² MD, DDS. Associate professor of Oral Surgery and Professor of the Master of Oral Surgery and Implantology. University of Barcelona Dental School. Investigator of the IDIBELLO
³ DDS. Master in Oral Surgery and Implantology. Barcelona University Dental School

Correspondence:
Centro Médico Teknon
Instituto de investigación IDIBELL
C/ Vilana 12
08022 - Barcelona (Spain)
cgay@ub.edu

Received: 11/07/2009
Accepted: 21/02/2010

Abstract

Objective: An evaluation and comparison is made of the thermal increment at different implant surfaces during irradiation with CO₂ and ErCr:YSGG lasers.

Study design: Five threaded and impacted implants with four types of surfaces were inserted in an adult pig rib: two implants with a hydroxyapatite surface (HA)(impacted and threaded, respectively), a machined titanium surface implant (TI mach), a titanium plasma spray surface implant (TPS), and a sandblasted, acid-etched surface implant (SBAE). A 0.5-mm diameter bone defect was made in the implant apical zone, and a type-K thermocouple (Termopar)® was placed in contact with the implant. The implants were irradiated in the coronal zone of each implant with a CO₂ (4 W continuous mode) and an ErCr:YSGG laser (1.5 W, pulsed mode) first without and then with refrigeration. The temperature variations at the implant apical surface were recorded.


Conclusions: The ErCr:YSGG laser with a water spray applied to the sealing cap or coronal zone of the implants does not generate thermal increments in the apical surface capable of adversely affecting osseointegration and the integrity of the peri-implant bone tissue.

Key words: Dental implant, laser, ErCr:YSGG laser, CO₂ laser, osseointegration, implant surfaces, temperature.
Introduction
In the last 30 years many laser systems have been shown to constitute an effective alternative in application to a range of oral surgery procedures. The easy handling characteristics of these systems, the shortening of surgical time, and increased patient comfort both during the intervention and in the postoperative period constitute some of the advantages of these systems. In effect, laser systems allow precise sectioning of both soft and hard tissues, as a result of interaction of the laser beam with the water present in the irradiated tissues. The underlying mechanism of action is mainly based on thermal action resulting from laser energy absorption by the tissues, with heating, dehydration, coagulation, carbonization and vaporization, according to the thermal increment produced.

In oral surgery, laser systems with great thermal effects such as the CO$_2$ laser have been successfully used for the exeresis of soft tissue lesions, though the associated thermal increments can possibly cause irreversible damage upon coming into contact with bone. In 1983, Eriksson et al. (1) demonstrated that a temperature of over 47ºC maintained for one minute causes irreversible bone damage. Consequently, and considering a baseline tissue temperature of 37ºC, temperature increments of over 10ºC during laser application may suffice to cause irreparable damage to bone.

In oral implantology, laser is indicated (2) for second-step surgery (3), the exeresis of mucosal hyperplasias (4), and for the decontamination of peri-implantitis affected surfaces (5,6). However, the possibility of causing peri-implant bone and implant surface damage capable of placing osseointegration at risk constitutes an important disadvantage of laser irradiation.

The CO$_2$ laser has been one of the most widely used laser systems in both oral surgery and implantology. Its advantages in second-step surgery and in the decontamination of peri-implant surfaces have been confirmed by a number of authors (5-8). Other laser systems with a lesser thermal effect, such as the Er:YAG laser (2, 9-11) have also been proposed for implant surgery (12). The ErCr:YSGG laser emits coherent light at a wavelength of 2.78 µm. Its morphological effects in the irradiated zone are similar to those observed with the Er:YAG laser, at a wavelength of 2.94 µm (13). The ErCr:YSGG laser allows precise bone sectioning and ablation, with minimal thermal effects upon the adjacent tissues (13-16). Its use has been proposed for the preparation of cavities and in caries removal (13,16), the surgical treatment of soft tissue lesions, and biopsies (15). However, to date few studies have evaluated its use in implant surgery.

Material and Methods
In the present in vitro study, impacted and threaded titanium implants with different surfaces were used: impacted hydroxyapatite (HA) (IMZ, Friatec, Mannheim, Germany), threaded hydroxyapatite (HA) (Steri-Oss Inc., Anaheim, USA), machined titanium (TI mach) (Branemark System Mk III, NobelBiocare, Goteborg, Sweden), titanium plasma spray (TPS) (Osseotide 3i, West Palm Beach, USA) and sandblasted and acid-etched (SBAE) (Deicon TSA Series 3, Impladent, Barcelona, Spain). Five implants were placed in an adult pig rib employing the usual surgical technique. The implant characteristics are reflected in (Table 1). Posteriorly, rotary instrumentation was used to drill holes measuring 0.5 mm in diameter in the cortical bone at the apical third level of each implant, simulating fenestration. A type K thermocouple (Termopar®, TM 1300K, T Equipment, Hazlet, NY, USA) was placed in contact with the apical zone of each implant and fixed and insulated with Utility® wax (Dentalwax, Reus, Barcelona, Spain). The entire system was then isolated by positioning a rubber dam in the coronal third of the implants, fixed with sealing caps.

Two types of laser were used: CO$_2$ (Satelec®, Bordeaux, France) with a wavelength of 10.6 µm and a power rat-

<table>
<thead>
<tr>
<th>No.</th>
<th>Code</th>
<th>Surface material</th>
<th>Design</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HA</td>
<td>Hydroxyapatite</td>
<td>Impacted</td>
<td>Rough</td>
</tr>
<tr>
<td>2</td>
<td>TI</td>
<td>Machined titanium</td>
<td>Threaded</td>
<td>Smooth</td>
</tr>
<tr>
<td>3</td>
<td>TPS</td>
<td>Titanium plasma spray</td>
<td>Impacted</td>
<td>Rough</td>
</tr>
<tr>
<td>4</td>
<td>HA</td>
<td>Hydroxyapatite</td>
<td>Threaded</td>
<td>Rough</td>
</tr>
<tr>
<td>5</td>
<td>SBAE</td>
<td>Sandblasted and acid-etched</td>
<td>Impacted</td>
<td>Rough</td>
</tr>
</tbody>
</table>
ing of 4 W (continuous mode), and an ErCr:YSGG laser (Waterlase®, Biolase, San Clemente, CA, USA.) with a wavelength of 2.78 µm and a power rating of 1.5 W (pulsed mode, frequency 20 Hz) and a Tip-Z6 600 µm tip; in one group irradiation was applied with 12% air - 6% H₂O refrigeration. The lasers were used to irradiate the sealing cap of each implant at a focal distance of 1.5 mm and an angle of 90 degrees during 60 seconds. Recordings were made of the temperature variations at the implant apex during irradiation with the CO₂ laser, the ErCr:YSGG laser with refrigeration, and the ErCr:YSGG laser without refrigeration. Measurements were made immediately before irradiation [Temp. 1], after 60 seconds of continuous irradiation, upon stopping irradiation [Temp. 2], 30 seconds after the end of irradiation [Temp. 3], and again 60 seconds after terminating laser application [Temp. 4]. A descriptive analysis was made of the behavior recorded for each irradiated surface according to the duration of irradiation, the laser power rating, and the application or omission of water spray refrigeration, using the SPSS version 9.0 statistical package for Microsoft Windows (license no. 7116391).

Results
On applying the CO₂ laser, an increase in temperature was recorded at all the implant surfaces (Fig. 1). The mean thermal increment after 60 seconds of irradiation was 8.56°C (range 4.30-13.10). In the concrete case of the SBAE and TPS surfaces, the temperature increase exceeded 10°C at the time of interrupting irradiation. Of all the surfaces tested, the threaded HA implant showed the least thermal increment: 4.3°C during irradiation and 3.5°C one minute after discontinuing irradiation. In the case of the ErCr:YSGG laser without refrigeration, all surfaces showed a temperature rise (Fig. 2). The mean thermal increment was 5.02°C (range 2.70-7.50), the greatest temperature increases corresponding to the threaded HA and SBAE implants (7.50°C and 6.70°C, respectively).

In this case the TI mach surface showed the smallest temperature rise at apical level during irradiation (2.7°C). When the ErCr:YSGG was applied with refrigeration, the surface temperature was seen to decrease for all implants (Fig. 3). The mean temperature drop was 0.6°C (range -0.20 to -1.30). At the end of irradiation the most manifest decrease in temperature corresponded to

![Fig. 1. Thermal increment during application of the CO₂ laser to the different implant surfaces.](image)
Fig. 2. Thermal variation during application of the ErCr:YSGG laser without refrigeration.

Fig. 3. Thermal variation during application of the ErCr:YSGG laser with refrigeration.
the SBAE surface, with -1.30°C. The TI mach surface showed the smallest temperature drop during irradiation (-0.20°C)- this being followed by an increase of 1°C after terminating laser irradiation.

Discussion

The present study investigated the temperature variations at different implant surfaces irradiated with two lasers widely used in dental practice: the CO₂ laser and the ErCr:YSGG laser. When lasers are used in vivo, their thermal effects upon the adjacent tissues must be taken into account. In this sense, a bone temperature rise to over 47°C for one minute can cause irreversible bone damage. Thus, with respect to the physiological tissue temperature of 37°C, this leaves a margin of 10°C which must not be exceeded during laser application. However, according to some authors such as Haider et al. (17) the effects of temperature are influenced by bone structure and vascularization. Accordingly, cancellous bone exhibits an increased regenerative capacity compared with cortical bone following laser heat-induced damage, due to its greater vascularization.

The CO₂ laser is one of the most widely used lasers in oral surgical practice. Its use has been described by different authors in numerous procedures such as the resection of benign soft tissue lesions, frenectomies, biopsies and the vaporization of precancerous lesions (leukoplakia). However, caution is required when using these systems in implant surgery, due to their thermal effects. Kreisler et al. (8) showed that the above mentioned 47°C temperature barrier is exceeded after 15 seconds of application of the CO₂ laser at a power rating of 2.5 W in TPS surface implants. Its use therefore requires limitation of the power rating involved.

In contrast, Barak et al. (18) found that CO₂ laser power ratings of under 4 W in continuous mode, and under 8 W in pulses of 0.05 seconds, do not generate thermal increments of over 10°C at the sealing cap and in the body of implants with TPS and HA surfaces. In the present study we have seen that the temperature increments of implants with SBAE and TPS surfaces irradiated for 60 seconds with the CO₂ laser exceed 10°C; thus, the use of this system in second-step surgery or in surface decontamination procedures is not advisable, since the thermal rise in the adjacent tissues could adversely affect osseointegration. Nevertheless, some authors have used this type of laser in second-step implant surgery and for decontaminating implant surfaces in cases of periimplantitis, without recorded alterations of either the implants or the osseointegration process (5,18).

Other lasers such as the Nd:YAG and Ho:YAG lasers have also been evaluated in implantology, though their use has been disadvised in view of the thermal damage to bone and the structural damage inflicted upon the titanium surface (10).

The Er:YAG laser has been proposed for second-step implant surgery, based on its advantages when compared with the traditional cold scalpel. Its scant heat-induced alterations, lack of implant surface damage, and good postoperative comfort for the patient are among the advantages shown by this system (3). Since the studies by Eversole et al. (16) in 1995, this laser has been shown to be effective in cutting enamel, dentin and bone, and has been introduced in dental surgery, where it has been seen to be effective in preparing dental cavities – causing only minimum pulp and surrounding tissue damage. Prior to human studies of ErCr:YSGG laser irradiation, in vitro evaluations were made of its safety and effects upon pulp tissue. In this context, it has been reported that the temperature increments in cavity preparations are smaller than when a conventional turbine-driven instrument is used (16).

Following a study of 44 patients involving 50 dental cavity preparations, Matsumoto et al. (13) concluded that the ErCr:YSGG laser is efficient, effective and safe for caries and cavity preparations. Patient acceptance was excellent, and no side effects were observed. In the present study the ErCr:YSGG laser did not induce implant temperature increments during or after irradiation capable of damaging the neighboring tissues, provided refrigeration was used. The use of this laser without refrigeration led to an average temperature increase of 5°C, with a maximum of 7.5°C. While this does not exceed the temperature barrier associated with irreversible bone damage, it is advisable not to use the system without a water spray.

As to the behavior of the different types of implant surfaces, Kreisler et al. (9) found implants with HA surfaces to experience increased thermal increments compared with TPS and SBAE surfaces, during application of the Er:YAG laser for 120 seconds. Posteriorly, in another study evaluating the thermal increments of different implants during GaAlAs laser application, these same authors found no significant differences between these same surfaces when using the diode laser. In our study the SBAE surface was the surface most affected by thermal variation, yielding higher values than the other surfaces in terms of both temperature increase and decrease.

The findings of the present pilot study indicate that the ErCr:YSGG laser with refrigeration, applied to the sealing cap and coronal zone of the implants, does not generate thermal increments at the apical surface capable of compromising osseointegration or the integrity of the peri-implant bony tissues. These features may be useful in second-step implant surgery, the resection of mucosal hyperplasias, and the treatment of periimplantitis. However, we consider it necessary to conduct further studies to more fully assess the associated implant surface structural damage, and to assess the bactericidal action of the laser.
References


Acknowledgements

This study has been carried out by the research group in “Dental and Maxillofacial Pathology and Treatment” of the Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), with financial support from the oral surgery teaching-healthcare agreement among the University of Barcelona, the Consorci Sanitari Integral and the Servei Català de la Salut of the Generalitat de Catalunya.